]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_typeck/src/check/wfcheck.rs
New upstream version 1.65.0+dfsg1
[rustc.git] / compiler / rustc_typeck / src / check / wfcheck.rs
1 use crate::constrained_generic_params::{identify_constrained_generic_params, Parameter};
2 use hir::def::DefKind;
3 use rustc_ast as ast;
4 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
5 use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticBuilder, ErrorGuaranteed};
6 use rustc_hir as hir;
7 use rustc_hir::def_id::{DefId, LocalDefId};
8 use rustc_hir::lang_items::LangItem;
9 use rustc_hir::ItemKind;
10 use rustc_infer::infer::outlives::env::{OutlivesEnvironment, RegionBoundPairs};
11 use rustc_infer::infer::outlives::obligations::TypeOutlives;
12 use rustc_infer::infer::{self, InferCtxt, TyCtxtInferExt};
13 use rustc_middle::mir::ConstraintCategory;
14 use rustc_middle::ty::query::Providers;
15 use rustc_middle::ty::subst::{GenericArgKind, InternalSubsts, Subst};
16 use rustc_middle::ty::trait_def::TraitSpecializationKind;
17 use rustc_middle::ty::{
18 self, AdtKind, DefIdTree, GenericParamDefKind, ToPredicate, Ty, TyCtxt, TypeFoldable,
19 TypeSuperVisitable, TypeVisitable, TypeVisitor,
20 };
21 use rustc_session::parse::feature_err;
22 use rustc_span::symbol::{sym, Ident, Symbol};
23 use rustc_span::{Span, DUMMY_SP};
24 use rustc_trait_selection::autoderef::Autoderef;
25 use rustc_trait_selection::traits::error_reporting::InferCtxtExt;
26 use rustc_trait_selection::traits::outlives_bounds::InferCtxtExt as _;
27 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
28 use rustc_trait_selection::traits::{
29 self, ObligationCause, ObligationCauseCode, ObligationCtxt, WellFormedLoc,
30 };
31
32 use std::cell::LazyCell;
33 use std::convert::TryInto;
34 use std::iter;
35 use std::ops::{ControlFlow, Deref};
36
37 pub(super) struct WfCheckingCtxt<'a, 'tcx> {
38 pub(super) ocx: ObligationCtxt<'a, 'tcx>,
39 span: Span,
40 body_id: hir::HirId,
41 param_env: ty::ParamEnv<'tcx>,
42 }
43 impl<'a, 'tcx> Deref for WfCheckingCtxt<'a, 'tcx> {
44 type Target = ObligationCtxt<'a, 'tcx>;
45 fn deref(&self) -> &Self::Target {
46 &self.ocx
47 }
48 }
49
50 impl<'tcx> WfCheckingCtxt<'_, 'tcx> {
51 fn tcx(&self) -> TyCtxt<'tcx> {
52 self.ocx.infcx.tcx
53 }
54
55 fn normalize<T>(&self, span: Span, loc: Option<WellFormedLoc>, value: T) -> T
56 where
57 T: TypeFoldable<'tcx>,
58 {
59 self.ocx.normalize(
60 ObligationCause::new(span, self.body_id, ObligationCauseCode::WellFormed(loc)),
61 self.param_env,
62 value,
63 )
64 }
65
66 fn register_wf_obligation(
67 &self,
68 span: Span,
69 loc: Option<WellFormedLoc>,
70 arg: ty::GenericArg<'tcx>,
71 ) {
72 let cause =
73 traits::ObligationCause::new(span, self.body_id, ObligationCauseCode::WellFormed(loc));
74 // for a type to be WF, we do not need to check if const trait predicates satisfy.
75 let param_env = self.param_env.without_const();
76 self.ocx.register_obligation(traits::Obligation::new(
77 cause,
78 param_env,
79 ty::Binder::dummy(ty::PredicateKind::WellFormed(arg)).to_predicate(self.tcx()),
80 ));
81 }
82 }
83
84 pub(super) fn enter_wf_checking_ctxt<'tcx, F>(
85 tcx: TyCtxt<'tcx>,
86 span: Span,
87 body_def_id: LocalDefId,
88 f: F,
89 ) where
90 F: for<'a> FnOnce(&WfCheckingCtxt<'a, 'tcx>),
91 {
92 let param_env = tcx.param_env(body_def_id);
93 let body_id = tcx.hir().local_def_id_to_hir_id(body_def_id);
94 tcx.infer_ctxt().enter(|ref infcx| {
95 let ocx = ObligationCtxt::new(infcx);
96
97 let assumed_wf_types = ocx.assumed_wf_types(param_env, span, body_def_id);
98
99 let mut wfcx = WfCheckingCtxt { ocx, span, body_id, param_env };
100
101 if !tcx.features().trivial_bounds {
102 wfcx.check_false_global_bounds()
103 }
104 f(&mut wfcx);
105 let errors = wfcx.select_all_or_error();
106 if !errors.is_empty() {
107 infcx.report_fulfillment_errors(&errors, None, false);
108 return;
109 }
110
111 let implied_bounds = infcx.implied_bounds_tys(param_env, body_id, assumed_wf_types);
112 let outlives_environment =
113 OutlivesEnvironment::with_bounds(param_env, Some(infcx), implied_bounds);
114
115 infcx.check_region_obligations_and_report_errors(body_def_id, &outlives_environment);
116 })
117 }
118
119 fn check_well_formed(tcx: TyCtxt<'_>, def_id: LocalDefId) {
120 let node = tcx.hir().expect_owner(def_id);
121 match node {
122 hir::OwnerNode::Crate(_) => {}
123 hir::OwnerNode::Item(item) => check_item(tcx, item),
124 hir::OwnerNode::TraitItem(item) => check_trait_item(tcx, item),
125 hir::OwnerNode::ImplItem(item) => check_impl_item(tcx, item),
126 hir::OwnerNode::ForeignItem(item) => check_foreign_item(tcx, item),
127 }
128
129 if let Some(generics) = node.generics() {
130 for param in generics.params {
131 check_param_wf(tcx, param)
132 }
133 }
134 }
135
136 /// Checks that the field types (in a struct def'n) or argument types (in an enum def'n) are
137 /// well-formed, meaning that they do not require any constraints not declared in the struct
138 /// definition itself. For example, this definition would be illegal:
139 ///
140 /// ```rust
141 /// struct Ref<'a, T> { x: &'a T }
142 /// ```
143 ///
144 /// because the type did not declare that `T:'a`.
145 ///
146 /// We do this check as a pre-pass before checking fn bodies because if these constraints are
147 /// not included it frequently leads to confusing errors in fn bodies. So it's better to check
148 /// the types first.
149 #[instrument(skip(tcx), level = "debug")]
150 fn check_item<'tcx>(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) {
151 let def_id = item.def_id;
152
153 debug!(
154 ?item.def_id,
155 item.name = ? tcx.def_path_str(def_id.to_def_id())
156 );
157
158 match item.kind {
159 // Right now we check that every default trait implementation
160 // has an implementation of itself. Basically, a case like:
161 //
162 // impl Trait for T {}
163 //
164 // has a requirement of `T: Trait` which was required for default
165 // method implementations. Although this could be improved now that
166 // there's a better infrastructure in place for this, it's being left
167 // for a follow-up work.
168 //
169 // Since there's such a requirement, we need to check *just* positive
170 // implementations, otherwise things like:
171 //
172 // impl !Send for T {}
173 //
174 // won't be allowed unless there's an *explicit* implementation of `Send`
175 // for `T`
176 hir::ItemKind::Impl(ref impl_) => {
177 let is_auto = tcx
178 .impl_trait_ref(item.def_id)
179 .map_or(false, |trait_ref| tcx.trait_is_auto(trait_ref.def_id));
180 if let (hir::Defaultness::Default { .. }, true) = (impl_.defaultness, is_auto) {
181 let sp = impl_.of_trait.as_ref().map_or(item.span, |t| t.path.span);
182 let mut err =
183 tcx.sess.struct_span_err(sp, "impls of auto traits cannot be default");
184 err.span_labels(impl_.defaultness_span, "default because of this");
185 err.span_label(sp, "auto trait");
186 err.emit();
187 }
188 // We match on both `ty::ImplPolarity` and `ast::ImplPolarity` just to get the `!` span.
189 match (tcx.impl_polarity(def_id), impl_.polarity) {
190 (ty::ImplPolarity::Positive, _) => {
191 check_impl(tcx, item, impl_.self_ty, &impl_.of_trait, impl_.constness);
192 }
193 (ty::ImplPolarity::Negative, ast::ImplPolarity::Negative(span)) => {
194 // FIXME(#27579): what amount of WF checking do we need for neg impls?
195 if let hir::Defaultness::Default { .. } = impl_.defaultness {
196 let mut spans = vec![span];
197 spans.extend(impl_.defaultness_span);
198 struct_span_err!(
199 tcx.sess,
200 spans,
201 E0750,
202 "negative impls cannot be default impls"
203 )
204 .emit();
205 }
206 }
207 (ty::ImplPolarity::Reservation, _) => {
208 // FIXME: what amount of WF checking do we need for reservation impls?
209 }
210 _ => unreachable!(),
211 }
212 }
213 hir::ItemKind::Fn(ref sig, ..) => {
214 check_item_fn(tcx, item.def_id, item.ident, item.span, sig.decl);
215 }
216 hir::ItemKind::Static(ty, ..) => {
217 check_item_type(tcx, item.def_id, ty.span, false);
218 }
219 hir::ItemKind::Const(ty, ..) => {
220 check_item_type(tcx, item.def_id, ty.span, false);
221 }
222 hir::ItemKind::Struct(ref struct_def, ref ast_generics) => {
223 check_type_defn(tcx, item, false, |wfcx| vec![wfcx.non_enum_variant(struct_def)]);
224
225 check_variances_for_type_defn(tcx, item, ast_generics);
226 }
227 hir::ItemKind::Union(ref struct_def, ref ast_generics) => {
228 check_type_defn(tcx, item, true, |wfcx| vec![wfcx.non_enum_variant(struct_def)]);
229
230 check_variances_for_type_defn(tcx, item, ast_generics);
231 }
232 hir::ItemKind::Enum(ref enum_def, ref ast_generics) => {
233 check_type_defn(tcx, item, true, |wfcx| wfcx.enum_variants(enum_def));
234
235 check_variances_for_type_defn(tcx, item, ast_generics);
236 }
237 hir::ItemKind::Trait(..) => {
238 check_trait(tcx, item);
239 }
240 hir::ItemKind::TraitAlias(..) => {
241 check_trait(tcx, item);
242 }
243 // `ForeignItem`s are handled separately.
