]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/block/rbd.c
Merge tag 'trace-v4.15-rc4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rosted...
[mirror_ubuntu-bionic-kernel.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/decode.h>
36 #include <linux/parser.h>
37 #include <linux/bsearch.h>
38
39 #include <linux/kernel.h>
40 #include <linux/device.h>
41 #include <linux/module.h>
42 #include <linux/blk-mq.h>
43 #include <linux/fs.h>
44 #include <linux/blkdev.h>
45 #include <linux/slab.h>
46 #include <linux/idr.h>
47 #include <linux/workqueue.h>
48
49 #include "rbd_types.h"
50
51 #define RBD_DEBUG /* Activate rbd_assert() calls */
52
53 /*
54 * The basic unit of block I/O is a sector. It is interpreted in a
55 * number of contexts in Linux (blk, bio, genhd), but the default is
56 * universally 512 bytes. These symbols are just slightly more
57 * meaningful than the bare numbers they represent.
58 */
59 #define SECTOR_SHIFT 9
60 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
61
62 /*
63 * Increment the given counter and return its updated value.
64 * If the counter is already 0 it will not be incremented.
65 * If the counter is already at its maximum value returns
66 * -EINVAL without updating it.
67 */
68 static int atomic_inc_return_safe(atomic_t *v)
69 {
70 unsigned int counter;
71
72 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
73 if (counter <= (unsigned int)INT_MAX)
74 return (int)counter;
75
76 atomic_dec(v);
77
78 return -EINVAL;
79 }
80
81 /* Decrement the counter. Return the resulting value, or -EINVAL */
82 static int atomic_dec_return_safe(atomic_t *v)
83 {
84 int counter;
85
86 counter = atomic_dec_return(v);
87 if (counter >= 0)
88 return counter;
89
90 atomic_inc(v);
91
92 return -EINVAL;
93 }
94
95 #define RBD_DRV_NAME "rbd"
96
97 #define RBD_MINORS_PER_MAJOR 256
98 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
99
100 #define RBD_MAX_PARENT_CHAIN_LEN 16
101
102 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
103 #define RBD_MAX_SNAP_NAME_LEN \
104 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
105
106 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
107
108 #define RBD_SNAP_HEAD_NAME "-"
109
110 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
111
112 /* This allows a single page to hold an image name sent by OSD */
113 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
114 #define RBD_IMAGE_ID_LEN_MAX 64
115
116 #define RBD_OBJ_PREFIX_LEN_MAX 64
117
118 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */
119 #define RBD_RETRY_DELAY msecs_to_jiffies(1000)
120
121 /* Feature bits */
122
123 #define RBD_FEATURE_LAYERING (1ULL<<0)
124 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1)
125 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2)
126 #define RBD_FEATURE_DATA_POOL (1ULL<<7)
127
128 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
129 RBD_FEATURE_STRIPINGV2 | \
130 RBD_FEATURE_EXCLUSIVE_LOCK | \
131 RBD_FEATURE_DATA_POOL)
132
133 /* Features supported by this (client software) implementation. */
134
135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
136
137 /*
138 * An RBD device name will be "rbd#", where the "rbd" comes from
139 * RBD_DRV_NAME above, and # is a unique integer identifier.
140 */
141 #define DEV_NAME_LEN 32
142
143 /*
144 * block device image metadata (in-memory version)
145 */
146 struct rbd_image_header {
147 /* These six fields never change for a given rbd image */
148 char *object_prefix;
149 __u8 obj_order;
150 u64 stripe_unit;
151 u64 stripe_count;
152 s64 data_pool_id;
153 u64 features; /* Might be changeable someday? */
154
155 /* The remaining fields need to be updated occasionally */
156 u64 image_size;
157 struct ceph_snap_context *snapc;
158 char *snap_names; /* format 1 only */
159 u64 *snap_sizes; /* format 1 only */
160 };
161
162 /*
163 * An rbd image specification.
164 *
165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166 * identify an image. Each rbd_dev structure includes a pointer to
167 * an rbd_spec structure that encapsulates this identity.
168 *
169 * Each of the id's in an rbd_spec has an associated name. For a
170 * user-mapped image, the names are supplied and the id's associated
171 * with them are looked up. For a layered image, a parent image is
172 * defined by the tuple, and the names are looked up.
173 *
174 * An rbd_dev structure contains a parent_spec pointer which is
175 * non-null if the image it represents is a child in a layered
176 * image. This pointer will refer to the rbd_spec structure used
177 * by the parent rbd_dev for its own identity (i.e., the structure
178 * is shared between the parent and child).
179 *
180 * Since these structures are populated once, during the discovery
181 * phase of image construction, they are effectively immutable so
182 * we make no effort to synchronize access to them.
183 *
184 * Note that code herein does not assume the image name is known (it
185 * could be a null pointer).
186 */
187 struct rbd_spec {
188 u64 pool_id;
189 const char *pool_name;
190
191 const char *image_id;
192 const char *image_name;
193
194 u64 snap_id;
195 const char *snap_name;
196
197 struct kref kref;
198 };
199
200 /*
201 * an instance of the client. multiple devices may share an rbd client.
202 */
203 struct rbd_client {
204 struct ceph_client *client;
205 struct kref kref;
206 struct list_head node;
207 };
208
209 struct rbd_img_request;
210 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
211
212 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
213
214 struct rbd_obj_request;
215 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
216
217 enum obj_request_type {
218 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
219 };
220
221 enum obj_operation_type {
222 OBJ_OP_WRITE,
223 OBJ_OP_READ,
224 OBJ_OP_DISCARD,
225 };
226
227 enum obj_req_flags {
228 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
229 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
230 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
231 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
232 };
233
234 struct rbd_obj_request {
235 u64 object_no;
236 u64 offset; /* object start byte */
237 u64 length; /* bytes from offset */
238 unsigned long flags;
239
240 /*
241 * An object request associated with an image will have its
242 * img_data flag set; a standalone object request will not.
243 *
244 * A standalone object request will have which == BAD_WHICH
245 * and a null obj_request pointer.
246 *
247 * An object request initiated in support of a layered image
248 * object (to check for its existence before a write) will
249 * have which == BAD_WHICH and a non-null obj_request pointer.
250 *
251 * Finally, an object request for rbd image data will have
252 * which != BAD_WHICH, and will have a non-null img_request
253 * pointer. The value of which will be in the range
254 * 0..(img_request->obj_request_count-1).
255 */
256 union {
257 struct rbd_obj_request *obj_request; /* STAT op */
258 struct {
259 struct rbd_img_request *img_request;
260 u64 img_offset;
261 /* links for img_request->obj_requests list */
262 struct list_head links;
263 };
264 };
265 u32 which; /* posn image request list */
266
267 enum obj_request_type type;
268 union {
269 struct bio *bio_list;
270 struct {
271 struct page **pages;
272 u32 page_count;
273 };
274 };
275 struct page **copyup_pages;
276 u32 copyup_page_count;
277
278 struct ceph_osd_request *osd_req;
279
280 u64 xferred; /* bytes transferred */
281 int result;
282
283 rbd_obj_callback_t callback;
284 struct completion completion;
285
286 struct kref kref;
287 };
288
289 enum img_req_flags {
290 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
291 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
292 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
293 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */
294 };
295
296 struct rbd_img_request {
297 struct rbd_device *rbd_dev;
298 u64 offset; /* starting image byte offset */
299 u64 length; /* byte count from offset */
300 unsigned long flags;
301 union {
302 u64 snap_id; /* for reads */
303 struct ceph_snap_context *snapc; /* for writes */
304 };
305 union {
306 struct request *rq; /* block request */
307 struct rbd_obj_request *obj_request; /* obj req initiator */
308 };
309 struct page **copyup_pages;
310 u32 copyup_page_count;
311 spinlock_t completion_lock;/* protects next_completion */
312 u32 next_completion;
313 rbd_img_callback_t callback;
314 u64 xferred;/* aggregate bytes transferred */
315 int result; /* first nonzero obj_request result */
316
317 u32 obj_request_count;
318 struct list_head obj_requests; /* rbd_obj_request structs */
319
320 struct kref kref;
321 };
322
323 #define for_each_obj_request(ireq, oreq) \
324 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
325 #define for_each_obj_request_from(ireq, oreq) \
326 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
327 #define for_each_obj_request_safe(ireq, oreq, n) \
328 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
329
330 enum rbd_watch_state {
331 RBD_WATCH_STATE_UNREGISTERED,
332 RBD_WATCH_STATE_REGISTERED,
333 RBD_WATCH_STATE_ERROR,
334 };
335
336 enum rbd_lock_state {
337 RBD_LOCK_STATE_UNLOCKED,
338 RBD_LOCK_STATE_LOCKED,
339 RBD_LOCK_STATE_RELEASING,
340 };
341
342 /* WatchNotify::ClientId */
343 struct rbd_client_id {
344 u64 gid;
345 u64 handle;
346 };
347
348 struct rbd_mapping {
349 u64 size;
350 u64 features;
351 };
352
353 /*
354 * a single device
355 */
356 struct rbd_device {
357 int dev_id; /* blkdev unique id */
358
359 int major; /* blkdev assigned major */
360 int minor;
361 struct gendisk *disk; /* blkdev's gendisk and rq */
362
363 u32 image_format; /* Either 1 or 2 */
364 struct rbd_client *rbd_client;
365
366 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
367
368 spinlock_t lock; /* queue, flags, open_count */
369
370 struct rbd_image_header header;
371 unsigned long flags; /* possibly lock protected */
372 struct rbd_spec *spec;
373 struct rbd_options *opts;
374 char *config_info; /* add{,_single_major} string */
375
376 struct ceph_object_id header_oid;
377 struct ceph_object_locator header_oloc;
378
379 struct ceph_file_layout layout; /* used for all rbd requests */
380
381 struct mutex watch_mutex;
382 enum rbd_watch_state watch_state;
383 struct ceph_osd_linger_request *watch_handle;
384 u64 watch_cookie;
385 struct delayed_work watch_dwork;
386
387 struct rw_semaphore lock_rwsem;
388 enum rbd_lock_state lock_state;
389 char lock_cookie[32];
390 struct rbd_client_id owner_cid;
391 struct work_struct acquired_lock_work;
392 struct work_struct released_lock_work;
393 struct delayed_work lock_dwork;
394 struct work_struct unlock_work;
395 wait_queue_head_t lock_waitq;
396
397 struct workqueue_struct *task_wq;
398
399 struct rbd_spec *parent_spec;
400 u64 parent_overlap;
401 atomic_t parent_ref;
402 struct rbd_device *parent;
403
404 /* Block layer tags. */
405 struct blk_mq_tag_set tag_set;
406
407 /* protects updating the header */
408 struct rw_semaphore header_rwsem;
409
410 struct rbd_mapping mapping;
411
412 struct list_head node;
413
414 /* sysfs related */
415 struct device dev;
416 unsigned long open_count; /* protected by lock */
417 };
418
419 /*
420 * Flag bits for rbd_dev->flags:
421 * - REMOVING (which is coupled with rbd_dev->open_count) is protected
422 * by rbd_dev->lock
423 * - BLACKLISTED is protected by rbd_dev->lock_rwsem
424 */
425 enum rbd_dev_flags {
426 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
427 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
428 RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
429 };
430
431 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
432
433 static LIST_HEAD(rbd_dev_list); /* devices */
434 static DEFINE_SPINLOCK(rbd_dev_list_lock);
435
436 static LIST_HEAD(rbd_client_list); /* clients */
437 static DEFINE_SPINLOCK(rbd_client_list_lock);
438
439 /* Slab caches for frequently-allocated structures */
440
441 static struct kmem_cache *rbd_img_request_cache;
442 static struct kmem_cache *rbd_obj_request_cache;
443
444 static struct bio_set *rbd_bio_clone;
445
446 static int rbd_major;
447 static DEFINE_IDA(rbd_dev_id_ida);
448
449 static struct workqueue_struct *rbd_wq;
450
451 /*
452 * single-major requires >= 0.75 version of userspace rbd utility.
453 */
454 static bool single_major = true;
455 module_param(single_major, bool, S_IRUGO);
456 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
457
458 static int rbd_img_request_submit(struct rbd_img_request *img_request);
459
460 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
461 size_t count);
462 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
463 size_t count);
464 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
465 size_t count);
466 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
467 size_t count);
468 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
469 static void rbd_spec_put(struct rbd_spec *spec);
470
471 static int rbd_dev_id_to_minor(int dev_id)
472 {
473 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
474 }
475
476 static int minor_to_rbd_dev_id(int minor)
477 {
478 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
479 }
480
481 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
482 {
483 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
484 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
485 }
486
487 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
488 {
489 bool is_lock_owner;
490
491 down_read(&rbd_dev->lock_rwsem);
492 is_lock_owner = __rbd_is_lock_owner(rbd_dev);
493 up_read(&rbd_dev->lock_rwsem);
494 return is_lock_owner;
495 }
496
497 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf)
498 {
499 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
500 }
501
502 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
503 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
504 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
505 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
506 static BUS_ATTR(supported_features, S_IRUGO, rbd_supported_features_show, NULL);
507
508 static struct attribute *rbd_bus_attrs[] = {
509 &bus_attr_add.attr,
510 &bus_attr_remove.attr,
511 &bus_attr_add_single_major.attr,
512 &bus_attr_remove_single_major.attr,
513 &bus_attr_supported_features.attr,
514 NULL,
515 };
516
517 static umode_t rbd_bus_is_visible(struct kobject *kobj,
518 struct attribute *attr, int index)
519 {
520 if (!single_major &&
521 (attr == &bus_attr_add_single_major.attr ||
522 attr == &bus_attr_remove_single_major.attr))
523 return 0;
524
525 return attr->mode;
526 }
527
528 static const struct attribute_group rbd_bus_group = {
529 .attrs = rbd_bus_attrs,
530 .is_visible = rbd_bus_is_visible,
531 };
532 __ATTRIBUTE_GROUPS(rbd_bus);
533
534 static struct bus_type rbd_bus_type = {
535 .name = "rbd",
536 .bus_groups = rbd_bus_groups,
537 };
538
539 static void rbd_root_dev_release(struct device *dev)
540 {
541 }
542
543 static struct device rbd_root_dev = {
544 .init_name = "rbd",
545 .release = rbd_root_dev_release,
546 };
547
548 static __printf(2, 3)
549 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
550 {
551 struct va_format vaf;
552 va_list args;
553
554 va_start(args, fmt);
555 vaf.fmt = fmt;
556 vaf.va = &args;
557
558 if (!rbd_dev)
559 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
560 else if (rbd_dev->disk)
561 printk(KERN_WARNING "%s: %s: %pV\n",
562 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
563 else if (rbd_dev->spec && rbd_dev->spec->image_name)
564 printk(KERN_WARNING "%s: image %s: %pV\n",
565 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
566 else if (rbd_dev->spec && rbd_dev->spec->image_id)
567 printk(KERN_WARNING "%s: id %s: %pV\n",
568 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
569 else /* punt */
570 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
571 RBD_DRV_NAME, rbd_dev, &vaf);
572 va_end(args);
573 }
574
575 #ifdef RBD_DEBUG
576 #define rbd_assert(expr) \
577 if (unlikely(!(expr))) { \
578 printk(KERN_ERR "\nAssertion failure in %s() " \
579 "at line %d:\n\n" \
580 "\trbd_assert(%s);\n\n", \
581 __func__, __LINE__, #expr); \
582 BUG(); \
583 }
584 #else /* !RBD_DEBUG */
585 # define rbd_assert(expr) ((void) 0)
586 #endif /* !RBD_DEBUG */
587
588 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
589 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
590 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
591 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
592
593 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
594 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
595 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
596 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
597 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
598 u64 snap_id);
599 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
600 u8 *order, u64 *snap_size);
601 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
602 u64 *snap_features);
603
604 static int rbd_open(struct block_device *bdev, fmode_t mode)
605 {
606 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
607 bool removing = false;
608
609 spin_lock_irq(&rbd_dev->lock);
610 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
611 removing = true;
612 else
613 rbd_dev->open_count++;
614 spin_unlock_irq(&rbd_dev->lock);
615 if (removing)
616 return -ENOENT;
617
618 (void) get_device(&rbd_dev->dev);
619
620 return 0;
621 }
622
623 static void rbd_release(struct gendisk *disk, fmode_t mode)
624 {
625 struct rbd_device *rbd_dev = disk->private_data;
626 unsigned long open_count_before;
627
628 spin_lock_irq(&rbd_dev->lock);
629 open_count_before = rbd_dev->open_count--;
630 spin_unlock_irq(&rbd_dev->lock);
631 rbd_assert(open_count_before > 0);
632
633 put_device(&rbd_dev->dev);
634 }
635
636 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
637 {
638 int ro;
639
640 if (get_user(ro, (int __user *)arg))
641 return -EFAULT;
642
643 /* Snapshots can't be marked read-write */
644 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
645 return -EROFS;
646
647 /* Let blkdev_roset() handle it */
648 return -ENOTTY;
649 }
650
651 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
652 unsigned int cmd, unsigned long arg)
653 {
654 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
655 int ret;
656
657 switch (cmd) {
658 case BLKROSET:
659 ret = rbd_ioctl_set_ro(rbd_dev, arg);
660 break;
661 default:
662 ret = -ENOTTY;
663 }
664
665 return ret;
666 }
667
668 #ifdef CONFIG_COMPAT
669 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
670 unsigned int cmd, unsigned long arg)
671 {
672 return rbd_ioctl(bdev, mode, cmd, arg);
673 }
674 #endif /* CONFIG_COMPAT */
675
676 static const struct block_device_operations rbd_bd_ops = {
677 .owner = THIS_MODULE,
678 .open = rbd_open,
679 .release = rbd_release,
680 .ioctl = rbd_ioctl,
681 #ifdef CONFIG_COMPAT
682 .compat_ioctl = rbd_compat_ioctl,
683 #endif
684 };
685
686 /*
687 * Initialize an rbd client instance. Success or not, this function
688 * consumes ceph_opts. Caller holds client_mutex.
689 */
690 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
691 {
692 struct rbd_client *rbdc;
693 int ret = -ENOMEM;
694
695 dout("%s:\n", __func__);
696 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
697 if (!rbdc)
698 goto out_opt;
699
700 kref_init(&rbdc->kref);
701 INIT_LIST_HEAD(&rbdc->node);
702
703 rbdc->client = ceph_create_client(ceph_opts, rbdc);
704 if (IS_ERR(rbdc->client))
705 goto out_rbdc;
706 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
707
708 ret = ceph_open_session(rbdc->client);
709 if (ret < 0)
710 goto out_client;
711
712 spin_lock(&rbd_client_list_lock);
713 list_add_tail(&rbdc->node, &rbd_client_list);
714 spin_unlock(&rbd_client_list_lock);
715
716 dout("%s: rbdc %p\n", __func__, rbdc);
717
718 return rbdc;
719 out_client:
720 ceph_destroy_client(rbdc->client);
721 out_rbdc:
722 kfree(rbdc);
723 out_opt:
724 if (ceph_opts)
725 ceph_destroy_options(ceph_opts);
726 dout("%s: error %d\n", __func__, ret);
727
728 return ERR_PTR(ret);
729 }
730
731 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
732 {
733 kref_get(&rbdc->kref);
734
735 return rbdc;
736 }
737
738 /*
739 * Find a ceph client with specific addr and configuration. If
740 * found, bump its reference count.
741 */
742 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
743 {
744 struct rbd_client *client_node;
745 bool found = false;
746
747 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
748 return NULL;
749
750 spin_lock(&rbd_client_list_lock);
751 list_for_each_entry(client_node, &rbd_client_list, node) {
752 if (!ceph_compare_options(ceph_opts, client_node->client)) {
753 __rbd_get_client(client_node);
754
755 found = true;
756 break;
757 }
758 }
759 spin_unlock(&rbd_client_list_lock);
760
761 return found ? client_node : NULL;
762 }
763
764 /*
765 * (Per device) rbd map options
766 */
767 enum {
768 Opt_queue_depth,
769 Opt_last_int,
770 /* int args above */
771 Opt_last_string,
772 /* string args above */
773 Opt_read_only,
774 Opt_read_write,
775 Opt_lock_on_read,
776 Opt_exclusive,
777 Opt_err
778 };
779
780 static match_table_t rbd_opts_tokens = {
781 {Opt_queue_depth, "queue_depth=%d"},
782 /* int args above */
783 /* string args above */
784 {Opt_read_only, "read_only"},
785 {Opt_read_only, "ro"}, /* Alternate spelling */
786 {Opt_read_write, "read_write"},
787 {Opt_read_write, "rw"}, /* Alternate spelling */
788 {Opt_lock_on_read, "lock_on_read"},
789 {Opt_exclusive, "exclusive"},
790 {Opt_err, NULL}
791 };
792
793 struct rbd_options {
794 int queue_depth;
795 bool read_only;
796 bool lock_on_read;
797 bool exclusive;
798 };
799
800 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
801 #define RBD_READ_ONLY_DEFAULT false
802 #define RBD_LOCK_ON_READ_DEFAULT false
803 #define RBD_EXCLUSIVE_DEFAULT false
804
805 static int parse_rbd_opts_token(char *c, void *private)
806 {
807 struct rbd_options *rbd_opts = private;
808 substring_t argstr[MAX_OPT_ARGS];
809 int token, intval, ret;
810
811 token = match_token(c, rbd_opts_tokens, argstr);
812 if (token < Opt_last_int) {
813 ret = match_int(&argstr[0], &intval);
814 if (ret < 0) {
815 pr_err("bad mount option arg (not int) at '%s'\n", c);
816 return ret;
817 }
818 dout("got int token %d val %d\n", token, intval);
819 } else if (token > Opt_last_int && token < Opt_last_string) {
820 dout("got string token %d val %s\n", token, argstr[0].from);
821 } else {
822 dout("got token %d\n", token);
823 }
824
825 switch (token) {
826 case Opt_queue_depth:
827 if (intval < 1) {
828 pr_err("queue_depth out of range\n");
829 return -EINVAL;
830 }
831 rbd_opts->queue_depth = intval;
832 break;
833 case Opt_read_only:
834 rbd_opts->read_only = true;
835 break;
836 case Opt_read_write:
837 rbd_opts->read_only = false;
838 break;
839 case Opt_lock_on_read:
840 rbd_opts->lock_on_read = true;
841 break;
842 case Opt_exclusive:
843 rbd_opts->exclusive = true;
844 break;
845 default:
846 /* libceph prints "bad option" msg */
847 return -EINVAL;
848 }
849
850 return 0;
851 }
852
853 static char* obj_op_name(enum obj_operation_type op_type)
854 {
855 switch (op_type) {
856 case OBJ_OP_READ:
857 return "read";
858 case OBJ_OP_WRITE:
859 return "write";
860 case OBJ_OP_DISCARD:
861 return "discard";
862 default:
863 return "???";
864 }
865 }
866
867 /*
868 * Get a ceph client with specific addr and configuration, if one does
869 * not exist create it. Either way, ceph_opts is consumed by this
870 * function.
871 */
872 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
873 {
874 struct rbd_client *rbdc;
875
876 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
877 rbdc = rbd_client_find(ceph_opts);
878 if (rbdc) /* using an existing client */
879 ceph_destroy_options(ceph_opts);
880 else
881 rbdc = rbd_client_create(ceph_opts);
882 mutex_unlock(&client_mutex);
883
884 return rbdc;
885 }
886
887 /*
888 * Destroy ceph client
889 *
890 * Caller must hold rbd_client_list_lock.
