]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs
ca3369b8f1e9d2d2c313f16d3d782faa6efdd752
[rustc.git] / compiler / rustc_trait_selection / src / traits / select / candidate_assembly.rs
1 //! Candidate assembly.
2 //!
3 //! The selection process begins by examining all in-scope impls,
4 //! caller obligations, and so forth and assembling a list of
5 //! candidates. See the [rustc dev guide] for more details.
6 //!
7 //! [rustc dev guide]:https://rustc-dev-guide.rust-lang.org/traits/resolution.html#candidate-assembly
8 use rustc_hir as hir;
9 use rustc_infer::traits::{Obligation, SelectionError, TraitObligation};
10 use rustc_middle::ty::print::with_no_trimmed_paths;
11 use rustc_middle::ty::{self, TypeFoldable};
12 use rustc_target::spec::abi::Abi;
13
14 use crate::traits::coherence::Conflict;
15 use crate::traits::{util, SelectionResult};
16 use crate::traits::{Overflow, Unimplemented};
17
18 use super::BuiltinImplConditions;
19 use super::IntercrateAmbiguityCause;
20 use super::OverflowError;
21 use super::SelectionCandidate::{self, *};
22 use super::{EvaluatedCandidate, SelectionCandidateSet, SelectionContext, TraitObligationStack};
23
24 impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
25 #[instrument(level = "debug", skip(self))]
26 pub(super) fn candidate_from_obligation<'o>(
27 &mut self,
28 stack: &TraitObligationStack<'o, 'tcx>,
29 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
30 // Watch out for overflow. This intentionally bypasses (and does
31 // not update) the cache.
32 self.check_recursion_limit(&stack.obligation, &stack.obligation)?;
33
34 // Check the cache. Note that we freshen the trait-ref
35 // separately rather than using `stack.fresh_trait_ref` --
36 // this is because we want the unbound variables to be
37 // replaced with fresh types starting from index 0.
38 let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate);
39 debug!(?cache_fresh_trait_pred);
40 debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
41
42 if let Some(c) =
43 self.check_candidate_cache(stack.obligation.param_env, cache_fresh_trait_pred)
44 {
45 debug!(candidate = ?c, "CACHE HIT");
46 return c;
47 }
48
49 // If no match, compute result and insert into cache.
50 //
51 // FIXME(nikomatsakis) -- this cache is not taking into
52 // account cycles that may have occurred in forming the
53 // candidate. I don't know of any specific problems that
54 // result but it seems awfully suspicious.
55 let (candidate, dep_node) =
56 self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
57
58 debug!(?candidate, "CACHE MISS");
59 self.insert_candidate_cache(
60 stack.obligation.param_env,
61 cache_fresh_trait_pred,
62 dep_node,
63 candidate.clone(),
64 );
65 candidate
66 }
67
68 fn candidate_from_obligation_no_cache<'o>(
69 &mut self,
70 stack: &TraitObligationStack<'o, 'tcx>,
71 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
72 if let Some(conflict) = self.is_knowable(stack) {
73 debug!("coherence stage: not knowable");
74 if self.intercrate_ambiguity_causes.is_some() {
75 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
76 // Heuristics: show the diagnostics when there are no candidates in crate.
77 if let Ok(candidate_set) = self.assemble_candidates(stack) {
78 let mut no_candidates_apply = true;
79
80 for c in candidate_set.vec.iter() {
81 if self.evaluate_candidate(stack, &c)?.may_apply() {
82 no_candidates_apply = false;
83 break;
84 }
85 }
86
87 if !candidate_set.ambiguous && no_candidates_apply {
88 let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
89 let self_ty = trait_ref.self_ty();
90 let (trait_desc, self_desc) = with_no_trimmed_paths(|| {
91 let trait_desc = trait_ref.print_only_trait_path().to_string();
92 let self_desc = if self_ty.has_concrete_skeleton() {
93 Some(self_ty.to_string())
94 } else {
95 None
96 };
97 (trait_desc, self_desc)
98 });
99 let cause = if let Conflict::Upstream = conflict {
100 IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc }
101 } else {
102 IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc }
103 };
104 debug!(?cause, "evaluate_stack: pushing cause");
105 self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
106 }
107 }
108 }
109 return Ok(None);
110 }
111
112 let candidate_set = self.assemble_candidates(stack)?;
113
114 if candidate_set.ambiguous {
115 debug!("candidate set contains ambig");
116 return Ok(None);
117 }
118
119 let mut candidates = candidate_set.vec;
120
121 debug!(?stack, ?candidates, "assembled {} candidates", candidates.len());
122
123 // At this point, we know that each of the entries in the
124 // candidate set is *individually* applicable. Now we have to
125 // figure out if they contain mutual incompatibilities. This
126 // frequently arises if we have an unconstrained input type --
127 // for example, we are looking for `$0: Eq` where `$0` is some
128 // unconstrained type variable. In that case, we'll get a
129 // candidate which assumes $0 == int, one that assumes `$0 ==
130 // usize`, etc. This spells an ambiguity.
