]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/block/rbd.c
block_device_operations->release() should return void
[mirror_ubuntu-zesty-kernel.git] / drivers / block / rbd.c
1 /*
2 rbd.c -- Export ceph rados objects as a Linux block device
3
4
5 based on drivers/block/osdblk.c:
6
7 Copyright 2009 Red Hat, Inc.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24 For usage instructions, please refer to:
25
26 Documentation/ABI/testing/sysfs-bus-rbd
27
28 */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 #define RBD_DEBUG /* Activate rbd_assert() calls */
45
46 /*
47 * The basic unit of block I/O is a sector. It is interpreted in a
48 * number of contexts in Linux (blk, bio, genhd), but the default is
49 * universally 512 bytes. These symbols are just slightly more
50 * meaningful than the bare numbers they represent.
51 */
52 #define SECTOR_SHIFT 9
53 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
54
55 /* It might be useful to have these defined elsewhere */
56
57 #define U8_MAX ((u8) (~0U))
58 #define U16_MAX ((u16) (~0U))
59 #define U32_MAX ((u32) (~0U))
60 #define U64_MAX ((u64) (~0ULL))
61
62 #define RBD_DRV_NAME "rbd"
63 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
64
65 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
66
67 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
68 #define RBD_MAX_SNAP_NAME_LEN \
69 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
70
71 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
72
73 #define RBD_SNAP_HEAD_NAME "-"
74
75 /* This allows a single page to hold an image name sent by OSD */
76 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
77 #define RBD_IMAGE_ID_LEN_MAX 64
78
79 #define RBD_OBJ_PREFIX_LEN_MAX 64
80
81 /* Feature bits */
82
83 #define RBD_FEATURE_LAYERING 1
84
85 /* Features supported by this (client software) implementation. */
86
87 #define RBD_FEATURES_ALL (0)
88
89 /*
90 * An RBD device name will be "rbd#", where the "rbd" comes from
91 * RBD_DRV_NAME above, and # is a unique integer identifier.
92 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
93 * enough to hold all possible device names.
94 */
95 #define DEV_NAME_LEN 32
96 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
97
98 /*
99 * block device image metadata (in-memory version)
100 */
101 struct rbd_image_header {
102 /* These four fields never change for a given rbd image */
103 char *object_prefix;
104 u64 features;
105 __u8 obj_order;
106 __u8 crypt_type;
107 __u8 comp_type;
108
109 /* The remaining fields need to be updated occasionally */
110 u64 image_size;
111 struct ceph_snap_context *snapc;
112 char *snap_names;
113 u64 *snap_sizes;
114
115 u64 obj_version;
116 };
117
118 /*
119 * An rbd image specification.
120 *
121 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
122 * identify an image. Each rbd_dev structure includes a pointer to
123 * an rbd_spec structure that encapsulates this identity.
124 *
125 * Each of the id's in an rbd_spec has an associated name. For a
126 * user-mapped image, the names are supplied and the id's associated
127 * with them are looked up. For a layered image, a parent image is
128 * defined by the tuple, and the names are looked up.
129 *
130 * An rbd_dev structure contains a parent_spec pointer which is
131 * non-null if the image it represents is a child in a layered
132 * image. This pointer will refer to the rbd_spec structure used
133 * by the parent rbd_dev for its own identity (i.e., the structure
134 * is shared between the parent and child).
135 *
136 * Since these structures are populated once, during the discovery
137 * phase of image construction, they are effectively immutable so
138 * we make no effort to synchronize access to them.
139 *
140 * Note that code herein does not assume the image name is known (it
141 * could be a null pointer).
142 */
143 struct rbd_spec {
144 u64 pool_id;
145 char *pool_name;
146
147 char *image_id;
148 char *image_name;
149
150 u64 snap_id;
151 char *snap_name;
152
153 struct kref kref;
154 };
155
156 /*
157 * an instance of the client. multiple devices may share an rbd client.
158 */
159 struct rbd_client {
160 struct ceph_client *client;
161 struct kref kref;
162 struct list_head node;
163 };
164
165 struct rbd_img_request;
166 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
167
168 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
169
170 struct rbd_obj_request;
171 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
172
173 enum obj_request_type {
174 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
175 };
176
177 struct rbd_obj_request {
178 const char *object_name;
179 u64 offset; /* object start byte */
180 u64 length; /* bytes from offset */
181
182 struct rbd_img_request *img_request;
183 struct list_head links; /* img_request->obj_requests */
184 u32 which; /* posn image request list */
185
186 enum obj_request_type type;
187 union {
188 struct bio *bio_list;
189 struct {
190 struct page **pages;
191 u32 page_count;
192 };
193 };
194
195 struct ceph_osd_request *osd_req;
196
197 u64 xferred; /* bytes transferred */
198 u64 version;
199 int result;
200 atomic_t done;
201
202 rbd_obj_callback_t callback;
203 struct completion completion;
204
205 struct kref kref;
206 };
207
208 struct rbd_img_request {
209 struct request *rq;
210 struct rbd_device *rbd_dev;
211 u64 offset; /* starting image byte offset */
212 u64 length; /* byte count from offset */
213 bool write_request; /* false for read */
214 union {
215 struct ceph_snap_context *snapc; /* for writes */
216 u64 snap_id; /* for reads */
217 };
218 spinlock_t completion_lock;/* protects next_completion */
219 u32 next_completion;
220 rbd_img_callback_t callback;
221
222 u32 obj_request_count;
223 struct list_head obj_requests; /* rbd_obj_request structs */
224
225 struct kref kref;
226 };
227
228 #define for_each_obj_request(ireq, oreq) \
229 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
230 #define for_each_obj_request_from(ireq, oreq) \
231 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
232 #define for_each_obj_request_safe(ireq, oreq, n) \
233 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
234
235 struct rbd_snap {
236 struct device dev;
237 const char *name;
238 u64 size;
239 struct list_head node;
240 u64 id;
241 u64 features;
242 };
243
244 struct rbd_mapping {
245 u64 size;
246 u64 features;
247 bool read_only;
248 };
249
250 /*
251 * a single device
252 */
253 struct rbd_device {
254 int dev_id; /* blkdev unique id */
255
256 int major; /* blkdev assigned major */
257 struct gendisk *disk; /* blkdev's gendisk and rq */
258
259 u32 image_format; /* Either 1 or 2 */
260 struct rbd_client *rbd_client;
261
262 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
263
264 spinlock_t lock; /* queue, flags, open_count */
265
266 struct rbd_image_header header;
267 unsigned long flags; /* possibly lock protected */
268 struct rbd_spec *spec;
269
270 char *header_name;
271
272 struct ceph_file_layout layout;
273
274 struct ceph_osd_event *watch_event;
275 struct rbd_obj_request *watch_request;
276
277 struct rbd_spec *parent_spec;
278 u64 parent_overlap;
279
280 /* protects updating the header */
281 struct rw_semaphore header_rwsem;
282
283 struct rbd_mapping mapping;
284
285 struct list_head node;
286
287 /* list of snapshots */
288 struct list_head snaps;
289
290 /* sysfs related */
291 struct device dev;
292 unsigned long open_count; /* protected by lock */
293 };
294
295 /*
296 * Flag bits for rbd_dev->flags. If atomicity is required,
297 * rbd_dev->lock is used to protect access.
298 *
299 * Currently, only the "removing" flag (which is coupled with the
300 * "open_count" field) requires atomic access.
301 */
302 enum rbd_dev_flags {
303 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
304 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
305 };
306
307 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
308
309 static LIST_HEAD(rbd_dev_list); /* devices */
310 static DEFINE_SPINLOCK(rbd_dev_list_lock);
311
312 static LIST_HEAD(rbd_client_list); /* clients */
313 static DEFINE_SPINLOCK(rbd_client_list_lock);
314
315 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev);
316 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev);
317
318 static void rbd_dev_release(struct device *dev);
319 static void rbd_remove_snap_dev(struct rbd_snap *snap);
320
321 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
322 size_t count);
323 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
324 size_t count);
325
326 static struct bus_attribute rbd_bus_attrs[] = {
327 __ATTR(add, S_IWUSR, NULL, rbd_add),
328 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
329 __ATTR_NULL
330 };
331
332 static struct bus_type rbd_bus_type = {
333 .name = "rbd",
334 .bus_attrs = rbd_bus_attrs,
335 };
336
337 static void rbd_root_dev_release(struct device *dev)
338 {
339 }
340
341 static struct device rbd_root_dev = {
342 .init_name = "rbd",
343 .release = rbd_root_dev_release,
344 };
345
346 static __printf(2, 3)
347 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
348 {
349 struct va_format vaf;
350 va_list args;
351
352 va_start(args, fmt);
353 vaf.fmt = fmt;
354 vaf.va = &args;
355
356 if (!rbd_dev)
357 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
358 else if (rbd_dev->disk)
359 printk(KERN_WARNING "%s: %s: %pV\n",
360 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
361 else if (rbd_dev->spec && rbd_dev->spec->image_name)
362 printk(KERN_WARNING "%s: image %s: %pV\n",
363 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
364 else if (rbd_dev->spec && rbd_dev->spec->image_id)
365 printk(KERN_WARNING "%s: id %s: %pV\n",
366 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
367 else /* punt */
368 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
369 RBD_DRV_NAME, rbd_dev, &vaf);
370 va_end(args);
371 }
372
373 #ifdef RBD_DEBUG
374 #define rbd_assert(expr) \
375 if (unlikely(!(expr))) { \
376 printk(KERN_ERR "\nAssertion failure in %s() " \
377 "at line %d:\n\n" \
378 "\trbd_assert(%s);\n\n", \
379 __func__, __LINE__, #expr); \
380 BUG(); \
381 }
382 #else /* !RBD_DEBUG */
383 # define rbd_assert(expr) ((void) 0)
384 #endif /* !RBD_DEBUG */
385
386 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver);
387 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver);
388
389 static int rbd_open(struct block_device *bdev, fmode_t mode)
390 {
391 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
392 bool removing = false;
393
394 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
395 return -EROFS;
396
397 spin_lock_irq(&rbd_dev->lock);
398 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
399 removing = true;
400 else
401 rbd_dev->open_count++;
402 spin_unlock_irq(&rbd_dev->lock);
403 if (removing)
404 return -ENOENT;
405
406 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
407 (void) get_device(&rbd_dev->dev);
408 set_device_ro(bdev, rbd_dev->mapping.read_only);
409 mutex_unlock(&ctl_mutex);
410
411 return 0;
412 }
413
414 static void rbd_release(struct gendisk *disk, fmode_t mode)
415 {
416 struct rbd_device *rbd_dev = disk->private_data;
417 unsigned long open_count_before;
418
419 spin_lock_irq(&rbd_dev->lock);
420 open_count_before = rbd_dev->open_count--;
421 spin_unlock_irq(&rbd_dev->lock);
422 rbd_assert(open_count_before > 0);
423
424 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
425 put_device(&rbd_dev->dev);
426 mutex_unlock(&ctl_mutex);
427 }
428
429 static const struct block_device_operations rbd_bd_ops = {
430 .owner = THIS_MODULE,
431 .open = rbd_open,
432 .release = rbd_release,
433 };
434
435 /*
436 * Initialize an rbd client instance.
437 * We own *ceph_opts.
438 */
439 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
440 {
441 struct rbd_client *rbdc;
442 int ret = -ENOMEM;
443
444 dout("%s:\n", __func__);
445 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
446 if (!rbdc)
447 goto out_opt;
448
449 kref_init(&rbdc->kref);
450 INIT_LIST_HEAD(&rbdc->node);
451
452 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
453
454 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
455 if (IS_ERR(rbdc->client))
456 goto out_mutex;
457 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
458
459 ret = ceph_open_session(rbdc->client);
460 if (ret < 0)
461 goto out_err;
462
463 spin_lock(&rbd_client_list_lock);
464 list_add_tail(&rbdc->node, &rbd_client_list);
465 spin_unlock(&rbd_client_list_lock);
466
467 mutex_unlock(&ctl_mutex);
468 dout("%s: rbdc %p\n", __func__, rbdc);
469
470 return rbdc;
471
472 out_err:
473 ceph_destroy_client(rbdc->client);
474 out_mutex:
475 mutex_unlock(&ctl_mutex);
476 kfree(rbdc);
477 out_opt:
478 if (ceph_opts)
479 ceph_destroy_options(ceph_opts);
480 dout("%s: error %d\n", __func__, ret);
481
482 return ERR_PTR(ret);
483 }
484
485 /*
486 * Find a ceph client with specific addr and configuration. If
487 * found, bump its reference count.
488 */
489 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
490 {
491 struct rbd_client *client_node;
492 bool found = false;
493
494 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
495 return NULL;
496
497 spin_lock(&rbd_client_list_lock);
498 list_for_each_entry(client_node, &rbd_client_list, node) {
499 if (!ceph_compare_options(ceph_opts, client_node->client)) {
500 kref_get(&client_node->kref);
501 found = true;
502 break;
503 }
504 }
505 spin_unlock(&rbd_client_list_lock);
506
507 return found ? client_node : NULL;
508 }
509
510 /*
511 * mount options
512 */
513 enum {
514 Opt_last_int,
515 /* int args above */
516 Opt_last_string,
517 /* string args above */
518 Opt_read_only,
519 Opt_read_write,
520 /* Boolean args above */
521 Opt_last_bool,
522 };
523
524 static match_table_t rbd_opts_tokens = {
525 /* int args above */
526 /* string args above */
527 {Opt_read_only, "read_only"},
528 {Opt_read_only, "ro"}, /* Alternate spelling */
529 {Opt_read_write, "read_write"},
530 {Opt_read_write, "rw"}, /* Alternate spelling */
531 /* Boolean args above */
532 {-1, NULL}
533 };
534
535 struct rbd_options {
536 bool read_only;
537 };
538
539 #define RBD_READ_ONLY_DEFAULT false
540
541 static int parse_rbd_opts_token(char *c, void *private)
542 {
543 struct rbd_options *rbd_opts = private;
544 substring_t argstr[MAX_OPT_ARGS];
545 int token, intval, ret;
546
547 token = match_token(c, rbd_opts_tokens, argstr);
548 if (token < 0)
549 return -EINVAL;
550
551 if (token < Opt_last_int) {
552 ret = match_int(&argstr[0], &intval);
553 if (ret < 0) {
554 pr_err("bad mount option arg (not int) "
555 "at '%s'\n", c);
556 return ret;
557 }
558 dout("got int token %d val %d\n", token, intval);
559 } else if (token > Opt_last_int && token < Opt_last_string) {
560 dout("got string token %d val %s\n", token,
561 argstr[0].from);
562 } else if (token > Opt_last_string && token < Opt_last_bool) {
563 dout("got Boolean token %d\n", token);
564 } else {
565 dout("got token %d\n", token);
566 }
567
568 switch (token) {
569 case Opt_read_only:
570 rbd_opts->read_only = true;
571 break;
572 case Opt_read_write:
573 rbd_opts->read_only = false;
574 break;
575 default:
576 rbd_assert(false);
577 break;
578 }
579 return 0;
580 }
581
582 /*
583 * Get a ceph client with specific addr and configuration, if one does
584 * not exist create it.
585 */
586 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
587 {
588 struct rbd_client *rbdc;
589
590 rbdc = rbd_client_find(ceph_opts);
591 if (rbdc) /* using an existing client */
592 ceph_destroy_options(ceph_opts);
593 else
594 rbdc = rbd_client_create(ceph_opts);
595
596 return rbdc;
597 }
598
599 /*
600 * Destroy ceph client
601 *
602 * Caller must hold rbd_client_list_lock.
603 */
604 static void rbd_client_release(struct kref *kref)
605 {
606 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
607
608 dout("%s: rbdc %p\n", __func__, rbdc);
609 spin_lock(&rbd_client_list_lock);
610 list_del(&rbdc->node);
611 spin_unlock(&rbd_client_list_lock);
612
613 ceph_destroy_client(rbdc->client);
614 kfree(rbdc);
615 }
616
617 /*
618 * Drop reference to ceph client node. If it's not referenced anymore, release
619 * it.
