]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/zram/zram_drv.c
zram: remove obsolete ZRAM_DEBUG option
[mirror_ubuntu-artful-kernel.git] / drivers / block / zram / zram_drv.c
1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31
32 #include "zram_drv.h"
33
34 /* Globals */
35 static int zram_major;
36 static struct zram *zram_devices;
37 static const char *default_compressor = "lzo";
38
39 /* Module params (documentation at end) */
40 static unsigned int num_devices = 1;
41
42 static inline void deprecated_attr_warn(const char *name)
43 {
44 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
45 task_pid_nr(current),
46 current->comm,
47 name,
48 "See zram documentation.");
49 }
50
51 #define ZRAM_ATTR_RO(name) \
52 static ssize_t name##_show(struct device *d, \
53 struct device_attribute *attr, char *b) \
54 { \
55 struct zram *zram = dev_to_zram(d); \
56 \
57 deprecated_attr_warn(__stringify(name)); \
58 return scnprintf(b, PAGE_SIZE, "%llu\n", \
59 (u64)atomic64_read(&zram->stats.name)); \
60 } \
61 static DEVICE_ATTR_RO(name);
62
63 static inline bool init_done(struct zram *zram)
64 {
65 return zram->disksize;
66 }
67
68 static inline struct zram *dev_to_zram(struct device *dev)
69 {
70 return (struct zram *)dev_to_disk(dev)->private_data;
71 }
72
73 static ssize_t compact_store(struct device *dev,
74 struct device_attribute *attr, const char *buf, size_t len)
75 {
76 unsigned long nr_migrated;
77 struct zram *zram = dev_to_zram(dev);
78 struct zram_meta *meta;
79
80 down_read(&zram->init_lock);
81 if (!init_done(zram)) {
82 up_read(&zram->init_lock);
83 return -EINVAL;
84 }
85
86 meta = zram->meta;
87 nr_migrated = zs_compact(meta->mem_pool);
88 atomic64_add(nr_migrated, &zram->stats.num_migrated);
89 up_read(&zram->init_lock);
90
91 return len;
92 }
93
94 static ssize_t disksize_show(struct device *dev,
95 struct device_attribute *attr, char *buf)
96 {
97 struct zram *zram = dev_to_zram(dev);
98
99 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
100 }
101
102 static ssize_t initstate_show(struct device *dev,
103 struct device_attribute *attr, char *buf)
104 {
105 u32 val;
106 struct zram *zram = dev_to_zram(dev);
107
108 down_read(&zram->init_lock);
109 val = init_done(zram);
110 up_read(&zram->init_lock);
111
112 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
113 }
114
115 static ssize_t orig_data_size_show(struct device *dev,
116 struct device_attribute *attr, char *buf)
117 {
118 struct zram *zram = dev_to_zram(dev);
119
120 deprecated_attr_warn("orig_data_size");
121 return scnprintf(buf, PAGE_SIZE, "%llu\n",
122 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
123 }
124
125 static ssize_t mem_used_total_show(struct device *dev,
126 struct device_attribute *attr, char *buf)
127 {
128 u64 val = 0;
129 struct zram *zram = dev_to_zram(dev);
130
131 deprecated_attr_warn("mem_used_total");
132 down_read(&zram->init_lock);
133 if (init_done(zram)) {
134 struct zram_meta *meta = zram->meta;
135 val = zs_get_total_pages(meta->mem_pool);
136 }
137 up_read(&zram->init_lock);
138
139 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
140 }
141
142 static ssize_t max_comp_streams_show(struct device *dev,
143 struct device_attribute *attr, char *buf)
144 {
145 int val;
146 struct zram *zram = dev_to_zram(dev);
147
148 down_read(&zram->init_lock);
149 val = zram->max_comp_streams;
150 up_read(&zram->init_lock);
151
152 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
153 }
154
155 static ssize_t mem_limit_show(struct device *dev,
156 struct device_attribute *attr, char *buf)
157 {
158 u64 val;
159 struct zram *zram = dev_to_zram(dev);
160
161 deprecated_attr_warn("mem_limit");
162 down_read(&zram->init_lock);
163 val = zram->limit_pages;
164 up_read(&zram->init_lock);
165
166 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
167 }
168
169 static ssize_t mem_limit_store(struct device *dev,