131
132 // If there is more than one candidate, first winnow them down
133 // by considering extra conditions (nested obligations and so
134 // forth). We don't winnow if there is exactly one
135 // candidate. This is a relatively minor distinction but it
136 // can lead to better inference and error-reporting. An
137 // example would be if there was an impl:
138 //
139 // impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
140 //
141 // and we were to see some code `foo.push_clone()` where `boo`
142 // is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
143 // we were to winnow, we'd wind up with zero candidates.
144 // Instead, we select the right impl now but report "`Bar` does
145 // not implement `Clone`".
146 if candidates.len() == 1 {
147 return self.filter_negative_and_reservation_impls(candidates.pop().unwrap());
148 }
149
150 // Winnow, but record the exact outcome of evaluation, which
151 // is needed for specialization. Propagate overflow if it occurs.
152 let mut candidates = candidates
153 .into_iter()
154 .map(|c| match self.evaluate_candidate(stack, &c) {
155 Ok(eval) if eval.may_apply() => {
156 Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
157 }
158 Ok(_) => Ok(None),
159 Err(OverflowError) => Err(Overflow),
160 })
161 .flat_map(Result::transpose)
162 .collect::<Result<Vec<_>, _>>()?;
163
164 debug!(?stack, ?candidates, "winnowed to {} candidates", candidates.len());
165
166 let needs_infer = stack.obligation.predicate.has_infer_types_or_consts();
167
168 // If there are STILL multiple candidates, we can further
169 // reduce the list by dropping duplicates -- including
170 // resolving specializations.
171 if candidates.len() > 1 {
172 let mut i = 0;
173 while i < candidates.len() {
174 let is_dup = (0..candidates.len()).filter(|&j| i != j).any(|j| {
175 self.candidate_should_be_dropped_in_favor_of(
176 &candidates[i],
177 &candidates[j],
178 needs_infer,
179 )
180 });
181 if is_dup {
182 debug!(candidate = ?candidates[i], "Dropping candidate #{}/{}", i, candidates.len());
183 candidates.swap_remove(i);
184 } else {
185 debug!(candidate = ?candidates[i], "Retaining candidate #{}/{}", i, candidates.len());
186 i += 1;
187
188 // If there are *STILL* multiple candidates, give up
189 // and report ambiguity.
190 if i > 1 {
191 debug!("multiple matches, ambig");
192 return Ok(None);
193 }
194 }
195 }
196 }
197
198 // If there are *NO* candidates, then there are no impls --
199 // that we know of, anyway. Note that in the case where there
200 // are unbound type variables within the obligation, it might
201 // be the case that you could still satisfy the obligation
202 // from another crate by instantiating the type variables with
203 // a type from another crate that does have an impl. This case
204 // is checked for in `evaluate_stack` (and hence users
205 // who might care about this case, like coherence, should use
206 // that function).
207 if candidates.is_empty() {
208 // If there's an error type, 'downgrade' our result from
209 // `Err(Unimplemented)` to `Ok(None)`. This helps us avoid
210 // emitting additional spurious errors, since we're guaranteed
211 // to have emitted at least one.
212 if stack.obligation.references_error() {
213 debug!("no results for error type, treating as ambiguous");
214 return Ok(None);
215 }
216 return Err(Unimplemented);
217 }
218
219 // Just one candidate left.
220 self.filter_negative_and_reservation_impls(candidates.pop().unwrap().candidate)
221 }
222
223 pub(super) fn assemble_candidates<'o>(
224 &mut self,
225 stack: &TraitObligationStack<'o, 'tcx>,
226 ) -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>> {
227 let TraitObligationStack { obligation, .. } = *stack;
228 let obligation = &Obligation {
229 param_env: obligation.param_env,
230 cause: obligation.cause.clone(),
231 recursion_depth: obligation.recursion_depth,
232 predicate: self.infcx().resolve_vars_if_possible(obligation.predicate),
233 };
234
235 if obligation.predicate.skip_binder().self_ty().is_ty_var() {
236 // Self is a type variable (e.g., `_: AsRef<str>`).