244 hir::ItemKind::ForeignMod { .. } => {}
245 _ => {}
246 }
247 }
248
249 fn check_foreign_item(tcx: TyCtxt<'_>, item: &hir::ForeignItem<'_>) {
250 let def_id = item.def_id;
251
252 debug!(
253 ?item.def_id,
254 item.name = ? tcx.def_path_str(def_id.to_def_id())
255 );
256
257 match item.kind {
258 hir::ForeignItemKind::Fn(decl, ..) => {
259 check_item_fn(tcx, item.def_id, item.ident, item.span, decl)
260 }
261 hir::ForeignItemKind::Static(ty, ..) => check_item_type(tcx, item.def_id, ty.span, true),
262 hir::ForeignItemKind::Type => (),
263 }
264 }
265
266 fn check_trait_item(tcx: TyCtxt<'_>, trait_item: &hir::TraitItem<'_>) {
267 let def_id = trait_item.def_id;
268
269 let (method_sig, span) = match trait_item.kind {
270 hir::TraitItemKind::Fn(ref sig, _) => (Some(sig), trait_item.span),
271 hir::TraitItemKind::Type(_bounds, Some(ty)) => (None, ty.span),
272 _ => (None, trait_item.span),
273 };
274 check_object_unsafe_self_trait_by_name(tcx, trait_item);
275 check_associated_item(tcx, trait_item.def_id, span, method_sig);
276
277 let encl_trait_def_id = tcx.local_parent(def_id);
278 let encl_trait = tcx.hir().expect_item(encl_trait_def_id);
279 let encl_trait_def_id = encl_trait.def_id.to_def_id();
280 let fn_lang_item_name = if Some(encl_trait_def_id) == tcx.lang_items().fn_trait() {
281 Some("fn")
282 } else if Some(encl_trait_def_id) == tcx.lang_items().fn_mut_trait() {
283 Some("fn_mut")
284 } else {
285 None
286 };
287
288 if let (Some(fn_lang_item_name), "call") =
289 (fn_lang_item_name, trait_item.ident.name.to_ident_string().as_str())
290 {
291 // We are looking at the `call` function of the `fn` or `fn_mut` lang item.
292 // Do some rudimentary sanity checking to avoid an ICE later (issue #83471).
293 if let Some(hir::FnSig { decl, span, .. }) = method_sig {
294 if let [self_ty, _] = decl.inputs {
295 if !matches!(self_ty.kind, hir::TyKind::Rptr(_, _)) {
296 tcx.sess
297 .struct_span_err(
298 self_ty.span,
299 &format!(
300 "first argument of `call` in `{fn_lang_item_name}` lang item must be a reference",
301 ),
302 )
303 .emit();
304 }
305 } else {
306 tcx.sess
307 .struct_span_err(
308 *span,
309 &format!(
310 "`call` function in `{fn_lang_item_name}` lang item takes exactly two arguments",
311 ),
312 )
313 .emit();
314 }
315 } else {
316 tcx.sess
317 .struct_span_err(
318 trait_item.span,
319 &format!(
320 "`call` trait item in `{fn_lang_item_name}` lang item must be a function",
321 ),
322 )
323 .emit();
324 }
325 }
326 }
327
328 /// Require that the user writes where clauses on GATs for the implicit
329 /// outlives bounds involving trait parameters in trait functions and
330 /// lifetimes passed as GAT substs. See `self-outlives-lint` test.
331 ///
332 /// We use the following trait as an example throughout this function:
333 /// ```rust,ignore (this code fails due to this lint)
334 /// trait IntoIter {
335 /// type Iter<'a>: Iterator<Item = Self::Item<'a>>;
336 /// type Item<'a>;
337 /// fn into_iter<'a>(&'a self) -> Self::Iter<'a>;
338 /// }
339 /// ```
340 fn check_gat_where_clauses(tcx: TyCtxt<'_>, associated_items: &[hir::TraitItemRef]) {
341 // Associates every GAT's def_id to a list of possibly missing bounds detected by this lint.
342 let mut required_bounds_by_item = FxHashMap::default();
343
344 // Loop over all GATs together, because if this lint suggests adding a where-clause bound
345 // to one GAT, it might then require us to an additional bound on another GAT.
346 // In our `IntoIter` example, we discover a missing `Self: 'a` bound on `Iter<'a>`, which
347 // then in a second loop adds a `Self: 'a` bound to `Item` due to the relationship between
348 // those GATs.
349 loop {
350 let mut should_continue = false;
351 for gat_item in associated_items {
352 let gat_def_id = gat_item.id.def_id;
353 let gat_item = tcx.associated_item(gat_def_id);
354 // If this item is not an assoc ty, or has no substs, then it's not a GAT
355 if gat_item.kind != ty::AssocKind::Type {
356 continue;
357 }
358 let gat_generics = tcx.generics_of(gat_def_id);
359 // FIXME(jackh726): we can also warn in the more general case
360 if gat_generics.params.is_empty() {
361 continue;
362 }
363
364 // Gather the bounds with which all other items inside of this trait constrain the GAT.
365 // This is calculated by taking the intersection of the bounds that each item
366 // constrains the GAT with individually.
367 let mut new_required_bounds: Option<FxHashSet<ty::Predicate<'_>>> = None;
368 for item in associated_items {
369 let item_def_id = item.id.def_id;
370 // Skip our own GAT, since it does not constrain itself at all.
371 if item_def_id == gat_def_id {
372 continue;
373 }
374
375 let item_hir_id = item.id.hir_id();
376 let param_env = tcx.param_env(item_def_id);
377
378 let item_required_bounds = match item.kind {
379 // In our example, this corresponds to `into_iter` method
380 hir::AssocItemKind::Fn { .. } => {
381 // For methods, we check the function signature's return type for any GATs
382 // to constrain. In the `into_iter` case, we see that the return type
383 // `Self::Iter<'a>` is a GAT we want to gather any potential missing bounds from.
384 let sig: ty::FnSig<'_> = tcx.liberate_late_bound_regions(
385 item_def_id.to_def_id(),
386 tcx.fn_sig(item_def_id),
387 );
388 gather_gat_bounds(
389 tcx,
390 param_env,
391 item_hir_id,
392 sig.inputs_and_output,
393 // We also assume that all of the function signature's parameter types
394 // are well formed.
395 &sig.inputs().iter().copied().collect(),
396 gat_def_id,
397 gat_generics,
398 )
399 }
400 // In our example, this corresponds to the `Iter` and `Item` associated types
401 hir::AssocItemKind::Type => {
402 // If our associated item is a GAT with missing bounds, add them to
403 // the param-env here. This allows this GAT to propagate missing bounds
404 // to other GATs.
405 let param_env = augment_param_env(
406 tcx,
407 param_env,
408 required_bounds_by_item.get(&item_def_id),
409 );
410 gather_gat_bounds(
411 tcx,
412 param_env,
413 item_hir_id,
414 tcx.explicit_item_bounds(item_def_id)
415 .iter()
416 .copied()
417 .collect::<Vec<_>>(),
418 &FxHashSet::default(),
419 gat_def_id,
420 gat_generics,
421 )
422 }
423 hir::AssocItemKind::Const => None,
424 };
425
426 if let Some(item_required_bounds) = item_required_bounds {
427 // Take the intersection of the required bounds for this GAT, and
428 // the item_required_bounds which are the ones implied by just
429 // this item alone.
430 // This is why we use an Option<_>, since we need to distinguish
431 // the empty set of bounds from the _uninitialized_ set of bounds.
432 if let Some(new_required_bounds) = &mut new_required_bounds {
433 new_required_bounds.retain(|b| item_required_bounds.contains(b));
434 } else {
435 new_required_bounds = Some(item_required_bounds);
436 }
437 }
438 }
439
440 if let Some(new_required_bounds) = new_required_bounds {
441 let required_bounds = required_bounds_by_item.entry(gat_def_id).or_default();
442 if new_required_bounds.into_iter().any(|p| required_bounds.insert(p)) {
443 // Iterate until our required_bounds no longer change
444 // Since they changed here, we should continue the loop
445 should_continue = true;
446 }
447 }
448 }
449 // We know that this loop will eventually halt, since we only set `should_continue` if the
450 // `required_bounds` for this item grows. Since we are not creating any new region or type
451 // variables, the set of all region and type bounds that we could ever insert are limited
452 // by the number of unique types and regions we observe in a given item.
453 if !should_continue {
454 break;
455 }
456 }
457
458 for (gat_def_id, required_bounds) in required_bounds_by_item {
459 let gat_item_hir = tcx.hir().expect_trait_item(gat_def_id);
460 debug!(?required_bounds);
461 let param_env = tcx.param_env(gat_def_id);
462 let gat_hir = gat_item_hir.hir_id();
463
464 let mut unsatisfied_bounds: Vec<_> = required_bounds
465 .into_iter()
466 .filter(|clause| match clause.kind().skip_binder() {
467 ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => {
468 !region_known_to_outlive(tcx, gat_hir, param_env, &FxHashSet::default(), a, b)
469 }
470 ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
471 !ty_known_to_outlive(tcx, gat_hir, param_env, &FxHashSet::default(), a, b)
472 }
473 _ => bug!("Unexpected PredicateKind"),
474 })
475 .map(|clause| clause.to_string())
476 .collect();
477
478 // We sort so that order is predictable
479 unsatisfied_bounds.sort();
480
481 if !unsatisfied_bounds.is_empty() {
482 let plural = pluralize!(unsatisfied_bounds.len());
483 let mut err = tcx.sess.struct_span_err(
484 gat_item_hir.span,
485 &format!("missing required bound{} on `{}`", plural, gat_item_hir.ident),
486 );
487
488 let suggestion = format!(
489 "{} {}",
490 gat_item_hir.generics.add_where_or_trailing_comma(),
491 unsatisfied_bounds.join(", "),
492 );
493 err.span_suggestion(
494 gat_item_hir.generics.tail_span_for_predicate_suggestion(),
495 &format!("add the required where clause{plural}"),
496 suggestion,
497 Applicability::MachineApplicable,
498 );
499
500 let bound =
501 if unsatisfied_bounds.len() > 1 { "these bounds are" } else { "this bound is" };
502 err.note(&format!(
503 "{} currently required to ensure that impls have maximum flexibility",
504 bound
505 ));
506 err.note(
507 "we are soliciting feedback, see issue #87479 \
508 <https://github.com/rust-lang/rust/issues/87479> \
509 for more information",
510 );
511
512 err.emit();
513 }
514 }
515 }
516
517 /// Add a new set of predicates to the caller_bounds of an existing param_env.