620 */
621 static void rbd_put_client(struct rbd_client *rbdc)
622 {
623 if (rbdc)
624 kref_put(&rbdc->kref, rbd_client_release);
625 }
626
627 static bool rbd_image_format_valid(u32 image_format)
628 {
629 return image_format == 1 || image_format == 2;
630 }
631
632 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
633 {
634 size_t size;
635 u32 snap_count;
636
637 /* The header has to start with the magic rbd header text */
638 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
639 return false;
640
641 /* The bio layer requires at least sector-sized I/O */
642
643 if (ondisk->options.order < SECTOR_SHIFT)
644 return false;
645
646 /* If we use u64 in a few spots we may be able to loosen this */
647
648 if (ondisk->options.order > 8 * sizeof (int) - 1)
649 return false;
650
651 /*
652 * The size of a snapshot header has to fit in a size_t, and
653 * that limits the number of snapshots.
654 */
655 snap_count = le32_to_cpu(ondisk->snap_count);
656 size = SIZE_MAX - sizeof (struct ceph_snap_context);
657 if (snap_count > size / sizeof (__le64))
658 return false;
659
660 /*
661 * Not only that, but the size of the entire the snapshot
662 * header must also be representable in a size_t.
663 */
664 size -= snap_count * sizeof (__le64);
665 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
666 return false;
667
668 return true;
669 }
670
671 /*
672 * Create a new header structure, translate header format from the on-disk
673 * header.
674 */
675 static int rbd_header_from_disk(struct rbd_image_header *header,
676 struct rbd_image_header_ondisk *ondisk)
677 {
678 u32 snap_count;
679 size_t len;
680 size_t size;
681 u32 i;
682
683 memset(header, 0, sizeof (*header));
684
685 snap_count = le32_to_cpu(ondisk->snap_count);
686
687 len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
688 header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
689 if (!header->object_prefix)
690 return -ENOMEM;
691 memcpy(header->object_prefix, ondisk->object_prefix, len);
692 header->object_prefix[len] = '\0';
693
694 if (snap_count) {
695 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
696
697 /* Save a copy of the snapshot names */
698
699 if (snap_names_len > (u64) SIZE_MAX)
700 return -EIO;
701 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
702 if (!header->snap_names)
703 goto out_err;
704 /*
705 * Note that rbd_dev_v1_header_read() guarantees
706 * the ondisk buffer we're working with has
707 * snap_names_len bytes beyond the end of the
708 * snapshot id array, this memcpy() is safe.
709 */
710 memcpy(header->snap_names, &ondisk->snaps[snap_count],
711 snap_names_len);
712
713 /* Record each snapshot's size */
714
715 size = snap_count * sizeof (*header->snap_sizes);
716 header->snap_sizes = kmalloc(size, GFP_KERNEL);
717 if (!header->snap_sizes)
718 goto out_err;
719 for (i = 0; i < snap_count; i++)
720 header->snap_sizes[i] =
721 le64_to_cpu(ondisk->snaps[i].image_size);
722 } else {
723 WARN_ON(ondisk->snap_names_len);
724 header->snap_names = NULL;
725 header->snap_sizes = NULL;
726 }
727
728 header->features = 0; /* No features support in v1 images */
729 header->obj_order = ondisk->options.order;
730 header->crypt_type = ondisk->options.crypt_type;
731 header->comp_type = ondisk->options.comp_type;
732
733 /* Allocate and fill in the snapshot context */
734
735 header->image_size = le64_to_cpu(ondisk->image_size);
736 size = sizeof (struct ceph_snap_context);
737 size += snap_count * sizeof (header->snapc->snaps[0]);
738 header->snapc = kzalloc(size, GFP_KERNEL);
739 if (!header->snapc)
740 goto out_err;
741
742 atomic_set(&header->snapc->nref, 1);
743 header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
744 header->snapc->num_snaps = snap_count;
745 for (i = 0; i < snap_count; i++)
746 header->snapc->snaps[i] =
747 le64_to_cpu(ondisk->snaps[i].id);
748
749 return 0;
750
751 out_err:
752 kfree(header->snap_sizes);
753 header->snap_sizes = NULL;
754 kfree(header->snap_names);
755 header->snap_names = NULL;
756 kfree(header->object_prefix);
757 header->object_prefix = NULL;
758
759 return -ENOMEM;
760 }
761
762 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
763 {
764 struct rbd_snap *snap;
765
766 if (snap_id == CEPH_NOSNAP)
767 return RBD_SNAP_HEAD_NAME;
768
769 list_for_each_entry(snap, &rbd_dev->snaps, node)
770 if (snap_id == snap->id)
771 return snap->name;
772
773 return NULL;
774 }
775
776 static int snap_by_name(struct rbd_device *rbd_dev, const char *snap_name)
777 {
778
779 struct rbd_snap *snap;
780
781 list_for_each_entry(snap, &rbd_dev->snaps, node) {
782 if (!strcmp(snap_name, snap->name)) {
783 rbd_dev->spec->snap_id = snap->id;
784 rbd_dev->mapping.size = snap->size;
785 rbd_dev->mapping.features = snap->features;
786
787 return 0;
788 }
789 }
790
791 return -ENOENT;
792 }
793
794 static int rbd_dev_set_mapping(struct rbd_device *rbd_dev)
795 {
796 int ret;
797
798 if (!memcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME,
799 sizeof (RBD_SNAP_HEAD_NAME))) {
800 rbd_dev->spec->snap_id = CEPH_NOSNAP;
801 rbd_dev->mapping.size = rbd_dev->header.image_size;
802 rbd_dev->mapping.features = rbd_dev->header.features;
803 ret = 0;
804 } else {
805 ret = snap_by_name(rbd_dev, rbd_dev->spec->snap_name);
806 if (ret < 0)
807 goto done;
808 rbd_dev->mapping.read_only = true;
809 }
810 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
811
812 done:
813 return ret;
814 }
815
816 static void rbd_header_free(struct rbd_image_header *header)
817 {
818 kfree(header->object_prefix);
819 header->object_prefix = NULL;
820 kfree(header->snap_sizes);
821 header->snap_sizes = NULL;
822 kfree(header->snap_names);
823 header->snap_names = NULL;
824 ceph_put_snap_context(header->snapc);
825 header->snapc = NULL;
826 }
827
828 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
829 {
830 char *name;
831 u64 segment;
832 int ret;
833
834 name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO);
835 if (!name)
836 return NULL;
837 segment = offset >> rbd_dev->header.obj_order;
838 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
839 rbd_dev->header.object_prefix, segment);
840 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
841 pr_err("error formatting segment name for #%llu (%d)\n",
842 segment, ret);
843 kfree(name);
844 name = NULL;
845 }
846
847 return name;
848 }
849
850 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
851 {
852 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
853
854 return offset & (segment_size - 1);
855 }
856
857 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
858 u64 offset, u64 length)
859 {
860 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
861
862 offset &= segment_size - 1;
863
864 rbd_assert(length <= U64_MAX - offset);
865 if (offset + length > segment_size)
866 length = segment_size - offset;
867
868 return length;
869 }
870
871 /*
872 * returns the size of an object in the image
873 */
874 static u64 rbd_obj_bytes(struct rbd_image_header *header)
875 {
876 return 1 << header->obj_order;
877 }
878
879 /*
880 * bio helpers
881 */
882
883 static void bio_chain_put(struct bio *chain)
884 {
885 struct bio *tmp;
886
887 while (chain) {
888 tmp = chain;
889 chain = chain->bi_next;
890 bio_put(tmp);
891 }
892 }
893
894 /*
895 * zeros a bio chain, starting at specific offset
896 */
897 static void zero_bio_chain(struct bio *chain, int start_ofs)
898 {
899 struct bio_vec *bv;
900 unsigned long flags;
901 void *buf;
902 int i;
903 int pos = 0;
904
905 while (chain) {
906 bio_for_each_segment(bv, chain, i) {
907 if (pos + bv->bv_len > start_ofs) {
908 int remainder = max(start_ofs - pos, 0);
909 buf = bvec_kmap_irq(bv, &flags);
910 memset(buf + remainder, 0,
911 bv->bv_len - remainder);
912 bvec_kunmap_irq(buf, &flags);
913 }
914 pos += bv->bv_len;
915 }
916
917 chain = chain->bi_next;
918 }
919 }
920
921 /*
922 * Clone a portion of a bio, starting at the given byte offset
923 * and continuing for the number of bytes indicated.
924 */
925 static struct bio *bio_clone_range(struct bio *bio_src,
926 unsigned int offset,
927 unsigned int len,
928 gfp_t gfpmask)
929 {
930 struct bio_vec *bv;
931 unsigned int resid;
932 unsigned short idx;
933 unsigned int voff;
934 unsigned short end_idx;
935 unsigned short vcnt;
936 struct bio *bio;
937
938 /* Handle the easy case for the caller */
939
940 if (!offset && len == bio_src->bi_size)
941 return bio_clone(bio_src, gfpmask);
942
943 if (WARN_ON_ONCE(!len))
944 return NULL;
945 if (WARN_ON_ONCE(len > bio_src->bi_size))
946 return NULL;
947 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
948 return NULL;
949
950 /* Find first affected segment... */
951
952 resid = offset;
953 __bio_for_each_segment(bv, bio_src, idx, 0) {
954 if (resid < bv->bv_len)
955 break;
956 resid -= bv->bv_len;
957 }
958 voff = resid;
959
960 /* ...and the last affected segment */
961
962 resid += len;
963 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
964 if (resid <= bv->bv_len)
965 break;
966 resid -= bv->bv_len;
967 }
968 vcnt = end_idx - idx + 1;
969
970 /* Build the clone */
971
972 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
973 if (!bio)
974 return NULL; /* ENOMEM */
975
976 bio->bi_bdev = bio_src->bi_bdev;
977 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
978 bio->bi_rw = bio_src->bi_rw;
979 bio->bi_flags |= 1 << BIO_CLONED;
980
981 /*
982 * Copy over our part of the bio_vec, then update the first
983 * and last (or only) entries.
984 */
985 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
986 vcnt * sizeof (struct bio_vec));
987 bio->bi_io_vec[0].bv_offset += voff;
988 if (vcnt > 1) {
989 bio->bi_io_vec[0].bv_len -= voff;
990 bio->bi_io_vec[vcnt - 1].bv_len = resid;
991 } else {
992 bio->bi_io_vec[0].bv_len = len;
993 }
994
995 bio->bi_vcnt = vcnt;
996 bio->bi_size = len;
997 bio->bi_idx = 0;
998
999 return bio;
1000 }
1001
1002 /*
1003 * Clone a portion of a bio chain, starting at the given byte offset
1004 * into the first bio in the source chain and continuing for the
1005 * number of bytes indicated. The result is another bio chain of
1006 * exactly the given length, or a null pointer on error.
1007 *
1008 * The bio_src and offset parameters are both in-out. On entry they
1009 * refer to the first source bio and the offset into that bio where
1010 * the start of data to be cloned is located.
1011 *
1012 * On return, bio_src is updated to refer to the bio in the source
1013 * chain that contains first un-cloned byte, and *offset will
1014 * contain the offset of that byte within that bio.
1015 */
1016 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1017 unsigned int *offset,
1018 unsigned int len,
1019 gfp_t gfpmask)
1020 {
1021 struct bio *bi = *bio_src;
1022 unsigned int off = *offset;
1023 struct bio *chain = NULL;
1024 struct bio **end;
1025
1026 /* Build up a chain of clone bios up to the limit */
1027
1028 if (!bi || off >= bi->bi_size || !len)
1029 return NULL; /* Nothing to clone */
1030
1031 end = &chain;
1032 while (len) {
1033 unsigned int bi_size;
1034 struct bio *bio;
1035
1036 if (!bi) {
1037 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1038 goto out_err; /* EINVAL; ran out of bio's */
1039 }
1040 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1041 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1042 if (!bio)
1043 goto out_err; /* ENOMEM */
1044
1045 *end = bio;
1046 end = &bio->bi_next;
1047
1048 off += bi_size;
1049 if (off == bi->bi_size) {
1050 bi = bi->bi_next;
1051 off = 0;
1052 }
1053 len -= bi_size;
1054 }
1055 *bio_src = bi;
1056 *offset = off;
1057
1058 return chain;
1059 out_err:
1060 bio_chain_put(chain);
1061
1062 return NULL;
1063 }
1064
1065 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1066 {
1067 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1068 atomic_read(&obj_request->kref.refcount));
1069 kref_get(&obj_request->kref);
1070 }
1071
1072 static void rbd_obj_request_destroy(struct kref *kref);
1073 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1074 {
1075 rbd_assert(obj_request != NULL);
1076 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1077 atomic_read(&obj_request->kref.refcount));
1078 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1079 }
1080
1081 static void rbd_img_request_get(struct rbd_img_request *img_request)
1082 {
1083 dout("%s: img %p (was %d)\n", __func__, img_request,
1084 atomic_read(&img_request->kref.refcount));
1085 kref_get(&img_request->kref);
1086 }
1087
1088 static void rbd_img_request_destroy(struct kref *kref);
1089 static void rbd_img_request_put(struct rbd_img_request *img_request)
1090 {
1091 rbd_assert(img_request != NULL);
1092 dout("%s: img %p (was %d)\n", __func__, img_request,
1093 atomic_read(&img_request->kref.refcount));
1094 kref_put(&img_request->kref, rbd_img_request_destroy);
1095 }
1096
1097 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1098 struct rbd_obj_request *obj_request)
1099 {
1100 rbd_assert(obj_request->img_request == NULL);
1101
1102 rbd_obj_request_get(obj_request);
1103 obj_request->img_request = img_request;
1104 obj_request->which = img_request->obj_request_count;
1105 rbd_assert(obj_request->which != BAD_WHICH);
1106 img_request->obj_request_count++;
1107 list_add_tail(&obj_request->links, &img_request->obj_requests);
1108 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1109 obj_request->which);
1110 }
1111
1112 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1113 struct rbd_obj_request *obj_request)
1114 {
1115 rbd_assert(obj_request->which != BAD_WHICH);
1116
1117 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1118 obj_request->which);
1119 list_del(&obj_request->links);
1120 rbd_assert(img_request->obj_request_count > 0);
1121 img_request->obj_request_count--;
1122 rbd_assert(obj_request->which == img_request->obj_request_count);
1123 obj_request->which = BAD_WHICH;
1124 rbd_assert(obj_request->img_request == img_request);
1125 obj_request->img_request = NULL;
1126 obj_request->callback = NULL;
1127 rbd_obj_request_put(obj_request);
1128 }
1129
1130 static bool obj_request_type_valid(enum obj_request_type type)
1131 {
1132 switch (type) {
1133 case OBJ_REQUEST_NODATA:
1134 case OBJ_REQUEST_BIO:
1135 case OBJ_REQUEST_PAGES:
1136 return true;
1137 default:
1138 return false;
1139 }
1140 }
1141
1142 static struct ceph_osd_req_op *rbd_osd_req_op_create(u16 opcode, ...)