237 //
238 // This is somewhat problematic, as the current scheme can't really
239 // handle it turning to be a projection. This does end up as truly
240 // ambiguous in most cases anyway.
241 //
242 // Take the fast path out - this also improves
243 // performance by preventing assemble_candidates_from_impls from
244 // matching every impl for this trait.
245 return Ok(SelectionCandidateSet { vec: vec![], ambiguous: true });
246 }
247
248 let mut candidates = SelectionCandidateSet { vec: Vec::new(), ambiguous: false };
249
250 self.assemble_candidates_for_trait_alias(obligation, &mut candidates)?;
251
252 // Other bounds. Consider both in-scope bounds from fn decl
253 // and applicable impls. There is a certain set of precedence rules here.
254 let def_id = obligation.predicate.def_id();
255 let lang_items = self.tcx().lang_items();
256
257 if lang_items.copy_trait() == Some(def_id) {
258 debug!(obligation_self_ty = ?obligation.predicate.skip_binder().self_ty());
259
260 // User-defined copy impls are permitted, but only for
261 // structs and enums.
262 self.assemble_candidates_from_impls(obligation, &mut candidates)?;
263
264 // For other types, we'll use the builtin rules.
265 let copy_conditions = self.copy_clone_conditions(obligation);
266 self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates)?;
267 } else if lang_items.discriminant_kind_trait() == Some(def_id) {
268 // `DiscriminantKind` is automatically implemented for every type.
269 candidates.vec.push(DiscriminantKindCandidate);
270 } else if lang_items.sized_trait() == Some(def_id) {
271 // Sized is never implementable by end-users, it is
272 // always automatically computed.
273 let sized_conditions = self.sized_conditions(obligation);
274 self.assemble_builtin_bound_candidates(sized_conditions, &mut candidates)?;
275 } else if lang_items.unsize_trait() == Some(def_id) {
276 self.assemble_candidates_for_unsizing(obligation, &mut candidates);
277 } else {
278 if lang_items.clone_trait() == Some(def_id) {
279 // Same builtin conditions as `Copy`, i.e., every type which has builtin support
280 // for `Copy` also has builtin support for `Clone`, and tuples/arrays of `Clone`
281 // types have builtin support for `Clone`.
282 let clone_conditions = self.copy_clone_conditions(obligation);
283 self.assemble_builtin_bound_candidates(clone_conditions, &mut candidates)?;
284 }
285
286 self.assemble_generator_candidates(obligation, &mut candidates)?;
287 self.assemble_closure_candidates(obligation, &mut candidates)?;
288 self.assemble_fn_pointer_candidates(obligation, &mut candidates)?;
289 self.assemble_candidates_from_impls(obligation, &mut candidates)?;
290 self.assemble_candidates_from_object_ty(obligation, &mut candidates);
291 }
292
293 self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
294 self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
295 // Auto implementations have lower priority, so we only
296 // consider triggering a default if there is no other impl that can apply.
297 if candidates.vec.is_empty() {
298 self.assemble_candidates_from_auto_impls(obligation, &mut candidates)?;
299 }
300 debug!("candidate list size: {}", candidates.vec.len());
301 Ok(candidates)
302 }
303
304 fn assemble_candidates_from_projected_tys(
305 &mut self,
306 obligation: &TraitObligation<'tcx>,
307 candidates: &mut SelectionCandidateSet<'tcx>,
308 ) {
309 debug!(?obligation, "assemble_candidates_from_projected_tys");
310
311 // Before we go into the whole placeholder thing, just
312 // quickly check if the self-type is a projection at all.
313 match obligation.predicate.skip_binder().trait_ref.self_ty().kind() {
314 ty::Projection(_) | ty::Opaque(..) => {}
315 ty::Infer(ty::TyVar(_)) => {
316 span_bug!(
317 obligation.cause.span,
318 "Self=_ should have been handled by assemble_candidates"
319 );
320 }
321 _ => return,
322 }
323
324 let result = self
325 .infcx
326 .probe(|_| self.match_projection_obligation_against_definition_bounds(obligation));
327
328 for predicate_index in result {
329 candidates.vec.push(ProjectionCandidate(predicate_index));
330 }
331 }
332
333 /// Given an obligation like `<SomeTrait for T>`, searches the obligations that the caller
334 /// supplied to find out whether it is listed among them.