891 */
892 static void rbd_client_release(struct kref *kref)
893 {
894 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
895
896 dout("%s: rbdc %p\n", __func__, rbdc);
897 spin_lock(&rbd_client_list_lock);
898 list_del(&rbdc->node);
899 spin_unlock(&rbd_client_list_lock);
900
901 ceph_destroy_client(rbdc->client);
902 kfree(rbdc);
903 }
904
905 /*
906 * Drop reference to ceph client node. If it's not referenced anymore, release
907 * it.
908 */
909 static void rbd_put_client(struct rbd_client *rbdc)
910 {
911 if (rbdc)
912 kref_put(&rbdc->kref, rbd_client_release);
913 }
914
915 static bool rbd_image_format_valid(u32 image_format)
916 {
917 return image_format == 1 || image_format == 2;
918 }
919
920 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
921 {
922 size_t size;
923 u32 snap_count;
924
925 /* The header has to start with the magic rbd header text */
926 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
927 return false;
928
929 /* The bio layer requires at least sector-sized I/O */
930
931 if (ondisk->options.order < SECTOR_SHIFT)
932 return false;
933
934 /* If we use u64 in a few spots we may be able to loosen this */
935
936 if (ondisk->options.order > 8 * sizeof (int) - 1)
937 return false;
938
939 /*
940 * The size of a snapshot header has to fit in a size_t, and
941 * that limits the number of snapshots.
942 */
943 snap_count = le32_to_cpu(ondisk->snap_count);
944 size = SIZE_MAX - sizeof (struct ceph_snap_context);
945 if (snap_count > size / sizeof (__le64))
946 return false;
947
948 /*
949 * Not only that, but the size of the entire the snapshot
950 * header must also be representable in a size_t.
951 */
952 size -= snap_count * sizeof (__le64);
953 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
954 return false;
955
956 return true;
957 }
958
959 /*
960 * returns the size of an object in the image
961 */
962 static u32 rbd_obj_bytes(struct rbd_image_header *header)
963 {
964 return 1U << header->obj_order;
965 }
966
967 static void rbd_init_layout(struct rbd_device *rbd_dev)
968 {
969 if (rbd_dev->header.stripe_unit == 0 ||
970 rbd_dev->header.stripe_count == 0) {
971 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
972 rbd_dev->header.stripe_count = 1;
973 }
974
975 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
976 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
977 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
978 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
979 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
980 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
981 }
982
983 /*
984 * Fill an rbd image header with information from the given format 1
985 * on-disk header.
986 */
987 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
988 struct rbd_image_header_ondisk *ondisk)
989 {
990 struct rbd_image_header *header = &rbd_dev->header;
991 bool first_time = header->object_prefix == NULL;
992 struct ceph_snap_context *snapc;
993 char *object_prefix = NULL;
994 char *snap_names = NULL;
995 u64 *snap_sizes = NULL;
996 u32 snap_count;
997 int ret = -ENOMEM;
998 u32 i;
999
1000 /* Allocate this now to avoid having to handle failure below */
1001
1002 if (first_time) {
1003 object_prefix = kstrndup(ondisk->object_prefix,
1004 sizeof(ondisk->object_prefix),
1005 GFP_KERNEL);
1006 if (!object_prefix)
1007 return -ENOMEM;
1008 }
1009
1010 /* Allocate the snapshot context and fill it in */
1011
1012 snap_count = le32_to_cpu(ondisk->snap_count);
1013 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1014 if (!snapc)
1015 goto out_err;
1016 snapc->seq = le64_to_cpu(ondisk->snap_seq);
1017 if (snap_count) {
1018 struct rbd_image_snap_ondisk *snaps;
1019 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1020
1021 /* We'll keep a copy of the snapshot names... */
1022
1023 if (snap_names_len > (u64)SIZE_MAX)
1024 goto out_2big;
1025 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1026 if (!snap_names)
1027 goto out_err;
1028
1029 /* ...as well as the array of their sizes. */
1030 snap_sizes = kmalloc_array(snap_count,
1031 sizeof(*header->snap_sizes),
1032 GFP_KERNEL);
1033 if (!snap_sizes)
1034 goto out_err;
1035
1036 /*
1037 * Copy the names, and fill in each snapshot's id
1038 * and size.
1039 *
1040 * Note that rbd_dev_v1_header_info() guarantees the
1041 * ondisk buffer we're working with has
1042 * snap_names_len bytes beyond the end of the
1043 * snapshot id array, this memcpy() is safe.
1044 */
1045 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1046 snaps = ondisk->snaps;
1047 for (i = 0; i < snap_count; i++) {
1048 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1049 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1050 }
1051 }
1052
1053 /* We won't fail any more, fill in the header */
1054
1055 if (first_time) {
1056 header->object_prefix = object_prefix;
1057 header->obj_order = ondisk->options.order;
1058 rbd_init_layout(rbd_dev);
1059 } else {
1060 ceph_put_snap_context(header->snapc);
1061 kfree(header->snap_names);
1062 kfree(header->snap_sizes);
1063 }
1064
1065 /* The remaining fields always get updated (when we refresh) */
1066
1067 header->image_size = le64_to_cpu(ondisk->image_size);
1068 header->snapc = snapc;
1069 header->snap_names = snap_names;
1070 header->snap_sizes = snap_sizes;
1071
1072 return 0;
1073 out_2big:
1074 ret = -EIO;
1075 out_err:
1076 kfree(snap_sizes);
1077 kfree(snap_names);
1078 ceph_put_snap_context(snapc);
1079 kfree(object_prefix);
1080
1081 return ret;
1082 }
1083
1084 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1085 {
1086 const char *snap_name;
1087
1088 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1089
1090 /* Skip over names until we find the one we are looking for */
1091
1092 snap_name = rbd_dev->header.snap_names;
1093 while (which--)
1094 snap_name += strlen(snap_name) + 1;
1095
1096 return kstrdup(snap_name, GFP_KERNEL);
1097 }
1098
1099 /*
1100 * Snapshot id comparison function for use with qsort()/bsearch().
1101 * Note that result is for snapshots in *descending* order.
1102 */
1103 static int snapid_compare_reverse(const void *s1, const void *s2)
1104 {
1105 u64 snap_id1 = *(u64 *)s1;
1106 u64 snap_id2 = *(u64 *)s2;
1107
1108 if (snap_id1 < snap_id2)
1109 return 1;
1110 return snap_id1 == snap_id2 ? 0 : -1;
1111 }
1112
1113 /*
1114 * Search a snapshot context to see if the given snapshot id is
1115 * present.
1116 *
1117 * Returns the position of the snapshot id in the array if it's found,
1118 * or BAD_SNAP_INDEX otherwise.
1119 *
1120 * Note: The snapshot array is in kept sorted (by the osd) in
1121 * reverse order, highest snapshot id first.
1122 */
1123 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1124 {
1125 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1126 u64 *found;
1127
1128 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1129 sizeof (snap_id), snapid_compare_reverse);
1130
1131 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1132 }
1133
1134 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1135 u64 snap_id)
1136 {
1137 u32 which;
1138 const char *snap_name;
1139
1140 which = rbd_dev_snap_index(rbd_dev, snap_id);
1141 if (which == BAD_SNAP_INDEX)
1142 return ERR_PTR(-ENOENT);
1143
1144 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1145 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1146 }
1147
1148 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1149 {
1150 if (snap_id == CEPH_NOSNAP)
1151 return RBD_SNAP_HEAD_NAME;
1152
1153 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1154 if (rbd_dev->image_format == 1)
1155 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1156
1157 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1158 }
1159
1160 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1161 u64 *snap_size)
1162 {
1163 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1164 if (snap_id == CEPH_NOSNAP) {
1165 *snap_size = rbd_dev->header.image_size;
1166 } else if (rbd_dev->image_format == 1) {
1167 u32 which;
1168
1169 which = rbd_dev_snap_index(rbd_dev, snap_id);
1170 if (which == BAD_SNAP_INDEX)
1171 return -ENOENT;
1172
1173 *snap_size = rbd_dev->header.snap_sizes[which];
1174 } else {
1175 u64 size = 0;
1176 int ret;
1177
1178 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1179 if (ret)
1180 return ret;
1181
1182 *snap_size = size;
1183 }
1184 return 0;
1185 }
1186
1187 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1188 u64 *snap_features)
1189 {
1190 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1191 if (snap_id == CEPH_NOSNAP) {
1192 *snap_features = rbd_dev->header.features;
1193 } else if (rbd_dev->image_format == 1) {
1194 *snap_features = 0; /* No features for format 1 */
1195 } else {
1196 u64 features = 0;
1197 int ret;
1198
1199 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1200 if (ret)
1201 return ret;
1202
1203 *snap_features = features;
1204 }
1205 return 0;
1206 }
1207
1208 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1209 {
1210 u64 snap_id = rbd_dev->spec->snap_id;
1211 u64 size = 0;
1212 u64 features = 0;
1213 int ret;
1214
1215 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1216 if (ret)
1217 return ret;
1218 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1219 if (ret)
1220 return ret;
1221
1222 rbd_dev->mapping.size = size;
1223 rbd_dev->mapping.features = features;
1224
1225 return 0;
1226 }
1227
1228 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1229 {
1230 rbd_dev->mapping.size = 0;
1231 rbd_dev->mapping.features = 0;
1232 }
1233
1234 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1235 {
1236 u64 segment_size = rbd_obj_bytes(&rbd_dev->header);
1237
1238 return offset & (segment_size - 1);
1239 }
1240
1241 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1242 u64 offset, u64 length)
1243 {
1244 u64 segment_size = rbd_obj_bytes(&rbd_dev->header);
1245
1246 offset &= segment_size - 1;
1247
1248 rbd_assert(length <= U64_MAX - offset);
1249 if (offset + length > segment_size)
1250 length = segment_size - offset;
1251
1252 return length;
1253 }
1254
1255 /*
1256 * bio helpers
1257 */
1258
1259 static void bio_chain_put(struct bio *chain)
1260 {
1261 struct bio *tmp;
1262
1263 while (chain) {
1264 tmp = chain;
1265 chain = chain->bi_next;
1266 bio_put(tmp);
1267 }
1268 }
1269
1270 /*
1271 * zeros a bio chain, starting at specific offset
1272 */
1273 static void zero_bio_chain(struct bio *chain, int start_ofs)
1274 {
1275 struct bio_vec bv;
1276 struct bvec_iter iter;
1277 unsigned long flags;
1278 void *buf;
1279 int pos = 0;
1280
1281 while (chain) {
1282 bio_for_each_segment(bv, chain, iter) {
1283 if (pos + bv.bv_len > start_ofs) {
1284 int remainder = max(start_ofs - pos, 0);
1285 buf = bvec_kmap_irq(&bv, &flags);
1286 memset(buf + remainder, 0,
1287 bv.bv_len - remainder);
1288 flush_dcache_page(bv.bv_page);
1289 bvec_kunmap_irq(buf, &flags);
1290 }
1291 pos += bv.bv_len;
1292 }
1293
1294 chain = chain->bi_next;
1295 }
1296 }
1297
1298 /*
1299 * similar to zero_bio_chain(), zeros data defined by a page array,
1300 * starting at the given byte offset from the start of the array and
1301 * continuing up to the given end offset. The pages array is
1302 * assumed to be big enough to hold all bytes up to the end.
1303 */
1304 static void zero_pages(struct page **pages, u64 offset, u64 end)
1305 {
1306 struct page **page = &pages[offset >> PAGE_SHIFT];
1307
1308 rbd_assert(end > offset);
1309 rbd_assert(end - offset <= (u64)SIZE_MAX);
1310 while (offset < end) {
1311 size_t page_offset;
1312 size_t length;
1313 unsigned long flags;
1314 void *kaddr;
1315
1316 page_offset = offset & ~PAGE_MASK;
1317 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1318 local_irq_save(flags);
1319 kaddr = kmap_atomic(*page);
1320 memset(kaddr + page_offset, 0, length);
1321 flush_dcache_page(*page);
1322 kunmap_atomic(kaddr);
1323 local_irq_restore(flags);
1324
1325 offset += length;
1326 page++;
1327 }
1328 }
1329
1330 /*
1331 * Clone a portion of a bio, starting at the given byte offset
1332 * and continuing for the number of bytes indicated.
1333 */
1334 static struct bio *bio_clone_range(struct bio *bio_src,
1335 unsigned int offset,
1336 unsigned int len,
1337 gfp_t gfpmask)
1338 {
1339 struct bio *bio;
1340
1341 bio = bio_clone_fast(bio_src, gfpmask, rbd_bio_clone);
1342 if (!bio)
1343 return NULL; /* ENOMEM */
1344
1345 bio_advance(bio, offset);
1346 bio->bi_iter.bi_size = len;
1347
1348 return bio;
1349 }
1350
1351 /*
1352 * Clone a portion of a bio chain, starting at the given byte offset
1353 * into the first bio in the source chain and continuing for the
1354 * number of bytes indicated. The result is another bio chain of
1355 * exactly the given length, or a null pointer on error.
1356 *
1357 * The bio_src and offset parameters are both in-out. On entry they
1358 * refer to the first source bio and the offset into that bio where
1359 * the start of data to be cloned is located.
1360 *
1361 * On return, bio_src is updated to refer to the bio in the source
1362 * chain that contains first un-cloned byte, and *offset will
1363 * contain the offset of that byte within that bio.
1364 */
1365 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1366 unsigned int *offset,
1367 unsigned int len,
1368 gfp_t gfpmask)
1369 {
1370 struct bio *bi = *bio_src;
1371 unsigned int off = *offset;
1372 struct bio *chain = NULL;
1373 struct bio **end;
1374
1375 /* Build up a chain of clone bios up to the limit */
1376
1377 if (!bi || off >= bi->bi_iter.bi_size || !len)
1378 return NULL; /* Nothing to clone */
1379
1380 end = &chain;
1381 while (len) {
1382 unsigned int bi_size;
1383 struct bio *bio;
1384
1385 if (!bi) {
1386 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1387 goto out_err; /* EINVAL; ran out of bio's */
1388 }
1389 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1390 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1391 if (!bio)
1392 goto out_err; /* ENOMEM */
1393
1394 *end = bio;
1395 end = &bio->bi_next;
1396
1397 off += bi_size;
1398 if (off == bi->bi_iter.bi_size) {
1399 bi = bi->bi_next;
1400 off = 0;
1401 }
1402 len -= bi_size;
1403 }
1404 *bio_src = bi;
1405 *offset = off;
1406
1407 return chain;
1408 out_err:
1409 bio_chain_put(chain);
1410
1411 return NULL;
1412 }
1413
1414 /*
1415 * The default/initial value for all object request flags is 0. For
1416 * each flag, once its value is set to 1 it is never reset to 0
1417 * again.
1418 */
1419 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1420 {
1421 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1422 struct rbd_device *rbd_dev;
1423
1424 rbd_dev = obj_request->img_request->rbd_dev;
1425 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1426 obj_request);
1427 }
1428 }
1429
1430 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1431 {
1432 smp_mb();
1433 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1434 }
1435
1436 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1437 {
1438 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1439 struct rbd_device *rbd_dev = NULL;
1440
1441 if (obj_request_img_data_test(obj_request))
1442 rbd_dev = obj_request->img_request->rbd_dev;
1443 rbd_warn(rbd_dev, "obj_request %p already marked done",
1444 obj_request);
1445 }
1446 }
1447
1448 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1449 {
1450 smp_mb();
1451 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1452 }
1453
1454 /*
1455 * This sets the KNOWN flag after (possibly) setting the EXISTS
1456 * flag. The latter is set based on the "exists" value provided.
1457 *
1458 * Note that for our purposes once an object exists it never goes
1459 * away again. It's possible that the response from two existence
1460 * checks are separated by the creation of the target object, and
1461 * the first ("doesn't exist") response arrives *after* the second
1462 * ("does exist"). In that case we ignore the second one.
1463 */
1464 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1465 bool exists)
1466 {
1467 if (exists)
1468 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1469 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1470 smp_mb();
1471 }
1472
1473 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1474 {
1475 smp_mb();
1476 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1477 }
1478
1479 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1480 {
1481 smp_mb();
1482 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1483 }
1484
1485 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1486 {
1487 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1488
1489 return obj_request->img_offset <
1490 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1491 }
1492
1493 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1494 {
1495 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1496 kref_read(&obj_request->kref));
1497 kref_get(&obj_request->kref);
1498 }
1499
1500 static void rbd_obj_request_destroy(struct kref *kref);
1501 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1502 {
1503 rbd_assert(obj_request != NULL);
1504 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1505 kref_read(&obj_request->kref));
1506 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1507 }
1508
1509 static void rbd_img_request_get(struct rbd_img_request *img_request)
1510 {
1511 dout("%s: img %p (was %d)\n", __func__, img_request,
1512 kref_read(&img_request->kref));
1513 kref_get(&img_request->kref);
1514 }
1515
1516 static bool img_request_child_test(struct rbd_img_request *img_request);
1517 static void rbd_parent_request_destroy(struct kref *kref);
1518 static void rbd_img_request_destroy(struct kref *kref);
1519 static void rbd_img_request_put(struct rbd_img_request *img_request)
1520 {
1521 rbd_assert(img_request != NULL);
1522 dout("%s: img %p (was %d)\n", __func__, img_request,
1523 kref_read(&img_request->kref));
1524 if (img_request_child_test(img_request))
1525 kref_put(&img_request->kref, rbd_parent_request_destroy);
1526 else
1527 kref_put(&img_request->kref, rbd_img_request_destroy);
1528 }
1529
1530 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1531 struct rbd_obj_request *obj_request)
1532 {
1533 rbd_assert(obj_request->img_request == NULL);
1534
1535 /* Image request now owns object's original reference */
1536 obj_request->img_request = img_request;
1537 obj_request->which = img_request->obj_request_count;
1538 rbd_assert(!obj_request_img_data_test(obj_request));
1539 obj_request_img_data_set(obj_request);
1540 rbd_assert(obj_request->which != BAD_WHICH);
1541 img_request->obj_request_count++;
1542 list_add_tail(&obj_request->links, &img_request->obj_requests);
1543 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1544 obj_request->which);
1545 }
1546
1547 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1548 struct rbd_obj_request *obj_request)
1549 {
1550 rbd_assert(obj_request->which != BAD_WHICH);
1551
1552 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1553 obj_request->which);
1554 list_del(&obj_request->links);
1555 rbd_assert(img_request->obj_request_count > 0);
1556 img_request->obj_request_count--;
1557 rbd_assert(obj_request->which == img_request->obj_request_count);
1558 obj_request->which = BAD_WHICH;
1559 rbd_assert(obj_request_img_data_test(obj_request));
1560 rbd_assert(obj_request->img_request == img_request);
1561 obj_request->img_request = NULL;
1562 obj_request->callback = NULL;
1563 rbd_obj_request_put(obj_request);
1564 }
1565
1566 static bool obj_request_type_valid(enum obj_request_type type)
1567 {
1568 switch (type) {
1569 case OBJ_REQUEST_NODATA:
1570 case OBJ_REQUEST_BIO:
1571 case OBJ_REQUEST_PAGES:
1572 return true;
1573 default:
1574 return false;
1575 }
1576 }
1577
1578 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request);
1579
1580 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1581 {
1582 struct ceph_osd_request *osd_req = obj_request->osd_req;
1583
1584 dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1585 obj_request, obj_request->object_no, obj_request->offset,
1586 obj_request->length, osd_req);
1587 if (obj_request_img_data_test(obj_request)) {
1588 WARN_ON(obj_request->callback != rbd_img_obj_callback);
1589 rbd_img_request_get(obj_request->img_request);
1590 }
1591 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1592 }
1593
1594 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1595 {
1596
1597 dout("%s: img %p\n", __func__, img_request);
1598
1599 /*
1600 * If no error occurred, compute the aggregate transfer
1601 * count for the image request. We could instead use
1602 * atomic64_cmpxchg() to update it as each object request
1603 * completes; not clear which way is better off hand.
1604 */
1605 if (!img_request->result) {
1606 struct rbd_obj_request *obj_request;
1607 u64 xferred = 0;
1608
1609 for_each_obj_request(img_request, obj_request)
1610 xferred += obj_request->xferred;
1611 img_request->xferred = xferred;
1612 }
1613
1614 if (img_request->callback)
1615 img_request->callback(img_request);
1616 else
1617 rbd_img_request_put(img_request);
1618 }
1619
1620 /*
1621 * The default/initial value for all image request flags is 0. Each
1622 * is conditionally set to 1 at image request initialization time
1623 * and currently never change thereafter.
1624 */
1625 static void img_request_write_set(struct rbd_img_request *img_request)
1626 {
1627 set_bit(IMG_REQ_WRITE, &img_request->flags);
1628 smp_mb();
1629 }
1630
1631 static bool img_request_write_test(struct rbd_img_request *img_request)
1632 {
1633 smp_mb();
1634 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1635 }
1636
1637 /*
1638 * Set the discard flag when the img_request is an discard request
1639 */
1640 static void img_request_discard_set(struct rbd_img_request *img_request)
1641 {
1642 set_bit(IMG_REQ_DISCARD, &img_request->flags);
1643 smp_mb();
1644 }
1645
1646 static bool img_request_discard_test(struct rbd_img_request *img_request)
1647 {
1648 smp_mb();
1649 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1650 }
1651
1652 static void img_request_child_set(struct rbd_img_request *img_request)
1653 {
1654 set_bit(IMG_REQ_CHILD, &img_request->flags);
1655 smp_mb();
1656 }
1657
1658 static void img_request_child_clear(struct rbd_img_request *img_request)
1659 {
1660 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1661 smp_mb();
1662 }
1663
1664 static bool img_request_child_test(struct rbd_img_request *img_request)
1665 {
1666 smp_mb();
1667 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1668 }
1669
1670 static void img_request_layered_set(struct rbd_img_request *img_request)
1671 {
1672 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1673 smp_mb();
1674 }
1675
1676 static void img_request_layered_clear(struct rbd_img_request *img_request)
1677 {
1678 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1679 smp_mb();
1680 }
1681
1682 static bool img_request_layered_test(struct rbd_img_request *img_request)
1683 {
1684 smp_mb();
1685 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1686 }
1687
1688 static enum obj_operation_type
1689 rbd_img_request_op_type(struct rbd_img_request *img_request)
1690 {
1691 if (img_request_write_test(img_request))
1692 return OBJ_OP_WRITE;
1693 else if (img_request_discard_test(img_request))
1694 return OBJ_OP_DISCARD;
1695 else
1696 return OBJ_OP_READ;
1697 }
1698
1699 static void
1700 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1701 {
1702 u64 xferred = obj_request->xferred;
1703 u64 length = obj_request->length;
1704
1705 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1706 obj_request, obj_request->img_request, obj_request->result,
1707 xferred, length);
1708 /*
1709 * ENOENT means a hole in the image. We zero-fill the entire
1710 * length of the request. A short read also implies zero-fill
1711 * to the end of the request. An error requires the whole
1712 * length of the request to be reported finished with an error
1713 * to the block layer. In each case we update the xferred
1714 * count to indicate the whole request was satisfied.
