]> git.proxmox.com Git - mirror_qemu.git/blob - docs/devel/loads-stores.rst
hw/arm: Build various units only once
[mirror_qemu.git] / docs / devel / loads-stores.rst
1 ..
2 Copyright (c) 2017 Linaro Limited
3 Written by Peter Maydell
4
5 ===================
6 Load and Store APIs
7 ===================
8
9 QEMU internally has multiple families of functions for performing
10 loads and stores. This document attempts to enumerate them all
11 and indicate when to use them. It does not provide detailed
12 documentation of each API -- for that you should look at the
13 documentation comments in the relevant header files.
14
15
16 ``ld*_p and st*_p``
17 ~~~~~~~~~~~~~~~~~~~
18
19 These functions operate on a host pointer, and should be used
20 when you already have a pointer into host memory (corresponding
21 to guest ram or a local buffer). They deal with doing accesses
22 with the desired endianness and with correctly handling
23 potentially unaligned pointer values.
24
25 Function names follow the pattern:
26
27 load: ``ld{sign}{size}_{endian}_p(ptr)``
28
29 store: ``st{size}_{endian}_p(ptr, val)``
30
31 ``sign``
32 - (empty) : for 32 or 64 bit sizes
33 - ``u`` : unsigned
34 - ``s`` : signed
35
36 ``size``
37 - ``b`` : 8 bits
38 - ``w`` : 16 bits
39 - ``24`` : 24 bits
40 - ``l`` : 32 bits
41 - ``q`` : 64 bits
42
43 ``endian``
44 - ``he`` : host endian
45 - ``be`` : big endian
46 - ``le`` : little endian
47
48 The ``_{endian}`` infix is omitted for target-endian accesses.
49
50 The target endian accessors are only available to source
51 files which are built per-target.
52
53 There are also functions which take the size as an argument:
54
55 load: ``ldn{endian}_p(ptr, sz)``
56
57 which performs an unsigned load of ``sz`` bytes from ``ptr``
58 as an ``{endian}`` order value and returns it in a uint64_t.
59
60 store: ``stn{endian}_p(ptr, sz, val)``
61
62 which stores ``val`` to ``ptr`` as an ``{endian}`` order value
63 of size ``sz`` bytes.
64
65
66 Regexes for git grep:
67 - ``\<ld[us]\?[bwlq]\(_[hbl]e\)\?_p\>``
68 - ``\<st[bwlq]\(_[hbl]e\)\?_p\>``
69 - ``\<st24\(_[hbl]e\)\?_p\>``
70 - ``\<ldn_\([hbl]e\)\?_p\>``
71 - ``\<stn_\([hbl]e\)\?_p\>``
72
73 ``cpu_{ld,st}*_mmu``
74 ~~~~~~~~~~~~~~~~~~~~
75
76 These functions operate on a guest virtual address, plus a context
77 known as a "mmu index" which controls how that virtual address is
78 translated, plus a ``MemOp`` which contains alignment requirements
79 among other things. The ``MemOp`` and mmu index are combined into
80 a single argument of type ``MemOpIdx``.
81
82 The meaning of the indexes are target specific, but specifying a
83 particular index might be necessary if, for instance, the helper
84 requires a "always as non-privileged" access rather than the
85 default access for the current state of the guest CPU.
86
87 These functions may cause a guest CPU exception to be taken
88 (e.g. for an alignment fault or MMU fault) which will result in
89 guest CPU state being updated and control longjmp'ing out of the
90 function call. They should therefore only be used in code that is
91 implementing emulation of the guest CPU.
92
93 The ``retaddr`` parameter is used to control unwinding of the
94 guest CPU state in case of a guest CPU exception. This is passed
95 to ``cpu_restore_state()``. Therefore the value should either be 0,
96 to indicate that the guest CPU state is already synchronized, or
97 the result of ``GETPC()`` from the top level ``HELPER(foo)``
98 function, which is a return address into the generated code [#gpc]_.
99
100 .. [#gpc] Note that ``GETPC()`` should be used with great care: calling
101 it in other functions that are *not* the top level
102 ``HELPER(foo)`` will cause unexpected behavior. Instead, the
103 value of ``GETPC()`` should be read from the helper and passed
104 if needed to the functions that the helper calls.
