]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_ty_utils/src/layout.rs
New upstream version 1.66.0+dfsg1
[rustc.git] / compiler / rustc_ty_utils / src / layout.rs
1 use rustc_hir as hir;
2 use rustc_index::bit_set::BitSet;
3 use rustc_index::vec::{Idx, IndexVec};
4 use rustc_middle::mir::{GeneratorLayout, GeneratorSavedLocal};
5 use rustc_middle::ty::layout::{
6 IntegerExt, LayoutCx, LayoutError, LayoutOf, TyAndLayout, MAX_SIMD_LANES,
7 };
8 use rustc_middle::ty::{
9 self, subst::SubstsRef, EarlyBinder, ReprOptions, Ty, TyCtxt, TypeVisitable,
10 };
11 use rustc_session::{DataTypeKind, FieldInfo, SizeKind, VariantInfo};
12 use rustc_span::symbol::Symbol;
13 use rustc_span::DUMMY_SP;
14 use rustc_target::abi::*;
15
16 use std::cmp::{self, Ordering};
17 use std::iter;
18 use std::num::NonZeroUsize;
19 use std::ops::Bound;
20
21 use rand::{seq::SliceRandom, SeedableRng};
22 use rand_xoshiro::Xoshiro128StarStar;
23
24 use crate::layout_sanity_check::sanity_check_layout;
25
26 pub fn provide(providers: &mut ty::query::Providers) {
27 *providers = ty::query::Providers { layout_of, ..*providers };
28 }
29
30 #[instrument(skip(tcx, query), level = "debug")]
31 fn layout_of<'tcx>(
32 tcx: TyCtxt<'tcx>,
33 query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
34 ) -> Result<TyAndLayout<'tcx>, LayoutError<'tcx>> {
35 let (param_env, ty) = query.into_parts();
36 debug!(?ty);
37
38 let param_env = param_env.with_reveal_all_normalized(tcx);
39 let unnormalized_ty = ty;
40
41 // FIXME: We might want to have two different versions of `layout_of`:
42 // One that can be called after typecheck has completed and can use
43 // `normalize_erasing_regions` here and another one that can be called
44 // before typecheck has completed and uses `try_normalize_erasing_regions`.
45 let ty = match tcx.try_normalize_erasing_regions(param_env, ty) {
46 Ok(t) => t,
47 Err(normalization_error) => {
48 return Err(LayoutError::NormalizationFailure(ty, normalization_error));
49 }
50 };
51
52 if ty != unnormalized_ty {
53 // Ensure this layout is also cached for the normalized type.
54 return tcx.layout_of(param_env.and(ty));
55 }
56
57 let cx = LayoutCx { tcx, param_env };
58
59 let layout = layout_of_uncached(&cx, ty)?;
60 let layout = TyAndLayout { ty, layout };
61
62 record_layout_for_printing(&cx, layout);
63
64 sanity_check_layout(&cx, &layout);
65
66 Ok(layout)
67 }
68
69 #[derive(Copy, Clone, Debug)]
70 enum StructKind {
71 /// A tuple, closure, or univariant which cannot be coerced to unsized.
72 AlwaysSized,
73 /// A univariant, the last field of which may be coerced to unsized.
74 MaybeUnsized,
75 /// A univariant, but with a prefix of an arbitrary size & alignment (e.g., enum tag).
76 Prefixed(Size, Align),
77 }
78
79 // Invert a bijective mapping, i.e. `invert(map)[y] = x` if `map[x] = y`.
80 // This is used to go between `memory_index` (source field order to memory order)
81 // and `inverse_memory_index` (memory order to source field order).
82 // See also `FieldsShape::Arbitrary::memory_index` for more details.
83 // FIXME(eddyb) build a better abstraction for permutations, if possible.
84 fn invert_mapping(map: &[u32]) -> Vec<u32> {
85 let mut inverse = vec![0; map.len()];
86 for i in 0..map.len() {
87 inverse[map[i] as usize] = i as u32;
88 }
89 inverse
90 }
91
92 fn scalar_pair<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, a: Scalar, b: Scalar) -> LayoutS<'tcx> {
93 let dl = cx.data_layout();
94 let b_align = b.align(dl);
95 let align = a.align(dl).max(b_align).max(dl.aggregate_align);
96 let b_offset = a.size(dl).align_to(b_align.abi);
97 let size = (b_offset + b.size(dl)).align_to(align.abi);
98
99 // HACK(nox): We iter on `b` and then `a` because `max_by_key`
100 // returns the last maximum.
101 let largest_niche = Niche::from_scalar(dl, b_offset, b)
102 .into_iter()
103 .chain(Niche::from_scalar(dl, Size::ZERO, a))
104 .max_by_key(|niche| niche.available(dl));
105
106 LayoutS {
107 variants: Variants::Single { index: VariantIdx::new(0) },
108 fields: FieldsShape::Arbitrary {
109 offsets: vec![Size::ZERO, b_offset],
110 memory_index: vec![0, 1],
111 },
112 abi: Abi::ScalarPair(a, b),
113 largest_niche,
114 align,
115 size,
116 }
117 }
118
119 fn univariant_uninterned<'tcx>(
120 cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
121 ty: Ty<'tcx>,
122 fields: &[TyAndLayout<'_>],
123 repr: &ReprOptions,
124 kind: StructKind,
125 ) -> Result<LayoutS<'tcx>, LayoutError<'tcx>> {
126 let dl = cx.data_layout();
127 let pack = repr.pack;
128 if pack.is_some() && repr.align.is_some() {
129 cx.tcx.sess.delay_span_bug(DUMMY_SP, "struct cannot be packed and aligned");
130 return Err(LayoutError::Unknown(ty));
131 }
132
133 let mut align = if pack.is_some() { dl.i8_align } else { dl.aggregate_align };
134
135 let mut inverse_memory_index: Vec<u32> = (0..fields.len() as u32).collect();
136
137 let optimize = !repr.inhibit_struct_field_reordering_opt();
138 if optimize {
139 let end = if let StructKind::MaybeUnsized = kind { fields.len() - 1 } else { fields.len() };
140 let optimizing = &mut inverse_memory_index[..end];
141 let field_align = |f: &TyAndLayout<'_>| {
142 if let Some(pack) = pack { f.align.abi.min(pack) } else { f.align.abi }
143 };
144
145 // If `-Z randomize-layout` was enabled for the type definition we can shuffle
146 // the field ordering to try and catch some code making assumptions about layouts
147 // we don't guarantee
148 if repr.can_randomize_type_layout() {
149 // `ReprOptions.layout_seed` is a deterministic seed that we can use to
150 // randomize field ordering with
151 let mut rng = Xoshiro128StarStar::seed_from_u64(repr.field_shuffle_seed);
152
153 // Shuffle the ordering of the fields
154 optimizing.shuffle(&mut rng);
155
156 // Otherwise we just leave things alone and actually optimize the type's fields
157 } else {
158 match kind {
159 StructKind::AlwaysSized | StructKind::MaybeUnsized => {
160 optimizing.sort_by_key(|&x| {
161 // Place ZSTs first to avoid "interesting offsets",
162 // especially with only one or two non-ZST fields.
163 let f = &fields[x as usize];
164 (!f.is_zst(), cmp::Reverse(field_align(f)))
165 });
166 }
167
168 StructKind::Prefixed(..) => {
169 // Sort in ascending alignment so that the layout stays optimal
170 // regardless of the prefix
171 optimizing.sort_by_key(|&x| field_align(&fields[x as usize]));
172 }
173 }
174
175 // FIXME(Kixiron): We can always shuffle fields within a given alignment class
176 // regardless of the status of `-Z randomize-layout`
177 }
178 }
179
180 // inverse_memory_index holds field indices by increasing memory offset.
181 // That is, if field 5 has offset 0, the first element of inverse_memory_index is 5.
182 // We now write field offsets to the corresponding offset slot;
183 // field 5 with offset 0 puts 0 in offsets[5].
184 // At the bottom of this function, we invert `inverse_memory_index` to
185 // produce `memory_index` (see `invert_mapping`).