1143 {
1144 struct ceph_osd_req_op *op;
1145 va_list args;
1146 size_t size;
1147
1148 op = kzalloc(sizeof (*op), GFP_NOIO);
1149 if (!op)
1150 return NULL;
1151 op->op = opcode;
1152 va_start(args, opcode);
1153 switch (opcode) {
1154 case CEPH_OSD_OP_READ:
1155 case CEPH_OSD_OP_WRITE:
1156 /* rbd_osd_req_op_create(READ, offset, length) */
1157 /* rbd_osd_req_op_create(WRITE, offset, length) */
1158 op->extent.offset = va_arg(args, u64);
1159 op->extent.length = va_arg(args, u64);
1160 if (opcode == CEPH_OSD_OP_WRITE)
1161 op->payload_len = op->extent.length;
1162 break;
1163 case CEPH_OSD_OP_STAT:
1164 break;
1165 case CEPH_OSD_OP_CALL:
1166 /* rbd_osd_req_op_create(CALL, class, method, data, datalen) */
1167 op->cls.class_name = va_arg(args, char *);
1168 size = strlen(op->cls.class_name);
1169 rbd_assert(size <= (size_t) U8_MAX);
1170 op->cls.class_len = size;
1171 op->payload_len = size;
1172
1173 op->cls.method_name = va_arg(args, char *);
1174 size = strlen(op->cls.method_name);
1175 rbd_assert(size <= (size_t) U8_MAX);
1176 op->cls.method_len = size;
1177 op->payload_len += size;
1178
1179 op->cls.argc = 0;
1180 op->cls.indata = va_arg(args, void *);
1181 size = va_arg(args, size_t);
1182 rbd_assert(size <= (size_t) U32_MAX);
1183 op->cls.indata_len = (u32) size;
1184 op->payload_len += size;
1185 break;
1186 case CEPH_OSD_OP_NOTIFY_ACK:
1187 case CEPH_OSD_OP_WATCH:
1188 /* rbd_osd_req_op_create(NOTIFY_ACK, cookie, version) */
1189 /* rbd_osd_req_op_create(WATCH, cookie, version, flag) */
1190 op->watch.cookie = va_arg(args, u64);
1191 op->watch.ver = va_arg(args, u64);
1192 op->watch.ver = cpu_to_le64(op->watch.ver);
1193 if (opcode == CEPH_OSD_OP_WATCH && va_arg(args, int))
1194 op->watch.flag = (u8) 1;
1195 break;
1196 default:
1197 rbd_warn(NULL, "unsupported opcode %hu\n", opcode);
1198 kfree(op);
1199 op = NULL;
1200 break;
1201 }
1202 va_end(args);
1203
1204 return op;
1205 }
1206
1207 static void rbd_osd_req_op_destroy(struct ceph_osd_req_op *op)
1208 {
1209 kfree(op);
1210 }
1211
1212 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1213 struct rbd_obj_request *obj_request)
1214 {
1215 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1216
1217 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1218 }
1219
1220 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1221 {
1222 dout("%s: img %p\n", __func__, img_request);
1223 if (img_request->callback)
1224 img_request->callback(img_request);
1225 else
1226 rbd_img_request_put(img_request);
1227 }
1228
1229 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1230
1231 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1232 {
1233 dout("%s: obj %p\n", __func__, obj_request);
1234
1235 return wait_for_completion_interruptible(&obj_request->completion);
1236 }
1237
1238 static void obj_request_done_init(struct rbd_obj_request *obj_request)
1239 {
1240 atomic_set(&obj_request->done, 0);
1241 smp_wmb();
1242 }
1243
1244 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1245 {
1246 int done;
1247
1248 done = atomic_inc_return(&obj_request->done);
1249 if (done > 1) {
1250 struct rbd_img_request *img_request = obj_request->img_request;
1251 struct rbd_device *rbd_dev;
1252
1253 rbd_dev = img_request ? img_request->rbd_dev : NULL;
1254 rbd_warn(rbd_dev, "obj_request %p was already done\n",
1255 obj_request);
1256 }
1257 }
1258
1259 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1260 {
1261 smp_mb();
1262 return atomic_read(&obj_request->done) != 0;
1263 }
1264
1265 static void
1266 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1267 {
1268 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1269 obj_request, obj_request->img_request, obj_request->result,
1270 obj_request->xferred, obj_request->length);
1271 /*
1272 * ENOENT means a hole in the image. We zero-fill the
1273 * entire length of the request. A short read also implies
1274 * zero-fill to the end of the request. Either way we
1275 * update the xferred count to indicate the whole request
1276 * was satisfied.
1277 */
1278 BUG_ON(obj_request->type != OBJ_REQUEST_BIO);
1279 if (obj_request->result == -ENOENT) {
1280 zero_bio_chain(obj_request->bio_list, 0);
1281 obj_request->result = 0;
1282 obj_request->xferred = obj_request->length;
1283 } else if (obj_request->xferred < obj_request->length &&
1284 !obj_request->result) {
1285 zero_bio_chain(obj_request->bio_list, obj_request->xferred);
1286 obj_request->xferred = obj_request->length;
1287 }
1288 obj_request_done_set(obj_request);
1289 }
1290
1291 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1292 {
1293 dout("%s: obj %p cb %p\n", __func__, obj_request,
1294 obj_request->callback);
1295 if (obj_request->callback)
1296 obj_request->callback(obj_request);
1297 else
1298 complete_all(&obj_request->completion);
1299 }
1300
1301 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1302 {
1303 dout("%s: obj %p\n", __func__, obj_request);
1304 obj_request_done_set(obj_request);
1305 }
1306
1307 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1308 {
1309 dout("%s: obj %p result %d %llu/%llu\n", __func__, obj_request,
1310 obj_request->result, obj_request->xferred, obj_request->length);
1311 if (obj_request->img_request)
1312 rbd_img_obj_request_read_callback(obj_request);
1313 else
1314 obj_request_done_set(obj_request);
1315 }
1316
1317 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1318 {
1319 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1320 obj_request->result, obj_request->length);
1321 /*
1322 * There is no such thing as a successful short write.
1323 * Our xferred value is the number of bytes transferred
1324 * back. Set it to our originally-requested length.
1325 */
1326 obj_request->xferred = obj_request->length;
1327 obj_request_done_set(obj_request);
1328 }
1329
1330 /*
1331 * For a simple stat call there's nothing to do. We'll do more if
1332 * this is part of a write sequence for a layered image.
1333 */
1334 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1335 {
1336 dout("%s: obj %p\n", __func__, obj_request);
1337 obj_request_done_set(obj_request);
1338 }
1339
1340 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1341 struct ceph_msg *msg)
1342 {
1343 struct rbd_obj_request *obj_request = osd_req->r_priv;
1344 u16 opcode;
1345
1346 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1347 rbd_assert(osd_req == obj_request->osd_req);
1348 rbd_assert(!!obj_request->img_request ^
1349 (obj_request->which == BAD_WHICH));
1350
1351 if (osd_req->r_result < 0)
1352 obj_request->result = osd_req->r_result;
1353 obj_request->version = le64_to_cpu(osd_req->r_reassert_version.version);
1354
1355 WARN_ON(osd_req->r_num_ops != 1); /* For now */
1356
1357 /*
1358 * We support a 64-bit length, but ultimately it has to be
1359 * passed to blk_end_request(), which takes an unsigned int.
1360 */
1361 obj_request->xferred = osd_req->r_reply_op_len[0];
1362 rbd_assert(obj_request->xferred < (u64) UINT_MAX);
1363 opcode = osd_req->r_request_ops[0].op;
1364 switch (opcode) {
1365 case CEPH_OSD_OP_READ:
1366 rbd_osd_read_callback(obj_request);
1367 break;
1368 case CEPH_OSD_OP_WRITE:
1369 rbd_osd_write_callback(obj_request);
1370 break;
1371 case CEPH_OSD_OP_STAT:
1372 rbd_osd_stat_callback(obj_request);
1373 break;
1374 case CEPH_OSD_OP_CALL:
1375 case CEPH_OSD_OP_NOTIFY_ACK:
1376 case CEPH_OSD_OP_WATCH:
1377 rbd_osd_trivial_callback(obj_request);
1378 break;
1379 default:
1380 rbd_warn(NULL, "%s: unsupported op %hu\n",
1381 obj_request->object_name, (unsigned short) opcode);
1382 break;
1383 }
1384
1385 if (obj_request_done_test(obj_request))
1386 rbd_obj_request_complete(obj_request);
1387 }
1388
1389 static struct ceph_osd_request *rbd_osd_req_create(
1390 struct rbd_device *rbd_dev,
1391 bool write_request,
1392 struct rbd_obj_request *obj_request,
1393 struct ceph_osd_req_op *op)
1394 {
1395 struct rbd_img_request *img_request = obj_request->img_request;
1396 struct ceph_snap_context *snapc = NULL;
1397 struct ceph_osd_client *osdc;
1398 struct ceph_osd_request *osd_req;
1399 struct timespec now;
1400 struct timespec *mtime;
1401 u64 snap_id = CEPH_NOSNAP;
1402 u64 offset = obj_request->offset;
1403 u64 length = obj_request->length;
1404
1405 if (img_request) {
1406 rbd_assert(img_request->write_request == write_request);
1407 if (img_request->write_request)
1408 snapc = img_request->snapc;
1409 else
1410 snap_id = img_request->snap_id;
1411 }
1412
1413 /* Allocate and initialize the request, for the single op */
1414
1415 osdc = &rbd_dev->rbd_client->client->osdc;
1416 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1417 if (!osd_req)
1418 return NULL; /* ENOMEM */
1419
1420 rbd_assert(obj_request_type_valid(obj_request->type));
1421 switch (obj_request->type) {
1422 case OBJ_REQUEST_NODATA:
1423 break; /* Nothing to do */
1424 case OBJ_REQUEST_BIO:
1425 rbd_assert(obj_request->bio_list != NULL);
1426 osd_req->r_bio = obj_request->bio_list;
1427 break;
1428 case OBJ_REQUEST_PAGES:
1429 osd_req->r_pages = obj_request->pages;
1430 osd_req->r_num_pages = obj_request->page_count;
1431 osd_req->r_page_alignment = offset & ~PAGE_MASK;
1432 break;
1433 }
1434
1435 if (write_request) {
1436 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1437 now = CURRENT_TIME;
1438 mtime = &now;
1439 } else {
1440 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1441 mtime = NULL; /* not needed for reads */
1442 offset = 0; /* These are not used... */
1443 length = 0; /* ...for osd read requests */
1444 }
1445
1446 osd_req->r_callback = rbd_osd_req_callback;
1447 osd_req->r_priv = obj_request;
1448
1449 osd_req->r_oid_len = strlen(obj_request->object_name);
1450 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1451 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1452
1453 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1454
1455 /* osd_req will get its own reference to snapc (if non-null) */
1456
1457 ceph_osdc_build_request(osd_req, offset, length, 1, op,
1458 snapc, snap_id, mtime);
1459
1460 return osd_req;
1461 }
1462
1463 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1464 {
1465 ceph_osdc_put_request(osd_req);
1466 }
1467
1468 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1469
1470 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1471 u64 offset, u64 length,
1472 enum obj_request_type type)
1473 {
1474 struct rbd_obj_request *obj_request;
1475 size_t size;
1476 char *name;
1477
1478 rbd_assert(obj_request_type_valid(type));
1479
1480 size = strlen(object_name) + 1;
1481 obj_request = kzalloc(sizeof (*obj_request) + size, GFP_KERNEL);
1482 if (!obj_request)
1483 return NULL;
1484
1485 name = (char *)(obj_request + 1);
1486 obj_request->object_name = memcpy(name, object_name, size);
1487 obj_request->offset = offset;
1488 obj_request->length = length;
1489 obj_request->which = BAD_WHICH;
1490 obj_request->type = type;
1491 INIT_LIST_HEAD(&obj_request->links);
1492 obj_request_done_init(obj_request);
1493 init_completion(&obj_request->completion);
1494 kref_init(&obj_request->kref);
1495
1496 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1497 offset, length, (int)type, obj_request);
1498
1499 return obj_request;
1500 }
1501
1502 static void rbd_obj_request_destroy(struct kref *kref)
1503 {
1504 struct rbd_obj_request *obj_request;
1505
1506 obj_request = container_of(kref, struct rbd_obj_request, kref);
1507
1508 dout("%s: obj %p\n", __func__, obj_request);
1509
1510 rbd_assert(obj_request->img_request == NULL);
1511 rbd_assert(obj_request->which == BAD_WHICH);
1512
1513 if (obj_request->osd_req)
1514 rbd_osd_req_destroy(obj_request->osd_req);
1515
1516 rbd_assert(obj_request_type_valid(obj_request->type));
1517 switch (obj_request->type) {
1518 case OBJ_REQUEST_NODATA:
1519 break; /* Nothing to do */
1520 case OBJ_REQUEST_BIO:
1521 if (obj_request->bio_list)
1522 bio_chain_put(obj_request->bio_list);
1523 break;
1524 case OBJ_REQUEST_PAGES:
1525 if (obj_request->pages)
1526 ceph_release_page_vector(obj_request->pages,
1527 obj_request->page_count);
1528 break;
1529 }
1530
1531 kfree(obj_request);
1532 }
1533
1534 /*
1535 * Caller is responsible for filling in the list of object requests
1536 * that comprises the image request, and the Linux request pointer
1537 * (if there is one).
1538 */
1539 static struct rbd_img_request *rbd_img_request_create(
1540 struct rbd_device *rbd_dev,
1541 u64 offset, u64 length,
1542 bool write_request)
1543 {
1544 struct rbd_img_request *img_request;
1545 struct ceph_snap_context *snapc = NULL;
1546
1547 img_request = kmalloc(sizeof (*img_request), GFP_ATOMIC);
1548 if (!img_request)
1549 return NULL;
1550
1551 if (write_request) {
1552 down_read(&rbd_dev->header_rwsem);
1553 snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1554 up_read(&rbd_dev->header_rwsem);
1555 if (WARN_ON(!snapc)) {
1556 kfree(img_request);
1557 return NULL; /* Shouldn't happen */
1558 }
1559 }
1560
1561 img_request->rq = NULL;
1562 img_request->rbd_dev = rbd_dev;
1563 img_request->offset = offset;
1564 img_request->length = length;
1565 img_request->write_request = write_request;
1566 if (write_request)
1567 img_request->snapc = snapc;
1568 else
1569 img_request->snap_id = rbd_dev->spec->snap_id;
1570 spin_lock_init(&img_request->completion_lock);
1571 img_request->next_completion = 0;
1572 img_request->callback = NULL;
1573 img_request->obj_request_count = 0;
1574 INIT_LIST_HEAD(&img_request->obj_requests);
1575 kref_init(&img_request->kref);
1576
1577 rbd_img_request_get(img_request); /* Avoid a warning */
1578 rbd_img_request_put(img_request); /* TEMPORARY */
1579
1580 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1581 write_request ? "write" : "read", offset, length,
1582 img_request);
1583
1584 return img_request;
1585 }
1586
1587 static void rbd_img_request_destroy(struct kref *kref)
1588 {
1589 struct rbd_img_request *img_request;
1590 struct rbd_obj_request *obj_request;
1591 struct rbd_obj_request *next_obj_request;
1592
1593 img_request = container_of(kref, struct rbd_img_request, kref);
1594
1595 dout("%s: img %p\n", __func__, img_request);
1596
1597 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1598 rbd_img_obj_request_del(img_request, obj_request);
1599 rbd_assert(img_request->obj_request_count == 0);
1600
1601 if (img_request->write_request)
1602 ceph_put_snap_context(img_request->snapc);
1603
1604 kfree(img_request);
1605 }
1606
1607 static int rbd_img_request_fill_bio(struct rbd_img_request *img_request,
1608 struct bio *bio_list)
1609 {
1610 struct rbd_device *rbd_dev = img_request->rbd_dev;
1611 struct rbd_obj_request *obj_request = NULL;
1612 struct rbd_obj_request *next_obj_request;
1613 unsigned int bio_offset;
1614 u64 image_offset;
1615 u64 resid;
1616 u16 opcode;
1617
1618 dout("%s: img %p bio %p\n", __func__, img_request, bio_list);
1619
1620 opcode = img_request->write_request ? CEPH_OSD_OP_WRITE
1621 : CEPH_OSD_OP_READ;
1622 bio_offset = 0;
1623 image_offset = img_request->offset;
1624 rbd_assert(image_offset == bio_list->bi_sector << SECTOR_SHIFT);
1625 resid = img_request->length;
1626 rbd_assert(resid > 0);
1627 while (resid) {
1628 const char *object_name;
1629 unsigned int clone_size;
1630 struct ceph_osd_req_op *op;
1631 u64 offset;
1632 u64 length;
1633
1634 object_name = rbd_segment_name(rbd_dev, image_offset);
1635 if (!object_name)
1636 goto out_unwind;
1637 offset = rbd_segment_offset(rbd_dev, image_offset);
1638 length = rbd_segment_length(rbd_dev, image_offset, resid);
1639 obj_request = rbd_obj_request_create(object_name,
1640 offset, length,
1641 OBJ_REQUEST_BIO);
1642 kfree(object_name); /* object request has its own copy */
1643 if (!obj_request)
1644 goto out_unwind;
1645
1646 rbd_assert(length <= (u64) UINT_MAX);
1647 clone_size = (unsigned int) length;
1648 obj_request->bio_list = bio_chain_clone_range(&bio_list,
1649 &bio_offset, clone_size,
1650 GFP_ATOMIC);
1651 if (!obj_request->bio_list)
1652 goto out_partial;
1653
1654 /*
1655 * Build up the op to use in building the osd
1656 * request. Note that the contents of the op are
1657 * copied by rbd_osd_req_create().
