]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/char/ipmi/ipmi_si_intf.c
[PATCH] IPMI: Add maintenance mode
[mirror_ubuntu-bionic-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 *
19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
27 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
28 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * You should have received a copy of the GNU General Public License along
31 * with this program; if not, write to the Free Software Foundation, Inc.,
32 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 /*
36 * This file holds the "policy" for the interface to the SMI state
37 * machine. It does the configuration, handles timers and interrupts,
38 * and drives the real SMI state machine.
39 */
40
41 #include <linux/module.h>
42 #include <linux/moduleparam.h>
43 #include <asm/system.h>
44 #include <linux/sched.h>
45 #include <linux/timer.h>
46 #include <linux/errno.h>
47 #include <linux/spinlock.h>
48 #include <linux/slab.h>
49 #include <linux/delay.h>
50 #include <linux/list.h>
51 #include <linux/pci.h>
52 #include <linux/ioport.h>
53 #include <linux/notifier.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <asm/irq.h>
57 #include <linux/interrupt.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ipmi_smi.h>
60 #include <asm/io.h>
61 #include "ipmi_si_sm.h"
62 #include <linux/init.h>
63 #include <linux/dmi.h>
64
65 /* Measure times between events in the driver. */
66 #undef DEBUG_TIMING
67
68 /* Call every 10 ms. */
69 #define SI_TIMEOUT_TIME_USEC 10000
70 #define SI_USEC_PER_JIFFY (1000000/HZ)
71 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
72 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
73 short timeout */
74
75 enum si_intf_state {
76 SI_NORMAL,
77 SI_GETTING_FLAGS,
78 SI_GETTING_EVENTS,
79 SI_CLEARING_FLAGS,
80 SI_CLEARING_FLAGS_THEN_SET_IRQ,
81 SI_GETTING_MESSAGES,
82 SI_ENABLE_INTERRUPTS1,
83 SI_ENABLE_INTERRUPTS2
84 /* FIXME - add watchdog stuff. */
85 };
86
87 /* Some BT-specific defines we need here. */
88 #define IPMI_BT_INTMASK_REG 2
89 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
90 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
91
92 enum si_type {
93 SI_KCS, SI_SMIC, SI_BT
94 };
95 static char *si_to_str[] = { "KCS", "SMIC", "BT" };
96
97 #define DEVICE_NAME "ipmi_si"
98
99 static struct device_driver ipmi_driver =
100 {
101 .name = DEVICE_NAME,
102 .bus = &platform_bus_type
103 };
104
105 struct smi_info
106 {
107 int intf_num;
108 ipmi_smi_t intf;
109 struct si_sm_data *si_sm;
110 struct si_sm_handlers *handlers;
111 enum si_type si_type;
112 spinlock_t si_lock;
113 spinlock_t msg_lock;
114 struct list_head xmit_msgs;
115 struct list_head hp_xmit_msgs;
116 struct ipmi_smi_msg *curr_msg;
117 enum si_intf_state si_state;
118
119 /* Used to handle the various types of I/O that can occur with
120 IPMI */
121 struct si_sm_io io;
122 int (*io_setup)(struct smi_info *info);
123 void (*io_cleanup)(struct smi_info *info);
124 int (*irq_setup)(struct smi_info *info);
125 void (*irq_cleanup)(struct smi_info *info);
126 unsigned int io_size;
127 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
128 void (*addr_source_cleanup)(struct smi_info *info);
129 void *addr_source_data;
130
131 /* Per-OEM handler, called from handle_flags().
132 Returns 1 when handle_flags() needs to be re-run
133 or 0 indicating it set si_state itself.
134 */
135 int (*oem_data_avail_handler)(struct smi_info *smi_info);
136
137 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
138 is set to hold the flags until we are done handling everything
139 from the flags. */
140 #define RECEIVE_MSG_AVAIL 0x01
141 #define EVENT_MSG_BUFFER_FULL 0x02
142 #define WDT_PRE_TIMEOUT_INT 0x08
143 #define OEM0_DATA_AVAIL 0x20
144 #define OEM1_DATA_AVAIL 0x40
145 #define OEM2_DATA_AVAIL 0x80
146 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
147 OEM1_DATA_AVAIL | \
148 OEM2_DATA_AVAIL)
149 unsigned char msg_flags;
150
151 /* If set to true, this will request events the next time the
152 state machine is idle. */
153 atomic_t req_events;
154
155 /* If true, run the state machine to completion on every send
156 call. Generally used after a panic to make sure stuff goes
157 out. */
158 int run_to_completion;
159
160 /* The I/O port of an SI interface. */
161 int port;
162
163 /* The space between start addresses of the two ports. For
164 instance, if the first port is 0xca2 and the spacing is 4, then
165 the second port is 0xca6. */
166 unsigned int spacing;
167
168 /* zero if no irq; */
169 int irq;
170
171 /* The timer for this si. */
172 struct timer_list si_timer;
173
174 /* The time (in jiffies) the last timeout occurred at. */
175 unsigned long last_timeout_jiffies;
176
177 /* Used to gracefully stop the timer without race conditions. */
178 atomic_t stop_operation;
179
180 /* The driver will disable interrupts when it gets into a
181 situation where it cannot handle messages due to lack of
182 memory. Once that situation clears up, it will re-enable
183 interrupts. */
184 int interrupt_disabled;
185
186 /* From the get device id response... */
187 struct ipmi_device_id device_id;
188
189 /* Driver model stuff. */
190 struct device *dev;
191 struct platform_device *pdev;
192
193 /* True if we allocated the device, false if it came from
194 * someplace else (like PCI). */
195 int dev_registered;
196
197 /* Slave address, could be reported from DMI. */
198 unsigned char slave_addr;
199
200 /* Counters and things for the proc filesystem. */
201 spinlock_t count_lock;
202 unsigned long short_timeouts;
203 unsigned long long_timeouts;
204 unsigned long timeout_restarts;
205 unsigned long idles;
206 unsigned long interrupts;
207 unsigned long attentions;
208 unsigned long flag_fetches;
209 unsigned long hosed_count;
210 unsigned long complete_transactions;
211 unsigned long events;
212 unsigned long watchdog_pretimeouts;
213 unsigned long incoming_messages;
214
215 struct task_struct *thread;
216
217 struct list_head link;
218 };
219
220 #define SI_MAX_PARMS 4
221
222 static int force_kipmid[SI_MAX_PARMS];
223 static int num_force_kipmid;
224
225 static int try_smi_init(struct smi_info *smi);
226
227 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
228 static int register_xaction_notifier(struct notifier_block * nb)
229 {
230 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
231 }
232
233 static void deliver_recv_msg(struct smi_info *smi_info,
234 struct ipmi_smi_msg *msg)
235 {
236 /* Deliver the message to the upper layer with the lock
237 released. */
238 spin_unlock(&(smi_info->si_lock));
239 ipmi_smi_msg_received(smi_info->intf, msg);
240 spin_lock(&(smi_info->si_lock));
241 }
242
243 static void return_hosed_msg(struct smi_info *smi_info)
244 {
245 struct ipmi_smi_msg *msg = smi_info->curr_msg;
246
247 /* Make it a reponse */
248 msg->rsp[0] = msg->data[0] | 4;
249 msg->rsp[1] = msg->data[1];
250 msg->rsp[2] = 0xFF; /* Unknown error. */
251 msg->rsp_size = 3;
252
253 smi_info->curr_msg = NULL;
254 deliver_recv_msg(smi_info, msg);
255 }
256
257 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
258 {
259 int rv;
260 struct list_head *entry = NULL;
261 #ifdef DEBUG_TIMING
262 struct timeval t;
263 #endif
264
265 /* No need to save flags, we aleady have interrupts off and we
266 already hold the SMI lock. */
267 spin_lock(&(smi_info->msg_lock));
268
269 /* Pick the high priority queue first. */
270 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
271 entry = smi_info->hp_xmit_msgs.next;
272 } else if (!list_empty(&(smi_info->xmit_msgs))) {