170 struct device_attribute *attr, const char *buf, size_t len)
171 {
172 u64 limit;
173 char *tmp;
174 struct zram *zram = dev_to_zram(dev);
175
176 limit = memparse(buf, &tmp);
177 if (buf == tmp) /* no chars parsed, invalid input */
178 return -EINVAL;
179
180 down_write(&zram->init_lock);
181 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
182 up_write(&zram->init_lock);
183
184 return len;
185 }
186
187 static ssize_t mem_used_max_show(struct device *dev,
188 struct device_attribute *attr, char *buf)
189 {
190 u64 val = 0;
191 struct zram *zram = dev_to_zram(dev);
192
193 deprecated_attr_warn("mem_used_max");
194 down_read(&zram->init_lock);
195 if (init_done(zram))
196 val = atomic_long_read(&zram->stats.max_used_pages);
197 up_read(&zram->init_lock);
198
199 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
200 }
201
202 static ssize_t mem_used_max_store(struct device *dev,
203 struct device_attribute *attr, const char *buf, size_t len)
204 {
205 int err;
206 unsigned long val;
207 struct zram *zram = dev_to_zram(dev);
208
209 err = kstrtoul(buf, 10, &val);
210 if (err || val != 0)
211 return -EINVAL;
212
213 down_read(&zram->init_lock);
214 if (init_done(zram)) {
215 struct zram_meta *meta = zram->meta;
216 atomic_long_set(&zram->stats.max_used_pages,
217 zs_get_total_pages(meta->mem_pool));
218 }
219 up_read(&zram->init_lock);
220
221 return len;
222 }
223
224 static ssize_t max_comp_streams_store(struct device *dev,
225 struct device_attribute *attr, const char *buf, size_t len)
226 {
227 int num;
228 struct zram *zram = dev_to_zram(dev);
229 int ret;
230
231 ret = kstrtoint(buf, 0, &num);
232 if (ret < 0)
233 return ret;
234 if (num < 1)
235 return -EINVAL;
236
237 down_write(&zram->init_lock);
238 if (init_done(zram)) {
239 if (!zcomp_set_max_streams(zram->comp, num)) {
240 pr_info("Cannot change max compression streams\n");
241 ret = -EINVAL;
242 goto out;
243 }
244 }
245
246 zram->max_comp_streams = num;
247 ret = len;
248 out:
249 up_write(&zram->init_lock);
250 return ret;
251 }
252
253 static ssize_t comp_algorithm_show(struct device *dev,
254 struct device_attribute *attr, char *buf)
255 {
256 size_t sz;
257 struct zram *zram = dev_to_zram(dev);
258
259 down_read(&zram->init_lock);
260 sz = zcomp_available_show(zram->compressor, buf);
261 up_read(&zram->init_lock);
262
263 return sz;
264 }
265
266 static ssize_t comp_algorithm_store(struct device *dev,
267 struct device_attribute *attr, const char *buf, size_t len)
268 {
269 struct zram *zram = dev_to_zram(dev);
270 down_write(&zram->init_lock);
271 if (init_done(zram)) {
272 up_write(&zram->init_lock);
273 pr_info("Can't change algorithm for initialized device\n");
274 return -EBUSY;
275 }
276 strlcpy(zram->compressor, buf, sizeof(zram->compressor));
277 up_write(&zram->init_lock);
278 return len;
279 }
280
281 /* flag operations needs meta->tb_lock */
282 static int zram_test_flag(struct zram_meta *meta, u32 index,
283 enum zram_pageflags flag)
284 {
285 return meta->table[index].value & BIT(flag);
286 }
287
288 static void zram_set_flag(struct zram_meta *meta, u32 index,
289 enum zram_pageflags flag)
290 {
291 meta->table[index].value |= BIT(flag);
292 }
293
294 static void zram_clear_flag(struct zram_meta *meta, u32 index,
295 enum zram_pageflags flag)
296 {
297 meta->table[index].value &= ~BIT(flag);
298 }
299
300 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
301 {
302 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
303 }
304
305 static void zram_set_obj_size(struct zram_meta *meta,
306 u32 index, size_t size)
307 {
308 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
309
310 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
311 }
312
313 static inline int is_partial_io(struct bio_vec *bvec)
314 {
315 return bvec->bv_len != PAGE_SIZE;
316 }
317
318 /*
319 * Check if request is within bounds and aligned on zram logical blocks.