1715 */
1716 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1717 if (obj_request->result == -ENOENT) {
1718 if (obj_request->type == OBJ_REQUEST_BIO)
1719 zero_bio_chain(obj_request->bio_list, 0);
1720 else
1721 zero_pages(obj_request->pages, 0, length);
1722 obj_request->result = 0;
1723 } else if (xferred < length && !obj_request->result) {
1724 if (obj_request->type == OBJ_REQUEST_BIO)
1725 zero_bio_chain(obj_request->bio_list, xferred);
1726 else
1727 zero_pages(obj_request->pages, xferred, length);
1728 }
1729 obj_request->xferred = length;
1730 obj_request_done_set(obj_request);
1731 }
1732
1733 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1734 {
1735 dout("%s: obj %p cb %p\n", __func__, obj_request,
1736 obj_request->callback);
1737 if (obj_request->callback)
1738 obj_request->callback(obj_request);
1739 else
1740 complete_all(&obj_request->completion);
1741 }
1742
1743 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err)
1744 {
1745 obj_request->result = err;
1746 obj_request->xferred = 0;
1747 /*
1748 * kludge - mirror rbd_obj_request_submit() to match a put in
1749 * rbd_img_obj_callback()
1750 */
1751 if (obj_request_img_data_test(obj_request)) {
1752 WARN_ON(obj_request->callback != rbd_img_obj_callback);
1753 rbd_img_request_get(obj_request->img_request);
1754 }
1755 obj_request_done_set(obj_request);
1756 rbd_obj_request_complete(obj_request);
1757 }
1758
1759 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1760 {
1761 struct rbd_img_request *img_request = NULL;
1762 struct rbd_device *rbd_dev = NULL;
1763 bool layered = false;
1764
1765 if (obj_request_img_data_test(obj_request)) {
1766 img_request = obj_request->img_request;
1767 layered = img_request && img_request_layered_test(img_request);
1768 rbd_dev = img_request->rbd_dev;
1769 }
1770
1771 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1772 obj_request, img_request, obj_request->result,
1773 obj_request->xferred, obj_request->length);
1774 if (layered && obj_request->result == -ENOENT &&
1775 obj_request->img_offset < rbd_dev->parent_overlap)
1776 rbd_img_parent_read(obj_request);
1777 else if (img_request)
1778 rbd_img_obj_request_read_callback(obj_request);
1779 else
1780 obj_request_done_set(obj_request);
1781 }
1782
1783 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1784 {
1785 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1786 obj_request->result, obj_request->length);
1787 /*
1788 * There is no such thing as a successful short write. Set
1789 * it to our originally-requested length.
1790 */
1791 obj_request->xferred = obj_request->length;
1792 obj_request_done_set(obj_request);
1793 }
1794
1795 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1796 {
1797 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1798 obj_request->result, obj_request->length);
1799 /*
1800 * There is no such thing as a successful short discard. Set
1801 * it to our originally-requested length.
1802 */
1803 obj_request->xferred = obj_request->length;
1804 /* discarding a non-existent object is not a problem */
1805 if (obj_request->result == -ENOENT)
1806 obj_request->result = 0;
1807 obj_request_done_set(obj_request);
1808 }
1809
1810 /*
1811 * For a simple stat call there's nothing to do. We'll do more if
1812 * this is part of a write sequence for a layered image.
1813 */
1814 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1815 {
1816 dout("%s: obj %p\n", __func__, obj_request);
1817 obj_request_done_set(obj_request);
1818 }
1819
1820 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1821 {
1822 dout("%s: obj %p\n", __func__, obj_request);
1823
1824 if (obj_request_img_data_test(obj_request))
1825 rbd_osd_copyup_callback(obj_request);
1826 else
1827 obj_request_done_set(obj_request);
1828 }
1829
1830 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1831 {
1832 struct rbd_obj_request *obj_request = osd_req->r_priv;
1833 u16 opcode;
1834
1835 dout("%s: osd_req %p\n", __func__, osd_req);
1836 rbd_assert(osd_req == obj_request->osd_req);
1837 if (obj_request_img_data_test(obj_request)) {
1838 rbd_assert(obj_request->img_request);
1839 rbd_assert(obj_request->which != BAD_WHICH);
1840 } else {
1841 rbd_assert(obj_request->which == BAD_WHICH);
1842 }
1843
1844 if (osd_req->r_result < 0)
1845 obj_request->result = osd_req->r_result;
1846
1847 /*
1848 * We support a 64-bit length, but ultimately it has to be
1849 * passed to the block layer, which just supports a 32-bit
1850 * length field.
1851 */
1852 obj_request->xferred = osd_req->r_ops[0].outdata_len;
1853 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1854
1855 opcode = osd_req->r_ops[0].op;
1856 switch (opcode) {
1857 case CEPH_OSD_OP_READ:
1858 rbd_osd_read_callback(obj_request);
1859 break;
1860 case CEPH_OSD_OP_SETALLOCHINT:
1861 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1862 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1863 /* fall through */
1864 case CEPH_OSD_OP_WRITE:
1865 case CEPH_OSD_OP_WRITEFULL:
1866 rbd_osd_write_callback(obj_request);
1867 break;
1868 case CEPH_OSD_OP_STAT:
1869 rbd_osd_stat_callback(obj_request);
1870 break;
1871 case CEPH_OSD_OP_DELETE:
1872 case CEPH_OSD_OP_TRUNCATE:
1873 case CEPH_OSD_OP_ZERO:
1874 rbd_osd_discard_callback(obj_request);
1875 break;
1876 case CEPH_OSD_OP_CALL:
1877 rbd_osd_call_callback(obj_request);
1878 break;
1879 default:
1880 rbd_warn(NULL, "unexpected OSD op: object_no %016llx opcode %d",
1881 obj_request->object_no, opcode);
1882 break;
1883 }
1884
1885 if (obj_request_done_test(obj_request))
1886 rbd_obj_request_complete(obj_request);
1887 }
1888
1889 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1890 {
1891 struct ceph_osd_request *osd_req = obj_request->osd_req;
1892
1893 rbd_assert(obj_request_img_data_test(obj_request));
1894 osd_req->r_snapid = obj_request->img_request->snap_id;
1895 }
1896
1897 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1898 {
1899 struct ceph_osd_request *osd_req = obj_request->osd_req;
1900
1901 ktime_get_real_ts(&osd_req->r_mtime);
1902 osd_req->r_data_offset = obj_request->offset;
1903 }
1904
1905 static struct ceph_osd_request *
1906 __rbd_osd_req_create(struct rbd_device *rbd_dev,
1907 struct ceph_snap_context *snapc,
1908 int num_ops, unsigned int flags,
1909 struct rbd_obj_request *obj_request)
1910 {
1911 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1912 struct ceph_osd_request *req;
1913 const char *name_format = rbd_dev->image_format == 1 ?
1914 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1915
1916 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1917 if (!req)
1918 return NULL;
1919
1920 req->r_flags = flags;
1921 req->r_callback = rbd_osd_req_callback;
1922 req->r_priv = obj_request;
1923
1924 req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1925 if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1926 rbd_dev->header.object_prefix, obj_request->object_no))
1927 goto err_req;
1928
1929 if (ceph_osdc_alloc_messages(req, GFP_NOIO))
1930 goto err_req;
1931
1932 return req;
1933
1934 err_req:
1935 ceph_osdc_put_request(req);
1936 return NULL;
1937 }
1938
1939 /*
1940 * Create an osd request. A read request has one osd op (read).
1941 * A write request has either one (watch) or two (hint+write) osd ops.
1942 * (All rbd data writes are prefixed with an allocation hint op, but
1943 * technically osd watch is a write request, hence this distinction.)
1944 */
1945 static struct ceph_osd_request *rbd_osd_req_create(
1946 struct rbd_device *rbd_dev,
1947 enum obj_operation_type op_type,
1948 unsigned int num_ops,
1949 struct rbd_obj_request *obj_request)
1950 {
1951 struct ceph_snap_context *snapc = NULL;
1952
1953 if (obj_request_img_data_test(obj_request) &&
1954 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1955 struct rbd_img_request *img_request = obj_request->img_request;
1956 if (op_type == OBJ_OP_WRITE) {
1957 rbd_assert(img_request_write_test(img_request));
1958 } else {
1959 rbd_assert(img_request_discard_test(img_request));
1960 }
1961 snapc = img_request->snapc;
1962 }
1963
1964 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1965
1966 return __rbd_osd_req_create(rbd_dev, snapc, num_ops,
1967 (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) ?
1968 CEPH_OSD_FLAG_WRITE : CEPH_OSD_FLAG_READ, obj_request);
1969 }
1970
1971 /*
1972 * Create a copyup osd request based on the information in the object
1973 * request supplied. A copyup request has two or three osd ops, a
1974 * copyup method call, potentially a hint op, and a write or truncate
1975 * or zero op.
1976 */
1977 static struct ceph_osd_request *
1978 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1979 {
1980 struct rbd_img_request *img_request;
1981 int num_osd_ops = 3;
1982
1983 rbd_assert(obj_request_img_data_test(obj_request));
1984 img_request = obj_request->img_request;
1985 rbd_assert(img_request);
1986 rbd_assert(img_request_write_test(img_request) ||
1987 img_request_discard_test(img_request));
1988
1989 if (img_request_discard_test(img_request))
1990 num_osd_ops = 2;
1991
1992 return __rbd_osd_req_create(img_request->rbd_dev,
1993 img_request->snapc, num_osd_ops,
1994 CEPH_OSD_FLAG_WRITE, obj_request);
1995 }
1996
1997 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1998 {
1999 ceph_osdc_put_request(osd_req);
2000 }
2001
2002 static struct rbd_obj_request *
2003 rbd_obj_request_create(enum obj_request_type type)
2004 {
2005 struct rbd_obj_request *obj_request;
2006
2007 rbd_assert(obj_request_type_valid(type));
2008
2009 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2010 if (!obj_request)
2011 return NULL;
2012
2013 obj_request->which = BAD_WHICH;
2014 obj_request->type = type;
2015 INIT_LIST_HEAD(&obj_request->links);
2016 init_completion(&obj_request->completion);
2017 kref_init(&obj_request->kref);
2018
2019 dout("%s %p\n", __func__, obj_request);
2020 return obj_request;
2021 }
2022
2023 static void rbd_obj_request_destroy(struct kref *kref)
2024 {
2025 struct rbd_obj_request *obj_request;
2026
2027 obj_request = container_of(kref, struct rbd_obj_request, kref);
2028
2029 dout("%s: obj %p\n", __func__, obj_request);
2030
2031 rbd_assert(obj_request->img_request == NULL);
2032 rbd_assert(obj_request->which == BAD_WHICH);
2033
2034 if (obj_request->osd_req)
2035 rbd_osd_req_destroy(obj_request->osd_req);
2036
2037 rbd_assert(obj_request_type_valid(obj_request->type));
2038 switch (obj_request->type) {
2039 case OBJ_REQUEST_NODATA:
2040 break; /* Nothing to do */
2041 case OBJ_REQUEST_BIO:
2042 if (obj_request->bio_list)
2043 bio_chain_put(obj_request->bio_list);
2044 break;
2045 case OBJ_REQUEST_PAGES:
2046 /* img_data requests don't own their page array */
2047 if (obj_request->pages &&
2048 !obj_request_img_data_test(obj_request))
2049 ceph_release_page_vector(obj_request->pages,
2050 obj_request->page_count);
2051 break;
2052 }
2053
2054 kmem_cache_free(rbd_obj_request_cache, obj_request);
2055 }
2056
2057 /* It's OK to call this for a device with no parent */
2058
2059 static void rbd_spec_put(struct rbd_spec *spec);
2060 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2061 {
2062 rbd_dev_remove_parent(rbd_dev);
2063 rbd_spec_put(rbd_dev->parent_spec);
2064 rbd_dev->parent_spec = NULL;
2065 rbd_dev->parent_overlap = 0;
2066 }
2067
2068 /*
2069 * Parent image reference counting is used to determine when an
2070 * image's parent fields can be safely torn down--after there are no
2071 * more in-flight requests to the parent image. When the last
2072 * reference is dropped, cleaning them up is safe.
2073 */
2074 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2075 {
2076 int counter;
2077
2078 if (!rbd_dev->parent_spec)
2079 return;
2080
2081 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2082 if (counter > 0)
2083 return;
2084
2085 /* Last reference; clean up parent data structures */
2086
2087 if (!counter)
2088 rbd_dev_unparent(rbd_dev);
2089 else
2090 rbd_warn(rbd_dev, "parent reference underflow");
2091 }
2092
2093 /*
2094 * If an image has a non-zero parent overlap, get a reference to its
2095 * parent.
2096 *
2097 * Returns true if the rbd device has a parent with a non-zero
2098 * overlap and a reference for it was successfully taken, or
2099 * false otherwise.
2100 */
2101 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2102 {
2103 int counter = 0;
2104
2105 if (!rbd_dev->parent_spec)
2106 return false;
2107
2108 down_read(&rbd_dev->header_rwsem);
2109 if (rbd_dev->parent_overlap)
2110 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2111 up_read(&rbd_dev->header_rwsem);
2112
2113 if (counter < 0)
2114 rbd_warn(rbd_dev, "parent reference overflow");
2115
2116 return counter > 0;
2117 }
2118
2119 /*
2120 * Caller is responsible for filling in the list of object requests
2121 * that comprises the image request, and the Linux request pointer
2122 * (if there is one).
2123 */
2124 static struct rbd_img_request *rbd_img_request_create(
2125 struct rbd_device *rbd_dev,
2126 u64 offset, u64 length,
2127 enum obj_operation_type op_type,
2128 struct ceph_snap_context *snapc)
2129 {
2130 struct rbd_img_request *img_request;
2131
2132 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2133 if (!img_request)
2134 return NULL;
2135
2136 img_request->rq = NULL;
2137 img_request->rbd_dev = rbd_dev;
2138 img_request->offset = offset;
2139 img_request->length = length;
2140 img_request->flags = 0;
2141 if (op_type == OBJ_OP_DISCARD) {
2142 img_request_discard_set(img_request);
2143 img_request->snapc = snapc;
2144 } else if (op_type == OBJ_OP_WRITE) {
2145 img_request_write_set(img_request);
2146 img_request->snapc = snapc;
2147 } else {
2148 img_request->snap_id = rbd_dev->spec->snap_id;
2149 }
2150 if (rbd_dev_parent_get(rbd_dev))
2151 img_request_layered_set(img_request);
2152 spin_lock_init(&img_request->completion_lock);
2153 img_request->next_completion = 0;
2154 img_request->callback = NULL;
2155 img_request->result = 0;
2156 img_request->obj_request_count = 0;
2157 INIT_LIST_HEAD(&img_request->obj_requests);
2158 kref_init(&img_request->kref);
2159
2160 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2161 obj_op_name(op_type), offset, length, img_request);
2162
2163 return img_request;
2164 }
2165
2166 static void rbd_img_request_destroy(struct kref *kref)
2167 {
2168 struct rbd_img_request *img_request;
2169 struct rbd_obj_request *obj_request;
2170 struct rbd_obj_request *next_obj_request;
2171
2172 img_request = container_of(kref, struct rbd_img_request, kref);
2173
2174 dout("%s: img %p\n", __func__, img_request);
2175
2176 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2177 rbd_img_obj_request_del(img_request, obj_request);
2178 rbd_assert(img_request->obj_request_count == 0);
2179
2180 if (img_request_layered_test(img_request)) {
2181 img_request_layered_clear(img_request);
2182 rbd_dev_parent_put(img_request->rbd_dev);
2183 }
2184
2185 if (img_request_write_test(img_request) ||
2186 img_request_discard_test(img_request))
2187 ceph_put_snap_context(img_request->snapc);
2188
2189 kmem_cache_free(rbd_img_request_cache, img_request);
2190 }
2191
2192 static struct rbd_img_request *rbd_parent_request_create(
2193 struct rbd_obj_request *obj_request,
2194 u64 img_offset, u64 length)
2195 {
2196 struct rbd_img_request *parent_request;
2197 struct rbd_device *rbd_dev;
2198
2199 rbd_assert(obj_request->img_request);
2200 rbd_dev = obj_request->img_request->rbd_dev;
2201
2202 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2203 length, OBJ_OP_READ, NULL);
2204 if (!parent_request)
2205 return NULL;
2206
2207 img_request_child_set(parent_request);
2208 rbd_obj_request_get(obj_request);
2209 parent_request->obj_request = obj_request;
2210
2211 return parent_request;
2212 }
2213
2214 static void rbd_parent_request_destroy(struct kref *kref)
2215 {
2216 struct rbd_img_request *parent_request;
2217 struct rbd_obj_request *orig_request;
2218
2219 parent_request = container_of(kref, struct rbd_img_request, kref);
2220 orig_request = parent_request->obj_request;
2221
2222 parent_request->obj_request = NULL;
2223 rbd_obj_request_put(orig_request);
2224 img_request_child_clear(parent_request);
2225
2226 rbd_img_request_destroy(kref);
2227 }
2228
2229 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2230 {
2231 struct rbd_img_request *img_request;
2232 unsigned int xferred;
2233 int result;
2234 bool more;
2235
2236 rbd_assert(obj_request_img_data_test(obj_request));
2237 img_request = obj_request->img_request;
2238
2239 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2240 xferred = (unsigned int)obj_request->xferred;
2241 result = obj_request->result;
2242 if (result) {
2243 struct rbd_device *rbd_dev = img_request->rbd_dev;
2244 enum obj_operation_type op_type;
2245
2246 if (img_request_discard_test(img_request))
2247 op_type = OBJ_OP_DISCARD;
2248 else if (img_request_write_test(img_request))
2249 op_type = OBJ_OP_WRITE;
2250 else
2251 op_type = OBJ_OP_READ;
2252
2253 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2254 obj_op_name(op_type), obj_request->length,
2255 obj_request->img_offset, obj_request->offset);
2256 rbd_warn(rbd_dev, " result %d xferred %x",
2257 result, xferred);
2258 if (!img_request->result)
2259 img_request->result = result;
2260 /*
2261 * Need to end I/O on the entire obj_request worth of
2262 * bytes in case of error.
2263 */
2264 xferred = obj_request->length;
2265 }
2266
2267 if (img_request_child_test(img_request)) {
2268 rbd_assert(img_request->obj_request != NULL);
2269 more = obj_request->which < img_request->obj_request_count - 1;
2270 } else {
2271 blk_status_t status = errno_to_blk_status(result);
2272
2273 rbd_assert(img_request->rq != NULL);
2274
2275 more = blk_update_request(img_request->rq, status, xferred);
2276 if (!more)
2277 __blk_mq_end_request(img_request->rq, status);
2278 }
2279
2280 return more;
2281 }
2282
2283 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2284 {
2285 struct rbd_img_request *img_request;
2286 u32 which = obj_request->which;
2287 bool more = true;
2288
2289 rbd_assert(obj_request_img_data_test(obj_request));
2290 img_request = obj_request->img_request;
2291
2292 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2293 rbd_assert(img_request != NULL);
2294 rbd_assert(img_request->obj_request_count > 0);
2295 rbd_assert(which != BAD_WHICH);
2296 rbd_assert(which < img_request->obj_request_count);
2297
2298 spin_lock_irq(&img_request->completion_lock);
2299 if (which != img_request->next_completion)
2300 goto out;
2301
2302 for_each_obj_request_from(img_request, obj_request) {
2303 rbd_assert(more);
2304 rbd_assert(which < img_request->obj_request_count);
2305
2306 if (!obj_request_done_test(obj_request))
2307 break;
2308 more = rbd_img_obj_end_request(obj_request);
2309 which++;
2310 }
2311
2312 rbd_assert(more ^ (which == img_request->obj_request_count));
2313 img_request->next_completion = which;
2314 out:
2315 spin_unlock_irq(&img_request->completion_lock);
2316 rbd_img_request_put(img_request);
2317
2318 if (!more)
2319 rbd_img_request_complete(img_request);
2320 }
2321
2322 /*
2323 * Add individual osd ops to the given ceph_osd_request and prepare
2324 * them for submission. num_ops is the current number of
2325 * osd operations already to the object request.
2326 */
2327 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2328 struct ceph_osd_request *osd_request,
2329 enum obj_operation_type op_type,
2330 unsigned int num_ops)
2331 {
2332 struct rbd_img_request *img_request = obj_request->img_request;
2333 struct rbd_device *rbd_dev = img_request->rbd_dev;
2334 u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2335 u64 offset = obj_request->offset;
2336 u64 length = obj_request->length;
2337 u64 img_end;
2338 u16 opcode;
2339
2340 if (op_type == OBJ_OP_DISCARD) {
2341 if (!offset && length == object_size &&
2342 (!img_request_layered_test(img_request) ||
2343 !obj_request_overlaps_parent(obj_request))) {
2344 opcode = CEPH_OSD_OP_DELETE;
2345 } else if ((offset + length == object_size)) {
2346 opcode = CEPH_OSD_OP_TRUNCATE;
2347 } else {
2348 down_read(&rbd_dev->header_rwsem);
2349 img_end = rbd_dev->header.image_size;
2350 up_read(&rbd_dev->header_rwsem);
2351
2352 if (obj_request->img_offset + length == img_end)
2353 opcode = CEPH_OSD_OP_TRUNCATE;
2354 else
2355 opcode = CEPH_OSD_OP_ZERO;
2356 }
2357 } else if (op_type == OBJ_OP_WRITE) {
2358 if (!offset && length == object_size)
2359 opcode = CEPH_OSD_OP_WRITEFULL;
2360 else
2361 opcode = CEPH_OSD_OP_WRITE;
2362 osd_req_op_alloc_hint_init(osd_request, num_ops,
2363 object_size, object_size);
2364 num_ops++;
2365 } else {
2366 opcode = CEPH_OSD_OP_READ;
2367 }
2368
2369 if (opcode == CEPH_OSD_OP_DELETE)
2370 osd_req_op_init(osd_request, num_ops, opcode, 0);
2371 else
2372 osd_req_op_extent_init(osd_request, num_ops, opcode,
2373 offset, length, 0, 0);
2374
2375 if (obj_request->type == OBJ_REQUEST_BIO)
2376 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2377 obj_request->bio_list, length);
2378 else if (obj_request->type == OBJ_REQUEST_PAGES)
2379 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2380 obj_request->pages, length,
2381 offset & ~PAGE_MASK, false, false);
2382
2383 /* Discards are also writes */
2384 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2385 rbd_osd_req_format_write(obj_request);
2386 else
2387 rbd_osd_req_format_read(obj_request);
2388 }
2389
2390 /*
2391 * Split up an image request into one or more object requests, each
2392 * to a different object. The "type" parameter indicates whether
2393 * "data_desc" is the pointer to the head of a list of bio
2394 * structures, or the base of a page array. In either case this
2395 * function assumes data_desc describes memory sufficient to hold
2396 * all data described by the image request.
