]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/nvme.c
NVMe: Rework ioctls
[mirror_ubuntu-bionic-kernel.git] / drivers / block / nvme.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/version.h>
43
44 #define NVME_Q_DEPTH 1024
45 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
46 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
47 #define NVME_MINORS 64
48 #define IO_TIMEOUT (5 * HZ)
49 #define ADMIN_TIMEOUT (60 * HZ)
50
51 static int nvme_major;
52 module_param(nvme_major, int, 0);
53
54 static int use_threaded_interrupts;
55 module_param(use_threaded_interrupts, int, 0);
56
57 static DEFINE_SPINLOCK(dev_list_lock);
58 static LIST_HEAD(dev_list);
59 static struct task_struct *nvme_thread;
60
61 /*
62 * Represents an NVM Express device. Each nvme_dev is a PCI function.
63 */
64 struct nvme_dev {
65 struct list_head node;
66 struct nvme_queue **queues;
67 u32 __iomem *dbs;
68 struct pci_dev *pci_dev;
69 struct dma_pool *prp_page_pool;
70 struct dma_pool *prp_small_pool;
71 int instance;
72 int queue_count;
73 u32 ctrl_config;
74 struct msix_entry *entry;
75 struct nvme_bar __iomem *bar;
76 struct list_head namespaces;
77 char serial[20];
78 char model[40];
79 char firmware_rev[8];
80 };
81
82 /*
83 * An NVM Express namespace is equivalent to a SCSI LUN
84 */
85 struct nvme_ns {
86 struct list_head list;
87
88 struct nvme_dev *dev;
89 struct request_queue *queue;
90 struct gendisk *disk;
91
92 int ns_id;
93 int lba_shift;
94 };
95
96 /*
97 * An NVM Express queue. Each device has at least two (one for admin
98 * commands and one for I/O commands).
99 */
100 struct nvme_queue {
101 struct device *q_dmadev;
102 struct nvme_dev *dev;
103 spinlock_t q_lock;
104 struct nvme_command *sq_cmds;
105 volatile struct nvme_completion *cqes;
106 dma_addr_t sq_dma_addr;
107 dma_addr_t cq_dma_addr;
108 wait_queue_head_t sq_full;
109 wait_queue_t sq_cong_wait;
110 struct bio_list sq_cong;
111 u32 __iomem *q_db;
112 u16 q_depth;
113 u16 cq_vector;
114 u16 sq_head;
115 u16 sq_tail;
116 u16 cq_head;
117 u16 cq_phase;
118 unsigned long cmdid_data[];
119 };
120
121 /*
122 * Check we didin't inadvertently grow the command struct
123 */
124 static inline void _nvme_check_size(void)
125 {
126 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
135 }
136
137 struct nvme_cmd_info {
138 unsigned long ctx;
139 unsigned long timeout;
140 };
141
142 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
143 {
144 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
145 }
146
147 /**
148 * alloc_cmdid() - Allocate a Command ID
149 * @nvmeq: The queue that will be used for this command
150 * @ctx: A pointer that will be passed to the handler
151 * @handler: The ID of the handler to call
152 *
153 * Allocate a Command ID for a queue. The data passed in will
154 * be passed to the completion handler. This is implemented by using
155 * the bottom two bits of the ctx pointer to store the handler ID.
156 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
157 * We can change this if it becomes a problem.
158 *
159 * May be called with local interrupts disabled and the q_lock held,
160 * or with interrupts enabled and no locks held.
161 */
162 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
163 unsigned timeout)
164 {
165 int depth = nvmeq->q_depth - 1;
166 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
167 int cmdid;
168
169 BUG_ON((unsigned long)ctx & 3);
170
171 do {
172 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
173 if (cmdid >= depth)
174 return -EBUSY;
175 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
176
177 info[cmdid].ctx = (unsigned long)ctx | handler;
178 info[cmdid].timeout = jiffies + timeout;
179 return cmdid;
180 }
181
182 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
183 int handler, unsigned timeout)
184 {
185 int cmdid;
186 wait_event_killable(nvmeq->sq_full,
187 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
188 return (cmdid < 0) ? -EINTR : cmdid;
189 }
190
191 /*
192 * If you need more than four handlers, you'll need to change how
193 * alloc_cmdid and nvme_process_cq work. Consider using a special
194 * CMD_CTX value instead, if that works for your situation.
195 */
196 enum {
197 sync_completion_id = 0,
198 bio_completion_id,
199 };
200
201 /* Special values must be a multiple of 4, and less than 0x1000 */
202 #define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id)
203 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
204 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
205 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
206 #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
207
208 /*
209 * Called with local interrupts disabled and the q_lock held. May not sleep.