320 */
321 static inline int valid_io_request(struct zram *zram,
322 sector_t start, unsigned int size)
323 {
324 u64 end, bound;
325
326 /* unaligned request */
327 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
328 return 0;
329 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
330 return 0;
331
332 end = start + (size >> SECTOR_SHIFT);
333 bound = zram->disksize >> SECTOR_SHIFT;
334 /* out of range range */
335 if (unlikely(start >= bound || end > bound || start > end))
336 return 0;
337
338 /* I/O request is valid */
339 return 1;
340 }
341
342 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
343 {
344 size_t num_pages = disksize >> PAGE_SHIFT;
345 size_t index;
346
347 /* Free all pages that are still in this zram device */
348 for (index = 0; index < num_pages; index++) {
349 unsigned long handle = meta->table[index].handle;
350
351 if (!handle)
352 continue;
353
354 zs_free(meta->mem_pool, handle);
355 }
356
357 zs_destroy_pool(meta->mem_pool);
358 vfree(meta->table);
359 kfree(meta);
360 }
361
362 static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
363 {
364 size_t num_pages;
365 char pool_name[8];
366 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
367
368 if (!meta)
369 return NULL;
370
371 num_pages = disksize >> PAGE_SHIFT;
372 meta->table = vzalloc(num_pages * sizeof(*meta->table));
373 if (!meta->table) {
374 pr_err("Error allocating zram address table\n");
375 goto out_error;
376 }
377
378 snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
379 meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
380 if (!meta->mem_pool) {
381 pr_err("Error creating memory pool\n");
382 goto out_error;
383 }
384
385 return meta;
386
387 out_error:
388 vfree(meta->table);
389 kfree(meta);
390 return NULL;
391 }
392
393 static inline bool zram_meta_get(struct zram *zram)
394 {
395 if (atomic_inc_not_zero(&zram->refcount))
396 return true;
397 return false;
398 }
399
400 static inline void zram_meta_put(struct zram *zram)
401 {
402 atomic_dec(&zram->refcount);
403 }
404
405 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
406 {
407 if (*offset + bvec->bv_len >= PAGE_SIZE)
408 (*index)++;
409 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
410 }
411
412 static int page_zero_filled(void *ptr)
413 {
414 unsigned int pos;
415 unsigned long *page;
416
417 page = (unsigned long *)ptr;
418
419 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
420 if (page[pos])
421 return 0;
422 }
423
424 return 1;
425 }
426
427 static void handle_zero_page(struct bio_vec *bvec)
428 {
429 struct page *page = bvec->bv_page;
430 void *user_mem;
431
432 user_mem = kmap_atomic(page);
433 if (is_partial_io(bvec))
434 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
435 else
436 clear_page(user_mem);
437 kunmap_atomic(user_mem);
438
439 flush_dcache_page(page);
440 }
441
442
443 /*
444 * To protect concurrent access to the same index entry,
445 * caller should hold this table index entry's bit_spinlock to
446 * indicate this index entry is accessing.
447 */
448 static void zram_free_page(struct zram *zram, size_t index)
449 {
450 struct zram_meta *meta = zram->meta;
451 unsigned long handle = meta->table[index].handle;
452
453 if (unlikely(!handle)) {
454 /*
455 * No memory is allocated for zero filled pages.
456 * Simply clear zero page flag.
457 */
458 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
459 zram_clear_flag(meta, index, ZRAM_ZERO);
460 atomic64_dec(&zram->stats.zero_pages);
461 }
462 return;
463 }
464
465 zs_free(meta->mem_pool, handle);
466
467 atomic64_sub(zram_get_obj_size(meta, index),
468 &zram->stats.compr_data_size);
469 atomic64_dec(&zram->stats.pages_stored);
470
471 meta->table[index].handle = 0;
472 zram_set_obj_size(meta, index, 0);
473 }
474
475 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
476 {
477 int ret = 0;
478 unsigned char *cmem;
479 struct zram_meta *meta = zram->meta;
480 unsigned long handle;
481 size_t size;
482
483 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
484 handle = meta->table[index].handle;
485 size = zram_get_obj_size(meta, index);
486
487 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
488 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
489 clear_page(mem);
490 return 0;
491 }
492
493 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
494 if (size == PAGE_SIZE)
495 copy_page(mem, cmem);
496 else
497 ret = zcomp_decompress(zram->comp, cmem, size, mem);
498 zs_unmap_object(meta->mem_pool, handle);
499 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
500
501 /* Should NEVER happen. Return bio error if it does. */
502 if (unlikely(ret)) {
503 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
504 return ret;
505 }
506
507 return 0;
508 }
509
510 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
511 u32 index, int offset)
512 {
513 int ret;
514 struct page *page;
515 unsigned char *user_mem, *uncmem = NULL;
516 struct zram_meta *meta = zram->meta;
517 page = bvec->bv_page;
518
519 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
520 if (unlikely(!meta->table[index].handle) ||
521 zram_test_flag(meta, index, ZRAM_ZERO)) {
522 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
523 handle_zero_page(bvec);
524 return 0;
525 }
526 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
527
528 if (is_partial_io(bvec))
529 /* Use a temporary buffer to decompress the page */
530 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
531
532 user_mem = kmap_atomic(page);
533 if (!is_partial_io(bvec))
534 uncmem = user_mem;
535
536 if (!uncmem) {
537 pr_info("Unable to allocate temp memory\n");
538 ret = -ENOMEM;
539 goto out_cleanup;
540 }
541
542 ret = zram_decompress_page(zram, uncmem, index);
543 /* Should NEVER happen. Return bio error if it does. */
544 if (unlikely(ret))
545 goto out_cleanup;
546
547 if (is_partial_io(bvec))
548 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
549 bvec->bv_len);
550
551 flush_dcache_page(page);
552 ret = 0;
553 out_cleanup:
554 kunmap_atomic(user_mem);
555 if (is_partial_io(bvec))
556 kfree(uncmem);
557 return ret;
558 }
559
560 static inline void update_used_max(struct zram *zram,
561 const unsigned long pages)
562 {
563 unsigned long old_max, cur_max;
564
565 old_max = atomic_long_read(&zram->stats.max_used_pages);
566
567 do {
568 cur_max = old_max;
569 if (pages > cur_max)
570 old_max = atomic_long_cmpxchg(
571 &zram->stats.max_used_pages, cur_max, pages);
572 } while (old_max != cur_max);
573 }
574
575 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
576 int offset)
577 {
578 int ret = 0;
579 size_t clen;
580 unsigned long handle;
581 struct page *page;
582 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
583 struct zram_meta *meta = zram->meta;
584 struct zcomp_strm *zstrm;
585 bool locked = false;
586 unsigned long alloced_pages;
587
588 page = bvec->bv_page;
589 if (is_partial_io(bvec)) {
590 /*
591 * This is a partial IO. We need to read the full page
592 * before to write the changes.