2397 */
2398 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2399 enum obj_request_type type,
2400 void *data_desc)
2401 {
2402 struct rbd_device *rbd_dev = img_request->rbd_dev;
2403 struct rbd_obj_request *obj_request = NULL;
2404 struct rbd_obj_request *next_obj_request;
2405 struct bio *bio_list = NULL;
2406 unsigned int bio_offset = 0;
2407 struct page **pages = NULL;
2408 enum obj_operation_type op_type;
2409 u64 img_offset;
2410 u64 resid;
2411
2412 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2413 (int)type, data_desc);
2414
2415 img_offset = img_request->offset;
2416 resid = img_request->length;
2417 rbd_assert(resid > 0);
2418 op_type = rbd_img_request_op_type(img_request);
2419
2420 if (type == OBJ_REQUEST_BIO) {
2421 bio_list = data_desc;
2422 rbd_assert(img_offset ==
2423 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2424 } else if (type == OBJ_REQUEST_PAGES) {
2425 pages = data_desc;
2426 }
2427
2428 while (resid) {
2429 struct ceph_osd_request *osd_req;
2430 u64 object_no = img_offset >> rbd_dev->header.obj_order;
2431 u64 offset = rbd_segment_offset(rbd_dev, img_offset);
2432 u64 length = rbd_segment_length(rbd_dev, img_offset, resid);
2433
2434 obj_request = rbd_obj_request_create(type);
2435 if (!obj_request)
2436 goto out_unwind;
2437
2438 obj_request->object_no = object_no;
2439 obj_request->offset = offset;
2440 obj_request->length = length;
2441
2442 /*
2443 * set obj_request->img_request before creating the
2444 * osd_request so that it gets the right snapc
2445 */
2446 rbd_img_obj_request_add(img_request, obj_request);
2447
2448 if (type == OBJ_REQUEST_BIO) {
2449 unsigned int clone_size;
2450
2451 rbd_assert(length <= (u64)UINT_MAX);
2452 clone_size = (unsigned int)length;
2453 obj_request->bio_list =
2454 bio_chain_clone_range(&bio_list,
2455 &bio_offset,
2456 clone_size,
2457 GFP_NOIO);
2458 if (!obj_request->bio_list)
2459 goto out_unwind;
2460 } else if (type == OBJ_REQUEST_PAGES) {
2461 unsigned int page_count;
2462
2463 obj_request->pages = pages;
2464 page_count = (u32)calc_pages_for(offset, length);
2465 obj_request->page_count = page_count;
2466 if ((offset + length) & ~PAGE_MASK)
2467 page_count--; /* more on last page */
2468 pages += page_count;
2469 }
2470
2471 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2472 (op_type == OBJ_OP_WRITE) ? 2 : 1,
2473 obj_request);
2474 if (!osd_req)
2475 goto out_unwind;
2476
2477 obj_request->osd_req = osd_req;
2478 obj_request->callback = rbd_img_obj_callback;
2479 obj_request->img_offset = img_offset;
2480
2481 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2482
2483 img_offset += length;
2484 resid -= length;
2485 }
2486
2487 return 0;
2488
2489 out_unwind:
2490 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2491 rbd_img_obj_request_del(img_request, obj_request);
2492
2493 return -ENOMEM;
2494 }
2495
2496 static void
2497 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2498 {
2499 struct rbd_img_request *img_request;
2500 struct rbd_device *rbd_dev;
2501 struct page **pages;
2502 u32 page_count;
2503
2504 dout("%s: obj %p\n", __func__, obj_request);
2505
2506 rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2507 obj_request->type == OBJ_REQUEST_NODATA);
2508 rbd_assert(obj_request_img_data_test(obj_request));
2509 img_request = obj_request->img_request;
2510 rbd_assert(img_request);
2511
2512 rbd_dev = img_request->rbd_dev;
2513 rbd_assert(rbd_dev);
2514
2515 pages = obj_request->copyup_pages;
2516 rbd_assert(pages != NULL);
2517 obj_request->copyup_pages = NULL;
2518 page_count = obj_request->copyup_page_count;
2519 rbd_assert(page_count);
2520 obj_request->copyup_page_count = 0;
2521 ceph_release_page_vector(pages, page_count);
2522
2523 /*
2524 * We want the transfer count to reflect the size of the
2525 * original write request. There is no such thing as a
2526 * successful short write, so if the request was successful
2527 * we can just set it to the originally-requested length.
2528 */
2529 if (!obj_request->result)
2530 obj_request->xferred = obj_request->length;
2531
2532 obj_request_done_set(obj_request);
2533 }
2534
2535 static void
2536 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2537 {
2538 struct rbd_obj_request *orig_request;
2539 struct ceph_osd_request *osd_req;
2540 struct rbd_device *rbd_dev;
2541 struct page **pages;
2542 enum obj_operation_type op_type;
2543 u32 page_count;
2544 int img_result;
2545 u64 parent_length;
2546
2547 rbd_assert(img_request_child_test(img_request));
2548
2549 /* First get what we need from the image request */
2550
2551 pages = img_request->copyup_pages;
2552 rbd_assert(pages != NULL);
2553 img_request->copyup_pages = NULL;
2554 page_count = img_request->copyup_page_count;
2555 rbd_assert(page_count);
2556 img_request->copyup_page_count = 0;
2557
2558 orig_request = img_request->obj_request;
2559 rbd_assert(orig_request != NULL);
2560 rbd_assert(obj_request_type_valid(orig_request->type));
2561 img_result = img_request->result;
2562 parent_length = img_request->length;
2563 rbd_assert(img_result || parent_length == img_request->xferred);
2564 rbd_img_request_put(img_request);
2565
2566 rbd_assert(orig_request->img_request);
2567 rbd_dev = orig_request->img_request->rbd_dev;
2568 rbd_assert(rbd_dev);
2569
2570 /*
2571 * If the overlap has become 0 (most likely because the
2572 * image has been flattened) we need to free the pages
2573 * and re-submit the original write request.
2574 */
2575 if (!rbd_dev->parent_overlap) {
2576 ceph_release_page_vector(pages, page_count);
2577 rbd_obj_request_submit(orig_request);
2578 return;
2579 }
2580
2581 if (img_result)
2582 goto out_err;
2583
2584 /*
2585 * The original osd request is of no use to use any more.
2586 * We need a new one that can hold the three ops in a copyup
2587 * request. Allocate the new copyup osd request for the
2588 * original request, and release the old one.
2589 */
2590 img_result = -ENOMEM;
2591 osd_req = rbd_osd_req_create_copyup(orig_request);
2592 if (!osd_req)
2593 goto out_err;
2594 rbd_osd_req_destroy(orig_request->osd_req);
2595 orig_request->osd_req = osd_req;
2596 orig_request->copyup_pages = pages;
2597 orig_request->copyup_page_count = page_count;
2598
2599 /* Initialize the copyup op */
2600
2601 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2602 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2603 false, false);
2604
2605 /* Add the other op(s) */
2606
2607 op_type = rbd_img_request_op_type(orig_request->img_request);
2608 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2609
2610 /* All set, send it off. */
2611
2612 rbd_obj_request_submit(orig_request);
2613 return;
2614
2615 out_err:
2616 ceph_release_page_vector(pages, page_count);
2617 rbd_obj_request_error(orig_request, img_result);
2618 }
2619
2620 /*
2621 * Read from the parent image the range of data that covers the
2622 * entire target of the given object request. This is used for
2623 * satisfying a layered image write request when the target of an
2624 * object request from the image request does not exist.
2625 *
2626 * A page array big enough to hold the returned data is allocated
2627 * and supplied to rbd_img_request_fill() as the "data descriptor."
2628 * When the read completes, this page array will be transferred to
2629 * the original object request for the copyup operation.
2630 *
2631 * If an error occurs, it is recorded as the result of the original
2632 * object request in rbd_img_obj_exists_callback().
2633 */
2634 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2635 {
2636 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2637 struct rbd_img_request *parent_request = NULL;
2638 u64 img_offset;
2639 u64 length;
2640 struct page **pages = NULL;
2641 u32 page_count;
2642 int result;
2643
2644 rbd_assert(rbd_dev->parent != NULL);
2645
2646 /*
2647 * Determine the byte range covered by the object in the
2648 * child image to which the original request was to be sent.
2649 */
2650 img_offset = obj_request->img_offset - obj_request->offset;
2651 length = rbd_obj_bytes(&rbd_dev->header);
2652
2653 /*
2654 * There is no defined parent data beyond the parent
2655 * overlap, so limit what we read at that boundary if
2656 * necessary.
2657 */
2658 if (img_offset + length > rbd_dev->parent_overlap) {
2659 rbd_assert(img_offset < rbd_dev->parent_overlap);
2660 length = rbd_dev->parent_overlap - img_offset;
2661 }
2662
2663 /*
2664 * Allocate a page array big enough to receive the data read
2665 * from the parent.
2666 */
2667 page_count = (u32)calc_pages_for(0, length);
2668 pages = ceph_alloc_page_vector(page_count, GFP_NOIO);
2669 if (IS_ERR(pages)) {
2670 result = PTR_ERR(pages);
2671 pages = NULL;
2672 goto out_err;
2673 }
2674
2675 result = -ENOMEM;
2676 parent_request = rbd_parent_request_create(obj_request,
2677 img_offset, length);
2678 if (!parent_request)
2679 goto out_err;
2680
2681 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2682 if (result)
2683 goto out_err;
2684
2685 parent_request->copyup_pages = pages;
2686 parent_request->copyup_page_count = page_count;
2687 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2688
2689 result = rbd_img_request_submit(parent_request);
2690 if (!result)
2691 return 0;
2692
2693 parent_request->copyup_pages = NULL;
2694 parent_request->copyup_page_count = 0;
2695 parent_request->obj_request = NULL;
2696 rbd_obj_request_put(obj_request);
2697 out_err:
2698 if (pages)
2699 ceph_release_page_vector(pages, page_count);
2700 if (parent_request)
2701 rbd_img_request_put(parent_request);
2702 return result;
2703 }
2704
2705 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2706 {
2707 struct rbd_obj_request *orig_request;
2708 struct rbd_device *rbd_dev;
2709 int result;
2710
2711 rbd_assert(!obj_request_img_data_test(obj_request));
2712
2713 /*
2714 * All we need from the object request is the original
2715 * request and the result of the STAT op. Grab those, then
2716 * we're done with the request.
2717 */
2718 orig_request = obj_request->obj_request;
2719 obj_request->obj_request = NULL;
2720 rbd_obj_request_put(orig_request);
2721 rbd_assert(orig_request);
2722 rbd_assert(orig_request->img_request);
2723
2724 result = obj_request->result;
2725 obj_request->result = 0;
2726
2727 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2728 obj_request, orig_request, result,
2729 obj_request->xferred, obj_request->length);
2730 rbd_obj_request_put(obj_request);
2731
2732 /*
2733 * If the overlap has become 0 (most likely because the
2734 * image has been flattened) we need to re-submit the
2735 * original request.
2736 */
2737 rbd_dev = orig_request->img_request->rbd_dev;
2738 if (!rbd_dev->parent_overlap) {
2739 rbd_obj_request_submit(orig_request);
2740 return;
2741 }
2742
2743 /*
2744 * Our only purpose here is to determine whether the object
2745 * exists, and we don't want to treat the non-existence as
2746 * an error. If something else comes back, transfer the
2747 * error to the original request and complete it now.
2748 */
2749 if (!result) {
2750 obj_request_existence_set(orig_request, true);
2751 } else if (result == -ENOENT) {
2752 obj_request_existence_set(orig_request, false);
2753 } else {
2754 goto fail_orig_request;
2755 }
2756
2757 /*
2758 * Resubmit the original request now that we have recorded
2759 * whether the target object exists.
2760 */
2761 result = rbd_img_obj_request_submit(orig_request);
2762 if (result)
2763 goto fail_orig_request;
2764
2765 return;
2766
2767 fail_orig_request:
2768 rbd_obj_request_error(orig_request, result);
2769 }
2770
2771 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2772 {
2773 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2774 struct rbd_obj_request *stat_request;
2775 struct page **pages;
2776 u32 page_count;
2777 size_t size;
2778 int ret;
2779
2780 stat_request = rbd_obj_request_create(OBJ_REQUEST_PAGES);
2781 if (!stat_request)
2782 return -ENOMEM;
2783
2784 stat_request->object_no = obj_request->object_no;
2785
2786 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2787 stat_request);
2788 if (!stat_request->osd_req) {
2789 ret = -ENOMEM;
2790 goto fail_stat_request;
2791 }
2792
2793 /*
2794 * The response data for a STAT call consists of:
2795 * le64 length;
2796 * struct {
2797 * le32 tv_sec;
2798 * le32 tv_nsec;
2799 * } mtime;
2800 */
2801 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2802 page_count = (u32)calc_pages_for(0, size);
2803 pages = ceph_alloc_page_vector(page_count, GFP_NOIO);
2804 if (IS_ERR(pages)) {
2805 ret = PTR_ERR(pages);
2806 goto fail_stat_request;
2807 }
2808
2809 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2810 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2811 false, false);
2812
2813 rbd_obj_request_get(obj_request);
2814 stat_request->obj_request = obj_request;
2815 stat_request->pages = pages;
2816 stat_request->page_count = page_count;
2817 stat_request->callback = rbd_img_obj_exists_callback;
2818
2819 rbd_obj_request_submit(stat_request);
2820 return 0;
2821
2822 fail_stat_request:
2823 rbd_obj_request_put(stat_request);
2824 return ret;
2825 }
2826
2827 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2828 {
2829 struct rbd_img_request *img_request = obj_request->img_request;
2830 struct rbd_device *rbd_dev = img_request->rbd_dev;
2831
2832 /* Reads */
2833 if (!img_request_write_test(img_request) &&
2834 !img_request_discard_test(img_request))
2835 return true;
2836
2837 /* Non-layered writes */
2838 if (!img_request_layered_test(img_request))
2839 return true;
2840
2841 /*
2842 * Layered writes outside of the parent overlap range don't
2843 * share any data with the parent.
2844 */
2845 if (!obj_request_overlaps_parent(obj_request))
2846 return true;
2847
2848 /*
2849 * Entire-object layered writes - we will overwrite whatever
2850 * parent data there is anyway.
2851 */
2852 if (!obj_request->offset &&
2853 obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2854 return true;
2855
2856 /*
2857 * If the object is known to already exist, its parent data has
2858 * already been copied.
2859 */
2860 if (obj_request_known_test(obj_request) &&
2861 obj_request_exists_test(obj_request))
2862 return true;
2863
2864 return false;
2865 }
2866
2867 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2868 {
2869 rbd_assert(obj_request_img_data_test(obj_request));
2870 rbd_assert(obj_request_type_valid(obj_request->type));
2871 rbd_assert(obj_request->img_request);
2872
2873 if (img_obj_request_simple(obj_request)) {
2874 rbd_obj_request_submit(obj_request);
2875 return 0;
2876 }
2877
2878 /*
2879 * It's a layered write. The target object might exist but
2880 * we may not know that yet. If we know it doesn't exist,
2881 * start by reading the data for the full target object from
2882 * the parent so we can use it for a copyup to the target.
2883 */
2884 if (obj_request_known_test(obj_request))
2885 return rbd_img_obj_parent_read_full(obj_request);
2886
2887 /* We don't know whether the target exists. Go find out. */
2888
2889 return rbd_img_obj_exists_submit(obj_request);
2890 }
2891
2892 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2893 {
2894 struct rbd_obj_request *obj_request;
2895 struct rbd_obj_request *next_obj_request;
2896 int ret = 0;
2897
2898 dout("%s: img %p\n", __func__, img_request);
2899
2900 rbd_img_request_get(img_request);
2901 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2902 ret = rbd_img_obj_request_submit(obj_request);
2903 if (ret)
2904 goto out_put_ireq;
2905 }
2906
2907 out_put_ireq:
2908 rbd_img_request_put(img_request);
2909 return ret;
2910 }
2911
2912 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2913 {
2914 struct rbd_obj_request *obj_request;
2915 struct rbd_device *rbd_dev;
2916 u64 obj_end;
2917 u64 img_xferred;
2918 int img_result;
2919
2920 rbd_assert(img_request_child_test(img_request));
2921
2922 /* First get what we need from the image request and release it */
2923
2924 obj_request = img_request->obj_request;
2925 img_xferred = img_request->xferred;
2926 img_result = img_request->result;
2927 rbd_img_request_put(img_request);
2928
2929 /*
2930 * If the overlap has become 0 (most likely because the
2931 * image has been flattened) we need to re-submit the
2932 * original request.
2933 */
2934 rbd_assert(obj_request);
2935 rbd_assert(obj_request->img_request);
2936 rbd_dev = obj_request->img_request->rbd_dev;
2937 if (!rbd_dev->parent_overlap) {
2938 rbd_obj_request_submit(obj_request);
2939 return;
2940 }
2941
2942 obj_request->result = img_result;
2943 if (obj_request->result)
2944 goto out;
2945
2946 /*
2947 * We need to zero anything beyond the parent overlap
2948 * boundary. Since rbd_img_obj_request_read_callback()
2949 * will zero anything beyond the end of a short read, an
2950 * easy way to do this is to pretend the data from the
2951 * parent came up short--ending at the overlap boundary.
2952 */
2953 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2954 obj_end = obj_request->img_offset + obj_request->length;
2955 if (obj_end > rbd_dev->parent_overlap) {
2956 u64 xferred = 0;
2957
2958 if (obj_request->img_offset < rbd_dev->parent_overlap)
2959 xferred = rbd_dev->parent_overlap -
2960 obj_request->img_offset;
2961
2962 obj_request->xferred = min(img_xferred, xferred);
2963 } else {
2964 obj_request->xferred = img_xferred;
2965 }
2966 out:
2967 rbd_img_obj_request_read_callback(obj_request);
2968 rbd_obj_request_complete(obj_request);
2969 }
2970
2971 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2972 {
2973 struct rbd_img_request *img_request;
2974 int result;
2975
2976 rbd_assert(obj_request_img_data_test(obj_request));
2977 rbd_assert(obj_request->img_request != NULL);
2978 rbd_assert(obj_request->result == (s32) -ENOENT);
2979 rbd_assert(obj_request_type_valid(obj_request->type));
2980
2981 /* rbd_read_finish(obj_request, obj_request->length); */
2982 img_request = rbd_parent_request_create(obj_request,
2983 obj_request->img_offset,
2984 obj_request->length);
2985 result = -ENOMEM;
2986 if (!img_request)
2987 goto out_err;
2988
2989 if (obj_request->type == OBJ_REQUEST_BIO)
2990 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2991 obj_request->bio_list);
2992 else
2993 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2994 obj_request->pages);
2995 if (result)
2996 goto out_err;
2997
2998 img_request->callback = rbd_img_parent_read_callback;
2999 result = rbd_img_request_submit(img_request);
3000 if (result)
3001 goto out_err;
3002
3003 return;
3004 out_err:
3005 if (img_request)
3006 rbd_img_request_put(img_request);
3007 obj_request->result = result;
3008 obj_request->xferred = 0;
3009 obj_request_done_set(obj_request);
3010 }
3011
3012 static const struct rbd_client_id rbd_empty_cid;
3013
3014 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3015 const struct rbd_client_id *rhs)
3016 {
3017 return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3018 }
3019
3020 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3021 {
3022 struct rbd_client_id cid;
3023
3024 mutex_lock(&rbd_dev->watch_mutex);
3025 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3026 cid.handle = rbd_dev->watch_cookie;
3027 mutex_unlock(&rbd_dev->watch_mutex);
3028 return cid;
3029 }
3030
3031 /*
3032 * lock_rwsem must be held for write
3033 */
3034 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3035 const struct rbd_client_id *cid)
3036 {
3037 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3038 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3039 cid->gid, cid->handle);
3040 rbd_dev->owner_cid = *cid; /* struct */
3041 }
3042
3043 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3044 {
3045 mutex_lock(&rbd_dev->watch_mutex);
3046 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3047 mutex_unlock(&rbd_dev->watch_mutex);
3048 }
3049
3050 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3051 {
3052 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3053
3054 strcpy(rbd_dev->lock_cookie, cookie);
3055 rbd_set_owner_cid(rbd_dev, &cid);
3056 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3057 }
3058
3059 /*
3060 * lock_rwsem must be held for write
3061 */
3062 static int rbd_lock(struct rbd_device *rbd_dev)
3063 {
3064 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3065 char cookie[32];
3066 int ret;
3067
3068 WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3069 rbd_dev->lock_cookie[0] != '\0');
3070
3071 format_lock_cookie(rbd_dev, cookie);
3072 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3073 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3074 RBD_LOCK_TAG, "", 0);
3075 if (ret)
3076 return ret;
3077
3078 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3079 __rbd_lock(rbd_dev, cookie);
3080 return 0;
3081 }
3082
3083 /*
3084 * lock_rwsem must be held for write
3085 */
3086 static void rbd_unlock(struct rbd_device *rbd_dev)
3087 {
3088 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3089 int ret;
3090
3091 WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3092 rbd_dev->lock_cookie[0] == '\0');
3093
3094 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3095 RBD_LOCK_NAME, rbd_dev->lock_cookie);
3096 if (ret && ret != -ENOENT)
3097 rbd_warn(rbd_dev, "failed to unlock: %d", ret);
3098
3099 /* treat errors as the image is unlocked */
3100 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3101 rbd_dev->lock_cookie[0] = '\0';
3102 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3103 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3104 }
3105
3106 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3107 enum rbd_notify_op notify_op,
3108 struct page ***preply_pages,
3109 size_t *preply_len)
3110 {
3111 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3112 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3113 int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN;
3114 char buf[buf_size];
3115 void *p = buf;
3116
3117 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3118
3119 /* encode *LockPayload NotifyMessage (op + ClientId) */
3120 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3121 ceph_encode_32(&p, notify_op);
3122 ceph_encode_64(&p, cid.gid);
3123 ceph_encode_64(&p, cid.handle);
3124
3125 return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3126 &rbd_dev->header_oloc, buf, buf_size,
3127 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3128 }
3129
3130 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3131 enum rbd_notify_op notify_op)
3132 {
3133 struct page **reply_pages;
3134 size_t reply_len;
3135
3136 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3137 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3138 }
3139
3140 static void rbd_notify_acquired_lock(struct work_struct *work)
3141 {
3142 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3143 acquired_lock_work);
3144
3145 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3146 }
3147
3148 static void rbd_notify_released_lock(struct work_struct *work)
3149 {
3150 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3151 released_lock_work);
3152
3153 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3154 }
3155
3156 static int rbd_request_lock(struct rbd_device *rbd_dev)
3157 {
3158 struct page **reply_pages;
3159 size_t reply_len;
3160 bool lock_owner_responded = false;
3161 int ret;
3162
3163 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3164
3165 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3166 &reply_pages, &reply_len);
3167 if (ret && ret != -ETIMEDOUT) {
3168 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3169 goto out;
3170 }
3171
3172 if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3173 void *p = page_address(reply_pages[0]);
3174 void *const end = p + reply_len;
3175 u32 n;
3176
3177 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3178 while (n--) {
3179 u8 struct_v;
3180 u32 len;
3181
3182 ceph_decode_need(&p, end, 8 + 8, e_inval);
3183 p += 8 + 8; /* skip gid and cookie */
3184
3185 ceph_decode_32_safe(&p, end, len, e_inval);
3186 if (!len)
3187 continue;
3188
3189 if (lock_owner_responded) {
3190 rbd_warn(rbd_dev,
3191 "duplicate lock owners detected");
3192 ret = -EIO;
3193 goto out;
3194 }
3195
3196 lock_owner_responded = true;
3197 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3198 &struct_v, &len);
3199 if (ret) {
3200 rbd_warn(rbd_dev,
3201 "failed to decode ResponseMessage: %d",
3202 ret);
3203 goto e_inval;
3204 }
3205
3206 ret = ceph_decode_32(&p);
3207 }
3208 }
3209
3210 if (!lock_owner_responded) {
3211 rbd_warn(rbd_dev, "no lock owners detected");
3212 ret = -ETIMEDOUT;
3213 }
3214
3215 out:
3216 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3217 return ret;
3218
3219 e_inval:
3220 ret = -EINVAL;
3221 goto out;
3222 }
3223
3224 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
3225 {
3226 dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
3227
3228 cancel_delayed_work(&rbd_dev->lock_dwork);
3229 if (wake_all)
3230 wake_up_all(&rbd_dev->lock_waitq);
3231 else
3232 wake_up(&rbd_dev->lock_waitq);
3233 }
3234
3235 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3236 struct ceph_locker **lockers, u32 *num_lockers)
3237 {
3238 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3239 u8 lock_type;
3240 char *lock_tag;
3241 int ret;
3242
3243 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3244
3245 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3246 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3247 &lock_type, &lock_tag, lockers, num_lockers);
3248 if (ret)
3249 return ret;
3250
3251 if (*num_lockers == 0) {
3252 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3253 goto out;
3254 }
3255
3256 if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3257 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3258 lock_tag);
3259 ret = -EBUSY;
3260 goto out;
3261 }
3262
3263 if (lock_type == CEPH_CLS_LOCK_SHARED) {
3264 rbd_warn(rbd_dev, "shared lock type detected");
3265 ret = -EBUSY;
3266 goto out;
3267 }
3268
3269 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3270 strlen(RBD_LOCK_COOKIE_PREFIX))) {
3271 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3272 (*lockers)[0].id.cookie);
3273 ret = -EBUSY;
3274 goto out;
3275 }
3276
3277 out:
3278 kfree(lock_tag);
3279 return ret;
3280 }
3281
3282 static int find_watcher(struct rbd_device *rbd_dev,
3283 const struct ceph_locker *locker)
3284 {
3285 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3286 struct ceph_watch_item *watchers;
3287 u32 num_watchers;
3288 u64 cookie;
3289 int i;
3290 int ret;
3291
3292 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3293 &rbd_dev->header_oloc, &watchers,
3294 &num_watchers);
3295 if (ret)
3296 return ret;
3297
3298 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3299 for (i = 0; i < num_watchers; i++) {
3300 if (!memcmp(&watchers[i].addr, &locker->info.addr,
3301 sizeof(locker->info.addr)) &&
3302 watchers[i].cookie == cookie) {
3303 struct rbd_client_id cid = {
3304 .gid = le64_to_cpu(watchers[i].name.num),
3305 .handle = cookie,
3306 };
3307
3308 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3309 rbd_dev, cid.gid, cid.handle);
3310 rbd_set_owner_cid(rbd_dev, &cid);
3311 ret = 1;
3312 goto out;
3313 }
3314 }
3315
3316 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3317 ret = 0;
3318 out:
3319 kfree(watchers);
3320 return ret;
3321 }
3322
3323 /*
3324 * lock_rwsem must be held for write
3325 */
3326 static int rbd_try_lock(struct rbd_device *rbd_dev)
3327 {
3328 struct ceph_client *client = rbd_dev->rbd_client->client;
3329 struct ceph_locker *lockers;
3330 u32 num_lockers;
3331 int ret;
3332
3333 for (;;) {
3334 ret = rbd_lock(rbd_dev);
3335 if (ret != -EBUSY)
3336 return ret;
3337
3338 /* determine if the current lock holder is still alive */
3339 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3340 if (ret)
3341 return ret;
3342
3343 if (num_lockers == 0)
3344 goto again;
3345
3346 ret = find_watcher(rbd_dev, lockers);
3347 if (ret) {
3348 if (ret > 0)
3349 ret = 0; /* have to request lock */
3350 goto out;
3351 }
3352
3353 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
3354 ENTITY_NAME(lockers[0].id.name));
3355
3356 ret = ceph_monc_blacklist_add(&client->monc,
3357 &lockers[0].info.addr);
3358 if (ret) {
3359 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
3360 ENTITY_NAME(lockers[0].id.name), ret);
3361 goto out;
3362 }
3363
3364 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3365 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3366 lockers[0].id.cookie,
3367 &lockers[0].id.name);
3368 if (ret && ret != -ENOENT)
3369 goto out;
3370
3371 again:
3372 ceph_free_lockers(lockers, num_lockers);
3373 }
3374
3375 out:
3376 ceph_free_lockers(lockers, num_lockers);
3377 return ret;
3378 }
3379
3380 /*
3381 * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
3382 */
3383 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
3384 int *pret)
3385 {
3386 enum rbd_lock_state lock_state;
3387
3388 down_read(&rbd_dev->lock_rwsem);
3389 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3390 rbd_dev->lock_state);
3391 if (__rbd_is_lock_owner(rbd_dev)) {
3392 lock_state = rbd_dev->lock_state;
3393 up_read(&rbd_dev->lock_rwsem);
3394 return lock_state;
3395 }
3396
3397 up_read(&rbd_dev->lock_rwsem);
3398 down_write(&rbd_dev->lock_rwsem);
3399 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3400 rbd_dev->lock_state);
3401 if (!__rbd_is_lock_owner(rbd_dev)) {
3402 *pret = rbd_try_lock(rbd_dev);
3403 if (*pret)
3404 rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3405 }
3406
3407 lock_state = rbd_dev->lock_state;
3408 up_write(&rbd_dev->lock_rwsem);
3409 return lock_state;
3410 }
3411
3412 static void rbd_acquire_lock(struct work_struct *work)
3413 {
3414 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3415 struct rbd_device, lock_dwork);
3416 enum rbd_lock_state lock_state;
3417 int ret = 0;
3418
3419 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3420 again:
3421 lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3422 if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3423 if (lock_state == RBD_LOCK_STATE_LOCKED)
3424 wake_requests(rbd_dev, true);
3425 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3426 rbd_dev, lock_state, ret);
3427 return;
3428 }
3429
3430 ret = rbd_request_lock(rbd_dev);
3431 if (ret == -ETIMEDOUT) {
3432 goto again; /* treat this as a dead client */
3433 } else if (ret == -EROFS) {
3434 rbd_warn(rbd_dev, "peer will not release lock");
3435 /*
3436 * If this is rbd_add_acquire_lock(), we want to fail
3437 * immediately -- reuse BLACKLISTED flag. Otherwise we
3438 * want to block.
