]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/char/ipmi/ipmi_msghandler.c
Merge tag 'for-v4.1-rc/omap-fixes-a' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / drivers / char / ipmi / ipmi_msghandler.c
1 /*
2 * ipmi_msghandler.c
3 *
4 * Incoming and outgoing message routing for an IPMI interface.
5 *
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
8 * source@mvista.com
9 *
10 * Copyright 2002 MontaVista Software Inc.
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
16 *
17 *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49
50 #define PFX "IPMI message handler: "
51
52 #define IPMI_DRIVER_VERSION "39.2"
53
54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf);
58 static void need_waiter(ipmi_smi_t intf);
59 static int handle_one_recv_msg(ipmi_smi_t intf,
60 struct ipmi_smi_msg *msg);
61
62 static int initialized;
63
64 #ifdef CONFIG_PROC_FS
65 static struct proc_dir_entry *proc_ipmi_root;
66 #endif /* CONFIG_PROC_FS */
67
68 /* Remain in auto-maintenance mode for this amount of time (in ms). */
69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
70
71 #define MAX_EVENTS_IN_QUEUE 25
72
73 /*
74 * Don't let a message sit in a queue forever, always time it with at lest
75 * the max message timer. This is in milliseconds.
76 */
77 #define MAX_MSG_TIMEOUT 60000
78
79 /* Call every ~1000 ms. */
80 #define IPMI_TIMEOUT_TIME 1000
81
82 /* How many jiffies does it take to get to the timeout time. */
83 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
84
85 /*
86 * Request events from the queue every second (this is the number of
87 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
88 * future, IPMI will add a way to know immediately if an event is in
89 * the queue and this silliness can go away.
90 */
91 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
92
93 /*
94 * The main "user" data structure.
95 */
96 struct ipmi_user {
97 struct list_head link;
98
99 /* Set to false when the user is destroyed. */
100 bool valid;
101
102 struct kref refcount;
103
104 /* The upper layer that handles receive messages. */
105 struct ipmi_user_hndl *handler;
106 void *handler_data;
107
108 /* The interface this user is bound to. */
109 ipmi_smi_t intf;
110
111 /* Does this interface receive IPMI events? */
112 bool gets_events;
113 };
114
115 struct cmd_rcvr {
116 struct list_head link;
117
118 ipmi_user_t user;
119 unsigned char netfn;
120 unsigned char cmd;
121 unsigned int chans;
122
123 /*
124 * This is used to form a linked lised during mass deletion.
125 * Since this is in an RCU list, we cannot use the link above
126 * or change any data until the RCU period completes. So we
127 * use this next variable during mass deletion so we can have
128 * a list and don't have to wait and restart the search on
129 * every individual deletion of a command.
130 */
131 struct cmd_rcvr *next;
132 };
133
134 struct seq_table {
135 unsigned int inuse : 1;
136 unsigned int broadcast : 1;
137
138 unsigned long timeout;
139 unsigned long orig_timeout;
140 unsigned int retries_left;
141
142 /*
143 * To verify on an incoming send message response that this is
144 * the message that the response is for, we keep a sequence id
145 * and increment it every time we send a message.
146 */
147 long seqid;
148
149 /*
150 * This is held so we can properly respond to the message on a
151 * timeout, and it is used to hold the temporary data for
152 * retransmission, too.
153 */
154 struct ipmi_recv_msg *recv_msg;
155 };
156
157 /*
158 * Store the information in a msgid (long) to allow us to find a
159 * sequence table entry from the msgid.
160 */
161 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
162
163 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
164 do { \
165 seq = ((msgid >> 26) & 0x3f); \
166 seqid = (msgid & 0x3fffff); \
167 } while (0)
168
169 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
170
171 struct ipmi_channel {
172 unsigned char medium;
173 unsigned char protocol;
174
175 /*
176 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
177 * but may be changed by the user.
178 */
179 unsigned char address;
180
181 /*
182 * My LUN. This should generally stay the SMS LUN, but just in
183 * case...
184 */
185 unsigned char lun;
186 };
187
188 #ifdef CONFIG_PROC_FS
189 struct ipmi_proc_entry {
190 char *name;
191 struct ipmi_proc_entry *next;
192 };
193 #endif
194
195 struct bmc_device {
196 struct platform_device pdev;
197 struct ipmi_device_id id;
198 unsigned char guid[16];
199 int guid_set;
200 char name[16];
201 struct kref usecount;
202 };
203 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
204
205 /*
206 * Various statistics for IPMI, these index stats[] in the ipmi_smi
207 * structure.
208 */
209 enum ipmi_stat_indexes {
210 /* Commands we got from the user that were invalid. */
211 IPMI_STAT_sent_invalid_commands = 0,
212
213 /* Commands we sent to the MC. */
214 IPMI_STAT_sent_local_commands,
215
216 /* Responses from the MC that were delivered to a user. */
217 IPMI_STAT_handled_local_responses,
218
219 /* Responses from the MC that were not delivered to a user. */
220 IPMI_STAT_unhandled_local_responses,
221
222 /* Commands we sent out to the IPMB bus. */
223 IPMI_STAT_sent_ipmb_commands,
224
225 /* Commands sent on the IPMB that had errors on the SEND CMD */
226 IPMI_STAT_sent_ipmb_command_errs,
227
228 /* Each retransmit increments this count. */
229 IPMI_STAT_retransmitted_ipmb_commands,
230
231 /*
232 * When a message times out (runs out of retransmits) this is
233 * incremented.
234 */
235 IPMI_STAT_timed_out_ipmb_commands,
236
237 /*
238 * This is like above, but for broadcasts. Broadcasts are
239 * *not* included in the above count (they are expected to
240 * time out).
241 */
242 IPMI_STAT_timed_out_ipmb_broadcasts,
243
244 /* Responses I have sent to the IPMB bus. */
245 IPMI_STAT_sent_ipmb_responses,
246
247 /* The response was delivered to the user. */
248 IPMI_STAT_handled_ipmb_responses,
249
250 /* The response had invalid data in it. */
251 IPMI_STAT_invalid_ipmb_responses,
252
253 /* The response didn't have anyone waiting for it. */
254 IPMI_STAT_unhandled_ipmb_responses,
255
256 /* Commands we sent out to the IPMB bus. */
257 IPMI_STAT_sent_lan_commands,
258
259 /* Commands sent on the IPMB that had errors on the SEND CMD */
260 IPMI_STAT_sent_lan_command_errs,
261
262 /* Each retransmit increments this count. */
263 IPMI_STAT_retransmitted_lan_commands,
264
265 /*
266 * When a message times out (runs out of retransmits) this is
267 * incremented.
268 */
269 IPMI_STAT_timed_out_lan_commands,
270
271 /* Responses I have sent to the IPMB bus. */
272 IPMI_STAT_sent_lan_responses,
273
274 /* The response was delivered to the user. */
275 IPMI_STAT_handled_lan_responses,
276
277 /* The response had invalid data in it. */
278 IPMI_STAT_invalid_lan_responses,
279
280 /* The response didn't have anyone waiting for it. */
281 IPMI_STAT_unhandled_lan_responses,
282
283 /* The command was delivered to the user. */
284 IPMI_STAT_handled_commands,
285
286 /* The command had invalid data in it. */
287 IPMI_STAT_invalid_commands,
288
289 /* The command didn't have anyone waiting for it. */
290 IPMI_STAT_unhandled_commands,
291
292 /* Invalid data in an event. */
293 IPMI_STAT_invalid_events,
294
295 /* Events that were received with the proper format. */
296 IPMI_STAT_events,
297
298 /* Retransmissions on IPMB that failed. */
299 IPMI_STAT_dropped_rexmit_ipmb_commands,
300
301 /* Retransmissions on LAN that failed. */
302 IPMI_STAT_dropped_rexmit_lan_commands,
303
304 /* This *must* remain last, add new values above this. */
305 IPMI_NUM_STATS
306 };
307
308
309 #define IPMI_IPMB_NUM_SEQ 64
310 #define IPMI_MAX_CHANNELS 16
311 struct ipmi_smi {
312 /* What interface number are we? */
313 int intf_num;
314
315 struct kref refcount;
316
317 /* Set when the interface is being unregistered. */
318 bool in_shutdown;
319
320 /* Used for a list of interfaces. */
321 struct list_head link;
322
323 /*
324 * The list of upper layers that are using me. seq_lock
325 * protects this.
326 */
327 struct list_head users;
328
329 /* Information to supply to users. */
330 unsigned char ipmi_version_major;
331 unsigned char ipmi_version_minor;
332
333 /* Used for wake ups at startup. */
334 wait_queue_head_t waitq;
335
336 struct bmc_device *bmc;
337 char *my_dev_name;
338
339 /*
340 * This is the lower-layer's sender routine. Note that you
341 * must either be holding the ipmi_interfaces_mutex or be in
342 * an umpreemptible region to use this. You must fetch the
343 * value into a local variable and make sure it is not NULL.
344 */
345 struct ipmi_smi_handlers *handlers;
346 void *send_info;
347
348 #ifdef CONFIG_PROC_FS
349 /* A list of proc entries for this interface. */
350 struct mutex proc_entry_lock;
351 struct ipmi_proc_entry *proc_entries;
352 #endif
353
354 /* Driver-model device for the system interface. */
355 struct device *si_dev;
356
357 /*
358 * A table of sequence numbers for this interface. We use the
359 * sequence numbers for IPMB messages that go out of the
360 * interface to match them up with their responses. A routine
361 * is called periodically to time the items in this list.
362 */
363 spinlock_t seq_lock;
364 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
365 int curr_seq;
366
367 /*
368 * Messages queued for delivery. If delivery fails (out of memory
369 * for instance), They will stay in here to be processed later in a
370 * periodic timer interrupt. The tasklet is for handling received
371 * messages directly from the handler.
372 */
373 spinlock_t waiting_rcv_msgs_lock;
374 struct list_head waiting_rcv_msgs;
375 atomic_t watchdog_pretimeouts_to_deliver;
376 struct tasklet_struct recv_tasklet;
377
378 spinlock_t xmit_msgs_lock;
379 struct list_head xmit_msgs;
380 struct ipmi_smi_msg *curr_msg;
381 struct list_head hp_xmit_msgs;
382
383 /*
384 * The list of command receivers that are registered for commands
385 * on this interface.
386 */
387 struct mutex cmd_rcvrs_mutex;
388 struct list_head cmd_rcvrs;
389
390 /*
391 * Events that were queues because no one was there to receive
392 * them.
393 */
394 spinlock_t events_lock; /* For dealing with event stuff. */
395 struct list_head waiting_events;
396 unsigned int waiting_events_count; /* How many events in queue? */
397 char delivering_events;
398 char event_msg_printed;
399 atomic_t event_waiters;
400 unsigned int ticks_to_req_ev;
401 int last_needs_timer;
402
403 /*
404 * The event receiver for my BMC, only really used at panic
405 * shutdown as a place to store this.
406 */
407 unsigned char event_receiver;
408 unsigned char event_receiver_lun;
409 unsigned char local_sel_device;
410 unsigned char local_event_generator;
411
412 /* For handling of maintenance mode. */
413 int maintenance_mode;
414 bool maintenance_mode_enable;
415 int auto_maintenance_timeout;
416 spinlock_t maintenance_mode_lock; /* Used in a timer... */
417
418 /*
419 * A cheap hack, if this is non-null and a message to an
420 * interface comes in with a NULL user, call this routine with
421 * it. Note that the message will still be freed by the
422 * caller. This only works on the system interface.
423 */
424 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
425
426 /*
427 * When we are scanning the channels for an SMI, this will
428 * tell which channel we are scanning.
429 */
430 int curr_channel;
431
432 /* Channel information */
433 struct ipmi_channel channels[IPMI_MAX_CHANNELS];
434
435 /* Proc FS stuff. */
436 struct proc_dir_entry *proc_dir;
437 char proc_dir_name[10];
438
439 atomic_t stats[IPMI_NUM_STATS];
440
441 /*
442 * run_to_completion duplicate of smb_info, smi_info
443 * and ipmi_serial_info structures. Used to decrease numbers of
444 * parameters passed by "low" level IPMI code.
445 */
446 int run_to_completion;
447 };
448 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
449
450 /**
451 * The driver model view of the IPMI messaging driver.
452 */
453 static struct platform_driver ipmidriver = {
454 .driver = {
455 .name = "ipmi",
456 .bus = &platform_bus_type
457 }
458 };
459 static DEFINE_MUTEX(ipmidriver_mutex);
460
461 static LIST_HEAD(ipmi_interfaces);
462 static DEFINE_MUTEX(ipmi_interfaces_mutex);
463
464 /*
465 * List of watchers that want to know when smi's are added and deleted.
466 */
467 static LIST_HEAD(smi_watchers);
468 static DEFINE_MUTEX(smi_watchers_mutex);
469
470 #define ipmi_inc_stat(intf, stat) \
471 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
472 #define ipmi_get_stat(intf, stat) \
473 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
474
475 static char *addr_src_to_str[] = { "invalid", "hotmod", "hardcoded", "SPMI",
476 "ACPI", "SMBIOS", "PCI",
477 "device-tree", "default" };
478
479 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
480 {
481 if (src > SI_DEFAULT)
482 src = 0; /* Invalid */
483 return addr_src_to_str[src];
484 }
485 EXPORT_SYMBOL(ipmi_addr_src_to_str);
486
487 static int is_lan_addr(struct ipmi_addr *addr)
488 {
489 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
490 }
491
492 static int is_ipmb_addr(struct ipmi_addr *addr)
493 {
494 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
495 }
496
497 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
498 {
499 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
500 }
501
502 static void free_recv_msg_list(struct list_head *q)
503 {
504 struct ipmi_recv_msg *msg, *msg2;
505
506 list_for_each_entry_safe(msg, msg2, q, link) {
507 list_del(&msg->link);
508 ipmi_free_recv_msg(msg);
509 }
510 }
511
512 static void free_smi_msg_list(struct list_head *q)
513 {
514 struct ipmi_smi_msg *msg, *msg2;
515
516 list_for_each_entry_safe(msg, msg2, q, link) {
517 list_del(&msg->link);
518 ipmi_free_smi_msg(msg);
519 }
520 }
521
522 static void clean_up_interface_data(ipmi_smi_t intf)
523 {
524 int i;
525 struct cmd_rcvr *rcvr, *rcvr2;
526 struct list_head list;
527
528 tasklet_kill(&intf->recv_tasklet);
529
530 free_smi_msg_list(&intf->waiting_rcv_msgs);
531 free_recv_msg_list(&intf->waiting_events);
532
533 /*
534 * Wholesale remove all the entries from the list in the
535 * interface and wait for RCU to know that none are in use.
536 */
537 mutex_lock(&intf->cmd_rcvrs_mutex);
538 INIT_LIST_HEAD(&list);
539 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
540 mutex_unlock(&intf->cmd_rcvrs_mutex);
541
542 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
543 kfree(rcvr);
544
545 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
546 if ((intf->seq_table[i].inuse)
547 && (intf->seq_table[i].recv_msg))
548 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
549 }
550 }
551
552 static void intf_free(struct kref *ref)
553 {
554 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
555
556 clean_up_interface_data(intf);
557 kfree(intf);
558 }
559
560 struct watcher_entry {
561 int intf_num;
562 ipmi_smi_t intf;
563 struct list_head link;
564 };
565
566 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
567 {
568 ipmi_smi_t intf;
569 LIST_HEAD(to_deliver);
570 struct watcher_entry *e, *e2;
571
572 mutex_lock(&smi_watchers_mutex);
573
574 mutex_lock(&ipmi_interfaces_mutex);
575
576 /* Build a list of things to deliver. */
577 list_for_each_entry(intf, &ipmi_interfaces, link) {
578 if (intf->intf_num == -1)
579 continue;
580 e = kmalloc(sizeof(*e), GFP_KERNEL);
581 if (!e)
582 goto out_err;
583 kref_get(&intf->refcount);
584 e->intf = intf;
585 e->intf_num = intf->intf_num;
586 list_add_tail(&e->link, &to_deliver);
587 }
588
589 /* We will succeed, so add it to the list. */
590 list_add(&watcher->link, &smi_watchers);
591
592 mutex_unlock(&ipmi_interfaces_mutex);
593
594 list_for_each_entry_safe(e, e2, &to_deliver, link) {
595 list_del(&e->link);
596 watcher->new_smi(e->intf_num, e->intf->si_dev);
597 kref_put(&e->intf->refcount, intf_free);
598 kfree(e);
599 }
600
601 mutex_unlock(&smi_watchers_mutex);
602
603 return 0;
604
605 out_err:
606 mutex_unlock(&ipmi_interfaces_mutex);
607 mutex_unlock(&smi_watchers_mutex);
608 list_for_each_entry_safe(e, e2, &to_deliver, link) {
609 list_del(&e->link);
610 kref_put(&e->intf->refcount, intf_free);
611 kfree(e);
612 }
613 return -ENOMEM;
614 }
615 EXPORT_SYMBOL(ipmi_smi_watcher_register);
616
617 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
618 {
619 mutex_lock(&smi_watchers_mutex);
620 list_del(&(watcher->link));
621 mutex_unlock(&smi_watchers_mutex);
622 return 0;
623 }
624 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
625
626 /*
627 * Must be called with smi_watchers_mutex held.
