]> git.proxmox.com Git - mirror_ovs.git/blob - datapath/actions.c
datapath: check for backported ip_is_fragment
[mirror_ovs.git] / datapath / actions.c
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/sctp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/in6.h>
29 #include <linux/if_arp.h>
30 #include <linux/if_vlan.h>
31
32 #include <net/ip.h>
33 #include <net/ipv6.h>
34 #include <net/checksum.h>
35 #include <net/dsfield.h>
36 #include <net/mpls.h>
37 #include <net/sctp/checksum.h>
38
39 #include "datapath.h"
40 #include "gso.h"
41 #include "vlan.h"
42 #include "vport.h"
43
44 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
45 struct sw_flow_key *key,
46 const struct nlattr *attr, int len);
47
48 struct deferred_action {
49 struct sk_buff *skb;
50 const struct nlattr *actions;
51
52 /* Store pkt_key clone when creating deferred action. */
53 struct sw_flow_key pkt_key;
54 };
55
56 #define DEFERRED_ACTION_FIFO_SIZE 10
57 struct action_fifo {
58 int head;
59 int tail;
60 /* Deferred action fifo queue storage. */
61 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
62 };
63
64 static struct action_fifo __percpu *action_fifos;
65 #define EXEC_ACTIONS_LEVEL_LIMIT 4 /* limit used to detect packet
66 * looping by the network stack
67 */
68 static DEFINE_PER_CPU(int, exec_actions_level);
69
70 static void action_fifo_init(struct action_fifo *fifo)
71 {
72 fifo->head = 0;
73 fifo->tail = 0;
74 }
75
76 static bool action_fifo_is_empty(const struct action_fifo *fifo)
77 {
78 return (fifo->head == fifo->tail);
79 }
80
81 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
82 {
83 if (action_fifo_is_empty(fifo))
84 return NULL;
85
86 return &fifo->fifo[fifo->tail++];
87 }
88
89 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
90 {
91 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
92 return NULL;
93
94 return &fifo->fifo[fifo->head++];
95 }
96
97 /* Return queue entry if fifo is not full */
98 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
99 const struct sw_flow_key *key,
100 const struct nlattr *attr)
101 {
102 struct action_fifo *fifo;
103 struct deferred_action *da;
104
105 fifo = this_cpu_ptr(action_fifos);
106 da = action_fifo_put(fifo);
107 if (da) {
108 da->skb = skb;
109 da->actions = attr;
110 da->pkt_key = *key;
111 }
112
113 return da;
114 }
115
116 static void invalidate_flow_key(struct sw_flow_key *key)
117 {
118 key->eth.type = htons(0);
119 }
120
121 static bool is_flow_key_valid(const struct sw_flow_key *key)
122 {
123 return !!key->eth.type;
124 }
125
126 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
127 const struct ovs_action_push_mpls *mpls)
128 {
129 __be32 *new_mpls_lse;
130 struct ethhdr *hdr;
131
132 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
133 if (skb_encapsulation(skb))
134 return -ENOTSUPP;
135
136 if (skb_cow_head(skb, MPLS_HLEN) < 0)
137 return -ENOMEM;
138
139 skb_push(skb, MPLS_HLEN);
140 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
141 skb->mac_len);
142 skb_reset_mac_header(skb);
143
144 new_mpls_lse = (__be32 *)skb_mpls_header(skb);
145 *new_mpls_lse = mpls->mpls_lse;
146
147 if (skb->ip_summed == CHECKSUM_COMPLETE)
148 skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
149 MPLS_HLEN, 0));
150
151 hdr = eth_hdr(skb);
152 hdr->h_proto = mpls->mpls_ethertype;
153 if (!ovs_skb_get_inner_protocol(skb))
154 ovs_skb_set_inner_protocol(skb, skb->protocol);
155 skb->protocol = mpls->mpls_ethertype;
156
157 invalidate_flow_key(key);
158 return 0;
159 }
160
161 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
162 const __be16 ethertype)
163 {
164 struct ethhdr *hdr;
165 int err;
166
167 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
168 if (unlikely(err))
169 return err;
170
171 skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
172
173 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
174 skb->mac_len);
175
176 __skb_pull(skb, MPLS_HLEN);
177 skb_reset_mac_header(skb);
178
179 /* skb_mpls_header() is used to locate the ethertype
180 * field correctly in the presence of VLAN tags.