3439 */
3440 if (!(rbd_dev->disk->flags & GENHD_FL_UP)) {
3441 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3442 /* wake "rbd map --exclusive" process */
3443 wake_requests(rbd_dev, false);
3444 }
3445 } else if (ret < 0) {
3446 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3447 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3448 RBD_RETRY_DELAY);
3449 } else {
3450 /*
3451 * lock owner acked, but resend if we don't see them
3452 * release the lock
3453 */
3454 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3455 rbd_dev);
3456 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3457 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3458 }
3459 }
3460
3461 /*
3462 * lock_rwsem must be held for write
3463 */
3464 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3465 {
3466 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3467 rbd_dev->lock_state);
3468 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3469 return false;
3470
3471 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3472 downgrade_write(&rbd_dev->lock_rwsem);
3473 /*
3474 * Ensure that all in-flight IO is flushed.
3475 *
3476 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3477 * may be shared with other devices.
3478 */
3479 ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3480 up_read(&rbd_dev->lock_rwsem);
3481
3482 down_write(&rbd_dev->lock_rwsem);
3483 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3484 rbd_dev->lock_state);
3485 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3486 return false;
3487
3488 rbd_unlock(rbd_dev);
3489 /*
3490 * Give others a chance to grab the lock - we would re-acquire
3491 * almost immediately if we got new IO during ceph_osdc_sync()
3492 * otherwise. We need to ack our own notifications, so this
3493 * lock_dwork will be requeued from rbd_wait_state_locked()
3494 * after wake_requests() in rbd_handle_released_lock().
3495 */
3496 cancel_delayed_work(&rbd_dev->lock_dwork);
3497 return true;
3498 }
3499
3500 static void rbd_release_lock_work(struct work_struct *work)
3501 {
3502 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3503 unlock_work);
3504
3505 down_write(&rbd_dev->lock_rwsem);
3506 rbd_release_lock(rbd_dev);
3507 up_write(&rbd_dev->lock_rwsem);
3508 }
3509
3510 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3511 void **p)
3512 {
3513 struct rbd_client_id cid = { 0 };
3514
3515 if (struct_v >= 2) {
3516 cid.gid = ceph_decode_64(p);
3517 cid.handle = ceph_decode_64(p);
3518 }
3519
3520 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3521 cid.handle);
3522 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3523 down_write(&rbd_dev->lock_rwsem);
3524 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3525 /*
3526 * we already know that the remote client is
3527 * the owner
3528 */
3529 up_write(&rbd_dev->lock_rwsem);
3530 return;
3531 }
3532
3533 rbd_set_owner_cid(rbd_dev, &cid);
3534 downgrade_write(&rbd_dev->lock_rwsem);
3535 } else {
3536 down_read(&rbd_dev->lock_rwsem);
3537 }
3538
3539 if (!__rbd_is_lock_owner(rbd_dev))
3540 wake_requests(rbd_dev, false);
3541 up_read(&rbd_dev->lock_rwsem);
3542 }
3543
3544 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3545 void **p)
3546 {
3547 struct rbd_client_id cid = { 0 };
3548
3549 if (struct_v >= 2) {
3550 cid.gid = ceph_decode_64(p);
3551 cid.handle = ceph_decode_64(p);
3552 }
3553
3554 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3555 cid.handle);
3556 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3557 down_write(&rbd_dev->lock_rwsem);
3558 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3559 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3560 __func__, rbd_dev, cid.gid, cid.handle,
3561 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3562 up_write(&rbd_dev->lock_rwsem);
3563 return;
3564 }
3565
3566 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3567 downgrade_write(&rbd_dev->lock_rwsem);
3568 } else {
3569 down_read(&rbd_dev->lock_rwsem);
3570 }
3571
3572 if (!__rbd_is_lock_owner(rbd_dev))
3573 wake_requests(rbd_dev, false);
3574 up_read(&rbd_dev->lock_rwsem);
3575 }
3576
3577 /*
3578 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
3579 * ResponseMessage is needed.
3580 */
3581 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3582 void **p)
3583 {
3584 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3585 struct rbd_client_id cid = { 0 };
3586 int result = 1;
3587
3588 if (struct_v >= 2) {
3589 cid.gid = ceph_decode_64(p);
3590 cid.handle = ceph_decode_64(p);
3591 }
3592
3593 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3594 cid.handle);
3595 if (rbd_cid_equal(&cid, &my_cid))
3596 return result;
3597
3598 down_read(&rbd_dev->lock_rwsem);
3599 if (__rbd_is_lock_owner(rbd_dev)) {
3600 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
3601 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
3602 goto out_unlock;
3603
3604 /*
3605 * encode ResponseMessage(0) so the peer can detect
3606 * a missing owner
3607 */
3608 result = 0;
3609
3610 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3611 if (!rbd_dev->opts->exclusive) {
3612 dout("%s rbd_dev %p queueing unlock_work\n",
3613 __func__, rbd_dev);
3614 queue_work(rbd_dev->task_wq,
3615 &rbd_dev->unlock_work);
3616 } else {
3617 /* refuse to release the lock */
3618 result = -EROFS;
3619 }
3620 }
3621 }
3622
3623 out_unlock:
3624 up_read(&rbd_dev->lock_rwsem);
3625 return result;
3626 }
3627
3628 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3629 u64 notify_id, u64 cookie, s32 *result)
3630 {
3631 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3632 int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN;
3633 char buf[buf_size];
3634 int ret;
3635
3636 if (result) {
3637 void *p = buf;
3638
3639 /* encode ResponseMessage */
3640 ceph_start_encoding(&p, 1, 1,
3641 buf_size - CEPH_ENCODING_START_BLK_LEN);
3642 ceph_encode_32(&p, *result);
3643 } else {
3644 buf_size = 0;
3645 }
3646
3647 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3648 &rbd_dev->header_oloc, notify_id, cookie,
3649 buf, buf_size);
3650 if (ret)
3651 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3652 }
3653
3654 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3655 u64 cookie)
3656 {
3657 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3658 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3659 }
3660
3661 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3662 u64 notify_id, u64 cookie, s32 result)
3663 {
3664 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3665 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3666 }
3667
3668 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3669 u64 notifier_id, void *data, size_t data_len)
3670 {
3671 struct rbd_device *rbd_dev = arg;
3672 void *p = data;
3673 void *const end = p + data_len;
3674 u8 struct_v = 0;
3675 u32 len;
3676 u32 notify_op;
3677 int ret;
3678
3679 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3680 __func__, rbd_dev, cookie, notify_id, data_len);
3681 if (data_len) {
3682 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3683 &struct_v, &len);
3684 if (ret) {
3685 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3686 ret);
3687 return;
3688 }
3689
3690 notify_op = ceph_decode_32(&p);
3691 } else {
3692 /* legacy notification for header updates */
3693 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3694 len = 0;
3695 }
3696
3697 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3698 switch (notify_op) {
3699 case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3700 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3701 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3702 break;
3703 case RBD_NOTIFY_OP_RELEASED_LOCK:
3704 rbd_handle_released_lock(rbd_dev, struct_v, &p);
3705 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3706 break;
3707 case RBD_NOTIFY_OP_REQUEST_LOCK:
3708 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
3709 if (ret <= 0)
3710 rbd_acknowledge_notify_result(rbd_dev, notify_id,
3711 cookie, ret);
3712 else
3713 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3714 break;
3715 case RBD_NOTIFY_OP_HEADER_UPDATE:
3716 ret = rbd_dev_refresh(rbd_dev);
3717 if (ret)
3718 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3719
3720 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3721 break;
3722 default:
3723 if (rbd_is_lock_owner(rbd_dev))
3724 rbd_acknowledge_notify_result(rbd_dev, notify_id,
3725 cookie, -EOPNOTSUPP);
3726 else
3727 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3728 break;
3729 }
3730 }
3731
3732 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3733
3734 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3735 {
3736 struct rbd_device *rbd_dev = arg;
3737
3738 rbd_warn(rbd_dev, "encountered watch error: %d", err);
3739
3740 down_write(&rbd_dev->lock_rwsem);
3741 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3742 up_write(&rbd_dev->lock_rwsem);
3743
3744 mutex_lock(&rbd_dev->watch_mutex);
3745 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3746 __rbd_unregister_watch(rbd_dev);
3747 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3748
3749 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3750 }
3751 mutex_unlock(&rbd_dev->watch_mutex);
3752 }
3753
3754 /*
3755 * watch_mutex must be locked
3756 */
3757 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3758 {
3759 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3760 struct ceph_osd_linger_request *handle;
3761
3762 rbd_assert(!rbd_dev->watch_handle);
3763 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3764
3765 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3766 &rbd_dev->header_oloc, rbd_watch_cb,
3767 rbd_watch_errcb, rbd_dev);
3768 if (IS_ERR(handle))
3769 return PTR_ERR(handle);
3770
3771 rbd_dev->watch_handle = handle;
3772 return 0;
3773 }
3774
3775 /*
3776 * watch_mutex must be locked
3777 */
3778 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3779 {
3780 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3781 int ret;
3782
3783 rbd_assert(rbd_dev->watch_handle);
3784 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3785
3786 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3787 if (ret)
3788 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3789
3790 rbd_dev->watch_handle = NULL;
3791 }
3792
3793 static int rbd_register_watch(struct rbd_device *rbd_dev)
3794 {
3795 int ret;
3796
3797 mutex_lock(&rbd_dev->watch_mutex);
3798 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3799 ret = __rbd_register_watch(rbd_dev);
3800 if (ret)
3801 goto out;
3802
3803 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3804 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3805
3806 out:
3807 mutex_unlock(&rbd_dev->watch_mutex);
3808 return ret;
3809 }
3810
3811 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3812 {
3813 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3814
3815 cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3816 cancel_work_sync(&rbd_dev->acquired_lock_work);
3817 cancel_work_sync(&rbd_dev->released_lock_work);
3818 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3819 cancel_work_sync(&rbd_dev->unlock_work);
3820 }
3821
3822 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3823 {
3824 WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3825 cancel_tasks_sync(rbd_dev);
3826
3827 mutex_lock(&rbd_dev->watch_mutex);
3828 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3829 __rbd_unregister_watch(rbd_dev);
3830 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3831 mutex_unlock(&rbd_dev->watch_mutex);
3832
3833 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3834 }
3835
3836 /*
3837 * lock_rwsem must be held for write
3838 */
3839 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
3840 {
3841 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3842 char cookie[32];
3843 int ret;
3844
3845 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3846
3847 format_lock_cookie(rbd_dev, cookie);
3848 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
3849 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3850 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
3851 RBD_LOCK_TAG, cookie);
3852 if (ret) {
3853 if (ret != -EOPNOTSUPP)
3854 rbd_warn(rbd_dev, "failed to update lock cookie: %d",
3855 ret);
3856
3857 /*
3858 * Lock cookie cannot be updated on older OSDs, so do
3859 * a manual release and queue an acquire.
3860 */
3861 if (rbd_release_lock(rbd_dev))
3862 queue_delayed_work(rbd_dev->task_wq,
3863 &rbd_dev->lock_dwork, 0);
3864 } else {
3865 __rbd_lock(rbd_dev, cookie);
3866 }
3867 }
3868
3869 static void rbd_reregister_watch(struct work_struct *work)
3870 {
3871 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3872 struct rbd_device, watch_dwork);
3873 int ret;
3874
3875 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3876
3877 mutex_lock(&rbd_dev->watch_mutex);
3878 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3879 mutex_unlock(&rbd_dev->watch_mutex);
3880 return;
3881 }
3882
3883 ret = __rbd_register_watch(rbd_dev);
3884 if (ret) {
3885 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3886 if (ret == -EBLACKLISTED || ret == -ENOENT) {
3887 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3888 wake_requests(rbd_dev, true);
3889 } else {
3890 queue_delayed_work(rbd_dev->task_wq,
3891 &rbd_dev->watch_dwork,
3892 RBD_RETRY_DELAY);
3893 }
3894 mutex_unlock(&rbd_dev->watch_mutex);
3895 return;
3896 }
3897
3898 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3899 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3900 mutex_unlock(&rbd_dev->watch_mutex);
3901
3902 down_write(&rbd_dev->lock_rwsem);
3903 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3904 rbd_reacquire_lock(rbd_dev);
3905 up_write(&rbd_dev->lock_rwsem);
3906
3907 ret = rbd_dev_refresh(rbd_dev);
3908 if (ret)
3909 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret);
3910 }
3911
3912 /*
3913 * Synchronous osd object method call. Returns the number of bytes
3914 * returned in the outbound buffer, or a negative error code.
3915 */
3916 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3917 struct ceph_object_id *oid,
3918 struct ceph_object_locator *oloc,
3919 const char *method_name,
3920 const void *outbound,
3921 size_t outbound_size,
3922 void *inbound,
3923 size_t inbound_size)
3924 {
3925 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3926 struct page *req_page = NULL;
3927 struct page *reply_page;
3928 int ret;
3929
3930 /*
3931 * Method calls are ultimately read operations. The result
3932 * should placed into the inbound buffer provided. They
3933 * also supply outbound data--parameters for the object
3934 * method. Currently if this is present it will be a
3935 * snapshot id.
3936 */
3937 if (outbound) {
3938 if (outbound_size > PAGE_SIZE)
3939 return -E2BIG;
3940
3941 req_page = alloc_page(GFP_KERNEL);
3942 if (!req_page)
3943 return -ENOMEM;
3944
3945 memcpy(page_address(req_page), outbound, outbound_size);
3946 }
3947
3948 reply_page = alloc_page(GFP_KERNEL);
3949 if (!reply_page) {
3950 if (req_page)
3951 __free_page(req_page);
3952 return -ENOMEM;
3953 }
3954
3955 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3956 CEPH_OSD_FLAG_READ, req_page, outbound_size,
3957 reply_page, &inbound_size);
3958 if (!ret) {
3959 memcpy(inbound, page_address(reply_page), inbound_size);
3960 ret = inbound_size;
3961 }
3962
3963 if (req_page)
3964 __free_page(req_page);
3965 __free_page(reply_page);
3966 return ret;
3967 }
3968
3969 /*
3970 * lock_rwsem must be held for read
3971 */
3972 static void rbd_wait_state_locked(struct rbd_device *rbd_dev)
3973 {
3974 DEFINE_WAIT(wait);
3975
3976 do {
3977 /*
3978 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3979 * and cancel_delayed_work() in wake_requests().
3980 */
3981 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3982 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3983 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3984 TASK_UNINTERRUPTIBLE);
3985 up_read(&rbd_dev->lock_rwsem);
3986 schedule();
3987 down_read(&rbd_dev->lock_rwsem);
3988 } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
3989 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
3990
3991 finish_wait(&rbd_dev->lock_waitq, &wait);
3992 }
3993
3994 static void rbd_queue_workfn(struct work_struct *work)
3995 {
3996 struct request *rq = blk_mq_rq_from_pdu(work);
3997 struct rbd_device *rbd_dev = rq->q->queuedata;
3998 struct rbd_img_request *img_request;
3999 struct ceph_snap_context *snapc = NULL;
4000 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4001 u64 length = blk_rq_bytes(rq);
4002 enum obj_operation_type op_type;
4003 u64 mapping_size;
4004 bool must_be_locked;
4005 int result;
4006
4007 switch (req_op(rq)) {
4008 case REQ_OP_DISCARD:
4009 case REQ_OP_WRITE_ZEROES:
4010 op_type = OBJ_OP_DISCARD;
4011 break;
4012 case REQ_OP_WRITE:
4013 op_type = OBJ_OP_WRITE;
4014 break;
4015 case REQ_OP_READ:
4016 op_type = OBJ_OP_READ;
4017 break;
4018 default:
4019 dout("%s: non-fs request type %d\n", __func__, req_op(rq));
4020 result = -EIO;
4021 goto err;
4022 }
4023
4024 /* Ignore/skip any zero-length requests */
4025
4026 if (!length) {
4027 dout("%s: zero-length request\n", __func__);
4028 result = 0;
4029 goto err_rq;
4030 }
4031
4032 rbd_assert(op_type == OBJ_OP_READ ||
4033 rbd_dev->spec->snap_id == CEPH_NOSNAP);
4034
4035 /*
4036 * Quit early if the mapped snapshot no longer exists. It's
4037 * still possible the snapshot will have disappeared by the
4038 * time our request arrives at the osd, but there's no sense in
4039 * sending it if we already know.