628 */
629 static void
630 call_smi_watchers(int i, struct device *dev)
631 {
632 struct ipmi_smi_watcher *w;
633
634 list_for_each_entry(w, &smi_watchers, link) {
635 if (try_module_get(w->owner)) {
636 w->new_smi(i, dev);
637 module_put(w->owner);
638 }
639 }
640 }
641
642 static int
643 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
644 {
645 if (addr1->addr_type != addr2->addr_type)
646 return 0;
647
648 if (addr1->channel != addr2->channel)
649 return 0;
650
651 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
652 struct ipmi_system_interface_addr *smi_addr1
653 = (struct ipmi_system_interface_addr *) addr1;
654 struct ipmi_system_interface_addr *smi_addr2
655 = (struct ipmi_system_interface_addr *) addr2;
656 return (smi_addr1->lun == smi_addr2->lun);
657 }
658
659 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
660 struct ipmi_ipmb_addr *ipmb_addr1
661 = (struct ipmi_ipmb_addr *) addr1;
662 struct ipmi_ipmb_addr *ipmb_addr2
663 = (struct ipmi_ipmb_addr *) addr2;
664
665 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
666 && (ipmb_addr1->lun == ipmb_addr2->lun));
667 }
668
669 if (is_lan_addr(addr1)) {
670 struct ipmi_lan_addr *lan_addr1
671 = (struct ipmi_lan_addr *) addr1;
672 struct ipmi_lan_addr *lan_addr2
673 = (struct ipmi_lan_addr *) addr2;
674
675 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
676 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
677 && (lan_addr1->session_handle
678 == lan_addr2->session_handle)
679 && (lan_addr1->lun == lan_addr2->lun));
680 }
681
682 return 1;
683 }
684
685 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
686 {
687 if (len < sizeof(struct ipmi_system_interface_addr))
688 return -EINVAL;
689
690 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
691 if (addr->channel != IPMI_BMC_CHANNEL)
692 return -EINVAL;
693 return 0;
694 }
695
696 if ((addr->channel == IPMI_BMC_CHANNEL)
697 || (addr->channel >= IPMI_MAX_CHANNELS)
698 || (addr->channel < 0))
699 return -EINVAL;
700
701 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
702 if (len < sizeof(struct ipmi_ipmb_addr))
703 return -EINVAL;
704 return 0;
705 }
706
707 if (is_lan_addr(addr)) {
708 if (len < sizeof(struct ipmi_lan_addr))
709 return -EINVAL;
710 return 0;
711 }
712
713 return -EINVAL;
714 }
715 EXPORT_SYMBOL(ipmi_validate_addr);
716
717 unsigned int ipmi_addr_length(int addr_type)
718 {
719 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
720 return sizeof(struct ipmi_system_interface_addr);
721
722 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
723 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
724 return sizeof(struct ipmi_ipmb_addr);
725
726 if (addr_type == IPMI_LAN_ADDR_TYPE)
727 return sizeof(struct ipmi_lan_addr);
728
729 return 0;
730 }
731 EXPORT_SYMBOL(ipmi_addr_length);
732
733 static void deliver_response(struct ipmi_recv_msg *msg)
734 {
735 if (!msg->user) {
736 ipmi_smi_t intf = msg->user_msg_data;
737
738 /* Special handling for NULL users. */
739 if (intf->null_user_handler) {
740 intf->null_user_handler(intf, msg);
741 ipmi_inc_stat(intf, handled_local_responses);
742 } else {
743 /* No handler, so give up. */
744 ipmi_inc_stat(intf, unhandled_local_responses);
745 }
746 ipmi_free_recv_msg(msg);
747 } else {
748 ipmi_user_t user = msg->user;
749 user->handler->ipmi_recv_hndl(msg, user->handler_data);
750 }
751 }
752
753 static void
754 deliver_err_response(struct ipmi_recv_msg *msg, int err)
755 {
756 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
757 msg->msg_data[0] = err;
758 msg->msg.netfn |= 1; /* Convert to a response. */
759 msg->msg.data_len = 1;
760 msg->msg.data = msg->msg_data;
761 deliver_response(msg);
762 }
763
764 /*
765 * Find the next sequence number not being used and add the given
766 * message with the given timeout to the sequence table. This must be
767 * called with the interface's seq_lock held.
768 */
769 static int intf_next_seq(ipmi_smi_t intf,
770 struct ipmi_recv_msg *recv_msg,
771 unsigned long timeout,
772 int retries,
773 int broadcast,
774 unsigned char *seq,
775 long *seqid)
776 {
777 int rv = 0;
778 unsigned int i;
779
780 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
781 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
782 if (!intf->seq_table[i].inuse)
783 break;
784 }
785
786 if (!intf->seq_table[i].inuse) {
787 intf->seq_table[i].recv_msg = recv_msg;
788
789 /*
790 * Start with the maximum timeout, when the send response
791 * comes in we will start the real timer.
792 */
793 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
794 intf->seq_table[i].orig_timeout = timeout;
795 intf->seq_table[i].retries_left = retries;
796 intf->seq_table[i].broadcast = broadcast;
797 intf->seq_table[i].inuse = 1;
798 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
799 *seq = i;
800 *seqid = intf->seq_table[i].seqid;
801 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
802 need_waiter(intf);
803 } else {
804 rv = -EAGAIN;
805 }
806
807 return rv;
808 }
809
810 /*
811 * Return the receive message for the given sequence number and
812 * release the sequence number so it can be reused. Some other data
813 * is passed in to be sure the message matches up correctly (to help
814 * guard against message coming in after their timeout and the
815 * sequence number being reused).
816 */
817 static int intf_find_seq(ipmi_smi_t intf,
818 unsigned char seq,
819 short channel,
820 unsigned char cmd,
821 unsigned char netfn,
822 struct ipmi_addr *addr,
823 struct ipmi_recv_msg **recv_msg)
824 {
825 int rv = -ENODEV;
826 unsigned long flags;
827
828 if (seq >= IPMI_IPMB_NUM_SEQ)
829 return -EINVAL;
830
831 spin_lock_irqsave(&(intf->seq_lock), flags);
832 if (intf->seq_table[seq].inuse) {
833 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
834
835 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
836 && (msg->msg.netfn == netfn)
837 && (ipmi_addr_equal(addr, &(msg->addr)))) {
838 *recv_msg = msg;
839 intf->seq_table[seq].inuse = 0;
840 rv = 0;
841 }
842 }
843 spin_unlock_irqrestore(&(intf->seq_lock), flags);
844
845 return rv;
846 }
847
848
849 /* Start the timer for a specific sequence table entry. */
850 static int intf_start_seq_timer(ipmi_smi_t intf,
851 long msgid)
852 {
853 int rv = -ENODEV;
854 unsigned long flags;
855 unsigned char seq;
856 unsigned long seqid;
857
858
859 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
860
861 spin_lock_irqsave(&(intf->seq_lock), flags);
862 /*
863 * We do this verification because the user can be deleted
864 * while a message is outstanding.
865 */
866 if ((intf->seq_table[seq].inuse)
867 && (intf->seq_table[seq].seqid == seqid)) {
868 struct seq_table *ent = &(intf->seq_table[seq]);
869 ent->timeout = ent->orig_timeout;
870 rv = 0;
871 }
872 spin_unlock_irqrestore(&(intf->seq_lock), flags);
873
874 return rv;
875 }
876
877 /* Got an error for the send message for a specific sequence number. */
878 static int intf_err_seq(ipmi_smi_t intf,
879 long msgid,
880 unsigned int err)
881 {
882 int rv = -ENODEV;
883 unsigned long flags;
884 unsigned char seq;
885 unsigned long seqid;
886 struct ipmi_recv_msg *msg = NULL;
887
888
889 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
890
891 spin_lock_irqsave(&(intf->seq_lock), flags);
892 /*
893 * We do this verification because the user can be deleted
894 * while a message is outstanding.
895 */
896 if ((intf->seq_table[seq].inuse)
897 && (intf->seq_table[seq].seqid == seqid)) {
898 struct seq_table *ent = &(intf->seq_table[seq]);
899
900 ent->inuse = 0;
901 msg = ent->recv_msg;
902 rv = 0;
903 }
904 spin_unlock_irqrestore(&(intf->seq_lock), flags);
905
906 if (msg)
907 deliver_err_response(msg, err);
908
909 return rv;
910 }
911
912
913 int ipmi_create_user(unsigned int if_num,
914 struct ipmi_user_hndl *handler,
915 void *handler_data,
916 ipmi_user_t *user)
917 {
918 unsigned long flags;
919 ipmi_user_t new_user;
920 int rv = 0;
921 ipmi_smi_t intf;
922
923 /*
924 * There is no module usecount here, because it's not
925 * required. Since this can only be used by and called from
926 * other modules, they will implicitly use this module, and
927 * thus this can't be removed unless the other modules are
928 * removed.
929 */
930
931 if (handler == NULL)
932 return -EINVAL;
933
934 /*
935 * Make sure the driver is actually initialized, this handles
936 * problems with initialization order.
937 */
938 if (!initialized) {
939 rv = ipmi_init_msghandler();
940 if (rv)
941 return rv;
942
943 /*
944 * The init code doesn't return an error if it was turned
945 * off, but it won't initialize. Check that.
946 */
947 if (!initialized)
948 return -ENODEV;
949 }
950
951 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
952 if (!new_user)
953 return -ENOMEM;
954
955 mutex_lock(&ipmi_interfaces_mutex);
956 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
957 if (intf->intf_num == if_num)
958 goto found;
959 }
960 /* Not found, return an error */
961 rv = -EINVAL;
962 goto out_kfree;
963
964 found:
965 /* Note that each existing user holds a refcount to the interface. */
966 kref_get(&intf->refcount);
967
968 kref_init(&new_user->refcount);
969 new_user->handler = handler;
970 new_user->handler_data = handler_data;
971 new_user->intf = intf;
972 new_user->gets_events = false;
973
974 if (!try_module_get(intf->handlers->owner)) {
975 rv = -ENODEV;
976 goto out_kref;
977 }
978
979 if (intf->handlers->inc_usecount) {
980 rv = intf->handlers->inc_usecount(intf->send_info);
981 if (rv) {
982 module_put(intf->handlers->owner);
983 goto out_kref;
984 }
985 }
986
987 /*
988 * Hold the lock so intf->handlers is guaranteed to be good
989 * until now
990 */
991 mutex_unlock(&ipmi_interfaces_mutex);
992
993 new_user->valid = true;
994 spin_lock_irqsave(&intf->seq_lock, flags);
995 list_add_rcu(&new_user->link, &intf->users);
996 spin_unlock_irqrestore(&intf->seq_lock, flags);
997 if (handler->ipmi_watchdog_pretimeout) {
998 /* User wants pretimeouts, so make sure to watch for them. */
999 if (atomic_inc_return(&intf->event_waiters) == 1)
1000 need_waiter(intf);
1001 }
1002 *user = new_user;
1003 return 0;
1004
1005 out_kref:
1006 kref_put(&intf->refcount, intf_free);
1007 out_kfree:
1008 mutex_unlock(&ipmi_interfaces_mutex);
1009 kfree(new_user);
1010 return rv;
1011 }
1012 EXPORT_SYMBOL(ipmi_create_user);
1013
1014 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1015 {
1016 int rv = 0;
1017 ipmi_smi_t intf;
1018 struct ipmi_smi_handlers *handlers;
1019
1020 mutex_lock(&ipmi_interfaces_mutex);
1021 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1022 if (intf->intf_num == if_num)
1023 goto found;
1024 }
1025 /* Not found, return an error */
1026 rv = -EINVAL;
1027 mutex_unlock(&ipmi_interfaces_mutex);
1028 return rv;
1029
1030 found:
1031 handlers = intf->handlers;
1032 rv = -ENOSYS;
1033 if (handlers->get_smi_info)
1034 rv = handlers->get_smi_info(intf->send_info, data);
1035 mutex_unlock(&ipmi_interfaces_mutex);
1036
1037 return rv;
1038 }
1039 EXPORT_SYMBOL(ipmi_get_smi_info);
1040
1041 static void free_user(struct kref *ref)
1042 {
1043 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1044 kfree(user);
1045 }
1046
1047 int ipmi_destroy_user(ipmi_user_t user)
1048 {
1049 ipmi_smi_t intf = user->intf;
1050 int i;
1051 unsigned long flags;
1052 struct cmd_rcvr *rcvr;
1053 struct cmd_rcvr *rcvrs = NULL;
1054
1055 user->valid = false;
1056
1057 if (user->handler->ipmi_watchdog_pretimeout)
1058 atomic_dec(&intf->event_waiters);
1059
1060 if (user->gets_events)
1061 atomic_dec(&intf->event_waiters);
1062
1063 /* Remove the user from the interface's sequence table. */
1064 spin_lock_irqsave(&intf->seq_lock, flags);
1065 list_del_rcu(&user->link);
1066
1067 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1068 if (intf->seq_table[i].inuse
1069 && (intf->seq_table[i].recv_msg->user == user)) {
1070 intf->seq_table[i].inuse = 0;
1071 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1072 }
1073 }
1074 spin_unlock_irqrestore(&intf->seq_lock, flags);
1075
1076 /*
1077 * Remove the user from the command receiver's table. First
1078 * we build a list of everything (not using the standard link,
1079 * since other things may be using it till we do
1080 * synchronize_rcu()) then free everything in that list.
1081 */
1082 mutex_lock(&intf->cmd_rcvrs_mutex);
1083 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1084 if (rcvr->user == user) {
1085 list_del_rcu(&rcvr->link);
1086 rcvr->next = rcvrs;
1087 rcvrs = rcvr;
1088 }
1089 }
1090 mutex_unlock(&intf->cmd_rcvrs_mutex);
1091 synchronize_rcu();
1092 while (rcvrs) {
1093 rcvr = rcvrs;
1094 rcvrs = rcvr->next;
1095 kfree(rcvr);
1096 }
1097
1098 mutex_lock(&ipmi_interfaces_mutex);
1099 if (intf->handlers) {
1100 module_put(intf->handlers->owner);
1101 if (intf->handlers->dec_usecount)
1102 intf->handlers->dec_usecount(intf->send_info);
1103 }
1104 mutex_unlock(&ipmi_interfaces_mutex);
1105
1106 kref_put(&intf->refcount, intf_free);
1107
1108 kref_put(&user->refcount, free_user);
1109
1110 return 0;
1111 }
1112 EXPORT_SYMBOL(ipmi_destroy_user);
1113
1114 void ipmi_get_version(ipmi_user_t user,
1115 unsigned char *major,
1116 unsigned char *minor)
1117 {
1118 *major = user->intf->ipmi_version_major;
1119 *minor = user->intf->ipmi_version_minor;
1120 }
1121 EXPORT_SYMBOL(ipmi_get_version);
1122
1123 int ipmi_set_my_address(ipmi_user_t user,
1124 unsigned int channel,
1125 unsigned char address)
1126 {
1127 if (channel >= IPMI_MAX_CHANNELS)
1128 return -EINVAL;
1129 user->intf->channels[channel].address = address;
1130 return 0;
1131 }
1132 EXPORT_SYMBOL(ipmi_set_my_address);
1133
1134 int ipmi_get_my_address(ipmi_user_t user,
1135 unsigned int channel,
1136 unsigned char *address)
1137 {
1138 if (channel >= IPMI_MAX_CHANNELS)
1139 return -EINVAL;
1140 *address = user->intf->channels[channel].address;
1141 return 0;
1142 }
1143 EXPORT_SYMBOL(ipmi_get_my_address);
1144
1145 int ipmi_set_my_LUN(ipmi_user_t user,
1146 unsigned int channel,
1147 unsigned char LUN)
1148 {
1149 if (channel >= IPMI_MAX_CHANNELS)
1150 return -EINVAL;
1151 user->intf->channels[channel].lun = LUN & 0x3;
1152 return 0;
1153 }
1154 EXPORT_SYMBOL(ipmi_set_my_LUN);
1155
1156 int ipmi_get_my_LUN(ipmi_user_t user,
1157 unsigned int channel,
1158 unsigned char *address)
1159 {
1160 if (channel >= IPMI_MAX_CHANNELS)
1161 return -EINVAL;
1162 *address = user->intf->channels[channel].lun;
1163 return 0;
1164 }
1165 EXPORT_SYMBOL(ipmi_get_my_LUN);
1166
1167 int ipmi_get_maintenance_mode(ipmi_user_t user)
1168 {
1169 int mode;
1170 unsigned long flags;
1171
1172 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1173 mode = user->intf->maintenance_mode;
1174 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1175
1176 return mode;
1177 }
1178 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1179
1180 static void maintenance_mode_update(ipmi_smi_t intf)
1181 {
1182 if (intf->handlers->set_maintenance_mode)
1183 intf->handlers->set_maintenance_mode(
1184 intf->send_info, intf->maintenance_mode_enable);
1185 }
1186
1187 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1188 {
1189 int rv = 0;
1190 unsigned long flags;
1191 ipmi_smi_t intf = user->intf;
1192
1193 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1194 if (intf->maintenance_mode != mode) {
1195 switch (mode) {
1196 case IPMI_MAINTENANCE_MODE_AUTO:
1197 intf->maintenance_mode_enable
1198 = (intf->auto_maintenance_timeout > 0);
1199 break;
1200
1201 case IPMI_MAINTENANCE_MODE_OFF:
1202 intf->maintenance_mode_enable = false;
1203 break;
1204
1205 case IPMI_MAINTENANCE_MODE_ON:
1206 intf->maintenance_mode_enable = true;
1207 break;
1208
1209 default:
1210 rv = -EINVAL;
1211 goto out_unlock;
1212 }
1213 intf->maintenance_mode = mode;
1214
1215 maintenance_mode_update(intf);
1216 }
1217 out_unlock:
1218 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1219
1220 return rv;
1221 }
1222 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1223
1224 int ipmi_set_gets_events(ipmi_user_t user, bool val)
1225 {
1226 unsigned long flags;
1227 ipmi_smi_t intf = user->intf;
1228 struct ipmi_recv_msg *msg, *msg2;
1229 struct list_head msgs;
1230
1231 INIT_LIST_HEAD(&msgs);
1232
1233 spin_lock_irqsave(&intf->events_lock, flags);
1234 if (user->gets_events == val)
1235 goto out;
1236
1237 user->gets_events = val;
1238
1239 if (val) {
1240 if (atomic_inc_return(&intf->event_waiters) == 1)
1241 need_waiter(intf);
1242 } else {
1243 atomic_dec(&intf->event_waiters);
1244 }
1245
1246 if (intf->delivering_events)
1247 /*
1248 * Another thread is delivering events for this, so
1249 * let it handle any new events.