1658 */
1659 op = rbd_osd_req_op_create(opcode, offset, length);
1660 if (!op)
1661 goto out_partial;
1662 obj_request->osd_req = rbd_osd_req_create(rbd_dev,
1663 img_request->write_request,
1664 obj_request, op);
1665 rbd_osd_req_op_destroy(op);
1666 if (!obj_request->osd_req)
1667 goto out_partial;
1668 /* status and version are initially zero-filled */
1669
1670 rbd_img_obj_request_add(img_request, obj_request);
1671
1672 image_offset += length;
1673 resid -= length;
1674 }
1675
1676 return 0;
1677
1678 out_partial:
1679 rbd_obj_request_put(obj_request);
1680 out_unwind:
1681 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1682 rbd_obj_request_put(obj_request);
1683
1684 return -ENOMEM;
1685 }
1686
1687 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1688 {
1689 struct rbd_img_request *img_request;
1690 u32 which = obj_request->which;
1691 bool more = true;
1692
1693 img_request = obj_request->img_request;
1694
1695 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1696 rbd_assert(img_request != NULL);
1697 rbd_assert(img_request->rq != NULL);
1698 rbd_assert(img_request->obj_request_count > 0);
1699 rbd_assert(which != BAD_WHICH);
1700 rbd_assert(which < img_request->obj_request_count);
1701 rbd_assert(which >= img_request->next_completion);
1702
1703 spin_lock_irq(&img_request->completion_lock);
1704 if (which != img_request->next_completion)
1705 goto out;
1706
1707 for_each_obj_request_from(img_request, obj_request) {
1708 unsigned int xferred;
1709 int result;
1710
1711 rbd_assert(more);
1712 rbd_assert(which < img_request->obj_request_count);
1713
1714 if (!obj_request_done_test(obj_request))
1715 break;
1716
1717 rbd_assert(obj_request->xferred <= (u64) UINT_MAX);
1718 xferred = (unsigned int) obj_request->xferred;
1719 result = (int) obj_request->result;
1720 if (result)
1721 rbd_warn(NULL, "obj_request %s result %d xferred %u\n",
1722 img_request->write_request ? "write" : "read",
1723 result, xferred);
1724
1725 more = blk_end_request(img_request->rq, result, xferred);
1726 which++;
1727 }
1728
1729 rbd_assert(more ^ (which == img_request->obj_request_count));
1730 img_request->next_completion = which;
1731 out:
1732 spin_unlock_irq(&img_request->completion_lock);
1733
1734 if (!more)
1735 rbd_img_request_complete(img_request);
1736 }
1737
1738 static int rbd_img_request_submit(struct rbd_img_request *img_request)
1739 {
1740 struct rbd_device *rbd_dev = img_request->rbd_dev;
1741 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1742 struct rbd_obj_request *obj_request;
1743 struct rbd_obj_request *next_obj_request;
1744
1745 dout("%s: img %p\n", __func__, img_request);
1746 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
1747 int ret;
1748
1749 obj_request->callback = rbd_img_obj_callback;
1750 ret = rbd_obj_request_submit(osdc, obj_request);
1751 if (ret)
1752 return ret;
1753 /*
1754 * The image request has its own reference to each
1755 * of its object requests, so we can safely drop the
1756 * initial one here.
1757 */
1758 rbd_obj_request_put(obj_request);
1759 }
1760
1761 return 0;
1762 }
1763
1764 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev,
1765 u64 ver, u64 notify_id)
1766 {
1767 struct rbd_obj_request *obj_request;
1768 struct ceph_osd_req_op *op;
1769 struct ceph_osd_client *osdc;
1770 int ret;
1771
1772 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1773 OBJ_REQUEST_NODATA);
1774 if (!obj_request)
1775 return -ENOMEM;
1776
1777 ret = -ENOMEM;
1778 op = rbd_osd_req_op_create(CEPH_OSD_OP_NOTIFY_ACK, notify_id, ver);
1779 if (!op)
1780 goto out;
1781 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
1782 obj_request, op);
1783 rbd_osd_req_op_destroy(op);
1784 if (!obj_request->osd_req)
1785 goto out;
1786
1787 osdc = &rbd_dev->rbd_client->client->osdc;
1788 obj_request->callback = rbd_obj_request_put;
1789 ret = rbd_obj_request_submit(osdc, obj_request);
1790 out:
1791 if (ret)
1792 rbd_obj_request_put(obj_request);
1793
1794 return ret;
1795 }
1796
1797 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1798 {
1799 struct rbd_device *rbd_dev = (struct rbd_device *)data;
1800 u64 hver;
1801 int rc;
1802
1803 if (!rbd_dev)
1804 return;
1805
1806 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
1807 rbd_dev->header_name, (unsigned long long) notify_id,
1808 (unsigned int) opcode);
1809 rc = rbd_dev_refresh(rbd_dev, &hver);
1810 if (rc)
1811 rbd_warn(rbd_dev, "got notification but failed to "
1812 " update snaps: %d\n", rc);
1813
1814 rbd_obj_notify_ack(rbd_dev, hver, notify_id);
1815 }
1816
1817 /*
1818 * Request sync osd watch/unwatch. The value of "start" determines
1819 * whether a watch request is being initiated or torn down.
1820 */
1821 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
1822 {
1823 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1824 struct rbd_obj_request *obj_request;
1825 struct ceph_osd_req_op *op;
1826 int ret;
1827
1828 rbd_assert(start ^ !!rbd_dev->watch_event);
1829 rbd_assert(start ^ !!rbd_dev->watch_request);
1830
1831 if (start) {
1832 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
1833 &rbd_dev->watch_event);
1834 if (ret < 0)
1835 return ret;
1836 rbd_assert(rbd_dev->watch_event != NULL);
1837 }
1838
1839 ret = -ENOMEM;
1840 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1841 OBJ_REQUEST_NODATA);
1842 if (!obj_request)
1843 goto out_cancel;
1844
1845 op = rbd_osd_req_op_create(CEPH_OSD_OP_WATCH,
1846 rbd_dev->watch_event->cookie,
1847 rbd_dev->header.obj_version, start);
1848 if (!op)
1849 goto out_cancel;
1850 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true,
1851 obj_request, op);
1852 rbd_osd_req_op_destroy(op);
1853 if (!obj_request->osd_req)
1854 goto out_cancel;
1855
1856 if (start)
1857 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
1858 else
1859 ceph_osdc_unregister_linger_request(osdc,
1860 rbd_dev->watch_request->osd_req);
1861 ret = rbd_obj_request_submit(osdc, obj_request);
1862 if (ret)
1863 goto out_cancel;
1864 ret = rbd_obj_request_wait(obj_request);
1865 if (ret)
1866 goto out_cancel;
1867 ret = obj_request->result;
1868 if (ret)
1869 goto out_cancel;
1870
1871 /*
1872 * A watch request is set to linger, so the underlying osd
1873 * request won't go away until we unregister it. We retain
1874 * a pointer to the object request during that time (in
1875 * rbd_dev->watch_request), so we'll keep a reference to
1876 * it. We'll drop that reference (below) after we've
1877 * unregistered it.
1878 */
1879 if (start) {
1880 rbd_dev->watch_request = obj_request;
1881
1882 return 0;
1883 }
1884
1885 /* We have successfully torn down the watch request */
1886
1887 rbd_obj_request_put(rbd_dev->watch_request);
1888 rbd_dev->watch_request = NULL;
1889 out_cancel:
1890 /* Cancel the event if we're tearing down, or on error */
1891 ceph_osdc_cancel_event(rbd_dev->watch_event);
1892 rbd_dev->watch_event = NULL;
1893 if (obj_request)
1894 rbd_obj_request_put(obj_request);
1895
1896 return ret;
1897 }
1898
1899 /*
1900 * Synchronous osd object method call
1901 */
1902 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
1903 const char *object_name,
1904 const char *class_name,
1905 const char *method_name,
1906 const char *outbound,
1907 size_t outbound_size,
1908 char *inbound,
1909 size_t inbound_size,
1910 u64 *version)
1911 {
1912 struct rbd_obj_request *obj_request;
1913 struct ceph_osd_client *osdc;
1914 struct ceph_osd_req_op *op;
1915 struct page **pages;
1916 u32 page_count;
1917 int ret;
1918
1919 /*
1920 * Method calls are ultimately read operations but they
1921 * don't involve object data (so no offset or length).
1922 * The result should placed into the inbound buffer
1923 * provided. They also supply outbound data--parameters for
1924 * the object method. Currently if this is present it will
1925 * be a snapshot id.
1926 */
1927 page_count = (u32) calc_pages_for(0, inbound_size);
1928 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
1929 if (IS_ERR(pages))
1930 return PTR_ERR(pages);
1931
1932 ret = -ENOMEM;
1933 obj_request = rbd_obj_request_create(object_name, 0, 0,
1934 OBJ_REQUEST_PAGES);
1935 if (!obj_request)
1936 goto out;
1937
1938 obj_request->pages = pages;
1939 obj_request->page_count = page_count;
1940
1941 op = rbd_osd_req_op_create(CEPH_OSD_OP_CALL, class_name,
1942 method_name, outbound, outbound_size);
1943 if (!op)
1944 goto out;
1945 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
1946 obj_request, op);
1947 rbd_osd_req_op_destroy(op);
1948 if (!obj_request->osd_req)
1949 goto out;
1950
1951 osdc = &rbd_dev->rbd_client->client->osdc;
1952 ret = rbd_obj_request_submit(osdc, obj_request);
1953 if (ret)
1954 goto out;
1955 ret = rbd_obj_request_wait(obj_request);
1956 if (ret)
1957 goto out;
1958
1959 ret = obj_request->result;
1960 if (ret < 0)
1961 goto out;
1962 ret = 0;
1963 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
1964 if (version)
1965 *version = obj_request->version;
1966 out:
1967 if (obj_request)
1968 rbd_obj_request_put(obj_request);
1969 else
1970 ceph_release_page_vector(pages, page_count);
1971
1972 return ret;
1973 }
1974
1975 static void rbd_request_fn(struct request_queue *q)
1976 __releases(q->queue_lock) __acquires(q->queue_lock)
1977 {
1978 struct rbd_device *rbd_dev = q->queuedata;
1979 bool read_only = rbd_dev->mapping.read_only;
1980 struct request *rq;
1981 int result;
1982
1983 while ((rq = blk_fetch_request(q))) {
1984 bool write_request = rq_data_dir(rq) == WRITE;
1985 struct rbd_img_request *img_request;
1986 u64 offset;
1987 u64 length;
1988
1989 /* Ignore any non-FS requests that filter through. */
1990
1991 if (rq->cmd_type != REQ_TYPE_FS) {
1992 dout("%s: non-fs request type %d\n", __func__,
1993 (int) rq->cmd_type);
1994 __blk_end_request_all(rq, 0);
1995 continue;
1996 }
1997
1998 /* Ignore/skip any zero-length requests */
1999
2000 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
2001 length = (u64) blk_rq_bytes(rq);
2002
2003 if (!length) {
2004 dout("%s: zero-length request\n", __func__);
2005 __blk_end_request_all(rq, 0);
2006 continue;
2007 }
2008
2009 spin_unlock_irq(q->queue_lock);
2010
2011 /* Disallow writes to a read-only device */
2012
2013 if (write_request) {
2014 result = -EROFS;
2015 if (read_only)
2016 goto end_request;
2017 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
2018 }
2019
2020 /*
2021 * Quit early if the mapped snapshot no longer
2022 * exists. It's still possible the snapshot will
2023 * have disappeared by the time our request arrives
2024 * at the osd, but there's no sense in sending it if
2025 * we already know.
2026 */
2027 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
2028 dout("request for non-existent snapshot");
2029 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
2030 result = -ENXIO;
2031 goto end_request;
2032 }
2033
2034 result = -EINVAL;
2035 if (WARN_ON(offset && length > U64_MAX - offset + 1))
2036 goto end_request; /* Shouldn't happen */
2037
2038 result = -ENOMEM;
2039 img_request = rbd_img_request_create(rbd_dev, offset, length,
2040 write_request);
2041 if (!img_request)
2042 goto end_request;
2043
2044 img_request->rq = rq;
2045
2046 result = rbd_img_request_fill_bio(img_request, rq->bio);
2047 if (!result)
2048 result = rbd_img_request_submit(img_request);
2049 if (result)
2050 rbd_img_request_put(img_request);
2051 end_request:
2052 spin_lock_irq(q->queue_lock);
2053 if (result < 0) {
2054 rbd_warn(rbd_dev, "obj_request %s result %d\n",
2055 write_request ? "write" : "read", result);
2056 __blk_end_request_all(rq, result);
2057 }
2058 }
2059 }
2060
2061 /*
2062 * a queue callback. Makes sure that we don't create a bio that spans across
2063 * multiple osd objects. One exception would be with a single page bios,
2064 * which we handle later at bio_chain_clone_range()
2065 */
2066 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2067 struct bio_vec *bvec)
2068 {
2069 struct rbd_device *rbd_dev = q->queuedata;
2070 sector_t sector_offset;
2071 sector_t sectors_per_obj;
2072 sector_t obj_sector_offset;
2073 int ret;
2074
2075 /*
2076 * Find how far into its rbd object the partition-relative
2077 * bio start sector is to offset relative to the enclosing
2078 * device.
2079 */
2080 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2081 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2082 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2083
2084 /*
2085 * Compute the number of bytes from that offset to the end
2086 * of the object. Account for what's already used by the bio.
2087 */
2088 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2089 if (ret > bmd->bi_size)
2090 ret -= bmd->bi_size;
2091 else
2092 ret = 0;
2093
2094 /*
2095 * Don't send back more than was asked for. And if the bio
2096 * was empty, let the whole thing through because: "Note
2097 * that a block device *must* allow a single page to be
2098 * added to an empty bio."
2099 */
2100 rbd_assert(bvec->bv_len <= PAGE_SIZE);
2101 if (ret > (int) bvec->bv_len || !bmd->bi_size)
2102 ret = (int) bvec->bv_len;
2103
2104 return ret;
2105 }
2106
2107 static void rbd_free_disk(struct rbd_device *rbd_dev)
2108 {
2109 struct gendisk *disk = rbd_dev->disk;
2110
2111 if (!disk)
2112 return;
2113
2114 if (disk->flags & GENHD_FL_UP)
2115 del_gendisk(disk);
2116 if (disk->queue)
2117 blk_cleanup_queue(disk->queue);
2118 put_disk(disk);
2119 }
2120
2121 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2122 const char *object_name,
2123 u64 offset, u64 length,
2124 char *buf, u64 *version)
2125
2126 {
2127 struct ceph_osd_req_op *op;
2128 struct rbd_obj_request *obj_request;
2129 struct ceph_osd_client *osdc;
2130 struct page **pages = NULL;
2131 u32 page_count;
2132 size_t size;
2133 int ret;
2134
2135 page_count = (u32) calc_pages_for(offset, length);
2136 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2137 if (IS_ERR(pages))
2138 ret = PTR_ERR(pages);
2139
2140 ret = -ENOMEM;
2141 obj_request = rbd_obj_request_create(object_name, offset, length,
2142 OBJ_REQUEST_PAGES);
2143 if (!obj_request)
2144 goto out;
2145
2146 obj_request->pages = pages;
2147 obj_request->page_count = page_count;
2148
2149 op = rbd_osd_req_op_create(CEPH_OSD_OP_READ, offset, length);
2150 if (!op)
2151 goto out;
2152 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2153 obj_request, op);
2154 rbd_osd_req_op_destroy(op);
2155 if (!obj_request->osd_req)
2156 goto out;
2157
2158 osdc = &rbd_dev->rbd_client->client->osdc;
2159 ret = rbd_obj_request_submit(osdc, obj_request);
2160 if (ret)
2161 goto out;
2162 ret = rbd_obj_request_wait(obj_request);
2163 if (ret)
2164 goto out;
2165
2166 ret = obj_request->result;
2167 if (ret < 0)
2168 goto out;
2169
2170 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
2171 size = (size_t) obj_request->xferred;
2172 ceph_copy_from_page_vector(pages, buf, 0, size);
2173 rbd_assert(size <= (size_t) INT_MAX);
2174 ret = (int) size;
2175 if (version)
2176 *version = obj_request->version;
2177 out:
2178 if (obj_request)
2179 rbd_obj_request_put(obj_request);
2180 else
2181 ceph_release_page_vector(pages, page_count);
2182
2183 return ret;
2184 }
2185
2186 /*
2187 * Read the complete header for the given rbd device.