105
106 Function names follow the pattern:
107
108 load: ``cpu_ld{size}{end}_mmu(env, ptr, oi, retaddr)``
109
110 store: ``cpu_st{size}{end}_mmu(env, ptr, val, oi, retaddr)``
111
112 ``size``
113 - ``b`` : 8 bits
114 - ``w`` : 16 bits
115 - ``l`` : 32 bits
116 - ``q`` : 64 bits
117
118 ``end``
119 - (empty) : for target endian, or 8 bit sizes
120 - ``_be`` : big endian
121 - ``_le`` : little endian
122
123 Regexes for git grep:
124 - ``\<cpu_ld[bwlq]\(_[bl]e\)\?_mmu\>``
125 - ``\<cpu_st[bwlq]\(_[bl]e\)\?_mmu\>``
126
127
128 ``cpu_{ld,st}*_mmuidx_ra``
129 ~~~~~~~~~~~~~~~~~~~~~~~~~~
130
131 These functions work like the ``cpu_{ld,st}_mmu`` functions except
132 that the ``mmuidx`` parameter is not combined with a ``MemOp``,
133 and therefore there is no required alignment supplied or enforced.
134
135 Function names follow the pattern:
136
137 load: ``cpu_ld{sign}{size}{end}_mmuidx_ra(env, ptr, mmuidx, retaddr)``
138
139 store: ``cpu_st{size}{end}_mmuidx_ra(env, ptr, val, mmuidx, retaddr)``
140
141 ``sign``
142 - (empty) : for 32 or 64 bit sizes
143 - ``u`` : unsigned
144 - ``s`` : signed
145
146 ``size``
147 - ``b`` : 8 bits
148 - ``w`` : 16 bits
149 - ``l`` : 32 bits
150 - ``q`` : 64 bits
151
152 ``end``
153 - (empty) : for target endian, or 8 bit sizes
154 - ``_be`` : big endian
155 - ``_le`` : little endian
156
157 Regexes for git grep:
158 - ``\<cpu_ld[us]\?[bwlq]\(_[bl]e\)\?_mmuidx_ra\>``
159 - ``\<cpu_st[bwlq]\(_[bl]e\)\?_mmuidx_ra\>``
160
161 ``cpu_{ld,st}*_data_ra``
162 ~~~~~~~~~~~~~~~~~~~~~~~~
163
164 These functions work like the ``cpu_{ld,st}_mmuidx_ra`` functions
165 except that the ``mmuidx`` parameter is taken from the current mode
166 of the guest CPU, as determined by ``cpu_mmu_index(env, false)``.
167
168 These are generally the preferred way to do accesses by guest
169 virtual address from helper functions, unless the access should
170 be performed with a context other than the default, or alignment
171 should be enforced for the access.
172
173 Function names follow the pattern:
174
175 load: ``cpu_ld{sign}{size}{end}_data_ra(env, ptr, ra)``
176
177 store: ``cpu_st{size}{end}_data_ra(env, ptr, val, ra)``
178
179 ``sign``
180 - (empty) : for 32 or 64 bit sizes
181 - ``u`` : unsigned
182 - ``s`` : signed
183
184 ``size``
185 - ``b`` : 8 bits
186 - ``w`` : 16 bits
187 - ``l`` : 32 bits
188 - ``q`` : 64 bits
189
190 ``end``
191 - (empty) : for target endian, or 8 bit sizes
192 - ``_be`` : big endian
193 - ``_le`` : little endian
194
195 Regexes for git grep:
196 - ``\<cpu_ld[us]\?[bwlq]\(_[bl]e\)\?_data_ra\>``
197 - ``\<cpu_st[bwlq]\(_[bl]e\)\?_data_ra\>``
198
199 ``cpu_{ld,st}*_data``
200 ~~~~~~~~~~~~~~~~~~~~~
201
202 These functions work like the ``cpu_{ld,st}_data_ra`` functions
203 except that the ``retaddr`` parameter is 0, and thus does not
204 unwind guest CPU state.
