]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/nvme-core.c
PCI: Preserve resource size during alignment reordering
[mirror_ubuntu-artful-kernel.git] / drivers / block / nvme-core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #define NVME_MINORS (1U << MINORBITS)
46 #define NVME_Q_DEPTH 1024
47 #define NVME_AQ_DEPTH 256
48 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
49 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
50 #define ADMIN_TIMEOUT (admin_timeout * HZ)
51 #define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
52
53 static unsigned char admin_timeout = 60;
54 module_param(admin_timeout, byte, 0644);
55 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
56
57 unsigned char nvme_io_timeout = 30;
58 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
59 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
60
61 static unsigned char shutdown_timeout = 5;
62 module_param(shutdown_timeout, byte, 0644);
63 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64
65 static int nvme_major;
66 module_param(nvme_major, int, 0);
67
68 static int nvme_char_major;
69 module_param(nvme_char_major, int, 0);
70
71 static int use_threaded_interrupts;
72 module_param(use_threaded_interrupts, int, 0);
73
74 static DEFINE_SPINLOCK(dev_list_lock);
75 static LIST_HEAD(dev_list);
76 static struct task_struct *nvme_thread;
77 static struct workqueue_struct *nvme_workq;
78 static wait_queue_head_t nvme_kthread_wait;
79
80 static struct class *nvme_class;
81
82 static void nvme_reset_failed_dev(struct work_struct *ws);
83 static int nvme_process_cq(struct nvme_queue *nvmeq);
84
85 struct async_cmd_info {
86 struct kthread_work work;
87 struct kthread_worker *worker;
88 struct request *req;
89 u32 result;
90 int status;
91 void *ctx;
92 };
93
94 /*
95 * An NVM Express queue. Each device has at least two (one for admin
96 * commands and one for I/O commands).
97 */
98 struct nvme_queue {
99 struct device *q_dmadev;
100 struct nvme_dev *dev;
101 char irqname[24]; /* nvme4294967295-65535\0 */
102 spinlock_t q_lock;
103 struct nvme_command *sq_cmds;
104 volatile struct nvme_completion *cqes;
105 dma_addr_t sq_dma_addr;
106 dma_addr_t cq_dma_addr;
107 u32 __iomem *q_db;
108 u16 q_depth;
109 s16 cq_vector;
110 u16 sq_head;
111 u16 sq_tail;
112 u16 cq_head;
113 u16 qid;
114 u8 cq_phase;
115 u8 cqe_seen;
116 struct async_cmd_info cmdinfo;
117 struct blk_mq_hw_ctx *hctx;
118 };
119
120 /*
121 * Check we didin't inadvertently grow the command struct
122 */
123 static inline void _nvme_check_size(void)
124 {
125 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
137 }
138
139 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
140 struct nvme_completion *);
141
142 struct nvme_cmd_info {
143 nvme_completion_fn fn;
144 void *ctx;
145 int aborted;
146 struct nvme_queue *nvmeq;
147 struct nvme_iod iod[0];
148 };
149
150 /*
151 * Max size of iod being embedded in the request payload
152 */
153 #define NVME_INT_PAGES 2
154 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
155 #define NVME_INT_MASK 0x01
156
157 /*
158 * Will slightly overestimate the number of pages needed. This is OK
159 * as it only leads to a small amount of wasted memory for the lifetime of
160 * the I/O.
161 */
162 static int nvme_npages(unsigned size, struct nvme_dev *dev)
163 {
164 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
165 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
166 }
167
168 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
169 {
170 unsigned int ret = sizeof(struct nvme_cmd_info);
171
172 ret += sizeof(struct nvme_iod);
173 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
174 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
175
176 return ret;
177 }
178
179 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
180 unsigned int hctx_idx)
181 {
182 struct nvme_dev *dev = data;
183 struct nvme_queue *nvmeq = dev->queues[0];
184
185 WARN_ON(nvmeq->hctx);
186 nvmeq->hctx = hctx;
187 hctx->driver_data = nvmeq;
188 return 0;
189 }
190
191 static int nvme_admin_init_request(void *data, struct request *req,
192 unsigned int hctx_idx, unsigned int rq_idx,
193 unsigned int numa_node)
194 {
195 struct nvme_dev *dev = data;
196 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
197 struct nvme_queue *nvmeq = dev->queues[0];
198
199 BUG_ON(!nvmeq);
200 cmd->nvmeq = nvmeq;
201 return 0;
202 }
203
204 static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
205 {
206 struct nvme_queue *nvmeq = hctx->driver_data;
207
208 nvmeq->hctx = NULL;
209 }
210
211 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
212 unsigned int hctx_idx)
213 {
214 struct nvme_dev *dev = data;
215 struct nvme_queue *nvmeq = dev->queues[
216 (hctx_idx % dev->queue_count) + 1];
217
218 if (!nvmeq->hctx)
219 nvmeq->hctx = hctx;
220
221 /* nvmeq queues are shared between namespaces. We assume here that
222 * blk-mq map the tags so they match up with the nvme queue tags. */
223 WARN_ON(nvmeq->hctx->tags != hctx->tags);
224
225 hctx->driver_data = nvmeq;
226 return 0;
227 }
228
229 static int nvme_init_request(void *data, struct request *req,
230 unsigned int hctx_idx, unsigned int rq_idx,
231 unsigned int numa_node)
232 {
233 struct nvme_dev *dev = data;
234 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
235 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
236
237 BUG_ON(!nvmeq);
238 cmd->nvmeq = nvmeq;
239 return 0;
240 }
241
242 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
243 nvme_completion_fn handler)
244 {
245 cmd->fn = handler;
246 cmd->ctx = ctx;
247 cmd->aborted = 0;
248 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
249 }
250
251 static void *iod_get_private(struct nvme_iod *iod)
252 {
253 return (void *) (iod->private & ~0x1UL);
254 }
255
256 /*
257 * If bit 0 is set, the iod is embedded in the request payload.
258 */
259 static bool iod_should_kfree(struct nvme_iod *iod)
260 {
261 return (iod->private & NVME_INT_MASK) == 0;
262 }
263
264 /* Special values must be less than 0x1000 */
265 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
266 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
267 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
268 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
269
270 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
271 struct nvme_completion *cqe)
272 {
273 if (ctx == CMD_CTX_CANCELLED)
274 return;
275 if (ctx == CMD_CTX_COMPLETED) {
276 dev_warn(nvmeq->q_dmadev,
277 "completed id %d twice on queue %d\n",
278 cqe->command_id, le16_to_cpup(&cqe->sq_id));
279 return;
280 }
281 if (ctx == CMD_CTX_INVALID) {
282 dev_warn(nvmeq->q_dmadev,
283 "invalid id %d completed on queue %d\n",
284 cqe->command_id, le16_to_cpup(&cqe->sq_id));
285 return;
286 }
287 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
288 }
289
290 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
291 {
292 void *ctx;
293
294 if (fn)
295 *fn = cmd->fn;
296 ctx = cmd->ctx;
297 cmd->fn = special_completion;
298 cmd->ctx = CMD_CTX_CANCELLED;
299 return ctx;
300 }
301
302 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
303 struct nvme_completion *cqe)
304 {
305 u32 result = le32_to_cpup(&cqe->result);
306 u16 status = le16_to_cpup(&cqe->status) >> 1;
307
308 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
309 ++nvmeq->dev->event_limit;
310 if (status == NVME_SC_SUCCESS)
311 dev_warn(nvmeq->q_dmadev,
312 "async event result %08x\n", result);
313 }
314
315 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
316 struct nvme_completion *cqe)
317 {
318 struct request *req = ctx;
319
320 u16 status = le16_to_cpup(&cqe->status) >> 1;
321 u32 result = le32_to_cpup(&cqe->result);
322
323 blk_mq_free_hctx_request(nvmeq->hctx, req);
324
325 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
326 ++nvmeq->dev->abort_limit;
327 }
328
329 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
330 struct nvme_completion *cqe)
331 {
332 struct async_cmd_info *cmdinfo = ctx;
333 cmdinfo->result = le32_to_cpup(&cqe->result);
334 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
335 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
336 blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
337 }
338
339 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
340 unsigned int tag)
341 {
342 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
343 struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
344
345 return blk_mq_rq_to_pdu(req);
346 }
347
348 /*
349 * Called with local interrupts disabled and the q_lock held. May not sleep.
350 */
351 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
352 nvme_completion_fn *fn)
353 {
354 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
355 void *ctx;
356 if (tag >= nvmeq->q_depth) {
357 *fn = special_completion;
358 return CMD_CTX_INVALID;
359 }
360 if (fn)
361 *fn = cmd->fn;
362 ctx = cmd->ctx;
363 cmd->fn = special_completion;
364 cmd->ctx = CMD_CTX_COMPLETED;
365 return ctx;
366 }
367
368 /**
369 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
370 * @nvmeq: The queue to use
371 * @cmd: The command to send
372 *
373 * Safe to use from interrupt context
374 */
375 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
376 {
377 u16 tail = nvmeq->sq_tail;
378
379 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
380 if (++tail == nvmeq->q_depth)
381 tail = 0;
382 writel(tail, nvmeq->q_db);
383 nvmeq->sq_tail = tail;
384
385 return 0;
386 }
387
388 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
389 {
390 unsigned long flags;
391 int ret;
392 spin_lock_irqsave(&nvmeq->q_lock, flags);
393 ret = __nvme_submit_cmd(nvmeq, cmd);
394 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
395 return ret;
396 }
397
398 static __le64 **iod_list(struct nvme_iod *iod)
399 {
400 return ((void *)iod) + iod->offset;
401 }
402
403 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
404 unsigned nseg, unsigned long private)
405 {
406 iod->private = private;
407 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
408 iod->npages = -1;
409 iod->length = nbytes;
410 iod->nents = 0;
411 }
412
413 static struct nvme_iod *
414 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
415 unsigned long priv, gfp_t gfp)
416 {
417 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
418 sizeof(__le64 *) * nvme_npages(bytes, dev) +
419 sizeof(struct scatterlist) * nseg, gfp);
420
421 if (iod)
422 iod_init(iod, bytes, nseg, priv);
423
424 return iod;
425 }
426
427 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
428 gfp_t gfp)
429 {
430 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
431 sizeof(struct nvme_dsm_range);
432 struct nvme_iod *iod;
433
434 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
435 size <= NVME_INT_BYTES(dev)) {
436 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
437
438 iod = cmd->iod;
439 iod_init(iod, size, rq->nr_phys_segments,
440 (unsigned long) rq | NVME_INT_MASK);
441 return iod;
442 }
443
444 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
445 (unsigned long) rq, gfp);
446 }
447
448 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
449 {
450 const int last_prp = dev->page_size / 8 - 1;
451 int i;
452 __le64 **list = iod_list(iod);
453 dma_addr_t prp_dma = iod->first_dma;
454
455 if (iod->npages == 0)
456 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
457 for (i = 0; i < iod->npages; i++) {
458 __le64 *prp_list = list[i];
459 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
460 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
461 prp_dma = next_prp_dma;
462 }
463
464 if (iod_should_kfree(iod))
465 kfree(iod);
466 }
467
468 static int nvme_error_status(u16 status)
469 {
470 switch (status & 0x7ff) {
471 case NVME_SC_SUCCESS:
472 return 0;
473 case NVME_SC_CAP_EXCEEDED:
474 return -ENOSPC;
475 default:
476 return -EIO;
477 }
478 }
479
480 #ifdef CONFIG_BLK_DEV_INTEGRITY
481 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
482 {
483 if (be32_to_cpu(pi->ref_tag) == v)
484 pi->ref_tag = cpu_to_be32(p);
485 }
486
487 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
488 {
489 if (be32_to_cpu(pi->ref_tag) == p)
490 pi->ref_tag = cpu_to_be32(v);
491 }
492
493 /**
494 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
495 *
496 * The virtual start sector is the one that was originally submitted by the
497 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
498 * start sector may be different. Remap protection information to match the
499 * physical LBA on writes, and back to the original seed on reads.