2188 *
2189 * Returns a pointer to a dynamically-allocated buffer containing
2190 * the complete and validated header. Caller can pass the address
2191 * of a variable that will be filled in with the version of the
2192 * header object at the time it was read.
2193 *
2194 * Returns a pointer-coded errno if a failure occurs.
2195 */
2196 static struct rbd_image_header_ondisk *
2197 rbd_dev_v1_header_read(struct rbd_device *rbd_dev, u64 *version)
2198 {
2199 struct rbd_image_header_ondisk *ondisk = NULL;
2200 u32 snap_count = 0;
2201 u64 names_size = 0;
2202 u32 want_count;
2203 int ret;
2204
2205 /*
2206 * The complete header will include an array of its 64-bit
2207 * snapshot ids, followed by the names of those snapshots as
2208 * a contiguous block of NUL-terminated strings. Note that
2209 * the number of snapshots could change by the time we read
2210 * it in, in which case we re-read it.
2211 */
2212 do {
2213 size_t size;
2214
2215 kfree(ondisk);
2216
2217 size = sizeof (*ondisk);
2218 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
2219 size += names_size;
2220 ondisk = kmalloc(size, GFP_KERNEL);
2221 if (!ondisk)
2222 return ERR_PTR(-ENOMEM);
2223
2224 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
2225 0, size,
2226 (char *) ondisk, version);
2227 if (ret < 0)
2228 goto out_err;
2229 if (WARN_ON((size_t) ret < size)) {
2230 ret = -ENXIO;
2231 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
2232 size, ret);
2233 goto out_err;
2234 }
2235 if (!rbd_dev_ondisk_valid(ondisk)) {
2236 ret = -ENXIO;
2237 rbd_warn(rbd_dev, "invalid header");
2238 goto out_err;
2239 }
2240
2241 names_size = le64_to_cpu(ondisk->snap_names_len);
2242 want_count = snap_count;
2243 snap_count = le32_to_cpu(ondisk->snap_count);
2244 } while (snap_count != want_count);
2245
2246 return ondisk;
2247
2248 out_err:
2249 kfree(ondisk);
2250
2251 return ERR_PTR(ret);
2252 }
2253
2254 /*
2255 * reload the ondisk the header
2256 */
2257 static int rbd_read_header(struct rbd_device *rbd_dev,
2258 struct rbd_image_header *header)
2259 {
2260 struct rbd_image_header_ondisk *ondisk;
2261 u64 ver = 0;
2262 int ret;
2263
2264 ondisk = rbd_dev_v1_header_read(rbd_dev, &ver);
2265 if (IS_ERR(ondisk))
2266 return PTR_ERR(ondisk);
2267 ret = rbd_header_from_disk(header, ondisk);
2268 if (ret >= 0)
2269 header->obj_version = ver;
2270 kfree(ondisk);
2271
2272 return ret;
2273 }
2274
2275 static void rbd_remove_all_snaps(struct rbd_device *rbd_dev)
2276 {
2277 struct rbd_snap *snap;
2278 struct rbd_snap *next;
2279
2280 list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node)
2281 rbd_remove_snap_dev(snap);
2282 }
2283
2284 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
2285 {
2286 sector_t size;
2287
2288 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
2289 return;
2290
2291 size = (sector_t) rbd_dev->header.image_size / SECTOR_SIZE;
2292 dout("setting size to %llu sectors", (unsigned long long) size);
2293 rbd_dev->mapping.size = (u64) size;
2294 set_capacity(rbd_dev->disk, size);
2295 }
2296
2297 /*
2298 * only read the first part of the ondisk header, without the snaps info
2299 */
2300 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev, u64 *hver)
2301 {
2302 int ret;
2303 struct rbd_image_header h;
2304
2305 ret = rbd_read_header(rbd_dev, &h);
2306 if (ret < 0)
2307 return ret;
2308
2309 down_write(&rbd_dev->header_rwsem);
2310
2311 /* Update image size, and check for resize of mapped image */
2312 rbd_dev->header.image_size = h.image_size;
2313 rbd_update_mapping_size(rbd_dev);
2314
2315 /* rbd_dev->header.object_prefix shouldn't change */
2316 kfree(rbd_dev->header.snap_sizes);
2317 kfree(rbd_dev->header.snap_names);
2318 /* osd requests may still refer to snapc */
2319 ceph_put_snap_context(rbd_dev->header.snapc);
2320
2321 if (hver)
2322 *hver = h.obj_version;
2323 rbd_dev->header.obj_version = h.obj_version;
2324 rbd_dev->header.image_size = h.image_size;
2325 rbd_dev->header.snapc = h.snapc;
2326 rbd_dev->header.snap_names = h.snap_names;
2327 rbd_dev->header.snap_sizes = h.snap_sizes;
2328 /* Free the extra copy of the object prefix */
2329 WARN_ON(strcmp(rbd_dev->header.object_prefix, h.object_prefix));
2330 kfree(h.object_prefix);
2331
2332 ret = rbd_dev_snaps_update(rbd_dev);
2333 if (!ret)
2334 ret = rbd_dev_snaps_register(rbd_dev);
2335
2336 up_write(&rbd_dev->header_rwsem);
2337
2338 return ret;
2339 }
2340
2341 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver)
2342 {
2343 int ret;
2344
2345 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
2346 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2347 if (rbd_dev->image_format == 1)
2348 ret = rbd_dev_v1_refresh(rbd_dev, hver);
2349 else
2350 ret = rbd_dev_v2_refresh(rbd_dev, hver);
2351 mutex_unlock(&ctl_mutex);
2352
2353 return ret;
2354 }
2355
2356 static int rbd_init_disk(struct rbd_device *rbd_dev)
2357 {
2358 struct gendisk *disk;
2359 struct request_queue *q;
2360 u64 segment_size;
2361
2362 /* create gendisk info */
2363 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
2364 if (!disk)
2365 return -ENOMEM;
2366
2367 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
2368 rbd_dev->dev_id);
2369 disk->major = rbd_dev->major;
2370 disk->first_minor = 0;
2371 disk->fops = &rbd_bd_ops;
2372 disk->private_data = rbd_dev;
2373
2374 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
2375 if (!q)
2376 goto out_disk;
2377
2378 /* We use the default size, but let's be explicit about it. */
2379 blk_queue_physical_block_size(q, SECTOR_SIZE);
2380
2381 /* set io sizes to object size */
2382 segment_size = rbd_obj_bytes(&rbd_dev->header);
2383 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
2384 blk_queue_max_segment_size(q, segment_size);
2385 blk_queue_io_min(q, segment_size);
2386 blk_queue_io_opt(q, segment_size);
2387
2388 blk_queue_merge_bvec(q, rbd_merge_bvec);
2389 disk->queue = q;
2390
2391 q->queuedata = rbd_dev;
2392
2393 rbd_dev->disk = disk;
2394
2395 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
2396
2397 return 0;
2398 out_disk:
2399 put_disk(disk);
2400
2401 return -ENOMEM;
2402 }
2403
2404 /*
2405 sysfs
2406 */
2407
2408 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
2409 {
2410 return container_of(dev, struct rbd_device, dev);
2411 }
2412
2413 static ssize_t rbd_size_show(struct device *dev,
2414 struct device_attribute *attr, char *buf)
2415 {
2416 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2417 sector_t size;
2418
2419 down_read(&rbd_dev->header_rwsem);
2420 size = get_capacity(rbd_dev->disk);
2421 up_read(&rbd_dev->header_rwsem);
2422
2423 return sprintf(buf, "%llu\n", (unsigned long long) size * SECTOR_SIZE);
2424 }
2425
2426 /*
2427 * Note this shows the features for whatever's mapped, which is not
2428 * necessarily the base image.
2429 */
2430 static ssize_t rbd_features_show(struct device *dev,
2431 struct device_attribute *attr, char *buf)
2432 {
2433 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2434
2435 return sprintf(buf, "0x%016llx\n",
2436 (unsigned long long) rbd_dev->mapping.features);
2437 }
2438
2439 static ssize_t rbd_major_show(struct device *dev,
2440 struct device_attribute *attr, char *buf)
2441 {
2442 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2443
2444 return sprintf(buf, "%d\n", rbd_dev->major);
2445 }
2446
2447 static ssize_t rbd_client_id_show(struct device *dev,
2448 struct device_attribute *attr, char *buf)
2449 {
2450 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2451
2452 return sprintf(buf, "client%lld\n",
2453 ceph_client_id(rbd_dev->rbd_client->client));
2454 }
2455
2456 static ssize_t rbd_pool_show(struct device *dev,
2457 struct device_attribute *attr, char *buf)
2458 {
2459 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2460
2461 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
2462 }
2463
2464 static ssize_t rbd_pool_id_show(struct device *dev,
2465 struct device_attribute *attr, char *buf)
2466 {
2467 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2468
2469 return sprintf(buf, "%llu\n",
2470 (unsigned long long) rbd_dev->spec->pool_id);
2471 }
2472
2473 static ssize_t rbd_name_show(struct device *dev,
2474 struct device_attribute *attr, char *buf)
2475 {
2476 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2477
2478 if (rbd_dev->spec->image_name)
2479 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
2480
2481 return sprintf(buf, "(unknown)\n");
2482 }
2483
2484 static ssize_t rbd_image_id_show(struct device *dev,
2485 struct device_attribute *attr, char *buf)
2486 {
2487 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2488
2489 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
2490 }
2491
2492 /*
2493 * Shows the name of the currently-mapped snapshot (or
2494 * RBD_SNAP_HEAD_NAME for the base image).
2495 */
2496 static ssize_t rbd_snap_show(struct device *dev,
2497 struct device_attribute *attr,
2498 char *buf)
2499 {
2500 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2501
2502 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
2503 }
2504
2505 /*
2506 * For an rbd v2 image, shows the pool id, image id, and snapshot id
2507 * for the parent image. If there is no parent, simply shows
2508 * "(no parent image)".
2509 */
2510 static ssize_t rbd_parent_show(struct device *dev,
2511 struct device_attribute *attr,
2512 char *buf)
2513 {
2514 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2515 struct rbd_spec *spec = rbd_dev->parent_spec;
2516 int count;
2517 char *bufp = buf;
2518
2519 if (!spec)
2520 return sprintf(buf, "(no parent image)\n");
2521
2522 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
2523 (unsigned long long) spec->pool_id, spec->pool_name);
2524 if (count < 0)
2525 return count;
2526 bufp += count;
2527
2528 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
2529 spec->image_name ? spec->image_name : "(unknown)");
2530 if (count < 0)
2531 return count;
2532 bufp += count;
2533
2534 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
2535 (unsigned long long) spec->snap_id, spec->snap_name);
2536 if (count < 0)
2537 return count;
2538 bufp += count;
2539
2540 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
2541 if (count < 0)
2542 return count;
2543 bufp += count;
2544
2545 return (ssize_t) (bufp - buf);
2546 }
2547
2548 static ssize_t rbd_image_refresh(struct device *dev,
2549 struct device_attribute *attr,
2550 const char *buf,
2551 size_t size)
2552 {
2553 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2554 int ret;
2555
2556 ret = rbd_dev_refresh(rbd_dev, NULL);
2557
2558 return ret < 0 ? ret : size;
2559 }
2560
2561 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
2562 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
2563 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
2564 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
2565 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
2566 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
2567 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
2568 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
2569 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
2570 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
2571 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
2572
2573 static struct attribute *rbd_attrs[] = {
2574 &dev_attr_size.attr,
2575 &dev_attr_features.attr,
2576 &dev_attr_major.attr,
2577 &dev_attr_client_id.attr,
2578 &dev_attr_pool.attr,
2579 &dev_attr_pool_id.attr,
2580 &dev_attr_name.attr,
2581 &dev_attr_image_id.attr,
2582 &dev_attr_current_snap.attr,
2583 &dev_attr_parent.attr,
2584 &dev_attr_refresh.attr,
2585 NULL
2586 };
2587
2588 static struct attribute_group rbd_attr_group = {
2589 .attrs = rbd_attrs,
2590 };
2591
2592 static const struct attribute_group *rbd_attr_groups[] = {
2593 &rbd_attr_group,
2594 NULL
2595 };
2596
2597 static void rbd_sysfs_dev_release(struct device *dev)
2598 {
2599 }
2600
2601 static struct device_type rbd_device_type = {
2602 .name = "rbd",
2603 .groups = rbd_attr_groups,
2604 .release = rbd_sysfs_dev_release,
2605 };
2606
2607
2608 /*
2609 sysfs - snapshots
2610 */
2611
2612 static ssize_t rbd_snap_size_show(struct device *dev,
2613 struct device_attribute *attr,
2614 char *buf)
2615 {
2616 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2617
2618 return sprintf(buf, "%llu\n", (unsigned long long)snap->size);
2619 }
2620
2621 static ssize_t rbd_snap_id_show(struct device *dev,
2622 struct device_attribute *attr,
2623 char *buf)
2624 {
2625 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2626
2627 return sprintf(buf, "%llu\n", (unsigned long long)snap->id);
2628 }
2629
2630 static ssize_t rbd_snap_features_show(struct device *dev,
2631 struct device_attribute *attr,
2632 char *buf)
2633 {
2634 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2635
2636 return sprintf(buf, "0x%016llx\n",
2637 (unsigned long long) snap->features);
2638 }
2639
2640 static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
2641 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
2642 static DEVICE_ATTR(snap_features, S_IRUGO, rbd_snap_features_show, NULL);
2643
2644 static struct attribute *rbd_snap_attrs[] = {
2645 &dev_attr_snap_size.attr,
2646 &dev_attr_snap_id.attr,
2647 &dev_attr_snap_features.attr,
2648 NULL,
2649 };
2650
2651 static struct attribute_group rbd_snap_attr_group = {
2652 .attrs = rbd_snap_attrs,
2653 };
2654
2655 static void rbd_snap_dev_release(struct device *dev)
2656 {
2657 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2658 kfree(snap->name);
2659 kfree(snap);
2660 }
2661
2662 static const struct attribute_group *rbd_snap_attr_groups[] = {
2663 &rbd_snap_attr_group,
2664 NULL
2665 };
2666
2667 static struct device_type rbd_snap_device_type = {
2668 .groups = rbd_snap_attr_groups,
2669 .release = rbd_snap_dev_release,
2670 };
2671
2672 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
2673 {
2674 kref_get(&spec->kref);
2675
2676 return spec;
2677 }
2678
2679 static void rbd_spec_free(struct kref *kref);
2680 static void rbd_spec_put(struct rbd_spec *spec)
2681 {
2682 if (spec)
2683 kref_put(&spec->kref, rbd_spec_free);
2684 }
2685
2686 static struct rbd_spec *rbd_spec_alloc(void)
2687 {
2688 struct rbd_spec *spec;
2689
2690 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
2691 if (!spec)
2692 return NULL;
2693 kref_init(&spec->kref);
2694
2695 rbd_spec_put(rbd_spec_get(spec)); /* TEMPORARY */
2696
2697 return spec;
2698 }
2699
2700 static void rbd_spec_free(struct kref *kref)
2701 {
2702 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
2703
2704 kfree(spec->pool_name);
2705 kfree(spec->image_id);
2706 kfree(spec->image_name);
2707 kfree(spec->snap_name);
2708 kfree(spec);
2709 }
2710
2711 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
2712 struct rbd_spec *spec)
2713 {
2714 struct rbd_device *rbd_dev;
2715
2716 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
2717 if (!rbd_dev)
2718 return NULL;
2719
2720 spin_lock_init(&rbd_dev->lock);
2721 rbd_dev->flags = 0;
2722 INIT_LIST_HEAD(&rbd_dev->node);
2723 INIT_LIST_HEAD(&rbd_dev->snaps);
2724 init_rwsem(&rbd_dev->header_rwsem);
2725
2726 rbd_dev->spec = spec;
2727 rbd_dev->rbd_client = rbdc;
2728
2729 /* Initialize the layout used for all rbd requests */
2730
2731 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2732 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
2733 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2734 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
2735
2736 return rbd_dev;
2737 }
2738
2739 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
2740 {
2741 rbd_spec_put(rbd_dev->parent_spec);
2742 kfree(rbd_dev->header_name);
2743 rbd_put_client(rbd_dev->rbd_client);
2744 rbd_spec_put(rbd_dev->spec);
2745 kfree(rbd_dev);
2746 }
2747
2748 static bool rbd_snap_registered(struct rbd_snap *snap)
2749 {
2750 bool ret = snap->dev.type == &rbd_snap_device_type;
2751 bool reg = device_is_registered(&snap->dev);
2752
2753 rbd_assert(!ret ^ reg);
2754
2755 return ret;
2756 }
2757
2758 static void rbd_remove_snap_dev(struct rbd_snap *snap)
2759 {
2760 list_del(&snap->node);
2761 if (device_is_registered(&snap->dev))
2762 device_unregister(&snap->dev);
2763 }
2764
2765 static int rbd_register_snap_dev(struct rbd_snap *snap,
2766 struct device *parent)
2767 {
2768 struct device *dev = &snap->dev;
2769 int ret;
2770
2771 dev->type = &rbd_snap_device_type;
2772 dev->parent = parent;
2773 dev->release = rbd_snap_dev_release;
2774 dev_set_name(dev, "%s%s", RBD_SNAP_DEV_NAME_PREFIX, snap->name);
2775 dout("%s: registering device for snapshot %s\n", __func__, snap->name);
2776
2777 ret = device_register(dev);
2778
2779 return ret;
2780 }
2781
2782 static struct rbd_snap *__rbd_add_snap_dev(struct rbd_device *rbd_dev,
2783 const char *snap_name,
2784 u64 snap_id, u64 snap_size,
2785 u64 snap_features)
2786 {
2787 struct rbd_snap *snap;
2788 int ret;
2789
2790 snap = kzalloc(sizeof (*snap), GFP_KERNEL);
2791 if (!snap)
2792 return ERR_PTR(-ENOMEM);
2793
2794 ret = -ENOMEM;
2795 snap->name = kstrdup(snap_name, GFP_KERNEL);
2796 if (!snap->name)
2797 goto err;
2798
2799 snap->id = snap_id;
2800 snap->size = snap_size;
2801 snap->features = snap_features;
2802
2803 return snap;
2804
2805 err:
2806 kfree(snap->name);
2807 kfree(snap);
2808
2809 return ERR_PTR(ret);
2810 }
2811
2812 static char *rbd_dev_v1_snap_info(struct rbd_device *rbd_dev, u32 which,
2813 u64 *snap_size, u64 *snap_features)
2814 {
2815 char *snap_name;
2816
2817 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
2818
2819 *snap_size = rbd_dev->header.snap_sizes[which];
2820 *snap_features = 0; /* No features for v1 */
2821
2822 /* Skip over names until we find the one we are looking for */
2823
2824 snap_name = rbd_dev->header.snap_names;
2825 while (which--)
2826 snap_name += strlen(snap_name) + 1;
2827
2828 return snap_name;
2829 }
2830
2831 /*
2832 * Get the size and object order for an image snapshot, or if
2833 * snap_id is CEPH_NOSNAP, gets this information for the base
2834 * image.