181 */
182 hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
183 hdr->h_proto = ethertype;
184 if (eth_p_mpls(skb->protocol))
185 skb->protocol = ethertype;
186
187 invalidate_flow_key(key);
188 return 0;
189 }
190
191 /* 'KEY' must not have any bits set outside of the 'MASK' */
192 #define MASKED(OLD, KEY, MASK) ((KEY) | ((OLD) & ~(MASK)))
193 #define SET_MASKED(OLD, KEY, MASK) ((OLD) = MASKED(OLD, KEY, MASK))
194
195 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
196 const __be32 *mpls_lse, const __be32 *mask)
197 {
198 __be32 *stack;
199 __be32 lse;
200 int err;
201
202 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
203 if (unlikely(err))
204 return err;
205
206 stack = (__be32 *)skb_mpls_header(skb);
207 lse = MASKED(*stack, *mpls_lse, *mask);
208 if (skb->ip_summed == CHECKSUM_COMPLETE) {
209 __be32 diff[] = { ~(*stack), lse };
210
211 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
212 ~skb->csum);
213 }
214
215 *stack = lse;
216 flow_key->mpls.top_lse = lse;
217 return 0;
218 }
219
220 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
221 {
222 int err;
223
224 err = skb_vlan_pop(skb);
225 if (skb_vlan_tag_present(skb))
226 invalidate_flow_key(key);
227 else
228 key->eth.tci = 0;
229 return err;
230 }
231
232 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
233 const struct ovs_action_push_vlan *vlan)
234 {
235 if (skb_vlan_tag_present(skb))
236 invalidate_flow_key(key);
237 else
238 key->eth.tci = vlan->vlan_tci;
239 return skb_vlan_push(skb, vlan->vlan_tpid,
240 ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
241 }
242
243 /* 'src' is already properly masked. */
244 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
245 {
246 u16 *dst = (u16 *)dst_;
247 const u16 *src = (const u16 *)src_;
248 const u16 *mask = (const u16 *)mask_;
249
250 SET_MASKED(dst[0], src[0], mask[0]);
251 SET_MASKED(dst[1], src[1], mask[1]);
252 SET_MASKED(dst[2], src[2], mask[2]);
253 }
254
255 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
256 const struct ovs_key_ethernet *key,
257 const struct ovs_key_ethernet *mask)
258 {
259 int err;
260
261 err = skb_ensure_writable(skb, ETH_HLEN);
262 if (unlikely(err))
263 return err;
264
265 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
266
267 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
268 mask->eth_src);
269 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
270 mask->eth_dst);
271
272 ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
273
274 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
275 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
276 return 0;
277 }
278
279 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
280 __be32 addr, __be32 new_addr)
281 {
282 int transport_len = skb->len - skb_transport_offset(skb);
283
284 if (nh->frag_off & htons(IP_OFFSET))
285 return;
286
287 if (nh->protocol == IPPROTO_TCP) {
288 if (likely(transport_len >= sizeof(struct tcphdr)))
289 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
290 addr, new_addr, 1);
291 } else if (nh->protocol == IPPROTO_UDP) {
292 if (likely(transport_len >= sizeof(struct udphdr))) {
293 struct udphdr *uh = udp_hdr(skb);
294
295 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
296 inet_proto_csum_replace4(&uh->check, skb,
297 addr, new_addr, 1);
298 if (!uh->check)
299 uh->check = CSUM_MANGLED_0;
300 }
301 }
302 }
303
304 }
305
306 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
307 __be32 *addr, __be32 new_addr)
308 {
309 update_ip_l4_checksum(skb, nh, *addr, new_addr);
310 csum_replace4(&nh->check, *addr, new_addr);
311 skb_clear_hash(skb);
312 *addr = new_addr;
313 }
314
315 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
316 __be32 addr[4], const __be32 new_addr[4])
317 {
318 int transport_len = skb->len - skb_transport_offset(skb);
319
320 if (l4_proto == NEXTHDR_TCP) {