186
187 let mut sized = true;
188 let mut offsets = vec![Size::ZERO; fields.len()];
189 let mut offset = Size::ZERO;
190 let mut largest_niche = None;
191 let mut largest_niche_available = 0;
192
193 if let StructKind::Prefixed(prefix_size, prefix_align) = kind {
194 let prefix_align =
195 if let Some(pack) = pack { prefix_align.min(pack) } else { prefix_align };
196 align = align.max(AbiAndPrefAlign::new(prefix_align));
197 offset = prefix_size.align_to(prefix_align);
198 }
199
200 for &i in &inverse_memory_index {
201 let field = fields[i as usize];
202 if !sized {
203 cx.tcx.sess.delay_span_bug(
204 DUMMY_SP,
205 &format!(
206 "univariant: field #{} of `{}` comes after unsized field",
207 offsets.len(),
208 ty
209 ),
210 );
211 }
212
213 if field.is_unsized() {
214 sized = false;
215 }
216
217 // Invariant: offset < dl.obj_size_bound() <= 1<<61
218 let field_align = if let Some(pack) = pack {
219 field.align.min(AbiAndPrefAlign::new(pack))
220 } else {
221 field.align
222 };
223 offset = offset.align_to(field_align.abi);
224 align = align.max(field_align);
225
226 debug!("univariant offset: {:?} field: {:#?}", offset, field);
227 offsets[i as usize] = offset;
228
229 if let Some(mut niche) = field.largest_niche {
230 let available = niche.available(dl);
231 if available > largest_niche_available {
232 largest_niche_available = available;
233 niche.offset += offset;
234 largest_niche = Some(niche);
235 }
236 }
237
238 offset = offset.checked_add(field.size, dl).ok_or(LayoutError::SizeOverflow(ty))?;
239 }
240
241 if let Some(repr_align) = repr.align {
242 align = align.max(AbiAndPrefAlign::new(repr_align));
243 }
244
245 debug!("univariant min_size: {:?}", offset);
246 let min_size = offset;
247
248 // As stated above, inverse_memory_index holds field indices by increasing offset.
249 // This makes it an already-sorted view of the offsets vec.
250 // To invert it, consider:
251 // If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0.
252 // Field 5 would be the first element, so memory_index is i:
253 // Note: if we didn't optimize, it's already right.
254
255 let memory_index =
256 if optimize { invert_mapping(&inverse_memory_index) } else { inverse_memory_index };
257
258 let size = min_size.align_to(align.abi);
259 let mut abi = Abi::Aggregate { sized };
260
261 // Unpack newtype ABIs and find scalar pairs.
262 if sized && size.bytes() > 0 {
263 // All other fields must be ZSTs.
264 let mut non_zst_fields = fields.iter().enumerate().filter(|&(_, f)| !f.is_zst());
265
266 match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) {
267 // We have exactly one non-ZST field.
268 (Some((i, field)), None, None) => {
269 // Field fills the struct and it has a scalar or scalar pair ABI.
270 if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size {
271 match field.abi {
272 // For plain scalars, or vectors of them, we can't unpack
273 // newtypes for `#[repr(C)]`, as that affects C ABIs.
274 Abi::Scalar(_) | Abi::Vector { .. } if optimize => {
275 abi = field.abi;
276 }
277 // But scalar pairs are Rust-specific and get
278 // treated as aggregates by C ABIs anyway.
279 Abi::ScalarPair(..) => {
280 abi = field.abi;
281 }
282 _ => {}
283 }
284 }
285 }
286
287 // Two non-ZST fields, and they're both scalars.
288 (Some((i, a)), Some((j, b)), None) => {
289 match (a.abi, b.abi) {
290 (Abi::Scalar(a), Abi::Scalar(b)) => {
291 // Order by the memory placement, not source order.
292 let ((i, a), (j, b)) = if offsets[i] < offsets[j] {
293 ((i, a), (j, b))
294 } else {
295 ((j, b), (i, a))
296 };
297 let pair = scalar_pair(cx, a, b);
298 let pair_offsets = match pair.fields {
299 FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
300 assert_eq!(memory_index, &[0, 1]);
301 offsets
302 }
303 _ => bug!(),
304 };
305 if offsets[i] == pair_offsets[0]
306 && offsets[j] == pair_offsets[1]
307 && align == pair.align
308 && size == pair.size
309 {
310 // We can use `ScalarPair` only when it matches our
311 // already computed layout (including `#[repr(C)]`).
312 abi = pair.abi;
313 }
314 }
315 _ => {}
316 }
317 }
318
319 _ => {}
320 }
321 }
322
323 if fields.iter().any(|f| f.abi.is_uninhabited()) {
324 abi = Abi::Uninhabited;
325 }
326
327 Ok(LayoutS {
328 variants: Variants::Single { index: VariantIdx::new(0) },
329 fields: FieldsShape::Arbitrary { offsets, memory_index },
330 abi,
331 largest_niche,
332 align,
333 size,
334 })
335 }
336
337 fn layout_of_uncached<'tcx>(
338 cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
339 ty: Ty<'tcx>,
340 ) -> Result<Layout<'tcx>, LayoutError<'tcx>> {
341 let tcx = cx.tcx;
342 let param_env = cx.param_env;
343 let dl = cx.data_layout();
344 let scalar_unit = |value: Primitive| {
345 let size = value.size(dl);
346 assert!(size.bits() <= 128);
347 Scalar::Initialized { value, valid_range: WrappingRange::full(size) }
348 };
349 let scalar = |value: Primitive| tcx.intern_layout(LayoutS::scalar(cx, scalar_unit(value)));
350
351 let univariant = |fields: &[TyAndLayout<'_>], repr: &ReprOptions, kind| {
352 Ok(tcx.intern_layout(univariant_uninterned(cx, ty, fields, repr, kind)?))
353 };
354 debug_assert!(!ty.has_non_region_infer());
355
356 Ok(match *ty.kind() {
357 // Basic scalars.
358 ty::Bool => tcx.intern_layout(LayoutS::scalar(
359 cx,
360 Scalar::Initialized {
361 value: Int(I8, false),
362 valid_range: WrappingRange { start: 0, end: 1 },
363 },
364 )),
365 ty::Char => tcx.intern_layout(LayoutS::scalar(
366 cx,
367 Scalar::Initialized {
368 value: Int(I32, false),
369 valid_range: WrappingRange { start: 0, end: 0x10FFFF },
370 },
371 )),
372 ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)),
373 ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)),
374 ty::Float(fty) => scalar(match fty {
375 ty::FloatTy::F32 => F32,
376 ty::FloatTy::F64 => F64,
377 }),
378 ty::FnPtr(_) => {
379 let mut ptr = scalar_unit(Pointer);
380 ptr.valid_range_mut().start = 1;
381 tcx.intern_layout(LayoutS::scalar(cx, ptr))
382 }
383
384 // The never type.
385 ty::Never => tcx.intern_layout(LayoutS {
386 variants: Variants::Single { index: VariantIdx::new(0) },
387 fields: FieldsShape::Primitive,
388 abi: Abi::Uninhabited,
389 largest_niche: None,
390 align: dl.i8_align,
391 size: Size::ZERO,
392 }),
393
394 // Potentially-wide pointers.
395 ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
396 let mut data_ptr = scalar_unit(Pointer);
397 if !ty.is_unsafe_ptr() {
398 data_ptr.valid_range_mut().start = 1;
399 }
400
401 let pointee = tcx.normalize_erasing_regions(param_env, pointee);
402 if pointee.is_sized(tcx, param_env) {
403 return Ok(tcx.intern_layout(LayoutS::scalar(cx, data_ptr)));
404 }
405
406 let unsized_part = tcx.struct_tail_erasing_lifetimes(pointee, param_env);
407 let metadata = match unsized_part.kind() {
408 ty::Foreign(..) => {
409 return Ok(tcx.intern_layout(LayoutS::scalar(cx, data_ptr)));
410 }
411 ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)),
412 ty::Dynamic(..) => {
413 let mut vtable = scalar_unit(Pointer);
414 vtable.valid_range_mut().start = 1;
415 vtable
416 }
417 _ => return Err(LayoutError::Unknown(unsized_part)),
418 };
419
420 // Effectively a (ptr, meta) tuple.
421 tcx.intern_layout(scalar_pair(cx, data_ptr, metadata))
422 }
423
424 ty::Dynamic(_, _, ty::DynStar) => {
425 let mut data = scalar_unit(Int(dl.ptr_sized_integer(), false));
426 data.valid_range_mut().start = 0;
427 let mut vtable = scalar_unit(Pointer);
428 vtable.valid_range_mut().start = 1;
429 tcx.intern_layout(scalar_pair(cx, data, vtable))
430 }
431
432 // Arrays and slices.