2835 */
2836 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
2837 u8 *order, u64 *snap_size)
2838 {
2839 __le64 snapid = cpu_to_le64(snap_id);
2840 int ret;
2841 struct {
2842 u8 order;
2843 __le64 size;
2844 } __attribute__ ((packed)) size_buf = { 0 };
2845
2846 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2847 "rbd", "get_size",
2848 (char *) &snapid, sizeof (snapid),
2849 (char *) &size_buf, sizeof (size_buf), NULL);
2850 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2851 if (ret < 0)
2852 return ret;
2853
2854 *order = size_buf.order;
2855 *snap_size = le64_to_cpu(size_buf.size);
2856
2857 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
2858 (unsigned long long) snap_id, (unsigned int) *order,
2859 (unsigned long long) *snap_size);
2860
2861 return 0;
2862 }
2863
2864 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
2865 {
2866 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
2867 &rbd_dev->header.obj_order,
2868 &rbd_dev->header.image_size);
2869 }
2870
2871 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
2872 {
2873 void *reply_buf;
2874 int ret;
2875 void *p;
2876
2877 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
2878 if (!reply_buf)
2879 return -ENOMEM;
2880
2881 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2882 "rbd", "get_object_prefix",
2883 NULL, 0,
2884 reply_buf, RBD_OBJ_PREFIX_LEN_MAX, NULL);
2885 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2886 if (ret < 0)
2887 goto out;
2888
2889 p = reply_buf;
2890 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
2891 p + RBD_OBJ_PREFIX_LEN_MAX,
2892 NULL, GFP_NOIO);
2893
2894 if (IS_ERR(rbd_dev->header.object_prefix)) {
2895 ret = PTR_ERR(rbd_dev->header.object_prefix);
2896 rbd_dev->header.object_prefix = NULL;
2897 } else {
2898 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
2899 }
2900
2901 out:
2902 kfree(reply_buf);
2903
2904 return ret;
2905 }
2906
2907 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
2908 u64 *snap_features)
2909 {
2910 __le64 snapid = cpu_to_le64(snap_id);
2911 struct {
2912 __le64 features;
2913 __le64 incompat;
2914 } features_buf = { 0 };
2915 u64 incompat;
2916 int ret;
2917
2918 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2919 "rbd", "get_features",
2920 (char *) &snapid, sizeof (snapid),
2921 (char *) &features_buf, sizeof (features_buf),
2922 NULL);
2923 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2924 if (ret < 0)
2925 return ret;
2926
2927 incompat = le64_to_cpu(features_buf.incompat);
2928 if (incompat & ~RBD_FEATURES_ALL)
2929 return -ENXIO;
2930
2931 *snap_features = le64_to_cpu(features_buf.features);
2932
2933 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
2934 (unsigned long long) snap_id,
2935 (unsigned long long) *snap_features,
2936 (unsigned long long) le64_to_cpu(features_buf.incompat));
2937
2938 return 0;
2939 }
2940
2941 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
2942 {
2943 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
2944 &rbd_dev->header.features);
2945 }
2946
2947 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
2948 {
2949 struct rbd_spec *parent_spec;
2950 size_t size;
2951 void *reply_buf = NULL;
2952 __le64 snapid;
2953 void *p;
2954 void *end;
2955 char *image_id;
2956 u64 overlap;
2957 int ret;
2958
2959 parent_spec = rbd_spec_alloc();
2960 if (!parent_spec)
2961 return -ENOMEM;
2962
2963 size = sizeof (__le64) + /* pool_id */
2964 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
2965 sizeof (__le64) + /* snap_id */
2966 sizeof (__le64); /* overlap */
2967 reply_buf = kmalloc(size, GFP_KERNEL);
2968 if (!reply_buf) {
2969 ret = -ENOMEM;
2970 goto out_err;
2971 }
2972
2973 snapid = cpu_to_le64(CEPH_NOSNAP);
2974 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2975 "rbd", "get_parent",
2976 (char *) &snapid, sizeof (snapid),
2977 (char *) reply_buf, size, NULL);
2978 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2979 if (ret < 0)
2980 goto out_err;
2981
2982 ret = -ERANGE;
2983 p = reply_buf;
2984 end = (char *) reply_buf + size;
2985 ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
2986 if (parent_spec->pool_id == CEPH_NOPOOL)
2987 goto out; /* No parent? No problem. */
2988
2989 /* The ceph file layout needs to fit pool id in 32 bits */
2990
2991 ret = -EIO;
2992 if (WARN_ON(parent_spec->pool_id > (u64) U32_MAX))
2993 goto out;
2994
2995 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
2996 if (IS_ERR(image_id)) {
2997 ret = PTR_ERR(image_id);
2998 goto out_err;
2999 }
3000 parent_spec->image_id = image_id;
3001 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3002 ceph_decode_64_safe(&p, end, overlap, out_err);
3003
3004 rbd_dev->parent_overlap = overlap;
3005 rbd_dev->parent_spec = parent_spec;
3006 parent_spec = NULL; /* rbd_dev now owns this */
3007 out:
3008 ret = 0;
3009 out_err:
3010 kfree(reply_buf);
3011 rbd_spec_put(parent_spec);
3012
3013 return ret;
3014 }
3015
3016 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3017 {
3018 size_t image_id_size;
3019 char *image_id;
3020 void *p;
3021 void *end;
3022 size_t size;
3023 void *reply_buf = NULL;
3024 size_t len = 0;
3025 char *image_name = NULL;
3026 int ret;
3027
3028 rbd_assert(!rbd_dev->spec->image_name);
3029
3030 len = strlen(rbd_dev->spec->image_id);
3031 image_id_size = sizeof (__le32) + len;
3032 image_id = kmalloc(image_id_size, GFP_KERNEL);
3033 if (!image_id)
3034 return NULL;
3035
3036 p = image_id;
3037 end = (char *) image_id + image_id_size;
3038 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32) len);
3039
3040 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3041 reply_buf = kmalloc(size, GFP_KERNEL);
3042 if (!reply_buf)
3043 goto out;
3044
3045 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3046 "rbd", "dir_get_name",
3047 image_id, image_id_size,
3048 (char *) reply_buf, size, NULL);
3049 if (ret < 0)
3050 goto out;
3051 p = reply_buf;
3052 end = (char *) reply_buf + size;
3053 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3054 if (IS_ERR(image_name))
3055 image_name = NULL;
3056 else
3057 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3058 out:
3059 kfree(reply_buf);
3060 kfree(image_id);
3061
3062 return image_name;
3063 }
3064
3065 /*
3066 * When a parent image gets probed, we only have the pool, image,
3067 * and snapshot ids but not the names of any of them. This call
3068 * is made later to fill in those names. It has to be done after
3069 * rbd_dev_snaps_update() has completed because some of the
3070 * information (in particular, snapshot name) is not available
3071 * until then.
3072 */
3073 static int rbd_dev_probe_update_spec(struct rbd_device *rbd_dev)
3074 {
3075 struct ceph_osd_client *osdc;
3076 const char *name;
3077 void *reply_buf = NULL;
3078 int ret;
3079
3080 if (rbd_dev->spec->pool_name)
3081 return 0; /* Already have the names */
3082
3083 /* Look up the pool name */
3084
3085 osdc = &rbd_dev->rbd_client->client->osdc;
3086 name = ceph_pg_pool_name_by_id(osdc->osdmap, rbd_dev->spec->pool_id);
3087 if (!name) {
3088 rbd_warn(rbd_dev, "there is no pool with id %llu",
3089 rbd_dev->spec->pool_id); /* Really a BUG() */
3090 return -EIO;
3091 }
3092
3093 rbd_dev->spec->pool_name = kstrdup(name, GFP_KERNEL);
3094 if (!rbd_dev->spec->pool_name)
3095 return -ENOMEM;
3096
3097 /* Fetch the image name; tolerate failure here */
3098
3099 name = rbd_dev_image_name(rbd_dev);
3100 if (name)
3101 rbd_dev->spec->image_name = (char *) name;
3102 else
3103 rbd_warn(rbd_dev, "unable to get image name");
3104
3105 /* Look up the snapshot name. */
3106
3107 name = rbd_snap_name(rbd_dev, rbd_dev->spec->snap_id);
3108 if (!name) {
3109 rbd_warn(rbd_dev, "no snapshot with id %llu",
3110 rbd_dev->spec->snap_id); /* Really a BUG() */
3111 ret = -EIO;
3112 goto out_err;
3113 }
3114 rbd_dev->spec->snap_name = kstrdup(name, GFP_KERNEL);
3115 if(!rbd_dev->spec->snap_name)
3116 goto out_err;
3117
3118 return 0;
3119 out_err:
3120 kfree(reply_buf);
3121 kfree(rbd_dev->spec->pool_name);
3122 rbd_dev->spec->pool_name = NULL;
3123
3124 return ret;
3125 }
3126
3127 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, u64 *ver)
3128 {
3129 size_t size;
3130 int ret;
3131 void *reply_buf;
3132 void *p;
3133 void *end;
3134 u64 seq;
3135 u32 snap_count;
3136 struct ceph_snap_context *snapc;
3137 u32 i;
3138
3139 /*
3140 * We'll need room for the seq value (maximum snapshot id),
3141 * snapshot count, and array of that many snapshot ids.
3142 * For now we have a fixed upper limit on the number we're
3143 * prepared to receive.
3144 */
3145 size = sizeof (__le64) + sizeof (__le32) +
3146 RBD_MAX_SNAP_COUNT * sizeof (__le64);
3147 reply_buf = kzalloc(size, GFP_KERNEL);
3148 if (!reply_buf)
3149 return -ENOMEM;
3150
3151 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3152 "rbd", "get_snapcontext",
3153 NULL, 0,
3154 reply_buf, size, ver);
3155 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3156 if (ret < 0)
3157 goto out;
3158
3159 ret = -ERANGE;
3160 p = reply_buf;
3161 end = (char *) reply_buf + size;
3162 ceph_decode_64_safe(&p, end, seq, out);
3163 ceph_decode_32_safe(&p, end, snap_count, out);
3164
3165 /*
3166 * Make sure the reported number of snapshot ids wouldn't go
3167 * beyond the end of our buffer. But before checking that,
3168 * make sure the computed size of the snapshot context we
3169 * allocate is representable in a size_t.
3170 */
3171 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3172 / sizeof (u64)) {
3173 ret = -EINVAL;
3174 goto out;
3175 }
3176 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3177 goto out;
3178
3179 size = sizeof (struct ceph_snap_context) +
3180 snap_count * sizeof (snapc->snaps[0]);
3181 snapc = kmalloc(size, GFP_KERNEL);
3182 if (!snapc) {
3183 ret = -ENOMEM;
3184 goto out;
3185 }
3186
3187 atomic_set(&snapc->nref, 1);
3188 snapc->seq = seq;
3189 snapc->num_snaps = snap_count;
3190 for (i = 0; i < snap_count; i++)
3191 snapc->snaps[i] = ceph_decode_64(&p);
3192
3193 rbd_dev->header.snapc = snapc;
3194
3195 dout(" snap context seq = %llu, snap_count = %u\n",
3196 (unsigned long long) seq, (unsigned int) snap_count);
3197
3198 out:
3199 kfree(reply_buf);
3200
3201 return 0;
3202 }
3203
3204 static char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, u32 which)
3205 {
3206 size_t size;
3207 void *reply_buf;
3208 __le64 snap_id;
3209 int ret;
3210 void *p;
3211 void *end;
3212 char *snap_name;
3213
3214 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3215 reply_buf = kmalloc(size, GFP_KERNEL);
3216 if (!reply_buf)
3217 return ERR_PTR(-ENOMEM);
3218
3219 snap_id = cpu_to_le64(rbd_dev->header.snapc->snaps[which]);
3220 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3221 "rbd", "get_snapshot_name",
3222 (char *) &snap_id, sizeof (snap_id),
3223 reply_buf, size, NULL);
3224 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3225 if (ret < 0)
3226 goto out;
3227
3228 p = reply_buf;
3229 end = (char *) reply_buf + size;
3230 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3231 if (IS_ERR(snap_name)) {
3232 ret = PTR_ERR(snap_name);
3233 goto out;
3234 } else {
3235 dout(" snap_id 0x%016llx snap_name = %s\n",
3236 (unsigned long long) le64_to_cpu(snap_id), snap_name);
3237 }
3238 kfree(reply_buf);
3239
3240 return snap_name;
3241 out:
3242 kfree(reply_buf);
3243
3244 return ERR_PTR(ret);
3245 }
3246
3247 static char *rbd_dev_v2_snap_info(struct rbd_device *rbd_dev, u32 which,
3248 u64 *snap_size, u64 *snap_features)
3249 {
3250 u64 snap_id;
3251 u8 order;
3252 int ret;
3253
3254 snap_id = rbd_dev->header.snapc->snaps[which];
3255 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, &order, snap_size);
3256 if (ret)
3257 return ERR_PTR(ret);
3258 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, snap_features);
3259 if (ret)
3260 return ERR_PTR(ret);
3261
3262 return rbd_dev_v2_snap_name(rbd_dev, which);
3263 }
3264
3265 static char *rbd_dev_snap_info(struct rbd_device *rbd_dev, u32 which,
3266 u64 *snap_size, u64 *snap_features)
3267 {
3268 if (rbd_dev->image_format == 1)
3269 return rbd_dev_v1_snap_info(rbd_dev, which,
3270 snap_size, snap_features);
3271 if (rbd_dev->image_format == 2)
3272 return rbd_dev_v2_snap_info(rbd_dev, which,
3273 snap_size, snap_features);
3274 return ERR_PTR(-EINVAL);
3275 }
3276
3277 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver)
3278 {
3279 int ret;
3280 __u8 obj_order;
3281
3282 down_write(&rbd_dev->header_rwsem);
3283
3284 /* Grab old order first, to see if it changes */
3285
3286 obj_order = rbd_dev->header.obj_order,
3287 ret = rbd_dev_v2_image_size(rbd_dev);
3288 if (ret)
3289 goto out;
3290 if (rbd_dev->header.obj_order != obj_order) {
3291 ret = -EIO;
3292 goto out;
3293 }
3294 rbd_update_mapping_size(rbd_dev);
3295
3296 ret = rbd_dev_v2_snap_context(rbd_dev, hver);
3297 dout("rbd_dev_v2_snap_context returned %d\n", ret);
3298 if (ret)
3299 goto out;
3300 ret = rbd_dev_snaps_update(rbd_dev);
3301 dout("rbd_dev_snaps_update returned %d\n", ret);
3302 if (ret)
3303 goto out;
3304 ret = rbd_dev_snaps_register(rbd_dev);
3305 dout("rbd_dev_snaps_register returned %d\n", ret);
3306 out:
3307 up_write(&rbd_dev->header_rwsem);
3308
3309 return ret;
3310 }
3311
3312 /*
3313 * Scan the rbd device's current snapshot list and compare it to the
3314 * newly-received snapshot context. Remove any existing snapshots
3315 * not present in the new snapshot context. Add a new snapshot for
3316 * any snaphots in the snapshot context not in the current list.