518 fn augment_param_env<'tcx>(
519 tcx: TyCtxt<'tcx>,
520 param_env: ty::ParamEnv<'tcx>,
521 new_predicates: Option<&FxHashSet<ty::Predicate<'tcx>>>,
522 ) -> ty::ParamEnv<'tcx> {
523 let Some(new_predicates) = new_predicates else {
524 return param_env;
525 };
526
527 if new_predicates.is_empty() {
528 return param_env;
529 }
530
531 let bounds =
532 tcx.mk_predicates(param_env.caller_bounds().iter().chain(new_predicates.iter().cloned()));
533 // FIXME(compiler-errors): Perhaps there is a case where we need to normalize this
534 // i.e. traits::normalize_param_env_or_error
535 ty::ParamEnv::new(bounds, param_env.reveal(), param_env.constness())
536 }
537
538 /// We use the following trait as an example throughout this function.
539 /// Specifically, let's assume that `to_check` here is the return type
540 /// of `into_iter`, and the GAT we are checking this for is `Iter`.
541 /// ```rust,ignore (this code fails due to this lint)
542 /// trait IntoIter {
543 /// type Iter<'a>: Iterator<Item = Self::Item<'a>>;
544 /// type Item<'a>;
545 /// fn into_iter<'a>(&'a self) -> Self::Iter<'a>;
546 /// }
547 /// ```
548 fn gather_gat_bounds<'tcx, T: TypeFoldable<'tcx>>(
549 tcx: TyCtxt<'tcx>,
550 param_env: ty::ParamEnv<'tcx>,
551 item_hir: hir::HirId,
552 to_check: T,
553 wf_tys: &FxHashSet<Ty<'tcx>>,
554 gat_def_id: LocalDefId,
555 gat_generics: &'tcx ty::Generics,
556 ) -> Option<FxHashSet<ty::Predicate<'tcx>>> {
557 // The bounds we that we would require from `to_check`
558 let mut bounds = FxHashSet::default();
559
560 let (regions, types) = GATSubstCollector::visit(gat_def_id.to_def_id(), to_check);
561
562 // If both regions and types are empty, then this GAT isn't in the
563 // set of types we are checking, and we shouldn't try to do clause analysis
564 // (particularly, doing so would end up with an empty set of clauses,
565 // since the current method would require none, and we take the
566 // intersection of requirements of all methods)
567 if types.is_empty() && regions.is_empty() {
568 return None;
569 }
570
571 for (region_a, region_a_idx) in &regions {
572 // Ignore `'static` lifetimes for the purpose of this lint: it's
573 // because we know it outlives everything and so doesn't give meaningful
574 // clues
575 if let ty::ReStatic = **region_a {
576 continue;
577 }
578 // For each region argument (e.g., `'a` in our example), check for a
579 // relationship to the type arguments (e.g., `Self`). If there is an
580 // outlives relationship (`Self: 'a`), then we want to ensure that is
581 // reflected in a where clause on the GAT itself.
582 for (ty, ty_idx) in &types {
583 // In our example, requires that `Self: 'a`
584 if ty_known_to_outlive(tcx, item_hir, param_env, &wf_tys, *ty, *region_a) {
585 debug!(?ty_idx, ?region_a_idx);
586 debug!("required clause: {ty} must outlive {region_a}");
587 // Translate into the generic parameters of the GAT. In
588 // our example, the type was `Self`, which will also be
589 // `Self` in the GAT.
590 let ty_param = gat_generics.param_at(*ty_idx, tcx);
591 let ty_param = tcx
592 .mk_ty(ty::Param(ty::ParamTy { index: ty_param.index, name: ty_param.name }));
593 // Same for the region. In our example, 'a corresponds
594 // to the 'me parameter.
595 let region_param = gat_generics.param_at(*region_a_idx, tcx);
596 let region_param =
597 tcx.mk_region(ty::RegionKind::ReEarlyBound(ty::EarlyBoundRegion {
598 def_id: region_param.def_id,
599 index: region_param.index,
600 name: region_param.name,
601 }));
602 // The predicate we expect to see. (In our example,
603 // `Self: 'me`.)
604 let clause =
605 ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty_param, region_param));
606 let clause = tcx.mk_predicate(ty::Binder::dummy(clause));
607 bounds.insert(clause);
608 }
609 }
610
611 // For each region argument (e.g., `'a` in our example), also check for a
612 // relationship to the other region arguments. If there is an outlives
613 // relationship, then we want to ensure that is reflected in the where clause
614 // on the GAT itself.
615 for (region_b, region_b_idx) in &regions {
616 // Again, skip `'static` because it outlives everything. Also, we trivially
617 // know that a region outlives itself.
618 if ty::ReStatic == **region_b || region_a == region_b {
619 continue;
620 }
621 if region_known_to_outlive(tcx, item_hir, param_env, &wf_tys, *region_a, *region_b) {
622 debug!(?region_a_idx, ?region_b_idx);
623 debug!("required clause: {region_a} must outlive {region_b}");
624 // Translate into the generic parameters of the GAT.
625 let region_a_param = gat_generics.param_at(*region_a_idx, tcx);
626 let region_a_param =
627 tcx.mk_region(ty::RegionKind::ReEarlyBound(ty::EarlyBoundRegion {
628 def_id: region_a_param.def_id,
629 index: region_a_param.index,
630 name: region_a_param.name,
631 }));
632 // Same for the region.
633 let region_b_param = gat_generics.param_at(*region_b_idx, tcx);
634 let region_b_param =
635 tcx.mk_region(ty::RegionKind::ReEarlyBound(ty::EarlyBoundRegion {
636 def_id: region_b_param.def_id,
637 index: region_b_param.index,
638 name: region_b_param.name,
639 }));
640 // The predicate we expect to see.
641 let clause = ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(
642 region_a_param,
643 region_b_param,
644 ));
645 let clause = tcx.mk_predicate(ty::Binder::dummy(clause));
646 bounds.insert(clause);
647 }
648 }
649 }
650
651 Some(bounds)
652 }
653
654 /// Given a known `param_env` and a set of well formed types, can we prove that
655 /// `ty` outlives `region`.
656 fn ty_known_to_outlive<'tcx>(
657 tcx: TyCtxt<'tcx>,
658 id: hir::HirId,
659 param_env: ty::ParamEnv<'tcx>,
660 wf_tys: &FxHashSet<Ty<'tcx>>,
661 ty: Ty<'tcx>,
662 region: ty::Region<'tcx>,
663 ) -> bool {
664 resolve_regions_with_wf_tys(tcx, id, param_env, &wf_tys, |infcx, region_bound_pairs| {
665 let origin = infer::RelateParamBound(DUMMY_SP, ty, None);
666 let outlives = &mut TypeOutlives::new(infcx, tcx, region_bound_pairs, None, param_env);
667 outlives.type_must_outlive(origin, ty, region, ConstraintCategory::BoringNoLocation);
668 })
669 }
670
671 /// Given a known `param_env` and a set of well formed types, can we prove that
672 /// `region_a` outlives `region_b`
673 fn region_known_to_outlive<'tcx>(
674 tcx: TyCtxt<'tcx>,
675 id: hir::HirId,
676 param_env: ty::ParamEnv<'tcx>,
677 wf_tys: &FxHashSet<Ty<'tcx>>,
678 region_a: ty::Region<'tcx>,
679 region_b: ty::Region<'tcx>,
680 ) -> bool {
681 resolve_regions_with_wf_tys(tcx, id, param_env, &wf_tys, |mut infcx, _| {
682 use rustc_infer::infer::outlives::obligations::TypeOutlivesDelegate;
683 let origin = infer::RelateRegionParamBound(DUMMY_SP);
684 // `region_a: region_b` -> `region_b <= region_a`
685 infcx.push_sub_region_constraint(
686 origin,
687 region_b,
688 region_a,
689 ConstraintCategory::BoringNoLocation,
690 );
691 })
692 }
693
694 /// Given a known `param_env` and a set of well formed types, set up an
695 /// `InferCtxt`, call the passed function (to e.g. set up region constraints
696 /// to be tested), then resolve region and return errors
697 fn resolve_regions_with_wf_tys<'tcx>(
698 tcx: TyCtxt<'tcx>,
699 id: hir::HirId,
700 param_env: ty::ParamEnv<'tcx>,
701 wf_tys: &FxHashSet<Ty<'tcx>>,
702 add_constraints: impl for<'a> FnOnce(&'a InferCtxt<'a, 'tcx>, &'a RegionBoundPairs<'tcx>),
703 ) -> bool {
704 // Unfortunately, we have to use a new `InferCtxt` each call, because
705 // region constraints get added and solved there and we need to test each
706 // call individually.
707 tcx.infer_ctxt().enter(|infcx| {
708 let outlives_environment = OutlivesEnvironment::with_bounds(
709 param_env,
710 Some(&infcx),
711 infcx.implied_bounds_tys(param_env, id, wf_tys.clone()),
712 );
713 let region_bound_pairs = outlives_environment.region_bound_pairs();
714
715 add_constraints(&infcx, region_bound_pairs);
716
717 let errors = infcx.resolve_regions(&outlives_environment);
718
719 debug!(?errors, "errors");
720
721 // If we were able to prove that the type outlives the region without
722 // an error, it must be because of the implied or explicit bounds...