321 if (likely(transport_len >= sizeof(struct tcphdr)))
322 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
323 addr, new_addr, 1);
324 } else if (l4_proto == NEXTHDR_UDP) {
325 if (likely(transport_len >= sizeof(struct udphdr))) {
326 struct udphdr *uh = udp_hdr(skb);
327
328 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
329 inet_proto_csum_replace16(&uh->check, skb,
330 addr, new_addr, 1);
331 if (!uh->check)
332 uh->check = CSUM_MANGLED_0;
333 }
334 }
335 } else if (l4_proto == NEXTHDR_ICMP) {
336 if (likely(transport_len >= sizeof(struct icmp6hdr)))
337 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
338 skb, addr, new_addr, 1);
339 }
340 }
341
342 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
343 const __be32 mask[4], __be32 masked[4])
344 {
345 masked[0] = MASKED(old[0], addr[0], mask[0]);
346 masked[1] = MASKED(old[1], addr[1], mask[1]);
347 masked[2] = MASKED(old[2], addr[2], mask[2]);
348 masked[3] = MASKED(old[3], addr[3], mask[3]);
349 }
350
351 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
352 __be32 addr[4], const __be32 new_addr[4],
353 bool recalculate_csum)
354 {
355 if (likely(recalculate_csum))
356 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
357
358 skb_clear_hash(skb);
359 memcpy(addr, new_addr, sizeof(__be32[4]));
360 }
361
362 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
363 {
364 /* Bits 21-24 are always unmasked, so this retains their values. */
365 SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
366 SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
367 SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
368 }
369
370 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
371 u8 mask)
372 {
373 new_ttl = MASKED(nh->ttl, new_ttl, mask);
374
375 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
376 nh->ttl = new_ttl;
377 }
378
379 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
380 const struct ovs_key_ipv4 *key,
381 const struct ovs_key_ipv4 *mask)
382 {
383 struct iphdr *nh;
384 __be32 new_addr;
385 int err;
386
387 err = skb_ensure_writable(skb, skb_network_offset(skb) +
388 sizeof(struct iphdr));
389 if (unlikely(err))
390 return err;
391
392 nh = ip_hdr(skb);
393
394 /* Setting an IP addresses is typically only a side effect of
395 * matching on them in the current userspace implementation, so it
396 * makes sense to check if the value actually changed.
397 */
398 if (mask->ipv4_src) {
399 new_addr = MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
400
401 if (unlikely(new_addr != nh->saddr)) {
402 set_ip_addr(skb, nh, &nh->saddr, new_addr);
403 flow_key->ipv4.addr.src = new_addr;
404 }
405 }
406 if (mask->ipv4_dst) {
407 new_addr = MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
408
409 if (unlikely(new_addr != nh->daddr)) {
410 set_ip_addr(skb, nh, &nh->daddr, new_addr);
411 flow_key->ipv4.addr.dst = new_addr;
412 }
413 }
414 if (mask->ipv4_tos) {
415 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
416 flow_key->ip.tos = nh->tos;
417 }
418 if (mask->ipv4_ttl) {
419 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
420 flow_key->ip.ttl = nh->ttl;
421 }
422
423 return 0;
424 }
425
426 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
427 {
428 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
429 }
430
431 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
432 const struct ovs_key_ipv6 *key,
433 const struct ovs_key_ipv6 *mask)
434 {
435 struct ipv6hdr *nh;
436 int err;
437
438 err = skb_ensure_writable(skb, skb_network_offset(skb) +
439 sizeof(struct ipv6hdr));
440 if (unlikely(err))
441 return err;
442
443 nh = ipv6_hdr(skb);
444
445 /* Setting an IP addresses is typically only a side effect of
446 * matching on them in the current userspace implementation, so it
447 * makes sense to check if the value actually changed.