1250 */
1251 goto out;
1252
1253 /* Deliver any queued events. */
1254 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1255 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1256 list_move_tail(&msg->link, &msgs);
1257 intf->waiting_events_count = 0;
1258 if (intf->event_msg_printed) {
1259 printk(KERN_WARNING PFX "Event queue no longer"
1260 " full\n");
1261 intf->event_msg_printed = 0;
1262 }
1263
1264 intf->delivering_events = 1;
1265 spin_unlock_irqrestore(&intf->events_lock, flags);
1266
1267 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1268 msg->user = user;
1269 kref_get(&user->refcount);
1270 deliver_response(msg);
1271 }
1272
1273 spin_lock_irqsave(&intf->events_lock, flags);
1274 intf->delivering_events = 0;
1275 }
1276
1277 out:
1278 spin_unlock_irqrestore(&intf->events_lock, flags);
1279
1280 return 0;
1281 }
1282 EXPORT_SYMBOL(ipmi_set_gets_events);
1283
1284 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf,
1285 unsigned char netfn,
1286 unsigned char cmd,
1287 unsigned char chan)
1288 {
1289 struct cmd_rcvr *rcvr;
1290
1291 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1292 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1293 && (rcvr->chans & (1 << chan)))
1294 return rcvr;
1295 }
1296 return NULL;
1297 }
1298
1299 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf,
1300 unsigned char netfn,
1301 unsigned char cmd,
1302 unsigned int chans)
1303 {
1304 struct cmd_rcvr *rcvr;
1305
1306 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1307 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1308 && (rcvr->chans & chans))
1309 return 0;
1310 }
1311 return 1;
1312 }
1313
1314 int ipmi_register_for_cmd(ipmi_user_t user,
1315 unsigned char netfn,
1316 unsigned char cmd,
1317 unsigned int chans)
1318 {
1319 ipmi_smi_t intf = user->intf;
1320 struct cmd_rcvr *rcvr;
1321 int rv = 0;
1322
1323
1324 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1325 if (!rcvr)
1326 return -ENOMEM;
1327 rcvr->cmd = cmd;
1328 rcvr->netfn = netfn;
1329 rcvr->chans = chans;
1330 rcvr->user = user;
1331
1332 mutex_lock(&intf->cmd_rcvrs_mutex);
1333 /* Make sure the command/netfn is not already registered. */
1334 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1335 rv = -EBUSY;
1336 goto out_unlock;
1337 }
1338
1339 if (atomic_inc_return(&intf->event_waiters) == 1)
1340 need_waiter(intf);
1341
1342 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1343
1344 out_unlock:
1345 mutex_unlock(&intf->cmd_rcvrs_mutex);
1346 if (rv)
1347 kfree(rcvr);
1348
1349 return rv;
1350 }
1351 EXPORT_SYMBOL(ipmi_register_for_cmd);
1352
1353 int ipmi_unregister_for_cmd(ipmi_user_t user,
1354 unsigned char netfn,
1355 unsigned char cmd,
1356 unsigned int chans)
1357 {
1358 ipmi_smi_t intf = user->intf;
1359 struct cmd_rcvr *rcvr;
1360 struct cmd_rcvr *rcvrs = NULL;
1361 int i, rv = -ENOENT;
1362
1363 mutex_lock(&intf->cmd_rcvrs_mutex);
1364 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1365 if (((1 << i) & chans) == 0)
1366 continue;
1367 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1368 if (rcvr == NULL)
1369 continue;
1370 if (rcvr->user == user) {
1371 rv = 0;
1372 rcvr->chans &= ~chans;
1373 if (rcvr->chans == 0) {
1374 list_del_rcu(&rcvr->link);
1375 rcvr->next = rcvrs;
1376 rcvrs = rcvr;
1377 }
1378 }
1379 }
1380 mutex_unlock(&intf->cmd_rcvrs_mutex);
1381 synchronize_rcu();
1382 while (rcvrs) {
1383 atomic_dec(&intf->event_waiters);
1384 rcvr = rcvrs;
1385 rcvrs = rcvr->next;
1386 kfree(rcvr);
1387 }
1388 return rv;
1389 }
1390 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1391
1392 static unsigned char
1393 ipmb_checksum(unsigned char *data, int size)
1394 {
1395 unsigned char csum = 0;
1396
1397 for (; size > 0; size--, data++)
1398 csum += *data;
1399
1400 return -csum;
1401 }
1402
1403 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1404 struct kernel_ipmi_msg *msg,
1405 struct ipmi_ipmb_addr *ipmb_addr,
1406 long msgid,
1407 unsigned char ipmb_seq,
1408 int broadcast,
1409 unsigned char source_address,
1410 unsigned char source_lun)
1411 {
1412 int i = broadcast;
1413
1414 /* Format the IPMB header data. */
1415 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1416 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1417 smi_msg->data[2] = ipmb_addr->channel;
1418 if (broadcast)
1419 smi_msg->data[3] = 0;
1420 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1421 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1422 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1423 smi_msg->data[i+6] = source_address;
1424 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1425 smi_msg->data[i+8] = msg->cmd;
1426
1427 /* Now tack on the data to the message. */
1428 if (msg->data_len > 0)
1429 memcpy(&(smi_msg->data[i+9]), msg->data,
1430 msg->data_len);
1431 smi_msg->data_size = msg->data_len + 9;
1432
1433 /* Now calculate the checksum and tack it on. */
1434 smi_msg->data[i+smi_msg->data_size]
1435 = ipmb_checksum(&(smi_msg->data[i+6]),
1436 smi_msg->data_size-6);
1437
1438 /*
1439 * Add on the checksum size and the offset from the
1440 * broadcast.
1441 */
1442 smi_msg->data_size += 1 + i;
1443
1444 smi_msg->msgid = msgid;
1445 }
1446
1447 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1448 struct kernel_ipmi_msg *msg,
1449 struct ipmi_lan_addr *lan_addr,
1450 long msgid,
1451 unsigned char ipmb_seq,
1452 unsigned char source_lun)
1453 {
1454 /* Format the IPMB header data. */
1455 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1456 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1457 smi_msg->data[2] = lan_addr->channel;
1458 smi_msg->data[3] = lan_addr->session_handle;
1459 smi_msg->data[4] = lan_addr->remote_SWID;
1460 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1461 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1462 smi_msg->data[7] = lan_addr->local_SWID;
1463 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1464 smi_msg->data[9] = msg->cmd;
1465
1466 /* Now tack on the data to the message. */
1467 if (msg->data_len > 0)
1468 memcpy(&(smi_msg->data[10]), msg->data,
1469 msg->data_len);
1470 smi_msg->data_size = msg->data_len + 10;
1471
1472 /* Now calculate the checksum and tack it on. */
1473 smi_msg->data[smi_msg->data_size]
1474 = ipmb_checksum(&(smi_msg->data[7]),
1475 smi_msg->data_size-7);
1476
1477 /*
1478 * Add on the checksum size and the offset from the
1479 * broadcast.
1480 */
1481 smi_msg->data_size += 1;
1482
1483 smi_msg->msgid = msgid;
1484 }
1485
1486 static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf,
1487 struct ipmi_smi_msg *smi_msg,
1488 int priority)
1489 {
1490 if (intf->curr_msg) {
1491 if (priority > 0)
1492 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1493 else
1494 list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1495 smi_msg = NULL;
1496 } else {
1497 intf->curr_msg = smi_msg;
1498 }
1499
1500 return smi_msg;
1501 }
1502
1503
1504 static void smi_send(ipmi_smi_t intf, struct ipmi_smi_handlers *handlers,
1505 struct ipmi_smi_msg *smi_msg, int priority)
1506 {
1507 int run_to_completion = intf->run_to_completion;
1508
1509 if (run_to_completion) {
1510 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1511 } else {
1512 unsigned long flags;
1513
1514 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1515 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1516 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1517 }
1518
1519 if (smi_msg)
1520 handlers->sender(intf->send_info, smi_msg);
1521 }
1522
1523 /*
1524 * Separate from ipmi_request so that the user does not have to be
1525 * supplied in certain circumstances (mainly at panic time). If
1526 * messages are supplied, they will be freed, even if an error
1527 * occurs.
1528 */
1529 static int i_ipmi_request(ipmi_user_t user,
1530 ipmi_smi_t intf,
1531 struct ipmi_addr *addr,
1532 long msgid,
1533 struct kernel_ipmi_msg *msg,
1534 void *user_msg_data,
1535 void *supplied_smi,
1536 struct ipmi_recv_msg *supplied_recv,
1537 int priority,
1538 unsigned char source_address,
1539 unsigned char source_lun,
1540 int retries,
1541 unsigned int retry_time_ms)
1542 {
1543 int rv = 0;
1544 struct ipmi_smi_msg *smi_msg;
1545 struct ipmi_recv_msg *recv_msg;
1546 unsigned long flags;
1547
1548
1549 if (supplied_recv)
1550 recv_msg = supplied_recv;
1551 else {
1552 recv_msg = ipmi_alloc_recv_msg();
1553 if (recv_msg == NULL)
1554 return -ENOMEM;
1555 }
1556 recv_msg->user_msg_data = user_msg_data;
1557
1558 if (supplied_smi)
1559 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1560 else {
1561 smi_msg = ipmi_alloc_smi_msg();
1562 if (smi_msg == NULL) {
1563 ipmi_free_recv_msg(recv_msg);
1564 return -ENOMEM;
1565 }
1566 }
1567
1568 rcu_read_lock();
1569 if (intf->in_shutdown) {
1570 rv = -ENODEV;
1571 goto out_err;
1572 }
1573
1574 recv_msg->user = user;
1575 if (user)
1576 kref_get(&user->refcount);
1577 recv_msg->msgid = msgid;
1578 /*
1579 * Store the message to send in the receive message so timeout
1580 * responses can get the proper response data.
1581 */
1582 recv_msg->msg = *msg;
1583
1584 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1585 struct ipmi_system_interface_addr *smi_addr;
1586
1587 if (msg->netfn & 1) {
1588 /* Responses are not allowed to the SMI. */
1589 rv = -EINVAL;
1590 goto out_err;
1591 }
1592
1593 smi_addr = (struct ipmi_system_interface_addr *) addr;
1594 if (smi_addr->lun > 3) {
1595 ipmi_inc_stat(intf, sent_invalid_commands);
1596 rv = -EINVAL;
1597 goto out_err;
1598 }
1599
1600 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1601
1602 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1603 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1604 || (msg->cmd == IPMI_GET_MSG_CMD)
1605 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1606 /*
1607 * We don't let the user do these, since we manage
1608 * the sequence numbers.
1609 */
1610 ipmi_inc_stat(intf, sent_invalid_commands);
1611 rv = -EINVAL;
1612 goto out_err;
1613 }
1614
1615 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1616 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1617 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1618 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1619 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1620 intf->auto_maintenance_timeout
1621 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1622 if (!intf->maintenance_mode
1623 && !intf->maintenance_mode_enable) {
1624 intf->maintenance_mode_enable = true;
1625 maintenance_mode_update(intf);
1626 }
1627 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1628 flags);
1629 }
1630
1631 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1632 ipmi_inc_stat(intf, sent_invalid_commands);
1633 rv = -EMSGSIZE;
1634 goto out_err;
1635 }
1636
1637 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1638 smi_msg->data[1] = msg->cmd;
1639 smi_msg->msgid = msgid;
1640 smi_msg->user_data = recv_msg;
1641 if (msg->data_len > 0)
1642 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1643 smi_msg->data_size = msg->data_len + 2;
1644 ipmi_inc_stat(intf, sent_local_commands);
1645 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1646 struct ipmi_ipmb_addr *ipmb_addr;
1647 unsigned char ipmb_seq;
1648 long seqid;
1649 int broadcast = 0;
1650
1651 if (addr->channel >= IPMI_MAX_CHANNELS) {
1652 ipmi_inc_stat(intf, sent_invalid_commands);
1653 rv = -EINVAL;
1654 goto out_err;
1655 }
1656
1657 if (intf->channels[addr->channel].medium
1658 != IPMI_CHANNEL_MEDIUM_IPMB) {
1659 ipmi_inc_stat(intf, sent_invalid_commands);
1660 rv = -EINVAL;
1661 goto out_err;
1662 }
1663
1664 if (retries < 0) {
1665 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1666 retries = 0; /* Don't retry broadcasts. */
1667 else
1668 retries = 4;
1669 }
1670 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1671 /*
1672 * Broadcasts add a zero at the beginning of the
1673 * message, but otherwise is the same as an IPMB
1674 * address.
1675 */
1676 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1677 broadcast = 1;
1678 }
1679
1680
1681 /* Default to 1 second retries. */
1682 if (retry_time_ms == 0)
1683 retry_time_ms = 1000;
1684
1685 /*
1686 * 9 for the header and 1 for the checksum, plus
1687 * possibly one for the broadcast.
1688 */
1689 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1690 ipmi_inc_stat(intf, sent_invalid_commands);
1691 rv = -EMSGSIZE;
1692 goto out_err;
1693 }
1694
1695 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1696 if (ipmb_addr->lun > 3) {
1697 ipmi_inc_stat(intf, sent_invalid_commands);
1698 rv = -EINVAL;
1699 goto out_err;
1700 }
1701
1702 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1703
1704 if (recv_msg->msg.netfn & 0x1) {
1705 /*
1706 * It's a response, so use the user's sequence
1707 * from msgid.
1708 */
1709 ipmi_inc_stat(intf, sent_ipmb_responses);
1710 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1711 msgid, broadcast,
1712 source_address, source_lun);
1713
1714 /*
1715 * Save the receive message so we can use it
1716 * to deliver the response.
1717 */
1718 smi_msg->user_data = recv_msg;
1719 } else {
1720 /* It's a command, so get a sequence for it. */
1721
1722 spin_lock_irqsave(&(intf->seq_lock), flags);
1723
1724 /*
1725 * Create a sequence number with a 1 second
1726 * timeout and 4 retries.
1727 */
1728 rv = intf_next_seq(intf,
1729 recv_msg,
1730 retry_time_ms,
1731 retries,
1732 broadcast,
1733 &ipmb_seq,
1734 &seqid);
1735 if (rv) {
1736 /*
1737 * We have used up all the sequence numbers,
1738 * probably, so abort.
1739 */
1740 spin_unlock_irqrestore(&(intf->seq_lock),
1741 flags);
1742 goto out_err;
1743 }
1744
1745 ipmi_inc_stat(intf, sent_ipmb_commands);
1746
1747 /*
1748 * Store the sequence number in the message,
1749 * so that when the send message response
1750 * comes back we can start the timer.
1751 */
1752 format_ipmb_msg(smi_msg, msg, ipmb_addr,
1753 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1754 ipmb_seq, broadcast,
1755 source_address, source_lun);
1756
1757 /*
1758 * Copy the message into the recv message data, so we
1759 * can retransmit it later if necessary.
1760 */
1761 memcpy(recv_msg->msg_data, smi_msg->data,
1762 smi_msg->data_size);
1763 recv_msg->msg.data = recv_msg->msg_data;
1764 recv_msg->msg.data_len = smi_msg->data_size;
1765
1766 /*
1767 * We don't unlock until here, because we need
1768 * to copy the completed message into the
1769 * recv_msg before we release the lock.
1770 * Otherwise, race conditions may bite us. I
1771 * know that's pretty paranoid, but I prefer
1772 * to be correct.
1773 */
1774 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1775 }
1776 } else if (is_lan_addr(addr)) {
1777 struct ipmi_lan_addr *lan_addr;
1778 unsigned char ipmb_seq;
1779 long seqid;
1780
1781 if (addr->channel >= IPMI_MAX_CHANNELS) {
1782 ipmi_inc_stat(intf, sent_invalid_commands);
1783 rv = -EINVAL;
1784 goto out_err;
1785 }
1786
1787 if ((intf->channels[addr->channel].medium
1788 != IPMI_CHANNEL_MEDIUM_8023LAN)
1789 && (intf->channels[addr->channel].medium
1790 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1791 ipmi_inc_stat(intf, sent_invalid_commands);
1792 rv = -EINVAL;
1793 goto out_err;
1794 }
1795
1796 retries = 4;
1797
1798 /* Default to 1 second retries. */
1799 if (retry_time_ms == 0)
1800 retry_time_ms = 1000;
1801
1802 /* 11 for the header and 1 for the checksum. */
1803 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1804 ipmi_inc_stat(intf, sent_invalid_commands);
1805 rv = -EMSGSIZE;
1806 goto out_err;
1807 }
1808
1809 lan_addr = (struct ipmi_lan_addr *) addr;
1810 if (lan_addr->lun > 3) {
1811 ipmi_inc_stat(intf, sent_invalid_commands);
1812 rv = -EINVAL;
1813 goto out_err;
1814 }
1815
1816 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1817
1818 if (recv_msg->msg.netfn & 0x1) {
1819 /*
1820 * It's a response, so use the user's sequence
1821 * from msgid.