723 errors.is_empty()
724 })
725 }
726
727 /// TypeVisitor that looks for uses of GATs like
728 /// `<P0 as Trait<P1..Pn>>::GAT<Pn..Pm>` and adds the arguments `P0..Pm` into
729 /// the two vectors, `regions` and `types` (depending on their kind). For each
730 /// parameter `Pi` also track the index `i`.
731 struct GATSubstCollector<'tcx> {
732 gat: DefId,
733 // Which region appears and which parameter index its substituted for
734 regions: FxHashSet<(ty::Region<'tcx>, usize)>,
735 // Which params appears and which parameter index its substituted for
736 types: FxHashSet<(Ty<'tcx>, usize)>,
737 }
738
739 impl<'tcx> GATSubstCollector<'tcx> {
740 fn visit<T: TypeFoldable<'tcx>>(
741 gat: DefId,
742 t: T,
743 ) -> (FxHashSet<(ty::Region<'tcx>, usize)>, FxHashSet<(Ty<'tcx>, usize)>) {
744 let mut visitor =
745 GATSubstCollector { gat, regions: FxHashSet::default(), types: FxHashSet::default() };
746 t.visit_with(&mut visitor);
747 (visitor.regions, visitor.types)
748 }
749 }
750
751 impl<'tcx> TypeVisitor<'tcx> for GATSubstCollector<'tcx> {
752 type BreakTy = !;
753
754 fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
755 match t.kind() {
756 ty::Projection(p) if p.item_def_id == self.gat => {
757 for (idx, subst) in p.substs.iter().enumerate() {
758 match subst.unpack() {
759 GenericArgKind::Lifetime(lt) if !lt.is_late_bound() => {
760 self.regions.insert((lt, idx));
761 }
762 GenericArgKind::Type(t) => {
763 self.types.insert((t, idx));
764 }
765 _ => {}
766 }
767 }
768 }
769 _ => {}
770 }
771 t.super_visit_with(self)
772 }
773 }
774
775 fn could_be_self(trait_def_id: LocalDefId, ty: &hir::Ty<'_>) -> bool {
776 match ty.kind {
777 hir::TyKind::TraitObject([trait_ref], ..) => match trait_ref.trait_ref.path.segments {
778 [s] => s.res.opt_def_id() == Some(trait_def_id.to_def_id()),
779 _ => false,
780 },
781 _ => false,
782 }
783 }
784
785 /// Detect when an object unsafe trait is referring to itself in one of its associated items.
786 /// When this is done, suggest using `Self` instead.
787 fn check_object_unsafe_self_trait_by_name(tcx: TyCtxt<'_>, item: &hir::TraitItem<'_>) {
788 let (trait_name, trait_def_id) =
789 match tcx.hir().get_by_def_id(tcx.hir().get_parent_item(item.hir_id())) {
790 hir::Node::Item(item) => match item.kind {
791 hir::ItemKind::Trait(..) => (item.ident, item.def_id),
792 _ => return,
793 },
794 _ => return,
795 };
796 let mut trait_should_be_self = vec![];
797 match &item.kind {
798 hir::TraitItemKind::Const(ty, _) | hir::TraitItemKind::Type(_, Some(ty))
799 if could_be_self(trait_def_id, ty) =>
800 {
801 trait_should_be_self.push(ty.span)
802 }
803 hir::TraitItemKind::Fn(sig, _) => {
804 for ty in sig.decl.inputs {
805 if could_be_self(trait_def_id, ty) {
806 trait_should_be_self.push(ty.span);
807 }
808 }
809 match sig.decl.output {
810 hir::FnRetTy::Return(ty) if could_be_self(trait_def_id, ty) => {
811 trait_should_be_self.push(ty.span);
812 }
813 _ => {}
814 }
815 }
816 _ => {}
817 }
818 if !trait_should_be_self.is_empty() {
819 if tcx.object_safety_violations(trait_def_id).is_empty() {
820 return;
821 }
822 let sugg = trait_should_be_self.iter().map(|span| (*span, "Self".to_string())).collect();
823 tcx.sess
824 .struct_span_err(
825 trait_should_be_self,
826 "associated item referring to unboxed trait object for its own trait",
827 )
828 .span_label(trait_name.span, "in this trait")
829 .multipart_suggestion(
830 "you might have meant to use `Self` to refer to the implementing type",
831 sugg,
832 Applicability::MachineApplicable,
833 )
834 .emit();
835 }
836 }
837
838 fn check_impl_item(tcx: TyCtxt<'_>, impl_item: &hir::ImplItem<'_>) {
839 let def_id = impl_item.def_id;
840
841 let (method_sig, span) = match impl_item.kind {
842 hir::ImplItemKind::Fn(ref sig, _) => (Some(sig), impl_item.span),
843 // Constrain binding and overflow error spans to `<Ty>` in `type foo = <Ty>`.
844 hir::ImplItemKind::TyAlias(ty) if ty.span != DUMMY_SP => (None, ty.span),
845 _ => (None, impl_item.span),
846 };
847
848 check_associated_item(tcx, def_id, span, method_sig);
849 }
850
851 fn check_param_wf(tcx: TyCtxt<'_>, param: &hir::GenericParam<'_>) {
852 match param.kind {
853 // We currently only check wf of const params here.
854 hir::GenericParamKind::Lifetime { .. } | hir::GenericParamKind::Type { .. } => (),
855
856 // Const parameters are well formed if their type is structural match.
857 hir::GenericParamKind::Const { ty: hir_ty, default: _ } => {
858 let ty = tcx.type_of(tcx.hir().local_def_id(param.hir_id));
859
860 if tcx.features().adt_const_params {
861 if let Some(non_structural_match_ty) =
862 traits::search_for_adt_const_param_violation(param.span, tcx, ty)
863 {
864 // We use the same error code in both branches, because this is really the same
865 // issue: we just special-case the message for type parameters to make it
866 // clearer.
867 match non_structural_match_ty.kind() {
868 ty::Param(_) => {
869 // Const parameters may not have type parameters as their types,
870 // because we cannot be sure that the type parameter derives `PartialEq`
871 // and `Eq` (just implementing them is not enough for `structural_match`).
872 struct_span_err!(
873 tcx.sess,
874 hir_ty.span,
875 E0741,
876 "`{ty}` is not guaranteed to `#[derive(PartialEq, Eq)]`, so may not be \
877 used as the type of a const parameter",
878 )
879 .span_label(
880 hir_ty.span,
881 format!("`{ty}` may not derive both `PartialEq` and `Eq`"),
882 )
883 .note(
884 "it is not currently possible to use a type parameter as the type of a \
885 const parameter",
886 )
887 .emit();
888 }
889 ty::Float(_) => {
890 struct_span_err!(
891 tcx.sess,
892 hir_ty.span,
893 E0741,
894 "`{ty}` is forbidden as the type of a const generic parameter",
895 )
896 .note("floats do not derive `Eq` or `Ord`, which are required for const parameters")
897 .emit();
898 }
899 ty::FnPtr(_) => {
900 struct_span_err!(
901 tcx.sess,
902 hir_ty.span,
903 E0741,
904 "using function pointers as const generic parameters is forbidden",
905 )
906 .emit();
907 }
908 ty::RawPtr(_) => {
909 struct_span_err!(
910 tcx.sess,
911 hir_ty.span,
912 E0741,
913 "using raw pointers as const generic parameters is forbidden",
914 )
915 .emit();
916 }
917 _ => {
918 let mut diag = struct_span_err!(
919 tcx.sess,
920 hir_ty.span,
921 E0741,
922 "`{}` must be annotated with `#[derive(PartialEq, Eq)]` to be used as \
923 the type of a const parameter",
924 non_structural_match_ty,
925 );
926
927 if ty == non_structural_match_ty {
928 diag.span_label(
929 hir_ty.span,
930 format!("`{ty}` doesn't derive both `PartialEq` and `Eq`"),
931 );
932 }
933
934 diag.emit();
935 }
936 }
937 }
938 } else {
939 let err_ty_str;
940 let mut is_ptr = true;
941
942 let err = match ty.kind() {
943 ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Error(_) => None,
944 ty::FnPtr(_) => Some("function pointers"),
945 ty::RawPtr(_) => Some("raw pointers"),
946 _ => {
947 is_ptr = false;
948 err_ty_str = format!("`{ty}`");
949 Some(err_ty_str.as_str())
950 }
951 };
952
953 if let Some(unsupported_type) = err {
954 if is_ptr {
955 tcx.sess.span_err(
956 hir_ty.span,
957 &format!(
958 "using {unsupported_type} as const generic parameters is forbidden",
959 ),
960 );
961 } else {
962 let mut err = tcx.sess.struct_span_err(
963 hir_ty.span,
964 &format!(
965 "{unsupported_type} is forbidden as the type of a const generic parameter",
966 ),
967 );
968 err.note("the only supported types are integers, `bool` and `char`");
969 if tcx.sess.is_nightly_build() {
970 err.help(
971 "more complex types are supported with `#![feature(adt_const_params)]`",
972 );
973 }
974 err.emit();
975 }
976 }
977 }
978 }
979 }
980 }
981
982 #[instrument(level = "debug", skip(tcx, span, sig_if_method))]
983 fn check_associated_item(
984 tcx: TyCtxt<'_>,
985 item_id: LocalDefId,
986 span: Span,
987 sig_if_method: Option<&hir::FnSig<'_>>,
988 ) {
989 let loc = Some(WellFormedLoc::Ty(item_id));
990 enter_wf_checking_ctxt(tcx, span, item_id, |wfcx| {
991 let item = tcx.associated_item(item_id);
992
993 let self_ty = match item.container {
994 ty::TraitContainer => tcx.types.self_param,
995 ty::ImplContainer => tcx.type_of(item.container_id(tcx)),
996 };
997
998 match item.kind {
999 ty::AssocKind::Const => {
1000 let ty = tcx.type_of(item.def_id);
1001 let ty = wfcx.normalize(span, Some(WellFormedLoc::Ty(item_id)), ty);
1002 wfcx.register_wf_obligation(span, loc, ty.into());
1003 }
1004 ty::AssocKind::Fn => {
1005 let sig = tcx.fn_sig(item.def_id);
1006 let hir_sig = sig_if_method.expect("bad signature for method");
1007 check_fn_or_method(
1008 wfcx,
1009 item.ident(tcx).span,
1010 sig,
1011 hir_sig.decl,
1012 item.def_id.expect_local(),
1013 );
1014 check_method_receiver(wfcx, hir_sig, item, self_ty);
1015 }
1016 ty::AssocKind::Type => {
1017 if let ty::AssocItemContainer::TraitContainer = item.container {
1018 check_associated_type_bounds(wfcx, item, span)
1019 }
1020 if item.defaultness(tcx).has_value() {
1021 let ty = tcx.type_of(item.def_id);
1022 let ty = wfcx.normalize(span, Some(WellFormedLoc::Ty(item_id)), ty);
1023 wfcx.register_wf_obligation(span, loc, ty.into());
1024 }
1025 }
1026 }
1027 })
1028 }
1029
1030 fn item_adt_kind(kind: &ItemKind<'_>) -> Option<AdtKind> {
1031 match kind {
1032 ItemKind::Struct(..) => Some(AdtKind::Struct),
1033 ItemKind::Union(..) => Some(AdtKind::Union),
1034 ItemKind::Enum(..) => Some(AdtKind::Enum),
1035 _ => None,
1036 }
1037 }
1038
1039 /// In a type definition, we check that to ensure that the types of the fields are well-formed.