433 ty::Array(element, mut count) => {
434 if count.has_projections() {
435 count = tcx.normalize_erasing_regions(param_env, count);
436 if count.has_projections() {
437 return Err(LayoutError::Unknown(ty));
438 }
439 }
440
441 let count = count.try_eval_usize(tcx, param_env).ok_or(LayoutError::Unknown(ty))?;
442 let element = cx.layout_of(element)?;
443 let size = element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?;
444
445 let abi = if count != 0 && tcx.conservative_is_privately_uninhabited(param_env.and(ty))
446 {
447 Abi::Uninhabited
448 } else {
449 Abi::Aggregate { sized: true }
450 };
451
452 let largest_niche = if count != 0 { element.largest_niche } else { None };
453
454 tcx.intern_layout(LayoutS {
455 variants: Variants::Single { index: VariantIdx::new(0) },
456 fields: FieldsShape::Array { stride: element.size, count },
457 abi,
458 largest_niche,
459 align: element.align,
460 size,
461 })
462 }
463 ty::Slice(element) => {
464 let element = cx.layout_of(element)?;
465 tcx.intern_layout(LayoutS {
466 variants: Variants::Single { index: VariantIdx::new(0) },
467 fields: FieldsShape::Array { stride: element.size, count: 0 },
468 abi: Abi::Aggregate { sized: false },
469 largest_niche: None,
470 align: element.align,
471 size: Size::ZERO,
472 })
473 }
474 ty::Str => tcx.intern_layout(LayoutS {
475 variants: Variants::Single { index: VariantIdx::new(0) },
476 fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 },
477 abi: Abi::Aggregate { sized: false },
478 largest_niche: None,
479 align: dl.i8_align,
480 size: Size::ZERO,
481 }),
482
483 // Odd unit types.
484 ty::FnDef(..) => univariant(&[], &ReprOptions::default(), StructKind::AlwaysSized)?,
485 ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => {
486 let mut unit = univariant_uninterned(
487 cx,
488 ty,
489 &[],
490 &ReprOptions::default(),
491 StructKind::AlwaysSized,
492 )?;
493 match unit.abi {
494 Abi::Aggregate { ref mut sized } => *sized = false,
495 _ => bug!(),
496 }
497 tcx.intern_layout(unit)
498 }
499
500 ty::Generator(def_id, substs, _) => generator_layout(cx, ty, def_id, substs)?,
501
502 ty::Closure(_, ref substs) => {
503 let tys = substs.as_closure().upvar_tys();
504 univariant(
505 &tys.map(|ty| cx.layout_of(ty)).collect::<Result<Vec<_>, _>>()?,
506 &ReprOptions::default(),
507 StructKind::AlwaysSized,
508 )?
509 }
510
511 ty::Tuple(tys) => {
512 let kind =
513 if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized };
514
515 univariant(
516 &tys.iter().map(|k| cx.layout_of(k)).collect::<Result<Vec<_>, _>>()?,
517 &ReprOptions::default(),
518 kind,
519 )?
520 }
521
522 // SIMD vector types.
523 ty::Adt(def, substs) if def.repr().simd() => {
524 if !def.is_struct() {
525 // Should have yielded E0517 by now.
526 tcx.sess.delay_span_bug(
527 DUMMY_SP,
528 "#[repr(simd)] was applied to an ADT that is not a struct",
529 );
530 return Err(LayoutError::Unknown(ty));
531 }
532
533 // Supported SIMD vectors are homogeneous ADTs with at least one field:
534 //
535 // * #[repr(simd)] struct S(T, T, T, T);
536 // * #[repr(simd)] struct S { x: T, y: T, z: T, w: T }
537 // * #[repr(simd)] struct S([T; 4])
538 //
539 // where T is a primitive scalar (integer/float/pointer).
540
541 // SIMD vectors with zero fields are not supported.
542 // (should be caught by typeck)
543 if def.non_enum_variant().fields.is_empty() {
544 tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty));
545 }
546
547 // Type of the first ADT field:
548 let f0_ty = def.non_enum_variant().fields[0].ty(tcx, substs);
549
550 // Heterogeneous SIMD vectors are not supported:
551 // (should be caught by typeck)
552 for fi in &def.non_enum_variant().fields {
553 if fi.ty(tcx, substs) != f0_ty {
554 tcx.sess.fatal(&format!("monomorphising heterogeneous SIMD type `{}`", ty));
555 }
556 }
557
558 // The element type and number of elements of the SIMD vector
559 // are obtained from:
560 //
561 // * the element type and length of the single array field, if
562 // the first field is of array type, or
563 //
564 // * the homogeneous field type and the number of fields.
565 let (e_ty, e_len, is_array) = if let ty::Array(e_ty, _) = f0_ty.kind() {
566 // First ADT field is an array:
567
568 // SIMD vectors with multiple array fields are not supported:
569 // (should be caught by typeck)
570 if def.non_enum_variant().fields.len() != 1 {
571 tcx.sess.fatal(&format!(
572 "monomorphising SIMD type `{}` with more than one array field",
573 ty
574 ));
575 }
576
577 // Extract the number of elements from the layout of the array field:
578 let FieldsShape::Array { count, .. } = cx.layout_of(f0_ty)?.layout.fields() else {
579 return Err(LayoutError::Unknown(ty));
580 };
581
582 (*e_ty, *count, true)
583 } else {
584 // First ADT field is not an array:
585 (f0_ty, def.non_enum_variant().fields.len() as _, false)
586 };
587
588 // SIMD vectors of zero length are not supported.
589 // Additionally, lengths are capped at 2^16 as a fixed maximum backends must
590 // support.
591 //
592 // Can't be caught in typeck if the array length is generic.
593 if e_len == 0 {
594 tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty));
595 } else if e_len > MAX_SIMD_LANES {
596 tcx.sess.fatal(&format!(
597 "monomorphising SIMD type `{}` of length greater than {}",
598 ty, MAX_SIMD_LANES,
599 ));
600 }
601
602 // Compute the ABI of the element type:
603 let e_ly = cx.layout_of(e_ty)?;
604 let Abi::Scalar(e_abi) = e_ly.abi else {
605 // This error isn't caught in typeck, e.g., if
606 // the element type of the vector is generic.
607 tcx.sess.fatal(&format!(
608 "monomorphising SIMD type `{}` with a non-primitive-scalar \
609 (integer/float/pointer) element type `{}`",
610 ty, e_ty
611 ))
612 };
613
614 // Compute the size and alignment of the vector:
615 let size = e_ly.size.checked_mul(e_len, dl).ok_or(LayoutError::SizeOverflow(ty))?;
616 let align = dl.vector_align(size);
617 let size = size.align_to(align.abi);
618
619 // Compute the placement of the vector fields:
620 let fields = if is_array {
621 FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] }
622 } else {
623 FieldsShape::Array { stride: e_ly.size, count: e_len }
624 };
625
626 tcx.intern_layout(LayoutS {
627 variants: Variants::Single { index: VariantIdx::new(0) },
628 fields,
629 abi: Abi::Vector { element: e_abi, count: e_len },
630 largest_niche: e_ly.largest_niche,
631 size,
632 align,
633 })
634 }
635
636 // ADTs.
637 ty::Adt(def, substs) => {
638 // Cache the field layouts.
639 let variants = def
640 .variants()
641 .iter()
642 .map(|v| {
643 v.fields
644 .iter()
645 .map(|field| cx.layout_of(field.ty(tcx, substs)))
646 .collect::<Result<Vec<_>, _>>()
647 })
648 .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
649
650 if def.is_union() {
651 if def.repr().pack.is_some() && def.repr().align.is_some() {
652 cx.tcx.sess.delay_span_bug(
653 tcx.def_span(def.did()),
654 "union cannot be packed and aligned",
655 );
656 return Err(LayoutError::Unknown(ty));
657 }
658
659 let mut align =
660 if def.repr().pack.is_some() { dl.i8_align } else { dl.aggregate_align };
661
662 if let Some(repr_align) = def.repr().align {
663 align = align.max(AbiAndPrefAlign::new(repr_align));
664 }
665
666 let optimize = !def.repr().inhibit_union_abi_opt();
667 let mut size = Size::ZERO;
668 let mut abi = Abi::Aggregate { sized: true };
669 let index = VariantIdx::new(0);
670 for field in &variants[index] {
671 assert!(!field.is_unsized());
672 align = align.max(field.align);
673
674 // If all non-ZST fields have the same ABI, forward this ABI
675 if optimize && !field.is_zst() {
676 // Discard valid range information and allow undef
677 let field_abi = match field.abi {
678 Abi::Scalar(x) => Abi::Scalar(x.to_union()),
679 Abi::ScalarPair(x, y) => Abi::ScalarPair(x.to_union(), y.to_union()),
680 Abi::Vector { element: x, count } => {
681 Abi::Vector { element: x.to_union(), count }
682 }
683 Abi::Uninhabited | Abi::Aggregate { .. } => {
684 Abi::Aggregate { sized: true }
685 }
686 };
687
688 if size == Size::ZERO {
689 // first non ZST: initialize 'abi'
690 abi = field_abi;
691 } else if abi != field_abi {
692 // different fields have different ABI: reset to Aggregate
693 abi = Abi::Aggregate { sized: true };
694 }
695 }
696
697 size = cmp::max(size, field.size);
698 }
699
700 if let Some(pack) = def.repr().pack {
701 align = align.min(AbiAndPrefAlign::new(pack));
702 }
703
704 return Ok(tcx.intern_layout(LayoutS {
705 variants: Variants::Single { index },
706 fields: FieldsShape::Union(
707 NonZeroUsize::new(variants[index].len()).ok_or(LayoutError::Unknown(ty))?,
708 ),
709 abi,
710 largest_niche: None,
711 align,
712 size: size.align_to(align.abi),
713 }));
714 }
715
716 // A variant is absent if it's uninhabited and only has ZST fields.