1822 */
1823 ipmi_inc_stat(intf, sent_lan_responses);
1824 format_lan_msg(smi_msg, msg, lan_addr, msgid,
1825 msgid, source_lun);
1826
1827 /*
1828 * Save the receive message so we can use it
1829 * to deliver the response.
1830 */
1831 smi_msg->user_data = recv_msg;
1832 } else {
1833 /* It's a command, so get a sequence for it. */
1834
1835 spin_lock_irqsave(&(intf->seq_lock), flags);
1836
1837 /*
1838 * Create a sequence number with a 1 second
1839 * timeout and 4 retries.
1840 */
1841 rv = intf_next_seq(intf,
1842 recv_msg,
1843 retry_time_ms,
1844 retries,
1845 0,
1846 &ipmb_seq,
1847 &seqid);
1848 if (rv) {
1849 /*
1850 * We have used up all the sequence numbers,
1851 * probably, so abort.
1852 */
1853 spin_unlock_irqrestore(&(intf->seq_lock),
1854 flags);
1855 goto out_err;
1856 }
1857
1858 ipmi_inc_stat(intf, sent_lan_commands);
1859
1860 /*
1861 * Store the sequence number in the message,
1862 * so that when the send message response
1863 * comes back we can start the timer.
1864 */
1865 format_lan_msg(smi_msg, msg, lan_addr,
1866 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1867 ipmb_seq, source_lun);
1868
1869 /*
1870 * Copy the message into the recv message data, so we
1871 * can retransmit it later if necessary.
1872 */
1873 memcpy(recv_msg->msg_data, smi_msg->data,
1874 smi_msg->data_size);
1875 recv_msg->msg.data = recv_msg->msg_data;
1876 recv_msg->msg.data_len = smi_msg->data_size;
1877
1878 /*
1879 * We don't unlock until here, because we need
1880 * to copy the completed message into the
1881 * recv_msg before we release the lock.
1882 * Otherwise, race conditions may bite us. I
1883 * know that's pretty paranoid, but I prefer
1884 * to be correct.
1885 */
1886 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1887 }
1888 } else {
1889 /* Unknown address type. */
1890 ipmi_inc_stat(intf, sent_invalid_commands);
1891 rv = -EINVAL;
1892 goto out_err;
1893 }
1894
1895 #ifdef DEBUG_MSGING
1896 {
1897 int m;
1898 for (m = 0; m < smi_msg->data_size; m++)
1899 printk(" %2.2x", smi_msg->data[m]);
1900 printk("\n");
1901 }
1902 #endif
1903
1904 smi_send(intf, intf->handlers, smi_msg, priority);
1905 rcu_read_unlock();
1906
1907 return 0;
1908
1909 out_err:
1910 rcu_read_unlock();
1911 ipmi_free_smi_msg(smi_msg);
1912 ipmi_free_recv_msg(recv_msg);
1913 return rv;
1914 }
1915
1916 static int check_addr(ipmi_smi_t intf,
1917 struct ipmi_addr *addr,
1918 unsigned char *saddr,
1919 unsigned char *lun)
1920 {
1921 if (addr->channel >= IPMI_MAX_CHANNELS)
1922 return -EINVAL;
1923 *lun = intf->channels[addr->channel].lun;
1924 *saddr = intf->channels[addr->channel].address;
1925 return 0;
1926 }
1927
1928 int ipmi_request_settime(ipmi_user_t user,
1929 struct ipmi_addr *addr,
1930 long msgid,
1931 struct kernel_ipmi_msg *msg,
1932 void *user_msg_data,
1933 int priority,
1934 int retries,
1935 unsigned int retry_time_ms)
1936 {
1937 unsigned char saddr = 0, lun = 0;
1938 int rv;
1939
1940 if (!user)
1941 return -EINVAL;
1942 rv = check_addr(user->intf, addr, &saddr, &lun);
1943 if (rv)
1944 return rv;
1945 return i_ipmi_request(user,
1946 user->intf,
1947 addr,
1948 msgid,
1949 msg,
1950 user_msg_data,
1951 NULL, NULL,
1952 priority,
1953 saddr,
1954 lun,
1955 retries,
1956 retry_time_ms);
1957 }
1958 EXPORT_SYMBOL(ipmi_request_settime);
1959
1960 int ipmi_request_supply_msgs(ipmi_user_t user,
1961 struct ipmi_addr *addr,
1962 long msgid,
1963 struct kernel_ipmi_msg *msg,
1964 void *user_msg_data,
1965 void *supplied_smi,
1966 struct ipmi_recv_msg *supplied_recv,
1967 int priority)
1968 {
1969 unsigned char saddr = 0, lun = 0;
1970 int rv;
1971
1972 if (!user)
1973 return -EINVAL;
1974 rv = check_addr(user->intf, addr, &saddr, &lun);
1975 if (rv)
1976 return rv;
1977 return i_ipmi_request(user,
1978 user->intf,
1979 addr,
1980 msgid,
1981 msg,
1982 user_msg_data,
1983 supplied_smi,
1984 supplied_recv,
1985 priority,
1986 saddr,
1987 lun,
1988 -1, 0);
1989 }
1990 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1991
1992 #ifdef CONFIG_PROC_FS
1993 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
1994 {
1995 ipmi_smi_t intf = m->private;
1996 int i;
1997
1998 seq_printf(m, "%x", intf->channels[0].address);
1999 for (i = 1; i < IPMI_MAX_CHANNELS; i++)
2000 seq_printf(m, " %x", intf->channels[i].address);
2001 seq_putc(m, '\n');
2002
2003 return seq_has_overflowed(m);
2004 }
2005
2006 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
2007 {
2008 return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
2009 }
2010
2011 static const struct file_operations smi_ipmb_proc_ops = {
2012 .open = smi_ipmb_proc_open,
2013 .read = seq_read,
2014 .llseek = seq_lseek,
2015 .release = single_release,
2016 };
2017
2018 static int smi_version_proc_show(struct seq_file *m, void *v)
2019 {
2020 ipmi_smi_t intf = m->private;
2021
2022 seq_printf(m, "%u.%u\n",
2023 ipmi_version_major(&intf->bmc->id),
2024 ipmi_version_minor(&intf->bmc->id));
2025
2026 return seq_has_overflowed(m);
2027 }
2028
2029 static int smi_version_proc_open(struct inode *inode, struct file *file)
2030 {
2031 return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2032 }
2033
2034 static const struct file_operations smi_version_proc_ops = {
2035 .open = smi_version_proc_open,
2036 .read = seq_read,
2037 .llseek = seq_lseek,
2038 .release = single_release,
2039 };
2040
2041 static int smi_stats_proc_show(struct seq_file *m, void *v)
2042 {
2043 ipmi_smi_t intf = m->private;
2044
2045 seq_printf(m, "sent_invalid_commands: %u\n",
2046 ipmi_get_stat(intf, sent_invalid_commands));
2047 seq_printf(m, "sent_local_commands: %u\n",
2048 ipmi_get_stat(intf, sent_local_commands));
2049 seq_printf(m, "handled_local_responses: %u\n",
2050 ipmi_get_stat(intf, handled_local_responses));
2051 seq_printf(m, "unhandled_local_responses: %u\n",
2052 ipmi_get_stat(intf, unhandled_local_responses));
2053 seq_printf(m, "sent_ipmb_commands: %u\n",
2054 ipmi_get_stat(intf, sent_ipmb_commands));
2055 seq_printf(m, "sent_ipmb_command_errs: %u\n",
2056 ipmi_get_stat(intf, sent_ipmb_command_errs));
2057 seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2058 ipmi_get_stat(intf, retransmitted_ipmb_commands));
2059 seq_printf(m, "timed_out_ipmb_commands: %u\n",
2060 ipmi_get_stat(intf, timed_out_ipmb_commands));
2061 seq_printf(m, "timed_out_ipmb_broadcasts: %u\n",
2062 ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2063 seq_printf(m, "sent_ipmb_responses: %u\n",
2064 ipmi_get_stat(intf, sent_ipmb_responses));
2065 seq_printf(m, "handled_ipmb_responses: %u\n",
2066 ipmi_get_stat(intf, handled_ipmb_responses));
2067 seq_printf(m, "invalid_ipmb_responses: %u\n",
2068 ipmi_get_stat(intf, invalid_ipmb_responses));
2069 seq_printf(m, "unhandled_ipmb_responses: %u\n",
2070 ipmi_get_stat(intf, unhandled_ipmb_responses));
2071 seq_printf(m, "sent_lan_commands: %u\n",
2072 ipmi_get_stat(intf, sent_lan_commands));
2073 seq_printf(m, "sent_lan_command_errs: %u\n",
2074 ipmi_get_stat(intf, sent_lan_command_errs));
2075 seq_printf(m, "retransmitted_lan_commands: %u\n",
2076 ipmi_get_stat(intf, retransmitted_lan_commands));
2077 seq_printf(m, "timed_out_lan_commands: %u\n",
2078 ipmi_get_stat(intf, timed_out_lan_commands));
2079 seq_printf(m, "sent_lan_responses: %u\n",
2080 ipmi_get_stat(intf, sent_lan_responses));
2081 seq_printf(m, "handled_lan_responses: %u\n",
2082 ipmi_get_stat(intf, handled_lan_responses));
2083 seq_printf(m, "invalid_lan_responses: %u\n",
2084 ipmi_get_stat(intf, invalid_lan_responses));
2085 seq_printf(m, "unhandled_lan_responses: %u\n",
2086 ipmi_get_stat(intf, unhandled_lan_responses));
2087 seq_printf(m, "handled_commands: %u\n",
2088 ipmi_get_stat(intf, handled_commands));
2089 seq_printf(m, "invalid_commands: %u\n",
2090 ipmi_get_stat(intf, invalid_commands));
2091 seq_printf(m, "unhandled_commands: %u\n",
2092 ipmi_get_stat(intf, unhandled_commands));
2093 seq_printf(m, "invalid_events: %u\n",
2094 ipmi_get_stat(intf, invalid_events));
2095 seq_printf(m, "events: %u\n",
2096 ipmi_get_stat(intf, events));
2097 seq_printf(m, "failed rexmit LAN msgs: %u\n",
2098 ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2099 seq_printf(m, "failed rexmit IPMB msgs: %u\n",
2100 ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2101 return 0;
2102 }
2103
2104 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2105 {
2106 return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2107 }
2108
2109 static const struct file_operations smi_stats_proc_ops = {
2110 .open = smi_stats_proc_open,
2111 .read = seq_read,
2112 .llseek = seq_lseek,
2113 .release = single_release,
2114 };
2115 #endif /* CONFIG_PROC_FS */
2116
2117 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2118 const struct file_operations *proc_ops,
2119 void *data)
2120 {
2121 int rv = 0;
2122 #ifdef CONFIG_PROC_FS
2123 struct proc_dir_entry *file;
2124 struct ipmi_proc_entry *entry;
2125
2126 /* Create a list element. */
2127 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2128 if (!entry)
2129 return -ENOMEM;
2130 entry->name = kstrdup(name, GFP_KERNEL);
2131 if (!entry->name) {
2132 kfree(entry);
2133 return -ENOMEM;
2134 }
2135
2136 file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2137 if (!file) {
2138 kfree(entry->name);
2139 kfree(entry);
2140 rv = -ENOMEM;
2141 } else {
2142 mutex_lock(&smi->proc_entry_lock);
2143 /* Stick it on the list. */
2144 entry->next = smi->proc_entries;
2145 smi->proc_entries = entry;
2146 mutex_unlock(&smi->proc_entry_lock);
2147 }
2148 #endif /* CONFIG_PROC_FS */
2149
2150 return rv;
2151 }
2152 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2153
2154 static int add_proc_entries(ipmi_smi_t smi, int num)
2155 {
2156 int rv = 0;
2157
2158 #ifdef CONFIG_PROC_FS
2159 sprintf(smi->proc_dir_name, "%d", num);
2160 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2161 if (!smi->proc_dir)
2162 rv = -ENOMEM;
2163
2164 if (rv == 0)
2165 rv = ipmi_smi_add_proc_entry(smi, "stats",
2166 &smi_stats_proc_ops,
2167 smi);
2168
2169 if (rv == 0)
2170 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2171 &smi_ipmb_proc_ops,
2172 smi);
2173
2174 if (rv == 0)
2175 rv = ipmi_smi_add_proc_entry(smi, "version",
2176 &smi_version_proc_ops,
2177 smi);
2178 #endif /* CONFIG_PROC_FS */
2179
2180 return rv;
2181 }
2182
2183 static void remove_proc_entries(ipmi_smi_t smi)
2184 {
2185 #ifdef CONFIG_PROC_FS
2186 struct ipmi_proc_entry *entry;
2187
2188 mutex_lock(&smi->proc_entry_lock);
2189 while (smi->proc_entries) {
2190 entry = smi->proc_entries;
2191 smi->proc_entries = entry->next;
2192
2193 remove_proc_entry(entry->name, smi->proc_dir);
2194 kfree(entry->name);
2195 kfree(entry);
2196 }
2197 mutex_unlock(&smi->proc_entry_lock);
2198 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2199 #endif /* CONFIG_PROC_FS */
2200 }
2201
2202 static int __find_bmc_guid(struct device *dev, void *data)
2203 {
2204 unsigned char *id = data;
2205 struct bmc_device *bmc = to_bmc_device(dev);
2206 return memcmp(bmc->guid, id, 16) == 0;
2207 }
2208
2209 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2210 unsigned char *guid)
2211 {
2212 struct device *dev;
2213
2214 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2215 if (dev)
2216 return to_bmc_device(dev);
2217 else
2218 return NULL;
2219 }
2220
2221 struct prod_dev_id {
2222 unsigned int product_id;
2223 unsigned char device_id;
2224 };
2225
2226 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2227 {
2228 struct prod_dev_id *id = data;
2229 struct bmc_device *bmc = to_bmc_device(dev);
2230
2231 return (bmc->id.product_id == id->product_id
2232 && bmc->id.device_id == id->device_id);
2233 }
2234
2235 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2236 struct device_driver *drv,
2237 unsigned int product_id, unsigned char device_id)
2238 {
2239 struct prod_dev_id id = {
2240 .product_id = product_id,
2241 .device_id = device_id,
2242 };
2243 struct device *dev;
2244
2245 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2246 if (dev)
2247 return to_bmc_device(dev);
2248 else
2249 return NULL;
2250 }
2251
2252 static ssize_t device_id_show(struct device *dev,
2253 struct device_attribute *attr,
2254 char *buf)
2255 {
2256 struct bmc_device *bmc = to_bmc_device(dev);
2257
2258 return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2259 }
2260 static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
2261
2262 static ssize_t provides_device_sdrs_show(struct device *dev,
2263 struct device_attribute *attr,
2264 char *buf)
2265 {
2266 struct bmc_device *bmc = to_bmc_device(dev);
2267
2268 return snprintf(buf, 10, "%u\n",
2269 (bmc->id.device_revision & 0x80) >> 7);
2270 }
2271 static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
2272 NULL);
2273
2274 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2275 char *buf)
2276 {
2277 struct bmc_device *bmc = to_bmc_device(dev);
2278
2279 return snprintf(buf, 20, "%u\n",
2280 bmc->id.device_revision & 0x0F);
2281 }
2282 static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
2283
2284 static ssize_t firmware_revision_show(struct device *dev,
2285 struct device_attribute *attr,
2286 char *buf)
2287 {
2288 struct bmc_device *bmc = to_bmc_device(dev);
2289
2290 return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2291 bmc->id.firmware_revision_2);
2292 }
2293 static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
2294
2295 static ssize_t ipmi_version_show(struct device *dev,
2296 struct device_attribute *attr,
2297 char *buf)
2298 {
2299 struct bmc_device *bmc = to_bmc_device(dev);
2300
2301 return snprintf(buf, 20, "%u.%u\n",
2302 ipmi_version_major(&bmc->id),
2303 ipmi_version_minor(&bmc->id));
2304 }
2305 static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
2306
2307 static ssize_t add_dev_support_show(struct device *dev,
2308 struct device_attribute *attr,
2309 char *buf)
2310 {
2311 struct bmc_device *bmc = to_bmc_device(dev);
2312
2313 return snprintf(buf, 10, "0x%02x\n",
2314 bmc->id.additional_device_support);
2315 }
2316 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2317 NULL);
2318
2319 static ssize_t manufacturer_id_show(struct device *dev,
2320 struct device_attribute *attr,
2321 char *buf)
2322 {
2323 struct bmc_device *bmc = to_bmc_device(dev);
2324
2325 return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2326 }
2327 static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
2328
2329 static ssize_t product_id_show(struct device *dev,
2330 struct device_attribute *attr,
2331 char *buf)
2332 {
2333 struct bmc_device *bmc = to_bmc_device(dev);
2334
2335 return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2336 }
2337 static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
2338
2339 static ssize_t aux_firmware_rev_show(struct device *dev,
2340 struct device_attribute *attr,
2341 char *buf)
2342 {
2343 struct bmc_device *bmc = to_bmc_device(dev);
2344
2345 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2346 bmc->id.aux_firmware_revision[3],
2347 bmc->id.aux_firmware_revision[2],
2348 bmc->id.aux_firmware_revision[1],
2349 bmc->id.aux_firmware_revision[0]);
2350 }
2351 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2352
2353 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2354 char *buf)
2355 {
2356 struct bmc_device *bmc = to_bmc_device(dev);
2357
2358 return snprintf(buf, 100, "%Lx%Lx\n",
2359 (long long) bmc->guid[0],
2360 (long long) bmc->guid[8]);
2361 }
2362 static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
2363
2364 static struct attribute *bmc_dev_attrs[] = {
2365 &dev_attr_device_id.attr,
2366 &dev_attr_provides_device_sdrs.attr,
2367 &dev_attr_revision.attr,
2368 &dev_attr_firmware_revision.attr,
2369 &dev_attr_ipmi_version.attr,
2370 &dev_attr_additional_device_support.attr,
2371 &dev_attr_manufacturer_id.attr,
2372 &dev_attr_product_id.attr,
2373 &dev_attr_aux_firmware_revision.attr,
2374 &dev_attr_guid.attr,
2375 NULL
2376 };
2377
2378 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2379 struct attribute *attr, int idx)
2380 {
2381 struct device *dev = kobj_to_dev(kobj);
2382 struct bmc_device *bmc = to_bmc_device(dev);
2383 umode_t mode = attr->mode;
2384
2385 if (attr == &dev_attr_aux_firmware_revision.attr)
2386 return bmc->id.aux_firmware_revision_set ? mode : 0;
2387 if (attr == &dev_attr_guid.attr)
2388 return bmc->guid_set ? mode : 0;
2389 return mode;
2390 }
2391
2392 static struct attribute_group bmc_dev_attr_group = {
2393 .attrs = bmc_dev_attrs,
2394 .is_visible = bmc_dev_attr_is_visible,
2395 };
2396
2397 static const struct attribute_group *bmc_dev_attr_groups[] = {
2398 &bmc_dev_attr_group,
2399 NULL
2400 };
2401
2402 static struct device_type bmc_device_type = {
2403 .groups = bmc_dev_attr_groups,
2404 };
2405
2406 static void
2407 release_bmc_device(struct device *dev)
2408 {
2409 kfree(to_bmc_device(dev));
2410 }
2411
2412 static void
2413 cleanup_bmc_device(struct kref *ref)
2414 {
2415 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2416
2417 platform_device_unregister(&bmc->pdev);
2418 }
2419
2420 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2421 {
2422 struct bmc_device *bmc = intf->bmc;
2423
2424 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2425 if (intf->my_dev_name) {
2426 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2427 kfree(intf->my_dev_name);
2428 intf->my_dev_name = NULL;
2429 }
2430
2431 mutex_lock(&ipmidriver_mutex);
2432 kref_put(&bmc->usecount, cleanup_bmc_device);
2433 intf->bmc = NULL;
2434 mutex_unlock(&ipmidriver_mutex);
2435 }
2436
2437 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
2438 {
2439 int rv;
2440 struct bmc_device *bmc = intf->bmc;
2441 struct bmc_device *old_bmc;
2442
2443 mutex_lock(&ipmidriver_mutex);
2444
2445 /*
2446 * Try to find if there is an bmc_device struct
2447 * representing the interfaced BMC already
2448 */
2449 if (bmc->guid_set)
2450 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2451 else
2452 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2453 bmc->id.product_id,
2454 bmc->id.device_id);
2455
2456 /*
2457 * If there is already an bmc_device, free the new one,
2458 * otherwise register the new BMC device
2459 */
2460 if (old_bmc) {
2461 kfree(bmc);
2462 intf->bmc = old_bmc;
2463 bmc = old_bmc;
2464
2465 kref_get(&bmc->usecount);
2466 mutex_unlock(&ipmidriver_mutex);
2467
2468 printk(KERN_INFO
2469 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2470 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2471 bmc->id.manufacturer_id,
2472 bmc->id.product_id,
2473 bmc->id.device_id);
2474 } else {
2475 unsigned char orig_dev_id = bmc->id.device_id;
2476 int warn_printed = 0;
2477
2478 snprintf(bmc->name, sizeof(bmc->name),
2479 "ipmi_bmc.%4.4x", bmc->id.product_id);
2480 bmc->pdev.name = bmc->name;
2481
2482 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2483 bmc->id.product_id,
2484 bmc->id.device_id)) {
2485 if (!warn_printed) {
2486 printk(KERN_WARNING PFX
2487 "This machine has two different BMCs"
2488 " with the same product id and device"
2489 " id. This is an error in the"
2490 " firmware, but incrementing the"
2491 " device id to work around the problem."