205
206 This means they must only be used from helper functions where the
207 translator has saved all necessary CPU state. These functions are
208 the right choice for calls made from hooks like the CPU ``do_interrupt``
209 hook or when you know for certain that the translator had to save all
210 the CPU state anyway.
211
212 Function names follow the pattern:
213
214 load: ``cpu_ld{sign}{size}{end}_data(env, ptr)``
215
216 store: ``cpu_st{size}{end}_data(env, ptr, val)``
217
218 ``sign``
219 - (empty) : for 32 or 64 bit sizes
220 - ``u`` : unsigned
221 - ``s`` : signed
222
223 ``size``
224 - ``b`` : 8 bits
225 - ``w`` : 16 bits
226 - ``l`` : 32 bits
227 - ``q`` : 64 bits
228
229 ``end``
230 - (empty) : for target endian, or 8 bit sizes
231 - ``_be`` : big endian
232 - ``_le`` : little endian
233
234 Regexes for git grep:
235 - ``\<cpu_ld[us]\?[bwlq]\(_[bl]e\)\?_data\>``
236 - ``\<cpu_st[bwlq]\(_[bl]e\)\?_data\+\>``
237
238 ``cpu_ld*_code``
239 ~~~~~~~~~~~~~~~~
240
241 These functions perform a read for instruction execution. The ``mmuidx``
242 parameter is taken from the current mode of the guest CPU, as determined
243 by ``cpu_mmu_index(env, true)``. The ``retaddr`` parameter is 0, and
244 thus does not unwind guest CPU state, because CPU state is always
245 synchronized while translating instructions. Any guest CPU exception
246 that is raised will indicate an instruction execution fault rather than
247 a data read fault.
248
249 In general these functions should not be used directly during translation.
250 There are wrapper functions that are to be used which also take care of
251 plugins for tracing.
252
253 Function names follow the pattern:
254
255 load: ``cpu_ld{sign}{size}_code(env, ptr)``
256
257 ``sign``
258 - (empty) : for 32 or 64 bit sizes
259 - ``u`` : unsigned
260 - ``s`` : signed
261
262 ``size``
263 - ``b`` : 8 bits
264 - ``w`` : 16 bits
265 - ``l`` : 32 bits
266 - ``q`` : 64 bits
267
268 Regexes for git grep:
269 - ``\<cpu_ld[us]\?[bwlq]_code\>``
270
271 ``translator_ld*``
272 ~~~~~~~~~~~~~~~~~~
273
274 These functions are a wrapper for ``cpu_ld*_code`` which also perform
275 any actions required by any tracing plugins. They are only to be
276 called during the translator callback ``translate_insn``.
277
278 There is a set of functions ending in ``_swap`` which, if the parameter
279 is true, returns the value in the endianness that is the reverse of
280 the guest native endianness, as determined by ``TARGET_BIG_ENDIAN``.
281
282 Function names follow the pattern:
283
284 load: ``translator_ld{sign}{size}(env, ptr)``
285
286 swap: ``translator_ld{sign}{size}_swap(env, ptr, swap)``
287
288 ``sign``
289 - (empty) : for 32 or 64 bit sizes
290 - ``u`` : unsigned
291 - ``s`` : signed
292
293 ``size``
294 - ``b`` : 8 bits
295 - ``w`` : 16 bits
296 - ``l`` : 32 bits
297 - ``q`` : 64 bits
298
299 Regexes for git grep:
300 - ``\<translator_ld[us]\?[bwlq]\(_swap\)\?\>``
301
302 ``helper_{ld,st}*_mmu``
303 ~~~~~~~~~~~~~~~~~~~~~~~~~
304
305 These functions are intended primarily to be called by the code
306 generated by the TCG backend. Like the ``cpu_{ld,st}_mmu`` functions
307 they perform accesses by guest virtual address, with a given ``MemOpIdx``.
308
309 They differ from ``cpu_{ld,st}_mmu`` in that they take the endianness
310 of the operation only from the MemOpIdx, and loads extend the return
311 value to the size of a host general register (``tcg_target_ulong``).