1040 fn check_type_defn<'tcx, F>(
1041 tcx: TyCtxt<'tcx>,
1042 item: &hir::Item<'tcx>,
1043 all_sized: bool,
1044 mut lookup_fields: F,
1045 ) where
1046 F: FnMut(&WfCheckingCtxt<'_, 'tcx>) -> Vec<AdtVariant<'tcx>>,
1047 {
1048 enter_wf_checking_ctxt(tcx, item.span, item.def_id, |wfcx| {
1049 let variants = lookup_fields(wfcx);
1050 let packed = tcx.adt_def(item.def_id).repr().packed();
1051
1052 for variant in &variants {
1053 // All field types must be well-formed.
1054 for field in &variant.fields {
1055 wfcx.register_wf_obligation(
1056 field.span,
1057 Some(WellFormedLoc::Ty(field.def_id)),
1058 field.ty.into(),
1059 )
1060 }
1061
1062 // For DST, or when drop needs to copy things around, all
1063 // intermediate types must be sized.
1064 let needs_drop_copy = || {
1065 packed && {
1066 let ty = variant.fields.last().unwrap().ty;
1067 let ty = tcx.erase_regions(ty);
1068 if ty.needs_infer() {
1069 tcx.sess
1070 .delay_span_bug(item.span, &format!("inference variables in {:?}", ty));
1071 // Just treat unresolved type expression as if it needs drop.
1072 true
1073 } else {
1074 ty.needs_drop(tcx, tcx.param_env(item.def_id))
1075 }
1076 }
1077 };
1078 // All fields (except for possibly the last) should be sized.
1079 let all_sized = all_sized || variant.fields.is_empty() || needs_drop_copy();
1080 let unsized_len = if all_sized { 0 } else { 1 };
1081 for (idx, field) in
1082 variant.fields[..variant.fields.len() - unsized_len].iter().enumerate()
1083 {
1084 let last = idx == variant.fields.len() - 1;
1085 wfcx.register_bound(
1086 traits::ObligationCause::new(
1087 field.span,
1088 wfcx.body_id,
1089 traits::FieldSized {
1090 adt_kind: match item_adt_kind(&item.kind) {
1091 Some(i) => i,
1092 None => bug!(),
1093 },
1094 span: field.span,
1095 last,
1096 },
1097 ),
1098 wfcx.param_env,
1099 field.ty,
1100 tcx.require_lang_item(LangItem::Sized, None),
1101 );
1102 }
1103
1104 // Explicit `enum` discriminant values must const-evaluate successfully.
1105 if let Some(discr_def_id) = variant.explicit_discr {
1106 let discr_substs = InternalSubsts::identity_for_item(tcx, discr_def_id.to_def_id());
1107
1108 let cause = traits::ObligationCause::new(
1109 tcx.def_span(discr_def_id),
1110 wfcx.body_id,
1111 traits::MiscObligation,
1112 );
1113 wfcx.register_obligation(traits::Obligation::new(
1114 cause,
1115 wfcx.param_env,
1116 ty::Binder::dummy(ty::PredicateKind::ConstEvaluatable(ty::Unevaluated::new(
1117 ty::WithOptConstParam::unknown(discr_def_id.to_def_id()),
1118 discr_substs,
1119 )))
1120 .to_predicate(tcx),
1121 ));
1122 }
1123 }
1124
1125 check_where_clauses(wfcx, item.span, item.def_id);
1126 });
1127 }
1128
1129 #[instrument(skip(tcx, item))]
1130 fn check_trait(tcx: TyCtxt<'_>, item: &hir::Item<'_>) {
1131 debug!(?item.def_id);
1132
1133 let trait_def = tcx.trait_def(item.def_id);
1134 if trait_def.is_marker
1135 || matches!(trait_def.specialization_kind, TraitSpecializationKind::Marker)
1136 {
1137 for associated_def_id in &*tcx.associated_item_def_ids(item.def_id) {
1138 struct_span_err!(
1139 tcx.sess,
1140 tcx.def_span(*associated_def_id),
1141 E0714,
1142 "marker traits cannot have associated items",
1143 )
1144 .emit();
1145 }
1146 }
1147
1148 enter_wf_checking_ctxt(tcx, item.span, item.def_id, |wfcx| {
1149 check_where_clauses(wfcx, item.span, item.def_id)
1150 });
1151
1152 // Only check traits, don't check trait aliases
1153 if let hir::ItemKind::Trait(_, _, _, _, items) = item.kind {
1154 check_gat_where_clauses(tcx, items);
1155 }
1156 }
1157
1158 /// Checks all associated type defaults of trait `trait_def_id`.
1159 ///
1160 /// Assuming the defaults are used, check that all predicates (bounds on the
1161 /// assoc type and where clauses on the trait) hold.
1162 fn check_associated_type_bounds(wfcx: &WfCheckingCtxt<'_, '_>, item: &ty::AssocItem, span: Span) {
1163 let bounds = wfcx.tcx().explicit_item_bounds(item.def_id);
1164
1165 debug!("check_associated_type_bounds: bounds={:?}", bounds);
1166 let wf_obligations = bounds.iter().flat_map(|&(bound, bound_span)| {
1167 let normalized_bound = wfcx.normalize(span, None, bound);
1168 traits::wf::predicate_obligations(
1169 wfcx.infcx,
1170 wfcx.param_env,
1171 wfcx.body_id,
1172 normalized_bound,
1173 bound_span,
1174 )
1175 });
1176
1177 wfcx.register_obligations(wf_obligations);
1178 }
1179
1180 fn check_item_fn(
1181 tcx: TyCtxt<'_>,
1182 def_id: LocalDefId,
1183 ident: Ident,
1184 span: Span,
1185 decl: &hir::FnDecl<'_>,
1186 ) {
1187 enter_wf_checking_ctxt(tcx, span, def_id, |wfcx| {
1188 let sig = tcx.fn_sig(def_id);
1189 check_fn_or_method(wfcx, ident.span, sig, decl, def_id);
1190 })
1191 }
1192
1193 fn check_item_type(tcx: TyCtxt<'_>, item_id: LocalDefId, ty_span: Span, allow_foreign_ty: bool) {
1194 debug!("check_item_type: {:?}", item_id);
1195
1196 enter_wf_checking_ctxt(tcx, ty_span, item_id, |wfcx| {
1197 let ty = tcx.type_of(item_id);
1198 let item_ty = wfcx.normalize(ty_span, Some(WellFormedLoc::Ty(item_id)), ty);
1199
1200 let mut forbid_unsized = true;
1201 if allow_foreign_ty {
1202 let tail = tcx.struct_tail_erasing_lifetimes(item_ty, wfcx.param_env);
1203 if let ty::Foreign(_) = tail.kind() {
1204 forbid_unsized = false;
1205 }
1206 }
1207
1208 wfcx.register_wf_obligation(ty_span, Some(WellFormedLoc::Ty(item_id)), item_ty.into());
1209 if forbid_unsized {
1210 wfcx.register_bound(
1211 traits::ObligationCause::new(ty_span, wfcx.body_id, traits::WellFormed(None)),
1212 wfcx.param_env,
1213 item_ty,
1214 tcx.require_lang_item(LangItem::Sized, None),
1215 );
1216 }
1217
1218 // Ensure that the end result is `Sync` in a non-thread local `static`.
1219 let should_check_for_sync = tcx.static_mutability(item_id.to_def_id())
1220 == Some(hir::Mutability::Not)
1221 && !tcx.is_foreign_item(item_id.to_def_id())
1222 && !tcx.is_thread_local_static(item_id.to_def_id());
1223
1224 if should_check_for_sync {
1225 wfcx.register_bound(
1226 traits::ObligationCause::new(ty_span, wfcx.body_id, traits::SharedStatic),
1227 wfcx.param_env,
1228 item_ty,
1229 tcx.require_lang_item(LangItem::Sync, Some(ty_span)),
1230 );
1231 }
1232 });
1233 }
1234
1235 #[instrument(level = "debug", skip(tcx, ast_self_ty, ast_trait_ref))]
1236 fn check_impl<'tcx>(
1237 tcx: TyCtxt<'tcx>,
1238 item: &'tcx hir::Item<'tcx>,
1239 ast_self_ty: &hir::Ty<'_>,
1240 ast_trait_ref: &Option<hir::TraitRef<'_>>,
1241 constness: hir::Constness,
1242 ) {
1243 enter_wf_checking_ctxt(tcx, item.span, item.def_id, |wfcx| {
1244 match *ast_trait_ref {
1245 Some(ref ast_trait_ref) => {
1246 // `#[rustc_reservation_impl]` impls are not real impls and
1247 // therefore don't need to be WF (the trait's `Self: Trait` predicate
1248 // won't hold).