210 */
211 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
212 {
213 unsigned long data;
214 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
215
216 if (cmdid >= nvmeq->q_depth)
217 return CMD_CTX_INVALID;
218 data = info[cmdid].ctx;
219 info[cmdid].ctx = CMD_CTX_COMPLETED;
220 clear_bit(cmdid, nvmeq->cmdid_data);
221 wake_up(&nvmeq->sq_full);
222 return data;
223 }
224
225 static unsigned long cancel_cmdid(struct nvme_queue *nvmeq, int cmdid)
226 {
227 unsigned long data;
228 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
229 data = info[cmdid].ctx;
230 info[cmdid].ctx = CMD_CTX_CANCELLED;
231 return data;
232 }
233
234 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
235 {
236 return ns->dev->queues[get_cpu() + 1];
237 }
238
239 static void put_nvmeq(struct nvme_queue *nvmeq)
240 {
241 put_cpu();
242 }
243
244 /**
245 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
246 * @nvmeq: The queue to use
247 * @cmd: The command to send
248 *
249 * Safe to use from interrupt context
250 */
251 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
252 {
253 unsigned long flags;
254 u16 tail;
255 spin_lock_irqsave(&nvmeq->q_lock, flags);
256 tail = nvmeq->sq_tail;
257 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
258 if (++tail == nvmeq->q_depth)
259 tail = 0;
260 writel(tail, nvmeq->q_db);
261 nvmeq->sq_tail = tail;
262 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
263
264 return 0;
265 }
266
267 struct nvme_prps {
268 int npages;
269 dma_addr_t first_dma;
270 __le64 *list[0];
271 };
272
273 static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
274 {
275 const int last_prp = PAGE_SIZE / 8 - 1;
276 int i;
277 dma_addr_t prp_dma;
278
279 if (!prps)
280 return;
281
282 prp_dma = prps->first_dma;
283
284 if (prps->npages == 0)
285 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
286 for (i = 0; i < prps->npages; i++) {
287 __le64 *prp_list = prps->list[i];
288 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
289 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
290 prp_dma = next_prp_dma;
291 }
292 kfree(prps);
293 }
294
295 struct nvme_bio {
296 struct bio *bio;
297 int nents;
298 struct nvme_prps *prps;
299 struct scatterlist sg[0];
300 };
301
302 /* XXX: use a mempool */
303 static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
304 {
305 return kzalloc(sizeof(struct nvme_bio) +
306 sizeof(struct scatterlist) * nseg, gfp);
307 }
308
309 static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
310 {
311 nvme_free_prps(nvmeq->dev, nbio->prps);
312 kfree(nbio);
313 }
314
315 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
316 struct nvme_completion *cqe)
317 {
318 struct nvme_bio *nbio = ctx;
319 struct bio *bio = nbio->bio;
320 u16 status = le16_to_cpup(&cqe->status) >> 1;
321
322 dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
323 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
324 free_nbio(nvmeq, nbio);
325 if (status) {
326 bio_endio(bio, -EIO);
327 } else if (bio->bi_vcnt > bio->bi_idx) {
328 if (bio_list_empty(&nvmeq->sq_cong))
329 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
330 bio_list_add(&nvmeq->sq_cong, bio);
331 wake_up_process(nvme_thread);
332 } else {
333 bio_endio(bio, 0);
334 }
335 }
336
337 /* length is in bytes. gfp flags indicates whether we may sleep. */
338 static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
339 struct nvme_common_command *cmd,
340 struct scatterlist *sg, int *len,
341 gfp_t gfp)
342 {
343 struct dma_pool *pool;
344 int length = *len;
345 int dma_len = sg_dma_len(sg);
346 u64 dma_addr = sg_dma_address(sg);
347 int offset = offset_in_page(dma_addr);
348 __le64 *prp_list;
349 dma_addr_t prp_dma;
350 int nprps, npages, i, prp_page;
351 struct nvme_prps *prps = NULL;
352
353 cmd->prp1 = cpu_to_le64(dma_addr);
354 length -= (PAGE_SIZE - offset);
355 if (length <= 0)
356 return prps;
357
358 dma_len -= (PAGE_SIZE - offset);
359 if (dma_len) {
360 dma_addr += (PAGE_SIZE - offset);
361 } else {
362 sg = sg_next(sg);
363 dma_addr = sg_dma_address(sg);
364 dma_len = sg_dma_len(sg);
365 }
366
367 if (length <= PAGE_SIZE) {
368 cmd->prp2 = cpu_to_le64(dma_addr);
369 return prps;
370 }
371
372 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
373 npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
374 prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, gfp);
375 if (!prps) {
376 cmd->prp2 = cpu_to_le64(dma_addr);
377 *len = (*len - length) + PAGE_SIZE;
378 return prps;
379 }
380 prp_page = 0;
381 if (nprps <= (256 / 8)) {
382 pool = dev->prp_small_pool;
383 prps->npages = 0;
384 } else {
385 pool = dev->prp_page_pool;
386 prps->npages = npages;
387 }
388
389 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
390 if (!prp_list) {
391 cmd->prp2 = cpu_to_le64(dma_addr);
392 *len = (*len - length) + PAGE_SIZE;
393 kfree(prps);
394 return NULL;
395 }
396 prps->list[prp_page++] = prp_list;
397 prps->first_dma = prp_dma;
398 cmd->prp2 = cpu_to_le64(prp_dma);
399 i = 0;
400 for (;;) {
401 if (i == PAGE_SIZE / 8) {
402 __le64 *old_prp_list = prp_list;
403 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
404 if (!prp_list) {
405 *len = (*len - length);
406 return prps;
407 }
408 prps->list[prp_page++] = prp_list;
409 prp_list[0] = old_prp_list[i - 1];
410 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
411 i = 1;
412 }
413 prp_list[i++] = cpu_to_le64(dma_addr);
414 dma_len -= PAGE_SIZE;
415 dma_addr += PAGE_SIZE;
416 length -= PAGE_SIZE;
417 if (length <= 0)
418 break;
419 if (dma_len > 0)
420 continue;
421 BUG_ON(dma_len < 0);
422 sg = sg_next(sg);
423 dma_addr = sg_dma_address(sg);
424 dma_len = sg_dma_len(sg);
425 }
426
427 return prps;
428 }
429
430 /* NVMe scatterlists require no holes in the virtual address */
431 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
432 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
433
434 static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
435 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
436 {
437 struct bio_vec *bvec, *bvprv = NULL;
438 struct scatterlist *sg = NULL;
439 int i, old_idx, length = 0, nsegs = 0;
440
441 sg_init_table(nbio->sg, psegs);
442 old_idx = bio->bi_idx;
443 bio_for_each_segment(bvec, bio, i) {
444 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
445 sg->length += bvec->bv_len;
446 } else {
447 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
448 break;
449 sg = sg ? sg + 1 : nbio->sg;
450 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
451 bvec->bv_offset);
452 nsegs++;
453 }
454 length += bvec->bv_len;
455 bvprv = bvec;
456 }
457 bio->bi_idx = i;
458 nbio->nents = nsegs;
459 sg_mark_end(sg);
460 if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) {
461 bio->bi_idx = old_idx;
462 return -ENOMEM;
463 }
464 return length;
465 }
466
467 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
468 int cmdid)
469 {
470 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
471
472 memset(cmnd, 0, sizeof(*cmnd));
473 cmnd->common.opcode = nvme_cmd_flush;
474 cmnd->common.command_id = cmdid;
475 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
476
477 if (++nvmeq->sq_tail == nvmeq->q_depth)
478 nvmeq->sq_tail = 0;
479 writel(nvmeq->sq_tail, nvmeq->q_db);
480
481 return 0;
482 }
483
484 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
485 {
486 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
487 sync_completion_id, IO_TIMEOUT);
488 if (unlikely(cmdid < 0))
489 return cmdid;
490
491 return nvme_submit_flush(nvmeq, ns, cmdid);
492 }
493
494 /*
495 * Called with local interrupts disabled and the q_lock held. May not sleep.