593 */
594 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
595 if (!uncmem) {
596 ret = -ENOMEM;
597 goto out;
598 }
599 ret = zram_decompress_page(zram, uncmem, index);
600 if (ret)
601 goto out;
602 }
603
604 zstrm = zcomp_strm_find(zram->comp);
605 locked = true;
606 user_mem = kmap_atomic(page);
607
608 if (is_partial_io(bvec)) {
609 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
610 bvec->bv_len);
611 kunmap_atomic(user_mem);
612 user_mem = NULL;
613 } else {
614 uncmem = user_mem;
615 }
616
617 if (page_zero_filled(uncmem)) {
618 if (user_mem)
619 kunmap_atomic(user_mem);
620 /* Free memory associated with this sector now. */
621 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
622 zram_free_page(zram, index);
623 zram_set_flag(meta, index, ZRAM_ZERO);
624 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
625
626 atomic64_inc(&zram->stats.zero_pages);
627 ret = 0;
628 goto out;
629 }
630
631 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
632 if (!is_partial_io(bvec)) {
633 kunmap_atomic(user_mem);
634 user_mem = NULL;
635 uncmem = NULL;
636 }
637
638 if (unlikely(ret)) {
639 pr_err("Compression failed! err=%d\n", ret);
640 goto out;
641 }
642 src = zstrm->buffer;
643 if (unlikely(clen > max_zpage_size)) {
644 clen = PAGE_SIZE;
645 if (is_partial_io(bvec))
646 src = uncmem;
647 }
648
649 handle = zs_malloc(meta->mem_pool, clen);
650 if (!handle) {
651 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
652 index, clen);
653 ret = -ENOMEM;
654 goto out;
655 }
656
657 alloced_pages = zs_get_total_pages(meta->mem_pool);
658 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
659 zs_free(meta->mem_pool, handle);
660 ret = -ENOMEM;
661 goto out;
662 }
663
664 update_used_max(zram, alloced_pages);
665
666 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
667
668 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
669 src = kmap_atomic(page);
670 copy_page(cmem, src);
671 kunmap_atomic(src);
672 } else {
673 memcpy(cmem, src, clen);
674 }
675
676 zcomp_strm_release(zram->comp, zstrm);
677 locked = false;
678 zs_unmap_object(meta->mem_pool, handle);
679
680 /*
681 * Free memory associated with this sector
682 * before overwriting unused sectors.
683 */
684 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
685 zram_free_page(zram, index);
686
687 meta->table[index].handle = handle;
688 zram_set_obj_size(meta, index, clen);
689 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
690
691 /* Update stats */
692 atomic64_add(clen, &zram->stats.compr_data_size);
693 atomic64_inc(&zram->stats.pages_stored);
694 out:
695 if (locked)
696 zcomp_strm_release(zram->comp, zstrm);
697 if (is_partial_io(bvec))
698 kfree(uncmem);
699 return ret;
700 }
701
702 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
703 int offset, int rw)
704 {
705 unsigned long start_time = jiffies;
706 int ret;
707
708 generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
709 &zram->disk->part0);
710
711 if (rw == READ) {
712 atomic64_inc(&zram->stats.num_reads);
713 ret = zram_bvec_read(zram, bvec, index, offset);
714 } else {
715 atomic64_inc(&zram->stats.num_writes);
716 ret = zram_bvec_write(zram, bvec, index, offset);
717 }
718
719 generic_end_io_acct(rw, &zram->disk->part0, start_time);
720
721 if (unlikely(ret)) {
722 if (rw == READ)
723 atomic64_inc(&zram->stats.failed_reads);
724 else
725 atomic64_inc(&zram->stats.failed_writes);
726 }
727
728 return ret;
729 }
730
731 /*
732 * zram_bio_discard - handler on discard request
733 * @index: physical block index in PAGE_SIZE units
734 * @offset: byte offset within physical block
735 */
736 static void zram_bio_discard(struct zram *zram, u32 index,
737 int offset, struct bio *bio)
738 {
739 size_t n = bio->bi_iter.bi_size;
740 struct zram_meta *meta = zram->meta;
741
742 /*
743 * zram manages data in physical block size units. Because logical block
744 * size isn't identical with physical block size on some arch, we
745 * could get a discard request pointing to a specific offset within a
746 * certain physical block. Although we can handle this request by
747 * reading that physiclal block and decompressing and partially zeroing
748 * and re-compressing and then re-storing it, this isn't reasonable
749 * because our intent with a discard request is to save memory. So
750 * skipping this logical block is appropriate here.