273 entry = smi_info->xmit_msgs.next;
274 }
275
276 if (!entry) {
277 smi_info->curr_msg = NULL;
278 rv = SI_SM_IDLE;
279 } else {
280 int err;
281
282 list_del(entry);
283 smi_info->curr_msg = list_entry(entry,
284 struct ipmi_smi_msg,
285 link);
286 #ifdef DEBUG_TIMING
287 do_gettimeofday(&t);
288 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
289 #endif
290 err = atomic_notifier_call_chain(&xaction_notifier_list,
291 0, smi_info);
292 if (err & NOTIFY_STOP_MASK) {
293 rv = SI_SM_CALL_WITHOUT_DELAY;
294 goto out;
295 }
296 err = smi_info->handlers->start_transaction(
297 smi_info->si_sm,
298 smi_info->curr_msg->data,
299 smi_info->curr_msg->data_size);
300 if (err) {
301 return_hosed_msg(smi_info);
302 }
303
304 rv = SI_SM_CALL_WITHOUT_DELAY;
305 }
306 out:
307 spin_unlock(&(smi_info->msg_lock));
308
309 return rv;
310 }
311
312 static void start_enable_irq(struct smi_info *smi_info)
313 {
314 unsigned char msg[2];
315
316 /* If we are enabling interrupts, we have to tell the
317 BMC to use them. */
318 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
319 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
320
321 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
322 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
323 }
324
325 static void start_clear_flags(struct smi_info *smi_info)
326 {
327 unsigned char msg[3];
328
329 /* Make sure the watchdog pre-timeout flag is not set at startup. */
330 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
331 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
332 msg[2] = WDT_PRE_TIMEOUT_INT;
333
334 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
335 smi_info->si_state = SI_CLEARING_FLAGS;
336 }
337
338 /* When we have a situtaion where we run out of memory and cannot
339 allocate messages, we just leave them in the BMC and run the system
340 polled until we can allocate some memory. Once we have some
341 memory, we will re-enable the interrupt. */
342 static inline void disable_si_irq(struct smi_info *smi_info)
343 {
344 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
345 disable_irq_nosync(smi_info->irq);
346 smi_info->interrupt_disabled = 1;
347 }
348 }
349
350 static inline void enable_si_irq(struct smi_info *smi_info)
351 {
352 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
353 enable_irq(smi_info->irq);
354 smi_info->interrupt_disabled = 0;
355 }
356 }
357
358 static void handle_flags(struct smi_info *smi_info)
359 {
360 retry:
361 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
362 /* Watchdog pre-timeout */
363 spin_lock(&smi_info->count_lock);
364 smi_info->watchdog_pretimeouts++;
365 spin_unlock(&smi_info->count_lock);
366
367 start_clear_flags(smi_info);
368 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
369 spin_unlock(&(smi_info->si_lock));
370 ipmi_smi_watchdog_pretimeout(smi_info->intf);
371 spin_lock(&(smi_info->si_lock));
372 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
373 /* Messages available. */
374 smi_info->curr_msg = ipmi_alloc_smi_msg();
375 if (!smi_info->curr_msg) {
376 disable_si_irq(smi_info);
377 smi_info->si_state = SI_NORMAL;
378 return;
379 }
380 enable_si_irq(smi_info);
381
382 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
383 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
384 smi_info->curr_msg->data_size = 2;
385
386 smi_info->handlers->start_transaction(
387 smi_info->si_sm,
388 smi_info->curr_msg->data,
389 smi_info->curr_msg->data_size);
390 smi_info->si_state = SI_GETTING_MESSAGES;
391 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
392 /* Events available. */
393 smi_info->curr_msg = ipmi_alloc_smi_msg();
394 if (!smi_info->curr_msg) {
395 disable_si_irq(smi_info);
396 smi_info->si_state = SI_NORMAL;
397 return;
398 }
399 enable_si_irq(smi_info);
400
401 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
402 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
403 smi_info->curr_msg->data_size = 2;
404
405 smi_info->handlers->start_transaction(
406 smi_info->si_sm,
407 smi_info->curr_msg->data,
408 smi_info->curr_msg->data_size);
409 smi_info->si_state = SI_GETTING_EVENTS;
410 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
411 smi_info->oem_data_avail_handler) {
412 if (smi_info->oem_data_avail_handler(smi_info))
413 goto retry;
414 } else {
415 smi_info->si_state = SI_NORMAL;
416 }
417 }
418
419 static void handle_transaction_done(struct smi_info *smi_info)
420 {
421 struct ipmi_smi_msg *msg;
422 #ifdef DEBUG_TIMING
423 struct timeval t;
424
425 do_gettimeofday(&t);
426 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
427 #endif
428 switch (smi_info->si_state) {
429 case SI_NORMAL:
430 if (!smi_info->curr_msg)
431 break;
432
433 smi_info->curr_msg->rsp_size
434 = smi_info->handlers->get_result(
435 smi_info->si_sm,
436 smi_info->curr_msg->rsp,
437 IPMI_MAX_MSG_LENGTH);
438
439 /* Do this here becase deliver_recv_msg() releases the
440 lock, and a new message can be put in during the
441 time the lock is released. */
442 msg = smi_info->curr_msg;
443 smi_info->curr_msg = NULL;
444 deliver_recv_msg(smi_info, msg);
445 break;
446
447 case SI_GETTING_FLAGS:
448 {
449 unsigned char msg[4];
450 unsigned int len;
451
452 /* We got the flags from the SMI, now handle them. */
453 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
454 if (msg[2] != 0) {
455 /* Error fetching flags, just give up for
456 now. */
457 smi_info->si_state = SI_NORMAL;
458 } else if (len < 4) {
459 /* Hmm, no flags. That's technically illegal, but
460 don't use uninitialized data. */
461 smi_info->si_state = SI_NORMAL;
462 } else {
463 smi_info->msg_flags = msg[3];
464 handle_flags(smi_info);
465 }
466 break;
467 }
468
469 case SI_CLEARING_FLAGS:
470 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
471 {
472 unsigned char msg[3];
473
474 /* We cleared the flags. */
475 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
476 if (msg[2] != 0) {
477 /* Error clearing flags */
478 printk(KERN_WARNING
479 "ipmi_si: Error clearing flags: %2.2x\n",
480 msg[2]);
481 }
482 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
483 start_enable_irq(smi_info);
484 else
485 smi_info->si_state = SI_NORMAL;
486 break;
487 }
488
489 case SI_GETTING_EVENTS:
490 {
491 smi_info->curr_msg->rsp_size
492 = smi_info->handlers->get_result(
493 smi_info->si_sm,
494 smi_info->curr_msg->rsp,
495 IPMI_MAX_MSG_LENGTH);
496
497 /* Do this here becase deliver_recv_msg() releases the
498 lock, and a new message can be put in during the
499 time the lock is released. */
500 msg = smi_info->curr_msg;
501 smi_info->curr_msg = NULL;
502 if (msg->rsp[2] != 0) {
503 /* Error getting event, probably done. */
504 msg->done(msg);
505
506 /* Take off the event flag. */
507 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
508 handle_flags(smi_info);
509 } else {
510 spin_lock(&smi_info->count_lock);
511 smi_info->events++;
512 spin_unlock(&smi_info->count_lock);
513
514 /* Do this before we deliver the message
515 because delivering the message releases the
516 lock and something else can mess with the
517 state. */
518 handle_flags(smi_info);
519
520 deliver_recv_msg(smi_info, msg);
521 }
522 break;
523 }
524
525 case SI_GETTING_MESSAGES:
526 {
527 smi_info->curr_msg->rsp_size
528 = smi_info->handlers->get_result(
529 smi_info->si_sm,
530 smi_info->curr_msg->rsp,
531 IPMI_MAX_MSG_LENGTH);
532
533 /* Do this here becase deliver_recv_msg() releases the
534 lock, and a new message can be put in during the
535 time the lock is released. */
536 msg = smi_info->curr_msg;
537 smi_info->curr_msg = NULL;