335 ///
336 /// Never affects the inference environment.
337 fn assemble_candidates_from_caller_bounds<'o>(
338 &mut self,
339 stack: &TraitObligationStack<'o, 'tcx>,
340 candidates: &mut SelectionCandidateSet<'tcx>,
341 ) -> Result<(), SelectionError<'tcx>> {
342 debug!(?stack.obligation, "assemble_candidates_from_caller_bounds");
343
344 let all_bounds = stack
345 .obligation
346 .param_env
347 .caller_bounds()
348 .iter()
349 .filter_map(|o| o.to_opt_poly_trait_ref());
350
351 // Micro-optimization: filter out predicates relating to different traits.
352 let matching_bounds =
353 all_bounds.filter(|p| p.value.def_id() == stack.obligation.predicate.def_id());
354
355 // Keep only those bounds which may apply, and propagate overflow if it occurs.
356 for bound in matching_bounds {
357 let wc = self.evaluate_where_clause(stack, bound.value)?;
358 if wc.may_apply() {
359 candidates.vec.push(ParamCandidate(bound));
360 }
361 }
362
363 Ok(())
364 }
365
366 fn assemble_generator_candidates(
367 &mut self,
368 obligation: &TraitObligation<'tcx>,
369 candidates: &mut SelectionCandidateSet<'tcx>,
370 ) -> Result<(), SelectionError<'tcx>> {
371 if self.tcx().lang_items().gen_trait() != Some(obligation.predicate.def_id()) {
372 return Ok(());
373 }
374
375 // Okay to skip binder because the substs on generator types never
376 // touch bound regions, they just capture the in-scope
377 // type/region parameters.
378 let self_ty = obligation.self_ty().skip_binder();
379 match self_ty.kind() {
380 ty::Generator(..) => {
381 debug!(?self_ty, ?obligation, "assemble_generator_candidates",);
382
383 candidates.vec.push(GeneratorCandidate);
384 }
385 ty::Infer(ty::TyVar(_)) => {
386 debug!("assemble_generator_candidates: ambiguous self-type");
387 candidates.ambiguous = true;
388 }
389 _ => {}
390 }
391
392 Ok(())
393 }
394
395 /// Checks for the artificial impl that the compiler will create for an obligation like `X :
396 /// FnMut<..>` where `X` is a closure type.
397 ///
398 /// Note: the type parameters on a closure candidate are modeled as *output* type
399 /// parameters and hence do not affect whether this trait is a match or not. They will be
400 /// unified during the confirmation step.
401 fn assemble_closure_candidates(
402 &mut self,
403 obligation: &TraitObligation<'tcx>,
404 candidates: &mut SelectionCandidateSet<'tcx>,
405 ) -> Result<(), SelectionError<'tcx>> {
406 let kind = match self.tcx().fn_trait_kind_from_lang_item(obligation.predicate.def_id()) {
407 Some(k) => k,
408 None => {
409 return Ok(());
410 }
411 };
412
413 // Okay to skip binder because the substs on closure types never
414 // touch bound regions, they just capture the in-scope
415 // type/region parameters
416 match *obligation.self_ty().skip_binder().kind() {
417 ty::Closure(_, closure_substs) => {
418 debug!(?kind, ?obligation, "assemble_unboxed_candidates");
419 match self.infcx.closure_kind(closure_substs) {
420 Some(closure_kind) => {
421 debug!(?closure_kind, "assemble_unboxed_candidates");
422 if closure_kind.extends(kind) {
423 candidates.vec.push(ClosureCandidate);
424 }
425 }
426 None => {
427 debug!("assemble_unboxed_candidates: closure_kind not yet known");
428 candidates.vec.push(ClosureCandidate);
429 }
430 }
431 }
432 ty::Infer(ty::TyVar(_)) => {
433 debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
434 candidates.ambiguous = true;
435 }
436 _ => {}
437 }
438
439 Ok(())
440 }
441
442 /// Implements one of the `Fn()` family for a fn pointer.
443 fn assemble_fn_pointer_candidates(
444 &mut self,
445 obligation: &TraitObligation<'tcx>,
446 candidates: &mut SelectionCandidateSet<'tcx>,
447 ) -> Result<(), SelectionError<'tcx>> {
448 // We provide impl of all fn traits for fn pointers.