751 */
752 if (offset) {
753 if (n <= (PAGE_SIZE - offset))
754 return;
755
756 n -= (PAGE_SIZE - offset);
757 index++;
758 }
759
760 while (n >= PAGE_SIZE) {
761 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
762 zram_free_page(zram, index);
763 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
764 atomic64_inc(&zram->stats.notify_free);
765 index++;
766 n -= PAGE_SIZE;
767 }
768 }
769
770 static void zram_reset_device(struct zram *zram)
771 {
772 struct zram_meta *meta;
773 struct zcomp *comp;
774 u64 disksize;
775
776 down_write(&zram->init_lock);
777
778 zram->limit_pages = 0;
779
780 if (!init_done(zram)) {
781 up_write(&zram->init_lock);
782 return;
783 }
784
785 meta = zram->meta;
786 comp = zram->comp;
787 disksize = zram->disksize;
788 /*
789 * Refcount will go down to 0 eventually and r/w handler
790 * cannot handle further I/O so it will bail out by
791 * check zram_meta_get.
792 */
793 zram_meta_put(zram);
794 /*
795 * We want to free zram_meta in process context to avoid
796 * deadlock between reclaim path and any other locks.
797 */
798 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
799
800 /* Reset stats */
801 memset(&zram->stats, 0, sizeof(zram->stats));
802 zram->disksize = 0;
803 zram->max_comp_streams = 1;
804
805 set_capacity(zram->disk, 0);
806 part_stat_set_all(&zram->disk->part0, 0);
807
808 up_write(&zram->init_lock);
809 /* I/O operation under all of CPU are done so let's free */
810 zram_meta_free(meta, disksize);
811 zcomp_destroy(comp);
812 }
813
814 static ssize_t disksize_store(struct device *dev,
815 struct device_attribute *attr, const char *buf, size_t len)
816 {
817 u64 disksize;
818 struct zcomp *comp;
819 struct zram_meta *meta;
820 struct zram *zram = dev_to_zram(dev);
821 int err;
822
823 disksize = memparse(buf, NULL);
824 if (!disksize)
825 return -EINVAL;
826
827 disksize = PAGE_ALIGN(disksize);
828 meta = zram_meta_alloc(zram->disk->first_minor, disksize);
829 if (!meta)
830 return -ENOMEM;
831
832 comp = zcomp_create(zram->compressor, zram->max_comp_streams);
833 if (IS_ERR(comp)) {
834 pr_info("Cannot initialise %s compressing backend\n",
835 zram->compressor);
836 err = PTR_ERR(comp);
837 goto out_free_meta;
838 }
839
840 down_write(&zram->init_lock);
841 if (init_done(zram)) {
842 pr_info("Cannot change disksize for initialized device\n");
843 err = -EBUSY;
844 goto out_destroy_comp;
845 }
846
847 init_waitqueue_head(&zram->io_done);
848 atomic_set(&zram->refcount, 1);
849 zram->meta = meta;
850 zram->comp = comp;
851 zram->disksize = disksize;
852 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
853 up_write(&zram->init_lock);
854
855 /*
856 * Revalidate disk out of the init_lock to avoid lockdep splat.
857 * It's okay because disk's capacity is protected by init_lock
858 * so that revalidate_disk always sees up-to-date capacity.