496 */
497 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
498 struct bio *bio)
499 {
500 struct nvme_command *cmnd;
501 struct nvme_bio *nbio;
502 enum dma_data_direction dma_dir;
503 int cmdid, length, result = -ENOMEM;
504 u16 control;
505 u32 dsmgmt;
506 int psegs = bio_phys_segments(ns->queue, bio);
507
508 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
509 result = nvme_submit_flush_data(nvmeq, ns);
510 if (result)
511 return result;
512 }
513
514 nbio = alloc_nbio(psegs, GFP_ATOMIC);
515 if (!nbio)
516 goto nomem;
517 nbio->bio = bio;
518
519 result = -EBUSY;
520 cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
521 if (unlikely(cmdid < 0))
522 goto free_nbio;
523
524 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
525 return nvme_submit_flush(nvmeq, ns, cmdid);
526
527 control = 0;
528 if (bio->bi_rw & REQ_FUA)
529 control |= NVME_RW_FUA;
530 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
531 control |= NVME_RW_LR;
532
533 dsmgmt = 0;
534 if (bio->bi_rw & REQ_RAHEAD)
535 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
536
537 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
538
539 memset(cmnd, 0, sizeof(*cmnd));
540 if (bio_data_dir(bio)) {
541 cmnd->rw.opcode = nvme_cmd_write;
542 dma_dir = DMA_TO_DEVICE;
543 } else {
544 cmnd->rw.opcode = nvme_cmd_read;
545 dma_dir = DMA_FROM_DEVICE;
546 }
547
548 result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
549 if (result < 0)
550 goto free_nbio;
551 length = result;
552
553 cmnd->rw.command_id = cmdid;
554 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
555 nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
556 &length, GFP_ATOMIC);
557 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
558 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
559 cmnd->rw.control = cpu_to_le16(control);
560 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
561
562 bio->bi_sector += length >> 9;
563
564 if (++nvmeq->sq_tail == nvmeq->q_depth)
565 nvmeq->sq_tail = 0;
566 writel(nvmeq->sq_tail, nvmeq->q_db);
567
568 return 0;
569
570 free_nbio:
571 free_nbio(nvmeq, nbio);
572 nomem:
573 return result;
574 }
575
576 /*
577 * NB: return value of non-zero would mean that we were a stacking driver.
578 * make_request must always succeed.
579 */
580 static int nvme_make_request(struct request_queue *q, struct bio *bio)
581 {
582 struct nvme_ns *ns = q->queuedata;
583 struct nvme_queue *nvmeq = get_nvmeq(ns);
584 int result = -EBUSY;
585
586 spin_lock_irq(&nvmeq->q_lock);
587 if (bio_list_empty(&nvmeq->sq_cong))
588 result = nvme_submit_bio_queue(nvmeq, ns, bio);
589 if (unlikely(result)) {
590 if (bio_list_empty(&nvmeq->sq_cong))
591 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
592 bio_list_add(&nvmeq->sq_cong, bio);
593 }
594
595 spin_unlock_irq(&nvmeq->q_lock);
596 put_nvmeq(nvmeq);
597
598 return 0;
599 }
600
601 struct sync_cmd_info {
602 struct task_struct *task;
603 u32 result;
604 int status;
605 };
606
607 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
608 struct nvme_completion *cqe)
609 {
610 struct sync_cmd_info *cmdinfo = ctx;
611 if (unlikely((unsigned long)cmdinfo == CMD_CTX_CANCELLED))
612 return;
613 if ((unsigned long)cmdinfo == CMD_CTX_FLUSH)
614 return;
615 if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
616 dev_warn(nvmeq->q_dmadev,
617 "completed id %d twice on queue %d\n",
618 cqe->command_id, le16_to_cpup(&cqe->sq_id));
619 return;
620 }
621 if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
622 dev_warn(nvmeq->q_dmadev,
623 "invalid id %d completed on queue %d\n",
624 cqe->command_id, le16_to_cpup(&cqe->sq_id));
625 return;
626 }
627 cmdinfo->result = le32_to_cpup(&cqe->result);
628 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
629 wake_up_process(cmdinfo->task);
630 }
631
632 typedef void (*completion_fn)(struct nvme_queue *, void *,
633 struct nvme_completion *);
634
635 static const completion_fn nvme_completions[4] = {
636 [sync_completion_id] = sync_completion,
637 [bio_completion_id] = bio_completion,
638 };
639
640 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
641 {
642 u16 head, phase;
643
644 head = nvmeq->cq_head;
645 phase = nvmeq->cq_phase;
646
647 for (;;) {
648 unsigned long data;
649 void *ptr;
650 unsigned char handler;
651 struct nvme_completion cqe = nvmeq->cqes[head];
652 if ((le16_to_cpu(cqe.status) & 1) != phase)
653 break;
654 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
655 if (++head == nvmeq->q_depth) {
656 head = 0;
657 phase = !phase;
658 }
659
660 data = free_cmdid(nvmeq, cqe.command_id);
661 handler = data & 3;
662 ptr = (void *)(data & ~3UL);
663 nvme_completions[handler](nvmeq, ptr, &cqe);
664 }
665
666 /* If the controller ignores the cq head doorbell and continuously
667 * writes to the queue, it is theoretically possible to wrap around
668 * the queue twice and mistakenly return IRQ_NONE. Linux only
669 * requires that 0.1% of your interrupts are handled, so this isn't
670 * a big problem.