448 */
449 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
450 __be32 *saddr = (__be32 *)&nh->saddr;
451 __be32 masked[4];
452
453 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
454
455 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
456 set_ipv6_addr(skb, key->ipv6_proto, saddr, masked,
457 true);
458 memcpy(&flow_key->ipv6.addr.src, masked,
459 sizeof(flow_key->ipv6.addr.src));
460 }
461 }
462 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
463 unsigned int offset = 0;
464 int flags = IP6_FH_F_SKIP_RH;
465 bool recalc_csum = true;
466 __be32 *daddr = (__be32 *)&nh->daddr;
467 __be32 masked[4];
468
469 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
470
471 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
472 if (ipv6_ext_hdr(nh->nexthdr))
473 recalc_csum = (ipv6_find_hdr(skb, &offset,
474 NEXTHDR_ROUTING,
475 NULL, &flags)
476 != NEXTHDR_ROUTING);
477
478 set_ipv6_addr(skb, key->ipv6_proto, daddr, masked,
479 recalc_csum);
480 memcpy(&flow_key->ipv6.addr.dst, masked,
481 sizeof(flow_key->ipv6.addr.dst));
482 }
483 }
484 if (mask->ipv6_tclass) {
485 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
486 flow_key->ip.tos = ipv6_get_dsfield(nh);
487 }
488 if (mask->ipv6_label) {
489 set_ipv6_fl(nh, ntohl(key->ipv6_label),
490 ntohl(mask->ipv6_label));
491 flow_key->ipv6.label =
492 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
493 }
494 if (mask->ipv6_hlimit) {
495 SET_MASKED(nh->hop_limit, key->ipv6_hlimit, mask->ipv6_hlimit);
496 flow_key->ip.ttl = nh->hop_limit;
497 }
498 return 0;
499 }
500
501 /* Must follow skb_ensure_writable() since that can move the skb data. */
502 static void set_tp_port(struct sk_buff *skb, __be16 *port,
503 __be16 new_port, __sum16 *check)
504 {
505 inet_proto_csum_replace2(check, skb, *port, new_port, 0);
506 *port = new_port;
507 }
508
509 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
510 const struct ovs_key_udp *key,
511 const struct ovs_key_udp *mask)
512 {
513 struct udphdr *uh;
514 __be16 src, dst;
515 int err;
516
517 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
518 sizeof(struct udphdr));
519 if (unlikely(err))
520 return err;
521
522 uh = udp_hdr(skb);
523 /* Either of the masks is non-zero, so do not bother checking them. */
524 src = MASKED(uh->source, key->udp_src, mask->udp_src);
525 dst = MASKED(uh->dest, key->udp_dst, mask->udp_dst);
526
527 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
528 if (likely(src != uh->source)) {
529 set_tp_port(skb, &uh->source, src, &uh->check);
530 flow_key->tp.src = src;
531 }
532 if (likely(dst != uh->dest)) {
533 set_tp_port(skb, &uh->dest, dst, &uh->check);
534 flow_key->tp.dst = dst;
535 }
536
537 if (unlikely(!uh->check))
538 uh->check = CSUM_MANGLED_0;
539 } else {
540 uh->source = src;
541 uh->dest = dst;
542 flow_key->tp.src = src;
543 flow_key->tp.dst = dst;
544 }
545
546 skb_clear_hash(skb);
547
548 return 0;
549 }
550
551 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
552 const struct ovs_key_tcp *key,
553 const struct ovs_key_tcp *mask)
554 {
555 struct tcphdr *th;
556 __be16 src, dst;
557 int err;
558
559 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
560 sizeof(struct tcphdr));
561 if (unlikely(err))
562 return err;
563
564 th = tcp_hdr(skb);
565 src = MASKED(th->source, key->tcp_src, mask->tcp_src);
566 if (likely(src != th->source)) {
567 set_tp_port(skb, &th->source, src, &th->check);
568 flow_key->tp.src = src;
569 }
570 dst = MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
571 if (likely(dst != th->dest)) {