449 if self.tcx().fn_trait_kind_from_lang_item(obligation.predicate.def_id()).is_none() {
450 return Ok(());
451 }
452
453 // Okay to skip binder because what we are inspecting doesn't involve bound regions.
454 let self_ty = obligation.self_ty().skip_binder();
455 match *self_ty.kind() {
456 ty::Infer(ty::TyVar(_)) => {
457 debug!("assemble_fn_pointer_candidates: ambiguous self-type");
458 candidates.ambiguous = true; // Could wind up being a fn() type.
459 }
460 // Provide an impl, but only for suitable `fn` pointers.
461 ty::FnPtr(_) => {
462 if let ty::FnSig {
463 unsafety: hir::Unsafety::Normal,
464 abi: Abi::Rust,
465 c_variadic: false,
466 ..
467 } = self_ty.fn_sig(self.tcx()).skip_binder()
468 {
469 candidates.vec.push(FnPointerCandidate);
470 }
471 }
472 // Provide an impl for suitable functions, rejecting `#[target_feature]` functions (RFC 2396).
473 ty::FnDef(def_id, _) => {
474 if let ty::FnSig {
475 unsafety: hir::Unsafety::Normal,
476 abi: Abi::Rust,
477 c_variadic: false,
478 ..
479 } = self_ty.fn_sig(self.tcx()).skip_binder()
480 {
481 if self.tcx().codegen_fn_attrs(def_id).target_features.is_empty() {
482 candidates.vec.push(FnPointerCandidate);
483 }
484 }
485 }
486 _ => {}
487 }
488
489 Ok(())
490 }
491
492 /// Searches for impls that might apply to `obligation`.
493 fn assemble_candidates_from_impls(
494 &mut self,
495 obligation: &TraitObligation<'tcx>,
496 candidates: &mut SelectionCandidateSet<'tcx>,
497 ) -> Result<(), SelectionError<'tcx>> {
498 debug!(?obligation, "assemble_candidates_from_impls");
499
500 // Essentially any user-written impl will match with an error type,
501 // so creating `ImplCandidates` isn't useful. However, we might
502 // end up finding a candidate elsewhere (e.g. a `BuiltinCandidate` for `Sized)
503 // This helps us avoid overflow: see issue #72839
504 // Since compilation is already guaranteed to fail, this is just
505 // to try to show the 'nicest' possible errors to the user.
506 if obligation.references_error() {
507 return Ok(());
508 }
509
510 self.tcx().for_each_relevant_impl(
511 obligation.predicate.def_id(),
512 obligation.predicate.skip_binder().trait_ref.self_ty(),
513 |impl_def_id| {
514 self.infcx.probe(|_| {
515 if let Ok(_substs) = self.match_impl(impl_def_id, obligation) {
516 candidates.vec.push(ImplCandidate(impl_def_id));
517 }
518 });
519 },
520 );
521
522 Ok(())
523 }
524
525 fn assemble_candidates_from_auto_impls(
526 &mut self,
527 obligation: &TraitObligation<'tcx>,
528 candidates: &mut SelectionCandidateSet<'tcx>,
529 ) -> Result<(), SelectionError<'tcx>> {
530 // Okay to skip binder here because the tests we do below do not involve bound regions.
531 let self_ty = obligation.self_ty().skip_binder();
532 debug!(?self_ty, "assemble_candidates_from_auto_impls");
533
534 let def_id = obligation.predicate.def_id();
535
536 if self.tcx().trait_is_auto(def_id) {
537 match self_ty.kind() {
538 ty::Dynamic(..) => {
539 // For object types, we don't know what the closed
540 // over types are. This means we conservatively
541 // say nothing; a candidate may be added by
542 // `assemble_candidates_from_object_ty`.
543 }
544 ty::Foreign(..) => {
545 // Since the contents of foreign types is unknown,
546 // we don't add any `..` impl. Default traits could
547 // still be provided by a manual implementation for
548 // this trait and type.
549 }
550 ty::Param(..) | ty::Projection(..) => {
551 // In these cases, we don't know what the actual
552 // type is. Therefore, we cannot break it down
553 // into its constituent types. So we don't
554 // consider the `..` impl but instead just add no
555 // candidates: this means that typeck will only
556 // succeed if there is another reason to believe
557 // that this obligation holds. That could be a
558 // where-clause or, in the case of an object type,
559 // it could be that the object type lists the
560 // trait (e.g., `Foo+Send : Send`). See
561 // `compile-fail/typeck-default-trait-impl-send-param.rs`
562 // for an example of a test case that exercises
563 // this path.