671 */
672 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
673 return IRQ_NONE;
674
675 writel(head, nvmeq->q_db + 1);
676 nvmeq->cq_head = head;
677 nvmeq->cq_phase = phase;
678
679 return IRQ_HANDLED;
680 }
681
682 static irqreturn_t nvme_irq(int irq, void *data)
683 {
684 irqreturn_t result;
685 struct nvme_queue *nvmeq = data;
686 spin_lock(&nvmeq->q_lock);
687 result = nvme_process_cq(nvmeq);
688 spin_unlock(&nvmeq->q_lock);
689 return result;
690 }
691
692 static irqreturn_t nvme_irq_check(int irq, void *data)
693 {
694 struct nvme_queue *nvmeq = data;
695 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
696 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
697 return IRQ_NONE;
698 return IRQ_WAKE_THREAD;
699 }
700
701 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
702 {
703 spin_lock_irq(&nvmeq->q_lock);
704 cancel_cmdid(nvmeq, cmdid);
705 spin_unlock_irq(&nvmeq->q_lock);
706 }
707
708 /*
709 * Returns 0 on success. If the result is negative, it's a Linux error code;
710 * if the result is positive, it's an NVM Express status code
711 */
712 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
713 struct nvme_command *cmd, u32 *result, unsigned timeout)
714 {
715 int cmdid;
716 struct sync_cmd_info cmdinfo;
717
718 cmdinfo.task = current;
719 cmdinfo.status = -EINTR;
720
721 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
722 timeout);
723 if (cmdid < 0)
724 return cmdid;
725 cmd->common.command_id = cmdid;
726
727 set_current_state(TASK_KILLABLE);
728 nvme_submit_cmd(nvmeq, cmd);
729 schedule();
730
731 if (cmdinfo.status == -EINTR) {
732 nvme_abort_command(nvmeq, cmdid);
733 return -EINTR;
734 }
735
736 if (result)
737 *result = cmdinfo.result;
738
739 return cmdinfo.status;
740 }
741
742 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
743 u32 *result)
744 {
745 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
746 }
747
748 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
749 {
750 int status;
751 struct nvme_command c;
752
753 memset(&c, 0, sizeof(c));
754 c.delete_queue.opcode = opcode;
755 c.delete_queue.qid = cpu_to_le16(id);
756
757 status = nvme_submit_admin_cmd(dev, &c, NULL);
758 if (status)
759 return -EIO;
760 return 0;
761 }
762
763 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
764 struct nvme_queue *nvmeq)
765 {
766 int status;
767 struct nvme_command c;
768 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
769
770 memset(&c, 0, sizeof(c));
771 c.create_cq.opcode = nvme_admin_create_cq;
772 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
773 c.create_cq.cqid = cpu_to_le16(qid);
774 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
775 c.create_cq.cq_flags = cpu_to_le16(flags);
776 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
777
778 status = nvme_submit_admin_cmd(dev, &c, NULL);
779 if (status)
780 return -EIO;
781 return 0;
782 }
783
784 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
785 struct nvme_queue *nvmeq)
786 {
787 int status;
788 struct nvme_command c;
789 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
790
791 memset(&c, 0, sizeof(c));
792 c.create_sq.opcode = nvme_admin_create_sq;
793 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
794 c.create_sq.sqid = cpu_to_le16(qid);
795 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
796 c.create_sq.sq_flags = cpu_to_le16(flags);
797 c.create_sq.cqid = cpu_to_le16(qid);
798
799 status = nvme_submit_admin_cmd(dev, &c, NULL);
800 if (status)
801 return -EIO;
802 return 0;
803 }
804
805 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
806 {
807 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
808 }
809
810 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
811 {
812 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
813 }
814
815 static void nvme_free_queue(struct nvme_dev *dev, int qid)
816 {
817 struct nvme_queue *nvmeq = dev->queues[qid];
818 int vector = dev->entry[nvmeq->cq_vector].vector;
819
820 irq_set_affinity_hint(vector, NULL);
821 free_irq(vector, nvmeq);
822
823 /* Don't tell the adapter to delete the admin queue */
824 if (qid) {
825 adapter_delete_sq(dev, qid);
826 adapter_delete_cq(dev, qid);
827 }
828
829 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
830 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
831 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
832 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
833 kfree(nvmeq);
834 }
835
836 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
837 int depth, int vector)
838 {
839 struct device *dmadev = &dev->pci_dev->dev;
840 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
841 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
842 if (!nvmeq)
843 return NULL;
844
845 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
846 &nvmeq->cq_dma_addr, GFP_KERNEL);
847 if (!nvmeq->cqes)
848 goto free_nvmeq;
849 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
850
851 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
852 &nvmeq->sq_dma_addr, GFP_KERNEL);
853 if (!nvmeq->sq_cmds)
854 goto free_cqdma;
855
856 nvmeq->q_dmadev = dmadev;
857 nvmeq->dev = dev;
858 spin_lock_init(&nvmeq->q_lock);
859 nvmeq->cq_head = 0;
860 nvmeq->cq_phase = 1;
861 init_waitqueue_head(&nvmeq->sq_full);
862 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
863 bio_list_init(&nvmeq->sq_cong);
864 nvmeq->q_db = &dev->dbs[qid * 2];
865 nvmeq->q_depth = depth;
866 nvmeq->cq_vector = vector;
867
868 return nvmeq;
869
870 free_cqdma:
871 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
872 nvmeq->cq_dma_addr);
873 free_nvmeq:
874 kfree(nvmeq);
875 return NULL;
876 }
877
878 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
879 const char *name)
880 {