572 set_tp_port(skb, &th->dest, dst, &th->check);
573 flow_key->tp.dst = dst;
574 }
575 skb_clear_hash(skb);
576
577 return 0;
578 }
579
580 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
581 const struct ovs_key_sctp *key,
582 const struct ovs_key_sctp *mask)
583 {
584 unsigned int sctphoff = skb_transport_offset(skb);
585 struct sctphdr *sh;
586 __le32 old_correct_csum, new_csum, old_csum;
587 int err;
588
589 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
590 if (unlikely(err))
591 return err;
592
593 sh = sctp_hdr(skb);
594 old_csum = sh->checksum;
595 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
596
597 sh->source = MASKED(sh->source, key->sctp_src, mask->sctp_src);
598 sh->dest = MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
599
600 new_csum = sctp_compute_cksum(skb, sctphoff);
601
602 /* Carry any checksum errors through. */
603 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
604
605 skb_clear_hash(skb);
606 flow_key->tp.src = sh->source;
607 flow_key->tp.dst = sh->dest;
608
609 return 0;
610 }
611
612 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
613 {
614 struct vport *vport = ovs_vport_rcu(dp, out_port);
615
616 if (likely(vport))
617 ovs_vport_send(vport, skb);
618 else
619 kfree_skb(skb);
620 }
621
622 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
623 struct sw_flow_key *key, const struct nlattr *attr,
624 const struct nlattr *actions, int actions_len)
625 {
626 struct ovs_tunnel_info info;
627 struct dp_upcall_info upcall;
628 const struct nlattr *a;
629 int rem;
630
631 memset(&upcall, 0, sizeof(upcall));
632 upcall.cmd = OVS_PACKET_CMD_ACTION;
633
634 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
635 a = nla_next(a, &rem)) {
636 switch (nla_type(a)) {
637 case OVS_USERSPACE_ATTR_USERDATA:
638 upcall.userdata = a;
639 break;
640
641 case OVS_USERSPACE_ATTR_PID:
642 upcall.portid = nla_get_u32(a);
643 break;
644
645 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
646 /* Get out tunnel info. */
647 struct vport *vport;
648
649 vport = ovs_vport_rcu(dp, nla_get_u32(a));
650 if (vport) {
651 int err;
652
653 err = ovs_vport_get_egress_tun_info(vport, skb,
654 &info);
655 if (!err)
656 upcall.egress_tun_info = &info;
657 }
658 break;
659 }
660
661 case OVS_USERSPACE_ATTR_ACTIONS: {
662 /* Include actions. */
663 upcall.actions = actions;
664 upcall.actions_len = actions_len;
665 break;
666 }
667
668 } /* End of switch. */
669 }
670
671 return ovs_dp_upcall(dp, skb, key, &upcall);
672 }
673
674 static int sample(struct datapath *dp, struct sk_buff *skb,
675 struct sw_flow_key *key, const struct nlattr *attr,
676 const struct nlattr *actions, int actions_len)
677 {
678 const struct nlattr *acts_list = NULL;
679 const struct nlattr *a;
680 int rem;
681
682 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
683 a = nla_next(a, &rem)) {
684 u32 probability;
685
686 switch (nla_type(a)) {
687 case OVS_SAMPLE_ATTR_PROBABILITY:
688 probability = nla_get_u32(a);
689 if (!probability || prandom_u32() > probability)
690 return 0;
691 break;
692
693 case OVS_SAMPLE_ATTR_ACTIONS:
694 acts_list = a;
695 break;
696 }
697 }
698
699 rem = nla_len(acts_list);
700 a = nla_data(acts_list);
701
702 /* Actions list is empty, do nothing */
703 if (unlikely(!rem))
704 return 0;
705
706 /* The only known usage of sample action is having a single user-space
707 * action. Treat this usage as a special case.
708 * The output_userspace() should clone the skb to be sent to the
709 * user space. This skb will be consumed by its caller.