717 // Present uninhabited variants only require space for their fields,
718 // but *not* an encoding of the discriminant (e.g., a tag value).
719 // See issue #49298 for more details on the need to leave space
720 // for non-ZST uninhabited data (mostly partial initialization).
721 let absent = |fields: &[TyAndLayout<'_>]| {
722 let uninhabited = fields.iter().any(|f| f.abi.is_uninhabited());
723 let is_zst = fields.iter().all(|f| f.is_zst());
724 uninhabited && is_zst
725 };
726 let (present_first, present_second) = {
727 let mut present_variants = variants
728 .iter_enumerated()
729 .filter_map(|(i, v)| if absent(v) { None } else { Some(i) });
730 (present_variants.next(), present_variants.next())
731 };
732 let present_first = match present_first {
733 Some(present_first) => present_first,
734 // Uninhabited because it has no variants, or only absent ones.
735 None if def.is_enum() => {
736 return Ok(tcx.layout_of(param_env.and(tcx.types.never))?.layout);
737 }
738 // If it's a struct, still compute a layout so that we can still compute the
739 // field offsets.
740 None => VariantIdx::new(0),
741 };
742
743 let is_struct = !def.is_enum() ||
744 // Only one variant is present.
745 (present_second.is_none() &&
746 // Representation optimizations are allowed.
747 !def.repr().inhibit_enum_layout_opt());
748 if is_struct {
749 // Struct, or univariant enum equivalent to a struct.
750 // (Typechecking will reject discriminant-sizing attrs.)
751
752 let v = present_first;
753 let kind = if def.is_enum() || variants[v].is_empty() {
754 StructKind::AlwaysSized
755 } else {
756 let param_env = tcx.param_env(def.did());
757 let last_field = def.variant(v).fields.last().unwrap();
758 let always_sized = tcx.type_of(last_field.did).is_sized(tcx, param_env);
759 if !always_sized { StructKind::MaybeUnsized } else { StructKind::AlwaysSized }
760 };
761
762 let mut st = univariant_uninterned(cx, ty, &variants[v], &def.repr(), kind)?;
763 st.variants = Variants::Single { index: v };
764
765 if def.is_unsafe_cell() {
766 let hide_niches = |scalar: &mut _| match scalar {
767 Scalar::Initialized { value, valid_range } => {
768 *valid_range = WrappingRange::full(value.size(dl))
769 }
770 // Already doesn't have any niches
771 Scalar::Union { .. } => {}
772 };
773 match &mut st.abi {
774 Abi::Uninhabited => {}
775 Abi::Scalar(scalar) => hide_niches(scalar),
776 Abi::ScalarPair(a, b) => {
777 hide_niches(a);
778 hide_niches(b);
779 }
780 Abi::Vector { element, count: _ } => hide_niches(element),
781 Abi::Aggregate { sized: _ } => {}
782 }
783 st.largest_niche = None;
784 return Ok(tcx.intern_layout(st));
785 }
786
787 let (start, end) = cx.tcx.layout_scalar_valid_range(def.did());
788 match st.abi {
789 Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => {
790 // the asserts ensure that we are not using the
791 // `#[rustc_layout_scalar_valid_range(n)]`
792 // attribute to widen the range of anything as that would probably
793 // result in UB somewhere
794 // FIXME(eddyb) the asserts are probably not needed,
795 // as larger validity ranges would result in missed
796 // optimizations, *not* wrongly assuming the inner
797 // value is valid. e.g. unions enlarge validity ranges,
798 // because the values may be uninitialized.
799 if let Bound::Included(start) = start {
800 // FIXME(eddyb) this might be incorrect - it doesn't
801 // account for wrap-around (end < start) ranges.
802 let valid_range = scalar.valid_range_mut();
803 assert!(valid_range.start <= start);
804 valid_range.start = start;
805 }
806 if let Bound::Included(end) = end {
807 // FIXME(eddyb) this might be incorrect - it doesn't
808 // account for wrap-around (end < start) ranges.
809 let valid_range = scalar.valid_range_mut();
810 assert!(valid_range.end >= end);
811 valid_range.end = end;
812 }
813
814 // Update `largest_niche` if we have introduced a larger niche.
815 let niche = Niche::from_scalar(dl, Size::ZERO, *scalar);
816 if let Some(niche) = niche {
817 match st.largest_niche {
818 Some(largest_niche) => {
819 // Replace the existing niche even if they're equal,
820 // because this one is at a lower offset.
821 if largest_niche.available(dl) <= niche.available(dl) {
822 st.largest_niche = Some(niche);
823 }
824 }
825 None => st.largest_niche = Some(niche),
826 }
827 }
828 }
829 _ => assert!(
830 start == Bound::Unbounded && end == Bound::Unbounded,
831 "nonscalar layout for layout_scalar_valid_range type {:?}: {:#?}",
832 def,
833 st,
834 ),
835 }
836
837 return Ok(tcx.intern_layout(st));
838 }
839
840 // At this point, we have handled all unions and
841 // structs. (We have also handled univariant enums
842 // that allow representation optimization.)
843 assert!(def.is_enum());
844
845 // Until we've decided whether to use the tagged or
846 // niche filling LayoutS, we don't want to intern the
847 // variant layouts, so we can't store them in the
848 // overall LayoutS. Store the overall LayoutS
849 // and the variant LayoutSs here until then.
850 struct TmpLayout<'tcx> {
851 layout: LayoutS<'tcx>,
852 variants: IndexVec<VariantIdx, LayoutS<'tcx>>,
853 }
854
855 let calculate_niche_filling_layout =
856 || -> Result<Option<TmpLayout<'tcx>>, LayoutError<'tcx>> {
857 // The current code for niche-filling relies on variant indices
858 // instead of actual discriminants, so enums with
859 // explicit discriminants (RFC #2363) would misbehave.
860 if def.repr().inhibit_enum_layout_opt()
861 || def
862 .variants()
863 .iter_enumerated()
864 .any(|(i, v)| v.discr != ty::VariantDiscr::Relative(i.as_u32()))
865 {
866 return Ok(None);
867 }
868
869 if variants.len() < 2 {
870 return Ok(None);
871 }
872
873 let mut align = dl.aggregate_align;
874 let mut variant_layouts = variants
875 .iter_enumerated()
876 .map(|(j, v)| {
877 let mut st = univariant_uninterned(
878 cx,
879 ty,
880 v,
881 &def.repr(),
882 StructKind::AlwaysSized,
883 )?;
884 st.variants = Variants::Single { index: j };
885
886 align = align.max(st.align);
887
888 Ok(st)
889 })
890 .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
891
892 let largest_variant_index = match variant_layouts
893 .iter_enumerated()
894 .max_by_key(|(_i, layout)| layout.size.bytes())
895 .map(|(i, _layout)| i)
896 {
897 None => return Ok(None),
898 Some(i) => i,
899 };
900
901 let all_indices = VariantIdx::new(0)..=VariantIdx::new(variants.len() - 1);
902 let needs_disc = |index: VariantIdx| {
903 index != largest_variant_index && !absent(&variants[index])
904 };
905 let niche_variants = all_indices.clone().find(|v| needs_disc(*v)).unwrap()
906 ..=all_indices.rev().find(|v| needs_disc(*v)).unwrap();
907
908 let count = niche_variants.size_hint().1.unwrap() as u128;
909
910 // Find the field with the largest niche
911 let (field_index, niche, (niche_start, niche_scalar)) = match variants
912 [largest_variant_index]
913 .iter()
914 .enumerate()
915 .filter_map(|(j, field)| Some((j, field.largest_niche?)))