859 */
860 revalidate_disk(zram->disk);
861
862 return len;
863
864 out_destroy_comp:
865 up_write(&zram->init_lock);
866 zcomp_destroy(comp);
867 out_free_meta:
868 zram_meta_free(meta, disksize);
869 return err;
870 }
871
872 static ssize_t reset_store(struct device *dev,
873 struct device_attribute *attr, const char *buf, size_t len)
874 {
875 int ret;
876 unsigned short do_reset;
877 struct zram *zram;
878 struct block_device *bdev;
879
880 zram = dev_to_zram(dev);
881 bdev = bdget_disk(zram->disk, 0);
882
883 if (!bdev)
884 return -ENOMEM;
885
886 mutex_lock(&bdev->bd_mutex);
887 /* Do not reset an active device! */
888 if (bdev->bd_openers) {
889 ret = -EBUSY;
890 goto out;
891 }
892
893 ret = kstrtou16(buf, 10, &do_reset);
894 if (ret)
895 goto out;
896
897 if (!do_reset) {
898 ret = -EINVAL;
899 goto out;
900 }
901
902 /* Make sure all pending I/O is finished */
903 fsync_bdev(bdev);
904 zram_reset_device(zram);
905
906 mutex_unlock(&bdev->bd_mutex);
907 revalidate_disk(zram->disk);
908 bdput(bdev);
909
910 return len;
911
912 out:
913 mutex_unlock(&bdev->bd_mutex);
914 bdput(bdev);
915 return ret;
916 }
917
918 static void __zram_make_request(struct zram *zram, struct bio *bio)
919 {
920 int offset, rw;
921 u32 index;
922 struct bio_vec bvec;
923 struct bvec_iter iter;
924
925 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
926 offset = (bio->bi_iter.bi_sector &
927 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
928
929 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
930 zram_bio_discard(zram, index, offset, bio);
931 bio_endio(bio, 0);
932 return;
933 }
934
935 rw = bio_data_dir(bio);
936 bio_for_each_segment(bvec, bio, iter) {
937 int max_transfer_size = PAGE_SIZE - offset;
938
939 if (bvec.bv_len > max_transfer_size) {
940 /*
941 * zram_bvec_rw() can only make operation on a single
942 * zram page. Split the bio vector.
943 */
944 struct bio_vec bv;
945
946 bv.bv_page = bvec.bv_page;
947 bv.bv_len = max_transfer_size;
948 bv.bv_offset = bvec.bv_offset;
949
950 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
951 goto out;
952
953 bv.bv_len = bvec.bv_len - max_transfer_size;
954 bv.bv_offset += max_transfer_size;
955 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
956 goto out;
957 } else
958 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
959 goto out;
960
961 update_position(&index, &offset, &bvec);
962 }
963
964 set_bit(BIO_UPTODATE, &bio->bi_flags);
965 bio_endio(bio, 0);
966 return;
967
968 out:
969 bio_io_error(bio);
970 }
971
972 /*
973 * Handler function for all zram I/O requests.
974 */
975 static void zram_make_request(struct request_queue *queue, struct bio *bio)
976 {
977 struct zram *zram = queue->queuedata;
978
979 if (unlikely(!zram_meta_get(zram)))
980 goto error;
981
982 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
983 bio->bi_iter.bi_size)) {
984 atomic64_inc(&zram->stats.invalid_io);
985 goto put_zram;
986 }
987
988 __zram_make_request(zram, bio);
989 zram_meta_put(zram);
990 return;
991 put_zram:
992 zram_meta_put(zram);
993 error:
994 bio_io_error(bio);
995 }
996
997 static void zram_slot_free_notify(struct block_device *bdev,
998 unsigned long index)
999 {
1000 struct zram *zram;
1001 struct zram_meta *meta;
1002
1003 zram = bdev->bd_disk->private_data;
1004 meta = zram->meta;
1005
1006 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
1007 zram_free_page(zram, index);
1008 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
1009 atomic64_inc(&zram->stats.notify_free);
1010 }
1011
1012 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1013 struct page *page, int rw)
1014 {
1015 int offset, err = -EIO;
1016 u32 index;
1017 struct zram *zram;
1018 struct bio_vec bv;
1019
1020 zram = bdev->bd_disk->private_data;
1021 if (unlikely(!zram_meta_get(zram)))
1022 goto out;
1023
1024 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1025 atomic64_inc(&zram->stats.invalid_io);
1026 err = -EINVAL;
1027 goto put_zram;
1028 }
1029
1030 index = sector >> SECTORS_PER_PAGE_SHIFT;
1031 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
1032
1033 bv.bv_page = page;
1034 bv.bv_len = PAGE_SIZE;
1035 bv.bv_offset = 0;
1036
1037 err = zram_bvec_rw(zram, &bv, index, offset, rw);
1038 put_zram:
1039 zram_meta_put(zram);
1040 out:
1041 /*
1042 * If I/O fails, just return error(ie, non-zero) without
1043 * calling page_endio.
1044 * It causes resubmit the I/O with bio request by upper functions
1045 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1046 * bio->bi_end_io does things to handle the error
1047 * (e.g., SetPageError, set_page_dirty and extra works).