3317 * And verify there are no changes to snapshots we already know
3318 * about.
3319 *
3320 * Assumes the snapshots in the snapshot context are sorted by
3321 * snapshot id, highest id first. (Snapshots in the rbd_dev's list
3322 * are also maintained in that order.)
3323 */
3324 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev)
3325 {
3326 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3327 const u32 snap_count = snapc->num_snaps;
3328 struct list_head *head = &rbd_dev->snaps;
3329 struct list_head *links = head->next;
3330 u32 index = 0;
3331
3332 dout("%s: snap count is %u\n", __func__, (unsigned int) snap_count);
3333 while (index < snap_count || links != head) {
3334 u64 snap_id;
3335 struct rbd_snap *snap;
3336 char *snap_name;
3337 u64 snap_size = 0;
3338 u64 snap_features = 0;
3339
3340 snap_id = index < snap_count ? snapc->snaps[index]
3341 : CEPH_NOSNAP;
3342 snap = links != head ? list_entry(links, struct rbd_snap, node)
3343 : NULL;
3344 rbd_assert(!snap || snap->id != CEPH_NOSNAP);
3345
3346 if (snap_id == CEPH_NOSNAP || (snap && snap->id > snap_id)) {
3347 struct list_head *next = links->next;
3348
3349 /*
3350 * A previously-existing snapshot is not in
3351 * the new snap context.
3352 *
3353 * If the now missing snapshot is the one the
3354 * image is mapped to, clear its exists flag
3355 * so we can avoid sending any more requests
3356 * to it.
3357 */
3358 if (rbd_dev->spec->snap_id == snap->id)
3359 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3360 rbd_remove_snap_dev(snap);
3361 dout("%ssnap id %llu has been removed\n",
3362 rbd_dev->spec->snap_id == snap->id ?
3363 "mapped " : "",
3364 (unsigned long long) snap->id);
3365
3366 /* Done with this list entry; advance */
3367
3368 links = next;
3369 continue;
3370 }
3371
3372 snap_name = rbd_dev_snap_info(rbd_dev, index,
3373 &snap_size, &snap_features);
3374 if (IS_ERR(snap_name))
3375 return PTR_ERR(snap_name);
3376
3377 dout("entry %u: snap_id = %llu\n", (unsigned int) snap_count,
3378 (unsigned long long) snap_id);
3379 if (!snap || (snap_id != CEPH_NOSNAP && snap->id < snap_id)) {
3380 struct rbd_snap *new_snap;
3381
3382 /* We haven't seen this snapshot before */
3383
3384 new_snap = __rbd_add_snap_dev(rbd_dev, snap_name,
3385 snap_id, snap_size, snap_features);
3386 if (IS_ERR(new_snap)) {
3387 int err = PTR_ERR(new_snap);
3388
3389 dout(" failed to add dev, error %d\n", err);
3390
3391 return err;
3392 }
3393
3394 /* New goes before existing, or at end of list */
3395
3396 dout(" added dev%s\n", snap ? "" : " at end\n");
3397 if (snap)
3398 list_add_tail(&new_snap->node, &snap->node);
3399 else
3400 list_add_tail(&new_snap->node, head);
3401 } else {
3402 /* Already have this one */
3403
3404 dout(" already present\n");
3405
3406 rbd_assert(snap->size == snap_size);
3407 rbd_assert(!strcmp(snap->name, snap_name));
3408 rbd_assert(snap->features == snap_features);
3409
3410 /* Done with this list entry; advance */
3411
3412 links = links->next;
3413 }
3414
3415 /* Advance to the next entry in the snapshot context */
3416
3417 index++;
3418 }
3419 dout("%s: done\n", __func__);
3420
3421 return 0;
3422 }
3423
3424 /*
3425 * Scan the list of snapshots and register the devices for any that
3426 * have not already been registered.
3427 */
3428 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev)
3429 {
3430 struct rbd_snap *snap;
3431 int ret = 0;
3432
3433 dout("%s:\n", __func__);
3434 if (WARN_ON(!device_is_registered(&rbd_dev->dev)))
3435 return -EIO;
3436
3437 list_for_each_entry(snap, &rbd_dev->snaps, node) {
3438 if (!rbd_snap_registered(snap)) {
3439 ret = rbd_register_snap_dev(snap, &rbd_dev->dev);
3440 if (ret < 0)
3441 break;
3442 }
3443 }
3444 dout("%s: returning %d\n", __func__, ret);
3445
3446 return ret;
3447 }
3448
3449 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
3450 {
3451 struct device *dev;
3452 int ret;
3453
3454 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3455
3456 dev = &rbd_dev->dev;
3457 dev->bus = &rbd_bus_type;
3458 dev->type = &rbd_device_type;
3459 dev->parent = &rbd_root_dev;
3460 dev->release = rbd_dev_release;
3461 dev_set_name(dev, "%d", rbd_dev->dev_id);
3462 ret = device_register(dev);
3463
3464 mutex_unlock(&ctl_mutex);
3465
3466 return ret;
3467 }
3468
3469 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
3470 {
3471 device_unregister(&rbd_dev->dev);
3472 }
3473
3474 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
3475
3476 /*
3477 * Get a unique rbd identifier for the given new rbd_dev, and add
3478 * the rbd_dev to the global list. The minimum rbd id is 1.
3479 */
3480 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
3481 {
3482 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
3483
3484 spin_lock(&rbd_dev_list_lock);
3485 list_add_tail(&rbd_dev->node, &rbd_dev_list);
3486 spin_unlock(&rbd_dev_list_lock);
3487 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
3488 (unsigned long long) rbd_dev->dev_id);
3489 }
3490
3491 /*
3492 * Remove an rbd_dev from the global list, and record that its
3493 * identifier is no longer in use.
3494 */
3495 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
3496 {
3497 struct list_head *tmp;
3498 int rbd_id = rbd_dev->dev_id;
3499 int max_id;
3500
3501 rbd_assert(rbd_id > 0);
3502
3503 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
3504 (unsigned long long) rbd_dev->dev_id);
3505 spin_lock(&rbd_dev_list_lock);
3506 list_del_init(&rbd_dev->node);
3507
3508 /*
3509 * If the id being "put" is not the current maximum, there
3510 * is nothing special we need to do.
3511 */
3512 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
3513 spin_unlock(&rbd_dev_list_lock);
3514 return;
3515 }
3516
3517 /*
3518 * We need to update the current maximum id. Search the
3519 * list to find out what it is. We're more likely to find
3520 * the maximum at the end, so search the list backward.
3521 */
3522 max_id = 0;
3523 list_for_each_prev(tmp, &rbd_dev_list) {
3524 struct rbd_device *rbd_dev;
3525
3526 rbd_dev = list_entry(tmp, struct rbd_device, node);
3527 if (rbd_dev->dev_id > max_id)
3528 max_id = rbd_dev->dev_id;
3529 }
3530 spin_unlock(&rbd_dev_list_lock);
3531
3532 /*
3533 * The max id could have been updated by rbd_dev_id_get(), in
3534 * which case it now accurately reflects the new maximum.
3535 * Be careful not to overwrite the maximum value in that
3536 * case.
3537 */
3538 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
3539 dout(" max dev id has been reset\n");
3540 }
3541
3542 /*
3543 * Skips over white space at *buf, and updates *buf to point to the
3544 * first found non-space character (if any). Returns the length of
3545 * the token (string of non-white space characters) found. Note
3546 * that *buf must be terminated with '\0'.
3547 */
3548 static inline size_t next_token(const char **buf)
3549 {
3550 /*
3551 * These are the characters that produce nonzero for
3552 * isspace() in the "C" and "POSIX" locales.
3553 */
3554 const char *spaces = " \f\n\r\t\v";
3555
3556 *buf += strspn(*buf, spaces); /* Find start of token */
3557
3558 return strcspn(*buf, spaces); /* Return token length */
3559 }
3560
3561 /*
3562 * Finds the next token in *buf, and if the provided token buffer is
3563 * big enough, copies the found token into it. The result, if
3564 * copied, is guaranteed to be terminated with '\0'. Note that *buf
3565 * must be terminated with '\0' on entry.
3566 *
3567 * Returns the length of the token found (not including the '\0').
3568 * Return value will be 0 if no token is found, and it will be >=
3569 * token_size if the token would not fit.
3570 *
3571 * The *buf pointer will be updated to point beyond the end of the
3572 * found token. Note that this occurs even if the token buffer is
3573 * too small to hold it.
3574 */
3575 static inline size_t copy_token(const char **buf,
3576 char *token,
3577 size_t token_size)
3578 {
3579 size_t len;
3580
3581 len = next_token(buf);
3582 if (len < token_size) {
3583 memcpy(token, *buf, len);
3584 *(token + len) = '\0';
3585 }
3586 *buf += len;
3587
3588 return len;
3589 }
3590
3591 /*
3592 * Finds the next token in *buf, dynamically allocates a buffer big
3593 * enough to hold a copy of it, and copies the token into the new
3594 * buffer. The copy is guaranteed to be terminated with '\0'. Note
3595 * that a duplicate buffer is created even for a zero-length token.
3596 *
3597 * Returns a pointer to the newly-allocated duplicate, or a null
3598 * pointer if memory for the duplicate was not available. If
3599 * the lenp argument is a non-null pointer, the length of the token
3600 * (not including the '\0') is returned in *lenp.
3601 *
3602 * If successful, the *buf pointer will be updated to point beyond
3603 * the end of the found token.
3604 *
3605 * Note: uses GFP_KERNEL for allocation.
3606 */
3607 static inline char *dup_token(const char **buf, size_t *lenp)
3608 {
3609 char *dup;
3610 size_t len;
3611
3612 len = next_token(buf);
3613 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
3614 if (!dup)
3615 return NULL;
3616 *(dup + len) = '\0';
3617 *buf += len;
3618
3619 if (lenp)
3620 *lenp = len;
3621
3622 return dup;
3623 }
3624
3625 /*
3626 * Parse the options provided for an "rbd add" (i.e., rbd image
3627 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
3628 * and the data written is passed here via a NUL-terminated buffer.
3629 * Returns 0 if successful or an error code otherwise.
3630 *
3631 * The information extracted from these options is recorded in
3632 * the other parameters which return dynamically-allocated
3633 * structures:
3634 * ceph_opts
3635 * The address of a pointer that will refer to a ceph options
3636 * structure. Caller must release the returned pointer using
3637 * ceph_destroy_options() when it is no longer needed.
3638 * rbd_opts
3639 * Address of an rbd options pointer. Fully initialized by
3640 * this function; caller must release with kfree().
3641 * spec
3642 * Address of an rbd image specification pointer. Fully
3643 * initialized by this function based on parsed options.
3644 * Caller must release with rbd_spec_put().
3645 *
3646 * The options passed take this form:
3647 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
3648 * where:
3649 * <mon_addrs>
3650 * A comma-separated list of one or more monitor addresses.
3651 * A monitor address is an ip address, optionally followed
3652 * by a port number (separated by a colon).
3653 * I.e.: ip1[:port1][,ip2[:port2]...]
3654 * <options>
3655 * A comma-separated list of ceph and/or rbd options.
3656 * <pool_name>
3657 * The name of the rados pool containing the rbd image.
3658 * <image_name>
3659 * The name of the image in that pool to map.
3660 * <snap_id>
3661 * An optional snapshot id. If provided, the mapping will
3662 * present data from the image at the time that snapshot was
3663 * created. The image head is used if no snapshot id is
3664 * provided. Snapshot mappings are always read-only.
3665 */
3666 static int rbd_add_parse_args(const char *buf,
3667 struct ceph_options **ceph_opts,
3668 struct rbd_options **opts,
3669 struct rbd_spec **rbd_spec)
3670 {
3671 size_t len;
3672 char *options;
3673 const char *mon_addrs;
3674 size_t mon_addrs_size;
3675 struct rbd_spec *spec = NULL;
3676 struct rbd_options *rbd_opts = NULL;
3677 struct ceph_options *copts;
3678 int ret;
3679
3680 /* The first four tokens are required */
3681
3682 len = next_token(&buf);
3683 if (!len) {
3684 rbd_warn(NULL, "no monitor address(es) provided");
3685 return -EINVAL;
3686 }
3687 mon_addrs = buf;
3688 mon_addrs_size = len + 1;
3689 buf += len;
3690
3691 ret = -EINVAL;
3692 options = dup_token(&buf, NULL);
3693 if (!options)
3694 return -ENOMEM;
3695 if (!*options) {
3696 rbd_warn(NULL, "no options provided");
3697 goto out_err;
3698 }
3699
3700 spec = rbd_spec_alloc();
3701 if (!spec)
3702 goto out_mem;
3703
3704 spec->pool_name = dup_token(&buf, NULL);
3705 if (!spec->pool_name)
3706 goto out_mem;
3707 if (!*spec->pool_name) {
3708 rbd_warn(NULL, "no pool name provided");
3709 goto out_err;
3710 }
3711
3712 spec->image_name = dup_token(&buf, NULL);
3713 if (!spec->image_name)
3714 goto out_mem;
3715 if (!*spec->image_name) {
3716 rbd_warn(NULL, "no image name provided");
3717 goto out_err;
3718 }
3719
3720 /*
3721 * Snapshot name is optional; default is to use "-"
3722 * (indicating the head/no snapshot).
3723 */
3724 len = next_token(&buf);
3725 if (!len) {
3726 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
3727 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
3728 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
3729 ret = -ENAMETOOLONG;
3730 goto out_err;
3731 }
3732 spec->snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
3733 if (!spec->snap_name)
3734 goto out_mem;
3735 *(spec->snap_name + len) = '\0';
3736
3737 /* Initialize all rbd options to the defaults */
3738
3739 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
3740 if (!rbd_opts)
3741 goto out_mem;
3742
3743 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
3744
3745 copts = ceph_parse_options(options, mon_addrs,
3746 mon_addrs + mon_addrs_size - 1,
3747 parse_rbd_opts_token, rbd_opts);
3748 if (IS_ERR(copts)) {
3749 ret = PTR_ERR(copts);
3750 goto out_err;
3751 }
3752 kfree(options);
3753
3754 *ceph_opts = copts;
3755 *opts = rbd_opts;
3756 *rbd_spec = spec;
3757
3758 return 0;
3759 out_mem:
3760 ret = -ENOMEM;
3761 out_err:
3762 kfree(rbd_opts);
3763 rbd_spec_put(spec);
3764 kfree(options);
3765
3766 return ret;
3767 }
3768
3769 /*
3770 * An rbd format 2 image has a unique identifier, distinct from the
3771 * name given to it by the user. Internally, that identifier is
3772 * what's used to specify the names of objects related to the image.
