]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
hardware interrupt support - support forfull ring 0 exception simulation
[qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #ifdef TARGET_I386
22 #include "exec-i386.h"
23 #endif
24 #ifdef TARGET_ARM
25 #include "exec-arm.h"
26 #endif
27
28 #include "disas.h"
29
30 //#define DEBUG_EXEC
31 //#define DEBUG_SIGNAL
32 /* enable it to have a fully working x86 emulator for ring 0 */
33 //#define RING0_HACKS
34
35 #if defined(TARGET_ARM)
36 /* XXX: unify with i386 target */
37 void cpu_loop_exit(void)
38 {
39 longjmp(env->jmp_env, 1);
40 }
41 #endif
42
43 /* main execution loop */
44
45 int cpu_exec(CPUState *env1)
46 {
47 int saved_T0, saved_T1, saved_T2;
48 CPUState *saved_env;
49 #ifdef reg_EAX
50 int saved_EAX;
51 #endif
52 #ifdef reg_ECX
53 int saved_ECX;
54 #endif
55 #ifdef reg_EDX
56 int saved_EDX;
57 #endif
58 #ifdef reg_EBX
59 int saved_EBX;
60 #endif
61 #ifdef reg_ESP
62 int saved_ESP;
63 #endif
64 #ifdef reg_EBP
65 int saved_EBP;
66 #endif
67 #ifdef reg_ESI
68 int saved_ESI;
69 #endif
70 #ifdef reg_EDI
71 int saved_EDI;
72 #endif
73 #ifdef __sparc__
74 int saved_i7, tmp_T0;
75 #endif
76 int code_gen_size, ret;
77 void (*gen_func)(void);
78 TranslationBlock *tb, **ptb;
79 uint8_t *tc_ptr, *cs_base, *pc;
80 unsigned int flags;
81
82 /* first we save global registers */
83 saved_T0 = T0;
84 saved_T1 = T1;
85 saved_T2 = T2;
86 saved_env = env;
87 env = env1;
88 #ifdef __sparc__
89 /* we also save i7 because longjmp may not restore it */
90 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
91 #endif
92
93 #if defined(TARGET_I386)
94 #ifdef reg_EAX
95 saved_EAX = EAX;
96 EAX = env->regs[R_EAX];
97 #endif
98 #ifdef reg_ECX
99 saved_ECX = ECX;
100 ECX = env->regs[R_ECX];
101 #endif
102 #ifdef reg_EDX
103 saved_EDX = EDX;
104 EDX = env->regs[R_EDX];
105 #endif
106 #ifdef reg_EBX
107 saved_EBX = EBX;
108 EBX = env->regs[R_EBX];
109 #endif
110 #ifdef reg_ESP
111 saved_ESP = ESP;
112 ESP = env->regs[R_ESP];
113 #endif
114 #ifdef reg_EBP
115 saved_EBP = EBP;
116 EBP = env->regs[R_EBP];
117 #endif
118 #ifdef reg_ESI
119 saved_ESI = ESI;
120 ESI = env->regs[R_ESI];
121 #endif
122 #ifdef reg_EDI
123 saved_EDI = EDI;
124 EDI = env->regs[R_EDI];
125 #endif
126
127 /* put eflags in CPU temporary format */
128 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
129 DF = 1 - (2 * ((env->eflags >> 10) & 1));
130 CC_OP = CC_OP_EFLAGS;
131 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
132 #elif defined(TARGET_ARM)
133 {
134 unsigned int psr;
135 psr = env->cpsr;
136 env->CF = (psr >> 29) & 1;
137 env->NZF = (psr & 0xc0000000) ^ 0x40000000;
138 env->VF = (psr << 3) & 0x80000000;
139 env->cpsr = psr & ~0xf0000000;
140 }
141 #else
142 #error unsupported target CPU
143 #endif
144 env->interrupt_request = 0;
145 env->exception_index = -1;
146
147 /* prepare setjmp context for exception handling */
148 for(;;) {
149 if (setjmp(env->jmp_env) == 0) {
150 /* if an exception is pending, we execute it here */
151 if (env->exception_index >= 0) {
152 if (env->exception_index >= EXCP_INTERRUPT) {
153 /* exit request from the cpu execution loop */
154 ret = env->exception_index;
155 break;
156 } else if (env->user_mode_only) {
157 /* if user mode only, we simulate a fake exception
158 which will be hanlded outside the cpu execution
159 loop */
160 do_interrupt_user(env->exception_index,
161 env->exception_is_int,
162 env->error_code,
163 env->exception_next_eip);
164 ret = env->exception_index;
165 break;
166 } else {
167 /* simulate a real cpu exception. On i386, it can
168 trigger new exceptions, but we do not handle
169 double or triple faults yet. */
170 do_interrupt(env->exception_index,
171 env->exception_is_int,
172 env->error_code,
173 env->exception_next_eip);
174 }
175 env->exception_index = -1;
176 }
177 #if defined(TARGET_I386)
178 /* if hardware interrupt pending, we execute it */