2492 " Prod ID = 0x%x, Dev ID = 0x%x\n",
2493 bmc->id.product_id, bmc->id.device_id);
2494 warn_printed = 1;
2495 }
2496 bmc->id.device_id++; /* Wraps at 255 */
2497 if (bmc->id.device_id == orig_dev_id) {
2498 printk(KERN_ERR PFX
2499 "Out of device ids!\n");
2500 break;
2501 }
2502 }
2503
2504 bmc->pdev.dev.driver = &ipmidriver.driver;
2505 bmc->pdev.id = bmc->id.device_id;
2506 bmc->pdev.dev.release = release_bmc_device;
2507 bmc->pdev.dev.type = &bmc_device_type;
2508 kref_init(&bmc->usecount);
2509
2510 rv = platform_device_register(&bmc->pdev);
2511 mutex_unlock(&ipmidriver_mutex);
2512 if (rv) {
2513 put_device(&bmc->pdev.dev);
2514 printk(KERN_ERR
2515 "ipmi_msghandler:"
2516 " Unable to register bmc device: %d\n",
2517 rv);
2518 /*
2519 * Don't go to out_err, you can only do that if
2520 * the device is registered already.
2521 */
2522 return rv;
2523 }
2524
2525 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2526 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2527 bmc->id.manufacturer_id,
2528 bmc->id.product_id,
2529 bmc->id.device_id);
2530 }
2531
2532 /*
2533 * create symlink from system interface device to bmc device
2534 * and back.
2535 */
2536 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2537 if (rv) {
2538 printk(KERN_ERR
2539 "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2540 rv);
2541 goto out_err;
2542 }
2543
2544 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
2545 if (!intf->my_dev_name) {
2546 rv = -ENOMEM;
2547 printk(KERN_ERR
2548 "ipmi_msghandler: allocate link from BMC: %d\n",
2549 rv);
2550 goto out_err;
2551 }
2552
2553 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2554 intf->my_dev_name);
2555 if (rv) {
2556 kfree(intf->my_dev_name);
2557 intf->my_dev_name = NULL;
2558 printk(KERN_ERR
2559 "ipmi_msghandler:"
2560 " Unable to create symlink to bmc: %d\n",
2561 rv);
2562 goto out_err;
2563 }
2564
2565 return 0;
2566
2567 out_err:
2568 ipmi_bmc_unregister(intf);
2569 return rv;
2570 }
2571
2572 static int
2573 send_guid_cmd(ipmi_smi_t intf, int chan)
2574 {
2575 struct kernel_ipmi_msg msg;
2576 struct ipmi_system_interface_addr si;
2577
2578 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2579 si.channel = IPMI_BMC_CHANNEL;
2580 si.lun = 0;
2581
2582 msg.netfn = IPMI_NETFN_APP_REQUEST;
2583 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2584 msg.data = NULL;
2585 msg.data_len = 0;
2586 return i_ipmi_request(NULL,
2587 intf,
2588 (struct ipmi_addr *) &si,
2589 0,
2590 &msg,
2591 intf,
2592 NULL,
2593 NULL,
2594 0,
2595 intf->channels[0].address,
2596 intf->channels[0].lun,
2597 -1, 0);
2598 }
2599
2600 static void
2601 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2602 {
2603 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2604 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2605 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2606 /* Not for me */
2607 return;
2608
2609 if (msg->msg.data[0] != 0) {
2610 /* Error from getting the GUID, the BMC doesn't have one. */
2611 intf->bmc->guid_set = 0;
2612 goto out;
2613 }
2614
2615 if (msg->msg.data_len < 17) {
2616 intf->bmc->guid_set = 0;
2617 printk(KERN_WARNING PFX
2618 "guid_handler: The GUID response from the BMC was too"
2619 " short, it was %d but should have been 17. Assuming"
2620 " GUID is not available.\n",
2621 msg->msg.data_len);
2622 goto out;
2623 }
2624
2625 memcpy(intf->bmc->guid, msg->msg.data, 16);
2626 intf->bmc->guid_set = 1;
2627 out:
2628 wake_up(&intf->waitq);
2629 }
2630
2631 static void
2632 get_guid(ipmi_smi_t intf)
2633 {
2634 int rv;
2635
2636 intf->bmc->guid_set = 0x2;
2637 intf->null_user_handler = guid_handler;
2638 rv = send_guid_cmd(intf, 0);
2639 if (rv)
2640 /* Send failed, no GUID available. */
2641 intf->bmc->guid_set = 0;
2642 wait_event(intf->waitq, intf->bmc->guid_set != 2);
2643 intf->null_user_handler = NULL;
2644 }
2645
2646 static int
2647 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2648 {
2649 struct kernel_ipmi_msg msg;
2650 unsigned char data[1];
2651 struct ipmi_system_interface_addr si;
2652
2653 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2654 si.channel = IPMI_BMC_CHANNEL;
2655 si.lun = 0;
2656
2657 msg.netfn = IPMI_NETFN_APP_REQUEST;
2658 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2659 msg.data = data;
2660 msg.data_len = 1;
2661 data[0] = chan;
2662 return i_ipmi_request(NULL,
2663 intf,
2664 (struct ipmi_addr *) &si,
2665 0,
2666 &msg,
2667 intf,
2668 NULL,
2669 NULL,
2670 0,
2671 intf->channels[0].address,
2672 intf->channels[0].lun,
2673 -1, 0);
2674 }
2675
2676 static void
2677 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2678 {
2679 int rv = 0;
2680 int chan;
2681
2682 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2683 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2684 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2685 /* It's the one we want */
2686 if (msg->msg.data[0] != 0) {
2687 /* Got an error from the channel, just go on. */
2688
2689 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2690 /*
2691 * If the MC does not support this
2692 * command, that is legal. We just
2693 * assume it has one IPMB at channel
2694 * zero.
2695 */
2696 intf->channels[0].medium
2697 = IPMI_CHANNEL_MEDIUM_IPMB;
2698 intf->channels[0].protocol
2699 = IPMI_CHANNEL_PROTOCOL_IPMB;
2700
2701 intf->curr_channel = IPMI_MAX_CHANNELS;
2702 wake_up(&intf->waitq);
2703 goto out;
2704 }
2705 goto next_channel;
2706 }
2707 if (msg->msg.data_len < 4) {
2708 /* Message not big enough, just go on. */
2709 goto next_channel;
2710 }
2711 chan = intf->curr_channel;
2712 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2713 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2714
2715 next_channel:
2716 intf->curr_channel++;
2717 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2718 wake_up(&intf->waitq);
2719 else
2720 rv = send_channel_info_cmd(intf, intf->curr_channel);
2721
2722 if (rv) {
2723 /* Got an error somehow, just give up. */
2724 printk(KERN_WARNING PFX
2725 "Error sending channel information for channel"
2726 " %d: %d\n", intf->curr_channel, rv);
2727
2728 intf->curr_channel = IPMI_MAX_CHANNELS;
2729 wake_up(&intf->waitq);
2730 }
2731 }
2732 out:
2733 return;
2734 }
2735
2736 static void ipmi_poll(ipmi_smi_t intf)
2737 {
2738 if (intf->handlers->poll)
2739 intf->handlers->poll(intf->send_info);
2740 /* In case something came in */
2741 handle_new_recv_msgs(intf);
2742 }
2743
2744 void ipmi_poll_interface(ipmi_user_t user)
2745 {
2746 ipmi_poll(user->intf);
2747 }
2748 EXPORT_SYMBOL(ipmi_poll_interface);
2749
2750 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2751 void *send_info,
2752 struct ipmi_device_id *device_id,
2753 struct device *si_dev,
2754 unsigned char slave_addr)
2755 {
2756 int i, j;
2757 int rv;
2758 ipmi_smi_t intf;
2759 ipmi_smi_t tintf;
2760 struct list_head *link;
2761
2762 /*
2763 * Make sure the driver is actually initialized, this handles
2764 * problems with initialization order.
2765 */
2766 if (!initialized) {
2767 rv = ipmi_init_msghandler();
2768 if (rv)
2769 return rv;
2770 /*
2771 * The init code doesn't return an error if it was turned
2772 * off, but it won't initialize. Check that.
2773 */
2774 if (!initialized)
2775 return -ENODEV;
2776 }
2777
2778 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2779 if (!intf)
2780 return -ENOMEM;
2781
2782 intf->ipmi_version_major = ipmi_version_major(device_id);
2783 intf->ipmi_version_minor = ipmi_version_minor(device_id);
2784
2785 intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2786 if (!intf->bmc) {
2787 kfree(intf);
2788 return -ENOMEM;
2789 }
2790 intf->intf_num = -1; /* Mark it invalid for now. */
2791 kref_init(&intf->refcount);
2792 intf->bmc->id = *device_id;
2793 intf->si_dev = si_dev;
2794 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2795 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2796 intf->channels[j].lun = 2;
2797 }
2798 if (slave_addr != 0)
2799 intf->channels[0].address = slave_addr;
2800 INIT_LIST_HEAD(&intf->users);
2801 intf->handlers = handlers;
2802 intf->send_info = send_info;
2803 spin_lock_init(&intf->seq_lock);
2804 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2805 intf->seq_table[j].inuse = 0;
2806 intf->seq_table[j].seqid = 0;
2807 }
2808 intf->curr_seq = 0;
2809 #ifdef CONFIG_PROC_FS
2810 mutex_init(&intf->proc_entry_lock);
2811 #endif
2812 spin_lock_init(&intf->waiting_rcv_msgs_lock);
2813 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
2814 tasklet_init(&intf->recv_tasklet,
2815 smi_recv_tasklet,
2816 (unsigned long) intf);
2817 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2818 spin_lock_init(&intf->xmit_msgs_lock);
2819 INIT_LIST_HEAD(&intf->xmit_msgs);
2820 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
2821 spin_lock_init(&intf->events_lock);
2822 atomic_set(&intf->event_waiters, 0);
2823 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2824 INIT_LIST_HEAD(&intf->waiting_events);
2825 intf->waiting_events_count = 0;
2826 mutex_init(&intf->cmd_rcvrs_mutex);
2827 spin_lock_init(&intf->maintenance_mode_lock);
2828 INIT_LIST_HEAD(&intf->cmd_rcvrs);
2829 init_waitqueue_head(&intf->waitq);
2830 for (i = 0; i < IPMI_NUM_STATS; i++)
2831 atomic_set(&intf->stats[i], 0);
2832
2833 intf->proc_dir = NULL;
2834
2835 mutex_lock(&smi_watchers_mutex);
2836 mutex_lock(&ipmi_interfaces_mutex);
2837 /* Look for a hole in the numbers. */
2838 i = 0;
2839 link = &ipmi_interfaces;
2840 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2841 if (tintf->intf_num != i) {
2842 link = &tintf->link;
2843 break;
2844 }
2845 i++;
2846 }
2847 /* Add the new interface in numeric order. */
2848 if (i == 0)
2849 list_add_rcu(&intf->link, &ipmi_interfaces);
2850 else
2851 list_add_tail_rcu(&intf->link, link);
2852
2853 rv = handlers->start_processing(send_info, intf);
2854 if (rv)
2855 goto out;
2856
2857 get_guid(intf);
2858
2859 if ((intf->ipmi_version_major > 1)
2860 || ((intf->ipmi_version_major == 1)
2861 && (intf->ipmi_version_minor >= 5))) {
2862 /*
2863 * Start scanning the channels to see what is
2864 * available.
2865 */
2866 intf->null_user_handler = channel_handler;
2867 intf->curr_channel = 0;
2868 rv = send_channel_info_cmd(intf, 0);
2869 if (rv) {
2870 printk(KERN_WARNING PFX
2871 "Error sending channel information for channel"
2872 " 0, %d\n", rv);
2873 goto out;
2874 }
2875
2876 /* Wait for the channel info to be read. */
2877 wait_event(intf->waitq,
2878 intf->curr_channel >= IPMI_MAX_CHANNELS);
2879 intf->null_user_handler = NULL;
2880 } else {
2881 /* Assume a single IPMB channel at zero. */
2882 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2883 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2884 intf->curr_channel = IPMI_MAX_CHANNELS;
2885 }
2886
2887 if (rv == 0)
2888 rv = add_proc_entries(intf, i);
2889
2890 rv = ipmi_bmc_register(intf, i);
2891
2892 out:
2893 if (rv) {
2894 if (intf->proc_dir)
2895 remove_proc_entries(intf);
2896 intf->handlers = NULL;
2897 list_del_rcu(&intf->link);
2898 mutex_unlock(&ipmi_interfaces_mutex);
2899 mutex_unlock(&smi_watchers_mutex);
2900 synchronize_rcu();
2901 kref_put(&intf->refcount, intf_free);
2902 } else {
2903 /*
2904 * Keep memory order straight for RCU readers. Make
2905 * sure everything else is committed to memory before
2906 * setting intf_num to mark the interface valid.