538 if (msg->rsp[2] != 0) {
539 /* Error getting event, probably done. */
540 msg->done(msg);
541
542 /* Take off the msg flag. */
543 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
544 handle_flags(smi_info);
545 } else {
546 spin_lock(&smi_info->count_lock);
547 smi_info->incoming_messages++;
548 spin_unlock(&smi_info->count_lock);
549
550 /* Do this before we deliver the message
551 because delivering the message releases the
552 lock and something else can mess with the
553 state. */
554 handle_flags(smi_info);
555
556 deliver_recv_msg(smi_info, msg);
557 }
558 break;
559 }
560
561 case SI_ENABLE_INTERRUPTS1:
562 {
563 unsigned char msg[4];
564
565 /* We got the flags from the SMI, now handle them. */
566 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
567 if (msg[2] != 0) {
568 printk(KERN_WARNING
569 "ipmi_si: Could not enable interrupts"
570 ", failed get, using polled mode.\n");
571 smi_info->si_state = SI_NORMAL;
572 } else {
573 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
574 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
575 msg[2] = msg[3] | 1; /* enable msg queue int */
576 smi_info->handlers->start_transaction(
577 smi_info->si_sm, msg, 3);
578 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
579 }
580 break;
581 }
582
583 case SI_ENABLE_INTERRUPTS2:
584 {
585 unsigned char msg[4];
586
587 /* We got the flags from the SMI, now handle them. */
588 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
589 if (msg[2] != 0) {
590 printk(KERN_WARNING
591 "ipmi_si: Could not enable interrupts"
592 ", failed set, using polled mode.\n");
593 }
594 smi_info->si_state = SI_NORMAL;
595 break;
596 }
597 }
598 }
599
600 /* Called on timeouts and events. Timeouts should pass the elapsed
601 time, interrupts should pass in zero. */
602 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
603 int time)
604 {
605 enum si_sm_result si_sm_result;
606
607 restart:
608 /* There used to be a loop here that waited a little while
609 (around 25us) before giving up. That turned out to be
610 pointless, the minimum delays I was seeing were in the 300us
611 range, which is far too long to wait in an interrupt. So
612 we just run until the state machine tells us something
613 happened or it needs a delay. */
614 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
615 time = 0;
616 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
617 {
618 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
619 }
620
621 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
622 {
623 spin_lock(&smi_info->count_lock);
624 smi_info->complete_transactions++;
625 spin_unlock(&smi_info->count_lock);
626
627 handle_transaction_done(smi_info);
628 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
629 }
630 else if (si_sm_result == SI_SM_HOSED)
631 {
632 spin_lock(&smi_info->count_lock);
633 smi_info->hosed_count++;
634 spin_unlock(&smi_info->count_lock);
635
636 /* Do the before return_hosed_msg, because that
637 releases the lock. */
638 smi_info->si_state = SI_NORMAL;
639 if (smi_info->curr_msg != NULL) {
640 /* If we were handling a user message, format
641 a response to send to the upper layer to
642 tell it about the error. */
643 return_hosed_msg(smi_info);
644 }
645 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
646 }
647
648 /* We prefer handling attn over new messages. */
649 if (si_sm_result == SI_SM_ATTN)
650 {
651 unsigned char msg[2];
652
653 spin_lock(&smi_info->count_lock);
654 smi_info->attentions++;
655 spin_unlock(&smi_info->count_lock);
656
657 /* Got a attn, send down a get message flags to see
658 what's causing it. It would be better to handle
659 this in the upper layer, but due to the way
660 interrupts work with the SMI, that's not really
661 possible. */
662 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
663 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
664
665 smi_info->handlers->start_transaction(
666 smi_info->si_sm, msg, 2);
667 smi_info->si_state = SI_GETTING_FLAGS;
668 goto restart;
669 }
670
671 /* If we are currently idle, try to start the next message. */
672 if (si_sm_result == SI_SM_IDLE) {
673 spin_lock(&smi_info->count_lock);
674 smi_info->idles++;
675 spin_unlock(&smi_info->count_lock);
676
677 si_sm_result = start_next_msg(smi_info);
678 if (si_sm_result != SI_SM_IDLE)
679 goto restart;
680 }
681
682 if ((si_sm_result == SI_SM_IDLE)
683 && (atomic_read(&smi_info->req_events)))
684 {
685 /* We are idle and the upper layer requested that I fetch
686 events, so do so. */
687 unsigned char msg[2];
688
689 spin_lock(&smi_info->count_lock);
690 smi_info->flag_fetches++;
691 spin_unlock(&smi_info->count_lock);
692
693 atomic_set(&smi_info->req_events, 0);
694 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
695 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
696
697 smi_info->handlers->start_transaction(
698 smi_info->si_sm, msg, 2);
699 smi_info->si_state = SI_GETTING_FLAGS;
700 goto restart;
701 }
702
703 return si_sm_result;
704 }
705
706 static void sender(void *send_info,
707 struct ipmi_smi_msg *msg,
708 int priority)
709 {
710 struct smi_info *smi_info = send_info;
711 enum si_sm_result result;
712 unsigned long flags;
713 #ifdef DEBUG_TIMING
714 struct timeval t;
715 #endif
716
717 spin_lock_irqsave(&(smi_info->msg_lock), flags);
718 #ifdef DEBUG_TIMING
719 do_gettimeofday(&t);
720 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
721 #endif
722
723 if (smi_info->run_to_completion) {
724 /* If we are running to completion, then throw it in
725 the list and run transactions until everything is
726 clear. Priority doesn't matter here. */
727 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
728
729 /* We have to release the msg lock and claim the smi
730 lock in this case, because of race conditions. */
731 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
732
733 spin_lock_irqsave(&(smi_info->si_lock), flags);
734 result = smi_event_handler(smi_info, 0);
735 while (result != SI_SM_IDLE) {
736 udelay(SI_SHORT_TIMEOUT_USEC);
737 result = smi_event_handler(smi_info,
738 SI_SHORT_TIMEOUT_USEC);
739 }
740 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
741 return;
742 } else {
743 if (priority > 0) {
744 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
745 } else {
746 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
747 }
748 }
749 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
750
751 spin_lock_irqsave(&(smi_info->si_lock), flags);
752 if ((smi_info->si_state == SI_NORMAL)
753 && (smi_info->curr_msg == NULL))
754 {
755 start_next_msg(smi_info);
756 }
757 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
758 }
759
760 static void set_run_to_completion(void *send_info, int i_run_to_completion)
761 {
762 struct smi_info *smi_info = send_info;
763 enum si_sm_result result;
764 unsigned long flags;
765
766 spin_lock_irqsave(&(smi_info->si_lock), flags);
767
768 smi_info->run_to_completion = i_run_to_completion;
769 if (i_run_to_completion) {
770 result = smi_event_handler(smi_info, 0);
771 while (result != SI_SM_IDLE) {
772 udelay(SI_SHORT_TIMEOUT_USEC);
773 result = smi_event_handler(smi_info,
774 SI_SHORT_TIMEOUT_USEC);
775 }
776 }
777
778 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
779 }
780
781 static int ipmi_thread(void *data)
782 {
783 struct smi_info *smi_info = data;
784 unsigned long flags;
785 enum si_sm_result smi_result;
786
787 set_user_nice(current, 19);
788 while (!kthread_should_stop()) {
789 spin_lock_irqsave(&(smi_info->si_lock), flags);
790 smi_result = smi_event_handler(smi_info, 0);