500 *
501 * Type 0 and 3 do not have a ref tag, so no remapping required.
502 */
503 static void nvme_dif_remap(struct request *req,
504 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
505 {
506 struct nvme_ns *ns = req->rq_disk->private_data;
507 struct bio_integrity_payload *bip;
508 struct t10_pi_tuple *pi;
509 void *p, *pmap;
510 u32 i, nlb, ts, phys, virt;
511
512 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
513 return;
514
515 bip = bio_integrity(req->bio);
516 if (!bip)
517 return;
518
519 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
520
521 p = pmap;
522 virt = bip_get_seed(bip);
523 phys = nvme_block_nr(ns, blk_rq_pos(req));
524 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
525 ts = ns->disk->integrity->tuple_size;
526
527 for (i = 0; i < nlb; i++, virt++, phys++) {
528 pi = (struct t10_pi_tuple *)p;
529 dif_swap(phys, virt, pi);
530 p += ts;
531 }
532 kunmap_atomic(pmap);
533 }
534
535 static int nvme_noop_verify(struct blk_integrity_iter *iter)
536 {
537 return 0;
538 }
539
540 static int nvme_noop_generate(struct blk_integrity_iter *iter)
541 {
542 return 0;
543 }
544
545 struct blk_integrity nvme_meta_noop = {
546 .name = "NVME_META_NOOP",
547 .generate_fn = nvme_noop_generate,
548 .verify_fn = nvme_noop_verify,
549 };
550
551 static void nvme_init_integrity(struct nvme_ns *ns)
552 {
553 struct blk_integrity integrity;
554
555 switch (ns->pi_type) {
556 case NVME_NS_DPS_PI_TYPE3:
557 integrity = t10_pi_type3_crc;
558 break;
559 case NVME_NS_DPS_PI_TYPE1:
560 case NVME_NS_DPS_PI_TYPE2:
561 integrity = t10_pi_type1_crc;
562 break;
563 default:
564 integrity = nvme_meta_noop;
565 break;
566 }
567 integrity.tuple_size = ns->ms;
568 blk_integrity_register(ns->disk, &integrity);
569 blk_queue_max_integrity_segments(ns->queue, 1);
570 }
571 #else /* CONFIG_BLK_DEV_INTEGRITY */
572 static void nvme_dif_remap(struct request *req,
573 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
574 {
575 }
576 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
577 {
578 }
579 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
580 {
581 }
582 static void nvme_init_integrity(struct nvme_ns *ns)
583 {
584 }
585 #endif
586
587 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
588 struct nvme_completion *cqe)
589 {
590 struct nvme_iod *iod = ctx;
591 struct request *req = iod_get_private(iod);
592 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
593
594 u16 status = le16_to_cpup(&cqe->status) >> 1;
595
596 if (unlikely(status)) {
597 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
598 && (jiffies - req->start_time) < req->timeout) {
599 unsigned long flags;
600
601 blk_mq_requeue_request(req);
602 spin_lock_irqsave(req->q->queue_lock, flags);
603 if (!blk_queue_stopped(req->q))
604 blk_mq_kick_requeue_list(req->q);
605 spin_unlock_irqrestore(req->q->queue_lock, flags);
606 return;
607 }
608 req->errors = nvme_error_status(status);
609 } else
610 req->errors = 0;
611
612 if (cmd_rq->aborted)
613 dev_warn(&nvmeq->dev->pci_dev->dev,
614 "completing aborted command with status:%04x\n",
615 status);
616
617 if (iod->nents) {
618 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
619 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
620 if (blk_integrity_rq(req)) {
621 if (!rq_data_dir(req))
622 nvme_dif_remap(req, nvme_dif_complete);
623 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->meta_sg, 1,
624 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
625 }
626 }
627 nvme_free_iod(nvmeq->dev, iod);
628
629 blk_mq_complete_request(req);
630 }
631
632 /* length is in bytes. gfp flags indicates whether we may sleep. */
633 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
634 gfp_t gfp)
635 {
636 struct dma_pool *pool;
637 int length = total_len;
638 struct scatterlist *sg = iod->sg;
639 int dma_len = sg_dma_len(sg);
640 u64 dma_addr = sg_dma_address(sg);
641 u32 page_size = dev->page_size;
642 int offset = dma_addr & (page_size - 1);
643 __le64 *prp_list;
644 __le64 **list = iod_list(iod);
645 dma_addr_t prp_dma;
646 int nprps, i;
647
648 length -= (page_size - offset);
649 if (length <= 0)
650 return total_len;
651
652 dma_len -= (page_size - offset);
653 if (dma_len) {
654 dma_addr += (page_size - offset);
655 } else {
656 sg = sg_next(sg);
657 dma_addr = sg_dma_address(sg);
658 dma_len = sg_dma_len(sg);
659 }
660
661 if (length <= page_size) {
662 iod->first_dma = dma_addr;
663 return total_len;
664 }
665
666 nprps = DIV_ROUND_UP(length, page_size);
667 if (nprps <= (256 / 8)) {
668 pool = dev->prp_small_pool;
669 iod->npages = 0;
670 } else {
671 pool = dev->prp_page_pool;
672 iod->npages = 1;
673 }
674
675 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
676 if (!prp_list) {
677 iod->first_dma = dma_addr;
678 iod->npages = -1;
679 return (total_len - length) + page_size;
680 }
681 list[0] = prp_list;
682 iod->first_dma = prp_dma;
683 i = 0;
684 for (;;) {
685 if (i == page_size >> 3) {
686 __le64 *old_prp_list = prp_list;
687 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
688 if (!prp_list)
689 return total_len - length;
690 list[iod->npages++] = prp_list;
691 prp_list[0] = old_prp_list[i - 1];
692 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
693 i = 1;
694 }
695 prp_list[i++] = cpu_to_le64(dma_addr);
696 dma_len -= page_size;
697 dma_addr += page_size;
698 length -= page_size;
699 if (length <= 0)
700 break;
701 if (dma_len > 0)
702 continue;
703 BUG_ON(dma_len < 0);
704 sg = sg_next(sg);
705 dma_addr = sg_dma_address(sg);
706 dma_len = sg_dma_len(sg);
707 }
708
709 return total_len;
710 }
711
712 /*
713 * We reuse the small pool to allocate the 16-byte range here as it is not
714 * worth having a special pool for these or additional cases to handle freeing
715 * the iod.
716 */
717 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
718 struct request *req, struct nvme_iod *iod)
719 {
720 struct nvme_dsm_range *range =
721 (struct nvme_dsm_range *)iod_list(iod)[0];
722 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
723
724 range->cattr = cpu_to_le32(0);
725 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
726 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
727
728 memset(cmnd, 0, sizeof(*cmnd));
729 cmnd->dsm.opcode = nvme_cmd_dsm;
730 cmnd->dsm.command_id = req->tag;
731 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
732 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
733 cmnd->dsm.nr = 0;
734 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
735
736 if (++nvmeq->sq_tail == nvmeq->q_depth)
737 nvmeq->sq_tail = 0;
738 writel(nvmeq->sq_tail, nvmeq->q_db);
739 }
740
741 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
742 int cmdid)
743 {
744 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
745
746 memset(cmnd, 0, sizeof(*cmnd));
747 cmnd->common.opcode = nvme_cmd_flush;
748 cmnd->common.command_id = cmdid;
749 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
750
751 if (++nvmeq->sq_tail == nvmeq->q_depth)
752 nvmeq->sq_tail = 0;
753 writel(nvmeq->sq_tail, nvmeq->q_db);
754 }
755
756 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
757 struct nvme_ns *ns)
758 {
759 struct request *req = iod_get_private(iod);
760 struct nvme_command *cmnd;
761 u16 control = 0;
762 u32 dsmgmt = 0;
763
764 if (req->cmd_flags & REQ_FUA)
765 control |= NVME_RW_FUA;
766 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
767 control |= NVME_RW_LR;
768
769 if (req->cmd_flags & REQ_RAHEAD)
770 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
771
772 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
773 memset(cmnd, 0, sizeof(*cmnd));
774
775 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
776 cmnd->rw.command_id = req->tag;
777 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
778 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
779 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
780 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
781 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
782
783 if (blk_integrity_rq(req)) {
784 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
785 switch (ns->pi_type) {
786 case NVME_NS_DPS_PI_TYPE3:
787 control |= NVME_RW_PRINFO_PRCHK_GUARD;
788 break;
789 case NVME_NS_DPS_PI_TYPE1:
790 case NVME_NS_DPS_PI_TYPE2:
791 control |= NVME_RW_PRINFO_PRCHK_GUARD |
792 NVME_RW_PRINFO_PRCHK_REF;
793 cmnd->rw.reftag = cpu_to_le32(
794 nvme_block_nr(ns, blk_rq_pos(req)));
795 break;
796 }
797 } else if (ns->ms)
798 control |= NVME_RW_PRINFO_PRACT;
799
800 cmnd->rw.control = cpu_to_le16(control);
801 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
802
803 if (++nvmeq->sq_tail == nvmeq->q_depth)
804 nvmeq->sq_tail = 0;
805 writel(nvmeq->sq_tail, nvmeq->q_db);
806
807 return 0;
808 }
809
810 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
811 const struct blk_mq_queue_data *bd)
812 {
813 struct nvme_ns *ns = hctx->queue->queuedata;
814 struct nvme_queue *nvmeq = hctx->driver_data;
815 struct request *req = bd->rq;
816 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
817 struct nvme_iod *iod;
818 enum dma_data_direction dma_dir;
819
820 /*
821 * If formated with metadata, require the block layer provide a buffer
822 * unless this namespace is formated such that the metadata can be
823 * stripped/generated by the controller with PRACT=1.
824 */
825 if (ns->ms && !blk_integrity_rq(req)) {
826 if (!(ns->pi_type && ns->ms == 8)) {
827 req->errors = -EFAULT;
828 blk_mq_complete_request(req);
829 return BLK_MQ_RQ_QUEUE_OK;
830 }
831 }
832
833 iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
834 if (!iod)
835 return BLK_MQ_RQ_QUEUE_BUSY;
836
837 if (req->cmd_flags & REQ_DISCARD) {
838 void *range;
839 /*
840 * We reuse the small pool to allocate the 16-byte range here
841 * as it is not worth having a special pool for these or
842 * additional cases to handle freeing the iod.