881 if (use_threaded_interrupts)
882 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
883 nvme_irq_check, nvme_irq,
884 IRQF_DISABLED | IRQF_SHARED,
885 name, nvmeq);
886 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
887 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
888 }
889
890 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
891 int qid, int cq_size, int vector)
892 {
893 int result;
894 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
895
896 if (!nvmeq)
897 return ERR_PTR(-ENOMEM);
898
899 result = adapter_alloc_cq(dev, qid, nvmeq);
900 if (result < 0)
901 goto free_nvmeq;
902
903 result = adapter_alloc_sq(dev, qid, nvmeq);
904 if (result < 0)
905 goto release_cq;
906
907 result = queue_request_irq(dev, nvmeq, "nvme");
908 if (result < 0)
909 goto release_sq;
910
911 return nvmeq;
912
913 release_sq:
914 adapter_delete_sq(dev, qid);
915 release_cq:
916 adapter_delete_cq(dev, qid);
917 free_nvmeq:
918 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
919 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
920 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
921 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
922 kfree(nvmeq);
923 return ERR_PTR(result);
924 }
925
926 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
927 {
928 int result;
929 u32 aqa;
930 u64 cap;
931 unsigned long timeout;
932 struct nvme_queue *nvmeq;
933
934 dev->dbs = ((void __iomem *)dev->bar) + 4096;
935
936 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
937 if (!nvmeq)
938 return -ENOMEM;
939
940 aqa = nvmeq->q_depth - 1;
941 aqa |= aqa << 16;
942
943 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
944 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
945 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
946 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
947
948 writel(0, &dev->bar->cc);
949 writel(aqa, &dev->bar->aqa);
950 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
951 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
952 writel(dev->ctrl_config, &dev->bar->cc);
953
954 cap = readq(&dev->bar->cap);
955 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
956
957 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
958 msleep(100);
959 if (fatal_signal_pending(current))
960 return -EINTR;
961 if (time_after(jiffies, timeout)) {
962 dev_err(&dev->pci_dev->dev,
963 "Device not ready; aborting initialisation\n");
964 return -ENODEV;
965 }
966 }
967
968 result = queue_request_irq(dev, nvmeq, "nvme admin");
969 dev->queues[0] = nvmeq;
970 return result;
971 }
972
973 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
974 unsigned long addr, unsigned length,
975 struct scatterlist **sgp)
976 {
977 int i, err, count, nents, offset;
978 struct scatterlist *sg;
979 struct page **pages;
980
981 if (addr & 3)
982 return -EINVAL;
983 if (!length)
984 return -EINVAL;
985
986 offset = offset_in_page(addr);
987 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
988 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
989
990 err = get_user_pages_fast(addr, count, 1, pages);
991 if (err < count) {
992 count = err;
993 err = -EFAULT;
994 goto put_pages;
995 }
996
997 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
998 sg_init_table(sg, count);
999 sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
1000 length -= (PAGE_SIZE - offset);
1001 for (i = 1; i < count; i++) {
1002 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
1003 length -= PAGE_SIZE;
1004 }
1005
1006 err = -ENOMEM;
1007 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1008 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1009 if (!nents)
1010 goto put_pages;
1011
1012 kfree(pages);
1013 *sgp = sg;
1014 return nents;
1015
1016 put_pages:
1017 for (i = 0; i < count; i++)
1018 put_page(pages[i]);
1019 kfree(pages);
1020 return err;
1021 }
1022
1023 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1024 unsigned long addr, int length,
1025 struct scatterlist *sg, int nents)
1026 {
1027 int i, count;
1028
1029 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
1030 dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
1031
1032 for (i = 0; i < count; i++)
1033 put_page(sg_page(&sg[i]));
1034 }
1035
1036 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1037 {
1038 struct nvme_dev *dev = ns->dev;
1039 struct nvme_queue *nvmeq;
1040 struct nvme_user_io io;
1041 struct nvme_command c;
1042 unsigned length;
1043 int nents, status;
1044 struct scatterlist *sg;
1045 struct nvme_prps *prps;
1046
1047 if (copy_from_user(&io, uio, sizeof(io)))
1048 return -EFAULT;
1049 length = (io.nblocks + 1) << ns->lba_shift;
1050
1051 switch (io.opcode) {
1052 case nvme_cmd_write:
1053 case nvme_cmd_read:
1054 case nvme_cmd_compare:
1055 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr,
1056 length, &sg);
1057 default:
1058 return -EINVAL;
1059 }
1060
1061 if (nents < 0)
1062 return nents;
1063
1064 memset(&c, 0, sizeof(c));
1065 c.rw.opcode = io.opcode;
1066 c.rw.flags = io.flags;
1067 c.rw.nsid = cpu_to_le32(ns->ns_id);
1068 c.rw.slba = cpu_to_le64(io.slba);
1069 c.rw.length = cpu_to_le16(io.nblocks);
1070 c.rw.control = cpu_to_le16(io.control);
1071 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1072 c.rw.reftag = io.reftag;
1073 c.rw.apptag = io.apptag;
1074 c.rw.appmask = io.appmask;
1075 /* XXX: metadata */
1076 prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
1077
1078 nvmeq = get_nvmeq(ns);
1079 /*
1080 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1081 * disabled. We may be preempted at any point, and be rescheduled
1082 * to a different CPU. That will cause cacheline bouncing, but no
1083 * additional races since q_lock already protects against other CPUs.