2907 */
2908 smp_wmb();
2909 intf->intf_num = i;
2910 mutex_unlock(&ipmi_interfaces_mutex);
2911 /* After this point the interface is legal to use. */
2912 call_smi_watchers(i, intf->si_dev);
2913 mutex_unlock(&smi_watchers_mutex);
2914 }
2915
2916 return rv;
2917 }
2918 EXPORT_SYMBOL(ipmi_register_smi);
2919
2920 static void deliver_smi_err_response(ipmi_smi_t intf,
2921 struct ipmi_smi_msg *msg,
2922 unsigned char err)
2923 {
2924 msg->rsp[0] = msg->data[0] | 4;
2925 msg->rsp[1] = msg->data[1];
2926 msg->rsp[2] = err;
2927 msg->rsp_size = 3;
2928 /* It's an error, so it will never requeue, no need to check return. */
2929 handle_one_recv_msg(intf, msg);
2930 }
2931
2932 static void cleanup_smi_msgs(ipmi_smi_t intf)
2933 {
2934 int i;
2935 struct seq_table *ent;
2936 struct ipmi_smi_msg *msg;
2937 struct list_head *entry;
2938 struct list_head tmplist;
2939
2940 /* Clear out our transmit queues and hold the messages. */
2941 INIT_LIST_HEAD(&tmplist);
2942 list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
2943 list_splice_tail(&intf->xmit_msgs, &tmplist);
2944
2945 /* Current message first, to preserve order */
2946 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
2947 /* Wait for the message to clear out. */
2948 schedule_timeout(1);
2949 }
2950
2951 /* No need for locks, the interface is down. */
2952
2953 /*
2954 * Return errors for all pending messages in queue and in the
2955 * tables waiting for remote responses.
2956 */
2957 while (!list_empty(&tmplist)) {
2958 entry = tmplist.next;
2959 list_del(entry);
2960 msg = list_entry(entry, struct ipmi_smi_msg, link);
2961 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
2962 }
2963
2964 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2965 ent = &(intf->seq_table[i]);
2966 if (!ent->inuse)
2967 continue;
2968 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2969 }
2970 }
2971
2972 int ipmi_unregister_smi(ipmi_smi_t intf)
2973 {
2974 struct ipmi_smi_watcher *w;
2975 int intf_num = intf->intf_num;
2976 ipmi_user_t user;
2977
2978 ipmi_bmc_unregister(intf);
2979
2980 mutex_lock(&smi_watchers_mutex);
2981 mutex_lock(&ipmi_interfaces_mutex);
2982 intf->intf_num = -1;
2983 intf->in_shutdown = true;
2984 list_del_rcu(&intf->link);
2985 mutex_unlock(&ipmi_interfaces_mutex);
2986 synchronize_rcu();
2987
2988 cleanup_smi_msgs(intf);
2989
2990 /* Clean up the effects of users on the lower-level software. */
2991 mutex_lock(&ipmi_interfaces_mutex);
2992 rcu_read_lock();
2993 list_for_each_entry_rcu(user, &intf->users, link) {
2994 module_put(intf->handlers->owner);
2995 if (intf->handlers->dec_usecount)
2996 intf->handlers->dec_usecount(intf->send_info);
2997 }
2998 rcu_read_unlock();
2999 intf->handlers = NULL;
3000 mutex_unlock(&ipmi_interfaces_mutex);
3001
3002 remove_proc_entries(intf);
3003
3004 /*
3005 * Call all the watcher interfaces to tell them that
3006 * an interface is gone.
3007 */
3008 list_for_each_entry(w, &smi_watchers, link)
3009 w->smi_gone(intf_num);
3010 mutex_unlock(&smi_watchers_mutex);
3011
3012 kref_put(&intf->refcount, intf_free);
3013 return 0;
3014 }
3015 EXPORT_SYMBOL(ipmi_unregister_smi);
3016
3017 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf,
3018 struct ipmi_smi_msg *msg)
3019 {
3020 struct ipmi_ipmb_addr ipmb_addr;
3021 struct ipmi_recv_msg *recv_msg;
3022
3023 /*
3024 * This is 11, not 10, because the response must contain a
3025 * completion code.
3026 */
3027 if (msg->rsp_size < 11) {
3028 /* Message not big enough, just ignore it. */
3029 ipmi_inc_stat(intf, invalid_ipmb_responses);
3030 return 0;
3031 }
3032
3033 if (msg->rsp[2] != 0) {
3034 /* An error getting the response, just ignore it. */
3035 return 0;
3036 }
3037
3038 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3039 ipmb_addr.slave_addr = msg->rsp[6];
3040 ipmb_addr.channel = msg->rsp[3] & 0x0f;
3041 ipmb_addr.lun = msg->rsp[7] & 3;
3042
3043 /*
3044 * It's a response from a remote entity. Look up the sequence
3045 * number and handle the response.
3046 */
3047 if (intf_find_seq(intf,
3048 msg->rsp[7] >> 2,
3049 msg->rsp[3] & 0x0f,
3050 msg->rsp[8],
3051 (msg->rsp[4] >> 2) & (~1),
3052 (struct ipmi_addr *) &(ipmb_addr),
3053 &recv_msg)) {
3054 /*
3055 * We were unable to find the sequence number,
3056 * so just nuke the message.
3057 */
3058 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3059 return 0;
3060 }
3061
3062 memcpy(recv_msg->msg_data,
3063 &(msg->rsp[9]),
3064 msg->rsp_size - 9);
3065 /*
3066 * The other fields matched, so no need to set them, except
3067 * for netfn, which needs to be the response that was
3068 * returned, not the request value.
3069 */
3070 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3071 recv_msg->msg.data = recv_msg->msg_data;
3072 recv_msg->msg.data_len = msg->rsp_size - 10;
3073 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3074 ipmi_inc_stat(intf, handled_ipmb_responses);
3075 deliver_response(recv_msg);
3076
3077 return 0;
3078 }
3079
3080 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf,
3081 struct ipmi_smi_msg *msg)
3082 {
3083 struct cmd_rcvr *rcvr;
3084 int rv = 0;
3085 unsigned char netfn;
3086 unsigned char cmd;
3087 unsigned char chan;
3088 ipmi_user_t user = NULL;
3089 struct ipmi_ipmb_addr *ipmb_addr;
3090 struct ipmi_recv_msg *recv_msg;
3091
3092 if (msg->rsp_size < 10) {
3093 /* Message not big enough, just ignore it. */
3094 ipmi_inc_stat(intf, invalid_commands);
3095 return 0;
3096 }
3097
3098 if (msg->rsp[2] != 0) {
3099 /* An error getting the response, just ignore it. */
3100 return 0;
3101 }
3102
3103 netfn = msg->rsp[4] >> 2;
3104 cmd = msg->rsp[8];
3105 chan = msg->rsp[3] & 0xf;
3106
3107 rcu_read_lock();
3108 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3109 if (rcvr) {
3110 user = rcvr->user;
3111 kref_get(&user->refcount);
3112 } else
3113 user = NULL;
3114 rcu_read_unlock();
3115
3116 if (user == NULL) {
3117 /* We didn't find a user, deliver an error response. */
3118 ipmi_inc_stat(intf, unhandled_commands);
3119
3120 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3121 msg->data[1] = IPMI_SEND_MSG_CMD;
3122 msg->data[2] = msg->rsp[3];
3123 msg->data[3] = msg->rsp[6];
3124 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3125 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3126 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3127 /* rqseq/lun */
3128 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3129 msg->data[8] = msg->rsp[8]; /* cmd */
3130 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3131 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3132 msg->data_size = 11;
3133
3134 #ifdef DEBUG_MSGING
3135 {
3136 int m;
3137 printk("Invalid command:");
3138 for (m = 0; m < msg->data_size; m++)
3139 printk(" %2.2x", msg->data[m]);
3140 printk("\n");
3141 }
3142 #endif
3143 rcu_read_lock();
3144 if (!intf->in_shutdown) {
3145 smi_send(intf, intf->handlers, msg, 0);
3146 /*
3147 * We used the message, so return the value
3148 * that causes it to not be freed or
3149 * queued.
3150 */
3151 rv = -1;
3152 }
3153 rcu_read_unlock();
3154 } else {
3155 /* Deliver the message to the user. */
3156 ipmi_inc_stat(intf, handled_commands);
3157
3158 recv_msg = ipmi_alloc_recv_msg();
3159 if (!recv_msg) {
3160 /*
3161 * We couldn't allocate memory for the
3162 * message, so requeue it for handling
3163 * later.
3164 */
3165 rv = 1;
3166 kref_put(&user->refcount, free_user);
3167 } else {
3168 /* Extract the source address from the data. */
3169 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3170 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3171 ipmb_addr->slave_addr = msg->rsp[6];
3172 ipmb_addr->lun = msg->rsp[7] & 3;
3173 ipmb_addr->channel = msg->rsp[3] & 0xf;
3174
3175 /*
3176 * Extract the rest of the message information
3177 * from the IPMB header.
3178 */
3179 recv_msg->user = user;
3180 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3181 recv_msg->msgid = msg->rsp[7] >> 2;
3182 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3183 recv_msg->msg.cmd = msg->rsp[8];
3184 recv_msg->msg.data = recv_msg->msg_data;
3185
3186 /*
3187 * We chop off 10, not 9 bytes because the checksum
3188 * at the end also needs to be removed.
3189 */
3190 recv_msg->msg.data_len = msg->rsp_size - 10;
3191 memcpy(recv_msg->msg_data,
3192 &(msg->rsp[9]),
3193 msg->rsp_size - 10);
3194 deliver_response(recv_msg);
3195 }
3196 }
3197
3198 return rv;
3199 }
3200
3201 static int handle_lan_get_msg_rsp(ipmi_smi_t intf,
3202 struct ipmi_smi_msg *msg)
3203 {
3204 struct ipmi_lan_addr lan_addr;
3205 struct ipmi_recv_msg *recv_msg;
3206
3207
3208 /*
3209 * This is 13, not 12, because the response must contain a
3210 * completion code.
3211 */
3212 if (msg->rsp_size < 13) {
3213 /* Message not big enough, just ignore it. */
3214 ipmi_inc_stat(intf, invalid_lan_responses);
3215 return 0;
3216 }
3217
3218 if (msg->rsp[2] != 0) {
3219 /* An error getting the response, just ignore it. */
3220 return 0;
3221 }
3222
3223 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3224 lan_addr.session_handle = msg->rsp[4];
3225 lan_addr.remote_SWID = msg->rsp[8];
3226 lan_addr.local_SWID = msg->rsp[5];
3227 lan_addr.channel = msg->rsp[3] & 0x0f;
3228 lan_addr.privilege = msg->rsp[3] >> 4;
3229 lan_addr.lun = msg->rsp[9] & 3;
3230
3231 /*
3232 * It's a response from a remote entity. Look up the sequence
3233 * number and handle the response.
3234 */
3235 if (intf_find_seq(intf,
3236 msg->rsp[9] >> 2,
3237 msg->rsp[3] & 0x0f,
3238 msg->rsp[10],
3239 (msg->rsp[6] >> 2) & (~1),
3240 (struct ipmi_addr *) &(lan_addr),
3241 &recv_msg)) {
3242 /*
3243 * We were unable to find the sequence number,
3244 * so just nuke the message.
3245 */
3246 ipmi_inc_stat(intf, unhandled_lan_responses);
3247 return 0;
3248 }
3249
3250 memcpy(recv_msg->msg_data,
3251 &(msg->rsp[11]),
3252 msg->rsp_size - 11);
3253 /*
3254 * The other fields matched, so no need to set them, except
3255 * for netfn, which needs to be the response that was
3256 * returned, not the request value.
3257 */
3258 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3259 recv_msg->msg.data = recv_msg->msg_data;
3260 recv_msg->msg.data_len = msg->rsp_size - 12;
3261 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3262 ipmi_inc_stat(intf, handled_lan_responses);
3263 deliver_response(recv_msg);
3264
3265 return 0;
3266 }
3267
3268 static int handle_lan_get_msg_cmd(ipmi_smi_t intf,
3269 struct ipmi_smi_msg *msg)
3270 {
3271 struct cmd_rcvr *rcvr;
3272 int rv = 0;
3273 unsigned char netfn;
3274 unsigned char cmd;
3275 unsigned char chan;
3276 ipmi_user_t user = NULL;
3277 struct ipmi_lan_addr *lan_addr;
3278 struct ipmi_recv_msg *recv_msg;
3279
3280 if (msg->rsp_size < 12) {
3281 /* Message not big enough, just ignore it. */
3282 ipmi_inc_stat(intf, invalid_commands);
3283 return 0;
3284 }
3285
3286 if (msg->rsp[2] != 0) {
3287 /* An error getting the response, just ignore it. */
3288 return 0;
3289 }
3290
3291 netfn = msg->rsp[6] >> 2;
3292 cmd = msg->rsp[10];
3293 chan = msg->rsp[3] & 0xf;
3294
3295 rcu_read_lock();
3296 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3297 if (rcvr) {
3298 user = rcvr->user;
3299 kref_get(&user->refcount);
3300 } else
3301 user = NULL;
3302 rcu_read_unlock();
3303
3304 if (user == NULL) {
3305 /* We didn't find a user, just give up. */
3306 ipmi_inc_stat(intf, unhandled_commands);
3307
3308 /*
3309 * Don't do anything with these messages, just allow
3310 * them to be freed.
3311 */
3312 rv = 0;
3313 } else {
3314 /* Deliver the message to the user. */
3315 ipmi_inc_stat(intf, handled_commands);
3316
3317 recv_msg = ipmi_alloc_recv_msg();
3318 if (!recv_msg) {
3319 /*
3320 * We couldn't allocate memory for the
3321 * message, so requeue it for handling later.
3322 */
3323 rv = 1;
3324 kref_put(&user->refcount, free_user);
3325 } else {
3326 /* Extract the source address from the data. */
3327 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3328 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3329 lan_addr->session_handle = msg->rsp[4];
3330 lan_addr->remote_SWID = msg->rsp[8];
3331 lan_addr->local_SWID = msg->rsp[5];
3332 lan_addr->lun = msg->rsp[9] & 3;
3333 lan_addr->channel = msg->rsp[3] & 0xf;
3334 lan_addr->privilege = msg->rsp[3] >> 4;
3335
3336 /*
3337 * Extract the rest of the message information
3338 * from the IPMB header.
3339 */
3340 recv_msg->user = user;
3341 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3342 recv_msg->msgid = msg->rsp[9] >> 2;
3343 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3344 recv_msg->msg.cmd = msg->rsp[10];
3345 recv_msg->msg.data = recv_msg->msg_data;
3346
3347 /*
3348 * We chop off 12, not 11 bytes because the checksum
3349 * at the end also needs to be removed.
3350 */
3351 recv_msg->msg.data_len = msg->rsp_size - 12;
3352 memcpy(recv_msg->msg_data,
3353 &(msg->rsp[11]),
3354 msg->rsp_size - 12);
3355 deliver_response(recv_msg);
3356 }
3357 }
3358
3359 return rv;
3360 }
3361
3362 /*
3363 * This routine will handle "Get Message" command responses with
3364 * channels that use an OEM Medium. The message format belongs to
3365 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3366 * Chapter 22, sections 22.6 and 22.24 for more details.
3367 */
3368 static int handle_oem_get_msg_cmd(ipmi_smi_t intf,
3369 struct ipmi_smi_msg *msg)
3370 {
3371 struct cmd_rcvr *rcvr;
3372 int rv = 0;
3373 unsigned char netfn;
3374 unsigned char cmd;
3375 unsigned char chan;
3376 ipmi_user_t user = NULL;
3377 struct ipmi_system_interface_addr *smi_addr;
3378 struct ipmi_recv_msg *recv_msg;
3379
3380 /*
3381 * We expect the OEM SW to perform error checking
3382 * so we just do some basic sanity checks
3383 */
3384 if (msg->rsp_size < 4) {
3385 /* Message not big enough, just ignore it. */
3386 ipmi_inc_stat(intf, invalid_commands);
3387 return 0;
3388 }
3389
3390 if (msg->rsp[2] != 0) {
3391 /* An error getting the response, just ignore it. */
3392 return 0;
3393 }
3394
3395 /*
3396 * This is an OEM Message so the OEM needs to know how
3397 * handle the message. We do no interpretation.
3398 */
3399 netfn = msg->rsp[0] >> 2;
3400 cmd = msg->rsp[1];
3401 chan = msg->rsp[3] & 0xf;
3402
3403 rcu_read_lock();
3404 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3405 if (rcvr) {
3406 user = rcvr->user;
3407 kref_get(&user->refcount);
3408 } else
3409 user = NULL;
3410 rcu_read_unlock();
3411
3412 if (user == NULL) {
3413 /* We didn't find a user, just give up. */
3414 ipmi_inc_stat(intf, unhandled_commands);
3415
3416 /*
3417 * Don't do anything with these messages, just allow
3418 * them to be freed.
3419 */
3420
3421 rv = 0;
3422 } else {
3423 /* Deliver the message to the user. */
3424 ipmi_inc_stat(intf, handled_commands);
3425
3426 recv_msg = ipmi_alloc_recv_msg();
3427 if (!recv_msg) {
3428 /*
3429 * We couldn't allocate memory for the
3430 * message, so requeue it for handling
3431 * later.