843 */
844 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
845 GFP_ATOMIC,
846 &iod->first_dma);
847 if (!range)
848 goto retry_cmd;
849 iod_list(iod)[0] = (__le64 *)range;
850 iod->npages = 0;
851 } else if (req->nr_phys_segments) {
852 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
853
854 sg_init_table(iod->sg, req->nr_phys_segments);
855 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
856 if (!iod->nents)
857 goto error_cmd;
858
859 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
860 goto retry_cmd;
861
862 if (blk_rq_bytes(req) !=
863 nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
864 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
865 iod->nents, dma_dir);
866 goto retry_cmd;
867 }
868 if (blk_integrity_rq(req)) {
869 if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
870 goto error_cmd;
871
872 sg_init_table(iod->meta_sg, 1);
873 if (blk_rq_map_integrity_sg(
874 req->q, req->bio, iod->meta_sg) != 1)
875 goto error_cmd;
876
877 if (rq_data_dir(req))
878 nvme_dif_remap(req, nvme_dif_prep);
879
880 if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
881 goto error_cmd;
882 }
883 }
884
885 nvme_set_info(cmd, iod, req_completion);
886 spin_lock_irq(&nvmeq->q_lock);
887 if (req->cmd_flags & REQ_DISCARD)
888 nvme_submit_discard(nvmeq, ns, req, iod);
889 else if (req->cmd_flags & REQ_FLUSH)
890 nvme_submit_flush(nvmeq, ns, req->tag);
891 else
892 nvme_submit_iod(nvmeq, iod, ns);
893
894 nvme_process_cq(nvmeq);
895 spin_unlock_irq(&nvmeq->q_lock);
896 return BLK_MQ_RQ_QUEUE_OK;
897
898 error_cmd:
899 nvme_free_iod(nvmeq->dev, iod);
900 return BLK_MQ_RQ_QUEUE_ERROR;
901 retry_cmd:
902 nvme_free_iod(nvmeq->dev, iod);
903 return BLK_MQ_RQ_QUEUE_BUSY;
904 }
905
906 static int nvme_process_cq(struct nvme_queue *nvmeq)
907 {
908 u16 head, phase;
909
910 head = nvmeq->cq_head;
911 phase = nvmeq->cq_phase;
912
913 for (;;) {
914 void *ctx;
915 nvme_completion_fn fn;
916 struct nvme_completion cqe = nvmeq->cqes[head];
917 if ((le16_to_cpu(cqe.status) & 1) != phase)
918 break;
919 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
920 if (++head == nvmeq->q_depth) {
921 head = 0;
922 phase = !phase;
923 }
924 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
925 fn(nvmeq, ctx, &cqe);
926 }
927
928 /* If the controller ignores the cq head doorbell and continuously
929 * writes to the queue, it is theoretically possible to wrap around
930 * the queue twice and mistakenly return IRQ_NONE. Linux only
931 * requires that 0.1% of your interrupts are handled, so this isn't
932 * a big problem.
933 */
934 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
935 return 0;
936
937 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
938 nvmeq->cq_head = head;
939 nvmeq->cq_phase = phase;
940
941 nvmeq->cqe_seen = 1;
942 return 1;
943 }
944
945 /* Admin queue isn't initialized as a request queue. If at some point this
946 * happens anyway, make sure to notify the user */
947 static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
948 const struct blk_mq_queue_data *bd)
949 {
950 WARN_ON_ONCE(1);
951 return BLK_MQ_RQ_QUEUE_ERROR;
952 }
953
954 static irqreturn_t nvme_irq(int irq, void *data)
955 {
956 irqreturn_t result;
957 struct nvme_queue *nvmeq = data;
958 spin_lock(&nvmeq->q_lock);
959 nvme_process_cq(nvmeq);
960 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
961 nvmeq->cqe_seen = 0;
962 spin_unlock(&nvmeq->q_lock);
963 return result;
964 }
965
966 static irqreturn_t nvme_irq_check(int irq, void *data)
967 {
968 struct nvme_queue *nvmeq = data;
969 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
970 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
971 return IRQ_NONE;
972 return IRQ_WAKE_THREAD;
973 }
974
975 struct sync_cmd_info {
976 struct task_struct *task;
977 u32 result;
978 int status;
979 };
980
981 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
982 struct nvme_completion *cqe)
983 {
984 struct sync_cmd_info *cmdinfo = ctx;
985 cmdinfo->result = le32_to_cpup(&cqe->result);
986 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
987 wake_up_process(cmdinfo->task);
988 }
989
990 /*
991 * Returns 0 on success. If the result is negative, it's a Linux error code;
992 * if the result is positive, it's an NVM Express status code
993 */
994 static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
995 u32 *result, unsigned timeout)
996 {
997 struct sync_cmd_info cmdinfo;
998 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
999 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1000
1001 cmdinfo.task = current;
1002 cmdinfo.status = -EINTR;
1003
1004 cmd->common.command_id = req->tag;
1005
1006 nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
1007
1008 set_current_state(TASK_UNINTERRUPTIBLE);
1009 nvme_submit_cmd(nvmeq, cmd);
1010 schedule();
1011
1012 if (result)
1013 *result = cmdinfo.result;
1014 return cmdinfo.status;
1015 }
1016
1017 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1018 {
1019 struct nvme_queue *nvmeq = dev->queues[0];
1020 struct nvme_command c;
1021 struct nvme_cmd_info *cmd_info;
1022 struct request *req;
1023
1024 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1025 if (IS_ERR(req))
1026 return PTR_ERR(req);
1027
1028 req->cmd_flags |= REQ_NO_TIMEOUT;
1029 cmd_info = blk_mq_rq_to_pdu(req);
1030 nvme_set_info(cmd_info, NULL, async_req_completion);
1031
1032 memset(&c, 0, sizeof(c));
1033 c.common.opcode = nvme_admin_async_event;
1034 c.common.command_id = req->tag;
1035
1036 blk_mq_free_hctx_request(nvmeq->hctx, req);
1037 return __nvme_submit_cmd(nvmeq, &c);
1038 }
1039
1040 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1041 struct nvme_command *cmd,
1042 struct async_cmd_info *cmdinfo, unsigned timeout)
1043 {
1044 struct nvme_queue *nvmeq = dev->queues[0];
1045 struct request *req;
1046 struct nvme_cmd_info *cmd_rq;
1047
1048 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1049 if (IS_ERR(req))
1050 return PTR_ERR(req);
1051
1052 req->timeout = timeout;
1053 cmd_rq = blk_mq_rq_to_pdu(req);
1054 cmdinfo->req = req;
1055 nvme_set_info(cmd_rq, cmdinfo, async_completion);
1056 cmdinfo->status = -EINTR;
1057
1058 cmd->common.command_id = req->tag;
1059
1060 return nvme_submit_cmd(nvmeq, cmd);
1061 }
1062
1063 static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1064 u32 *result, unsigned timeout)
1065 {
1066 int res;
1067 struct request *req;
1068
1069 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1070 if (IS_ERR(req))
1071 return PTR_ERR(req);
1072 res = nvme_submit_sync_cmd(req, cmd, result, timeout);
1073 blk_mq_free_request(req);
1074 return res;
1075 }
1076
1077 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1078 u32 *result)
1079 {
1080 return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
1081 }
1082
1083 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1084 struct nvme_command *cmd, u32 *result)
1085 {
1086 int res;
1087 struct request *req;
1088
1089 req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
1090 false);
1091 if (IS_ERR(req))
1092 return PTR_ERR(req);
1093 res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
1094 blk_mq_free_request(req);
1095 return res;
1096 }
1097
1098 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1099 {
1100 struct nvme_command c;
1101
1102 memset(&c, 0, sizeof(c));
1103 c.delete_queue.opcode = opcode;
1104 c.delete_queue.qid = cpu_to_le16(id);
1105
1106 return nvme_submit_admin_cmd(dev, &c, NULL);
1107 }
1108
1109 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1110 struct nvme_queue *nvmeq)
1111 {
1112 struct nvme_command c;
1113 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1114
1115 memset(&c, 0, sizeof(c));
1116 c.create_cq.opcode = nvme_admin_create_cq;
1117 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1118 c.create_cq.cqid = cpu_to_le16(qid);
1119 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1120 c.create_cq.cq_flags = cpu_to_le16(flags);
1121 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1122
1123 return nvme_submit_admin_cmd(dev, &c, NULL);
1124 }
1125
1126 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1127 struct nvme_queue *nvmeq)
1128 {
1129 struct nvme_command c;
1130 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1131
1132 memset(&c, 0, sizeof(c));
1133 c.create_sq.opcode = nvme_admin_create_sq;
1134 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1135 c.create_sq.sqid = cpu_to_le16(qid);
1136 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1137 c.create_sq.sq_flags = cpu_to_le16(flags);
1138 c.create_sq.cqid = cpu_to_le16(qid);
1139
1140 return nvme_submit_admin_cmd(dev, &c, NULL);
1141 }
1142
1143 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1144 {
1145 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1146 }
1147
1148 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1149 {
1150 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1151 }
1152
1153 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1154 dma_addr_t dma_addr)
1155 {
1156 struct nvme_command c;
1157
1158 memset(&c, 0, sizeof(c));
1159 c.identify.opcode = nvme_admin_identify;
1160 c.identify.nsid = cpu_to_le32(nsid);
1161 c.identify.prp1 = cpu_to_le64(dma_addr);
1162 c.identify.cns = cpu_to_le32(cns);
1163
1164 return nvme_submit_admin_cmd(dev, &c, NULL);
1165 }
1166
1167 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1168 dma_addr_t dma_addr, u32 *result)
1169 {
1170 struct nvme_command c;
1171
1172 memset(&c, 0, sizeof(c));
1173 c.features.opcode = nvme_admin_get_features;
1174 c.features.nsid = cpu_to_le32(nsid);
1175 c.features.prp1 = cpu_to_le64(dma_addr);
1176 c.features.fid = cpu_to_le32(fid);
1177
1178 return nvme_submit_admin_cmd(dev, &c, result);
1179 }
1180
1181 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1182 dma_addr_t dma_addr, u32 *result)
1183 {
1184 struct nvme_command c;
1185
1186 memset(&c, 0, sizeof(c));
1187 c.features.opcode = nvme_admin_set_features;
1188 c.features.prp1 = cpu_to_le64(dma_addr);
1189 c.features.fid = cpu_to_le32(fid);
1190 c.features.dword11 = cpu_to_le32(dword11);
1191
1192 return nvme_submit_admin_cmd(dev, &c, result);
1193 }
1194
1195 /**
1196 * nvme_abort_req - Attempt aborting a request
1197 *
1198 * Schedule controller reset if the command was already aborted once before and
1199 * still hasn't been returned to the driver, or if this is the admin queue.
1200 */
1201 static void nvme_abort_req(struct request *req)
1202 {
1203 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1204 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1205 struct nvme_dev *dev = nvmeq->dev;
1206 struct request *abort_req;
1207 struct nvme_cmd_info *abort_cmd;
1208 struct nvme_command cmd;
1209
1210 if (!nvmeq->qid || cmd_rq->aborted) {
1211 unsigned long flags;
1212
1213 spin_lock_irqsave(&dev_list_lock, flags);
1214 if (work_busy(&dev->reset_work))
1215 goto out;
1216 list_del_init(&dev->node);
1217 dev_warn(&dev->pci_dev->dev,
1218 "I/O %d QID %d timeout, reset controller\n",
1219 req->tag, nvmeq->qid);
1220 dev->reset_workfn = nvme_reset_failed_dev;
1221 queue_work(nvme_workq, &dev->reset_work);
1222 out:
1223 spin_unlock_irqrestore(&dev_list_lock, flags);
1224 return;
1225 }
1226
1227 if (!dev->abort_limit)
1228 return;
1229
1230 abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1231 false);
1232 if (IS_ERR(abort_req))
1233 return;
1234
1235 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1236 nvme_set_info(abort_cmd, abort_req, abort_completion);
1237
1238 memset(&cmd, 0, sizeof(cmd));
1239 cmd.abort.opcode = nvme_admin_abort_cmd;
1240 cmd.abort.cid = req->tag;
1241 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1242 cmd.abort.command_id = abort_req->tag;
1243
1244 --dev->abort_limit;
1245 cmd_rq->aborted = 1;
1246
1247 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1248 nvmeq->qid);
1249 if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1250 dev_warn(nvmeq->q_dmadev,
1251 "Could not abort I/O %d QID %d",
1252 req->tag, nvmeq->qid);
1253 blk_mq_free_request(abort_req);
1254 }
1255 }
1256
1257 static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1258 struct request *req, void *data, bool reserved)
1259 {
1260 struct nvme_queue *nvmeq = data;
1261 void *ctx;
1262 nvme_completion_fn fn;
1263 struct nvme_cmd_info *cmd;
1264 struct nvme_completion cqe;
1265
1266 if (!blk_mq_request_started(req))
1267 return;
1268
1269 cmd = blk_mq_rq_to_pdu(req);
1270
1271 if (cmd->ctx == CMD_CTX_CANCELLED)
1272 return;
1273
1274 if (blk_queue_dying(req->q))
1275 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1276 else
1277 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1278
1279
1280 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1281 req->tag, nvmeq->qid);
1282 ctx = cancel_cmd_info(cmd, &fn);
1283 fn(nvmeq, ctx, &cqe);
1284 }
1285
1286 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1287 {
1288 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1289 struct nvme_queue *nvmeq = cmd->nvmeq;
1290
1291 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1292 nvmeq->qid);
1293 spin_lock_irq(&nvmeq->q_lock);
1294 nvme_abort_req(req);
1295 spin_unlock_irq(&nvmeq->q_lock);
1296
1297 /*
1298 * The aborted req will be completed on receiving the abort req.