791 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
792 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
793 /* do nothing */
794 }
795 else if (smi_result == SI_SM_CALL_WITH_DELAY)
796 schedule();
797 else
798 schedule_timeout_interruptible(1);
799 }
800 return 0;
801 }
802
803
804 static void poll(void *send_info)
805 {
806 struct smi_info *smi_info = send_info;
807
808 smi_event_handler(smi_info, 0);
809 }
810
811 static void request_events(void *send_info)
812 {
813 struct smi_info *smi_info = send_info;
814
815 atomic_set(&smi_info->req_events, 1);
816 }
817
818 static int initialized = 0;
819
820 static void smi_timeout(unsigned long data)
821 {
822 struct smi_info *smi_info = (struct smi_info *) data;
823 enum si_sm_result smi_result;
824 unsigned long flags;
825 unsigned long jiffies_now;
826 long time_diff;
827 #ifdef DEBUG_TIMING
828 struct timeval t;
829 #endif
830
831 if (atomic_read(&smi_info->stop_operation))
832 return;
833
834 spin_lock_irqsave(&(smi_info->si_lock), flags);
835 #ifdef DEBUG_TIMING
836 do_gettimeofday(&t);
837 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
838 #endif
839 jiffies_now = jiffies;
840 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
841 * SI_USEC_PER_JIFFY);
842 smi_result = smi_event_handler(smi_info, time_diff);
843
844 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
845
846 smi_info->last_timeout_jiffies = jiffies_now;
847
848 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
849 /* Running with interrupts, only do long timeouts. */
850 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
851 spin_lock_irqsave(&smi_info->count_lock, flags);
852 smi_info->long_timeouts++;
853 spin_unlock_irqrestore(&smi_info->count_lock, flags);
854 goto do_add_timer;
855 }
856
857 /* If the state machine asks for a short delay, then shorten
858 the timer timeout. */
859 if (smi_result == SI_SM_CALL_WITH_DELAY) {
860 spin_lock_irqsave(&smi_info->count_lock, flags);
861 smi_info->short_timeouts++;
862 spin_unlock_irqrestore(&smi_info->count_lock, flags);
863 smi_info->si_timer.expires = jiffies + 1;
864 } else {
865 spin_lock_irqsave(&smi_info->count_lock, flags);
866 smi_info->long_timeouts++;
867 spin_unlock_irqrestore(&smi_info->count_lock, flags);
868 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
869 }
870
871 do_add_timer:
872 add_timer(&(smi_info->si_timer));
873 }
874
875 static irqreturn_t si_irq_handler(int irq, void *data)
876 {
877 struct smi_info *smi_info = data;
878 unsigned long flags;
879 #ifdef DEBUG_TIMING
880 struct timeval t;
881 #endif
882
883 spin_lock_irqsave(&(smi_info->si_lock), flags);
884
885 spin_lock(&smi_info->count_lock);
886 smi_info->interrupts++;
887 spin_unlock(&smi_info->count_lock);
888
889 if (atomic_read(&smi_info->stop_operation))
890 goto out;
891
892 #ifdef DEBUG_TIMING
893 do_gettimeofday(&t);
894 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
895 #endif
896 smi_event_handler(smi_info, 0);
897 out:
898 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
899 return IRQ_HANDLED;
900 }
901
902 static irqreturn_t si_bt_irq_handler(int irq, void *data)
903 {
904 struct smi_info *smi_info = data;
905 /* We need to clear the IRQ flag for the BT interface. */
906 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
907 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
908 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
909 return si_irq_handler(irq, data);
910 }
911
912 static int smi_start_processing(void *send_info,
913 ipmi_smi_t intf)
914 {
915 struct smi_info *new_smi = send_info;
916 int enable = 0;
917
918 new_smi->intf = intf;
919
920 /* Set up the timer that drives the interface. */
921 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
922 new_smi->last_timeout_jiffies = jiffies;
923 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
924
925 /*
926 * Check if the user forcefully enabled the daemon.
927 */
928 if (new_smi->intf_num < num_force_kipmid)
929 enable = force_kipmid[new_smi->intf_num];
930 /*
931 * The BT interface is efficient enough to not need a thread,
932 * and there is no need for a thread if we have interrupts.
933 */
934 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
935 enable = 1;
936
937 if (enable) {
938 new_smi->thread = kthread_run(ipmi_thread, new_smi,
939 "kipmi%d", new_smi->intf_num);
940 if (IS_ERR(new_smi->thread)) {
941 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
942 " kernel thread due to error %ld, only using"
943 " timers to drive the interface\n",
944 PTR_ERR(new_smi->thread));
945 new_smi->thread = NULL;
946 }
947 }
948
949 return 0;
950 }
951
952 static void set_maintenance_mode(void *send_info, int enable)
953 {
954 struct smi_info *smi_info = send_info;
955
956 if (!enable)
957 atomic_set(&smi_info->req_events, 0);
958 }
959
960 static struct ipmi_smi_handlers handlers =
961 {
962 .owner = THIS_MODULE,
963 .start_processing = smi_start_processing,
964 .sender = sender,
965 .request_events = request_events,
966 .set_maintenance_mode = set_maintenance_mode,
967 .set_run_to_completion = set_run_to_completion,
968 .poll = poll,
969 };
970
971 /* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
972 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */
973
974 static LIST_HEAD(smi_infos);
975 static DEFINE_MUTEX(smi_infos_lock);
976 static int smi_num; /* Used to sequence the SMIs */
977
978 #define DEFAULT_REGSPACING 1
979
980 static int si_trydefaults = 1;
981 static char *si_type[SI_MAX_PARMS];
982 #define MAX_SI_TYPE_STR 30
983 static char si_type_str[MAX_SI_TYPE_STR];
984 static unsigned long addrs[SI_MAX_PARMS];
985 static int num_addrs;
986 static unsigned int ports[SI_MAX_PARMS];
987 static int num_ports;
988 static int irqs[SI_MAX_PARMS];
989 static int num_irqs;
990 static int regspacings[SI_MAX_PARMS];
991 static int num_regspacings = 0;
992 static int regsizes[SI_MAX_PARMS];
993 static int num_regsizes = 0;
994 static int regshifts[SI_MAX_PARMS];
995 static int num_regshifts = 0;
996 static int slave_addrs[SI_MAX_PARMS];
997 static int num_slave_addrs = 0;
998
999
1000 module_param_named(trydefaults, si_trydefaults, bool, 0);
1001 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1002 " default scan of the KCS and SMIC interface at the standard"
1003 " address");
1004 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1005 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1006 " interface separated by commas. The types are 'kcs',"
1007 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1008 " the first interface to kcs and the second to bt");
1009 module_param_array(addrs, long, &num_addrs, 0);
1010 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1011 " addresses separated by commas. Only use if an interface"
1012 " is in memory. Otherwise, set it to zero or leave"
1013 " it blank.");
1014 module_param_array(ports, int, &num_ports, 0);
1015 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1016 " addresses separated by commas. Only use if an interface"
1017 " is a port. Otherwise, set it to zero or leave"
1018 " it blank.");
1019 module_param_array(irqs, int, &num_irqs, 0);
1020 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1021 " addresses separated by commas. Only use if an interface"
1022 " has an interrupt. Otherwise, set it to zero or leave"
1023 " it blank.");
1024 module_param_array(regspacings, int, &num_regspacings, 0);
1025 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1026 " and each successive register used by the interface. For"
1027 " instance, if the start address is 0xca2 and the spacing"