179 if (env->hard_interrupt_request &&
180 (env->eflags & IF_MASK)) {
181 int intno;
182 intno = cpu_x86_get_pic_interrupt(env);
183 if (loglevel) {
184 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
185 }
186 do_interrupt(intno, 0, 0, 0);
187 env->hard_interrupt_request = 0;
188 }
189 #endif
190 T0 = 0; /* force lookup of first TB */
191 for(;;) {
192 #ifdef __sparc__
193 /* g1 can be modified by some libc? functions */
194 tmp_T0 = T0;
195 #endif
196 if (env->interrupt_request) {
197 env->exception_index = EXCP_INTERRUPT;
198 cpu_loop_exit();
199 }
200 #ifdef DEBUG_EXEC
201 if (loglevel) {
202 #if defined(TARGET_I386)
203 /* restore flags in standard format */
204 env->regs[R_EAX] = EAX;
205 env->regs[R_EBX] = EBX;
206 env->regs[R_ECX] = ECX;
207 env->regs[R_EDX] = EDX;
208 env->regs[R_ESI] = ESI;
209 env->regs[R_EDI] = EDI;
210 env->regs[R_EBP] = EBP;
211 env->regs[R_ESP] = ESP;
212 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
213 cpu_x86_dump_state(env, logfile, 0);
214 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
215 #elif defined(TARGET_ARM)
216 cpu_arm_dump_state(env, logfile, 0);
217 #else
218 #error unsupported target CPU
219 #endif
220 }
221 #endif
222 /* we compute the CPU state. We assume it will not
223 change during the whole generated block. */
224 #if defined(TARGET_I386)
225 flags = (env->segs[R_CS].flags & DESC_B_MASK)
226 >> (DESC_B_SHIFT - GEN_FLAG_CODE32_SHIFT);
227 flags |= (env->segs[R_SS].flags & DESC_B_MASK)
228 >> (DESC_B_SHIFT - GEN_FLAG_SS32_SHIFT);
229 flags |= (((unsigned long)env->segs[R_DS].base |
230 (unsigned long)env->segs[R_ES].base |
231 (unsigned long)env->segs[R_SS].base) != 0) <<
232 GEN_FLAG_ADDSEG_SHIFT;
233 if (!(env->eflags & VM_MASK)) {
234 flags |= (env->segs[R_CS].selector & 3) << GEN_FLAG_CPL_SHIFT;
235 } else {
236 /* NOTE: a dummy CPL is kept */
237 flags |= (1 << GEN_FLAG_VM_SHIFT);
238 flags |= (3 << GEN_FLAG_CPL_SHIFT);
239 }
240 flags |= (env->eflags & (IOPL_MASK | TF_MASK));
241 cs_base = env->segs[R_CS].base;
242 pc = cs_base + env->eip;
243 #elif defined(TARGET_ARM)
244 flags = 0;
245 cs_base = 0;
246 pc = (uint8_t *)env->regs[15];
247 #else
248 #error unsupported CPU
249 #endif
250 tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
251 flags);
252 if (!tb) {
253 spin_lock(&tb_lock);
254 /* if no translated code available, then translate it now */
255 tb = tb_alloc((unsigned long)pc);
256 if (!tb) {
257 /* flush must be done */
258 tb_flush();
259 /* cannot fail at this point */
260 tb = tb_alloc((unsigned long)pc);
261 /* don't forget to invalidate previous TB info */
262 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
263 T0 = 0;
264 }
265 tc_ptr = code_gen_ptr;
266 tb->tc_ptr = tc_ptr;
267 tb->cs_base = (unsigned long)cs_base;
268 tb->flags = flags;
269 ret = cpu_gen_code(tb, CODE_GEN_MAX_SIZE, &code_gen_size);
270 #if defined(TARGET_I386)
271 /* XXX: suppress that, this is incorrect */
272 /* if invalid instruction, signal it */
273 if (ret != 0) {
274 /* NOTE: the tb is allocated but not linked, so we
275 can leave it */
276 spin_unlock(&tb_lock);
277 raise_exception(EXCP06_ILLOP);
278 }
279 #endif
280 *ptb = tb;
281 tb->hash_next = NULL;
282 tb_link(tb);
283 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
284 spin_unlock(&tb_lock);
285 }
286 #ifdef DEBUG_EXEC
287 if (loglevel) {
288 fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
289 (long)tb->tc_ptr, (long)tb->pc,
290 lookup_symbol((void *)tb->pc));
291 }
292 #endif
293 #ifdef __sparc__
294 T0 = tmp_T0;
295 #endif
296 /* see if we can patch the calling TB. XXX: remove TF test */
297 #ifndef RING0_HACKS
298
299 if (T0 != 0
300 #if defined(TARGET_I386)
301 && !(env->eflags & TF_MASK)
302 #endif
303 ) {
304 spin_lock(&tb_lock);
305 tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
306 spin_unlock(&tb_lock);
307 }
308 #endif