3432 */
3433 rv = 1;
3434 kref_put(&user->refcount, free_user);
3435 } else {
3436 /*
3437 * OEM Messages are expected to be delivered via
3438 * the system interface to SMS software. We might
3439 * need to visit this again depending on OEM
3440 * requirements
3441 */
3442 smi_addr = ((struct ipmi_system_interface_addr *)
3443 &(recv_msg->addr));
3444 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3445 smi_addr->channel = IPMI_BMC_CHANNEL;
3446 smi_addr->lun = msg->rsp[0] & 3;
3447
3448 recv_msg->user = user;
3449 recv_msg->user_msg_data = NULL;
3450 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3451 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3452 recv_msg->msg.cmd = msg->rsp[1];
3453 recv_msg->msg.data = recv_msg->msg_data;
3454
3455 /*
3456 * The message starts at byte 4 which follows the
3457 * the Channel Byte in the "GET MESSAGE" command
3458 */
3459 recv_msg->msg.data_len = msg->rsp_size - 4;
3460 memcpy(recv_msg->msg_data,
3461 &(msg->rsp[4]),
3462 msg->rsp_size - 4);
3463 deliver_response(recv_msg);
3464 }
3465 }
3466
3467 return rv;
3468 }
3469
3470 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3471 struct ipmi_smi_msg *msg)
3472 {
3473 struct ipmi_system_interface_addr *smi_addr;
3474
3475 recv_msg->msgid = 0;
3476 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3477 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3478 smi_addr->channel = IPMI_BMC_CHANNEL;
3479 smi_addr->lun = msg->rsp[0] & 3;
3480 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3481 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3482 recv_msg->msg.cmd = msg->rsp[1];
3483 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3484 recv_msg->msg.data = recv_msg->msg_data;
3485 recv_msg->msg.data_len = msg->rsp_size - 3;
3486 }
3487
3488 static int handle_read_event_rsp(ipmi_smi_t intf,
3489 struct ipmi_smi_msg *msg)
3490 {
3491 struct ipmi_recv_msg *recv_msg, *recv_msg2;
3492 struct list_head msgs;
3493 ipmi_user_t user;
3494 int rv = 0;
3495 int deliver_count = 0;
3496 unsigned long flags;
3497
3498 if (msg->rsp_size < 19) {
3499 /* Message is too small to be an IPMB event. */
3500 ipmi_inc_stat(intf, invalid_events);
3501 return 0;
3502 }
3503
3504 if (msg->rsp[2] != 0) {
3505 /* An error getting the event, just ignore it. */
3506 return 0;
3507 }
3508
3509 INIT_LIST_HEAD(&msgs);
3510
3511 spin_lock_irqsave(&intf->events_lock, flags);
3512
3513 ipmi_inc_stat(intf, events);
3514
3515 /*
3516 * Allocate and fill in one message for every user that is
3517 * getting events.
3518 */
3519 rcu_read_lock();
3520 list_for_each_entry_rcu(user, &intf->users, link) {
3521 if (!user->gets_events)
3522 continue;
3523
3524 recv_msg = ipmi_alloc_recv_msg();
3525 if (!recv_msg) {
3526 rcu_read_unlock();
3527 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3528 link) {
3529 list_del(&recv_msg->link);
3530 ipmi_free_recv_msg(recv_msg);
3531 }
3532 /*
3533 * We couldn't allocate memory for the
3534 * message, so requeue it for handling
3535 * later.
3536 */
3537 rv = 1;
3538 goto out;
3539 }
3540
3541 deliver_count++;
3542
3543 copy_event_into_recv_msg(recv_msg, msg);
3544 recv_msg->user = user;
3545 kref_get(&user->refcount);
3546 list_add_tail(&(recv_msg->link), &msgs);
3547 }
3548 rcu_read_unlock();
3549
3550 if (deliver_count) {
3551 /* Now deliver all the messages. */
3552 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3553 list_del(&recv_msg->link);
3554 deliver_response(recv_msg);
3555 }
3556 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3557 /*
3558 * No one to receive the message, put it in queue if there's
3559 * not already too many things in the queue.
3560 */
3561 recv_msg = ipmi_alloc_recv_msg();
3562 if (!recv_msg) {
3563 /*
3564 * We couldn't allocate memory for the
3565 * message, so requeue it for handling
3566 * later.
3567 */
3568 rv = 1;
3569 goto out;
3570 }
3571
3572 copy_event_into_recv_msg(recv_msg, msg);
3573 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3574 intf->waiting_events_count++;
3575 } else if (!intf->event_msg_printed) {
3576 /*
3577 * There's too many things in the queue, discard this
3578 * message.
3579 */
3580 printk(KERN_WARNING PFX "Event queue full, discarding"
3581 " incoming events\n");
3582 intf->event_msg_printed = 1;
3583 }
3584
3585 out:
3586 spin_unlock_irqrestore(&(intf->events_lock), flags);
3587
3588 return rv;
3589 }
3590
3591 static int handle_bmc_rsp(ipmi_smi_t intf,
3592 struct ipmi_smi_msg *msg)
3593 {
3594 struct ipmi_recv_msg *recv_msg;
3595 struct ipmi_user *user;
3596
3597 recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3598 if (recv_msg == NULL) {
3599 printk(KERN_WARNING
3600 "IPMI message received with no owner. This\n"
3601 "could be because of a malformed message, or\n"
3602 "because of a hardware error. Contact your\n"
3603 "hardware vender for assistance\n");
3604 return 0;
3605 }
3606
3607 user = recv_msg->user;
3608 /* Make sure the user still exists. */
3609 if (user && !user->valid) {
3610 /* The user for the message went away, so give up. */
3611 ipmi_inc_stat(intf, unhandled_local_responses);
3612 ipmi_free_recv_msg(recv_msg);
3613 } else {
3614 struct ipmi_system_interface_addr *smi_addr;
3615
3616 ipmi_inc_stat(intf, handled_local_responses);
3617 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3618 recv_msg->msgid = msg->msgid;
3619 smi_addr = ((struct ipmi_system_interface_addr *)
3620 &(recv_msg->addr));
3621 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3622 smi_addr->channel = IPMI_BMC_CHANNEL;
3623 smi_addr->lun = msg->rsp[0] & 3;
3624 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3625 recv_msg->msg.cmd = msg->rsp[1];
3626 memcpy(recv_msg->msg_data,
3627 &(msg->rsp[2]),
3628 msg->rsp_size - 2);
3629 recv_msg->msg.data = recv_msg->msg_data;
3630 recv_msg->msg.data_len = msg->rsp_size - 2;
3631 deliver_response(recv_msg);
3632 }
3633
3634 return 0;
3635 }
3636
3637 /*
3638 * Handle a received message. Return 1 if the message should be requeued,
3639 * 0 if the message should be freed, or -1 if the message should not
3640 * be freed or requeued.
3641 */
3642 static int handle_one_recv_msg(ipmi_smi_t intf,
3643 struct ipmi_smi_msg *msg)
3644 {
3645 int requeue;
3646 int chan;
3647
3648 #ifdef DEBUG_MSGING
3649 int m;
3650 printk("Recv:");
3651 for (m = 0; m < msg->rsp_size; m++)
3652 printk(" %2.2x", msg->rsp[m]);
3653 printk("\n");
3654 #endif
3655 if (msg->rsp_size < 2) {
3656 /* Message is too small to be correct. */
3657 printk(KERN_WARNING PFX "BMC returned to small a message"
3658 " for netfn %x cmd %x, got %d bytes\n",
3659 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3660
3661 /* Generate an error response for the message. */
3662 msg->rsp[0] = msg->data[0] | (1 << 2);
3663 msg->rsp[1] = msg->data[1];
3664 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3665 msg->rsp_size = 3;
3666 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3667 || (msg->rsp[1] != msg->data[1])) {
3668 /*
3669 * The NetFN and Command in the response is not even
3670 * marginally correct.
3671 */
3672 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3673 " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3674 (msg->data[0] >> 2) | 1, msg->data[1],
3675 msg->rsp[0] >> 2, msg->rsp[1]);
3676
3677 /* Generate an error response for the message. */
3678 msg->rsp[0] = msg->data[0] | (1 << 2);
3679 msg->rsp[1] = msg->data[1];
3680 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3681 msg->rsp_size = 3;
3682 }
3683
3684 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3685 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3686 && (msg->user_data != NULL)) {
3687 /*
3688 * It's a response to a response we sent. For this we
3689 * deliver a send message response to the user.
3690 */
3691 struct ipmi_recv_msg *recv_msg = msg->user_data;
3692
3693 requeue = 0;
3694 if (msg->rsp_size < 2)
3695 /* Message is too small to be correct. */
3696 goto out;
3697
3698 chan = msg->data[2] & 0x0f;
3699 if (chan >= IPMI_MAX_CHANNELS)
3700 /* Invalid channel number */
3701 goto out;
3702
3703 if (!recv_msg)
3704 goto out;
3705
3706 /* Make sure the user still exists. */
3707 if (!recv_msg->user || !recv_msg->user->valid)
3708 goto out;
3709
3710 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3711 recv_msg->msg.data = recv_msg->msg_data;
3712 recv_msg->msg.data_len = 1;
3713 recv_msg->msg_data[0] = msg->rsp[2];
3714 deliver_response(recv_msg);
3715 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3716 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3717 /* It's from the receive queue. */
3718 chan = msg->rsp[3] & 0xf;
3719 if (chan >= IPMI_MAX_CHANNELS) {
3720 /* Invalid channel number */
3721 requeue = 0;
3722 goto out;
3723 }
3724
3725 /*
3726 * We need to make sure the channels have been initialized.
3727 * The channel_handler routine will set the "curr_channel"
3728 * equal to or greater than IPMI_MAX_CHANNELS when all the
3729 * channels for this interface have been initialized.
3730 */
3731 if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3732 requeue = 0; /* Throw the message away */
3733 goto out;
3734 }
3735
3736 switch (intf->channels[chan].medium) {
3737 case IPMI_CHANNEL_MEDIUM_IPMB:
3738 if (msg->rsp[4] & 0x04) {
3739 /*
3740 * It's a response, so find the
3741 * requesting message and send it up.
3742 */
3743 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3744 } else {
3745 /*
3746 * It's a command to the SMS from some other
3747 * entity. Handle that.
3748 */
3749 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3750 }
3751 break;
3752
3753 case IPMI_CHANNEL_MEDIUM_8023LAN:
3754 case IPMI_CHANNEL_MEDIUM_ASYNC:
3755 if (msg->rsp[6] & 0x04) {
3756 /*
3757 * It's a response, so find the
3758 * requesting message and send it up.
3759 */
3760 requeue = handle_lan_get_msg_rsp(intf, msg);
3761 } else {
3762 /*
3763 * It's a command to the SMS from some other
3764 * entity. Handle that.
3765 */
3766 requeue = handle_lan_get_msg_cmd(intf, msg);
3767 }
3768 break;
3769
3770 default:
3771 /* Check for OEM Channels. Clients had better
3772 register for these commands. */
3773 if ((intf->channels[chan].medium
3774 >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3775 && (intf->channels[chan].medium
3776 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3777 requeue = handle_oem_get_msg_cmd(intf, msg);
3778 } else {
3779 /*
3780 * We don't handle the channel type, so just
3781 * free the message.
3782 */
3783 requeue = 0;
3784 }
3785 }
3786
3787 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3788 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3789 /* It's an asynchronous event. */
3790 requeue = handle_read_event_rsp(intf, msg);
3791 } else {
3792 /* It's a response from the local BMC. */
3793 requeue = handle_bmc_rsp(intf, msg);
3794 }
3795
3796 out:
3797 return requeue;
3798 }
3799
3800 /*
3801 * If there are messages in the queue or pretimeouts, handle them.
3802 */
3803 static void handle_new_recv_msgs(ipmi_smi_t intf)
3804 {
3805 struct ipmi_smi_msg *smi_msg;
3806 unsigned long flags = 0;
3807 int rv;
3808 int run_to_completion = intf->run_to_completion;
3809
3810 /* See if any waiting messages need to be processed. */
3811 if (!run_to_completion)
3812 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3813 while (!list_empty(&intf->waiting_rcv_msgs)) {
3814 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
3815 struct ipmi_smi_msg, link);
3816 if (!run_to_completion)
3817 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3818 flags);
3819 rv = handle_one_recv_msg(intf, smi_msg);
3820 if (!run_to_completion)
3821 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3822 if (rv > 0) {
3823 /*
3824 * To preserve message order, quit if we
3825 * can't handle a message.
3826 */
3827 break;
3828 } else {
3829 list_del(&smi_msg->link);
3830 if (rv == 0)
3831 /* Message handled */
3832 ipmi_free_smi_msg(smi_msg);
3833 /* If rv < 0, fatal error, del but don't free. */
3834 }
3835 }
3836 if (!run_to_completion)
3837 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
3838
3839 /*
3840 * If the pretimout count is non-zero, decrement one from it and
3841 * deliver pretimeouts to all the users.
3842 */
3843 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3844 ipmi_user_t user;
3845
3846 rcu_read_lock();
3847 list_for_each_entry_rcu(user, &intf->users, link) {
3848 if (user->handler->ipmi_watchdog_pretimeout)
3849 user->handler->ipmi_watchdog_pretimeout(
3850 user->handler_data);
3851 }
3852 rcu_read_unlock();
3853 }
3854 }
3855
3856 static void smi_recv_tasklet(unsigned long val)
3857 {
3858 unsigned long flags = 0; /* keep us warning-free. */
3859 ipmi_smi_t intf = (ipmi_smi_t) val;
3860 int run_to_completion = intf->run_to_completion;
3861 struct ipmi_smi_msg *newmsg = NULL;
3862
3863 /*
3864 * Start the next message if available.
3865 *
3866 * Do this here, not in the actual receiver, because we may deadlock
3867 * because the lower layer is allowed to hold locks while calling
3868 * message delivery.
3869 */
3870 if (!run_to_completion)
3871 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3872 if (intf->curr_msg == NULL && !intf->in_shutdown) {
3873 struct list_head *entry = NULL;
3874
3875 /* Pick the high priority queue first. */
3876 if (!list_empty(&intf->hp_xmit_msgs))
3877 entry = intf->hp_xmit_msgs.next;
3878 else if (!list_empty(&intf->xmit_msgs))
3879 entry = intf->xmit_msgs.next;
3880
3881 if (entry) {
3882 list_del(entry);
3883 newmsg = list_entry(entry, struct ipmi_smi_msg, link);
3884 intf->curr_msg = newmsg;
3885 }
3886 }
3887 if (!run_to_completion)
3888 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3889 if (newmsg)
3890 intf->handlers->sender(intf->send_info, newmsg);
3891
3892 handle_new_recv_msgs(intf);
3893 }
3894
3895 /* Handle a new message from the lower layer. */
3896 void ipmi_smi_msg_received(ipmi_smi_t intf,
3897 struct ipmi_smi_msg *msg)
3898 {
3899 unsigned long flags = 0; /* keep us warning-free. */
3900 int run_to_completion = intf->run_to_completion;
3901
3902 if ((msg->data_size >= 2)
3903 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3904 && (msg->data[1] == IPMI_SEND_MSG_CMD)
3905 && (msg->user_data == NULL)) {
3906
3907 if (intf->in_shutdown)
3908 goto free_msg;
3909
3910 /*
3911 * This is the local response to a command send, start
3912 * the timer for these. The user_data will not be
3913 * NULL if this is a response send, and we will let
3914 * response sends just go through.
3915 */
3916
3917 /*
3918 * Check for errors, if we get certain errors (ones
3919 * that mean basically we can try again later), we
3920 * ignore them and start the timer. Otherwise we
3921 * report the error immediately.
3922 */
3923 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3924 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3925 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3926 && (msg->rsp[2] != IPMI_BUS_ERR)
3927 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3928 int chan = msg->rsp[3] & 0xf;
3929
3930 /* Got an error sending the message, handle it. */
3931 if (chan >= IPMI_MAX_CHANNELS)
3932 ; /* This shouldn't happen */
3933 else if ((intf->channels[chan].medium
3934 == IPMI_CHANNEL_MEDIUM_8023LAN)
3935 || (intf->channels[chan].medium
3936 == IPMI_CHANNEL_MEDIUM_ASYNC))
3937 ipmi_inc_stat(intf, sent_lan_command_errs);
3938 else
3939 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3940 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3941 } else
3942 /* The message was sent, start the timer. */
3943 intf_start_seq_timer(intf, msg->msgid);
3944
3945 free_msg:
3946 ipmi_free_smi_msg(msg);
3947 } else {
3948 /*
3949 * To preserve message order, we keep a queue and deliver from
3950 * a tasklet.
3951 */
3952 if (!run_to_completion)
3953 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3954 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
3955 if (!run_to_completion)
3956 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3957 flags);
3958 }
3959
3960 if (!run_to_completion)
3961 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3962 if (msg == intf->curr_msg)
3963 intf->curr_msg = NULL;
3964 if (!run_to_completion)
3965 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3966
3967 if (run_to_completion)
3968 smi_recv_tasklet((unsigned long) intf);
3969 else
3970 tasklet_schedule(&intf->recv_tasklet);
3971 }
3972 EXPORT_SYMBOL(ipmi_smi_msg_received);
3973
3974 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3975 {
3976 if (intf->in_shutdown)
3977 return;
3978
3979 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3980 tasklet_schedule(&intf->recv_tasklet);
3981 }
3982 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3983
3984 static struct ipmi_smi_msg *
3985 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3986 unsigned char seq, long seqid)
3987 {
3988 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3989 if (!smi_msg)
3990 /*
3991 * If we can't allocate the message, then just return, we
3992 * get 4 retries, so this should be ok.