710 */
711 if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
712 nla_is_last(a, rem)))
713 return output_userspace(dp, skb, key, a, actions, actions_len);
714
715 skb = skb_clone(skb, GFP_ATOMIC);
716 if (!skb)
717 /* Skip the sample action when out of memory. */
718 return 0;
719
720 if (!add_deferred_actions(skb, key, a)) {
721 if (net_ratelimit())
722 pr_warn("%s: deferred actions limit reached, dropping sample action\n",
723 ovs_dp_name(dp));
724
725 kfree_skb(skb);
726 }
727 return 0;
728 }
729
730 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
731 const struct nlattr *attr)
732 {
733 struct ovs_action_hash *hash_act = nla_data(attr);
734 u32 hash = 0;
735
736 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
737 hash = skb_get_hash(skb);
738 hash = jhash_1word(hash, hash_act->hash_basis);
739 if (!hash)
740 hash = 0x1;
741
742 key->ovs_flow_hash = hash;
743 }
744
745 static int execute_set_action(struct sk_buff *skb,
746 struct sw_flow_key *flow_key,
747 const struct nlattr *a)
748 {
749 /* Only tunnel set execution is supported without a mask. */
750 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
751 OVS_CB(skb)->egress_tun_info = nla_data(a);
752 return 0;
753 }
754
755 return -EINVAL;
756 }
757
758 /* Mask is at the midpoint of the data. */
759 #define get_mask(a, type) ((const type)nla_data(a) + 1)
760
761 static int execute_masked_set_action(struct sk_buff *skb,
762 struct sw_flow_key *flow_key,
763 const struct nlattr *a)
764 {
765 int err = 0;
766
767 switch (nla_type(a)) {
768 case OVS_KEY_ATTR_PRIORITY:
769 SET_MASKED(skb->priority, nla_get_u32(a), *get_mask(a, u32 *));
770 flow_key->phy.priority = skb->priority;
771 break;
772
773 case OVS_KEY_ATTR_SKB_MARK:
774 SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
775 flow_key->phy.skb_mark = skb->mark;
776 break;
777
778 case OVS_KEY_ATTR_TUNNEL_INFO:
779 /* Masked data not supported for tunnel. */
780 err = -EINVAL;
781 break;
782
783 case OVS_KEY_ATTR_ETHERNET:
784 err = set_eth_addr(skb, flow_key, nla_data(a),
785 get_mask(a, struct ovs_key_ethernet *));
786 break;
787
788 case OVS_KEY_ATTR_IPV4:
789 err = set_ipv4(skb, flow_key, nla_data(a),
790 get_mask(a, struct ovs_key_ipv4 *));
791 break;
792
793 case OVS_KEY_ATTR_IPV6:
794 err = set_ipv6(skb, flow_key, nla_data(a),
795 get_mask(a, struct ovs_key_ipv6 *));
796 break;
797
798 case OVS_KEY_ATTR_TCP:
799 err = set_tcp(skb, flow_key, nla_data(a),
800 get_mask(a, struct ovs_key_tcp *));
801 break;
802
803 case OVS_KEY_ATTR_UDP:
804 err = set_udp(skb, flow_key, nla_data(a),
805 get_mask(a, struct ovs_key_udp *));
806 break;
807
808 case OVS_KEY_ATTR_SCTP:
809 err = set_sctp(skb, flow_key, nla_data(a),
810 get_mask(a, struct ovs_key_sctp *));
811 break;
812
813 case OVS_KEY_ATTR_MPLS:
814 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
815 __be32 *));
816 break;
817 }
818
819 return err;
820 }
821
822 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
823 struct sw_flow_key *key,
824 const struct nlattr *a, int rem)
825 {
826 struct deferred_action *da;
827
828 if (!is_flow_key_valid(key)) {
829 int err;
830
831 err = ovs_flow_key_update(skb, key);
832 if (err)
833 return err;
834 }
835 BUG_ON(!is_flow_key_valid(key));
836
837 if (!nla_is_last(a, rem)) {
838 /* Recirc action is the not the last action
839 * of the action list, need to clone the skb.
840 */
841 skb = skb_clone(skb, GFP_ATOMIC);
842
843 /* Skip the recirc action when out of memory, but
844 * continue on with the rest of the action list.
845 */
846 if (!skb)
847 return 0;
848 }
849
850 da = add_deferred_actions(skb, key, NULL);
851 if (da) {
852 da->pkt_key.recirc_id = nla_get_u32(a);
853 } else {
854 kfree_skb(skb);
855
856 if (net_ratelimit())
857 pr_warn("%s: deferred action limit reached, drop recirc action\n",
858 ovs_dp_name(dp));
859 }
860
861 return 0;
862 }
863
864 /* Execute a list of actions against 'skb'. */
865 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
866 struct sw_flow_key *key,
867 const struct nlattr *attr, int len)
868 {
869 /* Every output action needs a separate clone of 'skb', but the common
870 * case is just a single output action, so that doing a clone and
871 * then freeing the original skbuff is wasteful. So the following code
872 * is slightly obscure just to avoid that.