1249 let trait_ref = tcx.impl_trait_ref(item.def_id).unwrap();
1250 let trait_ref = wfcx.normalize(ast_trait_ref.path.span, None, trait_ref);
1251 let trait_pred = ty::TraitPredicate {
1252 trait_ref,
1253 constness: match constness {
1254 hir::Constness::Const => ty::BoundConstness::ConstIfConst,
1255 hir::Constness::NotConst => ty::BoundConstness::NotConst,
1256 },
1257 polarity: ty::ImplPolarity::Positive,
1258 };
1259 let obligations = traits::wf::trait_obligations(
1260 wfcx.infcx,
1261 wfcx.param_env,
1262 wfcx.body_id,
1263 &trait_pred,
1264 ast_trait_ref.path.span,
1265 item,
1266 );
1267 debug!(?obligations);
1268 wfcx.register_obligations(obligations);
1269 }
1270 None => {
1271 let self_ty = tcx.type_of(item.def_id);
1272 let self_ty = wfcx.normalize(
1273 item.span,
1274 Some(WellFormedLoc::Ty(item.hir_id().expect_owner())),
1275 self_ty,
1276 );
1277 wfcx.register_wf_obligation(
1278 ast_self_ty.span,
1279 Some(WellFormedLoc::Ty(item.hir_id().expect_owner())),
1280 self_ty.into(),
1281 );
1282 }
1283 }
1284
1285 check_where_clauses(wfcx, item.span, item.def_id);
1286 });
1287 }
1288
1289 /// Checks where-clauses and inline bounds that are declared on `def_id`.
1290 #[instrument(level = "debug", skip(wfcx))]
1291 fn check_where_clauses<'tcx>(wfcx: &WfCheckingCtxt<'_, 'tcx>, span: Span, def_id: LocalDefId) {
1292 let infcx = wfcx.infcx;
1293 let tcx = wfcx.tcx();
1294
1295 let predicates = tcx.bound_predicates_of(def_id.to_def_id());
1296 let generics = tcx.generics_of(def_id);
1297
1298 let is_our_default = |def: &ty::GenericParamDef| match def.kind {
1299 GenericParamDefKind::Type { has_default, .. }
1300 | GenericParamDefKind::Const { has_default } => {
1301 has_default && def.index >= generics.parent_count as u32
1302 }
1303 GenericParamDefKind::Lifetime => unreachable!(),
1304 };
1305
1306 // Check that concrete defaults are well-formed. See test `type-check-defaults.rs`.
1307 // For example, this forbids the declaration:
1308 //
1309 // struct Foo<T = Vec<[u32]>> { .. }
1310 //
1311 // Here, the default `Vec<[u32]>` is not WF because `[u32]: Sized` does not hold.
1312 for param in &generics.params {
1313 match param.kind {
1314 GenericParamDefKind::Type { .. } => {
1315 if is_our_default(param) {
1316 let ty = tcx.type_of(param.def_id);
1317 // Ignore dependent defaults -- that is, where the default of one type
1318 // parameter includes another (e.g., `<T, U = T>`). In those cases, we can't
1319 // be sure if it will error or not as user might always specify the other.
1320 if !ty.needs_subst() {
1321 wfcx.register_wf_obligation(
1322 tcx.def_span(param.def_id),
1323 Some(WellFormedLoc::Ty(param.def_id.expect_local())),
1324 ty.into(),
1325 );
1326 }
1327 }
1328 }
1329 GenericParamDefKind::Const { .. } => {
1330 if is_our_default(param) {
1331 // FIXME(const_generics_defaults): This
1332 // is incorrect when dealing with unused substs, for example
1333 // for `struct Foo<const N: usize, const M: usize = { 1 - 2 }>`
1334 // we should eagerly error.
1335 let default_ct = tcx.const_param_default(param.def_id);
1336 if !default_ct.needs_subst() {
1337 wfcx.register_wf_obligation(
1338 tcx.def_span(param.def_id),
1339 None,
1340 default_ct.into(),
1341 );
1342 }
1343 }
1344 }
1345 // Doesn't have defaults.
1346 GenericParamDefKind::Lifetime => {}
1347 }
1348 }
1349
1350 // Check that trait predicates are WF when params are substituted by their defaults.
1351 // We don't want to overly constrain the predicates that may be written but we want to
1352 // catch cases where a default my never be applied such as `struct Foo<T: Copy = String>`.
1353 // Therefore we check if a predicate which contains a single type param
1354 // with a concrete default is WF with that default substituted.
1355 // For more examples see tests `defaults-well-formedness.rs` and `type-check-defaults.rs`.
1356 //
1357 // First we build the defaulted substitution.
1358 let substs = InternalSubsts::for_item(tcx, def_id.to_def_id(), |param, _| {
1359 match param.kind {
1360 GenericParamDefKind::Lifetime => {
1361 // All regions are identity.
1362 tcx.mk_param_from_def(param)
1363 }
1364
1365 GenericParamDefKind::Type { .. } => {
1366 // If the param has a default, ...
1367 if is_our_default(param) {
1368 let default_ty = tcx.type_of(param.def_id);
1369 // ... and it's not a dependent default, ...
1370 if !default_ty.needs_subst() {
1371 // ... then substitute it with the default.
1372 return default_ty.into();
1373 }
1374 }
1375
1376 tcx.mk_param_from_def(param)
1377 }
1378 GenericParamDefKind::Const { .. } => {
1379 // If the param has a default, ...
1380 if is_our_default(param) {
1381 let default_ct = tcx.const_param_default(param.def_id);
1382 // ... and it's not a dependent default, ...
1383 if !default_ct.needs_subst() {
1384 // ... then substitute it with the default.
1385 return default_ct.into();
1386 }
1387 }
1388
1389 tcx.mk_param_from_def(param)
1390 }
1391 }
1392 });
1393
1394 // Now we build the substituted predicates.
1395 let default_obligations = predicates
1396 .0
1397 .predicates
1398 .iter()
1399 .flat_map(|&(pred, sp)| {
1400 #[derive(Default)]
1401 struct CountParams {
1402 params: FxHashSet<u32>,
1403 }
1404 impl<'tcx> ty::visit::TypeVisitor<'tcx> for CountParams {
1405 type BreakTy = ();
1406
1407 fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
1408 if let ty::Param(param) = t.kind() {
1409 self.params.insert(param.index);
1410 }
1411 t.super_visit_with(self)
1412 }
1413
1414 fn visit_region(&mut self, _: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
1415 ControlFlow::BREAK
1416 }
1417
1418 fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
1419 if let ty::ConstKind::Param(param) = c.kind() {
1420 self.params.insert(param.index);
1421 }
1422 c.super_visit_with(self)
1423 }
1424 }
1425 let mut param_count = CountParams::default();
1426 let has_region = pred.visit_with(&mut param_count).is_break();
1427 let substituted_pred = predicates.rebind(pred).subst(tcx, substs);
1428 // Don't check non-defaulted params, dependent defaults (including lifetimes)
1429 // or preds with multiple params.
1430 if substituted_pred.has_param_types_or_consts()
1431 || param_count.params.len() > 1
1432 || has_region
1433 {
1434 None
1435 } else if predicates.0.predicates.iter().any(|&(p, _)| p == substituted_pred) {
1436 // Avoid duplication of predicates that contain no parameters, for example.
1437 None
1438 } else {
1439 Some((substituted_pred, sp))
1440 }
1441 })
1442 .map(|(pred, sp)| {
1443 // Convert each of those into an obligation. So if you have
1444 // something like `struct Foo<T: Copy = String>`, we would
1445 // take that predicate `T: Copy`, substitute to `String: Copy`
1446 // (actually that happens in the previous `flat_map` call),
1447 // and then try to prove it (in this case, we'll fail).
1448 //
1449 // Note the subtle difference from how we handle `predicates`
1450 // below: there, we are not trying to prove those predicates
1451 // to be *true* but merely *well-formed*.
1452 let pred = wfcx.normalize(sp, None, pred);
1453 let cause = traits::ObligationCause::new(
1454 sp,
1455 wfcx.body_id,
1456 traits::ItemObligation(def_id.to_def_id()),
1457 );
1458 traits::Obligation::new(cause, wfcx.param_env, pred)
1459 });
1460
1461 let predicates = predicates.0.instantiate_identity(tcx);
1462
1463 let predicates = wfcx.normalize(span, None, predicates);
1464
1465 debug!(?predicates.predicates);
1466 assert_eq!(predicates.predicates.len(), predicates.spans.len());
1467 let wf_obligations =
1468 iter::zip(&predicates.predicates, &predicates.spans).flat_map(|(&p, &sp)| {
1469 traits::wf::predicate_obligations(
1470 infcx,
1471 wfcx.param_env.without_const(),
1472 wfcx.body_id,
1473 p,
1474 sp,
1475 )
1476 });
1477
1478 let obligations: Vec<_> = wf_obligations.chain(default_obligations).collect();
1479 wfcx.register_obligations(obligations);
1480 }
1481
1482 #[instrument(level = "debug", skip(wfcx, span, hir_decl))]
1483 fn check_fn_or_method<'tcx>(
1484 wfcx: &WfCheckingCtxt<'_, 'tcx>,
1485 span: Span,
1486 sig: ty::PolyFnSig<'tcx>,
1487 hir_decl: &hir::FnDecl<'_>,
1488 def_id: LocalDefId,
1489 ) {
1490 let tcx = wfcx.tcx();
1491 let sig = tcx.liberate_late_bound_regions(def_id.to_def_id(), sig);
1492
1493 // Normalize the input and output types one at a time, using a different
1494 // `WellFormedLoc` for each. We cannot call `normalize_associated_types`
1495 // on the entire `FnSig`, since this would use the same `WellFormedLoc`
1496 // for each type, preventing the HIR wf check from generating
1497 // a nice error message.