312
313 load: ``helper_ld{sign}{size}_mmu(env, addr, opindex, retaddr)``
314
315 store: ``helper_{size}_mmu(env, addr, val, opindex, retaddr)``
316
317 ``sign``
318 - (empty) : for 32 or 64 bit sizes
319 - ``u`` : unsigned
320 - ``s`` : signed
321
322 ``size``
323 - ``b`` : 8 bits
324 - ``w`` : 16 bits
325 - ``l`` : 32 bits
326 - ``q`` : 64 bits
327
328 Regexes for git grep:
329 - ``\<helper_ld[us]\?[bwlq]_mmu\>``
330 - ``\<helper_st[bwlq]_mmu\>``
331
332 ``address_space_*``
333 ~~~~~~~~~~~~~~~~~~~
334
335 These functions are the primary ones to use when emulating CPU
336 or device memory accesses. They take an AddressSpace, which is the
337 way QEMU defines the view of memory that a device or CPU has.
338 (They generally correspond to being the "master" end of a hardware bus
339 or bus fabric.)
340
341 Each CPU has an AddressSpace. Some kinds of CPU have more than
342 one AddressSpace (for instance Arm guest CPUs have an AddressSpace
343 for the Secure world and one for NonSecure if they implement TrustZone).
344 Devices which can do DMA-type operations should generally have an
345 AddressSpace. There is also a "system address space" which typically
346 has all the devices and memory that all CPUs can see. (Some older
347 device models use the "system address space" rather than properly
348 modelling that they have an AddressSpace of their own.)
349
350 Functions are provided for doing byte-buffer reads and writes,
351 and also for doing one-data-item loads and stores.
352
353 In all cases the caller provides a MemTxAttrs to specify bus
354 transaction attributes, and can check whether the memory transaction
355 succeeded using a MemTxResult return code.
356
357 ``address_space_read(address_space, addr, attrs, buf, len)``
358
359 ``address_space_write(address_space, addr, attrs, buf, len)``
360
361 ``address_space_rw(address_space, addr, attrs, buf, len, is_write)``
362
363 ``address_space_ld{sign}{size}_{endian}(address_space, addr, attrs, txresult)``
364
365 ``address_space_st{size}_{endian}(address_space, addr, val, attrs, txresult)``
366
367 ``sign``
368 - (empty) : for 32 or 64 bit sizes
369 - ``u`` : unsigned
370
371 (No signed load operations are provided.)
372
373 ``size``
374 - ``b`` : 8 bits
375 - ``w`` : 16 bits
376 - ``l`` : 32 bits
377 - ``q`` : 64 bits
378
379 ``endian``
380 - ``le`` : little endian
381 - ``be`` : big endian
382
383 The ``_{endian}`` suffix is omitted for byte accesses.
384
385 Regexes for git grep:
386 - ``\<address_space_\(read\|write\|rw\)\>``
387 - ``\<address_space_ldu\?[bwql]\(_[lb]e\)\?\>``
388 - ``\<address_space_st[bwql]\(_[lb]e\)\?\>``
389
390 ``address_space_write_rom``
391 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
392
393 This function performs a write by physical address like
394 ``address_space_write``, except that if the write is to a ROM then
395 the ROM contents will be modified, even though a write by the guest
396 CPU to the ROM would be ignored. This is used for non-guest writes
397 like writes from the gdb debug stub or initial loading of ROM contents.
398
399 Note that portions of the write which attempt to write data to a
400 device will be silently ignored -- only real RAM and ROM will
401 be written to.
402
403 Regexes for git grep:
404 - ``address_space_write_rom``
405
406 ``{ld,st}*_phys``
407 ~~~~~~~~~~~~~~~~~
408
409 These are functions which are identical to
410 ``address_space_{ld,st}*``, except that they always pass
411 ``MEMTXATTRS_UNSPECIFIED`` for the transaction attributes, and ignore
412 whether the transaction succeeded or failed.
413
414 The fact that they ignore whether the transaction succeeded means
415 they should not be used in new code, unless you know for certain
416 that your code will only be used in a context where the CPU or
417 device doing the access has no way to report such an error.
418
419 ``load: ld{sign}{size}_{endian}_phys``
420
421 ``store: st{size}_{endian}_phys``
422
423 ``sign``
424 - (empty) : for 32 or 64 bit sizes
425 - ``u`` : unsigned
426
427 (No signed load operations are provided.)