873 */
874 int prev_port = -1;
875 const struct nlattr *a;
876 int rem;
877
878 for (a = attr, rem = len; rem > 0;
879 a = nla_next(a, &rem)) {
880 int err = 0;
881
882 if (unlikely(prev_port != -1)) {
883 struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
884
885 if (out_skb)
886 do_output(dp, out_skb, prev_port);
887
888 prev_port = -1;
889 }
890
891 switch (nla_type(a)) {
892 case OVS_ACTION_ATTR_OUTPUT:
893 prev_port = nla_get_u32(a);
894 break;
895
896 case OVS_ACTION_ATTR_USERSPACE:
897 output_userspace(dp, skb, key, a, attr, len);
898 break;
899
900 case OVS_ACTION_ATTR_HASH:
901 execute_hash(skb, key, a);
902 break;
903
904 case OVS_ACTION_ATTR_PUSH_MPLS:
905 err = push_mpls(skb, key, nla_data(a));
906 break;
907
908 case OVS_ACTION_ATTR_POP_MPLS:
909 err = pop_mpls(skb, key, nla_get_be16(a));
910 break;
911
912 case OVS_ACTION_ATTR_PUSH_VLAN:
913 err = push_vlan(skb, key, nla_data(a));
914 break;
915
916 case OVS_ACTION_ATTR_POP_VLAN:
917 err = pop_vlan(skb, key);
918 break;
919
920 case OVS_ACTION_ATTR_RECIRC:
921 err = execute_recirc(dp, skb, key, a, rem);
922 if (nla_is_last(a, rem)) {
923 /* If this is the last action, the skb has
924 * been consumed or freed.
925 * Return immediately.
926 */
927 return err;
928 }
929 break;
930
931 case OVS_ACTION_ATTR_SET:
932 err = execute_set_action(skb, key, nla_data(a));
933 break;
934
935 case OVS_ACTION_ATTR_SET_MASKED:
936 case OVS_ACTION_ATTR_SET_TO_MASKED:
937 err = execute_masked_set_action(skb, key, nla_data(a));
938 break;
939
940 case OVS_ACTION_ATTR_SAMPLE:
941 err = sample(dp, skb, key, a, attr, len);
942 break;
943 }
944
945 if (unlikely(err)) {
946 kfree_skb(skb);
947 return err;
948 }
949 }
950
951 if (prev_port != -1)
952 do_output(dp, skb, prev_port);
953 else
954 consume_skb(skb);
955
956 return 0;
957 }
958
959 static void process_deferred_actions(struct datapath *dp)
960 {
961 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
962
963 /* Do not touch the FIFO in case there is no deferred actions. */
964 if (action_fifo_is_empty(fifo))
965 return;
966
967 /* Finishing executing all deferred actions. */
968 do {
969 struct deferred_action *da = action_fifo_get(fifo);
970 struct sk_buff *skb = da->skb;
971 struct sw_flow_key *key = &da->pkt_key;
972 const struct nlattr *actions = da->actions;
973
974 if (actions)
975 do_execute_actions(dp, skb, key, actions,
976 nla_len(actions));
977 else
978 ovs_dp_process_packet(skb, key);
979 } while (!action_fifo_is_empty(fifo));
980
981 /* Reset FIFO for the next packet. */
982 action_fifo_init(fifo);
983 }
984
985 /* Execute a list of actions against 'skb'. */
986 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
987 const struct sw_flow_actions *acts,
988 struct sw_flow_key *key)
989 {
990 int level = this_cpu_read(exec_actions_level);
991 int err;
992
993 if (unlikely(level >= EXEC_ACTIONS_LEVEL_LIMIT)) {
994 if (net_ratelimit())
995 pr_warn("%s: packet loop detected, dropping.\n",
996 ovs_dp_name(dp));
997
998 kfree_skb(skb);
999 return -ELOOP;
1000 }
1001
1002 this_cpu_inc(exec_actions_level);
1003 err = do_execute_actions(dp, skb, key,
1004 acts->actions, acts->actions_len);
1005
1006 if (!level)
1007 process_deferred_actions(dp);
1008
1009 this_cpu_dec(exec_actions_level);
1010
1011 /* This return status currently does not reflect the errors
1012 * encounted during deferred actions execution. Probably needs to
1013 * be fixed in the future.
1014 */
1015 return err;
1016 }
1017
1018 int action_fifos_init(void)
1019 {
1020 action_fifos = alloc_percpu(struct action_fifo);
1021 if (!action_fifos)
1022 return -ENOMEM;
1023
1024 return 0;
1025 }
1026
1027 void action_fifos_exit(void)
1028 {
1029 free_percpu(action_fifos);
1030 }