1048 */
1049 if (err == 0)
1050 page_endio(page, rw, 0);
1051 return err;
1052 }
1053
1054 static const struct block_device_operations zram_devops = {
1055 .swap_slot_free_notify = zram_slot_free_notify,
1056 .rw_page = zram_rw_page,
1057 .owner = THIS_MODULE
1058 };
1059
1060 static DEVICE_ATTR_WO(compact);
1061 static DEVICE_ATTR_RW(disksize);
1062 static DEVICE_ATTR_RO(initstate);
1063 static DEVICE_ATTR_WO(reset);
1064 static DEVICE_ATTR_RO(orig_data_size);
1065 static DEVICE_ATTR_RO(mem_used_total);
1066 static DEVICE_ATTR_RW(mem_limit);
1067 static DEVICE_ATTR_RW(mem_used_max);
1068 static DEVICE_ATTR_RW(max_comp_streams);
1069 static DEVICE_ATTR_RW(comp_algorithm);
1070
1071 static ssize_t io_stat_show(struct device *dev,
1072 struct device_attribute *attr, char *buf)
1073 {
1074 struct zram *zram = dev_to_zram(dev);
1075 ssize_t ret;
1076
1077 down_read(&zram->init_lock);
1078 ret = scnprintf(buf, PAGE_SIZE,
1079 "%8llu %8llu %8llu %8llu\n",
1080 (u64)atomic64_read(&zram->stats.failed_reads),
1081 (u64)atomic64_read(&zram->stats.failed_writes),
1082 (u64)atomic64_read(&zram->stats.invalid_io),
1083 (u64)atomic64_read(&zram->stats.notify_free));
1084 up_read(&zram->init_lock);
1085
1086 return ret;
1087 }
1088
1089 static ssize_t mm_stat_show(struct device *dev,
1090 struct device_attribute *attr, char *buf)
1091 {
1092 struct zram *zram = dev_to_zram(dev);
1093 u64 orig_size, mem_used = 0;
1094 long max_used;
1095 ssize_t ret;
1096
1097 down_read(&zram->init_lock);
1098 if (init_done(zram))
1099 mem_used = zs_get_total_pages(zram->meta->mem_pool);
1100
1101 orig_size = atomic64_read(&zram->stats.pages_stored);
1102 max_used = atomic_long_read(&zram->stats.max_used_pages);
1103
1104 ret = scnprintf(buf, PAGE_SIZE,
1105 "%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n",
1106 orig_size << PAGE_SHIFT,
1107 (u64)atomic64_read(&zram->stats.compr_data_size),
1108 mem_used << PAGE_SHIFT,
1109 zram->limit_pages << PAGE_SHIFT,
1110 max_used << PAGE_SHIFT,
1111 (u64)atomic64_read(&zram->stats.zero_pages),
1112 (u64)atomic64_read(&zram->stats.num_migrated));
1113 up_read(&zram->init_lock);
1114
1115 return ret;
1116 }
1117
1118 static DEVICE_ATTR_RO(io_stat);
1119 static DEVICE_ATTR_RO(mm_stat);
1120 ZRAM_ATTR_RO(num_reads);
1121 ZRAM_ATTR_RO(num_writes);
1122 ZRAM_ATTR_RO(failed_reads);
1123 ZRAM_ATTR_RO(failed_writes);
1124 ZRAM_ATTR_RO(invalid_io);
1125 ZRAM_ATTR_RO(notify_free);
1126 ZRAM_ATTR_RO(zero_pages);
1127 ZRAM_ATTR_RO(compr_data_size);
1128
1129 static struct attribute *zram_disk_attrs[] = {
1130 &dev_attr_disksize.attr,
1131 &dev_attr_initstate.attr,
1132 &dev_attr_reset.attr,
1133 &dev_attr_num_reads.attr,
1134 &dev_attr_num_writes.attr,
1135 &dev_attr_failed_reads.attr,
1136 &dev_attr_failed_writes.attr,
1137 &dev_attr_compact.attr,
1138 &dev_attr_invalid_io.attr,
1139 &dev_attr_notify_free.attr,
1140 &dev_attr_zero_pages.attr,
1141 &dev_attr_orig_data_size.attr,
1142 &dev_attr_compr_data_size.attr,
1143 &dev_attr_mem_used_total.attr,
1144 &dev_attr_mem_limit.attr,
1145 &dev_attr_mem_used_max.attr,
1146 &dev_attr_max_comp_streams.attr,
1147 &dev_attr_comp_algorithm.attr,
1148 &dev_attr_io_stat.attr,
1149 &dev_attr_mm_stat.attr,
1150 NULL,
1151 };
1152
1153 static struct attribute_group zram_disk_attr_group = {
1154 .attrs = zram_disk_attrs,
1155 };
1156
1157 static int create_device(struct zram *zram, int device_id)
1158 {
1159 struct request_queue *queue;
1160 int ret = -ENOMEM;
1161
1162 init_rwsem(&zram->init_lock);
1163
1164 queue = blk_alloc_queue(GFP_KERNEL);
1165 if (!queue) {
1166 pr_err("Error allocating disk queue for device %d\n",
1167 device_id);
1168 goto out;
1169 }
1170
1171 blk_queue_make_request(queue, zram_make_request);
1172
1173 /* gendisk structure */
1174 zram->disk = alloc_disk(1);
1175 if (!zram->disk) {
1176 pr_warn("Error allocating disk structure for device %d\n",
1177 device_id);
1178 ret = -ENOMEM;
1179 goto out_free_queue;
1180 }
1181
1182 zram->disk->major = zram_major;
1183 zram->disk->first_minor = device_id;
1184 zram->disk->fops = &zram_devops;
1185 zram->disk->queue = queue;
1186 zram->disk->queue->queuedata = zram;
1187 zram->disk->private_data = zram;
1188 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1189
1190 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1191 set_capacity(zram->disk, 0);
1192 /* zram devices sort of resembles non-rotational disks */
1193 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1194 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1195 /*
1196 * To ensure that we always get PAGE_SIZE aligned
1197 * and n*PAGE_SIZED sized I/O requests.