1028 " is 2, then the second address is at 0xca4. Defaults"
1029 " to 1.");
1030 module_param_array(regsizes, int, &num_regsizes, 0);
1031 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1032 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1033 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1034 " the 8-bit IPMI register has to be read from a larger"
1035 " register.");
1036 module_param_array(regshifts, int, &num_regshifts, 0);
1037 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1038 " IPMI register, in bits. For instance, if the data"
1039 " is read from a 32-bit word and the IPMI data is in"
1040 " bit 8-15, then the shift would be 8");
1041 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1042 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1043 " the controller. Normally this is 0x20, but can be"
1044 " overridden by this parm. This is an array indexed"
1045 " by interface number.");
1046 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1047 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1048 " disabled(0). Normally the IPMI driver auto-detects"
1049 " this, but the value may be overridden by this parm.");
1050
1051
1052 #define IPMI_IO_ADDR_SPACE 0
1053 #define IPMI_MEM_ADDR_SPACE 1
1054 static char *addr_space_to_str[] = { "I/O", "memory" };
1055
1056 static void std_irq_cleanup(struct smi_info *info)
1057 {
1058 if (info->si_type == SI_BT)
1059 /* Disable the interrupt in the BT interface. */
1060 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1061 free_irq(info->irq, info);
1062 }
1063
1064 static int std_irq_setup(struct smi_info *info)
1065 {
1066 int rv;
1067
1068 if (!info->irq)
1069 return 0;
1070
1071 if (info->si_type == SI_BT) {
1072 rv = request_irq(info->irq,
1073 si_bt_irq_handler,
1074 IRQF_DISABLED,
1075 DEVICE_NAME,
1076 info);
1077 if (!rv)
1078 /* Enable the interrupt in the BT interface. */
1079 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1080 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1081 } else
1082 rv = request_irq(info->irq,
1083 si_irq_handler,
1084 IRQF_DISABLED,
1085 DEVICE_NAME,
1086 info);
1087 if (rv) {
1088 printk(KERN_WARNING
1089 "ipmi_si: %s unable to claim interrupt %d,"
1090 " running polled\n",
1091 DEVICE_NAME, info->irq);
1092 info->irq = 0;
1093 } else {
1094 info->irq_cleanup = std_irq_cleanup;
1095 printk(" Using irq %d\n", info->irq);
1096 }
1097
1098 return rv;
1099 }
1100
1101 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1102 {
1103 unsigned int addr = io->addr_data;
1104
1105 return inb(addr + (offset * io->regspacing));
1106 }
1107
1108 static void port_outb(struct si_sm_io *io, unsigned int offset,
1109 unsigned char b)
1110 {
1111 unsigned int addr = io->addr_data;
1112
1113 outb(b, addr + (offset * io->regspacing));
1114 }
1115
1116 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1117 {
1118 unsigned int addr = io->addr_data;
1119
1120 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1121 }
1122
1123 static void port_outw(struct si_sm_io *io, unsigned int offset,
1124 unsigned char b)
1125 {
1126 unsigned int addr = io->addr_data;
1127
1128 outw(b << io->regshift, addr + (offset * io->regspacing));
1129 }
1130
1131 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1132 {
1133 unsigned int addr = io->addr_data;
1134
1135 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1136 }
1137
1138 static void port_outl(struct si_sm_io *io, unsigned int offset,
1139 unsigned char b)
1140 {
1141 unsigned int addr = io->addr_data;
1142
1143 outl(b << io->regshift, addr+(offset * io->regspacing));
1144 }
1145
1146 static void port_cleanup(struct smi_info *info)
1147 {
1148 unsigned int addr = info->io.addr_data;
1149 int idx;
1150
1151 if (addr) {
1152 for (idx = 0; idx < info->io_size; idx++) {
1153 release_region(addr + idx * info->io.regspacing,
1154 info->io.regsize);
1155 }
1156 }
1157 }
1158
1159 static int port_setup(struct smi_info *info)
1160 {
1161 unsigned int addr = info->io.addr_data;
1162 int idx;
1163
1164 if (!addr)
1165 return -ENODEV;
1166
1167 info->io_cleanup = port_cleanup;
1168
1169 /* Figure out the actual inb/inw/inl/etc routine to use based
1170 upon the register size. */
1171 switch (info->io.regsize) {
1172 case 1:
1173 info->io.inputb = port_inb;
1174 info->io.outputb = port_outb;
1175 break;
1176 case 2:
1177 info->io.inputb = port_inw;
1178 info->io.outputb = port_outw;
1179 break;
1180 case 4:
1181 info->io.inputb = port_inl;
1182 info->io.outputb = port_outl;
1183 break;
1184 default:
1185 printk("ipmi_si: Invalid register size: %d\n",
1186 info->io.regsize);
1187 return -EINVAL;
1188 }
1189
1190 /* Some BIOSes reserve disjoint I/O regions in their ACPI
1191 * tables. This causes problems when trying to register the
1192 * entire I/O region. Therefore we must register each I/O
1193 * port separately.
1194 */
1195 for (idx = 0; idx < info->io_size; idx++) {
1196 if (request_region(addr + idx * info->io.regspacing,
1197 info->io.regsize, DEVICE_NAME) == NULL) {
1198 /* Undo allocations */
1199 while (idx--) {
1200 release_region(addr + idx * info->io.regspacing,
1201 info->io.regsize);
1202 }
1203 return -EIO;
1204 }
1205 }
1206 return 0;
1207 }
1208
1209 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1210 {
1211 return readb((io->addr)+(offset * io->regspacing));
1212 }
1213
1214 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1215 unsigned char b)
1216 {
1217 writeb(b, (io->addr)+(offset * io->regspacing));
1218 }
1219
1220 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1221 {
1222 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1223 & 0xff;
1224 }
1225
1226 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1227 unsigned char b)
1228 {
1229 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1230 }
1231
1232 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1233 {
1234 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1235 & 0xff;
1236 }
1237
1238 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1239 unsigned char b)
1240 {
1241 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1242 }
1243
1244 #ifdef readq
1245 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1246 {
1247 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1248 & 0xff;
1249 }
1250
1251 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1252 unsigned char b)
1253 {
1254 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1255 }
1256 #endif
1257
1258 static void mem_cleanup(struct smi_info *info)
1259 {
1260 unsigned long addr = info->io.addr_data;
1261 int mapsize;
1262
1263 if (info->io.addr) {
1264 iounmap(info->io.addr);
1265
1266 mapsize = ((info->io_size * info->io.regspacing)
1267 - (info->io.regspacing - info->io.regsize));
1268
1269 release_mem_region(addr, mapsize);
1270 }
1271 }
1272
1273 static int mem_setup(struct smi_info *info)
1274 {
1275 unsigned long addr = info->io.addr_data;
1276 int mapsize;
1277
1278 if (!addr)
1279 return -ENODEV;
1280
1281 info->io_cleanup = mem_cleanup;
1282
1283 /* Figure out the actual readb/readw/readl/etc routine to use based
1284 upon the register size. */
1285 switch (info->io.regsize) {
1286 case 1:
1287 info->io.inputb = intf_mem_inb;
1288 info->io.outputb = intf_mem_outb;
1289 break;
1290 case 2:
1291 info->io.inputb = intf_mem_inw;
1292 info->io.outputb = intf_mem_outw;
1293 break;
1294 case 4:
1295 info->io.inputb = intf_mem_inl;
1296 info->io.outputb = intf_mem_outl;
1297 break;
1298 #ifdef readq
1299 case 8:
1300 info->io.inputb = mem_inq;
1301 info->io.outputb = mem_outq;