916 .max_by_key(|(_, niche)| niche.available(dl))
917 .and_then(|(j, niche)| Some((j, niche, niche.reserve(cx, count)?)))
918 {
919 None => return Ok(None),
920 Some(x) => x,
921 };
922
923 let niche_offset = niche.offset
924 + variant_layouts[largest_variant_index].fields.offset(field_index);
925 let niche_size = niche.value.size(dl);
926 let size = variant_layouts[largest_variant_index].size.align_to(align.abi);
927
928 let all_variants_fit =
929 variant_layouts.iter_enumerated_mut().all(|(i, layout)| {
930 if i == largest_variant_index {
931 return true;
932 }
933
934 layout.largest_niche = None;
935
936 if layout.size <= niche_offset {
937 // This variant will fit before the niche.
938 return true;
939 }
940
941 // Determine if it'll fit after the niche.
942 let this_align = layout.align.abi;
943 let this_offset = (niche_offset + niche_size).align_to(this_align);
944
945 if this_offset + layout.size > size {
946 return false;
947 }
948
949 // It'll fit, but we need to make some adjustments.
950 match layout.fields {
951 FieldsShape::Arbitrary { ref mut offsets, .. } => {
952 for (j, offset) in offsets.iter_mut().enumerate() {
953 if !variants[i][j].is_zst() {
954 *offset += this_offset;
955 }
956 }
957 }
958 _ => {
959 panic!("Layout of fields should be Arbitrary for variants")
960 }
961 }
962
963 // It can't be a Scalar or ScalarPair because the offset isn't 0.
964 if !layout.abi.is_uninhabited() {
965 layout.abi = Abi::Aggregate { sized: true };
966 }
967 layout.size += this_offset;
968
969 true
970 });
971
972 if !all_variants_fit {
973 return Ok(None);
974 }
975
976 let largest_niche = Niche::from_scalar(dl, niche_offset, niche_scalar);
977
978 let others_zst = variant_layouts
979 .iter_enumerated()
980 .all(|(i, layout)| i == largest_variant_index || layout.size == Size::ZERO);
981 let same_size = size == variant_layouts[largest_variant_index].size;
982 let same_align = align == variant_layouts[largest_variant_index].align;
983
984 let abi = if variant_layouts.iter().all(|v| v.abi.is_uninhabited()) {
985 Abi::Uninhabited
986 } else if same_size && same_align && others_zst {
987 match variant_layouts[largest_variant_index].abi {
988 // When the total alignment and size match, we can use the
989 // same ABI as the scalar variant with the reserved niche.
990 Abi::Scalar(_) => Abi::Scalar(niche_scalar),
991 Abi::ScalarPair(first, second) => {
992 // Only the niche is guaranteed to be initialised,
993 // so use union layouts for the other primitive.
994 if niche_offset == Size::ZERO {
995 Abi::ScalarPair(niche_scalar, second.to_union())
996 } else {
997 Abi::ScalarPair(first.to_union(), niche_scalar)
998 }
999 }
1000 _ => Abi::Aggregate { sized: true },
1001 }
1002 } else {
1003 Abi::Aggregate { sized: true }
1004 };
1005
1006 let layout = LayoutS {
1007 variants: Variants::Multiple {
1008 tag: niche_scalar,
1009 tag_encoding: TagEncoding::Niche {
1010 untagged_variant: largest_variant_index,
1011 niche_variants,
1012 niche_start,
1013 },
1014 tag_field: 0,
1015 variants: IndexVec::new(),
1016 },
1017 fields: FieldsShape::Arbitrary {
1018 offsets: vec![niche_offset],
1019 memory_index: vec![0],
1020 },
1021 abi,
1022 largest_niche,
1023 size,
1024 align,
1025 };
1026
1027 Ok(Some(TmpLayout { layout, variants: variant_layouts }))
1028 };
1029
1030 let niche_filling_layout = calculate_niche_filling_layout()?;
1031
1032 let (mut min, mut max) = (i128::MAX, i128::MIN);
1033 let discr_type = def.repr().discr_type();
1034 let bits = Integer::from_attr(cx, discr_type).size().bits();
1035 for (i, discr) in def.discriminants(tcx) {
1036 if variants[i].iter().any(|f| f.abi.is_uninhabited()) {
1037 continue;
1038 }
1039 let mut x = discr.val as i128;
1040 if discr_type.is_signed() {
1041 // sign extend the raw representation to be an i128
1042 x = (x << (128 - bits)) >> (128 - bits);
1043 }
1044 if x < min {
1045 min = x;
1046 }
1047 if x > max {
1048 max = x;
1049 }
1050 }
1051 // We might have no inhabited variants, so pretend there's at least one.
1052 if (min, max) == (i128::MAX, i128::MIN) {
1053 min = 0;
1054 max = 0;
1055 }
1056 assert!(min <= max, "discriminant range is {}...{}", min, max);
1057 let (min_ity, signed) = Integer::repr_discr(tcx, ty, &def.repr(), min, max);
1058
1059 let mut align = dl.aggregate_align;
1060 let mut size = Size::ZERO;
1061
1062 // We're interested in the smallest alignment, so start large.
1063 let mut start_align = Align::from_bytes(256).unwrap();
1064 assert_eq!(Integer::for_align(dl, start_align), None);
1065
1066 // repr(C) on an enum tells us to make a (tag, union) layout,
1067 // so we need to grow the prefix alignment to be at least
1068 // the alignment of the union. (This value is used both for
1069 // determining the alignment of the overall enum, and the
1070 // determining the alignment of the payload after the tag.)
1071 let mut prefix_align = min_ity.align(dl).abi;
1072 if def.repr().c() {
1073 for fields in &variants {
1074 for field in fields {
1075 prefix_align = prefix_align.max(field.align.abi);
1076 }
1077 }
1078 }
1079
1080 // Create the set of structs that represent each variant.
1081 let mut layout_variants = variants
1082 .iter_enumerated()
1083 .map(|(i, field_layouts)| {
1084 let mut st = univariant_uninterned(
1085 cx,
1086 ty,
1087 &field_layouts,
1088 &def.repr(),
1089 StructKind::Prefixed(min_ity.size(), prefix_align),
1090 )?;
1091 st.variants = Variants::Single { index: i };
1092 // Find the first field we can't move later
1093 // to make room for a larger discriminant.
1094 for field in st.fields.index_by_increasing_offset().map(|j| field_layouts[j]) {
1095 if !field.is_zst() || field.align.abi.bytes() != 1 {
1096 start_align = start_align.min(field.align.abi);
1097 break;
1098 }
1099 }
1100 size = cmp::max(size, st.size);
1101 align = align.max(st.align);
1102 Ok(st)
1103 })
1104 .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
1105
1106 // Align the maximum variant size to the largest alignment.
1107 size = size.align_to(align.abi);
1108
1109 if size.bytes() >= dl.obj_size_bound() {
1110 return Err(LayoutError::SizeOverflow(ty));
1111 }
1112
1113 let typeck_ity = Integer::from_attr(dl, def.repr().discr_type());
1114 if typeck_ity < min_ity {
1115 // It is a bug if Layout decided on a greater discriminant size than typeck for
1116 // some reason at this point (based on values discriminant can take on). Mostly
1117 // because this discriminant will be loaded, and then stored into variable of
1118 // type calculated by typeck. Consider such case (a bug): typeck decided on
1119 // byte-sized discriminant, but layout thinks we need a 16-bit to store all
1120 // discriminant values. That would be a bug, because then, in codegen, in order
1121 // to store this 16-bit discriminant into 8-bit sized temporary some of the
1122 // space necessary to represent would have to be discarded (or layout is wrong
1123 // on thinking it needs 16 bits)
1124 bug!(
1125 "layout decided on a larger discriminant type ({:?}) than typeck ({:?})",
1126 min_ity,
1127 typeck_ity
1128 );
1129 // However, it is fine to make discr type however large (as an optimisation)
1130 // after this point – we’ll just truncate the value we load in codegen.
1131 }
1132
1133 // Check to see if we should use a different type for the
1134 // discriminant. We can safely use a type with the same size
1135 // as the alignment of the first field of each variant.
1136 // We increase the size of the discriminant to avoid LLVM copying
1137 // padding when it doesn't need to. This normally causes unaligned
1138 // load/stores and excessive memcpy/memset operations. By using a
1139 // bigger integer size, LLVM can be sure about its contents and
1140 // won't be so conservative.