1299 * We enable the timer again. If hit twice, it'll cause a device reset,
1300 * as the device then is in a faulty state.
1301 */
1302 return BLK_EH_RESET_TIMER;
1303 }
1304
1305 static void nvme_free_queue(struct nvme_queue *nvmeq)
1306 {
1307 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1308 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1309 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1310 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1311 kfree(nvmeq);
1312 }
1313
1314 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1315 {
1316 int i;
1317
1318 for (i = dev->queue_count - 1; i >= lowest; i--) {
1319 struct nvme_queue *nvmeq = dev->queues[i];
1320 dev->queue_count--;
1321 dev->queues[i] = NULL;
1322 nvme_free_queue(nvmeq);
1323 }
1324 }
1325
1326 /**
1327 * nvme_suspend_queue - put queue into suspended state
1328 * @nvmeq - queue to suspend
1329 */
1330 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1331 {
1332 int vector;
1333
1334 spin_lock_irq(&nvmeq->q_lock);
1335 if (nvmeq->cq_vector == -1) {
1336 spin_unlock_irq(&nvmeq->q_lock);
1337 return 1;
1338 }
1339 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1340 nvmeq->dev->online_queues--;
1341 nvmeq->cq_vector = -1;
1342 spin_unlock_irq(&nvmeq->q_lock);
1343
1344 if (!nvmeq->qid && nvmeq->dev->admin_q)
1345 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1346
1347 irq_set_affinity_hint(vector, NULL);
1348 free_irq(vector, nvmeq);
1349
1350 return 0;
1351 }
1352
1353 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1354 {
1355 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1356
1357 spin_lock_irq(&nvmeq->q_lock);
1358 if (hctx && hctx->tags)
1359 blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
1360 spin_unlock_irq(&nvmeq->q_lock);
1361 }
1362
1363 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1364 {
1365 struct nvme_queue *nvmeq = dev->queues[qid];
1366
1367 if (!nvmeq)
1368 return;
1369 if (nvme_suspend_queue(nvmeq))
1370 return;
1371
1372 /* Don't tell the adapter to delete the admin queue.
1373 * Don't tell a removed adapter to delete IO queues. */
1374 if (qid && readl(&dev->bar->csts) != -1) {
1375 adapter_delete_sq(dev, qid);
1376 adapter_delete_cq(dev, qid);
1377 }
1378
1379 spin_lock_irq(&nvmeq->q_lock);
1380 nvme_process_cq(nvmeq);
1381 spin_unlock_irq(&nvmeq->q_lock);
1382 }
1383
1384 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1385 int depth)
1386 {
1387 struct device *dmadev = &dev->pci_dev->dev;
1388 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1389 if (!nvmeq)
1390 return NULL;
1391
1392 nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1393 &nvmeq->cq_dma_addr, GFP_KERNEL);
1394 if (!nvmeq->cqes)
1395 goto free_nvmeq;
1396
1397 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1398 &nvmeq->sq_dma_addr, GFP_KERNEL);
1399 if (!nvmeq->sq_cmds)
1400 goto free_cqdma;
1401
1402 nvmeq->q_dmadev = dmadev;
1403 nvmeq->dev = dev;
1404 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1405 dev->instance, qid);
1406 spin_lock_init(&nvmeq->q_lock);
1407 nvmeq->cq_head = 0;
1408 nvmeq->cq_phase = 1;
1409 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1410 nvmeq->q_depth = depth;
1411 nvmeq->qid = qid;
1412 dev->queue_count++;
1413 dev->queues[qid] = nvmeq;
1414
1415 return nvmeq;
1416
1417 free_cqdma:
1418 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1419 nvmeq->cq_dma_addr);
1420 free_nvmeq:
1421 kfree(nvmeq);
1422 return NULL;
1423 }
1424
1425 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1426 const char *name)
1427 {
1428 if (use_threaded_interrupts)
1429 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1430 nvme_irq_check, nvme_irq, IRQF_SHARED,
1431 name, nvmeq);
1432 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1433 IRQF_SHARED, name, nvmeq);
1434 }
1435
1436 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1437 {
1438 struct nvme_dev *dev = nvmeq->dev;
1439
1440 spin_lock_irq(&nvmeq->q_lock);
1441 nvmeq->sq_tail = 0;
1442 nvmeq->cq_head = 0;
1443 nvmeq->cq_phase = 1;
1444 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1445 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1446 dev->online_queues++;
1447 spin_unlock_irq(&nvmeq->q_lock);
1448 }
1449
1450 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1451 {
1452 struct nvme_dev *dev = nvmeq->dev;
1453 int result;
1454
1455 nvmeq->cq_vector = qid - 1;
1456 result = adapter_alloc_cq(dev, qid, nvmeq);
1457 if (result < 0)
1458 return result;
1459
1460 result = adapter_alloc_sq(dev, qid, nvmeq);
1461 if (result < 0)
1462 goto release_cq;
1463
1464 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1465 if (result < 0)
1466 goto release_sq;
1467
1468 nvme_init_queue(nvmeq, qid);
1469 return result;
1470
1471 release_sq:
1472 adapter_delete_sq(dev, qid);
1473 release_cq:
1474 adapter_delete_cq(dev, qid);
1475 return result;
1476 }
1477
1478 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1479 {
1480 unsigned long timeout;
1481 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1482
1483 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1484
1485 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1486 msleep(100);
1487 if (fatal_signal_pending(current))
1488 return -EINTR;
1489 if (time_after(jiffies, timeout)) {
1490 dev_err(&dev->pci_dev->dev,
1491 "Device not ready; aborting %s\n", enabled ?
1492 "initialisation" : "reset");
1493 return -ENODEV;
1494 }
1495 }
1496
1497 return 0;
1498 }
1499
1500 /*
1501 * If the device has been passed off to us in an enabled state, just clear
1502 * the enabled bit. The spec says we should set the 'shutdown notification
1503 * bits', but doing so may cause the device to complete commands to the
1504 * admin queue ... and we don't know what memory that might be pointing at!
1505 */
1506 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1507 {
1508 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1509 dev->ctrl_config &= ~NVME_CC_ENABLE;
1510 writel(dev->ctrl_config, &dev->bar->cc);
1511
1512 return nvme_wait_ready(dev, cap, false);
1513 }
1514
1515 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1516 {
1517 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1518 dev->ctrl_config |= NVME_CC_ENABLE;
1519 writel(dev->ctrl_config, &dev->bar->cc);
1520
1521 return nvme_wait_ready(dev, cap, true);
1522 }
1523
1524 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1525 {
1526 unsigned long timeout;
1527
1528 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1529 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1530
1531 writel(dev->ctrl_config, &dev->bar->cc);
1532
1533 timeout = SHUTDOWN_TIMEOUT + jiffies;
1534 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1535 NVME_CSTS_SHST_CMPLT) {
1536 msleep(100);
1537 if (fatal_signal_pending(current))
1538 return -EINTR;
1539 if (time_after(jiffies, timeout)) {
1540 dev_err(&dev->pci_dev->dev,
1541 "Device shutdown incomplete; abort shutdown\n");
1542 return -ENODEV;
1543 }
1544 }
1545
1546 return 0;
1547 }
1548
1549 static struct blk_mq_ops nvme_mq_admin_ops = {
1550 .queue_rq = nvme_admin_queue_rq,
1551 .map_queue = blk_mq_map_queue,
1552 .init_hctx = nvme_admin_init_hctx,
1553 .exit_hctx = nvme_exit_hctx,
1554 .init_request = nvme_admin_init_request,
1555 .timeout = nvme_timeout,
1556 };
1557
1558 static struct blk_mq_ops nvme_mq_ops = {
1559 .queue_rq = nvme_queue_rq,
1560 .map_queue = blk_mq_map_queue,
1561 .init_hctx = nvme_init_hctx,
1562 .exit_hctx = nvme_exit_hctx,
1563 .init_request = nvme_init_request,
1564 .timeout = nvme_timeout,
1565 };
1566
1567 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1568 {
1569 if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1570 blk_cleanup_queue(dev->admin_q);
1571 blk_mq_free_tag_set(&dev->admin_tagset);
1572 }
1573 }
1574
1575 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1576 {
1577 if (!dev->admin_q) {
1578 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1579 dev->admin_tagset.nr_hw_queues = 1;
1580 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1581 dev->admin_tagset.reserved_tags = 1;
1582 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1583 dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
1584 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1585 dev->admin_tagset.driver_data = dev;
1586
1587 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1588 return -ENOMEM;
1589
1590 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1591 if (IS_ERR(dev->admin_q)) {
1592 blk_mq_free_tag_set(&dev->admin_tagset);
1593 return -ENOMEM;
1594 }
1595 if (!blk_get_queue(dev->admin_q)) {
1596 nvme_dev_remove_admin(dev);
1597 return -ENODEV;
1598 }
1599 } else
1600 blk_mq_unfreeze_queue(dev->admin_q);
1601
1602 return 0;
1603 }
1604
1605 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1606 {
1607 int result;
1608 u32 aqa;
1609 u64 cap = readq(&dev->bar->cap);
1610 struct nvme_queue *nvmeq;
1611 unsigned page_shift = PAGE_SHIFT;
1612 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1613 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1614
1615 if (page_shift < dev_page_min) {
1616 dev_err(&dev->pci_dev->dev,
1617 "Minimum device page size (%u) too large for "
1618 "host (%u)\n", 1 << dev_page_min,
1619 1 << page_shift);
1620 return -ENODEV;
1621 }
1622 if (page_shift > dev_page_max) {
1623 dev_info(&dev->pci_dev->dev,
1624 "Device maximum page size (%u) smaller than "
1625 "host (%u); enabling work-around\n",
1626 1 << dev_page_max, 1 << page_shift);
1627 page_shift = dev_page_max;
1628 }
1629
1630 result = nvme_disable_ctrl(dev, cap);
1631 if (result < 0)
1632 return result;
1633
1634 nvmeq = dev->queues[0];
1635 if (!nvmeq) {
1636 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1637 if (!nvmeq)
1638 return -ENOMEM;
1639 }
1640
1641 aqa = nvmeq->q_depth - 1;
1642 aqa |= aqa << 16;
1643
1644 dev->page_size = 1 << page_shift;
1645
1646 dev->ctrl_config = NVME_CC_CSS_NVM;
1647 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1648 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1649 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1650
1651 writel(aqa, &dev->bar->aqa);
1652 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1653 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1654