1084 */
1085 put_nvmeq(nvmeq);
1086 if (length != (io.nblocks + 1) << ns->lba_shift)
1087 status = -ENOMEM;
1088 else
1089 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, IO_TIMEOUT);
1090
1091 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
1092 nvme_free_prps(dev, prps);
1093 return status;
1094 }
1095
1096 static int nvme_user_admin_cmd(struct nvme_ns *ns,
1097 struct nvme_admin_cmd __user *ucmd)
1098 {
1099 struct nvme_dev *dev = ns->dev;
1100 struct nvme_admin_cmd cmd;
1101 struct nvme_command c;
1102 int status, length, nents = 0;
1103 struct scatterlist *sg;
1104 struct nvme_prps *prps = NULL;
1105
1106 if (!capable(CAP_SYS_ADMIN))
1107 return -EACCES;
1108 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1109 return -EFAULT;
1110
1111 memset(&c, 0, sizeof(c));
1112 c.common.opcode = cmd.opcode;
1113 c.common.flags = cmd.flags;
1114 c.common.nsid = cpu_to_le32(cmd.nsid);
1115 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1116 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1117 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1118 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1119 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1120 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1121 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1122 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1123
1124 length = cmd.data_len;
1125 if (cmd.data_len) {
1126 nents = nvme_map_user_pages(dev, 1, cmd.addr, length, &sg);
1127 if (nents < 0)
1128 return nents;
1129 prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
1130 }
1131
1132 if (length != cmd.data_len)
1133 status = -ENOMEM;
1134 else
1135 status = nvme_submit_admin_cmd(dev, &c, NULL);
1136 if (cmd.data_len) {
1137 nvme_unmap_user_pages(dev, 0, cmd.addr, cmd.data_len, sg,
1138 nents);
1139 nvme_free_prps(dev, prps);
1140 }
1141 return status;
1142 }
1143
1144 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1145 unsigned long arg)
1146 {
1147 struct nvme_ns *ns = bdev->bd_disk->private_data;
1148
1149 switch (cmd) {
1150 case NVME_IOCTL_ID:
1151 return ns->ns_id;
1152 case NVME_IOCTL_ADMIN_CMD:
1153 return nvme_user_admin_cmd(ns, (void __user *)arg);
1154 case NVME_IOCTL_SUBMIT_IO:
1155 return nvme_submit_io(ns, (void __user *)arg);
1156 default:
1157 return -ENOTTY;
1158 }
1159 }
1160
1161 static const struct block_device_operations nvme_fops = {
1162 .owner = THIS_MODULE,
1163 .ioctl = nvme_ioctl,
1164 .compat_ioctl = nvme_ioctl,
1165 };
1166
1167 static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1168 {
1169 int depth = nvmeq->q_depth - 1;
1170 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1171 unsigned long now = jiffies;
1172 int cmdid;
1173
1174 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1175 unsigned long data;
1176 void *ptr;
1177 unsigned char handler;
1178 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1179
1180 if (!time_after(now, info[cmdid].timeout))
1181 continue;
1182 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1183 data = cancel_cmdid(nvmeq, cmdid);
1184 handler = data & 3;
1185 ptr = (void *)(data & ~3UL);
1186 nvme_completions[handler](nvmeq, ptr, &cqe);
1187 }
1188 }
1189
1190 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1191 {
1192 while (bio_list_peek(&nvmeq->sq_cong)) {
1193 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1194 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1195 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1196 bio_list_add_head(&nvmeq->sq_cong, bio);
1197 break;
1198 }
1199 if (bio_list_empty(&nvmeq->sq_cong))
1200 remove_wait_queue(&nvmeq->sq_full,
1201 &nvmeq->sq_cong_wait);
1202 }
1203 }
1204
1205 static int nvme_kthread(void *data)
1206 {
1207 struct nvme_dev *dev;
1208
1209 while (!kthread_should_stop()) {
1210 __set_current_state(TASK_RUNNING);
1211 spin_lock(&dev_list_lock);
1212 list_for_each_entry(dev, &dev_list, node) {
1213 int i;
1214 for (i = 0; i < dev->queue_count; i++) {
1215 struct nvme_queue *nvmeq = dev->queues[i];
1216 if (!nvmeq)
1217 continue;
1218 spin_lock_irq(&nvmeq->q_lock);
1219 if (nvme_process_cq(nvmeq))
1220 printk("process_cq did something\n");
1221 nvme_timeout_ios(nvmeq);
1222 nvme_resubmit_bios(nvmeq);
1223 spin_unlock_irq(&nvmeq->q_lock);
1224 }
1225 }
1226 spin_unlock(&dev_list_lock);
1227 set_current_state(TASK_INTERRUPTIBLE);
1228 schedule_timeout(HZ);
1229 }
1230 return 0;
1231 }
1232
1233 static DEFINE_IDA(nvme_index_ida);
1234
1235 static int nvme_get_ns_idx(void)
1236 {
1237 int index, error;
1238
1239 do {
1240 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1241 return -1;
1242
1243 spin_lock(&dev_list_lock);
1244 error = ida_get_new(&nvme_index_ida, &index);
1245 spin_unlock(&dev_list_lock);
1246 } while (error == -EAGAIN);
1247
1248 if (error)
1249 index = -1;
1250 return index;
1251 }
1252
1253 static void nvme_put_ns_idx(int index)
1254 {
1255 spin_lock(&dev_list_lock);
1256 ida_remove(&nvme_index_ida, index);
1257 spin_unlock(&dev_list_lock);
1258 }
1259
1260 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1261 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1262 {
1263 struct nvme_ns *ns;
1264 struct gendisk *disk;
1265 int lbaf;
1266
1267 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1268 return NULL;
1269
1270 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1271 if (!ns)
1272 return NULL;
1273 ns->queue = blk_alloc_queue(GFP_KERNEL);
1274 if (!ns->queue)
1275 goto out_free_ns;
1276 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1277 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1278 blk_queue_make_request(ns->queue, nvme_make_request);