309 tc_ptr = tb->tc_ptr;
310
311 /* execute the generated code */
312 gen_func = (void *)tc_ptr;
313 #if defined(__sparc__)
314 __asm__ __volatile__("call %0\n\t"
315 "mov %%o7,%%i0"
316 : /* no outputs */
317 : "r" (gen_func)
318 : "i0", "i1", "i2", "i3", "i4", "i5");
319 #elif defined(__arm__)
320 asm volatile ("mov pc, %0\n\t"
321 ".global exec_loop\n\t"
322 "exec_loop:\n\t"
323 : /* no outputs */
324 : "r" (gen_func)
325 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
326 #else
327 gen_func();
328 #endif
329 }
330 } else {
331 }
332 } /* for(;;) */
333
334
335 #if defined(TARGET_I386)
336 /* restore flags in standard format */
337 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
338
339 /* restore global registers */
340 #ifdef reg_EAX
341 EAX = saved_EAX;
342 #endif
343 #ifdef reg_ECX
344 ECX = saved_ECX;
345 #endif
346 #ifdef reg_EDX
347 EDX = saved_EDX;
348 #endif
349 #ifdef reg_EBX
350 EBX = saved_EBX;
351 #endif
352 #ifdef reg_ESP
353 ESP = saved_ESP;
354 #endif
355 #ifdef reg_EBP
356 EBP = saved_EBP;
357 #endif
358 #ifdef reg_ESI
359 ESI = saved_ESI;
360 #endif
361 #ifdef reg_EDI
362 EDI = saved_EDI;
363 #endif
364 #elif defined(TARGET_ARM)
365 {
366 int ZF;
367 ZF = (env->NZF == 0);
368 env->cpsr = env->cpsr | (env->NZF & 0x80000000) | (ZF << 30) |
369 (env->CF << 29) | ((env->VF & 0x80000000) >> 3);
370 }
371 #else
372 #error unsupported target CPU
373 #endif
374 #ifdef __sparc__
375 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
376 #endif
377 T0 = saved_T0;
378 T1 = saved_T1;
379 T2 = saved_T2;
380 env = saved_env;
381 return ret;
382 }
383
384 void cpu_interrupt(CPUState *s)
385 {
386 s->interrupt_request = 1;
387 }
388
389
390 #if defined(TARGET_I386)
391
392 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
393 {
394 CPUX86State *saved_env;
395
396 saved_env = env;
397 env = s;
398 if (env->eflags & VM_MASK) {
399 SegmentCache *sc;
400 selector &= 0xffff;
401 sc = &env->segs[seg_reg];
402 /* NOTE: in VM86 mode, limit and flags are never reloaded,
403 so we must load them here */
404 sc->base = (void *)(selector << 4);
405 sc->limit = 0xffff;
406 sc->flags = 0;
407 sc->selector = selector;
408 } else {
409 load_seg(seg_reg, selector, 0);
410 }
411 env = saved_env;
412 }
413
414 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
415 {
416 CPUX86State *saved_env;
417
418 saved_env = env;
419 env = s;
420
421 helper_fsave(ptr, data32);
422
423 env = saved_env;
424 }
425
426 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
427 {
428 CPUX86State *saved_env;
429
430 saved_env = env;
431 env = s;
432
433 helper_frstor(ptr, data32);
434
435 env = saved_env;
436 }
437
438 #endif /* TARGET_I386 */
439
440 #undef EAX
441 #undef ECX
442 #undef EDX
443 #undef EBX
444 #undef ESP
445 #undef EBP
446 #undef ESI
447 #undef EDI
448 #undef EIP
449 #include <signal.h>
450 #include <sys/ucontext.h>
451
452 #if defined(TARGET_I386)
453
454 /* 'pc' is the host PC at which the exception was raised. 'address' is
455 the effective address of the memory exception. 'is_write' is 1 if a
456 write caused the exception and otherwise 0'. 'old_set' is the
457 signal set which should be restored */
458 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
459 int is_write, sigset_t *old_set)
460 {
461 TranslationBlock *tb;
462 int ret;
463
464 #ifdef RING0_HACKS
465 env = global_env; /* XXX: find a better solution */
466 #endif
467 #if defined(DEBUG_SIGNAL)
468 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
469 pc, address, is_write, *(unsigned long *)old_set);
470 #endif
471 /* XXX: locking issue */
472 if (is_write && page_unprotect(address)) {
473 return 1;
474 }
475 /* see if it is an MMU fault */
476 ret = cpu_x86_handle_mmu_fault(env, address, is_write);
477 if (ret < 0)
478 return 0; /* not an MMU fault */
479 if (ret == 0)
480 return 1; /* the MMU fault was handled without causing real CPU fault */