564 }
565 ty::Infer(ty::TyVar(_)) => {
566 // The auto impl might apply; we don't know.
567 candidates.ambiguous = true;
568 }
569 ty::Generator(_, _, movability)
570 if self.tcx().lang_items().unpin_trait() == Some(def_id) =>
571 {
572 match movability {
573 hir::Movability::Static => {
574 // Immovable generators are never `Unpin`, so
575 // suppress the normal auto-impl candidate for it.
576 }
577 hir::Movability::Movable => {
578 // Movable generators are always `Unpin`, so add an
579 // unconditional builtin candidate.
580 candidates.vec.push(BuiltinCandidate { has_nested: false });
581 }
582 }
583 }
584
585 _ => candidates.vec.push(AutoImplCandidate(def_id)),
586 }
587 }
588
589 Ok(())
590 }
591
592 /// Searches for impls that might apply to `obligation`.
593 fn assemble_candidates_from_object_ty(
594 &mut self,
595 obligation: &TraitObligation<'tcx>,
596 candidates: &mut SelectionCandidateSet<'tcx>,
597 ) {
598 debug!(
599 self_ty = ?obligation.self_ty().skip_binder(),
600 "assemble_candidates_from_object_ty",
601 );
602
603 self.infcx.probe(|_snapshot| {
604 // The code below doesn't care about regions, and the
605 // self-ty here doesn't escape this probe, so just erase
606 // any LBR.
607 let self_ty = self.tcx().erase_late_bound_regions(obligation.self_ty());
608 let poly_trait_ref = match self_ty.kind() {
609 ty::Dynamic(ref data, ..) => {
610 if data.auto_traits().any(|did| did == obligation.predicate.def_id()) {
611 debug!(
612 "assemble_candidates_from_object_ty: matched builtin bound, \
613 pushing candidate"
614 );
615 candidates.vec.push(BuiltinObjectCandidate);
616 return;
617 }
618
619 if let Some(principal) = data.principal() {
620 if !self.infcx.tcx.features().object_safe_for_dispatch {
621 principal.with_self_ty(self.tcx(), self_ty)
622 } else if self.tcx().is_object_safe(principal.def_id()) {
623 principal.with_self_ty(self.tcx(), self_ty)
624 } else {
625 return;
626 }
627 } else {
628 // Only auto trait bounds exist.
629 return;
630 }
631 }
632 ty::Infer(ty::TyVar(_)) => {
633 debug!("assemble_candidates_from_object_ty: ambiguous");
634 candidates.ambiguous = true; // could wind up being an object type
635 return;
636 }
637 _ => return,
638 };
639
640 debug!(?poly_trait_ref, "assemble_candidates_from_object_ty");
641
642 let poly_trait_predicate = self.infcx().resolve_vars_if_possible(obligation.predicate);
643 let placeholder_trait_predicate =
644 self.infcx().replace_bound_vars_with_placeholders(poly_trait_predicate);
645
646 // Count only those upcast versions that match the trait-ref
647 // we are looking for. Specifically, do not only check for the
648 // correct trait, but also the correct type parameters.
649 // For example, we may be trying to upcast `Foo` to `Bar<i32>`,
650 // but `Foo` is declared as `trait Foo: Bar<u32>`.
651 let candidate_supertraits = util::supertraits(self.tcx(), poly_trait_ref)
652 .enumerate()
653 .filter(|&(_, upcast_trait_ref)| {
654 self.infcx.probe(|_| {
655 self.match_normalize_trait_ref(
656 obligation,
657 upcast_trait_ref,
658 placeholder_trait_predicate.trait_ref,
659 )
660 .is_ok()
661 })
662 })
663 .map(|(idx, _)| ObjectCandidate(idx));
664
665 candidates.vec.extend(candidate_supertraits);
666 })
667 }
668
669 /// Searches for unsizing that might apply to `obligation`.
670 fn assemble_candidates_for_unsizing(
671 &mut self,
672 obligation: &TraitObligation<'tcx>,
673 candidates: &mut SelectionCandidateSet<'tcx>,
674 ) {
675 // We currently never consider higher-ranked obligations e.g.