1279 ns->dev = dev;
1280 ns->queue->queuedata = ns;
1281
1282 disk = alloc_disk(NVME_MINORS);
1283 if (!disk)
1284 goto out_free_queue;
1285 ns->ns_id = nsid;
1286 ns->disk = disk;
1287 lbaf = id->flbas & 0xf;
1288 ns->lba_shift = id->lbaf[lbaf].ds;
1289
1290 disk->major = nvme_major;
1291 disk->minors = NVME_MINORS;
1292 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1293 disk->fops = &nvme_fops;
1294 disk->private_data = ns;
1295 disk->queue = ns->queue;
1296 disk->driverfs_dev = &dev->pci_dev->dev;
1297 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1298 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1299
1300 return ns;
1301
1302 out_free_queue:
1303 blk_cleanup_queue(ns->queue);
1304 out_free_ns:
1305 kfree(ns);
1306 return NULL;
1307 }
1308
1309 static void nvme_ns_free(struct nvme_ns *ns)
1310 {
1311 int index = ns->disk->first_minor / NVME_MINORS;
1312 put_disk(ns->disk);
1313 nvme_put_ns_idx(index);
1314 blk_cleanup_queue(ns->queue);
1315 kfree(ns);
1316 }
1317
1318 static int set_queue_count(struct nvme_dev *dev, int count)
1319 {
1320 int status;
1321 u32 result;
1322 struct nvme_command c;
1323 u32 q_count = (count - 1) | ((count - 1) << 16);
1324
1325 memset(&c, 0, sizeof(c));
1326 c.features.opcode = nvme_admin_get_features;
1327 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1328 c.features.dword11 = cpu_to_le32(q_count);
1329
1330 status = nvme_submit_admin_cmd(dev, &c, &result);
1331 if (status)
1332 return -EIO;
1333 return min(result & 0xffff, result >> 16) + 1;
1334 }
1335
1336 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1337 {
1338 int result, cpu, i, nr_io_queues;
1339
1340 nr_io_queues = num_online_cpus();
1341 result = set_queue_count(dev, nr_io_queues);
1342 if (result < 0)
1343 return result;
1344 if (result < nr_io_queues)
1345 nr_io_queues = result;
1346
1347 /* Deregister the admin queue's interrupt */
1348 free_irq(dev->entry[0].vector, dev->queues[0]);
1349
1350 for (i = 0; i < nr_io_queues; i++)
1351 dev->entry[i].entry = i;
1352 for (;;) {
1353 result = pci_enable_msix(dev->pci_dev, dev->entry,
1354 nr_io_queues);
1355 if (result == 0) {
1356 break;
1357 } else if (result > 0) {
1358 nr_io_queues = result;
1359 continue;
1360 } else {
1361 nr_io_queues = 1;
1362 break;
1363 }
1364 }
1365
1366 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1367 /* XXX: handle failure here */
1368
1369 cpu = cpumask_first(cpu_online_mask);
1370 for (i = 0; i < nr_io_queues; i++) {
1371 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1372 cpu = cpumask_next(cpu, cpu_online_mask);
1373 }
1374
1375 for (i = 0; i < nr_io_queues; i++) {
1376 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1377 NVME_Q_DEPTH, i);
1378 if (IS_ERR(dev->queues[i + 1]))
1379 return PTR_ERR(dev->queues[i + 1]);
1380 dev->queue_count++;
1381 }
1382
1383 for (; i < num_possible_cpus(); i++) {
1384 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1385 dev->queues[i + 1] = dev->queues[target + 1];
1386 }
1387
1388 return 0;
1389 }
1390
1391 static void nvme_free_queues(struct nvme_dev *dev)
1392 {
1393 int i;
1394
1395 for (i = dev->queue_count - 1; i >= 0; i--)
1396 nvme_free_queue(dev, i);
1397 }
1398
1399 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1400 {
1401 int res, nn, i;
1402 struct nvme_ns *ns, *next;
1403 struct nvme_id_ctrl *ctrl;
1404 void *id;
1405 dma_addr_t dma_addr;
1406 struct nvme_command cid, crt;
1407
1408 res = nvme_setup_io_queues(dev);
1409 if (res)
1410 return res;
1411
1412 /* XXX: Switch to a SG list once prp2 works */
1413 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1414 GFP_KERNEL);
1415
1416 memset(&cid, 0, sizeof(cid));
1417 cid.identify.opcode = nvme_admin_identify;
1418 cid.identify.nsid = 0;
1419 cid.identify.prp1 = cpu_to_le64(dma_addr);
1420 cid.identify.cns = cpu_to_le32(1);
1421
1422 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1423 if (res) {
1424 res = -EIO;
1425 goto out_free;
1426 }
1427
1428 ctrl = id;
1429 nn = le32_to_cpup(&ctrl->nn);
1430 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1431 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1432 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1433
1434 cid.identify.cns = 0;
1435 memset(&crt, 0, sizeof(crt));
1436 crt.features.opcode = nvme_admin_get_features;
1437 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1438 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1439
1440 for (i = 0; i <= nn; i++) {
1441 cid.identify.nsid = cpu_to_le32(i);
1442 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1443 if (res)
1444 continue;
1445
1446 if (((struct nvme_id_ns *)id)->ncap == 0)
1447 continue;
1448
1449 crt.features.nsid = cpu_to_le32(i);
1450 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1451 if (res)
1452 continue;
1453
1454 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1455 if (ns)
1456 list_add_tail(&ns->list, &dev->namespaces);
1457 }
1458 list_for_each_entry(ns, &dev->namespaces, list)
1459 add_disk(ns->disk);
1460
1461 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1462 return 0;
1463
1464 out_free:
1465 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1466 list_del(&ns->list);
1467 nvme_ns_free(ns);
1468 }
1469
1470 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1471 return res;
1472 }
1473
1474 static int nvme_dev_remove(struct nvme_dev *dev)
1475 {
1476 struct nvme_ns *ns, *next;
1477
1478 spin_lock(&dev_list_lock);
1479 list_del(&dev->node);
1480 spin_unlock(&dev_list_lock);
1481
1482 /* TODO: wait all I/O finished or cancel them */
1483
1484 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1485 list_del(&ns->list);