1302 break;
1303 #endif
1304 default:
1305 printk("ipmi_si: Invalid register size: %d\n",
1306 info->io.regsize);
1307 return -EINVAL;
1308 }
1309
1310 /* Calculate the total amount of memory to claim. This is an
1311 * unusual looking calculation, but it avoids claiming any
1312 * more memory than it has to. It will claim everything
1313 * between the first address to the end of the last full
1314 * register. */
1315 mapsize = ((info->io_size * info->io.regspacing)
1316 - (info->io.regspacing - info->io.regsize));
1317
1318 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1319 return -EIO;
1320
1321 info->io.addr = ioremap(addr, mapsize);
1322 if (info->io.addr == NULL) {
1323 release_mem_region(addr, mapsize);
1324 return -EIO;
1325 }
1326 return 0;
1327 }
1328
1329
1330 static __devinit void hardcode_find_bmc(void)
1331 {
1332 int i;
1333 struct smi_info *info;
1334
1335 for (i = 0; i < SI_MAX_PARMS; i++) {
1336 if (!ports[i] && !addrs[i])
1337 continue;
1338
1339 info = kzalloc(sizeof(*info), GFP_KERNEL);
1340 if (!info)
1341 return;
1342
1343 info->addr_source = "hardcoded";
1344
1345 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1346 info->si_type = SI_KCS;
1347 } else if (strcmp(si_type[i], "smic") == 0) {
1348 info->si_type = SI_SMIC;
1349 } else if (strcmp(si_type[i], "bt") == 0) {
1350 info->si_type = SI_BT;
1351 } else {
1352 printk(KERN_WARNING
1353 "ipmi_si: Interface type specified "
1354 "for interface %d, was invalid: %s\n",
1355 i, si_type[i]);
1356 kfree(info);
1357 continue;
1358 }
1359
1360 if (ports[i]) {
1361 /* An I/O port */
1362 info->io_setup = port_setup;
1363 info->io.addr_data = ports[i];
1364 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1365 } else if (addrs[i]) {
1366 /* A memory port */
1367 info->io_setup = mem_setup;
1368 info->io.addr_data = addrs[i];
1369 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1370 } else {
1371 printk(KERN_WARNING
1372 "ipmi_si: Interface type specified "
1373 "for interface %d, "
1374 "but port and address were not set or "
1375 "set to zero.\n", i);
1376 kfree(info);
1377 continue;
1378 }
1379
1380 info->io.addr = NULL;
1381 info->io.regspacing = regspacings[i];
1382 if (!info->io.regspacing)
1383 info->io.regspacing = DEFAULT_REGSPACING;
1384 info->io.regsize = regsizes[i];
1385 if (!info->io.regsize)
1386 info->io.regsize = DEFAULT_REGSPACING;
1387 info->io.regshift = regshifts[i];
1388 info->irq = irqs[i];
1389 if (info->irq)
1390 info->irq_setup = std_irq_setup;
1391
1392 try_smi_init(info);
1393 }
1394 }
1395
1396 #ifdef CONFIG_ACPI
1397
1398 #include <linux/acpi.h>
1399
1400 /* Once we get an ACPI failure, we don't try any more, because we go
1401 through the tables sequentially. Once we don't find a table, there
1402 are no more. */
1403 static int acpi_failure = 0;
1404
1405 /* For GPE-type interrupts. */
1406 static u32 ipmi_acpi_gpe(void *context)
1407 {
1408 struct smi_info *smi_info = context;
1409 unsigned long flags;
1410 #ifdef DEBUG_TIMING
1411 struct timeval t;
1412 #endif
1413
1414 spin_lock_irqsave(&(smi_info->si_lock), flags);
1415
1416 spin_lock(&smi_info->count_lock);
1417 smi_info->interrupts++;
1418 spin_unlock(&smi_info->count_lock);
1419
1420 if (atomic_read(&smi_info->stop_operation))
1421 goto out;
1422
1423 #ifdef DEBUG_TIMING
1424 do_gettimeofday(&t);
1425 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1426 #endif
1427 smi_event_handler(smi_info, 0);
1428 out:
1429 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1430
1431 return ACPI_INTERRUPT_HANDLED;
1432 }
1433
1434 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1435 {
1436 if (!info->irq)
1437 return;
1438
1439 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1440 }
1441
1442 static int acpi_gpe_irq_setup(struct smi_info *info)
1443 {
1444 acpi_status status;
1445
1446 if (!info->irq)
1447 return 0;
1448
1449 /* FIXME - is level triggered right? */
1450 status = acpi_install_gpe_handler(NULL,
1451 info->irq,
1452 ACPI_GPE_LEVEL_TRIGGERED,
1453 &ipmi_acpi_gpe,
1454 info);
1455 if (status != AE_OK) {
1456 printk(KERN_WARNING
1457 "ipmi_si: %s unable to claim ACPI GPE %d,"
1458 " running polled\n",
1459 DEVICE_NAME, info->irq);
1460 info->irq = 0;
1461 return -EINVAL;
1462 } else {
1463 info->irq_cleanup = acpi_gpe_irq_cleanup;
1464 printk(" Using ACPI GPE %d\n", info->irq);
1465 return 0;
1466 }
1467 }
1468
1469 /*
1470 * Defined at
1471 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1472 */
1473 struct SPMITable {
1474 s8 Signature[4];
1475 u32 Length;
1476 u8 Revision;
1477 u8 Checksum;
1478 s8 OEMID[6];
1479 s8 OEMTableID[8];
1480 s8 OEMRevision[4];
1481 s8 CreatorID[4];
1482 s8 CreatorRevision[4];
1483 u8 InterfaceType;
1484 u8 IPMIlegacy;
1485 s16 SpecificationRevision;
1486
1487 /*
1488 * Bit 0 - SCI interrupt supported
1489 * Bit 1 - I/O APIC/SAPIC
1490 */
1491 u8 InterruptType;
1492
1493 /* If bit 0 of InterruptType is set, then this is the SCI
1494 interrupt in the GPEx_STS register. */
1495 u8 GPE;
1496
1497 s16 Reserved;
1498
1499 /* If bit 1 of InterruptType is set, then this is the I/O
1500 APIC/SAPIC interrupt. */
1501 u32 GlobalSystemInterrupt;
1502
1503 /* The actual register address. */
1504 struct acpi_generic_address addr;
1505
1506 u8 UID[4];
1507
1508 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1509 };
1510
1511 static __devinit int try_init_acpi(struct SPMITable *spmi)
1512 {
1513 struct smi_info *info;
1514 char *io_type;
1515 u8 addr_space;
1516
1517 if (spmi->IPMIlegacy != 1) {
1518 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1519 return -ENODEV;
1520 }
1521
1522 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1523 addr_space = IPMI_MEM_ADDR_SPACE;
1524 else
1525 addr_space = IPMI_IO_ADDR_SPACE;
1526
1527 info = kzalloc(sizeof(*info), GFP_KERNEL);
1528 if (!info) {
1529 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1530 return -ENOMEM;
1531 }
1532
1533 info->addr_source = "ACPI";
1534
1535 /* Figure out the interface type. */
1536 switch (spmi->InterfaceType)
1537 {
1538 case 1: /* KCS */
1539 info->si_type = SI_KCS;
1540 break;
1541 case 2: /* SMIC */
1542 info->si_type = SI_SMIC;
1543 break;
1544 case 3: /* BT */
1545 info->si_type = SI_BT;
1546 break;
1547 default:
1548 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1549 spmi->InterfaceType);
1550 kfree(info);
1551 return -EIO;
1552 }
1553
1554 if (spmi->InterruptType & 1) {
1555 /* We've got a GPE interrupt. */
1556 info->irq = spmi->GPE;
1557 info->irq_setup = acpi_gpe_irq_setup;
1558 } else if (spmi->InterruptType & 2) {
1559 /* We've got an APIC/SAPIC interrupt. */
1560 info->irq = spmi->GlobalSystemInterrupt;
1561 info->irq_setup = std_irq_setup;
1562 } else {
1563 /* Use the default interrupt setting. */
1564 info->irq = 0;
1565 info->irq_setup = NULL;
1566 }
1567
1568 if (spmi->addr.register_bit_width) {
1569 /* A (hopefully) properly formed register bit width. */
1570 info->io.regspacing = spmi->addr.register_bit_width / 8;
1571 } else {
1572 info->io.regspacing = DEFAULT_REGSPACING;
1573 }
1574 info->io.regsize = info->io.regspacing;
1575 info->io.regshift = spmi->addr.register_bit_offset;
1576
1577 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1578 io_type = "memory";
1579 info->io_setup = mem_setup;
1580 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1581 } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1582 io_type = "I/O";
1583 info->io_setup = port_setup;
1584 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1585 } else {
1586 kfree(info);
1587 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1588 return -EIO;