1198 */
1199 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1200 blk_queue_logical_block_size(zram->disk->queue,
1201 ZRAM_LOGICAL_BLOCK_SIZE);
1202 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1203 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1204 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1205 zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1206 /*
1207 * zram_bio_discard() will clear all logical blocks if logical block
1208 * size is identical with physical block size(PAGE_SIZE). But if it is
1209 * different, we will skip discarding some parts of logical blocks in
1210 * the part of the request range which isn't aligned to physical block
1211 * size. So we can't ensure that all discarded logical blocks are
1212 * zeroed.
1213 */
1214 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1215 zram->disk->queue->limits.discard_zeroes_data = 1;
1216 else
1217 zram->disk->queue->limits.discard_zeroes_data = 0;
1218 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1219
1220 add_disk(zram->disk);
1221
1222 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1223 &zram_disk_attr_group);
1224 if (ret < 0) {
1225 pr_warn("Error creating sysfs group");
1226 goto out_free_disk;
1227 }
1228 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1229 zram->meta = NULL;
1230 zram->max_comp_streams = 1;
1231 return 0;
1232
1233 out_free_disk:
1234 del_gendisk(zram->disk);
1235 put_disk(zram->disk);
1236 out_free_queue:
1237 blk_cleanup_queue(queue);
1238 out:
1239 return ret;
1240 }
1241
1242 static void destroy_devices(unsigned int nr)
1243 {
1244 struct zram *zram;
1245 unsigned int i;
1246
1247 for (i = 0; i < nr; i++) {
1248 zram = &zram_devices[i];
1249 /*
1250 * Remove sysfs first, so no one will perform a disksize
1251 * store while we destroy the devices
1252 */
1253 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1254 &zram_disk_attr_group);
1255
1256 zram_reset_device(zram);
1257
1258 blk_cleanup_queue(zram->disk->queue);
1259 del_gendisk(zram->disk);
1260 put_disk(zram->disk);
1261 }
1262
1263 kfree(zram_devices);
1264 unregister_blkdev(zram_major, "zram");
1265 pr_info("Destroyed %u device(s)\n", nr);
1266 }
1267
1268 static int __init zram_init(void)
1269 {
1270 int ret, dev_id;
1271
1272 if (num_devices > max_num_devices) {
1273 pr_warn("Invalid value for num_devices: %u\n",
1274 num_devices);
1275 return -EINVAL;
1276 }
1277
1278 zram_major = register_blkdev(0, "zram");
1279 if (zram_major <= 0) {
1280 pr_warn("Unable to get major number\n");
1281 return -EBUSY;
1282 }
1283
1284 /* Allocate the device array and initialize each one */
1285 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
1286 if (!zram_devices) {
1287 unregister_blkdev(zram_major, "zram");
1288 return -ENOMEM;
1289 }
1290
1291 for (dev_id = 0; dev_id < num_devices; dev_id++) {
1292 ret = create_device(&zram_devices[dev_id], dev_id);
1293 if (ret)
1294 goto out_error;
1295 }
1296
1297 pr_info("Created %u device(s)\n", num_devices);
1298 return 0;
1299
1300 out_error:
1301 destroy_devices(dev_id);
1302 return ret;
1303 }
1304
1305 static void __exit zram_exit(void)
1306 {
1307 destroy_devices(num_devices);
1308 }
1309
1310 module_init(zram_init);
1311 module_exit(zram_exit);
1312
1313 module_param(num_devices, uint, 0);
1314 MODULE_PARM_DESC(num_devices, "Number of zram devices");
1315
1316 MODULE_LICENSE("Dual BSD/GPL");
1317 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1318 MODULE_DESCRIPTION("Compressed RAM Block Device");