1655 result = nvme_enable_ctrl(dev, cap);
1656 if (result)
1657 goto free_nvmeq;
1658
1659 nvmeq->cq_vector = 0;
1660 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1661 if (result)
1662 goto free_nvmeq;
1663
1664 return result;
1665
1666 free_nvmeq:
1667 nvme_free_queues(dev, 0);
1668 return result;
1669 }
1670
1671 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1672 unsigned long addr, unsigned length)
1673 {
1674 int i, err, count, nents, offset;
1675 struct scatterlist *sg;
1676 struct page **pages;
1677 struct nvme_iod *iod;
1678
1679 if (addr & 3)
1680 return ERR_PTR(-EINVAL);
1681 if (!length || length > INT_MAX - PAGE_SIZE)
1682 return ERR_PTR(-EINVAL);
1683
1684 offset = offset_in_page(addr);
1685 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1686 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1687 if (!pages)
1688 return ERR_PTR(-ENOMEM);
1689
1690 err = get_user_pages_fast(addr, count, 1, pages);
1691 if (err < count) {
1692 count = err;
1693 err = -EFAULT;
1694 goto put_pages;
1695 }
1696
1697 err = -ENOMEM;
1698 iod = __nvme_alloc_iod(count, length, dev, 0, GFP_KERNEL);
1699 if (!iod)
1700 goto put_pages;
1701
1702 sg = iod->sg;
1703 sg_init_table(sg, count);
1704 for (i = 0; i < count; i++) {
1705 sg_set_page(&sg[i], pages[i],
1706 min_t(unsigned, length, PAGE_SIZE - offset),
1707 offset);
1708 length -= (PAGE_SIZE - offset);
1709 offset = 0;
1710 }
1711 sg_mark_end(&sg[i - 1]);
1712 iod->nents = count;
1713
1714 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1715 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1716 if (!nents)
1717 goto free_iod;
1718
1719 kfree(pages);
1720 return iod;
1721
1722 free_iod:
1723 kfree(iod);
1724 put_pages:
1725 for (i = 0; i < count; i++)
1726 put_page(pages[i]);
1727 kfree(pages);
1728 return ERR_PTR(err);
1729 }
1730
1731 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1732 struct nvme_iod *iod)
1733 {
1734 int i;
1735
1736 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1737 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1738
1739 for (i = 0; i < iod->nents; i++)
1740 put_page(sg_page(&iod->sg[i]));
1741 }
1742
1743 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1744 {
1745 struct nvme_dev *dev = ns->dev;
1746 struct nvme_user_io io;
1747 struct nvme_command c;
1748 unsigned length, meta_len, prp_len;
1749 int status, write;
1750 struct nvme_iod *iod;
1751 dma_addr_t meta_dma = 0;
1752 void *meta = NULL;
1753
1754 if (copy_from_user(&io, uio, sizeof(io)))
1755 return -EFAULT;
1756 length = (io.nblocks + 1) << ns->lba_shift;
1757 meta_len = (io.nblocks + 1) * ns->ms;
1758
1759 if (meta_len && ((io.metadata & 3) || !io.metadata) && !ns->ext)
1760 return -EINVAL;
1761 else if (meta_len && ns->ext) {
1762 length += meta_len;
1763 meta_len = 0;
1764 }
1765
1766 write = io.opcode & 1;
1767
1768 switch (io.opcode) {
1769 case nvme_cmd_write:
1770 case nvme_cmd_read:
1771 case nvme_cmd_compare:
1772 iod = nvme_map_user_pages(dev, write, io.addr, length);
1773 break;
1774 default:
1775 return -EINVAL;
1776 }
1777
1778 if (IS_ERR(iod))
1779 return PTR_ERR(iod);
1780
1781 prp_len = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1782 if (length != prp_len) {
1783 status = -ENOMEM;
1784 goto unmap;
1785 }
1786 if (meta_len) {
1787 meta = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1788 &meta_dma, GFP_KERNEL);
1789 if (!meta) {
1790 status = -ENOMEM;
1791 goto unmap;
1792 }
1793 if (write) {
1794 if (copy_from_user(meta, (void __user *)io.metadata,
1795 meta_len)) {
1796 status = -EFAULT;
1797 goto unmap;
1798 }
1799 }
1800 }
1801
1802 memset(&c, 0, sizeof(c));
1803 c.rw.opcode = io.opcode;
1804 c.rw.flags = io.flags;
1805 c.rw.nsid = cpu_to_le32(ns->ns_id);
1806 c.rw.slba = cpu_to_le64(io.slba);
1807 c.rw.length = cpu_to_le16(io.nblocks);
1808 c.rw.control = cpu_to_le16(io.control);
1809 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1810 c.rw.reftag = cpu_to_le32(io.reftag);
1811 c.rw.apptag = cpu_to_le16(io.apptag);
1812 c.rw.appmask = cpu_to_le16(io.appmask);
1813 c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1814 c.rw.prp2 = cpu_to_le64(iod->first_dma);
1815 c.rw.metadata = cpu_to_le64(meta_dma);
1816 status = nvme_submit_io_cmd(dev, ns, &c, NULL);
1817 unmap:
1818 nvme_unmap_user_pages(dev, write, iod);
1819 nvme_free_iod(dev, iod);
1820 if (meta) {
1821 if (status == NVME_SC_SUCCESS && !write) {
1822 if (copy_to_user((void __user *)io.metadata, meta,
1823 meta_len))
1824 status = -EFAULT;
1825 }
1826 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta, meta_dma);
1827 }
1828 return status;
1829 }
1830
1831 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1832 struct nvme_passthru_cmd __user *ucmd)
1833 {
1834 struct nvme_passthru_cmd cmd;
1835 struct nvme_command c;
1836 int status, length;
1837 struct nvme_iod *uninitialized_var(iod);
1838 unsigned timeout;
1839
1840 if (!capable(CAP_SYS_ADMIN))
1841 return -EACCES;
1842 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1843 return -EFAULT;
1844
1845 memset(&c, 0, sizeof(c));
1846 c.common.opcode = cmd.opcode;
1847 c.common.flags = cmd.flags;
1848 c.common.nsid = cpu_to_le32(cmd.nsid);
1849 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1850 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1851 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1852 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1853 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1854 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1855 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1856 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1857
1858 length = cmd.data_len;
1859 if (cmd.data_len) {
1860 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1861 length);
1862 if (IS_ERR(iod))
1863 return PTR_ERR(iod);
1864 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1865 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1866 c.common.prp2 = cpu_to_le64(iod->first_dma);
1867 }
1868
1869 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1870 ADMIN_TIMEOUT;
1871
1872 if (length != cmd.data_len)
1873 status = -ENOMEM;
1874 else if (ns) {
1875 struct request *req;
1876
1877 req = blk_mq_alloc_request(ns->queue, WRITE,
1878 (GFP_KERNEL|__GFP_WAIT), false);
1879 if (IS_ERR(req))
1880 status = PTR_ERR(req);
1881 else {
1882 status = nvme_submit_sync_cmd(req, &c, &cmd.result,
1883 timeout);
1884 blk_mq_free_request(req);
1885 }
1886 } else
1887 status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
1888
1889 if (cmd.data_len) {
1890 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1891 nvme_free_iod(dev, iod);
1892 }
1893
1894 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1895 sizeof(cmd.result)))
1896 status = -EFAULT;
1897
1898 return status;
1899 }
1900
1901 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1902 unsigned long arg)
1903 {
1904 struct nvme_ns *ns = bdev->bd_disk->private_data;
1905
1906 switch (cmd) {
1907 case NVME_IOCTL_ID:
1908 force_successful_syscall_return();
1909 return ns->ns_id;
1910 case NVME_IOCTL_ADMIN_CMD:
1911 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1912 case NVME_IOCTL_IO_CMD:
1913 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1914 case NVME_IOCTL_SUBMIT_IO:
1915 return nvme_submit_io(ns, (void __user *)arg);
1916 case SG_GET_VERSION_NUM:
1917 return nvme_sg_get_version_num((void __user *)arg);
1918 case SG_IO:
1919 return nvme_sg_io(ns, (void __user *)arg);
1920 default:
1921 return -ENOTTY;
1922 }
1923 }
1924
1925 #ifdef CONFIG_COMPAT
1926 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1927 unsigned int cmd, unsigned long arg)
1928 {
1929 switch (cmd) {
1930 case SG_IO:
1931 return -ENOIOCTLCMD;
1932 }
1933 return nvme_ioctl(bdev, mode, cmd, arg);
1934 }
1935 #else
1936 #define nvme_compat_ioctl NULL
1937 #endif
1938
1939 static int nvme_open(struct block_device *bdev, fmode_t mode)
1940 {
1941 int ret = 0;
1942 struct nvme_ns *ns;
1943
1944 spin_lock(&dev_list_lock);
1945 ns = bdev->bd_disk->private_data;
1946 if (!ns)
1947 ret = -ENXIO;
1948 else if (!kref_get_unless_zero(&ns->dev->kref))
1949 ret = -ENXIO;
1950 spin_unlock(&dev_list_lock);
1951
1952 return ret;
1953 }
1954
1955 static void nvme_free_dev(struct kref *kref);
1956
1957 static void nvme_release(struct gendisk *disk, fmode_t mode)
1958 {
1959 struct nvme_ns *ns = disk->private_data;
1960 struct nvme_dev *dev = ns->dev;
1961
1962 kref_put(&dev->kref, nvme_free_dev);
1963 }
1964
1965 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1966 {
1967 /* some standard values */
1968 geo->heads = 1 << 6;
1969 geo->sectors = 1 << 5;
1970 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1971 return 0;
1972 }
1973
1974 static void nvme_config_discard(struct nvme_ns *ns)
1975 {
1976 u32 logical_block_size = queue_logical_block_size(ns->queue);
1977 ns->queue->limits.discard_zeroes_data = 0;
1978 ns->queue->limits.discard_alignment = logical_block_size;
1979 ns->queue->limits.discard_granularity = logical_block_size;
1980 ns->queue->limits.max_discard_sectors = 0xffffffff;
1981 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1982 }
1983
1984 static int nvme_revalidate_disk(struct gendisk *disk)
1985 {
1986 struct nvme_ns *ns = disk->private_data;
1987 struct nvme_dev *dev = ns->dev;
1988 struct nvme_id_ns *id;
1989 dma_addr_t dma_addr;
1990 u8 lbaf, pi_type;
1991 u16 old_ms;
1992 unsigned short bs;
1993
1994 id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
1995 GFP_KERNEL);
1996 if (!id) {
1997 dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
1998 __func__);
1999 return 0;
2000 }
2001 if (nvme_identify(dev, ns->ns_id, 0, dma_addr)) {
2002 dev_warn(&dev->pci_dev->dev,
2003 "identify failed ns:%d, setting capacity to 0\n",
2004 ns->ns_id);
2005 memset(id, 0, sizeof(*id));
2006 }
2007
2008 old_ms = ns->ms;
2009 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2010 ns->lba_shift = id->lbaf[lbaf].ds;
2011 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2012 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
2013
2014 /*
2015 * If identify namespace failed, use default 512 byte block size so
2016 * block layer can use before failing read/write for 0 capacity.