1141
1142 // Use the initial field alignment
1143 let mut ity = if def.repr().c() || def.repr().int.is_some() {
1144 min_ity
1145 } else {
1146 Integer::for_align(dl, start_align).unwrap_or(min_ity)
1147 };
1148
1149 // If the alignment is not larger than the chosen discriminant size,
1150 // don't use the alignment as the final size.
1151 if ity <= min_ity {
1152 ity = min_ity;
1153 } else {
1154 // Patch up the variants' first few fields.
1155 let old_ity_size = min_ity.size();
1156 let new_ity_size = ity.size();
1157 for variant in &mut layout_variants {
1158 match variant.fields {
1159 FieldsShape::Arbitrary { ref mut offsets, .. } => {
1160 for i in offsets {
1161 if *i <= old_ity_size {
1162 assert_eq!(*i, old_ity_size);
1163 *i = new_ity_size;
1164 }
1165 }
1166 // We might be making the struct larger.
1167 if variant.size <= old_ity_size {
1168 variant.size = new_ity_size;
1169 }
1170 }
1171 _ => bug!(),
1172 }
1173 }
1174 }
1175
1176 let tag_mask = ity.size().unsigned_int_max();
1177 let tag = Scalar::Initialized {
1178 value: Int(ity, signed),
1179 valid_range: WrappingRange {
1180 start: (min as u128 & tag_mask),
1181 end: (max as u128 & tag_mask),
1182 },
1183 };
1184 let mut abi = Abi::Aggregate { sized: true };
1185
1186 if layout_variants.iter().all(|v| v.abi.is_uninhabited()) {
1187 abi = Abi::Uninhabited;
1188 } else if tag.size(dl) == size {
1189 // Make sure we only use scalar layout when the enum is entirely its
1190 // own tag (i.e. it has no padding nor any non-ZST variant fields).
1191 abi = Abi::Scalar(tag);
1192 } else {
1193 // Try to use a ScalarPair for all tagged enums.
1194 let mut common_prim = None;
1195 let mut common_prim_initialized_in_all_variants = true;
1196 for (field_layouts, layout_variant) in iter::zip(&variants, &layout_variants) {
1197 let FieldsShape::Arbitrary { ref offsets, .. } = layout_variant.fields else {
1198 bug!();
1199 };
1200 let mut fields = iter::zip(field_layouts, offsets).filter(|p| !p.0.is_zst());
1201 let (field, offset) = match (fields.next(), fields.next()) {
1202 (None, None) => {
1203 common_prim_initialized_in_all_variants = false;
1204 continue;
1205 }
1206 (Some(pair), None) => pair,
1207 _ => {
1208 common_prim = None;
1209 break;
1210 }
1211 };
1212 let prim = match field.abi {
1213 Abi::Scalar(scalar) => {
1214 common_prim_initialized_in_all_variants &=
1215 matches!(scalar, Scalar::Initialized { .. });
1216 scalar.primitive()
1217 }
1218 _ => {
1219 common_prim = None;
1220 break;
1221 }
1222 };
1223 if let Some(pair) = common_prim {
1224 // This is pretty conservative. We could go fancier
1225 // by conflating things like i32 and u32, or even
1226 // realising that (u8, u8) could just cohabit with
1227 // u16 or even u32.
1228 if pair != (prim, offset) {
1229 common_prim = None;
1230 break;
1231 }
1232 } else {
1233 common_prim = Some((prim, offset));
1234 }
1235 }
1236 if let Some((prim, offset)) = common_prim {
1237 let prim_scalar = if common_prim_initialized_in_all_variants {
1238 scalar_unit(prim)
1239 } else {
1240 // Common prim might be uninit.
1241 Scalar::Union { value: prim }
1242 };
1243 let pair = scalar_pair(cx, tag, prim_scalar);
1244 let pair_offsets = match pair.fields {
1245 FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
1246 assert_eq!(memory_index, &[0, 1]);
1247 offsets
1248 }
1249 _ => bug!(),
1250 };
1251 if pair_offsets[0] == Size::ZERO
1252 && pair_offsets[1] == *offset
1253 && align == pair.align
1254 && size == pair.size
1255 {
1256 // We can use `ScalarPair` only when it matches our
1257 // already computed layout (including `#[repr(C)]`).
1258 abi = pair.abi;
1259 }
1260 }
1261 }
1262
1263 // If we pick a "clever" (by-value) ABI, we might have to adjust the ABI of the
1264 // variants to ensure they are consistent. This is because a downcast is
1265 // semantically a NOP, and thus should not affect layout.
1266 if matches!(abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
1267 for variant in &mut layout_variants {
1268 // We only do this for variants with fields; the others are not accessed anyway.
1269 // Also do not overwrite any already existing "clever" ABIs.
1270 if variant.fields.count() > 0 && matches!(variant.abi, Abi::Aggregate { .. }) {
1271 variant.abi = abi;
1272 // Also need to bump up the size and alignment, so that the entire value fits in here.
1273 variant.size = cmp::max(variant.size, size);
1274 variant.align.abi = cmp::max(variant.align.abi, align.abi);
1275 }
1276 }
1277 }
1278
1279 let largest_niche = Niche::from_scalar(dl, Size::ZERO, tag);
1280
1281 let tagged_layout = LayoutS {
1282 variants: Variants::Multiple {
1283 tag,
1284 tag_encoding: TagEncoding::Direct,
1285 tag_field: 0,
1286 variants: IndexVec::new(),
1287 },
1288 fields: FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] },
1289 largest_niche,
1290 abi,
1291 align,
1292 size,
1293 };
1294
1295 let tagged_layout = TmpLayout { layout: tagged_layout, variants: layout_variants };
1296
1297 let mut best_layout = match (tagged_layout, niche_filling_layout) {
1298 (tl, Some(nl)) => {
1299 // Pick the smaller layout; otherwise,
1300 // pick the layout with the larger niche; otherwise,
1301 // pick tagged as it has simpler codegen.
1302 use Ordering::*;
1303 let niche_size = |tmp_l: &TmpLayout<'_>| {
1304 tmp_l.layout.largest_niche.map_or(0, |n| n.available(dl))
1305 };
1306 match (
1307 tl.layout.size.cmp(&nl.layout.size),
1308 niche_size(&tl).cmp(&niche_size(&nl)),
1309 ) {
1310 (Greater, _) => nl,
1311 (Equal, Less) => nl,
1312 _ => tl,
1313 }
1314 }
1315 (tl, None) => tl,
1316 };
1317
1318 // Now we can intern the variant layouts and store them in the enum layout.
1319 best_layout.layout.variants = match best_layout.layout.variants {
1320 Variants::Multiple { tag, tag_encoding, tag_field, .. } => Variants::Multiple {
1321 tag,
1322 tag_encoding,
1323 tag_field,
1324 variants: best_layout
1325 .variants
1326 .into_iter()
1327 .map(|layout| tcx.intern_layout(layout))
1328 .collect(),
1329 },
1330 _ => bug!(),
1331 };
1332
1333 tcx.intern_layout(best_layout.layout)
1334 }
1335
1336 // Types with no meaningful known layout.
1337 ty::Projection(_) | ty::Opaque(..) => {
1338 // NOTE(eddyb) `layout_of` query should've normalized these away,
1339 // if that was possible, so there's no reason to try again here.
1340 return Err(LayoutError::Unknown(ty));
1341 }
1342
1343 ty::Placeholder(..) | ty::GeneratorWitness(..) | ty::Infer(_) => {
1344 bug!("Layout::compute: unexpected type `{}`", ty)
1345 }
1346
1347 ty::Bound(..) | ty::Param(_) | ty::Error(_) => {
1348 return Err(LayoutError::Unknown(ty));
1349 }
1350 })
1351 }
1352
1353 /// Overlap eligibility and variant assignment for each GeneratorSavedLocal.
1354 #[derive(Clone, Debug, PartialEq)]
1355 enum SavedLocalEligibility {
1356 Unassigned,
1357 Assigned(VariantIdx),
1358 // FIXME: Use newtype_index so we aren't wasting bytes
1359 Ineligible(Option<u32>),
1360 }
1361
1362 // When laying out generators, we divide our saved local fields into two
1363 // categories: overlap-eligible and overlap-ineligible.
1364 //
1365 // Those fields which are ineligible for overlap go in a "prefix" at the
1366 // beginning of the layout, and always have space reserved for them.
1367 //
1368 // Overlap-eligible fields are only assigned to one variant, so we lay
1369 // those fields out for each variant and put them right after the
1370 // prefix.