1589 }
1590 info->io.addr_data = spmi->addr.address;
1591
1592 try_smi_init(info);
1593
1594 return 0;
1595 }
1596
1597 static __devinit void acpi_find_bmc(void)
1598 {
1599 acpi_status status;
1600 struct SPMITable *spmi;
1601 int i;
1602
1603 if (acpi_disabled)
1604 return;
1605
1606 if (acpi_failure)
1607 return;
1608
1609 for (i = 0; ; i++) {
1610 status = acpi_get_firmware_table("SPMI", i+1,
1611 ACPI_LOGICAL_ADDRESSING,
1612 (struct acpi_table_header **)
1613 &spmi);
1614 if (status != AE_OK)
1615 return;
1616
1617 try_init_acpi(spmi);
1618 }
1619 }
1620 #endif
1621
1622 #ifdef CONFIG_DMI
1623 struct dmi_ipmi_data
1624 {
1625 u8 type;
1626 u8 addr_space;
1627 unsigned long base_addr;
1628 u8 irq;
1629 u8 offset;
1630 u8 slave_addr;
1631 };
1632
1633 static int __devinit decode_dmi(struct dmi_header *dm,
1634 struct dmi_ipmi_data *dmi)
1635 {
1636 u8 *data = (u8 *)dm;
1637 unsigned long base_addr;
1638 u8 reg_spacing;
1639 u8 len = dm->length;
1640
1641 dmi->type = data[4];
1642
1643 memcpy(&base_addr, data+8, sizeof(unsigned long));
1644 if (len >= 0x11) {
1645 if (base_addr & 1) {
1646 /* I/O */
1647 base_addr &= 0xFFFE;
1648 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1649 }
1650 else {
1651 /* Memory */
1652 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
1653 }
1654 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1655 is odd. */
1656 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1657
1658 dmi->irq = data[0x11];
1659
1660 /* The top two bits of byte 0x10 hold the register spacing. */
1661 reg_spacing = (data[0x10] & 0xC0) >> 6;
1662 switch(reg_spacing){
1663 case 0x00: /* Byte boundaries */
1664 dmi->offset = 1;
1665 break;
1666 case 0x01: /* 32-bit boundaries */
1667 dmi->offset = 4;
1668 break;
1669 case 0x02: /* 16-byte boundaries */
1670 dmi->offset = 16;
1671 break;
1672 default:
1673 /* Some other interface, just ignore it. */
1674 return -EIO;
1675 }
1676 } else {
1677 /* Old DMI spec. */
1678 /* Note that technically, the lower bit of the base
1679 * address should be 1 if the address is I/O and 0 if
1680 * the address is in memory. So many systems get that
1681 * wrong (and all that I have seen are I/O) so we just
1682 * ignore that bit and assume I/O. Systems that use
1683 * memory should use the newer spec, anyway. */
1684 dmi->base_addr = base_addr & 0xfffe;
1685 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1686 dmi->offset = 1;
1687 }
1688
1689 dmi->slave_addr = data[6];
1690
1691 return 0;
1692 }
1693
1694 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1695 {
1696 struct smi_info *info;
1697
1698 info = kzalloc(sizeof(*info), GFP_KERNEL);
1699 if (!info) {
1700 printk(KERN_ERR
1701 "ipmi_si: Could not allocate SI data\n");
1702 return;
1703 }
1704
1705 info->addr_source = "SMBIOS";
1706
1707 switch (ipmi_data->type) {
1708 case 0x01: /* KCS */
1709 info->si_type = SI_KCS;
1710 break;
1711 case 0x02: /* SMIC */
1712 info->si_type = SI_SMIC;
1713 break;
1714 case 0x03: /* BT */
1715 info->si_type = SI_BT;
1716 break;
1717 default:
1718 return;
1719 }
1720
1721 switch (ipmi_data->addr_space) {
1722 case IPMI_MEM_ADDR_SPACE:
1723 info->io_setup = mem_setup;
1724 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1725 break;
1726
1727 case IPMI_IO_ADDR_SPACE:
1728 info->io_setup = port_setup;
1729 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1730 break;
1731
1732 default:
1733 kfree(info);
1734 printk(KERN_WARNING
1735 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
1736 ipmi_data->addr_space);
1737 return;
1738 }
1739 info->io.addr_data = ipmi_data->base_addr;
1740
1741 info->io.regspacing = ipmi_data->offset;
1742 if (!info->io.regspacing)
1743 info->io.regspacing = DEFAULT_REGSPACING;
1744 info->io.regsize = DEFAULT_REGSPACING;
1745 info->io.regshift = 0;
1746
1747 info->slave_addr = ipmi_data->slave_addr;
1748
1749 info->irq = ipmi_data->irq;
1750 if (info->irq)
1751 info->irq_setup = std_irq_setup;
1752
1753 try_smi_init(info);
1754 }
1755
1756 static void __devinit dmi_find_bmc(void)
1757 {
1758 struct dmi_device *dev = NULL;
1759 struct dmi_ipmi_data data;
1760 int rv;
1761
1762 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
1763 memset(&data, 0, sizeof(data));
1764 rv = decode_dmi((struct dmi_header *) dev->device_data, &data);
1765 if (!rv)
1766 try_init_dmi(&data);
1767 }
1768 }
1769 #endif /* CONFIG_DMI */
1770
1771 #ifdef CONFIG_PCI
1772
1773 #define PCI_ERMC_CLASSCODE 0x0C0700
1774 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
1775 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
1776 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
1777 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
1778 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
1779
1780 #define PCI_HP_VENDOR_ID 0x103C
1781 #define PCI_MMC_DEVICE_ID 0x121A
1782 #define PCI_MMC_ADDR_CW 0x10
1783
1784 static void ipmi_pci_cleanup(struct smi_info *info)
1785 {
1786 struct pci_dev *pdev = info->addr_source_data;
1787
1788 pci_disable_device(pdev);
1789 }
1790
1791 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
1792 const struct pci_device_id *ent)
1793 {
1794 int rv;
1795 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
1796 struct smi_info *info;
1797 int first_reg_offset = 0;
1798
1799 info = kzalloc(sizeof(*info), GFP_KERNEL);
1800 if (!info)
1801 return -ENOMEM;
1802
1803 info->addr_source = "PCI";
1804
1805 switch (class_type) {
1806 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
1807 info->si_type = SI_SMIC;
1808 break;
1809
1810 case PCI_ERMC_CLASSCODE_TYPE_KCS:
1811 info->si_type = SI_KCS;
1812 break;
1813
1814 case PCI_ERMC_CLASSCODE_TYPE_BT:
1815 info->si_type = SI_BT;
1816 break;
1817
1818 default:
1819 kfree(info);
1820 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
1821 pci_name(pdev), class_type);
1822 return -ENOMEM;
1823 }
1824
1825 rv = pci_enable_device(pdev);
1826 if (rv) {
1827 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
1828 pci_name(pdev));
1829 kfree(info);
1830 return rv;
1831 }
1832
1833 info->addr_source_cleanup = ipmi_pci_cleanup;
1834 info->addr_source_data = pdev;
1835
1836 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
1837 first_reg_offset = 1;
1838
1839 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
1840 info->io_setup = port_setup;
1841 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1842 } else {
1843 info->io_setup = mem_setup;
1844 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1845 }
1846 info->io.addr_data = pci_resource_start(pdev, 0);
1847
1848 info->io.regspacing = DEFAULT_REGSPACING;
1849 info->io.regsize = DEFAULT_REGSPACING;
1850 info->io.regshift = 0;
1851
1852 info->irq = pdev->irq;
1853 if (info->irq)
1854 info->irq_setup = std_irq_setup;
1855
1856 info->dev = &pdev->dev;
1857
1858 return try_smi_init(info);
1859 }
1860
1861 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
1862 {
1863 }
1864
1865 #ifdef CONFIG_PM
1866 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
1867 {
1868 return 0;
1869 }
1870
1871 static int ipmi_pci_resume(struct pci_dev *pdev)
1872 {
1873 return 0;
1874 }
1875 #endif
1876
1877 static struct pci_device_id ipmi_pci_devices[] = {
1878 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
1879 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }
1880 };
1881 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
1882
1883 static struct pci_driver ipmi_pci_driver = {
1884 .name = DEVICE_NAME,
1885 .id_table = ipmi_pci_devices,
1886 .probe = ipmi_pci_probe,
1887 .remove = __devexit_p(ipmi_pci_remove),