2017 */
2018 if (ns->lba_shift == 0)
2019 ns->lba_shift = 9;
2020 bs = 1 << ns->lba_shift;
2021
2022 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2023 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2024 id->dps & NVME_NS_DPS_PI_MASK : 0;
2025
2026 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2027 ns->ms != old_ms ||
2028 bs != queue_logical_block_size(disk->queue) ||
2029 (ns->ms && ns->ext)))
2030 blk_integrity_unregister(disk);
2031
2032 ns->pi_type = pi_type;
2033 blk_queue_logical_block_size(ns->queue, bs);
2034
2035 if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
2036 !ns->ext)
2037 nvme_init_integrity(ns);
2038
2039 if (id->ncap == 0 || (ns->ms && !blk_get_integrity(disk)))
2040 set_capacity(disk, 0);
2041 else
2042 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2043
2044 if (dev->oncs & NVME_CTRL_ONCS_DSM)
2045 nvme_config_discard(ns);
2046
2047 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
2048 return 0;
2049 }
2050
2051 static const struct block_device_operations nvme_fops = {
2052 .owner = THIS_MODULE,
2053 .ioctl = nvme_ioctl,
2054 .compat_ioctl = nvme_compat_ioctl,
2055 .open = nvme_open,
2056 .release = nvme_release,
2057 .getgeo = nvme_getgeo,
2058 .revalidate_disk= nvme_revalidate_disk,
2059 };
2060
2061 static int nvme_kthread(void *data)
2062 {
2063 struct nvme_dev *dev, *next;
2064
2065 while (!kthread_should_stop()) {
2066 set_current_state(TASK_INTERRUPTIBLE);
2067 spin_lock(&dev_list_lock);
2068 list_for_each_entry_safe(dev, next, &dev_list, node) {
2069 int i;
2070 if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
2071 if (work_busy(&dev->reset_work))
2072 continue;
2073 list_del_init(&dev->node);
2074 dev_warn(&dev->pci_dev->dev,
2075 "Failed status: %x, reset controller\n",
2076 readl(&dev->bar->csts));
2077 dev->reset_workfn = nvme_reset_failed_dev;
2078 queue_work(nvme_workq, &dev->reset_work);
2079 continue;
2080 }
2081 for (i = 0; i < dev->queue_count; i++) {
2082 struct nvme_queue *nvmeq = dev->queues[i];
2083 if (!nvmeq)
2084 continue;
2085 spin_lock_irq(&nvmeq->q_lock);
2086 nvme_process_cq(nvmeq);
2087
2088 while ((i == 0) && (dev->event_limit > 0)) {
2089 if (nvme_submit_async_admin_req(dev))
2090 break;
2091 dev->event_limit--;
2092 }
2093 spin_unlock_irq(&nvmeq->q_lock);
2094 }
2095 }
2096 spin_unlock(&dev_list_lock);
2097 schedule_timeout(round_jiffies_relative(HZ));
2098 }
2099 return 0;
2100 }
2101
2102 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2103 {
2104 struct nvme_ns *ns;
2105 struct gendisk *disk;
2106 int node = dev_to_node(&dev->pci_dev->dev);
2107
2108 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2109 if (!ns)
2110 return;
2111
2112 ns->queue = blk_mq_init_queue(&dev->tagset);
2113 if (IS_ERR(ns->queue))
2114 goto out_free_ns;
2115 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2116 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2117 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2118 ns->dev = dev;
2119 ns->queue->queuedata = ns;
2120
2121 disk = alloc_disk_node(0, node);
2122 if (!disk)
2123 goto out_free_queue;
2124
2125 ns->ns_id = nsid;
2126 ns->disk = disk;
2127 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2128 list_add_tail(&ns->list, &dev->namespaces);
2129
2130 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2131 if (dev->max_hw_sectors)
2132 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2133 if (dev->stripe_size)
2134 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2135 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2136 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2137
2138 disk->major = nvme_major;
2139 disk->first_minor = 0;
2140 disk->fops = &nvme_fops;
2141 disk->private_data = ns;
2142 disk->queue = ns->queue;
2143 disk->driverfs_dev = dev->device;
2144 disk->flags = GENHD_FL_EXT_DEVT;
2145 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2146
2147 /*
2148 * Initialize capacity to 0 until we establish the namespace format and
2149 * setup integrity extentions if necessary. The revalidate_disk after
2150 * add_disk allows the driver to register with integrity if the format
2151 * requires it.
2152 */
2153 set_capacity(disk, 0);
2154 nvme_revalidate_disk(ns->disk);
2155 add_disk(ns->disk);
2156 if (ns->ms)
2157 revalidate_disk(ns->disk);
2158 return;
2159 out_free_queue:
2160 blk_cleanup_queue(ns->queue);
2161 out_free_ns:
2162 kfree(ns);
2163 }
2164
2165 static void nvme_create_io_queues(struct nvme_dev *dev)
2166 {
2167 unsigned i;
2168
2169 for (i = dev->queue_count; i <= dev->max_qid; i++)
2170 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2171 break;
2172
2173 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2174 if (nvme_create_queue(dev->queues[i], i))
2175 break;
2176 }
2177
2178 static int set_queue_count(struct nvme_dev *dev, int count)
2179 {
2180 int status;
2181 u32 result;
2182 u32 q_count = (count - 1) | ((count - 1) << 16);
2183
2184 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2185 &result);
2186 if (status < 0)
2187 return status;
2188 if (status > 0) {
2189 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2190 status);
2191 return 0;
2192 }
2193 return min(result & 0xffff, result >> 16) + 1;
2194 }
2195
2196 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2197 {
2198 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2199 }
2200
2201 static int nvme_setup_io_queues(struct nvme_dev *dev)
2202 {
2203 struct nvme_queue *adminq = dev->queues[0];
2204 struct pci_dev *pdev = dev->pci_dev;
2205 int result, i, vecs, nr_io_queues, size;
2206
2207 nr_io_queues = num_possible_cpus();
2208 result = set_queue_count(dev, nr_io_queues);
2209 if (result <= 0)
2210 return result;
2211 if (result < nr_io_queues)
2212 nr_io_queues = result;
2213
2214 size = db_bar_size(dev, nr_io_queues);
2215 if (size > 8192) {
2216 iounmap(dev->bar);
2217 do {
2218 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2219 if (dev->bar)
2220 break;
2221 if (!--nr_io_queues)
2222 return -ENOMEM;
2223 size = db_bar_size(dev, nr_io_queues);
2224 } while (1);
2225 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2226 adminq->q_db = dev->dbs;
2227 }
2228
2229 /* Deregister the admin queue's interrupt */
2230 free_irq(dev->entry[0].vector, adminq);
2231
2232 /*
2233 * If we enable msix early due to not intx, disable it again before
2234 * setting up the full range we need.
2235 */
2236 if (!pdev->irq)
2237 pci_disable_msix(pdev);
2238
2239 for (i = 0; i < nr_io_queues; i++)
2240 dev->entry[i].entry = i;
2241 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2242 if (vecs < 0) {
2243 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2244 if (vecs < 0) {
2245 vecs = 1;
2246 } else {
2247 for (i = 0; i < vecs; i++)
2248 dev->entry[i].vector = i + pdev->irq;
2249 }
2250 }
2251
2252 /*
2253 * Should investigate if there's a performance win from allocating
2254 * more queues than interrupt vectors; it might allow the submission
2255 * path to scale better, even if the receive path is limited by the
2256 * number of interrupts.
2257 */
2258 nr_io_queues = vecs;
2259 dev->max_qid = nr_io_queues;
2260
2261 result = queue_request_irq(dev, adminq, adminq->irqname);
2262 if (result)
2263 goto free_queues;
2264
2265 /* Free previously allocated queues that are no longer usable */
2266 nvme_free_queues(dev, nr_io_queues + 1);
2267 nvme_create_io_queues(dev);
2268
2269 return 0;
2270
2271 free_queues:
2272 nvme_free_queues(dev, 1);
2273 return result;
2274 }
2275
2276 /*
2277 * Return: error value if an error occurred setting up the queues or calling
2278 * Identify Device. 0 if these succeeded, even if adding some of the
2279 * namespaces failed. At the moment, these failures are silent. TBD which
2280 * failures should be reported.
2281 */
2282 static int nvme_dev_add(struct nvme_dev *dev)
2283 {
2284 struct pci_dev *pdev = dev->pci_dev;
2285 int res;
2286 unsigned nn, i;
2287 struct nvme_id_ctrl *ctrl;
2288 void *mem;
2289 dma_addr_t dma_addr;
2290 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2291
2292 mem = dma_alloc_coherent(&pdev->dev, 4096, &dma_addr, GFP_KERNEL);
2293 if (!mem)
2294 return -ENOMEM;
2295
2296 res = nvme_identify(dev, 0, 1, dma_addr);
2297 if (res) {
2298 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2299 dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2300 return -EIO;
2301 }
2302
2303 ctrl = mem;
2304 nn = le32_to_cpup(&ctrl->nn);
2305 dev->oncs = le16_to_cpup(&ctrl->oncs);
2306 dev->abort_limit = ctrl->acl + 1;
2307 dev->vwc = ctrl->vwc;
2308 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2309 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2310 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2311 if (ctrl->mdts)
2312 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2313 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2314 (pdev->device == 0x0953) && ctrl->vs[3]) {
2315 unsigned int max_hw_sectors;
2316
2317 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2318 max_hw_sectors = dev->stripe_size >> (shift - 9);
2319 if (dev->max_hw_sectors) {
2320 dev->max_hw_sectors = min(max_hw_sectors,
2321 dev->max_hw_sectors);
2322 } else
2323 dev->max_hw_sectors = max_hw_sectors;
2324 }
2325 dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2326
2327 dev->tagset.ops = &nvme_mq_ops;
2328 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2329 dev->tagset.timeout = NVME_IO_TIMEOUT;
2330 dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
2331 dev->tagset.queue_depth =
2332 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2333 dev->tagset.cmd_size = nvme_cmd_size(dev);
2334 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2335 dev->tagset.driver_data = dev;
2336
2337 if (blk_mq_alloc_tag_set(&dev->tagset))
2338 return 0;
2339
2340 for (i = 1; i <= nn; i++)
2341 nvme_alloc_ns(dev, i);
2342
2343 return 0;
2344 }
2345
2346 static int nvme_dev_map(struct nvme_dev *dev)
2347 {
2348 u64 cap;
2349 int bars, result = -ENOMEM;
2350 struct pci_dev *pdev = dev->pci_dev;
2351
2352 if (pci_enable_device_mem(pdev))
2353 return result;
2354
2355 dev->entry[0].vector = pdev->irq;
2356 pci_set_master(pdev);
2357 bars = pci_select_bars(pdev, IORESOURCE_MEM);
2358 if (!bars)
2359 goto disable_pci;
2360
2361 if (pci_request_selected_regions(pdev, bars, "nvme"))
2362 goto disable_pci;
2363
2364 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2365 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2366 goto disable;
2367
2368 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2369 if (!dev->bar)
2370 goto disable;
2371
2372 if (readl(&dev->bar->csts) == -1) {
2373 result = -ENODEV;
2374 goto unmap;
2375 }
2376
2377 /*
2378 * Some devices don't advertse INTx interrupts, pre-enable a single
2379 * MSIX vec for setup. We'll adjust this later.