1371 //
1372 // Finally, in the layout details, we point to the fields from the
1373 // variants they are assigned to. It is possible for some fields to be
1374 // included in multiple variants. No field ever "moves around" in the
1375 // layout; its offset is always the same.
1376 //
1377 // Also included in the layout are the upvars and the discriminant.
1378 // These are included as fields on the "outer" layout; they are not part
1379 // of any variant.
1380
1381 /// Compute the eligibility and assignment of each local.
1382 fn generator_saved_local_eligibility<'tcx>(
1383 info: &GeneratorLayout<'tcx>,
1384 ) -> (BitSet<GeneratorSavedLocal>, IndexVec<GeneratorSavedLocal, SavedLocalEligibility>) {
1385 use SavedLocalEligibility::*;
1386
1387 let mut assignments: IndexVec<GeneratorSavedLocal, SavedLocalEligibility> =
1388 IndexVec::from_elem_n(Unassigned, info.field_tys.len());
1389
1390 // The saved locals not eligible for overlap. These will get
1391 // "promoted" to the prefix of our generator.
1392 let mut ineligible_locals = BitSet::new_empty(info.field_tys.len());
1393
1394 // Figure out which of our saved locals are fields in only
1395 // one variant. The rest are deemed ineligible for overlap.
1396 for (variant_index, fields) in info.variant_fields.iter_enumerated() {
1397 for local in fields {
1398 match assignments[*local] {
1399 Unassigned => {
1400 assignments[*local] = Assigned(variant_index);
1401 }
1402 Assigned(idx) => {
1403 // We've already seen this local at another suspension
1404 // point, so it is no longer a candidate.
1405 trace!(
1406 "removing local {:?} in >1 variant ({:?}, {:?})",
1407 local,
1408 variant_index,
1409 idx
1410 );
1411 ineligible_locals.insert(*local);
1412 assignments[*local] = Ineligible(None);
1413 }
1414 Ineligible(_) => {}
1415 }
1416 }
1417 }
1418
1419 // Next, check every pair of eligible locals to see if they
1420 // conflict.
1421 for local_a in info.storage_conflicts.rows() {
1422 let conflicts_a = info.storage_conflicts.count(local_a);
1423 if ineligible_locals.contains(local_a) {
1424 continue;
1425 }
1426
1427 for local_b in info.storage_conflicts.iter(local_a) {
1428 // local_a and local_b are storage live at the same time, therefore they
1429 // cannot overlap in the generator layout. The only way to guarantee
1430 // this is if they are in the same variant, or one is ineligible
1431 // (which means it is stored in every variant).
1432 if ineligible_locals.contains(local_b) || assignments[local_a] == assignments[local_b] {
1433 continue;
1434 }
1435
1436 // If they conflict, we will choose one to make ineligible.
1437 // This is not always optimal; it's just a greedy heuristic that
1438 // seems to produce good results most of the time.
1439 let conflicts_b = info.storage_conflicts.count(local_b);
1440 let (remove, other) =
1441 if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) };
1442 ineligible_locals.insert(remove);
1443 assignments[remove] = Ineligible(None);
1444 trace!("removing local {:?} due to conflict with {:?}", remove, other);
1445 }
1446 }
1447
1448 // Count the number of variants in use. If only one of them, then it is
1449 // impossible to overlap any locals in our layout. In this case it's
1450 // always better to make the remaining locals ineligible, so we can
1451 // lay them out with the other locals in the prefix and eliminate
1452 // unnecessary padding bytes.
1453 {
1454 let mut used_variants = BitSet::new_empty(info.variant_fields.len());
1455 for assignment in &assignments {
1456 if let Assigned(idx) = assignment {
1457 used_variants.insert(*idx);
1458 }
1459 }
1460 if used_variants.count() < 2 {
1461 for assignment in assignments.iter_mut() {
1462 *assignment = Ineligible(None);
1463 }
1464 ineligible_locals.insert_all();
1465 }
1466 }
1467
1468 // Write down the order of our locals that will be promoted to the prefix.
1469 {
1470 for (idx, local) in ineligible_locals.iter().enumerate() {
1471 assignments[local] = Ineligible(Some(idx as u32));
1472 }
1473 }
1474 debug!("generator saved local assignments: {:?}", assignments);
1475
1476 (ineligible_locals, assignments)
1477 }
1478
1479 /// Compute the full generator layout.
1480 fn generator_layout<'tcx>(
1481 cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
1482 ty: Ty<'tcx>,
1483 def_id: hir::def_id::DefId,
1484 substs: SubstsRef<'tcx>,
1485 ) -> Result<Layout<'tcx>, LayoutError<'tcx>> {
1486 use SavedLocalEligibility::*;
1487 let tcx = cx.tcx;
1488 let subst_field = |ty: Ty<'tcx>| EarlyBinder(ty).subst(tcx, substs);
1489
1490 let Some(info) = tcx.generator_layout(def_id) else {
1491 return Err(LayoutError::Unknown(ty));
1492 };
1493 let (ineligible_locals, assignments) = generator_saved_local_eligibility(&info);
1494
1495 // Build a prefix layout, including "promoting" all ineligible
1496 // locals as part of the prefix. We compute the layout of all of
1497 // these fields at once to get optimal packing.
1498 let tag_index = substs.as_generator().prefix_tys().count();
1499
1500 // `info.variant_fields` already accounts for the reserved variants, so no need to add them.
1501 let max_discr = (info.variant_fields.len() - 1) as u128;
1502 let discr_int = Integer::fit_unsigned(max_discr);
1503 let discr_int_ty = discr_int.to_ty(tcx, false);
1504 let tag = Scalar::Initialized {
1505 value: Primitive::Int(discr_int, false),
1506 valid_range: WrappingRange { start: 0, end: max_discr },
1507 };
1508 let tag_layout = cx.tcx.intern_layout(LayoutS::scalar(cx, tag));
1509 let tag_layout = TyAndLayout { ty: discr_int_ty, layout: tag_layout };
1510
1511 let promoted_layouts = ineligible_locals
1512 .iter()
1513 .map(|local| subst_field(info.field_tys[local]))
1514 .map(|ty| tcx.mk_maybe_uninit(ty))
1515 .map(|ty| cx.layout_of(ty));
1516 let prefix_layouts = substs
1517 .as_generator()
1518 .prefix_tys()
1519 .map(|ty| cx.layout_of(ty))
1520 .chain(iter::once(Ok(tag_layout)))
1521 .chain(promoted_layouts)
1522 .collect::<Result<Vec<_>, _>>()?;
1523 let prefix = univariant_uninterned(
1524 cx,
1525 ty,
1526 &prefix_layouts,
1527 &ReprOptions::default(),
1528 StructKind::AlwaysSized,
1529 )?;
1530
1531 let (prefix_size, prefix_align) = (prefix.size, prefix.align);
1532
1533 // Split the prefix layout into the "outer" fields (upvars and
1534 // discriminant) and the "promoted" fields. Promoted fields will
1535 // get included in each variant that requested them in
1536 // GeneratorLayout.
1537 debug!("prefix = {:#?}", prefix);
1538 let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields {
1539 FieldsShape::Arbitrary { mut offsets, memory_index } => {
1540 let mut inverse_memory_index = invert_mapping(&memory_index);
1541
1542 // "a" (`0..b_start`) and "b" (`b_start..`) correspond to
1543 // "outer" and "promoted" fields respectively.
1544 let b_start = (tag_index + 1) as u32;
1545 let offsets_b = offsets.split_off(b_start as usize);
1546 let offsets_a = offsets;
1547
1548 // Disentangle the "a" and "b" components of `inverse_memory_index`
1549 // by preserving the order but keeping only one disjoint "half" each.
1550 // FIXME(eddyb) build a better abstraction for permutations, if possible.
1551 let inverse_memory_index_b: Vec<_> =
1552 inverse_memory_index.iter().filter_map(|&i| i.checked_sub(b_start)).collect();
1553 inverse_memory_index.retain(|&i| i < b_start);
1554 let inverse_memory_index_a = inverse_memory_index;
1555
1556 // Since `inverse_memory_index_{a,b}` each only refer to their
1557 // respective fields, they can be safely inverted
1558 let memory_index_a = invert_mapping(&inverse_memory_index_a);
1559 let memory_index_b = invert_mapping(&inverse_memory_index_b);
1560
1561 let outer_fields =
1562 FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a };
1563 (outer_fields, offsets_b, memory_index_b)
1564 }
1565 _ => bug!(),
1566 };
1567
1568 let mut size = prefix.size;
1569 let mut align = prefix.align;
1570 let variants = info
1571 .variant_fields
1572 .iter_enumerated()
1573 .map(|(index, variant_fields)| {
1574 // Only include overlap-eligible fields when we compute our variant layout.