676 // `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
677 // because they are a priori invalid, and we could potentially add support
678 // for them later, it's just that there isn't really a strong need for it.
679 // A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
680 // impl, and those are generally applied to concrete types.
681 //
682 // That said, one might try to write a fn with a where clause like
683 // for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
684 // where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
685 // Still, you'd be more likely to write that where clause as
686 // T: Trait
687 // so it seems ok if we (conservatively) fail to accept that `Unsize`
688 // obligation above. Should be possible to extend this in the future.
689 let source = match obligation.self_ty().no_bound_vars() {
690 Some(t) => t,
691 None => {
692 // Don't add any candidates if there are bound regions.
693 return;
694 }
695 };
696 let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
697
698 debug!(?source, ?target, "assemble_candidates_for_unsizing");
699
700 let may_apply = match (source.kind(), target.kind()) {
701 // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
702 (&ty::Dynamic(ref data_a, ..), &ty::Dynamic(ref data_b, ..)) => {
703 // Upcasts permit two things:
704 //
705 // 1. Dropping auto traits, e.g., `Foo + Send` to `Foo`
706 // 2. Tightening the region bound, e.g., `Foo + 'a` to `Foo + 'b` if `'a: 'b`
707 //
708 // Note that neither of these changes requires any
709 // change at runtime. Eventually this will be
710 // generalized.
711 //
712 // We always upcast when we can because of reason
713 // #2 (region bounds).
714 data_a.principal_def_id() == data_b.principal_def_id()
715 && data_b
716 .auto_traits()
717 // All of a's auto traits need to be in b's auto traits.
718 .all(|b| data_a.auto_traits().any(|a| a == b))
719 }
720
721 // `T` -> `Trait`
722 (_, &ty::Dynamic(..)) => true,
723
724 // Ambiguous handling is below `T` -> `Trait`, because inference
725 // variables can still implement `Unsize<Trait>` and nested
726 // obligations will have the final say (likely deferred).
727 (&ty::Infer(ty::TyVar(_)), _) | (_, &ty::Infer(ty::TyVar(_))) => {
728 debug!("assemble_candidates_for_unsizing: ambiguous");
729 candidates.ambiguous = true;
730 false
731 }
732
733 // `[T; n]` -> `[T]`
734 (&ty::Array(..), &ty::Slice(_)) => true,
735
736 // `Struct<T>` -> `Struct<U>`
737 (&ty::Adt(def_id_a, _), &ty::Adt(def_id_b, _)) if def_id_a.is_struct() => {
738 def_id_a == def_id_b
739 }
740
741 // `(.., T)` -> `(.., U)`
742 (&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => tys_a.len() == tys_b.len(),
743
744 _ => false,
745 };
746
747 if may_apply {
748 candidates.vec.push(BuiltinUnsizeCandidate);
749 }
750 }
751
752 fn assemble_candidates_for_trait_alias(
753 &mut self,
754 obligation: &TraitObligation<'tcx>,
755 candidates: &mut SelectionCandidateSet<'tcx>,
756 ) -> Result<(), SelectionError<'tcx>> {
757 // Okay to skip binder here because the tests we do below do not involve bound regions.
758 let self_ty = obligation.self_ty().skip_binder();
759 debug!(?self_ty, "assemble_candidates_for_trait_alias");
760
761 let def_id = obligation.predicate.def_id();
762
763 if self.tcx().is_trait_alias(def_id) {
764 candidates.vec.push(TraitAliasCandidate(def_id));
765 }
766
767 Ok(())
768 }
769
770 /// Assembles the trait which are built-in to the language itself:
771 /// `Copy`, `Clone` and `Sized`.
772 fn assemble_builtin_bound_candidates(
773 &mut self,
774 conditions: BuiltinImplConditions<'tcx>,
775 candidates: &mut SelectionCandidateSet<'tcx>,
776 ) -> Result<(), SelectionError<'tcx>> {
777 match conditions {
778 BuiltinImplConditions::Where(nested) => {
779 debug!(?nested, "builtin_bound");
780 candidates
781 .vec
782 .push(BuiltinCandidate { has_nested: !nested.skip_binder().is_empty() });
783 }
784 BuiltinImplConditions::None => {}
785 BuiltinImplConditions::Ambiguous => {
786 debug!("assemble_builtin_bound_candidates: ambiguous builtin");
787 candidates.ambiguous = true;
788 }
789 }
790
791 Ok(())
792 }
793 }