3773 *
3774 * A special "rbd id" object is used to map an rbd image name to its
3775 * id. If that object doesn't exist, then there is no v2 rbd image
3776 * with the supplied name.
3777 *
3778 * This function will record the given rbd_dev's image_id field if
3779 * it can be determined, and in that case will return 0. If any
3780 * errors occur a negative errno will be returned and the rbd_dev's
3781 * image_id field will be unchanged (and should be NULL).
3782 */
3783 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
3784 {
3785 int ret;
3786 size_t size;
3787 char *object_name;
3788 void *response;
3789 void *p;
3790
3791 /*
3792 * When probing a parent image, the image id is already
3793 * known (and the image name likely is not). There's no
3794 * need to fetch the image id again in this case.
3795 */
3796 if (rbd_dev->spec->image_id)
3797 return 0;
3798
3799 /*
3800 * First, see if the format 2 image id file exists, and if
3801 * so, get the image's persistent id from it.
3802 */
3803 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
3804 object_name = kmalloc(size, GFP_NOIO);
3805 if (!object_name)
3806 return -ENOMEM;
3807 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
3808 dout("rbd id object name is %s\n", object_name);
3809
3810 /* Response will be an encoded string, which includes a length */
3811
3812 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
3813 response = kzalloc(size, GFP_NOIO);
3814 if (!response) {
3815 ret = -ENOMEM;
3816 goto out;
3817 }
3818
3819 ret = rbd_obj_method_sync(rbd_dev, object_name,
3820 "rbd", "get_id",
3821 NULL, 0,
3822 response, RBD_IMAGE_ID_LEN_MAX, NULL);
3823 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3824 if (ret < 0)
3825 goto out;
3826
3827 p = response;
3828 rbd_dev->spec->image_id = ceph_extract_encoded_string(&p,
3829 p + RBD_IMAGE_ID_LEN_MAX,
3830 NULL, GFP_NOIO);
3831 if (IS_ERR(rbd_dev->spec->image_id)) {
3832 ret = PTR_ERR(rbd_dev->spec->image_id);
3833 rbd_dev->spec->image_id = NULL;
3834 } else {
3835 dout("image_id is %s\n", rbd_dev->spec->image_id);
3836 }
3837 out:
3838 kfree(response);
3839 kfree(object_name);
3840
3841 return ret;
3842 }
3843
3844 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
3845 {
3846 int ret;
3847 size_t size;
3848
3849 /* Version 1 images have no id; empty string is used */
3850
3851 rbd_dev->spec->image_id = kstrdup("", GFP_KERNEL);
3852 if (!rbd_dev->spec->image_id)
3853 return -ENOMEM;
3854
3855 /* Record the header object name for this rbd image. */
3856
3857 size = strlen(rbd_dev->spec->image_name) + sizeof (RBD_SUFFIX);
3858 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3859 if (!rbd_dev->header_name) {
3860 ret = -ENOMEM;
3861 goto out_err;
3862 }
3863 sprintf(rbd_dev->header_name, "%s%s",
3864 rbd_dev->spec->image_name, RBD_SUFFIX);
3865
3866 /* Populate rbd image metadata */
3867
3868 ret = rbd_read_header(rbd_dev, &rbd_dev->header);
3869 if (ret < 0)
3870 goto out_err;
3871
3872 /* Version 1 images have no parent (no layering) */
3873
3874 rbd_dev->parent_spec = NULL;
3875 rbd_dev->parent_overlap = 0;
3876
3877 rbd_dev->image_format = 1;
3878
3879 dout("discovered version 1 image, header name is %s\n",
3880 rbd_dev->header_name);
3881
3882 return 0;
3883
3884 out_err:
3885 kfree(rbd_dev->header_name);
3886 rbd_dev->header_name = NULL;
3887 kfree(rbd_dev->spec->image_id);
3888 rbd_dev->spec->image_id = NULL;
3889
3890 return ret;
3891 }
3892
3893 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
3894 {
3895 size_t size;
3896 int ret;
3897 u64 ver = 0;
3898
3899 /*
3900 * Image id was filled in by the caller. Record the header
3901 * object name for this rbd image.
3902 */
3903 size = sizeof (RBD_HEADER_PREFIX) + strlen(rbd_dev->spec->image_id);
3904 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3905 if (!rbd_dev->header_name)
3906 return -ENOMEM;
3907 sprintf(rbd_dev->header_name, "%s%s",
3908 RBD_HEADER_PREFIX, rbd_dev->spec->image_id);
3909
3910 /* Get the size and object order for the image */
3911
3912 ret = rbd_dev_v2_image_size(rbd_dev);
3913 if (ret < 0)
3914 goto out_err;
3915
3916 /* Get the object prefix (a.k.a. block_name) for the image */
3917
3918 ret = rbd_dev_v2_object_prefix(rbd_dev);
3919 if (ret < 0)
3920 goto out_err;
3921
3922 /* Get the and check features for the image */
3923
3924 ret = rbd_dev_v2_features(rbd_dev);
3925 if (ret < 0)
3926 goto out_err;
3927
3928 /* If the image supports layering, get the parent info */
3929
3930 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
3931 ret = rbd_dev_v2_parent_info(rbd_dev);
3932 if (ret < 0)
3933 goto out_err;
3934 }
3935
3936 /* crypto and compression type aren't (yet) supported for v2 images */
3937
3938 rbd_dev->header.crypt_type = 0;
3939 rbd_dev->header.comp_type = 0;
3940
3941 /* Get the snapshot context, plus the header version */
3942
3943 ret = rbd_dev_v2_snap_context(rbd_dev, &ver);
3944 if (ret)
3945 goto out_err;
3946 rbd_dev->header.obj_version = ver;
3947
3948 rbd_dev->image_format = 2;
3949
3950 dout("discovered version 2 image, header name is %s\n",
3951 rbd_dev->header_name);
3952
3953 return 0;
3954 out_err:
3955 rbd_dev->parent_overlap = 0;
3956 rbd_spec_put(rbd_dev->parent_spec);
3957 rbd_dev->parent_spec = NULL;
3958 kfree(rbd_dev->header_name);
3959 rbd_dev->header_name = NULL;
3960 kfree(rbd_dev->header.object_prefix);
3961 rbd_dev->header.object_prefix = NULL;
3962
3963 return ret;
3964 }
3965
3966 static int rbd_dev_probe_finish(struct rbd_device *rbd_dev)
3967 {
3968 int ret;
3969
3970 /* no need to lock here, as rbd_dev is not registered yet */
3971 ret = rbd_dev_snaps_update(rbd_dev);
3972 if (ret)
3973 return ret;
3974
3975 ret = rbd_dev_probe_update_spec(rbd_dev);
3976 if (ret)
3977 goto err_out_snaps;
3978
3979 ret = rbd_dev_set_mapping(rbd_dev);
3980 if (ret)
3981 goto err_out_snaps;
3982
3983 /* generate unique id: find highest unique id, add one */
3984 rbd_dev_id_get(rbd_dev);
3985
3986 /* Fill in the device name, now that we have its id. */
3987 BUILD_BUG_ON(DEV_NAME_LEN
3988 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
3989 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
3990
3991 /* Get our block major device number. */
3992
3993 ret = register_blkdev(0, rbd_dev->name);
3994 if (ret < 0)
3995 goto err_out_id;
3996 rbd_dev->major = ret;
3997
3998 /* Set up the blkdev mapping. */
3999
4000 ret = rbd_init_disk(rbd_dev);
4001 if (ret)
4002 goto err_out_blkdev;
4003
4004 ret = rbd_bus_add_dev(rbd_dev);
4005 if (ret)
4006 goto err_out_disk;
4007
4008 /*
4009 * At this point cleanup in the event of an error is the job
4010 * of the sysfs code (initiated by rbd_bus_del_dev()).
4011 */
4012 down_write(&rbd_dev->header_rwsem);
4013 ret = rbd_dev_snaps_register(rbd_dev);
4014 up_write(&rbd_dev->header_rwsem);
4015 if (ret)
4016 goto err_out_bus;
4017
4018 ret = rbd_dev_header_watch_sync(rbd_dev, 1);
4019 if (ret)
4020 goto err_out_bus;
4021
4022 /* Everything's ready. Announce the disk to the world. */
4023
4024 add_disk(rbd_dev->disk);
4025
4026 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4027 (unsigned long long) rbd_dev->mapping.size);
4028
4029 return ret;
4030 err_out_bus:
4031 /* this will also clean up rest of rbd_dev stuff */
4032
4033 rbd_bus_del_dev(rbd_dev);
4034
4035 return ret;
4036 err_out_disk:
4037 rbd_free_disk(rbd_dev);
4038 err_out_blkdev:
4039 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4040 err_out_id:
4041 rbd_dev_id_put(rbd_dev);
4042 err_out_snaps:
4043 rbd_remove_all_snaps(rbd_dev);
4044
4045 return ret;
4046 }
4047
4048 /*
4049 * Probe for the existence of the header object for the given rbd
4050 * device. For format 2 images this includes determining the image
4051 * id.
4052 */
4053 static int rbd_dev_probe(struct rbd_device *rbd_dev)
4054 {
4055 int ret;
4056
4057 /*
4058 * Get the id from the image id object. If it's not a
4059 * format 2 image, we'll get ENOENT back, and we'll assume
4060 * it's a format 1 image.
4061 */
4062 ret = rbd_dev_image_id(rbd_dev);
4063 if (ret)
4064 ret = rbd_dev_v1_probe(rbd_dev);
4065 else
4066 ret = rbd_dev_v2_probe(rbd_dev);
4067 if (ret) {
4068 dout("probe failed, returning %d\n", ret);
4069
4070 return ret;
4071 }
4072
4073 ret = rbd_dev_probe_finish(rbd_dev);
4074 if (ret)
4075 rbd_header_free(&rbd_dev->header);
4076
4077 return ret;
4078 }
4079
4080 static ssize_t rbd_add(struct bus_type *bus,
4081 const char *buf,
4082 size_t count)
4083 {
4084 struct rbd_device *rbd_dev = NULL;
4085 struct ceph_options *ceph_opts = NULL;
4086 struct rbd_options *rbd_opts = NULL;
4087 struct rbd_spec *spec = NULL;
4088 struct rbd_client *rbdc;
4089 struct ceph_osd_client *osdc;
4090 int rc = -ENOMEM;
4091
4092 if (!try_module_get(THIS_MODULE))
4093 return -ENODEV;
4094
4095 /* parse add command */
4096 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4097 if (rc < 0)
4098 goto err_out_module;
4099
4100 rbdc = rbd_get_client(ceph_opts);
4101 if (IS_ERR(rbdc)) {
4102 rc = PTR_ERR(rbdc);
4103 goto err_out_args;
4104 }
4105 ceph_opts = NULL; /* rbd_dev client now owns this */
4106
4107 /* pick the pool */
4108 osdc = &rbdc->client->osdc;
4109 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4110 if (rc < 0)
4111 goto err_out_client;
4112 spec->pool_id = (u64) rc;
4113
4114 /* The ceph file layout needs to fit pool id in 32 bits */
4115
4116 if (WARN_ON(spec->pool_id > (u64) U32_MAX)) {
4117 rc = -EIO;
4118 goto err_out_client;
4119 }
4120
4121 rbd_dev = rbd_dev_create(rbdc, spec);
4122 if (!rbd_dev)
4123 goto err_out_client;
4124 rbdc = NULL; /* rbd_dev now owns this */
4125 spec = NULL; /* rbd_dev now owns this */
4126
4127 rbd_dev->mapping.read_only = rbd_opts->read_only;
4128 kfree(rbd_opts);
4129 rbd_opts = NULL; /* done with this */
4130
4131 rc = rbd_dev_probe(rbd_dev);
4132 if (rc < 0)
4133 goto err_out_rbd_dev;
4134
4135 return count;
4136 err_out_rbd_dev:
4137 rbd_dev_destroy(rbd_dev);
4138 err_out_client:
4139 rbd_put_client(rbdc);
4140 err_out_args:
4141 if (ceph_opts)
4142 ceph_destroy_options(ceph_opts);
4143 kfree(rbd_opts);
4144 rbd_spec_put(spec);
4145 err_out_module:
4146 module_put(THIS_MODULE);
4147
4148 dout("Error adding device %s\n", buf);
4149
4150 return (ssize_t) rc;
4151 }
4152
4153 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4154 {
4155 struct list_head *tmp;
4156 struct rbd_device *rbd_dev;
4157
4158 spin_lock(&rbd_dev_list_lock);
4159 list_for_each(tmp, &rbd_dev_list) {
4160 rbd_dev = list_entry(tmp, struct rbd_device, node);
4161 if (rbd_dev->dev_id == dev_id) {
4162 spin_unlock(&rbd_dev_list_lock);
4163 return rbd_dev;
4164 }
4165 }
4166 spin_unlock(&rbd_dev_list_lock);
4167 return NULL;
4168 }
4169
4170 static void rbd_dev_release(struct device *dev)
4171 {
4172 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4173
4174 if (rbd_dev->watch_event)
4175 rbd_dev_header_watch_sync(rbd_dev, 0);
4176
4177 /* clean up and free blkdev */
4178 rbd_free_disk(rbd_dev);
4179 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4180
4181 /* release allocated disk header fields */
4182 rbd_header_free(&rbd_dev->header);
4183
4184 /* done with the id, and with the rbd_dev */
4185 rbd_dev_id_put(rbd_dev);
4186 rbd_assert(rbd_dev->rbd_client != NULL);
4187 rbd_dev_destroy(rbd_dev);
4188
4189 /* release module ref */
4190 module_put(THIS_MODULE);
4191 }
4192
4193 static ssize_t rbd_remove(struct bus_type *bus,
4194 const char *buf,
4195 size_t count)
4196 {
4197 struct rbd_device *rbd_dev = NULL;
4198 int target_id, rc;
4199 unsigned long ul;
4200 int ret = count;
4201
4202 rc = strict_strtoul(buf, 10, &ul);
4203 if (rc)
4204 return rc;
4205
4206 /* convert to int; abort if we lost anything in the conversion */
4207 target_id = (int) ul;
4208 if (target_id != ul)
4209 return -EINVAL;
4210
4211 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4212
4213 rbd_dev = __rbd_get_dev(target_id);
4214 if (!rbd_dev) {
4215 ret = -ENOENT;
4216 goto done;
4217 }
4218
4219 spin_lock_irq(&rbd_dev->lock);
4220 if (rbd_dev->open_count)
4221 ret = -EBUSY;
4222 else
4223 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4224 spin_unlock_irq(&rbd_dev->lock);
4225 if (ret < 0)
4226 goto done;
4227
4228 rbd_remove_all_snaps(rbd_dev);
4229 rbd_bus_del_dev(rbd_dev);
4230
4231 done:
4232 mutex_unlock(&ctl_mutex);
4233
4234 return ret;
4235 }
4236
4237 /*
4238 * create control files in sysfs
4239 * /sys/bus/rbd/...
4240 */
4241 static int rbd_sysfs_init(void)
4242 {
4243 int ret;
4244
4245 ret = device_register(&rbd_root_dev);
4246 if (ret < 0)
4247 return ret;
4248
4249 ret = bus_register(&rbd_bus_type);
4250 if (ret < 0)
4251 device_unregister(&rbd_root_dev);
4252
4253 return ret;
4254 }
4255
4256 static void rbd_sysfs_cleanup(void)
4257 {
4258 bus_unregister(&rbd_bus_type);
4259 device_unregister(&rbd_root_dev);
4260 }
4261
4262 static int __init rbd_init(void)
4263 {
4264 int rc;
4265
4266 if (!libceph_compatible(NULL)) {
4267 rbd_warn(NULL, "libceph incompatibility (quitting)");
4268
4269 return -EINVAL;
4270 }
4271 rc = rbd_sysfs_init();
4272 if (rc)
4273 return rc;
4274 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
4275 return 0;
4276 }
4277
4278 static void __exit rbd_exit(void)
4279 {
4280 rbd_sysfs_cleanup();
4281 }
4282
4283 module_init(rbd_init);
4284 module_exit(rbd_exit);
4285
4286 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
4287 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
4288 MODULE_DESCRIPTION("rados block device");
4289
4290 /* following authorship retained from original osdblk.c */
4291 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
4292
4293 MODULE_LICENSE("GPL");