428
429 ``size``
430 - ``b`` : 8 bits
431 - ``w`` : 16 bits
432 - ``l`` : 32 bits
433 - ``q`` : 64 bits
434
435 ``endian``
436 - ``le`` : little endian
437 - ``be`` : big endian
438
439 The ``_{endian}_`` infix is omitted for byte accesses.
440
441 Regexes for git grep:
442 - ``\<ldu\?[bwlq]\(_[bl]e\)\?_phys\>``
443 - ``\<st[bwlq]\(_[bl]e\)\?_phys\>``
444
445 ``cpu_physical_memory_*``
446 ~~~~~~~~~~~~~~~~~~~~~~~~~
447
448 These are convenience functions which are identical to
449 ``address_space_*`` but operate specifically on the system address space,
450 always pass a ``MEMTXATTRS_UNSPECIFIED`` set of memory attributes and
451 ignore whether the memory transaction succeeded or failed.
452 For new code they are better avoided:
453
454 * there is likely to be behaviour you need to model correctly for a
455 failed read or write operation
456 * a device should usually perform operations on its own AddressSpace
457 rather than using the system address space
458
459 ``cpu_physical_memory_read``
460
461 ``cpu_physical_memory_write``
462
463 ``cpu_physical_memory_rw``
464
465 Regexes for git grep:
466 - ``\<cpu_physical_memory_\(read\|write\|rw\)\>``
467
468 ``cpu_memory_rw_debug``
469 ~~~~~~~~~~~~~~~~~~~~~~~
470
471 Access CPU memory by virtual address for debug purposes.
472
473 This function is intended for use by the GDB stub and similar code.
474 It takes a virtual address, converts it to a physical address via
475 an MMU lookup using the current settings of the specified CPU,
476 and then performs the access (using ``address_space_rw`` for
477 reads or ``cpu_physical_memory_write_rom`` for writes).
478 This means that if the access is a write to a ROM then this
479 function will modify the contents (whereas a normal guest CPU access
480 would ignore the write attempt).
481
482 ``cpu_memory_rw_debug``
483
484 ``dma_memory_*``
485 ~~~~~~~~~~~~~~~~
486
487 These behave like ``address_space_*``, except that they perform a DMA
488 barrier operation first.
489
490 **TODO**: We should provide guidance on when you need the DMA
491 barrier operation and when it's OK to use ``address_space_*``, and
492 make sure our existing code is doing things correctly.
493
494 ``dma_memory_read``
495
496 ``dma_memory_write``
497
498 ``dma_memory_rw``
499
500 Regexes for git grep:
501 - ``\<dma_memory_\(read\|write\|rw\)\>``
502 - ``\<ldu\?[bwlq]\(_[bl]e\)\?_dma\>``
503 - ``\<st[bwlq]\(_[bl]e\)\?_dma\>``
504
505 ``pci_dma_*`` and ``{ld,st}*_pci_dma``
506 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
507
508 These functions are specifically for PCI device models which need to
509 perform accesses where the PCI device is a bus master. You pass them a
510 ``PCIDevice *`` and they will do ``dma_memory_*`` operations on the
511 correct address space for that device.
512
513 ``pci_dma_read``
514
515 ``pci_dma_write``
516
517 ``pci_dma_rw``
518
519 ``load: ld{sign}{size}_{endian}_pci_dma``
520
521 ``store: st{size}_{endian}_pci_dma``
522
523 ``sign``
524 - (empty) : for 32 or 64 bit sizes
525 - ``u`` : unsigned
526
527 (No signed load operations are provided.)
528
529 ``size``
530 - ``b`` : 8 bits
531 - ``w`` : 16 bits
532 - ``l`` : 32 bits
533 - ``q`` : 64 bits
534
535 ``endian``
536 - ``le`` : little endian
537 - ``be`` : big endian
538
539 The ``_{endian}_`` infix is omitted for byte accesses.
540
541 Regexes for git grep:
542 - ``\<pci_dma_\(read\|write\|rw\)\>``
543 - ``\<ldu\?[bwlq]\(_[bl]e\)\?_pci_dma\>``
544 - ``\<st[bwlq]\(_[bl]e\)\?_pci_dma\>``