4040 */
4041 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4042 dout("request for non-existent snapshot");
4043 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4044 result = -ENXIO;
4045 goto err_rq;
4046 }
4047
4048 if (offset && length > U64_MAX - offset + 1) {
4049 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4050 length);
4051 result = -EINVAL;
4052 goto err_rq; /* Shouldn't happen */
4053 }
4054
4055 blk_mq_start_request(rq);
4056
4057 down_read(&rbd_dev->header_rwsem);
4058 mapping_size = rbd_dev->mapping.size;
4059 if (op_type != OBJ_OP_READ) {
4060 snapc = rbd_dev->header.snapc;
4061 ceph_get_snap_context(snapc);
4062 }
4063 up_read(&rbd_dev->header_rwsem);
4064
4065 if (offset + length > mapping_size) {
4066 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4067 length, mapping_size);
4068 result = -EIO;
4069 goto err_rq;
4070 }
4071
4072 must_be_locked =
4073 (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
4074 (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read);
4075 if (must_be_locked) {
4076 down_read(&rbd_dev->lock_rwsem);
4077 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
4078 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
4079 if (rbd_dev->opts->exclusive) {
4080 rbd_warn(rbd_dev, "exclusive lock required");
4081 result = -EROFS;
4082 goto err_unlock;
4083 }
4084 rbd_wait_state_locked(rbd_dev);
4085 }
4086 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
4087 result = -EBLACKLISTED;
4088 goto err_unlock;
4089 }
4090 }
4091
4092 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
4093 snapc);
4094 if (!img_request) {
4095 result = -ENOMEM;
4096 goto err_unlock;
4097 }
4098 img_request->rq = rq;
4099 snapc = NULL; /* img_request consumes a ref */
4100
4101 if (op_type == OBJ_OP_DISCARD)
4102 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
4103 NULL);
4104 else
4105 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
4106 rq->bio);
4107 if (result)
4108 goto err_img_request;
4109
4110 result = rbd_img_request_submit(img_request);
4111 if (result)
4112 goto err_img_request;
4113
4114 if (must_be_locked)
4115 up_read(&rbd_dev->lock_rwsem);
4116 return;
4117
4118 err_img_request:
4119 rbd_img_request_put(img_request);
4120 err_unlock:
4121 if (must_be_locked)
4122 up_read(&rbd_dev->lock_rwsem);
4123 err_rq:
4124 if (result)
4125 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4126 obj_op_name(op_type), length, offset, result);
4127 ceph_put_snap_context(snapc);
4128 err:
4129 blk_mq_end_request(rq, errno_to_blk_status(result));
4130 }
4131
4132 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4133 const struct blk_mq_queue_data *bd)
4134 {
4135 struct request *rq = bd->rq;
4136 struct work_struct *work = blk_mq_rq_to_pdu(rq);
4137
4138 queue_work(rbd_wq, work);
4139 return BLK_STS_OK;
4140 }
4141
4142 static void rbd_free_disk(struct rbd_device *rbd_dev)
4143 {
4144 blk_cleanup_queue(rbd_dev->disk->queue);
4145 blk_mq_free_tag_set(&rbd_dev->tag_set);
4146 put_disk(rbd_dev->disk);
4147 rbd_dev->disk = NULL;
4148 }
4149
4150 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4151 struct ceph_object_id *oid,
4152 struct ceph_object_locator *oloc,
4153 void *buf, int buf_len)
4154
4155 {
4156 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4157 struct ceph_osd_request *req;
4158 struct page **pages;
4159 int num_pages = calc_pages_for(0, buf_len);
4160 int ret;
4161
4162 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4163 if (!req)
4164 return -ENOMEM;
4165
4166 ceph_oid_copy(&req->r_base_oid, oid);
4167 ceph_oloc_copy(&req->r_base_oloc, oloc);
4168 req->r_flags = CEPH_OSD_FLAG_READ;
4169
4170 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4171 if (ret)
4172 goto out_req;
4173
4174 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4175 if (IS_ERR(pages)) {
4176 ret = PTR_ERR(pages);
4177 goto out_req;
4178 }
4179
4180 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4181 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4182 true);
4183
4184 ceph_osdc_start_request(osdc, req, false);
4185 ret = ceph_osdc_wait_request(osdc, req);
4186 if (ret >= 0)
4187 ceph_copy_from_page_vector(pages, buf, 0, ret);
4188
4189 out_req:
4190 ceph_osdc_put_request(req);
4191 return ret;
4192 }
4193
4194 /*
4195 * Read the complete header for the given rbd device. On successful
4196 * return, the rbd_dev->header field will contain up-to-date
4197 * information about the image.
4198 */
4199 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4200 {
4201 struct rbd_image_header_ondisk *ondisk = NULL;
4202 u32 snap_count = 0;
4203 u64 names_size = 0;
4204 u32 want_count;
4205 int ret;
4206
4207 /*
4208 * The complete header will include an array of its 64-bit
4209 * snapshot ids, followed by the names of those snapshots as
4210 * a contiguous block of NUL-terminated strings. Note that
4211 * the number of snapshots could change by the time we read
4212 * it in, in which case we re-read it.
4213 */
4214 do {
4215 size_t size;
4216
4217 kfree(ondisk);
4218
4219 size = sizeof (*ondisk);
4220 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4221 size += names_size;
4222 ondisk = kmalloc(size, GFP_KERNEL);
4223 if (!ondisk)
4224 return -ENOMEM;
4225
4226 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4227 &rbd_dev->header_oloc, ondisk, size);
4228 if (ret < 0)
4229 goto out;
4230 if ((size_t)ret < size) {
4231 ret = -ENXIO;
4232 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4233 size, ret);
4234 goto out;
4235 }
4236 if (!rbd_dev_ondisk_valid(ondisk)) {
4237 ret = -ENXIO;
4238 rbd_warn(rbd_dev, "invalid header");
4239 goto out;
4240 }
4241
4242 names_size = le64_to_cpu(ondisk->snap_names_len);
4243 want_count = snap_count;
4244 snap_count = le32_to_cpu(ondisk->snap_count);
4245 } while (snap_count != want_count);
4246
4247 ret = rbd_header_from_disk(rbd_dev, ondisk);
4248 out:
4249 kfree(ondisk);
4250
4251 return ret;
4252 }
4253
4254 /*
4255 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
4256 * has disappeared from the (just updated) snapshot context.
4257 */
4258 static void rbd_exists_validate(struct rbd_device *rbd_dev)
4259 {
4260 u64 snap_id;
4261
4262 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
4263 return;
4264
4265 snap_id = rbd_dev->spec->snap_id;
4266 if (snap_id == CEPH_NOSNAP)
4267 return;
4268
4269 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
4270 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4271 }
4272
4273 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4274 {
4275 sector_t size;
4276
4277 /*
4278 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4279 * try to update its size. If REMOVING is set, updating size
4280 * is just useless work since the device can't be opened.
4281 */
4282 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4283 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4284 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4285 dout("setting size to %llu sectors", (unsigned long long)size);
4286 set_capacity(rbd_dev->disk, size);
4287 revalidate_disk(rbd_dev->disk);
4288 }
4289 }
4290
4291 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4292 {
4293 u64 mapping_size;
4294 int ret;
4295
4296 down_write(&rbd_dev->header_rwsem);
4297 mapping_size = rbd_dev->mapping.size;
4298
4299 ret = rbd_dev_header_info(rbd_dev);
4300 if (ret)
4301 goto out;
4302
4303 /*
4304 * If there is a parent, see if it has disappeared due to the
4305 * mapped image getting flattened.
4306 */
4307 if (rbd_dev->parent) {
4308 ret = rbd_dev_v2_parent_info(rbd_dev);
4309 if (ret)
4310 goto out;
4311 }
4312
4313 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
4314 rbd_dev->mapping.size = rbd_dev->header.image_size;
4315 } else {
4316 /* validate mapped snapshot's EXISTS flag */
4317 rbd_exists_validate(rbd_dev);
4318 }
4319
4320 out:
4321 up_write(&rbd_dev->header_rwsem);
4322 if (!ret && mapping_size != rbd_dev->mapping.size)
4323 rbd_dev_update_size(rbd_dev);
4324
4325 return ret;
4326 }
4327
4328 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
4329 unsigned int hctx_idx, unsigned int numa_node)
4330 {
4331 struct work_struct *work = blk_mq_rq_to_pdu(rq);
4332
4333 INIT_WORK(work, rbd_queue_workfn);
4334 return 0;
4335 }
4336
4337 static const struct blk_mq_ops rbd_mq_ops = {
4338 .queue_rq = rbd_queue_rq,
4339 .init_request = rbd_init_request,
4340 };
4341
4342 static int rbd_init_disk(struct rbd_device *rbd_dev)
4343 {
4344 struct gendisk *disk;
4345 struct request_queue *q;
4346 u64 segment_size;
4347 int err;
4348
4349 /* create gendisk info */
4350 disk = alloc_disk(single_major ?
4351 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4352 RBD_MINORS_PER_MAJOR);
4353 if (!disk)
4354 return -ENOMEM;
4355
4356 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4357 rbd_dev->dev_id);
4358 disk->major = rbd_dev->major;
4359 disk->first_minor = rbd_dev->minor;
4360 if (single_major)
4361 disk->flags |= GENHD_FL_EXT_DEVT;
4362 disk->fops = &rbd_bd_ops;
4363 disk->private_data = rbd_dev;
4364
4365 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4366 rbd_dev->tag_set.ops = &rbd_mq_ops;
4367 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4368 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4369 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
4370 rbd_dev->tag_set.nr_hw_queues = 1;
4371 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
4372
4373 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4374 if (err)
4375 goto out_disk;
4376
4377 q = blk_mq_init_queue(&rbd_dev->tag_set);
4378 if (IS_ERR(q)) {
4379 err = PTR_ERR(q);
4380 goto out_tag_set;
4381 }
4382
4383 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4384 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4385
4386 /* set io sizes to object size */
4387 segment_size = rbd_obj_bytes(&rbd_dev->header);
4388 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
4389 q->limits.max_sectors = queue_max_hw_sectors(q);
4390 blk_queue_max_segments(q, USHRT_MAX);
4391 blk_queue_max_segment_size(q, segment_size);
4392 blk_queue_io_min(q, segment_size);
4393 blk_queue_io_opt(q, segment_size);
4394
4395 /* enable the discard support */
4396 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
4397 q->limits.discard_granularity = segment_size;
4398 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
4399 blk_queue_max_write_zeroes_sectors(q, segment_size / SECTOR_SIZE);
4400
4401 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4402 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
4403
4404 /*
4405 * disk_release() expects a queue ref from add_disk() and will
4406 * put it. Hold an extra ref until add_disk() is called.
4407 */
4408 WARN_ON(!blk_get_queue(q));
4409 disk->queue = q;
4410 q->queuedata = rbd_dev;
4411
4412 rbd_dev->disk = disk;
4413
4414 return 0;
4415 out_tag_set:
4416 blk_mq_free_tag_set(&rbd_dev->tag_set);
4417 out_disk:
4418 put_disk(disk);
4419 return err;
4420 }
4421
4422 /*
4423 sysfs
4424 */
4425
4426 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4427 {
4428 return container_of(dev, struct rbd_device, dev);
4429 }
4430
4431 static ssize_t rbd_size_show(struct device *dev,
4432 struct device_attribute *attr, char *buf)
4433 {
4434 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4435
4436 return sprintf(buf, "%llu\n",
4437 (unsigned long long)rbd_dev->mapping.size);
4438 }
4439
4440 /*
4441 * Note this shows the features for whatever's mapped, which is not
4442 * necessarily the base image.
4443 */
4444 static ssize_t rbd_features_show(struct device *dev,
4445 struct device_attribute *attr, char *buf)
4446 {
4447 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4448
4449 return sprintf(buf, "0x%016llx\n",
4450 (unsigned long long)rbd_dev->mapping.features);
4451 }
4452
4453 static ssize_t rbd_major_show(struct device *dev,
4454 struct device_attribute *attr, char *buf)
4455 {
4456 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4457
4458 if (rbd_dev->major)
4459 return sprintf(buf, "%d\n", rbd_dev->major);
4460
4461 return sprintf(buf, "(none)\n");
4462 }
4463
4464 static ssize_t rbd_minor_show(struct device *dev,
4465 struct device_attribute *attr, char *buf)
4466 {
4467 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4468
4469 return sprintf(buf, "%d\n", rbd_dev->minor);
4470 }
4471
4472 static ssize_t rbd_client_addr_show(struct device *dev,
4473 struct device_attribute *attr, char *buf)
4474 {
4475 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4476 struct ceph_entity_addr *client_addr =
4477 ceph_client_addr(rbd_dev->rbd_client->client);
4478
4479 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4480 le32_to_cpu(client_addr->nonce));
4481 }
4482
4483 static ssize_t rbd_client_id_show(struct device *dev,
4484 struct device_attribute *attr, char *buf)
4485 {
4486 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4487
4488 return sprintf(buf, "client%lld\n",
4489 ceph_client_gid(rbd_dev->rbd_client->client));
4490 }
4491
4492 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4493 struct device_attribute *attr, char *buf)
4494 {
4495 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4496
4497 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4498 }
4499
4500 static ssize_t rbd_config_info_show(struct device *dev,
4501 struct device_attribute *attr, char *buf)
4502 {
4503 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4504
4505 return sprintf(buf, "%s\n", rbd_dev->config_info);
4506 }
4507
4508 static ssize_t rbd_pool_show(struct device *dev,
4509 struct device_attribute *attr, char *buf)
4510 {
4511 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4512
4513 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4514 }
4515
4516 static ssize_t rbd_pool_id_show(struct device *dev,
4517 struct device_attribute *attr, char *buf)
4518 {
4519 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4520
4521 return sprintf(buf, "%llu\n",
4522 (unsigned long long) rbd_dev->spec->pool_id);
4523 }
4524
4525 static ssize_t rbd_name_show(struct device *dev,
4526 struct device_attribute *attr, char *buf)
4527 {
4528 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4529
4530 if (rbd_dev->spec->image_name)
4531 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4532
4533 return sprintf(buf, "(unknown)\n");
4534 }
4535
4536 static ssize_t rbd_image_id_show(struct device *dev,
4537 struct device_attribute *attr, char *buf)
4538 {
4539 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4540
4541 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4542 }
4543
4544 /*
4545 * Shows the name of the currently-mapped snapshot (or
4546 * RBD_SNAP_HEAD_NAME for the base image).
4547 */
4548 static ssize_t rbd_snap_show(struct device *dev,
4549 struct device_attribute *attr,
4550 char *buf)
4551 {
4552 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4553
4554 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4555 }
4556
4557 static ssize_t rbd_snap_id_show(struct device *dev,
4558 struct device_attribute *attr, char *buf)
4559 {
4560 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4561
4562 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4563 }
4564
4565 /*
4566 * For a v2 image, shows the chain of parent images, separated by empty
4567 * lines. For v1 images or if there is no parent, shows "(no parent
4568 * image)".
4569 */
4570 static ssize_t rbd_parent_show(struct device *dev,
4571 struct device_attribute *attr,
4572 char *buf)
4573 {
4574 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4575 ssize_t count = 0;
4576
4577 if (!rbd_dev->parent)
4578 return sprintf(buf, "(no parent image)\n");
4579
4580 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4581 struct rbd_spec *spec = rbd_dev->parent_spec;
4582
4583 count += sprintf(&buf[count], "%s"
4584 "pool_id %llu\npool_name %s\n"
4585 "image_id %s\nimage_name %s\n"
4586 "snap_id %llu\nsnap_name %s\n"
4587 "overlap %llu\n",
4588 !count ? "" : "\n", /* first? */
4589 spec->pool_id, spec->pool_name,
4590 spec->image_id, spec->image_name ?: "(unknown)",
4591 spec->snap_id, spec->snap_name,
4592 rbd_dev->parent_overlap);
4593 }
4594
4595 return count;
4596 }
4597
4598 static ssize_t rbd_image_refresh(struct device *dev,
4599 struct device_attribute *attr,
4600 const char *buf,
4601 size_t size)
4602 {
4603 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4604 int ret;
4605
4606 ret = rbd_dev_refresh(rbd_dev);
4607 if (ret)
4608 return ret;
4609
4610 return size;
4611 }
4612
4613 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4614 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4615 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4616 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4617 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4618 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4619 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4620 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4621 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4622 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4623 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4624 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4625 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4626 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4627 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4628 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4629
4630 static struct attribute *rbd_attrs[] = {
4631 &dev_attr_size.attr,
4632 &dev_attr_features.attr,
4633 &dev_attr_major.attr,
4634 &dev_attr_minor.attr,
4635 &dev_attr_client_addr.attr,
4636 &dev_attr_client_id.attr,
4637 &dev_attr_cluster_fsid.attr,
4638 &dev_attr_config_info.attr,
4639 &dev_attr_pool.attr,
4640 &dev_attr_pool_id.attr,
4641 &dev_attr_name.attr,
4642 &dev_attr_image_id.attr,
4643 &dev_attr_current_snap.attr,
4644 &dev_attr_snap_id.attr,
4645 &dev_attr_parent.attr,
4646 &dev_attr_refresh.attr,
4647 NULL
4648 };
4649
4650 static struct attribute_group rbd_attr_group = {
4651 .attrs = rbd_attrs,
4652 };
4653
4654 static const struct attribute_group *rbd_attr_groups[] = {
4655 &rbd_attr_group,
4656 NULL
4657 };
4658
4659 static void rbd_dev_release(struct device *dev);
4660
4661 static const struct device_type rbd_device_type = {
4662 .name = "rbd",
4663 .groups = rbd_attr_groups,
4664 .release = rbd_dev_release,
4665 };
4666
4667 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4668 {
4669 kref_get(&spec->kref);
4670
4671 return spec;
4672 }
4673
4674 static void rbd_spec_free(struct kref *kref);
4675 static void rbd_spec_put(struct rbd_spec *spec)
4676 {
4677 if (spec)
4678 kref_put(&spec->kref, rbd_spec_free);
4679 }
4680
4681 static struct rbd_spec *rbd_spec_alloc(void)
4682 {
4683 struct rbd_spec *spec;
4684
4685 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4686 if (!spec)
4687 return NULL;
4688
4689 spec->pool_id = CEPH_NOPOOL;
4690 spec->snap_id = CEPH_NOSNAP;
4691 kref_init(&spec->kref);
4692
4693 return spec;
4694 }
4695
4696 static void rbd_spec_free(struct kref *kref)
4697 {
4698 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4699
4700 kfree(spec->pool_name);
4701 kfree(spec->image_id);
4702 kfree(spec->image_name);
4703 kfree(spec->snap_name);
4704 kfree(spec);
4705 }
4706
4707 static void rbd_dev_free(struct rbd_device *rbd_dev)
4708 {
4709 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4710 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4711
4712 ceph_oid_destroy(&rbd_dev->header_oid);
4713 ceph_oloc_destroy(&rbd_dev->header_oloc);
4714 kfree(rbd_dev->config_info);
4715
4716 rbd_put_client(rbd_dev->rbd_client);
4717 rbd_spec_put(rbd_dev->spec);
4718 kfree(rbd_dev->opts);
4719 kfree(rbd_dev);
4720 }
4721
4722 static void rbd_dev_release(struct device *dev)
4723 {
4724 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4725 bool need_put = !!rbd_dev->opts;
4726
4727 if (need_put) {
4728 destroy_workqueue(rbd_dev->task_wq);
4729 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4730 }
4731
4732 rbd_dev_free(rbd_dev);
4733
4734 /*
4735 * This is racy, but way better than putting module outside of
4736 * the release callback. The race window is pretty small, so
4737 * doing something similar to dm (dm-builtin.c) is overkill.
4738 */
4739 if (need_put)
4740 module_put(THIS_MODULE);
4741 }
4742
4743 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4744 struct rbd_spec *spec)
4745 {
4746 struct rbd_device *rbd_dev;
4747
4748 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4749 if (!rbd_dev)
4750 return NULL;
4751
4752 spin_lock_init(&rbd_dev->lock);
4753 INIT_LIST_HEAD(&rbd_dev->node);
4754 init_rwsem(&rbd_dev->header_rwsem);
4755
4756 rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4757 ceph_oid_init(&rbd_dev->header_oid);
4758 rbd_dev->header_oloc.pool = spec->pool_id;
4759
4760 mutex_init(&rbd_dev->watch_mutex);
4761 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4762 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4763
4764 init_rwsem(&rbd_dev->lock_rwsem);
4765 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4766 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4767 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4768 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4769 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4770 init_waitqueue_head(&rbd_dev->lock_waitq);
4771
4772 rbd_dev->dev.bus = &rbd_bus_type;
4773 rbd_dev->dev.type = &rbd_device_type;
4774 rbd_dev->dev.parent = &rbd_root_dev;
4775 device_initialize(&rbd_dev->dev);
4776
4777 rbd_dev->rbd_client = rbdc;
4778 rbd_dev->spec = spec;
4779
4780 return rbd_dev;
4781 }
4782
4783 /*
4784 * Create a mapping rbd_dev.
4785 */
4786 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4787 struct rbd_spec *spec,
4788 struct rbd_options *opts)
4789 {
4790 struct rbd_device *rbd_dev;
4791
4792 rbd_dev = __rbd_dev_create(rbdc, spec);
4793 if (!rbd_dev)
4794 return NULL;
4795
4796 rbd_dev->opts = opts;
4797
4798 /* get an id and fill in device name */
4799 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4800 minor_to_rbd_dev_id(1 << MINORBITS),
4801 GFP_KERNEL);
4802 if (rbd_dev->dev_id < 0)
4803 goto fail_rbd_dev;
4804
4805 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4806 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4807 rbd_dev->name);
4808 if (!rbd_dev->task_wq)
4809 goto fail_dev_id;
4810
4811 /* we have a ref from do_rbd_add() */
4812 __module_get(THIS_MODULE);
4813
4814 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4815 return rbd_dev;
4816
4817 fail_dev_id:
4818 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4819 fail_rbd_dev:
4820 rbd_dev_free(rbd_dev);
4821 return NULL;
4822 }
4823
4824 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4825 {
4826 if (rbd_dev)
4827 put_device(&rbd_dev->dev);
4828 }
4829
4830 /*
4831 * Get the size and object order for an image snapshot, or if
4832 * snap_id is CEPH_NOSNAP, gets this information for the base
4833 * image.