1575 let variant_only_tys = variant_fields
1576 .iter()
1577 .filter(|local| match assignments[**local] {
1578 Unassigned => bug!(),
1579 Assigned(v) if v == index => true,
1580 Assigned(_) => bug!("assignment does not match variant"),
1581 Ineligible(_) => false,
1582 })
1583 .map(|local| subst_field(info.field_tys[*local]));
1584
1585 let mut variant = univariant_uninterned(
1586 cx,
1587 ty,
1588 &variant_only_tys.map(|ty| cx.layout_of(ty)).collect::<Result<Vec<_>, _>>()?,
1589 &ReprOptions::default(),
1590 StructKind::Prefixed(prefix_size, prefix_align.abi),
1591 )?;
1592 variant.variants = Variants::Single { index };
1593
1594 let FieldsShape::Arbitrary { offsets, memory_index } = variant.fields else {
1595 bug!();
1596 };
1597
1598 // Now, stitch the promoted and variant-only fields back together in
1599 // the order they are mentioned by our GeneratorLayout.
1600 // Because we only use some subset (that can differ between variants)
1601 // of the promoted fields, we can't just pick those elements of the
1602 // `promoted_memory_index` (as we'd end up with gaps).
1603 // So instead, we build an "inverse memory_index", as if all of the
1604 // promoted fields were being used, but leave the elements not in the
1605 // subset as `INVALID_FIELD_IDX`, which we can filter out later to
1606 // obtain a valid (bijective) mapping.
1607 const INVALID_FIELD_IDX: u32 = !0;
1608 let mut combined_inverse_memory_index =
1609 vec![INVALID_FIELD_IDX; promoted_memory_index.len() + memory_index.len()];
1610 let mut offsets_and_memory_index = iter::zip(offsets, memory_index);
1611 let combined_offsets = variant_fields
1612 .iter()
1613 .enumerate()
1614 .map(|(i, local)| {
1615 let (offset, memory_index) = match assignments[*local] {
1616 Unassigned => bug!(),
1617 Assigned(_) => {
1618 let (offset, memory_index) = offsets_and_memory_index.next().unwrap();
1619 (offset, promoted_memory_index.len() as u32 + memory_index)
1620 }
1621 Ineligible(field_idx) => {
1622 let field_idx = field_idx.unwrap() as usize;
1623 (promoted_offsets[field_idx], promoted_memory_index[field_idx])
1624 }
1625 };
1626 combined_inverse_memory_index[memory_index as usize] = i as u32;
1627 offset
1628 })
1629 .collect();
1630
1631 // Remove the unused slots and invert the mapping to obtain the
1632 // combined `memory_index` (also see previous comment).
1633 combined_inverse_memory_index.retain(|&i| i != INVALID_FIELD_IDX);
1634 let combined_memory_index = invert_mapping(&combined_inverse_memory_index);
1635
1636 variant.fields = FieldsShape::Arbitrary {
1637 offsets: combined_offsets,
1638 memory_index: combined_memory_index,
1639 };
1640
1641 size = size.max(variant.size);
1642 align = align.max(variant.align);
1643 Ok(tcx.intern_layout(variant))
1644 })
1645 .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
1646
1647 size = size.align_to(align.abi);
1648
1649 let abi = if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi().is_uninhabited()) {
1650 Abi::Uninhabited
1651 } else {
1652 Abi::Aggregate { sized: true }
1653 };
1654
1655 let layout = tcx.intern_layout(LayoutS {
1656 variants: Variants::Multiple {
1657 tag,
1658 tag_encoding: TagEncoding::Direct,
1659 tag_field: tag_index,
1660 variants,
1661 },
1662 fields: outer_fields,
1663 abi,
1664 largest_niche: prefix.largest_niche,
1665 size,
1666 align,
1667 });
1668 debug!("generator layout ({:?}): {:#?}", ty, layout);
1669 Ok(layout)
1670 }
1671
1672 /// This is invoked by the `layout_of` query to record the final
1673 /// layout of each type.
1674 #[inline(always)]
1675 fn record_layout_for_printing<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: TyAndLayout<'tcx>) {
1676 // If we are running with `-Zprint-type-sizes`, maybe record layouts
1677 // for dumping later.
1678 if cx.tcx.sess.opts.unstable_opts.print_type_sizes {
1679 record_layout_for_printing_outlined(cx, layout)
1680 }
1681 }
1682
1683 fn record_layout_for_printing_outlined<'tcx>(
1684 cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
1685 layout: TyAndLayout<'tcx>,
1686 ) {
1687 // Ignore layouts that are done with non-empty environments or
1688 // non-monomorphic layouts, as the user only wants to see the stuff
1689 // resulting from the final codegen session.
1690 if layout.ty.has_non_region_param() || !cx.param_env.caller_bounds().is_empty() {
1691 return;
1692 }
1693
1694 // (delay format until we actually need it)
1695 let record = |kind, packed, opt_discr_size, variants| {
1696 let type_desc = format!("{:?}", layout.ty);
1697 cx.tcx.sess.code_stats.record_type_size(
1698 kind,
1699 type_desc,
1700 layout.align.abi,
1701 layout.size,
1702 packed,
1703 opt_discr_size,
1704 variants,
1705 );
1706 };
1707
1708 let adt_def = match *layout.ty.kind() {
1709 ty::Adt(ref adt_def, _) => {
1710 debug!("print-type-size t: `{:?}` process adt", layout.ty);
1711 adt_def
1712 }
1713
1714 ty::Closure(..) => {
1715 debug!("print-type-size t: `{:?}` record closure", layout.ty);
1716 record(DataTypeKind::Closure, false, None, vec![]);
1717 return;
1718 }
1719
1720 _ => {
1721 debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty);
1722 return;
1723 }
1724 };
1725
1726 let adt_kind = adt_def.adt_kind();
1727 let adt_packed = adt_def.repr().pack.is_some();
1728
1729 let build_variant_info = |n: Option<Symbol>, flds: &[Symbol], layout: TyAndLayout<'tcx>| {
1730 let mut min_size = Size::ZERO;
1731 let field_info: Vec<_> = flds
1732 .iter()
1733 .enumerate()
1734 .map(|(i, &name)| {
1735 let field_layout = layout.field(cx, i);
1736 let offset = layout.fields.offset(i);
1737 let field_end = offset + field_layout.size;
1738 if min_size < field_end {
1739 min_size = field_end;
1740 }
1741 FieldInfo {
1742 name,
1743 offset: offset.bytes(),
1744 size: field_layout.size.bytes(),
1745 align: field_layout.align.abi.bytes(),
1746 }
1747 })
1748 .collect();
1749
1750 VariantInfo {
1751 name: n,
1752 kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact },
1753 align: layout.align.abi.bytes(),
1754 size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() },
1755 fields: field_info,
1756 }
1757 };
1758
1759 match layout.variants {
1760 Variants::Single { index } => {
1761 if !adt_def.variants().is_empty() && layout.fields != FieldsShape::Primitive {
1762 debug!("print-type-size `{:#?}` variant {}", layout, adt_def.variant(index).name);
1763 let variant_def = &adt_def.variant(index);
1764 let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
1765 record(
1766 adt_kind.into(),
1767 adt_packed,
1768 None,
1769 vec![build_variant_info(Some(variant_def.name), &fields, layout)],
1770 );
1771 } else {
1772 // (This case arises for *empty* enums; so give it
1773 // zero variants.)
1774 record(adt_kind.into(), adt_packed, None, vec![]);
1775 }
1776 }
1777
1778 Variants::Multiple { tag, ref tag_encoding, .. } => {
1779 debug!(
1780 "print-type-size `{:#?}` adt general variants def {}",
1781 layout.ty,
1782 adt_def.variants().len()
1783 );
1784 let variant_infos: Vec<_> = adt_def
1785 .variants()
1786 .iter_enumerated()
1787 .map(|(i, variant_def)| {
1788 let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
1789 build_variant_info(Some(variant_def.name), &fields, layout.for_variant(cx, i))
1790 })
1791 .collect();
1792 record(
1793 adt_kind.into(),
1794 adt_packed,
1795 match tag_encoding {
1796 TagEncoding::Direct => Some(tag.size(cx)),
1797 _ => None,
1798 },
1799 variant_infos,
1800 );
1801 }
1802 }
1803 }