1498 let ty::FnSig { mut inputs_and_output, c_variadic, unsafety, abi } = sig;
1499 inputs_and_output = tcx.mk_type_list(inputs_and_output.iter().enumerate().map(|(i, ty)| {
1500 wfcx.normalize(
1501 span,
1502 Some(WellFormedLoc::Param {
1503 function: def_id,
1504 // Note that the `param_idx` of the output type is
1505 // one greater than the index of the last input type.
1506 param_idx: i.try_into().unwrap(),
1507 }),
1508 ty,
1509 )
1510 }));
1511 // Manually call `normalize_associated_types_in` on the other types
1512 // in `FnSig`. This ensures that if the types of these fields
1513 // ever change to include projections, we will start normalizing
1514 // them automatically.
1515 let sig = ty::FnSig {
1516 inputs_and_output,
1517 c_variadic: wfcx.normalize(span, None, c_variadic),
1518 unsafety: wfcx.normalize(span, None, unsafety),
1519 abi: wfcx.normalize(span, None, abi),
1520 };
1521
1522 for (i, (&input_ty, ty)) in iter::zip(sig.inputs(), hir_decl.inputs).enumerate() {
1523 wfcx.register_wf_obligation(
1524 ty.span,
1525 Some(WellFormedLoc::Param { function: def_id, param_idx: i.try_into().unwrap() }),
1526 input_ty.into(),
1527 );
1528 }
1529
1530 wfcx.register_wf_obligation(
1531 hir_decl.output.span(),
1532 Some(WellFormedLoc::Param {
1533 function: def_id,
1534 param_idx: sig.inputs().len().try_into().unwrap(),
1535 }),
1536 sig.output().into(),
1537 );
1538
1539 check_where_clauses(wfcx, span, def_id);
1540
1541 check_return_position_impl_trait_in_trait_bounds(
1542 tcx,
1543 wfcx,
1544 def_id,
1545 sig.output(),
1546 hir_decl.output.span(),
1547 );
1548 }
1549
1550 /// Basically `check_associated_type_bounds`, but separated for now and should be
1551 /// deduplicated when RPITITs get lowered into real associated items.
1552 fn check_return_position_impl_trait_in_trait_bounds<'tcx>(
1553 tcx: TyCtxt<'tcx>,
1554 wfcx: &WfCheckingCtxt<'_, 'tcx>,
1555 fn_def_id: LocalDefId,
1556 fn_output: Ty<'tcx>,
1557 span: Span,
1558 ) {
1559 if let Some(assoc_item) = tcx.opt_associated_item(fn_def_id.to_def_id())
1560 && assoc_item.container == ty::AssocItemContainer::TraitContainer
1561 {
1562 for arg in fn_output.walk() {
1563 if let ty::GenericArgKind::Type(ty) = arg.unpack()
1564 && let ty::Projection(proj) = ty.kind()
1565 && tcx.def_kind(proj.item_def_id) == DefKind::ImplTraitPlaceholder
1566 && tcx.impl_trait_in_trait_parent(proj.item_def_id) == fn_def_id.to_def_id()
1567 {
1568 let bounds = wfcx.tcx().explicit_item_bounds(proj.item_def_id);
1569 let wf_obligations = bounds.iter().flat_map(|&(bound, bound_span)| {
1570 let normalized_bound = wfcx.normalize(span, None, bound);
1571 traits::wf::predicate_obligations(
1572 wfcx.infcx,
1573 wfcx.param_env,
1574 wfcx.body_id,
1575 normalized_bound,
1576 bound_span,
1577 )
1578 });
1579 wfcx.register_obligations(wf_obligations);
1580 }
1581 }
1582 }
1583 }
1584
1585 const HELP_FOR_SELF_TYPE: &str = "consider changing to `self`, `&self`, `&mut self`, `self: Box<Self>`, \
1586 `self: Rc<Self>`, `self: Arc<Self>`, or `self: Pin<P>` (where P is one \
1587 of the previous types except `Self`)";
1588
1589 #[instrument(level = "debug", skip(wfcx))]
1590 fn check_method_receiver<'tcx>(
1591 wfcx: &WfCheckingCtxt<'_, 'tcx>,
1592 fn_sig: &hir::FnSig<'_>,
1593 method: &ty::AssocItem,
1594 self_ty: Ty<'tcx>,
1595 ) {
1596 let tcx = wfcx.tcx();
1597
1598 if !method.fn_has_self_parameter {
1599 return;
1600 }
1601
1602 let span = fn_sig.decl.inputs[0].span;
1603
1604 let sig = tcx.fn_sig(method.def_id);
1605 let sig = tcx.liberate_late_bound_regions(method.def_id, sig);
1606 let sig = wfcx.normalize(span, None, sig);
1607
1608 debug!("check_method_receiver: sig={:?}", sig);
1609
1610 let self_ty = wfcx.normalize(span, None, self_ty);
1611
1612 let receiver_ty = sig.inputs()[0];
1613 let receiver_ty = wfcx.normalize(span, None, receiver_ty);
1614
1615 if tcx.features().arbitrary_self_types {
1616 if !receiver_is_valid(wfcx, span, receiver_ty, self_ty, true) {
1617 // Report error; `arbitrary_self_types` was enabled.
1618 e0307(tcx, span, receiver_ty);
1619 }
1620 } else {
1621 if !receiver_is_valid(wfcx, span, receiver_ty, self_ty, false) {
1622 if receiver_is_valid(wfcx, span, receiver_ty, self_ty, true) {
1623 // Report error; would have worked with `arbitrary_self_types`.
1624 feature_err(
1625 &tcx.sess.parse_sess,
1626 sym::arbitrary_self_types,
1627 span,
1628 &format!(
1629 "`{receiver_ty}` cannot be used as the type of `self` without \
1630 the `arbitrary_self_types` feature",
1631 ),
1632 )
1633 .help(HELP_FOR_SELF_TYPE)
1634 .emit();
1635 } else {
1636 // Report error; would not have worked with `arbitrary_self_types`.
1637 e0307(tcx, span, receiver_ty);
1638 }
1639 }
1640 }
1641 }
1642
1643 fn e0307<'tcx>(tcx: TyCtxt<'tcx>, span: Span, receiver_ty: Ty<'_>) {
1644 struct_span_err!(
1645 tcx.sess.diagnostic(),
1646 span,
1647 E0307,
1648 "invalid `self` parameter type: {receiver_ty}"
1649 )
1650 .note("type of `self` must be `Self` or a type that dereferences to it")
1651 .help(HELP_FOR_SELF_TYPE)
1652 .emit();
1653 }
1654
1655 /// Returns whether `receiver_ty` would be considered a valid receiver type for `self_ty`. If
1656 /// `arbitrary_self_types` is enabled, `receiver_ty` must transitively deref to `self_ty`, possibly
1657 /// through a `*const/mut T` raw pointer. If the feature is not enabled, the requirements are more
1658 /// strict: `receiver_ty` must implement `Receiver` and directly implement
1659 /// `Deref<Target = self_ty>`.
1660 ///
1661 /// N.B., there are cases this function returns `true` but causes an error to be emitted,
1662 /// particularly when `receiver_ty` derefs to a type that is the same as `self_ty` but has the
1663 /// wrong lifetime. Be careful of this if you are calling this function speculatively.
1664 fn receiver_is_valid<'tcx>(
1665 wfcx: &WfCheckingCtxt<'_, 'tcx>,
1666 span: Span,
1667 receiver_ty: Ty<'tcx>,
1668 self_ty: Ty<'tcx>,
1669 arbitrary_self_types_enabled: bool,
1670 ) -> bool {
1671 let infcx = wfcx.infcx;
1672 let tcx = wfcx.tcx();
1673 let cause =
1674 ObligationCause::new(span, wfcx.body_id, traits::ObligationCauseCode::MethodReceiver);
1675
1676 let can_eq_self = |ty| infcx.can_eq(wfcx.param_env, self_ty, ty).is_ok();
1677
1678 // `self: Self` is always valid.
1679 if can_eq_self(receiver_ty) {
1680 if let Err(err) = wfcx.equate_types(&cause, wfcx.param_env, self_ty, receiver_ty) {
1681 infcx.report_mismatched_types(&cause, self_ty, receiver_ty, err).emit();
1682 }
1683 return true;
1684 }
1685
1686 let mut autoderef =
1687 Autoderef::new(infcx, wfcx.param_env, wfcx.body_id, span, receiver_ty, span);
1688
1689 // The `arbitrary_self_types` feature allows raw pointer receivers like `self: *const Self`.
1690 if arbitrary_self_types_enabled {
1691 autoderef = autoderef.include_raw_pointers();
1692 }
1693
1694 // The first type is `receiver_ty`, which we know its not equal to `self_ty`; skip it.
1695 autoderef.next();
1696
1697 let receiver_trait_def_id = tcx.require_lang_item(LangItem::Receiver, None);
1698
1699 // Keep dereferencing `receiver_ty` until we get to `self_ty`.
1700 loop {
1701 if let Some((potential_self_ty, _)) = autoderef.next() {
1702 debug!(
1703 "receiver_is_valid: potential self type `{:?}` to match `{:?}`",
1704 potential_self_ty, self_ty
1705 );
1706
1707 if can_eq_self(potential_self_ty) {
1708 wfcx.register_obligations(autoderef.into_obligations());
1709
1710 if let Err(err) =
1711 wfcx.equate_types(&cause, wfcx.param_env, self_ty, potential_self_ty)
1712 {
1713 infcx.report_mismatched_types(&cause, self_ty, potential_self_ty, err).emit();
1714 }
1715
1716 break;
1717 } else {
1718 // Without `feature(arbitrary_self_types)`, we require that each step in the
1719 // deref chain implement `receiver`
1720 if !arbitrary_self_types_enabled
1721 && !receiver_is_implemented(
1722 wfcx,
1723 receiver_trait_def_id,
1724 cause.clone(),
1725 potential_self_ty,
1726 )
1727 {
1728 return false;
1729 }
1730 }
1731 } else {
1732 debug!("receiver_is_valid: type `{:?}` does not deref to `{:?}`", receiver_ty, self_ty);
1733 // If the receiver already has errors reported due to it, consider it valid to avoid
1734 // unnecessary errors (#58712).