1486 del_gendisk(ns->disk);
1487 nvme_ns_free(ns);
1488 }
1489
1490 nvme_free_queues(dev);
1491
1492 return 0;
1493 }
1494
1495 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1496 {
1497 struct device *dmadev = &dev->pci_dev->dev;
1498 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1499 PAGE_SIZE, PAGE_SIZE, 0);
1500 if (!dev->prp_page_pool)
1501 return -ENOMEM;
1502
1503 /* Optimisation for I/Os between 4k and 128k */
1504 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1505 256, 256, 0);
1506 if (!dev->prp_small_pool) {
1507 dma_pool_destroy(dev->prp_page_pool);
1508 return -ENOMEM;
1509 }
1510 return 0;
1511 }
1512
1513 static void nvme_release_prp_pools(struct nvme_dev *dev)
1514 {
1515 dma_pool_destroy(dev->prp_page_pool);
1516 dma_pool_destroy(dev->prp_small_pool);
1517 }
1518
1519 /* XXX: Use an ida or something to let remove / add work correctly */
1520 static void nvme_set_instance(struct nvme_dev *dev)
1521 {
1522 static int instance;
1523 dev->instance = instance++;
1524 }
1525
1526 static void nvme_release_instance(struct nvme_dev *dev)
1527 {
1528 }
1529
1530 static int __devinit nvme_probe(struct pci_dev *pdev,
1531 const struct pci_device_id *id)
1532 {
1533 int bars, result = -ENOMEM;
1534 struct nvme_dev *dev;
1535
1536 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1537 if (!dev)
1538 return -ENOMEM;
1539 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1540 GFP_KERNEL);
1541 if (!dev->entry)
1542 goto free;
1543 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1544 GFP_KERNEL);
1545 if (!dev->queues)
1546 goto free;
1547
1548 if (pci_enable_device_mem(pdev))
1549 goto free;
1550 pci_set_master(pdev);
1551 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1552 if (pci_request_selected_regions(pdev, bars, "nvme"))
1553 goto disable;
1554
1555 INIT_LIST_HEAD(&dev->namespaces);
1556 dev->pci_dev = pdev;
1557 pci_set_drvdata(pdev, dev);
1558 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1559 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1560 nvme_set_instance(dev);
1561 dev->entry[0].vector = pdev->irq;
1562
1563 result = nvme_setup_prp_pools(dev);
1564 if (result)
1565 goto disable_msix;
1566
1567 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1568 if (!dev->bar) {
1569 result = -ENOMEM;
1570 goto disable_msix;
1571 }
1572
1573 result = nvme_configure_admin_queue(dev);
1574 if (result)
1575 goto unmap;
1576 dev->queue_count++;
1577
1578 spin_lock(&dev_list_lock);
1579 list_add(&dev->node, &dev_list);
1580 spin_unlock(&dev_list_lock);
1581
1582 result = nvme_dev_add(dev);
1583 if (result)
1584 goto delete;
1585
1586 return 0;
1587
1588 delete:
1589 spin_lock(&dev_list_lock);
1590 list_del(&dev->node);
1591 spin_unlock(&dev_list_lock);
1592
1593 nvme_free_queues(dev);
1594 unmap:
1595 iounmap(dev->bar);
1596 disable_msix:
1597 pci_disable_msix(pdev);
1598 nvme_release_instance(dev);
1599 nvme_release_prp_pools(dev);
1600 disable:
1601 pci_disable_device(pdev);
1602 pci_release_regions(pdev);
1603 free:
1604 kfree(dev->queues);
1605 kfree(dev->entry);
1606 kfree(dev);
1607 return result;
1608 }
1609
1610 static void __devexit nvme_remove(struct pci_dev *pdev)
1611 {
1612 struct nvme_dev *dev = pci_get_drvdata(pdev);
1613 nvme_dev_remove(dev);
1614 pci_disable_msix(pdev);
1615 iounmap(dev->bar);
1616 nvme_release_instance(dev);
1617 nvme_release_prp_pools(dev);
1618 pci_disable_device(pdev);
1619 pci_release_regions(pdev);
1620 kfree(dev->queues);
1621 kfree(dev->entry);
1622 kfree(dev);
1623 }
1624
1625 /* These functions are yet to be implemented */
1626 #define nvme_error_detected NULL
1627 #define nvme_dump_registers NULL
1628 #define nvme_link_reset NULL
1629 #define nvme_slot_reset NULL
1630 #define nvme_error_resume NULL
1631 #define nvme_suspend NULL
1632 #define nvme_resume NULL
1633
1634 static struct pci_error_handlers nvme_err_handler = {
1635 .error_detected = nvme_error_detected,
1636 .mmio_enabled = nvme_dump_registers,
1637 .link_reset = nvme_link_reset,
1638 .slot_reset = nvme_slot_reset,
1639 .resume = nvme_error_resume,
1640 };
1641
1642 /* Move to pci_ids.h later */
1643 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
1644
1645 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1646 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1647 { 0, }
1648 };
1649 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1650
1651 static struct pci_driver nvme_driver = {
1652 .name = "nvme",
1653 .id_table = nvme_id_table,
1654 .probe = nvme_probe,
1655 .remove = __devexit_p(nvme_remove),
1656 .suspend = nvme_suspend,
1657 .resume = nvme_resume,
1658 .err_handler = &nvme_err_handler,
1659 };
1660
1661 static int __init nvme_init(void)
1662 {
1663 int result = -EBUSY;
1664
1665 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1666 if (IS_ERR(nvme_thread))
1667 return PTR_ERR(nvme_thread);
1668
1669 nvme_major = register_blkdev(nvme_major, "nvme");
1670 if (nvme_major <= 0)
1671 goto kill_kthread;
1672
1673 result = pci_register_driver(&nvme_driver);
1674 if (result)
1675 goto unregister_blkdev;
1676 return 0;
1677
1678 unregister_blkdev:
1679 unregister_blkdev(nvme_major, "nvme");
1680 kill_kthread:
1681 kthread_stop(nvme_thread);
1682 return result;
1683 }
1684
1685 static void __exit nvme_exit(void)
1686 {
1687 pci_unregister_driver(&nvme_driver);
1688 unregister_blkdev(nvme_major, "nvme");
1689 kthread_stop(nvme_thread);
1690 }
1691
1692 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1693 MODULE_LICENSE("GPL");
1694 MODULE_VERSION("0.6");
1695 module_init(nvme_init);
1696 module_exit(nvme_exit);