4834 */
4835 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4836 u8 *order, u64 *snap_size)
4837 {
4838 __le64 snapid = cpu_to_le64(snap_id);
4839 int ret;
4840 struct {
4841 u8 order;
4842 __le64 size;
4843 } __attribute__ ((packed)) size_buf = { 0 };
4844
4845 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4846 &rbd_dev->header_oloc, "get_size",
4847 &snapid, sizeof(snapid),
4848 &size_buf, sizeof(size_buf));
4849 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4850 if (ret < 0)
4851 return ret;
4852 if (ret < sizeof (size_buf))
4853 return -ERANGE;
4854
4855 if (order) {
4856 *order = size_buf.order;
4857 dout(" order %u", (unsigned int)*order);
4858 }
4859 *snap_size = le64_to_cpu(size_buf.size);
4860
4861 dout(" snap_id 0x%016llx snap_size = %llu\n",
4862 (unsigned long long)snap_id,
4863 (unsigned long long)*snap_size);
4864
4865 return 0;
4866 }
4867
4868 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4869 {
4870 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4871 &rbd_dev->header.obj_order,
4872 &rbd_dev->header.image_size);
4873 }
4874
4875 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4876 {
4877 void *reply_buf;
4878 int ret;
4879 void *p;
4880
4881 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4882 if (!reply_buf)
4883 return -ENOMEM;
4884
4885 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4886 &rbd_dev->header_oloc, "get_object_prefix",
4887 NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4888 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4889 if (ret < 0)
4890 goto out;
4891
4892 p = reply_buf;
4893 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4894 p + ret, NULL, GFP_NOIO);
4895 ret = 0;
4896
4897 if (IS_ERR(rbd_dev->header.object_prefix)) {
4898 ret = PTR_ERR(rbd_dev->header.object_prefix);
4899 rbd_dev->header.object_prefix = NULL;
4900 } else {
4901 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
4902 }
4903 out:
4904 kfree(reply_buf);
4905
4906 return ret;
4907 }
4908
4909 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4910 u64 *snap_features)
4911 {
4912 __le64 snapid = cpu_to_le64(snap_id);
4913 struct {
4914 __le64 features;
4915 __le64 incompat;
4916 } __attribute__ ((packed)) features_buf = { 0 };
4917 u64 unsup;
4918 int ret;
4919
4920 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4921 &rbd_dev->header_oloc, "get_features",
4922 &snapid, sizeof(snapid),
4923 &features_buf, sizeof(features_buf));
4924 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4925 if (ret < 0)
4926 return ret;
4927 if (ret < sizeof (features_buf))
4928 return -ERANGE;
4929
4930 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4931 if (unsup) {
4932 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4933 unsup);
4934 return -ENXIO;
4935 }
4936
4937 *snap_features = le64_to_cpu(features_buf.features);
4938
4939 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4940 (unsigned long long)snap_id,
4941 (unsigned long long)*snap_features,
4942 (unsigned long long)le64_to_cpu(features_buf.incompat));
4943
4944 return 0;
4945 }
4946
4947 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4948 {
4949 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4950 &rbd_dev->header.features);
4951 }
4952
4953 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4954 {
4955 struct rbd_spec *parent_spec;
4956 size_t size;
4957 void *reply_buf = NULL;
4958 __le64 snapid;
4959 void *p;
4960 void *end;
4961 u64 pool_id;
4962 char *image_id;
4963 u64 snap_id;
4964 u64 overlap;
4965 int ret;
4966
4967 parent_spec = rbd_spec_alloc();
4968 if (!parent_spec)
4969 return -ENOMEM;
4970
4971 size = sizeof (__le64) + /* pool_id */
4972 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
4973 sizeof (__le64) + /* snap_id */
4974 sizeof (__le64); /* overlap */
4975 reply_buf = kmalloc(size, GFP_KERNEL);
4976 if (!reply_buf) {
4977 ret = -ENOMEM;
4978 goto out_err;
4979 }
4980
4981 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4982 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4983 &rbd_dev->header_oloc, "get_parent",
4984 &snapid, sizeof(snapid), reply_buf, size);
4985 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4986 if (ret < 0)
4987 goto out_err;
4988
4989 p = reply_buf;
4990 end = reply_buf + ret;
4991 ret = -ERANGE;
4992 ceph_decode_64_safe(&p, end, pool_id, out_err);
4993 if (pool_id == CEPH_NOPOOL) {
4994 /*
4995 * Either the parent never existed, or we have
4996 * record of it but the image got flattened so it no
4997 * longer has a parent. When the parent of a
4998 * layered image disappears we immediately set the
4999 * overlap to 0. The effect of this is that all new
5000 * requests will be treated as if the image had no
5001 * parent.
5002 */
5003 if (rbd_dev->parent_overlap) {
5004 rbd_dev->parent_overlap = 0;
5005 rbd_dev_parent_put(rbd_dev);
5006 pr_info("%s: clone image has been flattened\n",
5007 rbd_dev->disk->disk_name);
5008 }
5009
5010 goto out; /* No parent? No problem. */
5011 }
5012
5013 /* The ceph file layout needs to fit pool id in 32 bits */
5014
5015 ret = -EIO;
5016 if (pool_id > (u64)U32_MAX) {
5017 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5018 (unsigned long long)pool_id, U32_MAX);
5019 goto out_err;
5020 }
5021
5022 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5023 if (IS_ERR(image_id)) {
5024 ret = PTR_ERR(image_id);
5025 goto out_err;
5026 }
5027 ceph_decode_64_safe(&p, end, snap_id, out_err);
5028 ceph_decode_64_safe(&p, end, overlap, out_err);
5029
5030 /*
5031 * The parent won't change (except when the clone is
5032 * flattened, already handled that). So we only need to
5033 * record the parent spec we have not already done so.
5034 */
5035 if (!rbd_dev->parent_spec) {
5036 parent_spec->pool_id = pool_id;
5037 parent_spec->image_id = image_id;
5038 parent_spec->snap_id = snap_id;
5039 rbd_dev->parent_spec = parent_spec;
5040 parent_spec = NULL; /* rbd_dev now owns this */
5041 } else {
5042 kfree(image_id);
5043 }
5044
5045 /*
5046 * We always update the parent overlap. If it's zero we issue
5047 * a warning, as we will proceed as if there was no parent.
5048 */
5049 if (!overlap) {
5050 if (parent_spec) {
5051 /* refresh, careful to warn just once */
5052 if (rbd_dev->parent_overlap)
5053 rbd_warn(rbd_dev,
5054 "clone now standalone (overlap became 0)");
5055 } else {
5056 /* initial probe */
5057 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5058 }
5059 }
5060 rbd_dev->parent_overlap = overlap;
5061
5062 out:
5063 ret = 0;
5064 out_err:
5065 kfree(reply_buf);
5066 rbd_spec_put(parent_spec);
5067
5068 return ret;
5069 }
5070
5071 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5072 {
5073 struct {
5074 __le64 stripe_unit;
5075 __le64 stripe_count;
5076 } __attribute__ ((packed)) striping_info_buf = { 0 };
5077 size_t size = sizeof (striping_info_buf);
5078 void *p;
5079 u64 obj_size;
5080 u64 stripe_unit;
5081 u64 stripe_count;
5082 int ret;
5083
5084 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5085 &rbd_dev->header_oloc, "get_stripe_unit_count",
5086 NULL, 0, &striping_info_buf, size);
5087 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5088 if (ret < 0)
5089 return ret;
5090 if (ret < size)
5091 return -ERANGE;
5092
5093 /*
5094 * We don't actually support the "fancy striping" feature
5095 * (STRIPINGV2) yet, but if the striping sizes are the
5096 * defaults the behavior is the same as before. So find
5097 * out, and only fail if the image has non-default values.
5098 */
5099 ret = -EINVAL;
5100 obj_size = rbd_obj_bytes(&rbd_dev->header);
5101 p = &striping_info_buf;
5102 stripe_unit = ceph_decode_64(&p);
5103 if (stripe_unit != obj_size) {
5104 rbd_warn(rbd_dev, "unsupported stripe unit "
5105 "(got %llu want %llu)",
5106 stripe_unit, obj_size);
5107 return -EINVAL;
5108 }
5109 stripe_count = ceph_decode_64(&p);
5110 if (stripe_count != 1) {
5111 rbd_warn(rbd_dev, "unsupported stripe count "
5112 "(got %llu want 1)", stripe_count);
5113 return -EINVAL;
5114 }
5115 rbd_dev->header.stripe_unit = stripe_unit;
5116 rbd_dev->header.stripe_count = stripe_count;
5117
5118 return 0;
5119 }
5120
5121 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5122 {
5123 __le64 data_pool_id;
5124 int ret;
5125
5126 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5127 &rbd_dev->header_oloc, "get_data_pool",
5128 NULL, 0, &data_pool_id, sizeof(data_pool_id));
5129 if (ret < 0)
5130 return ret;
5131 if (ret < sizeof(data_pool_id))
5132 return -EBADMSG;
5133
5134 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5135 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5136 return 0;
5137 }
5138
5139 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5140 {
5141 CEPH_DEFINE_OID_ONSTACK(oid);
5142 size_t image_id_size;
5143 char *image_id;
5144 void *p;
5145 void *end;
5146 size_t size;
5147 void *reply_buf = NULL;
5148 size_t len = 0;
5149 char *image_name = NULL;
5150 int ret;
5151
5152 rbd_assert(!rbd_dev->spec->image_name);
5153
5154 len = strlen(rbd_dev->spec->image_id);
5155 image_id_size = sizeof (__le32) + len;
5156 image_id = kmalloc(image_id_size, GFP_KERNEL);
5157 if (!image_id)
5158 return NULL;
5159
5160 p = image_id;
5161 end = image_id + image_id_size;
5162 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5163
5164 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5165 reply_buf = kmalloc(size, GFP_KERNEL);
5166 if (!reply_buf)
5167 goto out;
5168
5169 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5170 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5171 "dir_get_name", image_id, image_id_size,
5172 reply_buf, size);
5173 if (ret < 0)
5174 goto out;
5175 p = reply_buf;
5176 end = reply_buf + ret;
5177
5178 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5179 if (IS_ERR(image_name))
5180 image_name = NULL;
5181 else
5182 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5183 out:
5184 kfree(reply_buf);
5185 kfree(image_id);
5186
5187 return image_name;
5188 }
5189
5190 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5191 {
5192 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5193 const char *snap_name;
5194 u32 which = 0;
5195
5196 /* Skip over names until we find the one we are looking for */
5197
5198 snap_name = rbd_dev->header.snap_names;
5199 while (which < snapc->num_snaps) {
5200 if (!strcmp(name, snap_name))
5201 return snapc->snaps[which];
5202 snap_name += strlen(snap_name) + 1;
5203 which++;
5204 }
5205 return CEPH_NOSNAP;
5206 }
5207
5208 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5209 {
5210 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5211 u32 which;
5212 bool found = false;
5213 u64 snap_id;
5214
5215 for (which = 0; !found && which < snapc->num_snaps; which++) {
5216 const char *snap_name;
5217
5218 snap_id = snapc->snaps[which];
5219 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5220 if (IS_ERR(snap_name)) {
5221 /* ignore no-longer existing snapshots */
5222 if (PTR_ERR(snap_name) == -ENOENT)
5223 continue;
5224 else
5225 break;
5226 }
5227 found = !strcmp(name, snap_name);
5228 kfree(snap_name);
5229 }
5230 return found ? snap_id : CEPH_NOSNAP;
5231 }
5232
5233 /*
5234 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5235 * no snapshot by that name is found, or if an error occurs.
5236 */
5237 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5238 {
5239 if (rbd_dev->image_format == 1)
5240 return rbd_v1_snap_id_by_name(rbd_dev, name);
5241
5242 return rbd_v2_snap_id_by_name(rbd_dev, name);
5243 }
5244
5245 /*
5246 * An image being mapped will have everything but the snap id.
5247 */
5248 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5249 {
5250 struct rbd_spec *spec = rbd_dev->spec;
5251
5252 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5253 rbd_assert(spec->image_id && spec->image_name);
5254 rbd_assert(spec->snap_name);
5255
5256 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5257 u64 snap_id;
5258
5259 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5260 if (snap_id == CEPH_NOSNAP)
5261 return -ENOENT;
5262
5263 spec->snap_id = snap_id;
5264 } else {
5265 spec->snap_id = CEPH_NOSNAP;
5266 }
5267
5268 return 0;
5269 }
5270
5271 /*
5272 * A parent image will have all ids but none of the names.
5273 *
5274 * All names in an rbd spec are dynamically allocated. It's OK if we
5275 * can't figure out the name for an image id.
5276 */
5277 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5278 {
5279 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5280 struct rbd_spec *spec = rbd_dev->spec;
5281 const char *pool_name;
5282 const char *image_name;
5283 const char *snap_name;
5284 int ret;
5285
5286 rbd_assert(spec->pool_id != CEPH_NOPOOL);
5287 rbd_assert(spec->image_id);
5288 rbd_assert(spec->snap_id != CEPH_NOSNAP);
5289
5290 /* Get the pool name; we have to make our own copy of this */
5291
5292 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5293 if (!pool_name) {
5294 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5295 return -EIO;
5296 }
5297 pool_name = kstrdup(pool_name, GFP_KERNEL);
5298 if (!pool_name)
5299 return -ENOMEM;
5300
5301 /* Fetch the image name; tolerate failure here */
5302
5303 image_name = rbd_dev_image_name(rbd_dev);
5304 if (!image_name)
5305 rbd_warn(rbd_dev, "unable to get image name");
5306
5307 /* Fetch the snapshot name */
5308
5309 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5310 if (IS_ERR(snap_name)) {
5311 ret = PTR_ERR(snap_name);
5312 goto out_err;
5313 }
5314
5315 spec->pool_name = pool_name;
5316 spec->image_name = image_name;
5317 spec->snap_name = snap_name;
5318
5319 return 0;
5320
5321 out_err:
5322 kfree(image_name);
5323 kfree(pool_name);
5324 return ret;
5325 }
5326
5327 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5328 {
5329 size_t size;
5330 int ret;
5331 void *reply_buf;
5332 void *p;
5333 void *end;
5334 u64 seq;
5335 u32 snap_count;
5336 struct ceph_snap_context *snapc;
5337 u32 i;
5338
5339 /*
5340 * We'll need room for the seq value (maximum snapshot id),
5341 * snapshot count, and array of that many snapshot ids.
5342 * For now we have a fixed upper limit on the number we're
5343 * prepared to receive.
5344 */
5345 size = sizeof (__le64) + sizeof (__le32) +
5346 RBD_MAX_SNAP_COUNT * sizeof (__le64);
5347 reply_buf = kzalloc(size, GFP_KERNEL);
5348 if (!reply_buf)
5349 return -ENOMEM;
5350
5351 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5352 &rbd_dev->header_oloc, "get_snapcontext",
5353 NULL, 0, reply_buf, size);
5354 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5355 if (ret < 0)
5356 goto out;
5357
5358 p = reply_buf;
5359 end = reply_buf + ret;
5360 ret = -ERANGE;
5361 ceph_decode_64_safe(&p, end, seq, out);
5362 ceph_decode_32_safe(&p, end, snap_count, out);
5363
5364 /*
5365 * Make sure the reported number of snapshot ids wouldn't go
5366 * beyond the end of our buffer. But before checking that,
5367 * make sure the computed size of the snapshot context we
5368 * allocate is representable in a size_t.
5369 */
5370 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5371 / sizeof (u64)) {
5372 ret = -EINVAL;
5373 goto out;
5374 }
5375 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5376 goto out;
5377 ret = 0;
5378
5379 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5380 if (!snapc) {
5381 ret = -ENOMEM;
5382 goto out;
5383 }
5384 snapc->seq = seq;
5385 for (i = 0; i < snap_count; i++)
5386 snapc->snaps[i] = ceph_decode_64(&p);
5387
5388 ceph_put_snap_context(rbd_dev->header.snapc);
5389 rbd_dev->header.snapc = snapc;
5390
5391 dout(" snap context seq = %llu, snap_count = %u\n",
5392 (unsigned long long)seq, (unsigned int)snap_count);
5393 out:
5394 kfree(reply_buf);
5395
5396 return ret;
5397 }
5398
5399 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5400 u64 snap_id)
5401 {
5402 size_t size;
5403 void *reply_buf;
5404 __le64 snapid;
5405 int ret;
5406 void *p;
5407 void *end;
5408 char *snap_name;
5409
5410 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5411 reply_buf = kmalloc(size, GFP_KERNEL);
5412 if (!reply_buf)
5413 return ERR_PTR(-ENOMEM);
5414
5415 snapid = cpu_to_le64(snap_id);
5416 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5417 &rbd_dev->header_oloc, "get_snapshot_name",
5418 &snapid, sizeof(snapid), reply_buf, size);
5419 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5420 if (ret < 0) {
5421 snap_name = ERR_PTR(ret);
5422 goto out;
5423 }
5424
5425 p = reply_buf;
5426 end = reply_buf + ret;
5427 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5428 if (IS_ERR(snap_name))
5429 goto out;
5430
5431 dout(" snap_id 0x%016llx snap_name = %s\n",
5432 (unsigned long long)snap_id, snap_name);
5433 out:
5434 kfree(reply_buf);
5435
5436 return snap_name;
5437 }
5438
5439 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5440 {
5441 bool first_time = rbd_dev->header.object_prefix == NULL;
5442 int ret;
5443
5444 ret = rbd_dev_v2_image_size(rbd_dev);
5445 if (ret)
5446 return ret;
5447
5448 if (first_time) {
5449 ret = rbd_dev_v2_header_onetime(rbd_dev);
5450 if (ret)
5451 return ret;
5452 }
5453
5454 ret = rbd_dev_v2_snap_context(rbd_dev);
5455 if (ret && first_time) {
5456 kfree(rbd_dev->header.object_prefix);
5457 rbd_dev->header.object_prefix = NULL;
5458 }
5459
5460 return ret;
5461 }
5462
5463 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5464 {
5465 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5466
5467 if (rbd_dev->image_format == 1)
5468 return rbd_dev_v1_header_info(rbd_dev);
5469
5470 return rbd_dev_v2_header_info(rbd_dev);
5471 }
5472
5473 /*
5474 * Skips over white space at *buf, and updates *buf to point to the
5475 * first found non-space character (if any). Returns the length of
5476 * the token (string of non-white space characters) found. Note
5477 * that *buf must be terminated with '\0'.
5478 */
5479 static inline size_t next_token(const char **buf)
5480 {
5481 /*
5482 * These are the characters that produce nonzero for
5483 * isspace() in the "C" and "POSIX" locales.
5484 */
5485 const char *spaces = " \f\n\r\t\v";
5486
5487 *buf += strspn(*buf, spaces); /* Find start of token */
5488
5489 return strcspn(*buf, spaces); /* Return token length */
5490 }
5491
5492 /*
5493 * Finds the next token in *buf, dynamically allocates a buffer big
5494 * enough to hold a copy of it, and copies the token into the new
5495 * buffer. The copy is guaranteed to be terminated with '\0'. Note
5496 * that a duplicate buffer is created even for a zero-length token.
5497 *
5498 * Returns a pointer to the newly-allocated duplicate, or a null
5499 * pointer if memory for the duplicate was not available. If
5500 * the lenp argument is a non-null pointer, the length of the token
5501 * (not including the '\0') is returned in *lenp.
5502 *
5503 * If successful, the *buf pointer will be updated to point beyond
5504 * the end of the found token.
5505 *
5506 * Note: uses GFP_KERNEL for allocation.
5507 */
5508 static inline char *dup_token(const char **buf, size_t *lenp)
5509 {
5510 char *dup;
5511 size_t len;
5512
5513 len = next_token(buf);
5514 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5515 if (!dup)
5516 return NULL;
5517 *(dup + len) = '\0';
5518 *buf += len;
5519
5520 if (lenp)
5521 *lenp = len;
5522
5523 return dup;
5524 }
5525
5526 /*
5527 * Parse the options provided for an "rbd add" (i.e., rbd image
5528 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
5529 * and the data written is passed here via a NUL-terminated buffer.
5530 * Returns 0 if successful or an error code otherwise.
5531 *
5532 * The information extracted from these options is recorded in
5533 * the other parameters which return dynamically-allocated
5534 * structures:
5535 * ceph_opts
5536 * The address of a pointer that will refer to a ceph options
5537 * structure. Caller must release the returned pointer using
5538 * ceph_destroy_options() when it is no longer needed.
5539 * rbd_opts
5540 * Address of an rbd options pointer. Fully initialized by
5541 * this function; caller must release with kfree().
5542 * spec
5543 * Address of an rbd image specification pointer. Fully
5544 * initialized by this function based on parsed options.
5545 * Caller must release with rbd_spec_put().
5546 *
5547 * The options passed take this form:
5548 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5549 * where:
5550 * <mon_addrs>
5551 * A comma-separated list of one or more monitor addresses.
5552 * A monitor address is an ip address, optionally followed
5553 * by a port number (separated by a colon).
5554 * I.e.: ip1[:port1][,ip2[:port2]...]
5555 * <options>
5556 * A comma-separated list of ceph and/or rbd options.
5557 * <pool_name>
5558 * The name of the rados pool containing the rbd image.
5559 * <image_name>
5560 * The name of the image in that pool to map.
5561 * <snap_id>
5562 * An optional snapshot id. If provided, the mapping will
5563 * present data from the image at the time that snapshot was
5564 * created. The image head is used if no snapshot id is
5565 * provided. Snapshot mappings are always read-only.
5566 */
5567 static int rbd_add_parse_args(const char *buf,
5568 struct ceph_options **ceph_opts,
5569 struct rbd_options **opts,
5570 struct rbd_spec **rbd_spec)
5571 {
5572 size_t len;
5573 char *options;
5574 const char *mon_addrs;
5575 char *snap_name;
5576 size_t mon_addrs_size;
5577 struct rbd_spec *spec = NULL;
5578 struct rbd_options *rbd_opts = NULL;
5579 struct ceph_options *copts;
5580 int ret;
5581
5582 /* The first four tokens are required */
5583
5584 len = next_token(&buf);
5585 if (!len) {
5586 rbd_warn(NULL, "no monitor address(es) provided");
5587 return -EINVAL;
5588 }
5589 mon_addrs = buf;
5590 mon_addrs_size = len + 1;
5591 buf += len;
5592
5593 ret = -EINVAL;
5594 options = dup_token(&buf, NULL);
5595 if (!options)
5596 return -ENOMEM;
5597 if (!*options) {
5598 rbd_warn(NULL, "no options provided");
5599 goto out_err;
5600 }
5601
5602 spec = rbd_spec_alloc();
5603 if (!spec)
5604 goto out_mem;
5605
5606 spec->pool_name = dup_token(&buf, NULL);
5607 if (!spec->pool_name)
5608 goto out_mem;
5609 if (!*spec->pool_name) {
5610 rbd_warn(NULL, "no pool name provided");
5611 goto out_err;
5612 }
5613
5614 spec->image_name = dup_token(&buf, NULL);
5615 if (!spec->image_name)
5616 goto out_mem;
5617 if (!*spec->image_name) {
5618 rbd_warn(NULL, "no image name provided");
5619 goto out_err;
5620 }
5621
5622 /*
5623 * Snapshot name is optional; default is to use "-"
5624 * (indicating the head/no snapshot).
5625 */
5626 len = next_token(&buf);
5627 if (!len) {
5628 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5629 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5630 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5631 ret = -ENAMETOOLONG;
5632 goto out_err;
5633 }
5634 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5635 if (!snap_name)
5636 goto out_mem;
5637 *(snap_name + len) = '\0';
5638 spec->snap_name = snap_name;
5639
5640 /* Initialize all rbd options to the defaults */
5641
5642 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5643 if (!rbd_opts)
5644 goto out_mem;
5645
5646 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5647 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5648 rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5649 rbd_opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
5650
5651 copts = ceph_parse_options(options, mon_addrs,
5652 mon_addrs + mon_addrs_size - 1,
5653 parse_rbd_opts_token, rbd_opts);
5654 if (IS_ERR(copts)) {
5655 ret = PTR_ERR(copts);
5656 goto out_err;
5657 }
5658 kfree(options);
5659
5660 *ceph_opts = copts;
5661 *opts = rbd_opts;
5662 *rbd_spec = spec;
5663
5664 return 0;
5665 out_mem:
5666 ret = -ENOMEM;
5667 out_err:
5668 kfree(rbd_opts);
5669 rbd_spec_put(spec);
5670 kfree(options);
5671
5672 return ret;
5673 }
5674
5675 /*
5676 * Return pool id (>= 0) or a negative error code.