1735 return receiver_ty.references_error();
1736 }
1737 }
1738
1739 // Without `feature(arbitrary_self_types)`, we require that `receiver_ty` implements `Receiver`.
1740 if !arbitrary_self_types_enabled
1741 && !receiver_is_implemented(wfcx, receiver_trait_def_id, cause.clone(), receiver_ty)
1742 {
1743 return false;
1744 }
1745
1746 true
1747 }
1748
1749 fn receiver_is_implemented<'tcx>(
1750 wfcx: &WfCheckingCtxt<'_, 'tcx>,
1751 receiver_trait_def_id: DefId,
1752 cause: ObligationCause<'tcx>,
1753 receiver_ty: Ty<'tcx>,
1754 ) -> bool {
1755 let tcx = wfcx.tcx();
1756 let trait_ref = ty::Binder::dummy(ty::TraitRef {
1757 def_id: receiver_trait_def_id,
1758 substs: tcx.mk_substs_trait(receiver_ty, &[]),
1759 });
1760
1761 let obligation =
1762 traits::Obligation::new(cause, wfcx.param_env, trait_ref.without_const().to_predicate(tcx));
1763
1764 if wfcx.infcx.predicate_must_hold_modulo_regions(&obligation) {
1765 true
1766 } else {
1767 debug!(
1768 "receiver_is_implemented: type `{:?}` does not implement `Receiver` trait",
1769 receiver_ty
1770 );
1771 false
1772 }
1773 }
1774
1775 fn check_variances_for_type_defn<'tcx>(
1776 tcx: TyCtxt<'tcx>,
1777 item: &hir::Item<'tcx>,
1778 hir_generics: &hir::Generics<'_>,
1779 ) {
1780 let ty = tcx.type_of(item.def_id);
1781 if tcx.has_error_field(ty) {
1782 return;
1783 }
1784
1785 let ty_predicates = tcx.predicates_of(item.def_id);
1786 assert_eq!(ty_predicates.parent, None);
1787 let variances = tcx.variances_of(item.def_id);
1788
1789 let mut constrained_parameters: FxHashSet<_> = variances
1790 .iter()
1791 .enumerate()
1792 .filter(|&(_, &variance)| variance != ty::Bivariant)
1793 .map(|(index, _)| Parameter(index as u32))
1794 .collect();
1795
1796 identify_constrained_generic_params(tcx, ty_predicates, None, &mut constrained_parameters);
1797
1798 // Lazily calculated because it is only needed in case of an error.
1799 let explicitly_bounded_params = LazyCell::new(|| {
1800 let icx = crate::collect::ItemCtxt::new(tcx, item.def_id.to_def_id());
1801 hir_generics
1802 .predicates
1803 .iter()
1804 .filter_map(|predicate| match predicate {
1805 hir::WherePredicate::BoundPredicate(predicate) => {
1806 match icx.to_ty(predicate.bounded_ty).kind() {
1807 ty::Param(data) => Some(Parameter(data.index)),
1808 _ => None,
1809 }
1810 }
1811 _ => None,
1812 })
1813 .collect::<FxHashSet<_>>()
1814 });
1815
1816 for (index, _) in variances.iter().enumerate() {
1817 let parameter = Parameter(index as u32);
1818
1819 if constrained_parameters.contains(&parameter) {
1820 continue;
1821 }
1822
1823 let param = &hir_generics.params[index];
1824
1825 match param.name {
1826 hir::ParamName::Error => {}
1827 _ => {
1828 let has_explicit_bounds = explicitly_bounded_params.contains(&parameter);
1829 report_bivariance(tcx, param, has_explicit_bounds);
1830 }
1831 }
1832 }
1833 }
1834
1835 fn report_bivariance(
1836 tcx: TyCtxt<'_>,
1837 param: &rustc_hir::GenericParam<'_>,
1838 has_explicit_bounds: bool,
1839 ) -> ErrorGuaranteed {
1840 let span = param.span;
1841 let param_name = param.name.ident().name;
1842 let mut err = error_392(tcx, span, param_name);
1843
1844 let suggested_marker_id = tcx.lang_items().phantom_data();
1845 // Help is available only in presence of lang items.
1846 let msg = if let Some(def_id) = suggested_marker_id {
1847 format!(
1848 "consider removing `{}`, referring to it in a field, or using a marker such as `{}`",
1849 param_name,
1850 tcx.def_path_str(def_id),
1851 )
1852 } else {
1853 format!("consider removing `{param_name}` or referring to it in a field")
1854 };
1855 err.help(&msg);
1856
1857 if matches!(param.kind, hir::GenericParamKind::Type { .. }) && !has_explicit_bounds {
1858 err.help(&format!(
1859 "if you intended `{0}` to be a const parameter, use `const {0}: usize` instead",
1860 param_name
1861 ));
1862 }
1863 err.emit()
1864 }
1865
1866 impl<'tcx> WfCheckingCtxt<'_, 'tcx> {
1867 /// Feature gates RFC 2056 -- trivial bounds, checking for global bounds that
1868 /// aren't true.
1869 #[instrument(level = "debug", skip(self))]
1870 fn check_false_global_bounds(&mut self) {
1871 let tcx = self.ocx.infcx.tcx;
1872 let mut span = self.span;
1873 let empty_env = ty::ParamEnv::empty();
1874
1875 let def_id = tcx.hir().local_def_id(self.body_id);
1876 let predicates_with_span = tcx.predicates_of(def_id).predicates.iter().copied();
1877 // Check elaborated bounds.
1878 let implied_obligations = traits::elaborate_predicates_with_span(tcx, predicates_with_span);
1879
1880 for obligation in implied_obligations {
1881 // We lower empty bounds like `Vec<dyn Copy>:` as
1882 // `WellFormed(Vec<dyn Copy>)`, which will later get checked by
1883 // regular WF checking
1884 if let ty::PredicateKind::WellFormed(..) = obligation.predicate.kind().skip_binder() {
1885 continue;
1886 }
1887 let pred = obligation.predicate;
1888 // Match the existing behavior.
1889 if pred.is_global() && !pred.has_late_bound_regions() {
1890 let pred = self.normalize(span, None, pred);
1891 let hir_node = tcx.hir().find(self.body_id);
1892
1893 // only use the span of the predicate clause (#90869)
1894
1895 if let Some(hir::Generics { predicates, .. }) =
1896 hir_node.and_then(|node| node.generics())
1897 {
1898 let obligation_span = obligation.cause.span();
1899
1900 span = predicates
1901 .iter()
1902 // There seems to be no better way to find out which predicate we are in
1903 .find(|pred| pred.span().contains(obligation_span))
1904 .map(|pred| pred.span())
1905 .unwrap_or(obligation_span);
1906 }
1907
1908 let obligation = traits::Obligation::new(
1909 traits::ObligationCause::new(span, self.body_id, traits::TrivialBound),
1910 empty_env,
1911 pred,
1912 );
1913 self.ocx.register_obligation(obligation);
1914 }
1915 }
1916 }
1917 }
1918
1919 fn check_mod_type_wf(tcx: TyCtxt<'_>, module: LocalDefId) {
1920 let items = tcx.hir_module_items(module);
1921 items.par_items(|item| tcx.ensure().check_well_formed(item.def_id));
1922 items.par_impl_items(|item| tcx.ensure().check_well_formed(item.def_id));
1923 items.par_trait_items(|item| tcx.ensure().check_well_formed(item.def_id));
1924 items.par_foreign_items(|item| tcx.ensure().check_well_formed(item.def_id));
1925 }
1926
1927 ///////////////////////////////////////////////////////////////////////////
1928 // ADT
1929
1930 // FIXME(eddyb) replace this with getting fields/discriminants through `ty::AdtDef`.
1931 struct AdtVariant<'tcx> {
1932 /// Types of fields in the variant, that must be well-formed.
1933 fields: Vec<AdtField<'tcx>>,
1934
1935 /// Explicit discriminant of this variant (e.g. `A = 123`),
1936 /// that must evaluate to a constant value.
1937 explicit_discr: Option<LocalDefId>,
1938 }
1939
1940 struct AdtField<'tcx> {
1941 ty: Ty<'tcx>,
1942 def_id: LocalDefId,
1943 span: Span,
1944 }
1945
1946 impl<'a, 'tcx> WfCheckingCtxt<'a, 'tcx> {
1947 // FIXME(eddyb) replace this with getting fields through `ty::AdtDef`.
1948 fn non_enum_variant(&self, struct_def: &hir::VariantData<'_>) -> AdtVariant<'tcx> {
1949 let fields = struct_def
1950 .fields()
1951 .iter()
1952 .map(|field| {
1953 let def_id = self.tcx().hir().local_def_id(field.hir_id);
1954 let field_ty = self.tcx().type_of(def_id);
1955 let field_ty = self.normalize(field.ty.span, None, field_ty);
1956 debug!("non_enum_variant: type of field {:?} is {:?}", field, field_ty);
1957 AdtField { ty: field_ty, span: field.ty.span, def_id }
1958 })
1959 .collect();
1960 AdtVariant { fields, explicit_discr: None }
1961 }
1962
1963 fn enum_variants(&self, enum_def: &hir::EnumDef<'_>) -> Vec<AdtVariant<'tcx>> {
1964 enum_def
1965 .variants
1966 .iter()
1967 .map(|variant| AdtVariant {
1968 fields: self.non_enum_variant(&variant.data).fields,
1969 explicit_discr: variant
1970 .disr_expr
1971 .map(|explicit_discr| self.tcx().hir().local_def_id(explicit_discr.hir_id)),
1972 })
1973 .collect()
1974 }
1975 }
1976
1977 fn error_392(
1978 tcx: TyCtxt<'_>,
1979 span: Span,
1980 param_name: Symbol,
1981 ) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
1982 let mut err = struct_span_err!(tcx.sess, span, E0392, "parameter `{param_name}` is never used");
1983 err.span_label(span, "unused parameter");
1984 err
1985 }
1986
1987 pub fn provide(providers: &mut Providers) {
1988 *providers = Providers { check_mod_type_wf, check_well_formed, ..*providers };
1989 }