481 /* now we have a real cpu fault */
482 tb = tb_find_pc(pc);
483 if (tb) {
484 /* the PC is inside the translated code. It means that we have
485 a virtual CPU fault */
486 cpu_restore_state(tb, env, pc);
487 }
488 #if 0
489 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
490 env->eip, env->cr[2], env->error_code);
491 #endif
492 /* we restore the process signal mask as the sigreturn should
493 do it (XXX: use sigsetjmp) */
494 sigprocmask(SIG_SETMASK, old_set, NULL);
495 raise_exception_err(EXCP0E_PAGE, env->error_code);
496 /* never comes here */
497 return 1;
498 }
499
500 #elif defined(TARGET_ARM)
501 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
502 int is_write, sigset_t *old_set)
503 {
504 /* XXX: do more */
505 return 0;
506 }
507 #else
508 #error unsupported target CPU
509 #endif
510
511 #if defined(__i386__)
512
513 int cpu_signal_handler(int host_signum, struct siginfo *info,
514 void *puc)
515 {
516 struct ucontext *uc = puc;
517 unsigned long pc;
518
519 #ifndef REG_EIP
520 /* for glibc 2.1 */
521 #define REG_EIP EIP
522 #define REG_ERR ERR
523 #define REG_TRAPNO TRAPNO
524 #endif
525 pc = uc->uc_mcontext.gregs[REG_EIP];
526 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
527 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
528 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
529 &uc->uc_sigmask);
530 }
531
532 #elif defined(__powerpc)
533
534 int cpu_signal_handler(int host_signum, struct siginfo *info,
535 void *puc)
536 {
537 struct ucontext *uc = puc;
538 struct pt_regs *regs = uc->uc_mcontext.regs;
539 unsigned long pc;
540 int is_write;
541
542 pc = regs->nip;
543 is_write = 0;
544 #if 0
545 /* ppc 4xx case */
546 if (regs->dsisr & 0x00800000)
547 is_write = 1;
548 #else
549 if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
550 is_write = 1;
551 #endif
552 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
553 is_write, &uc->uc_sigmask);
554 }
555
556 #elif defined(__alpha__)
557
558 int cpu_signal_handler(int host_signum, struct siginfo *info,
559 void *puc)
560 {
561 struct ucontext *uc = puc;
562 uint32_t *pc = uc->uc_mcontext.sc_pc;
563 uint32_t insn = *pc;
564 int is_write = 0;
565
566 /* XXX: need kernel patch to get write flag faster */
567 switch (insn >> 26) {
568 case 0x0d: // stw
569 case 0x0e: // stb
570 case 0x0f: // stq_u
571 case 0x24: // stf
572 case 0x25: // stg
573 case 0x26: // sts
574 case 0x27: // stt
575 case 0x2c: // stl
576 case 0x2d: // stq
577 case 0x2e: // stl_c
578 case 0x2f: // stq_c
579 is_write = 1;
580 }
581
582 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
583 is_write, &uc->uc_sigmask);
584 }
585 #elif defined(__sparc__)
586
587 int cpu_signal_handler(int host_signum, struct siginfo *info,
588 void *puc)
589 {
590 uint32_t *regs = (uint32_t *)(info + 1);
591 void *sigmask = (regs + 20);
592 unsigned long pc;
593 int is_write;
594 uint32_t insn;
595
596 /* XXX: is there a standard glibc define ? */
597 pc = regs[1];
598 /* XXX: need kernel patch to get write flag faster */
599 is_write = 0;
600 insn = *(uint32_t *)pc;
601 if ((insn >> 30) == 3) {
602 switch((insn >> 19) & 0x3f) {
603 case 0x05: // stb
604 case 0x06: // sth
605 case 0x04: // st
606 case 0x07: // std
607 case 0x24: // stf
608 case 0x27: // stdf
609 case 0x25: // stfsr
610 is_write = 1;
611 break;
612 }
613 }
614 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
615 is_write, sigmask);
616 }
617
618 #elif defined(__arm__)
619
620 int cpu_signal_handler(int host_signum, struct siginfo *info,
621 void *puc)
622 {
623 struct ucontext *uc = puc;
624 unsigned long pc;
625 int is_write;
626
627 pc = uc->uc_mcontext.gregs[R15];
628 /* XXX: compute is_write */
629 is_write = 0;
630 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
631 is_write,
632 &uc->uc_sigmask);
633 }
634
635 #else
636
637 #error host CPU specific signal handler needed
638
639 #endif