5677 */
5678 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
5679 {
5680 struct ceph_options *opts = rbdc->client->options;
5681 u64 newest_epoch;
5682 int tries = 0;
5683 int ret;
5684
5685 again:
5686 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5687 if (ret == -ENOENT && tries++ < 1) {
5688 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap",
5689 &newest_epoch);
5690 if (ret < 0)
5691 return ret;
5692
5693 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5694 ceph_osdc_maybe_request_map(&rbdc->client->osdc);
5695 (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5696 newest_epoch,
5697 opts->mount_timeout);
5698 goto again;
5699 } else {
5700 /* the osdmap we have is new enough */
5701 return -ENOENT;
5702 }
5703 }
5704
5705 return ret;
5706 }
5707
5708 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
5709 {
5710 down_write(&rbd_dev->lock_rwsem);
5711 if (__rbd_is_lock_owner(rbd_dev))
5712 rbd_unlock(rbd_dev);
5713 up_write(&rbd_dev->lock_rwsem);
5714 }
5715
5716 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
5717 {
5718 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
5719 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
5720 return -EINVAL;
5721 }
5722
5723 /* FIXME: "rbd map --exclusive" should be in interruptible */
5724 down_read(&rbd_dev->lock_rwsem);
5725 rbd_wait_state_locked(rbd_dev);
5726 up_read(&rbd_dev->lock_rwsem);
5727 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
5728 rbd_warn(rbd_dev, "failed to acquire exclusive lock");
5729 return -EROFS;
5730 }
5731
5732 return 0;
5733 }
5734
5735 /*
5736 * An rbd format 2 image has a unique identifier, distinct from the
5737 * name given to it by the user. Internally, that identifier is
5738 * what's used to specify the names of objects related to the image.
5739 *
5740 * A special "rbd id" object is used to map an rbd image name to its
5741 * id. If that object doesn't exist, then there is no v2 rbd image
5742 * with the supplied name.
5743 *
5744 * This function will record the given rbd_dev's image_id field if
5745 * it can be determined, and in that case will return 0. If any
5746 * errors occur a negative errno will be returned and the rbd_dev's
5747 * image_id field will be unchanged (and should be NULL).
5748 */
5749 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5750 {
5751 int ret;
5752 size_t size;
5753 CEPH_DEFINE_OID_ONSTACK(oid);
5754 void *response;
5755 char *image_id;
5756
5757 /*
5758 * When probing a parent image, the image id is already
5759 * known (and the image name likely is not). There's no
5760 * need to fetch the image id again in this case. We
5761 * do still need to set the image format though.
5762 */
5763 if (rbd_dev->spec->image_id) {
5764 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5765
5766 return 0;
5767 }
5768
5769 /*
5770 * First, see if the format 2 image id file exists, and if
5771 * so, get the image's persistent id from it.
5772 */
5773 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5774 rbd_dev->spec->image_name);
5775 if (ret)
5776 return ret;
5777
5778 dout("rbd id object name is %s\n", oid.name);
5779
5780 /* Response will be an encoded string, which includes a length */
5781
5782 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5783 response = kzalloc(size, GFP_NOIO);
5784 if (!response) {
5785 ret = -ENOMEM;
5786 goto out;
5787 }
5788
5789 /* If it doesn't exist we'll assume it's a format 1 image */
5790
5791 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5792 "get_id", NULL, 0,
5793 response, RBD_IMAGE_ID_LEN_MAX);
5794 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5795 if (ret == -ENOENT) {
5796 image_id = kstrdup("", GFP_KERNEL);
5797 ret = image_id ? 0 : -ENOMEM;
5798 if (!ret)
5799 rbd_dev->image_format = 1;
5800 } else if (ret >= 0) {
5801 void *p = response;
5802
5803 image_id = ceph_extract_encoded_string(&p, p + ret,
5804 NULL, GFP_NOIO);
5805 ret = PTR_ERR_OR_ZERO(image_id);
5806 if (!ret)
5807 rbd_dev->image_format = 2;
5808 }
5809
5810 if (!ret) {
5811 rbd_dev->spec->image_id = image_id;
5812 dout("image_id is %s\n", image_id);
5813 }
5814 out:
5815 kfree(response);
5816 ceph_oid_destroy(&oid);
5817 return ret;
5818 }
5819
5820 /*
5821 * Undo whatever state changes are made by v1 or v2 header info
5822 * call.
5823 */
5824 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5825 {
5826 struct rbd_image_header *header;
5827
5828 rbd_dev_parent_put(rbd_dev);
5829
5830 /* Free dynamic fields from the header, then zero it out */
5831
5832 header = &rbd_dev->header;
5833 ceph_put_snap_context(header->snapc);
5834 kfree(header->snap_sizes);
5835 kfree(header->snap_names);
5836 kfree(header->object_prefix);
5837 memset(header, 0, sizeof (*header));
5838 }
5839
5840 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5841 {
5842 int ret;
5843
5844 ret = rbd_dev_v2_object_prefix(rbd_dev);
5845 if (ret)
5846 goto out_err;
5847
5848 /*
5849 * Get the and check features for the image. Currently the
5850 * features are assumed to never change.
5851 */
5852 ret = rbd_dev_v2_features(rbd_dev);
5853 if (ret)
5854 goto out_err;
5855
5856 /* If the image supports fancy striping, get its parameters */
5857
5858 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5859 ret = rbd_dev_v2_striping_info(rbd_dev);
5860 if (ret < 0)
5861 goto out_err;
5862 }
5863
5864 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5865 ret = rbd_dev_v2_data_pool(rbd_dev);
5866 if (ret)
5867 goto out_err;
5868 }
5869
5870 rbd_init_layout(rbd_dev);
5871 return 0;
5872
5873 out_err:
5874 rbd_dev->header.features = 0;
5875 kfree(rbd_dev->header.object_prefix);
5876 rbd_dev->header.object_prefix = NULL;
5877 return ret;
5878 }
5879
5880 /*
5881 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5882 * rbd_dev_image_probe() recursion depth, which means it's also the
5883 * length of the already discovered part of the parent chain.
5884 */
5885 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5886 {
5887 struct rbd_device *parent = NULL;
5888 int ret;
5889
5890 if (!rbd_dev->parent_spec)
5891 return 0;
5892
5893 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5894 pr_info("parent chain is too long (%d)\n", depth);
5895 ret = -EINVAL;
5896 goto out_err;
5897 }
5898
5899 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5900 if (!parent) {
5901 ret = -ENOMEM;
5902 goto out_err;
5903 }
5904
5905 /*
5906 * Images related by parent/child relationships always share
5907 * rbd_client and spec/parent_spec, so bump their refcounts.
5908 */
5909 __rbd_get_client(rbd_dev->rbd_client);
5910 rbd_spec_get(rbd_dev->parent_spec);
5911
5912 ret = rbd_dev_image_probe(parent, depth);
5913 if (ret < 0)
5914 goto out_err;
5915
5916 rbd_dev->parent = parent;
5917 atomic_set(&rbd_dev->parent_ref, 1);
5918 return 0;
5919
5920 out_err:
5921 rbd_dev_unparent(rbd_dev);
5922 rbd_dev_destroy(parent);
5923 return ret;
5924 }
5925
5926 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5927 {
5928 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5929 rbd_dev_mapping_clear(rbd_dev);
5930 rbd_free_disk(rbd_dev);
5931 if (!single_major)
5932 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5933 }
5934
5935 /*
5936 * rbd_dev->header_rwsem must be locked for write and will be unlocked
5937 * upon return.
5938 */
5939 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5940 {
5941 int ret;
5942
5943 /* Record our major and minor device numbers. */
5944
5945 if (!single_major) {
5946 ret = register_blkdev(0, rbd_dev->name);
5947 if (ret < 0)
5948 goto err_out_unlock;
5949
5950 rbd_dev->major = ret;
5951 rbd_dev->minor = 0;
5952 } else {
5953 rbd_dev->major = rbd_major;
5954 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5955 }
5956
5957 /* Set up the blkdev mapping. */
5958
5959 ret = rbd_init_disk(rbd_dev);
5960 if (ret)
5961 goto err_out_blkdev;
5962
5963 ret = rbd_dev_mapping_set(rbd_dev);
5964 if (ret)
5965 goto err_out_disk;
5966
5967 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5968 set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
5969
5970 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5971 if (ret)
5972 goto err_out_mapping;
5973
5974 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5975 up_write(&rbd_dev->header_rwsem);
5976 return 0;
5977
5978 err_out_mapping:
5979 rbd_dev_mapping_clear(rbd_dev);
5980 err_out_disk:
5981 rbd_free_disk(rbd_dev);
5982 err_out_blkdev:
5983 if (!single_major)
5984 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5985 err_out_unlock:
5986 up_write(&rbd_dev->header_rwsem);
5987 return ret;
5988 }
5989
5990 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5991 {
5992 struct rbd_spec *spec = rbd_dev->spec;
5993 int ret;
5994
5995 /* Record the header object name for this rbd image. */
5996
5997 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5998 if (rbd_dev->image_format == 1)
5999 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6000 spec->image_name, RBD_SUFFIX);
6001 else
6002 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6003 RBD_HEADER_PREFIX, spec->image_id);
6004
6005 return ret;
6006 }
6007
6008 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6009 {
6010 rbd_dev_unprobe(rbd_dev);
6011 if (rbd_dev->opts)
6012 rbd_unregister_watch(rbd_dev);
6013 rbd_dev->image_format = 0;
6014 kfree(rbd_dev->spec->image_id);
6015 rbd_dev->spec->image_id = NULL;
6016 }
6017
6018 /*
6019 * Probe for the existence of the header object for the given rbd
6020 * device. If this image is the one being mapped (i.e., not a
6021 * parent), initiate a watch on its header object before using that
6022 * object to get detailed information about the rbd image.
6023 */
6024 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6025 {
6026 int ret;
6027
6028 /*
6029 * Get the id from the image id object. Unless there's an
6030 * error, rbd_dev->spec->image_id will be filled in with
6031 * a dynamically-allocated string, and rbd_dev->image_format
6032 * will be set to either 1 or 2.
6033 */
6034 ret = rbd_dev_image_id(rbd_dev);
6035 if (ret)
6036 return ret;
6037
6038 ret = rbd_dev_header_name(rbd_dev);
6039 if (ret)
6040 goto err_out_format;
6041
6042 if (!depth) {
6043 ret = rbd_register_watch(rbd_dev);
6044 if (ret) {
6045 if (ret == -ENOENT)
6046 pr_info("image %s/%s does not exist\n",
6047 rbd_dev->spec->pool_name,
6048 rbd_dev->spec->image_name);
6049 goto err_out_format;
6050 }
6051 }
6052
6053 ret = rbd_dev_header_info(rbd_dev);
6054 if (ret)
6055 goto err_out_watch;
6056
6057 /*
6058 * If this image is the one being mapped, we have pool name and
6059 * id, image name and id, and snap name - need to fill snap id.
6060 * Otherwise this is a parent image, identified by pool, image
6061 * and snap ids - need to fill in names for those ids.
6062 */
6063 if (!depth)
6064 ret = rbd_spec_fill_snap_id(rbd_dev);
6065 else
6066 ret = rbd_spec_fill_names(rbd_dev);
6067 if (ret) {
6068 if (ret == -ENOENT)
6069 pr_info("snap %s/%s@%s does not exist\n",
6070 rbd_dev->spec->pool_name,
6071 rbd_dev->spec->image_name,
6072 rbd_dev->spec->snap_name);
6073 goto err_out_probe;
6074 }
6075
6076 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6077 ret = rbd_dev_v2_parent_info(rbd_dev);
6078 if (ret)
6079 goto err_out_probe;
6080
6081 /*
6082 * Need to warn users if this image is the one being
6083 * mapped and has a parent.
6084 */
6085 if (!depth && rbd_dev->parent_spec)
6086 rbd_warn(rbd_dev,
6087 "WARNING: kernel layering is EXPERIMENTAL!");
6088 }
6089
6090 ret = rbd_dev_probe_parent(rbd_dev, depth);
6091 if (ret)
6092 goto err_out_probe;
6093
6094 dout("discovered format %u image, header name is %s\n",
6095 rbd_dev->image_format, rbd_dev->header_oid.name);
6096 return 0;
6097
6098 err_out_probe:
6099 rbd_dev_unprobe(rbd_dev);
6100 err_out_watch:
6101 if (!depth)
6102 rbd_unregister_watch(rbd_dev);
6103 err_out_format:
6104 rbd_dev->image_format = 0;
6105 kfree(rbd_dev->spec->image_id);
6106 rbd_dev->spec->image_id = NULL;
6107 return ret;
6108 }
6109
6110 static ssize_t do_rbd_add(struct bus_type *bus,
6111 const char *buf,
6112 size_t count)
6113 {
6114 struct rbd_device *rbd_dev = NULL;
6115 struct ceph_options *ceph_opts = NULL;
6116 struct rbd_options *rbd_opts = NULL;
6117 struct rbd_spec *spec = NULL;
6118 struct rbd_client *rbdc;
6119 int rc;
6120
6121 if (!try_module_get(THIS_MODULE))
6122 return -ENODEV;
6123
6124 /* parse add command */
6125 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6126 if (rc < 0)
6127 goto out;
6128
6129 rbdc = rbd_get_client(ceph_opts);
6130 if (IS_ERR(rbdc)) {
6131 rc = PTR_ERR(rbdc);
6132 goto err_out_args;
6133 }
6134
6135 /* pick the pool */
6136 rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
6137 if (rc < 0) {
6138 if (rc == -ENOENT)
6139 pr_info("pool %s does not exist\n", spec->pool_name);
6140 goto err_out_client;
6141 }
6142 spec->pool_id = (u64)rc;
6143
6144 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
6145 if (!rbd_dev) {
6146 rc = -ENOMEM;
6147 goto err_out_client;
6148 }
6149 rbdc = NULL; /* rbd_dev now owns this */
6150 spec = NULL; /* rbd_dev now owns this */
6151 rbd_opts = NULL; /* rbd_dev now owns this */
6152
6153 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
6154 if (!rbd_dev->config_info) {
6155 rc = -ENOMEM;
6156 goto err_out_rbd_dev;
6157 }
6158
6159 down_write(&rbd_dev->header_rwsem);
6160 rc = rbd_dev_image_probe(rbd_dev, 0);
6161 if (rc < 0) {
6162 up_write(&rbd_dev->header_rwsem);
6163 goto err_out_rbd_dev;
6164 }
6165
6166 /* If we are mapping a snapshot it must be marked read-only */
6167 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6168 rbd_dev->opts->read_only = true;
6169
6170 rc = rbd_dev_device_setup(rbd_dev);
6171 if (rc)
6172 goto err_out_image_probe;
6173
6174 if (rbd_dev->opts->exclusive) {
6175 rc = rbd_add_acquire_lock(rbd_dev);
6176 if (rc)
6177 goto err_out_device_setup;
6178 }
6179
6180 /* Everything's ready. Announce the disk to the world. */
6181
6182 rc = device_add(&rbd_dev->dev);
6183 if (rc)
6184 goto err_out_image_lock;
6185
6186 add_disk(rbd_dev->disk);
6187 /* see rbd_init_disk() */
6188 blk_put_queue(rbd_dev->disk->queue);
6189
6190 spin_lock(&rbd_dev_list_lock);
6191 list_add_tail(&rbd_dev->node, &rbd_dev_list);
6192 spin_unlock(&rbd_dev_list_lock);
6193
6194 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
6195 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
6196 rbd_dev->header.features);
6197 rc = count;
6198 out:
6199 module_put(THIS_MODULE);
6200 return rc;
6201
6202 err_out_image_lock:
6203 rbd_dev_image_unlock(rbd_dev);
6204 err_out_device_setup:
6205 rbd_dev_device_release(rbd_dev);
6206 err_out_image_probe:
6207 rbd_dev_image_release(rbd_dev);
6208 err_out_rbd_dev:
6209 rbd_dev_destroy(rbd_dev);
6210 err_out_client:
6211 rbd_put_client(rbdc);
6212 err_out_args:
6213 rbd_spec_put(spec);
6214 kfree(rbd_opts);
6215 goto out;
6216 }
6217
6218 static ssize_t rbd_add(struct bus_type *bus,
6219 const char *buf,
6220 size_t count)
6221 {
6222 if (single_major)
6223 return -EINVAL;
6224
6225 return do_rbd_add(bus, buf, count);
6226 }
6227
6228 static ssize_t rbd_add_single_major(struct bus_type *bus,
6229 const char *buf,
6230 size_t count)
6231 {
6232 return do_rbd_add(bus, buf, count);
6233 }
6234
6235 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
6236 {
6237 while (rbd_dev->parent) {
6238 struct rbd_device *first = rbd_dev;
6239 struct rbd_device *second = first->parent;
6240 struct rbd_device *third;
6241
6242 /*
6243 * Follow to the parent with no grandparent and
6244 * remove it.
6245 */
6246 while (second && (third = second->parent)) {
6247 first = second;
6248 second = third;
6249 }
6250 rbd_assert(second);
6251 rbd_dev_image_release(second);
6252 rbd_dev_destroy(second);
6253 first->parent = NULL;
6254 first->parent_overlap = 0;
6255
6256 rbd_assert(first->parent_spec);
6257 rbd_spec_put(first->parent_spec);
6258 first->parent_spec = NULL;
6259 }
6260 }
6261
6262 static ssize_t do_rbd_remove(struct bus_type *bus,
6263 const char *buf,
6264 size_t count)
6265 {
6266 struct rbd_device *rbd_dev = NULL;
6267 struct list_head *tmp;
6268 int dev_id;
6269 char opt_buf[6];
6270 bool already = false;
6271 bool force = false;
6272 int ret;
6273
6274 dev_id = -1;
6275 opt_buf[0] = '\0';
6276 sscanf(buf, "%d %5s", &dev_id, opt_buf);
6277 if (dev_id < 0) {
6278 pr_err("dev_id out of range\n");
6279 return -EINVAL;
6280 }
6281 if (opt_buf[0] != '\0') {
6282 if (!strcmp(opt_buf, "force")) {
6283 force = true;
6284 } else {
6285 pr_err("bad remove option at '%s'\n", opt_buf);
6286 return -EINVAL;
6287 }
6288 }
6289
6290 ret = -ENOENT;
6291 spin_lock(&rbd_dev_list_lock);
6292 list_for_each(tmp, &rbd_dev_list) {
6293 rbd_dev = list_entry(tmp, struct rbd_device, node);
6294 if (rbd_dev->dev_id == dev_id) {
6295 ret = 0;
6296 break;
6297 }
6298 }
6299 if (!ret) {
6300 spin_lock_irq(&rbd_dev->lock);
6301 if (rbd_dev->open_count && !force)
6302 ret = -EBUSY;
6303 else
6304 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6305 &rbd_dev->flags);
6306 spin_unlock_irq(&rbd_dev->lock);
6307 }
6308 spin_unlock(&rbd_dev_list_lock);
6309 if (ret < 0 || already)
6310 return ret;
6311
6312 if (force) {
6313 /*
6314 * Prevent new IO from being queued and wait for existing
6315 * IO to complete/fail.
6316 */
6317 blk_mq_freeze_queue(rbd_dev->disk->queue);
6318 blk_set_queue_dying(rbd_dev->disk->queue);
6319 }
6320
6321 del_gendisk(rbd_dev->disk);
6322 spin_lock(&rbd_dev_list_lock);
6323 list_del_init(&rbd_dev->node);
6324 spin_unlock(&rbd_dev_list_lock);
6325 device_del(&rbd_dev->dev);
6326
6327 rbd_dev_image_unlock(rbd_dev);
6328 rbd_dev_device_release(rbd_dev);
6329 rbd_dev_image_release(rbd_dev);
6330 rbd_dev_destroy(rbd_dev);
6331 return count;
6332 }
6333
6334 static ssize_t rbd_remove(struct bus_type *bus,
6335 const char *buf,
6336 size_t count)
6337 {
6338 if (single_major)
6339 return -EINVAL;
6340
6341 return do_rbd_remove(bus, buf, count);
6342 }
6343
6344 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6345 const char *buf,
6346 size_t count)
6347 {
6348 return do_rbd_remove(bus, buf, count);
6349 }
6350
6351 /*
6352 * create control files in sysfs
6353 * /sys/bus/rbd/...
6354 */
6355 static int rbd_sysfs_init(void)
6356 {
6357 int ret;
6358
6359 ret = device_register(&rbd_root_dev);
6360 if (ret < 0)
6361 return ret;
6362
6363 ret = bus_register(&rbd_bus_type);
6364 if (ret < 0)
6365 device_unregister(&rbd_root_dev);
6366
6367 return ret;
6368 }
6369
6370 static void rbd_sysfs_cleanup(void)
6371 {
6372 bus_unregister(&rbd_bus_type);
6373 device_unregister(&rbd_root_dev);
6374 }
6375
6376 static int rbd_slab_init(void)
6377 {
6378 rbd_assert(!rbd_img_request_cache);
6379 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6380 if (!rbd_img_request_cache)
6381 return -ENOMEM;
6382
6383 rbd_assert(!rbd_obj_request_cache);
6384 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6385 if (!rbd_obj_request_cache)
6386 goto out_err;
6387
6388 rbd_assert(!rbd_bio_clone);
6389 rbd_bio_clone = bioset_create(BIO_POOL_SIZE, 0, 0);
6390 if (!rbd_bio_clone)
6391 goto out_err_clone;
6392
6393 return 0;
6394
6395 out_err_clone:
6396 kmem_cache_destroy(rbd_obj_request_cache);
6397 rbd_obj_request_cache = NULL;
6398 out_err:
6399 kmem_cache_destroy(rbd_img_request_cache);
6400 rbd_img_request_cache = NULL;
6401 return -ENOMEM;
6402 }
6403
6404 static void rbd_slab_exit(void)
6405 {
6406 rbd_assert(rbd_obj_request_cache);
6407 kmem_cache_destroy(rbd_obj_request_cache);
6408 rbd_obj_request_cache = NULL;
6409
6410 rbd_assert(rbd_img_request_cache);
6411 kmem_cache_destroy(rbd_img_request_cache);
6412 rbd_img_request_cache = NULL;
6413
6414 rbd_assert(rbd_bio_clone);
6415 bioset_free(rbd_bio_clone);
6416 rbd_bio_clone = NULL;
6417 }
6418
6419 static int __init rbd_init(void)
6420 {
6421 int rc;
6422
6423 if (!libceph_compatible(NULL)) {
6424 rbd_warn(NULL, "libceph incompatibility (quitting)");
6425 return -EINVAL;
6426 }
6427
6428 rc = rbd_slab_init();
6429 if (rc)
6430 return rc;
6431
6432 /*
6433 * The number of active work items is limited by the number of
6434 * rbd devices * queue depth, so leave @max_active at default.
6435 */
6436 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6437 if (!rbd_wq) {
6438 rc = -ENOMEM;
6439 goto err_out_slab;
6440 }
6441
6442 if (single_major) {
6443 rbd_major = register_blkdev(0, RBD_DRV_NAME);
6444 if (rbd_major < 0) {
6445 rc = rbd_major;
6446 goto err_out_wq;
6447 }
6448 }
6449
6450 rc = rbd_sysfs_init();
6451 if (rc)
6452 goto err_out_blkdev;
6453
6454 if (single_major)
6455 pr_info("loaded (major %d)\n", rbd_major);
6456 else
6457 pr_info("loaded\n");
6458
6459 return 0;
6460
6461 err_out_blkdev:
6462 if (single_major)
6463 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6464 err_out_wq:
6465 destroy_workqueue(rbd_wq);
6466 err_out_slab:
6467 rbd_slab_exit();
6468 return rc;
6469 }
6470
6471 static void __exit rbd_exit(void)
6472 {
6473 ida_destroy(&rbd_dev_id_ida);
6474 rbd_sysfs_cleanup();
6475 if (single_major)
6476 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6477 destroy_workqueue(rbd_wq);
6478 rbd_slab_exit();
6479 }
6480
6481 module_init(rbd_init);
6482 module_exit(rbd_exit);
6483
6484 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6485 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6486 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6487 /* following authorship retained from original osdblk.c */
6488 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6489
6490 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6491 MODULE_LICENSE("GPL");