2380 */
2381 if (!pdev->irq) {
2382 result = pci_enable_msix(pdev, dev->entry, 1);
2383 if (result < 0)
2384 goto unmap;
2385 }
2386
2387 cap = readq(&dev->bar->cap);
2388 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2389 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2390 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2391
2392 return 0;
2393
2394 unmap:
2395 iounmap(dev->bar);
2396 dev->bar = NULL;
2397 disable:
2398 pci_release_regions(pdev);
2399 disable_pci:
2400 pci_disable_device(pdev);
2401 return result;
2402 }
2403
2404 static void nvme_dev_unmap(struct nvme_dev *dev)
2405 {
2406 if (dev->pci_dev->msi_enabled)
2407 pci_disable_msi(dev->pci_dev);
2408 else if (dev->pci_dev->msix_enabled)
2409 pci_disable_msix(dev->pci_dev);
2410
2411 if (dev->bar) {
2412 iounmap(dev->bar);
2413 dev->bar = NULL;
2414 pci_release_regions(dev->pci_dev);
2415 }
2416
2417 if (pci_is_enabled(dev->pci_dev))
2418 pci_disable_device(dev->pci_dev);
2419 }
2420
2421 struct nvme_delq_ctx {
2422 struct task_struct *waiter;
2423 struct kthread_worker *worker;
2424 atomic_t refcount;
2425 };
2426
2427 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2428 {
2429 dq->waiter = current;
2430 mb();
2431
2432 for (;;) {
2433 set_current_state(TASK_KILLABLE);
2434 if (!atomic_read(&dq->refcount))
2435 break;
2436 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2437 fatal_signal_pending(current)) {
2438 /*
2439 * Disable the controller first since we can't trust it
2440 * at this point, but leave the admin queue enabled
2441 * until all queue deletion requests are flushed.
2442 * FIXME: This may take a while if there are more h/w
2443 * queues than admin tags.
2444 */
2445 set_current_state(TASK_RUNNING);
2446 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2447 nvme_clear_queue(dev->queues[0]);
2448 flush_kthread_worker(dq->worker);
2449 nvme_disable_queue(dev, 0);
2450 return;
2451 }
2452 }
2453 set_current_state(TASK_RUNNING);
2454 }
2455
2456 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2457 {
2458 atomic_dec(&dq->refcount);
2459 if (dq->waiter)
2460 wake_up_process(dq->waiter);
2461 }
2462
2463 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2464 {
2465 atomic_inc(&dq->refcount);
2466 return dq;
2467 }
2468
2469 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2470 {
2471 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2472 nvme_put_dq(dq);
2473 }
2474
2475 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2476 kthread_work_func_t fn)
2477 {
2478 struct nvme_command c;
2479
2480 memset(&c, 0, sizeof(c));
2481 c.delete_queue.opcode = opcode;
2482 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2483
2484 init_kthread_work(&nvmeq->cmdinfo.work, fn);
2485 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2486 ADMIN_TIMEOUT);
2487 }
2488
2489 static void nvme_del_cq_work_handler(struct kthread_work *work)
2490 {
2491 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2492 cmdinfo.work);
2493 nvme_del_queue_end(nvmeq);
2494 }
2495
2496 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2497 {
2498 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2499 nvme_del_cq_work_handler);
2500 }
2501
2502 static void nvme_del_sq_work_handler(struct kthread_work *work)
2503 {
2504 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2505 cmdinfo.work);
2506 int status = nvmeq->cmdinfo.status;
2507
2508 if (!status)
2509 status = nvme_delete_cq(nvmeq);
2510 if (status)
2511 nvme_del_queue_end(nvmeq);
2512 }
2513
2514 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2515 {
2516 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2517 nvme_del_sq_work_handler);
2518 }
2519
2520 static void nvme_del_queue_start(struct kthread_work *work)
2521 {
2522 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2523 cmdinfo.work);
2524 if (nvme_delete_sq(nvmeq))
2525 nvme_del_queue_end(nvmeq);
2526 }
2527
2528 static void nvme_disable_io_queues(struct nvme_dev *dev)
2529 {
2530 int i;
2531 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2532 struct nvme_delq_ctx dq;
2533 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2534 &worker, "nvme%d", dev->instance);
2535
2536 if (IS_ERR(kworker_task)) {
2537 dev_err(&dev->pci_dev->dev,
2538 "Failed to create queue del task\n");
2539 for (i = dev->queue_count - 1; i > 0; i--)
2540 nvme_disable_queue(dev, i);
2541 return;
2542 }
2543
2544 dq.waiter = NULL;
2545 atomic_set(&dq.refcount, 0);
2546 dq.worker = &worker;
2547 for (i = dev->queue_count - 1; i > 0; i--) {
2548 struct nvme_queue *nvmeq = dev->queues[i];
2549
2550 if (nvme_suspend_queue(nvmeq))
2551 continue;
2552 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2553 nvmeq->cmdinfo.worker = dq.worker;
2554 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2555 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2556 }
2557 nvme_wait_dq(&dq, dev);
2558 kthread_stop(kworker_task);
2559 }
2560
2561 /*
2562 * Remove the node from the device list and check
2563 * for whether or not we need to stop the nvme_thread.
2564 */
2565 static void nvme_dev_list_remove(struct nvme_dev *dev)
2566 {
2567 struct task_struct *tmp = NULL;
2568
2569 spin_lock(&dev_list_lock);
2570 list_del_init(&dev->node);
2571 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2572 tmp = nvme_thread;
2573 nvme_thread = NULL;
2574 }
2575 spin_unlock(&dev_list_lock);
2576
2577 if (tmp)
2578 kthread_stop(tmp);
2579 }
2580
2581 static void nvme_freeze_queues(struct nvme_dev *dev)
2582 {
2583 struct nvme_ns *ns;
2584
2585 list_for_each_entry(ns, &dev->namespaces, list) {
2586 blk_mq_freeze_queue_start(ns->queue);
2587
2588 spin_lock(ns->queue->queue_lock);
2589 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2590 spin_unlock(ns->queue->queue_lock);
2591
2592 blk_mq_cancel_requeue_work(ns->queue);
2593 blk_mq_stop_hw_queues(ns->queue);
2594 }
2595 }
2596
2597 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2598 {
2599 struct nvme_ns *ns;
2600
2601 list_for_each_entry(ns, &dev->namespaces, list) {
2602 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2603 blk_mq_unfreeze_queue(ns->queue);
2604 blk_mq_start_stopped_hw_queues(ns->queue, true);
2605 blk_mq_kick_requeue_list(ns->queue);
2606 }
2607 }
2608
2609 static void nvme_dev_shutdown(struct nvme_dev *dev)
2610 {
2611 int i;
2612 u32 csts = -1;
2613
2614 nvme_dev_list_remove(dev);
2615
2616 if (dev->bar) {
2617 nvme_freeze_queues(dev);
2618 csts = readl(&dev->bar->csts);
2619 }
2620 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2621 for (i = dev->queue_count - 1; i >= 0; i--) {
2622 struct nvme_queue *nvmeq = dev->queues[i];
2623 nvme_suspend_queue(nvmeq);
2624 }
2625 } else {
2626 nvme_disable_io_queues(dev);
2627 nvme_shutdown_ctrl(dev);
2628 nvme_disable_queue(dev, 0);
2629 }
2630 nvme_dev_unmap(dev);
2631
2632 for (i = dev->queue_count - 1; i >= 0; i--)
2633 nvme_clear_queue(dev->queues[i]);
2634 }
2635
2636 static void nvme_dev_remove(struct nvme_dev *dev)
2637 {
2638 struct nvme_ns *ns;
2639
2640 list_for_each_entry(ns, &dev->namespaces, list) {
2641 if (ns->disk->flags & GENHD_FL_UP) {
2642 if (blk_get_integrity(ns->disk))
2643 blk_integrity_unregister(ns->disk);
2644 del_gendisk(ns->disk);
2645 }
2646 if (!blk_queue_dying(ns->queue)) {
2647 blk_mq_abort_requeue_list(ns->queue);
2648 blk_cleanup_queue(ns->queue);
2649 }
2650 }
2651 }
2652
2653 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2654 {
2655 struct device *dmadev = &dev->pci_dev->dev;
2656 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2657 PAGE_SIZE, PAGE_SIZE, 0);
2658 if (!dev->prp_page_pool)
2659 return -ENOMEM;
2660
2661 /* Optimisation for I/Os between 4k and 128k */
2662 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2663 256, 256, 0);
2664 if (!dev->prp_small_pool) {
2665 dma_pool_destroy(dev->prp_page_pool);
2666 return -ENOMEM;
2667 }
2668 return 0;
2669 }
2670
2671 static void nvme_release_prp_pools(struct nvme_dev *dev)
2672 {
2673 dma_pool_destroy(dev->prp_page_pool);
2674 dma_pool_destroy(dev->prp_small_pool);
2675 }
2676
2677 static DEFINE_IDA(nvme_instance_ida);
2678
2679 static int nvme_set_instance(struct nvme_dev *dev)
2680 {
2681 int instance, error;
2682
2683 do {
2684 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2685 return -ENODEV;
2686
2687 spin_lock(&dev_list_lock);
2688 error = ida_get_new(&nvme_instance_ida, &instance);
2689 spin_unlock(&dev_list_lock);
2690 } while (error == -EAGAIN);
2691
2692 if (error)
2693 return -ENODEV;
2694
2695 dev->instance = instance;
2696 return 0;
2697 }
2698
2699 static void nvme_release_instance(struct nvme_dev *dev)
2700 {
2701 spin_lock(&dev_list_lock);
2702 ida_remove(&nvme_instance_ida, dev->instance);
2703 spin_unlock(&dev_list_lock);
2704 }
2705
2706 static void nvme_free_namespaces(struct nvme_dev *dev)
2707 {
2708 struct nvme_ns *ns, *next;
2709
2710 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2711 list_del(&ns->list);
2712
2713 spin_lock(&dev_list_lock);
2714 ns->disk->private_data = NULL;
2715 spin_unlock(&dev_list_lock);
2716
2717 put_disk(ns->disk);
2718 kfree(ns);
2719 }
2720 }
2721
2722 static void nvme_free_dev(struct kref *kref)
2723 {
2724 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2725
2726 pci_dev_put(dev->pci_dev);
2727 put_device(dev->device);
2728 nvme_free_namespaces(dev);
2729 nvme_release_instance(dev);
2730 blk_mq_free_tag_set(&dev->tagset);
2731 blk_put_queue(dev->admin_q);
2732 kfree(dev->queues);
2733 kfree(dev->entry);
2734 kfree(dev);
2735 }
2736
2737 static int nvme_dev_open(struct inode *inode, struct file *f)
2738 {
2739 struct nvme_dev *dev;
2740 int instance = iminor(inode);
2741 int ret = -ENODEV;
2742
2743 spin_lock(&dev_list_lock);
2744 list_for_each_entry(dev, &dev_list, node) {
2745 if (dev->instance == instance) {
2746 if (!dev->admin_q) {
2747 ret = -EWOULDBLOCK;
2748 break;
2749 }
2750 if (!kref_get_unless_zero(&dev->kref))
2751 break;
2752 f->private_data = dev;
2753 ret = 0;
2754 break;
2755 }
2756 }
2757 spin_unlock(&dev_list_lock);
2758
2759 return ret;
2760 }
2761
2762 static int nvme_dev_release(struct inode *inode, struct file *f)
2763 {
2764 struct nvme_dev *dev = f->private_data;
2765 kref_put(&dev->kref, nvme_free_dev);
2766 return 0;
2767 }
2768
2769 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2770 {
2771 struct nvme_dev *dev = f->private_data;
2772 struct nvme_ns *ns;
2773
2774 switch (cmd) {
2775 case NVME_IOCTL_ADMIN_CMD:
2776 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2777 case NVME_IOCTL_IO_CMD:
2778 if (list_empty(&dev->namespaces))
2779 return -ENOTTY;
2780 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2781 return nvme_user_cmd(dev, ns, (void __user *)arg);
2782 default:
2783 return -ENOTTY;
2784 }
2785 }
2786
2787 static const struct file_operations nvme_dev_fops = {
2788 .owner = THIS_MODULE,
2789 .open = nvme_dev_open,
2790 .release = nvme_dev_release,
2791 .unlocked_ioctl = nvme_dev_ioctl,
2792 .compat_ioctl = nvme_dev_ioctl,
2793 };
2794
2795 static void nvme_set_irq_hints(struct nvme_dev *dev)
2796 {
2797 struct nvme_queue *nvmeq;
2798 int i;
2799
2800 for (i = 0; i < dev->online_queues; i++) {
2801 nvmeq = dev->queues[i];
2802
2803 if (!nvmeq->hctx)
2804 continue;
2805
2806 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2807 nvmeq->hctx->cpumask);
2808 }
2809 }
2810
2811 static int nvme_dev_start(struct nvme_dev *dev)
2812 {
2813 int result;
2814 bool start_thread = false;
2815
2816 result = nvme_dev_map(dev);
2817 if (result)
2818 return result;
2819
2820 result = nvme_configure_admin_queue(dev);
2821 if (result)
2822 goto unmap;
2823
2824 spin_lock(&dev_list_lock);
2825 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2826 start_thread = true;
2827 nvme_thread = NULL;
2828 }
2829 list_add(&dev->node, &dev_list);
2830 spin_unlock(&dev_list_lock);
2831
2832 if (start_thread) {
2833 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2834 wake_up_all(&nvme_kthread_wait);
2835 } else
2836 wait_event_killable(nvme_kthread_wait, nvme_thread);
2837
2838 if (IS_ERR_OR_NULL(nvme_thread)) {
2839 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2840 goto disable;
2841 }
2842
2843 nvme_init_queue(dev->queues[0], 0);
2844 result = nvme_alloc_admin_tags(dev);
2845 if (result)
2846 goto disable;
2847
2848 result = nvme_setup_io_queues(dev);
2849 if (result)
2850 goto free_tags;
2851
2852 nvme_set_irq_hints(dev);
2853
2854 dev->event_limit = 1;
2855 return result;
2856
2857 free_tags:
2858 nvme_dev_remove_admin(dev);
2859 disable:
2860 nvme_disable_queue(dev, 0);
2861 nvme_dev_list_remove(dev);
2862 unmap:
2863 nvme_dev_unmap(dev);
2864 return result;
2865 }
2866
2867 static int nvme_remove_dead_ctrl(void *arg)
2868 {
2869 struct nvme_dev *dev = (struct nvme_dev *)arg;
2870 struct pci_dev *pdev = dev->pci_dev;
2871
2872 if (pci_get_drvdata(pdev))
2873 pci_stop_and_remove_bus_device_locked(pdev);
2874 kref_put(&dev->kref, nvme_free_dev);
2875 return 0;
2876 }
2877
2878 static void nvme_remove_disks(struct work_struct *ws)
2879 {
2880 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2881
2882 nvme_free_queues(dev, 1);
2883 nvme_dev_remove(dev);
2884 }
2885
2886 static int nvme_dev_resume(struct nvme_dev *dev)
2887 {
2888 int ret;
2889
2890 ret = nvme_dev_start(dev);
2891 if (ret)
2892 return ret;
2893 if (dev->online_queues < 2) {
2894 spin_lock(&dev_list_lock);
2895 dev->reset_workfn = nvme_remove_disks;
2896 queue_work(nvme_workq, &dev->reset_work);
2897 spin_unlock(&dev_list_lock);
2898 } else {
2899 nvme_unfreeze_queues(dev);
2900 nvme_set_irq_hints(dev);
2901 }
2902 return 0;
2903 }
2904
2905 static void nvme_dev_reset(struct nvme_dev *dev)
2906 {
2907 nvme_dev_shutdown(dev);
2908 if (nvme_dev_resume(dev)) {
2909 dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
2910 kref_get(&dev->kref);
2911 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2912 dev->instance))) {
2913 dev_err(&dev->pci_dev->dev,
2914 "Failed to start controller remove task\n");
2915 kref_put(&dev->kref, nvme_free_dev);
2916 }
2917 }
2918 }
2919
2920 static void nvme_reset_failed_dev(struct work_struct *ws)
2921 {
2922 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2923 nvme_dev_reset(dev);
2924 }
2925
2926 static void nvme_reset_workfn(struct work_struct *work)
2927 {
2928 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2929 dev->reset_workfn(work);
2930 }
2931
2932 static void nvme_async_probe(struct work_struct *work);
2933 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2934 {
2935 int node, result = -ENOMEM;
2936 struct nvme_dev *dev;
2937
2938 node = dev_to_node(&pdev->dev);
2939 if (node == NUMA_NO_NODE)
2940 set_dev_node(&pdev->dev, 0);
2941
2942 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2943 if (!dev)
2944 return -ENOMEM;
2945 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2946 GFP_KERNEL, node);
2947 if (!dev->entry)
2948 goto free;
2949 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2950 GFP_KERNEL, node);
2951 if (!dev->queues)
2952 goto free;
2953
2954 INIT_LIST_HEAD(&dev->namespaces);
2955 dev->reset_workfn = nvme_reset_failed_dev;
2956 INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2957 dev->pci_dev = pci_dev_get(pdev);
2958 pci_set_drvdata(pdev, dev);
2959 result = nvme_set_instance(dev);
2960 if (result)
2961 goto put_pci;
2962
2963 result = nvme_setup_prp_pools(dev);
2964 if (result)
2965 goto release;
2966
2967 kref_init(&dev->kref);
2968 dev->device = device_create(nvme_class, &pdev->dev,
2969 MKDEV(nvme_char_major, dev->instance),
2970 dev, "nvme%d", dev->instance);
2971 if (IS_ERR(dev->device)) {
2972 result = PTR_ERR(dev->device);
2973 goto release_pools;
2974 }
2975 get_device(dev->device);
2976
2977 INIT_LIST_HEAD(&dev->node);
2978 INIT_WORK(&dev->probe_work, nvme_async_probe);
2979 schedule_work(&dev->probe_work);
2980 return 0;
2981
2982 release_pools:
2983 nvme_release_prp_pools(dev);
2984 release:
2985 nvme_release_instance(dev);
2986 put_pci:
2987 pci_dev_put(dev->pci_dev);
2988 free:
2989 kfree(dev->queues);
2990 kfree(dev->entry);
2991 kfree(dev);
2992 return result;
2993 }
2994
2995 static void nvme_async_probe(struct work_struct *work)
2996 {
2997 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
2998 int result;
2999
3000 result = nvme_dev_start(dev);
3001 if (result)
3002 goto reset;
3003
3004 if (dev->online_queues > 1)
3005 result = nvme_dev_add(dev);
3006 if (result)
3007 goto reset;
3008
3009 nvme_set_irq_hints(dev);
3010 return;
3011 reset:
3012 if (!work_busy(&dev->reset_work)) {
3013 dev->reset_workfn = nvme_reset_failed_dev;
3014 queue_work(nvme_workq, &dev->reset_work);
3015 }
3016 }
3017
3018 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3019 {
3020 struct nvme_dev *dev = pci_get_drvdata(pdev);
3021
3022 if (prepare)
3023 nvme_dev_shutdown(dev);
3024 else
3025 nvme_dev_resume(dev);
3026 }
3027
3028 static void nvme_shutdown(struct pci_dev *pdev)
3029 {
3030 struct nvme_dev *dev = pci_get_drvdata(pdev);
3031 nvme_dev_shutdown(dev);
3032 }
3033
3034 static void nvme_remove(struct pci_dev *pdev)
3035 {
3036 struct nvme_dev *dev = pci_get_drvdata(pdev);
3037
3038 spin_lock(&dev_list_lock);
3039 list_del_init(&dev->node);
3040 spin_unlock(&dev_list_lock);
3041
3042 pci_set_drvdata(pdev, NULL);
3043 flush_work(&dev->probe_work);
3044 flush_work(&dev->reset_work);
3045 nvme_dev_shutdown(dev);
3046 nvme_dev_remove(dev);
3047 nvme_dev_remove_admin(dev);
3048 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3049 nvme_free_queues(dev, 0);
3050 nvme_release_prp_pools(dev);
3051 kref_put(&dev->kref, nvme_free_dev);
3052 }
3053
3054 /* These functions are yet to be implemented */
3055 #define nvme_error_detected NULL
3056 #define nvme_dump_registers NULL
3057 #define nvme_link_reset NULL
3058 #define nvme_slot_reset NULL
3059 #define nvme_error_resume NULL
3060
3061 #ifdef CONFIG_PM_SLEEP
3062 static int nvme_suspend(struct device *dev)
3063 {
3064 struct pci_dev *pdev = to_pci_dev(dev);
3065 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3066
3067 nvme_dev_shutdown(ndev);
3068 return 0;
3069 }
3070
3071 static int nvme_resume(struct device *dev)
3072 {
3073 struct pci_dev *pdev = to_pci_dev(dev);
3074 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3075
3076 if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3077 ndev->reset_workfn = nvme_reset_failed_dev;
3078 queue_work(nvme_workq, &ndev->reset_work);
3079 }
3080 return 0;
3081 }
3082 #endif
3083
3084 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3085
3086 static const struct pci_error_handlers nvme_err_handler = {
3087 .error_detected = nvme_error_detected,
3088 .mmio_enabled = nvme_dump_registers,
3089 .link_reset = nvme_link_reset,
3090 .slot_reset = nvme_slot_reset,
3091 .resume = nvme_error_resume,
3092 .reset_notify = nvme_reset_notify,
3093 };
3094
3095 /* Move to pci_ids.h later */
3096 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
3097
3098 static const struct pci_device_id nvme_id_table[] = {
3099 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3100 { 0, }
3101 };
3102 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3103
3104 static struct pci_driver nvme_driver = {
3105 .name = "nvme",
3106 .id_table = nvme_id_table,
3107 .probe = nvme_probe,
3108 .remove = nvme_remove,
3109 .shutdown = nvme_shutdown,
3110 .driver = {
3111 .pm = &nvme_dev_pm_ops,
3112 },
3113 .err_handler = &nvme_err_handler,
3114 };
3115
3116 static int __init nvme_init(void)
3117 {
3118 int result;
3119
3120 init_waitqueue_head(&nvme_kthread_wait);
3121
3122 nvme_workq = create_singlethread_workqueue("nvme");
3123 if (!nvme_workq)
3124 return -ENOMEM;
3125
3126 result = register_blkdev(nvme_major, "nvme");
3127 if (result < 0)
3128 goto kill_workq;
3129 else if (result > 0)
3130 nvme_major = result;
3131
3132 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3133 &nvme_dev_fops);
3134 if (result < 0)
3135 goto unregister_blkdev;
3136 else if (result > 0)
3137 nvme_char_major = result;
3138
3139 nvme_class = class_create(THIS_MODULE, "nvme");
3140 if (IS_ERR(nvme_class)) {
3141 result = PTR_ERR(nvme_class);
3142 goto unregister_chrdev;
3143 }
3144
3145 result = pci_register_driver(&nvme_driver);
3146 if (result)
3147 goto destroy_class;
3148 return 0;
3149
3150 destroy_class:
3151 class_destroy(nvme_class);
3152 unregister_chrdev:
3153 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3154 unregister_blkdev:
3155 unregister_blkdev(nvme_major, "nvme");
3156 kill_workq:
3157 destroy_workqueue(nvme_workq);
3158 return result;
3159 }
3160
3161 static void __exit nvme_exit(void)
3162 {
3163 pci_unregister_driver(&nvme_driver);
3164 unregister_blkdev(nvme_major, "nvme");
3165 destroy_workqueue(nvme_workq);
3166 class_destroy(nvme_class);
3167 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3168 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3169 _nvme_check_size();
3170 }
3171
3172 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3173 MODULE_LICENSE("GPL");
3174 MODULE_VERSION("1.0");
3175 module_init(nvme_init);
3176 module_exit(nvme_exit);