3993 */
3994 return NULL;
3995
3996 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3997 smi_msg->data_size = recv_msg->msg.data_len;
3998 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3999
4000 #ifdef DEBUG_MSGING
4001 {
4002 int m;
4003 printk("Resend: ");
4004 for (m = 0; m < smi_msg->data_size; m++)
4005 printk(" %2.2x", smi_msg->data[m]);
4006 printk("\n");
4007 }
4008 #endif
4009 return smi_msg;
4010 }
4011
4012 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4013 struct list_head *timeouts, long timeout_period,
4014 int slot, unsigned long *flags,
4015 unsigned int *waiting_msgs)
4016 {
4017 struct ipmi_recv_msg *msg;
4018 struct ipmi_smi_handlers *handlers;
4019
4020 if (intf->in_shutdown)
4021 return;
4022
4023 if (!ent->inuse)
4024 return;
4025
4026 ent->timeout -= timeout_period;
4027 if (ent->timeout > 0) {
4028 (*waiting_msgs)++;
4029 return;
4030 }
4031
4032 if (ent->retries_left == 0) {
4033 /* The message has used all its retries. */
4034 ent->inuse = 0;
4035 msg = ent->recv_msg;
4036 list_add_tail(&msg->link, timeouts);
4037 if (ent->broadcast)
4038 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4039 else if (is_lan_addr(&ent->recv_msg->addr))
4040 ipmi_inc_stat(intf, timed_out_lan_commands);
4041 else
4042 ipmi_inc_stat(intf, timed_out_ipmb_commands);
4043 } else {
4044 struct ipmi_smi_msg *smi_msg;
4045 /* More retries, send again. */
4046
4047 (*waiting_msgs)++;
4048
4049 /*
4050 * Start with the max timer, set to normal timer after
4051 * the message is sent.
4052 */
4053 ent->timeout = MAX_MSG_TIMEOUT;
4054 ent->retries_left--;
4055 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4056 ent->seqid);
4057 if (!smi_msg) {
4058 if (is_lan_addr(&ent->recv_msg->addr))
4059 ipmi_inc_stat(intf,
4060 dropped_rexmit_lan_commands);
4061 else
4062 ipmi_inc_stat(intf,
4063 dropped_rexmit_ipmb_commands);
4064 return;
4065 }
4066
4067 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4068
4069 /*
4070 * Send the new message. We send with a zero
4071 * priority. It timed out, I doubt time is that
4072 * critical now, and high priority messages are really
4073 * only for messages to the local MC, which don't get
4074 * resent.
4075 */
4076 handlers = intf->handlers;
4077 if (handlers) {
4078 if (is_lan_addr(&ent->recv_msg->addr))
4079 ipmi_inc_stat(intf,
4080 retransmitted_lan_commands);
4081 else
4082 ipmi_inc_stat(intf,
4083 retransmitted_ipmb_commands);
4084
4085 smi_send(intf, intf->handlers, smi_msg, 0);
4086 } else
4087 ipmi_free_smi_msg(smi_msg);
4088
4089 spin_lock_irqsave(&intf->seq_lock, *flags);
4090 }
4091 }
4092
4093 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
4094 {
4095 struct list_head timeouts;
4096 struct ipmi_recv_msg *msg, *msg2;
4097 unsigned long flags;
4098 int i;
4099 unsigned int waiting_msgs = 0;
4100
4101 /*
4102 * Go through the seq table and find any messages that
4103 * have timed out, putting them in the timeouts
4104 * list.
4105 */
4106 INIT_LIST_HEAD(&timeouts);
4107 spin_lock_irqsave(&intf->seq_lock, flags);
4108 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4109 check_msg_timeout(intf, &(intf->seq_table[i]),
4110 &timeouts, timeout_period, i,
4111 &flags, &waiting_msgs);
4112 spin_unlock_irqrestore(&intf->seq_lock, flags);
4113
4114 list_for_each_entry_safe(msg, msg2, &timeouts, link)
4115 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4116
4117 /*
4118 * Maintenance mode handling. Check the timeout
4119 * optimistically before we claim the lock. It may
4120 * mean a timeout gets missed occasionally, but that
4121 * only means the timeout gets extended by one period
4122 * in that case. No big deal, and it avoids the lock
4123 * most of the time.
4124 */
4125 if (intf->auto_maintenance_timeout > 0) {
4126 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4127 if (intf->auto_maintenance_timeout > 0) {
4128 intf->auto_maintenance_timeout
4129 -= timeout_period;
4130 if (!intf->maintenance_mode
4131 && (intf->auto_maintenance_timeout <= 0)) {
4132 intf->maintenance_mode_enable = false;
4133 maintenance_mode_update(intf);
4134 }
4135 }
4136 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4137 flags);
4138 }
4139
4140 tasklet_schedule(&intf->recv_tasklet);
4141
4142 return waiting_msgs;
4143 }
4144
4145 static void ipmi_request_event(ipmi_smi_t intf)
4146 {
4147 /* No event requests when in maintenance mode. */
4148 if (intf->maintenance_mode_enable)
4149 return;
4150
4151 if (!intf->in_shutdown)
4152 intf->handlers->request_events(intf->send_info);
4153 }
4154
4155 static struct timer_list ipmi_timer;
4156
4157 static atomic_t stop_operation;
4158
4159 static void ipmi_timeout(unsigned long data)
4160 {
4161 ipmi_smi_t intf;
4162 int nt = 0;
4163
4164 if (atomic_read(&stop_operation))
4165 return;
4166
4167 rcu_read_lock();
4168 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4169 int lnt = 0;
4170
4171 if (atomic_read(&intf->event_waiters)) {
4172 intf->ticks_to_req_ev--;
4173 if (intf->ticks_to_req_ev == 0) {
4174 ipmi_request_event(intf);
4175 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4176 }
4177 lnt++;
4178 }
4179
4180 lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4181
4182 lnt = !!lnt;
4183 if (lnt != intf->last_needs_timer &&
4184 intf->handlers->set_need_watch)
4185 intf->handlers->set_need_watch(intf->send_info, lnt);
4186 intf->last_needs_timer = lnt;
4187
4188 nt += lnt;
4189 }
4190 rcu_read_unlock();
4191
4192 if (nt)
4193 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4194 }
4195
4196 static void need_waiter(ipmi_smi_t intf)
4197 {
4198 /* Racy, but worst case we start the timer twice. */
4199 if (!timer_pending(&ipmi_timer))
4200 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4201 }
4202
4203 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4204 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4205
4206 static void free_smi_msg(struct ipmi_smi_msg *msg)
4207 {
4208 atomic_dec(&smi_msg_inuse_count);
4209 kfree(msg);
4210 }
4211
4212 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4213 {
4214 struct ipmi_smi_msg *rv;
4215 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4216 if (rv) {
4217 rv->done = free_smi_msg;
4218 rv->user_data = NULL;
4219 atomic_inc(&smi_msg_inuse_count);
4220 }
4221 return rv;
4222 }
4223 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4224
4225 static void free_recv_msg(struct ipmi_recv_msg *msg)
4226 {
4227 atomic_dec(&recv_msg_inuse_count);
4228 kfree(msg);
4229 }
4230
4231 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4232 {
4233 struct ipmi_recv_msg *rv;
4234
4235 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4236 if (rv) {
4237 rv->user = NULL;
4238 rv->done = free_recv_msg;
4239 atomic_inc(&recv_msg_inuse_count);
4240 }
4241 return rv;
4242 }
4243
4244 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4245 {
4246 if (msg->user)
4247 kref_put(&msg->user->refcount, free_user);
4248 msg->done(msg);
4249 }
4250 EXPORT_SYMBOL(ipmi_free_recv_msg);
4251
4252 #ifdef CONFIG_IPMI_PANIC_EVENT
4253
4254 static atomic_t panic_done_count = ATOMIC_INIT(0);
4255
4256 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4257 {
4258 atomic_dec(&panic_done_count);
4259 }
4260
4261 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4262 {
4263 atomic_dec(&panic_done_count);
4264 }
4265
4266 /*
4267 * Inside a panic, send a message and wait for a response.
4268 */
4269 static void ipmi_panic_request_and_wait(ipmi_smi_t intf,
4270 struct ipmi_addr *addr,
4271 struct kernel_ipmi_msg *msg)
4272 {
4273 struct ipmi_smi_msg smi_msg;
4274 struct ipmi_recv_msg recv_msg;
4275 int rv;
4276
4277 smi_msg.done = dummy_smi_done_handler;
4278 recv_msg.done = dummy_recv_done_handler;
4279 atomic_add(2, &panic_done_count);
4280 rv = i_ipmi_request(NULL,
4281 intf,
4282 addr,
4283 0,
4284 msg,
4285 intf,
4286 &smi_msg,
4287 &recv_msg,
4288 0,
4289 intf->channels[0].address,
4290 intf->channels[0].lun,
4291 0, 1); /* Don't retry, and don't wait. */
4292 if (rv)
4293 atomic_sub(2, &panic_done_count);
4294 while (atomic_read(&panic_done_count) != 0)
4295 ipmi_poll(intf);
4296 }
4297
4298 #ifdef CONFIG_IPMI_PANIC_STRING
4299 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4300 {
4301 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4302 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4303 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4304 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4305 /* A get event receiver command, save it. */
4306 intf->event_receiver = msg->msg.data[1];
4307 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4308 }
4309 }
4310
4311 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4312 {
4313 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4314 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4315 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4316 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4317 /*
4318 * A get device id command, save if we are an event
4319 * receiver or generator.
4320 */
4321 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4322 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4323 }
4324 }
4325 #endif
4326
4327 static void send_panic_events(char *str)
4328 {
4329 struct kernel_ipmi_msg msg;
4330 ipmi_smi_t intf;
4331 unsigned char data[16];
4332 struct ipmi_system_interface_addr *si;
4333 struct ipmi_addr addr;
4334
4335 si = (struct ipmi_system_interface_addr *) &addr;
4336 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4337 si->channel = IPMI_BMC_CHANNEL;
4338 si->lun = 0;
4339
4340 /* Fill in an event telling that we have failed. */
4341 msg.netfn = 0x04; /* Sensor or Event. */
4342 msg.cmd = 2; /* Platform event command. */
4343 msg.data = data;
4344 msg.data_len = 8;
4345 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4346 data[1] = 0x03; /* This is for IPMI 1.0. */
4347 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4348 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4349 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4350
4351 /*
4352 * Put a few breadcrumbs in. Hopefully later we can add more things
4353 * to make the panic events more useful.
4354 */
4355 if (str) {
4356 data[3] = str[0];
4357 data[6] = str[1];
4358 data[7] = str[2];
4359 }
4360
4361 /* For every registered interface, send the event. */
4362 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4363 if (!intf->handlers)
4364 /* Interface is not ready. */
4365 continue;
4366
4367 intf->run_to_completion = 1;
4368 /* Send the event announcing the panic. */
4369 intf->handlers->set_run_to_completion(intf->send_info, 1);
4370 ipmi_panic_request_and_wait(intf, &addr, &msg);
4371 }
4372
4373 #ifdef CONFIG_IPMI_PANIC_STRING
4374 /*
4375 * On every interface, dump a bunch of OEM event holding the
4376 * string.
4377 */
4378 if (!str)
4379 return;
4380
4381 /* For every registered interface, send the event. */
4382 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4383 char *p = str;
4384 struct ipmi_ipmb_addr *ipmb;
4385 int j;
4386
4387 if (intf->intf_num == -1)
4388 /* Interface was not ready yet. */
4389 continue;
4390
4391 /*
4392 * intf_num is used as an marker to tell if the
4393 * interface is valid. Thus we need a read barrier to
4394 * make sure data fetched before checking intf_num
4395 * won't be used.
4396 */
4397 smp_rmb();
4398
4399 /*
4400 * First job here is to figure out where to send the
4401 * OEM events. There's no way in IPMI to send OEM
4402 * events using an event send command, so we have to
4403 * find the SEL to put them in and stick them in
4404 * there.
4405 */
4406
4407 /* Get capabilities from the get device id. */
4408 intf->local_sel_device = 0;
4409 intf->local_event_generator = 0;
4410 intf->event_receiver = 0;
4411
4412 /* Request the device info from the local MC. */
4413 msg.netfn = IPMI_NETFN_APP_REQUEST;
4414 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4415 msg.data = NULL;
4416 msg.data_len = 0;
4417 intf->null_user_handler = device_id_fetcher;
4418 ipmi_panic_request_and_wait(intf, &addr, &msg);
4419
4420 if (intf->local_event_generator) {
4421 /* Request the event receiver from the local MC. */
4422 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4423 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4424 msg.data = NULL;
4425 msg.data_len = 0;
4426 intf->null_user_handler = event_receiver_fetcher;
4427 ipmi_panic_request_and_wait(intf, &addr, &msg);
4428 }
4429 intf->null_user_handler = NULL;
4430
4431 /*
4432 * Validate the event receiver. The low bit must not
4433 * be 1 (it must be a valid IPMB address), it cannot
4434 * be zero, and it must not be my address.
4435 */
4436 if (((intf->event_receiver & 1) == 0)
4437 && (intf->event_receiver != 0)
4438 && (intf->event_receiver != intf->channels[0].address)) {
4439 /*
4440 * The event receiver is valid, send an IPMB
4441 * message.
4442 */
4443 ipmb = (struct ipmi_ipmb_addr *) &addr;
4444 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4445 ipmb->channel = 0; /* FIXME - is this right? */
4446 ipmb->lun = intf->event_receiver_lun;
4447 ipmb->slave_addr = intf->event_receiver;
4448 } else if (intf->local_sel_device) {
4449 /*
4450 * The event receiver was not valid (or was
4451 * me), but I am an SEL device, just dump it
4452 * in my SEL.
4453 */
4454 si = (struct ipmi_system_interface_addr *) &addr;
4455 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4456 si->channel = IPMI_BMC_CHANNEL;
4457 si->lun = 0;
4458 } else
4459 continue; /* No where to send the event. */
4460
4461 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4462 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4463 msg.data = data;
4464 msg.data_len = 16;
4465
4466 j = 0;
4467 while (*p) {
4468 int size = strlen(p);
4469
4470 if (size > 11)
4471 size = 11;
4472 data[0] = 0;
4473 data[1] = 0;
4474 data[2] = 0xf0; /* OEM event without timestamp. */
4475 data[3] = intf->channels[0].address;
4476 data[4] = j++; /* sequence # */
4477 /*
4478 * Always give 11 bytes, so strncpy will fill
4479 * it with zeroes for me.
4480 */
4481 strncpy(data+5, p, 11);
4482 p += size;
4483
4484 ipmi_panic_request_and_wait(intf, &addr, &msg);
4485 }
4486 }
4487 #endif /* CONFIG_IPMI_PANIC_STRING */
4488 }
4489 #endif /* CONFIG_IPMI_PANIC_EVENT */
4490
4491 static int has_panicked;
4492
4493 static int panic_event(struct notifier_block *this,
4494 unsigned long event,
4495 void *ptr)
4496 {
4497 ipmi_smi_t intf;
4498
4499 if (has_panicked)
4500 return NOTIFY_DONE;
4501 has_panicked = 1;
4502
4503 /* For every registered interface, set it to run to completion. */
4504 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4505 if (!intf->handlers)
4506 /* Interface is not ready. */
4507 continue;
4508
4509 intf->run_to_completion = 1;
4510 intf->handlers->set_run_to_completion(intf->send_info, 1);
4511 }
4512
4513 #ifdef CONFIG_IPMI_PANIC_EVENT
4514 send_panic_events(ptr);
4515 #endif
4516
4517 return NOTIFY_DONE;
4518 }
4519
4520 static struct notifier_block panic_block = {
4521 .notifier_call = panic_event,
4522 .next = NULL,
4523 .priority = 200 /* priority: INT_MAX >= x >= 0 */
4524 };
4525
4526 static int ipmi_init_msghandler(void)
4527 {
4528 int rv;
4529
4530 if (initialized)
4531 return 0;
4532
4533 rv = driver_register(&ipmidriver.driver);
4534 if (rv) {
4535 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4536 return rv;
4537 }
4538
4539 printk(KERN_INFO "ipmi message handler version "
4540 IPMI_DRIVER_VERSION "\n");
4541
4542 #ifdef CONFIG_PROC_FS
4543 proc_ipmi_root = proc_mkdir("ipmi", NULL);
4544 if (!proc_ipmi_root) {
4545 printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4546 driver_unregister(&ipmidriver.driver);
4547 return -ENOMEM;
4548 }
4549
4550 #endif /* CONFIG_PROC_FS */
4551
4552 setup_timer(&ipmi_timer, ipmi_timeout, 0);
4553 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4554
4555 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4556
4557 initialized = 1;
4558
4559 return 0;
4560 }
4561
4562 static int __init ipmi_init_msghandler_mod(void)
4563 {
4564 ipmi_init_msghandler();
4565 return 0;
4566 }
4567
4568 static void __exit cleanup_ipmi(void)
4569 {
4570 int count;
4571
4572 if (!initialized)
4573 return;
4574
4575 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4576
4577 /*
4578 * This can't be called if any interfaces exist, so no worry
4579 * about shutting down the interfaces.
4580 */
4581
4582 /*
4583 * Tell the timer to stop, then wait for it to stop. This
4584 * avoids problems with race conditions removing the timer
4585 * here.
4586 */
4587 atomic_inc(&stop_operation);
4588 del_timer_sync(&ipmi_timer);
4589
4590 #ifdef CONFIG_PROC_FS
4591 proc_remove(proc_ipmi_root);
4592 #endif /* CONFIG_PROC_FS */
4593
4594 driver_unregister(&ipmidriver.driver);
4595
4596 initialized = 0;
4597
4598 /* Check for buffer leaks. */
4599 count = atomic_read(&smi_msg_inuse_count);
4600 if (count != 0)
4601 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4602 count);
4603 count = atomic_read(&recv_msg_inuse_count);
4604 if (count != 0)
4605 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4606 count);
4607 }
4608 module_exit(cleanup_ipmi);
4609
4610 module_init(ipmi_init_msghandler_mod);
4611 MODULE_LICENSE("GPL");
4612 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4613 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4614 " interface.");
4615 MODULE_VERSION(IPMI_DRIVER_VERSION);