1888 #ifdef CONFIG_PM
1889 .suspend = ipmi_pci_suspend,
1890 .resume = ipmi_pci_resume,
1891 #endif
1892 };
1893 #endif /* CONFIG_PCI */
1894
1895
1896 static int try_get_dev_id(struct smi_info *smi_info)
1897 {
1898 unsigned char msg[2];
1899 unsigned char *resp;
1900 unsigned long resp_len;
1901 enum si_sm_result smi_result;
1902 int rv = 0;
1903
1904 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1905 if (!resp)
1906 return -ENOMEM;
1907
1908 /* Do a Get Device ID command, since it comes back with some
1909 useful info. */
1910 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1911 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1912 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1913
1914 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1915 for (;;)
1916 {
1917 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1918 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1919 schedule_timeout_uninterruptible(1);
1920 smi_result = smi_info->handlers->event(
1921 smi_info->si_sm, 100);
1922 }
1923 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1924 {
1925 smi_result = smi_info->handlers->event(
1926 smi_info->si_sm, 0);
1927 }
1928 else
1929 break;
1930 }
1931 if (smi_result == SI_SM_HOSED) {
1932 /* We couldn't get the state machine to run, so whatever's at
1933 the port is probably not an IPMI SMI interface. */
1934 rv = -ENODEV;
1935 goto out;
1936 }
1937
1938 /* Otherwise, we got some data. */
1939 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1940 resp, IPMI_MAX_MSG_LENGTH);
1941 if (resp_len < 14) {
1942 /* That's odd, it should be longer. */
1943 rv = -EINVAL;
1944 goto out;
1945 }
1946
1947 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
1948 /* That's odd, it shouldn't be able to fail. */
1949 rv = -EINVAL;
1950 goto out;
1951 }
1952
1953 /* Record info from the get device id, in case we need it. */
1954 ipmi_demangle_device_id(resp+3, resp_len-3, &smi_info->device_id);
1955
1956 out:
1957 kfree(resp);
1958 return rv;
1959 }
1960
1961 static int type_file_read_proc(char *page, char **start, off_t off,
1962 int count, int *eof, void *data)
1963 {
1964 char *out = (char *) page;
1965 struct smi_info *smi = data;
1966
1967 switch (smi->si_type) {
1968 case SI_KCS:
1969 return sprintf(out, "kcs\n");
1970 case SI_SMIC:
1971 return sprintf(out, "smic\n");
1972 case SI_BT:
1973 return sprintf(out, "bt\n");
1974 default:
1975 return 0;
1976 }
1977 }
1978
1979 static int stat_file_read_proc(char *page, char **start, off_t off,
1980 int count, int *eof, void *data)
1981 {
1982 char *out = (char *) page;
1983 struct smi_info *smi = data;
1984
1985 out += sprintf(out, "interrupts_enabled: %d\n",
1986 smi->irq && !smi->interrupt_disabled);
1987 out += sprintf(out, "short_timeouts: %ld\n",
1988 smi->short_timeouts);
1989 out += sprintf(out, "long_timeouts: %ld\n",
1990 smi->long_timeouts);
1991 out += sprintf(out, "timeout_restarts: %ld\n",
1992 smi->timeout_restarts);
1993 out += sprintf(out, "idles: %ld\n",
1994 smi->idles);
1995 out += sprintf(out, "interrupts: %ld\n",
1996 smi->interrupts);
1997 out += sprintf(out, "attentions: %ld\n",
1998 smi->attentions);
1999 out += sprintf(out, "flag_fetches: %ld\n",
2000 smi->flag_fetches);
2001 out += sprintf(out, "hosed_count: %ld\n",
2002 smi->hosed_count);
2003 out += sprintf(out, "complete_transactions: %ld\n",
2004 smi->complete_transactions);
2005 out += sprintf(out, "events: %ld\n",
2006 smi->events);
2007 out += sprintf(out, "watchdog_pretimeouts: %ld\n",
2008 smi->watchdog_pretimeouts);
2009 out += sprintf(out, "incoming_messages: %ld\n",
2010 smi->incoming_messages);
2011
2012 return (out - ((char *) page));
2013 }
2014
2015 /*
2016 * oem_data_avail_to_receive_msg_avail
2017 * @info - smi_info structure with msg_flags set
2018 *
2019 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2020 * Returns 1 indicating need to re-run handle_flags().
2021 */
2022 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2023 {
2024 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2025 RECEIVE_MSG_AVAIL);
2026 return 1;
2027 }
2028
2029 /*
2030 * setup_dell_poweredge_oem_data_handler
2031 * @info - smi_info.device_id must be populated
2032 *
2033 * Systems that match, but have firmware version < 1.40 may assert
2034 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2035 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2036 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2037 * as RECEIVE_MSG_AVAIL instead.
2038 *
2039 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2040 * assert the OEM[012] bits, and if it did, the driver would have to
2041 * change to handle that properly, we don't actually check for the
2042 * firmware version.
2043 * Device ID = 0x20 BMC on PowerEdge 8G servers
2044 * Device Revision = 0x80
2045 * Firmware Revision1 = 0x01 BMC version 1.40
2046 * Firmware Revision2 = 0x40 BCD encoded
2047 * IPMI Version = 0x51 IPMI 1.5
2048 * Manufacturer ID = A2 02 00 Dell IANA
2049 *
2050 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2051 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2052 *
2053 */
2054 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2055 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2056 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2057 #define DELL_IANA_MFR_ID 0x0002a2
2058 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2059 {
2060 struct ipmi_device_id *id = &smi_info->device_id;
2061 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2062 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2063 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2064 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2065 smi_info->oem_data_avail_handler =
2066 oem_data_avail_to_receive_msg_avail;
2067 }
2068 else if (ipmi_version_major(id) < 1 ||
2069 (ipmi_version_major(id) == 1 &&
2070 ipmi_version_minor(id) < 5)) {
2071 smi_info->oem_data_avail_handler =
2072 oem_data_avail_to_receive_msg_avail;
2073 }
2074 }
2075 }
2076
2077 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2078 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2079 {
2080 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2081
2082 /* Make it a reponse */
2083 msg->rsp[0] = msg->data[0] | 4;
2084 msg->rsp[1] = msg->data[1];
2085 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2086 msg->rsp_size = 3;
2087 smi_info->curr_msg = NULL;
2088 deliver_recv_msg(smi_info, msg);
2089 }
2090
2091 /*
2092 * dell_poweredge_bt_xaction_handler
2093 * @info - smi_info.device_id must be populated
2094 *
2095 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2096 * not respond to a Get SDR command if the length of the data
2097 * requested is exactly 0x3A, which leads to command timeouts and no
2098 * data returned. This intercepts such commands, and causes userspace
2099 * callers to try again with a different-sized buffer, which succeeds.
2100 */
2101
2102 #define STORAGE_NETFN 0x0A
2103 #define STORAGE_CMD_GET_SDR 0x23
2104 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2105 unsigned long unused,
2106 void *in)
2107 {
2108 struct smi_info *smi_info = in;
2109 unsigned char *data = smi_info->curr_msg->data;
2110 unsigned int size = smi_info->curr_msg->data_size;
2111 if (size >= 8 &&
2112 (data[0]>>2) == STORAGE_NETFN &&
2113 data[1] == STORAGE_CMD_GET_SDR &&
2114 data[7] == 0x3A) {
2115 return_hosed_msg_badsize(smi_info);
2116 return NOTIFY_STOP;
2117 }
2118 return NOTIFY_DONE;
2119 }
2120
2121 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2122 .notifier_call = dell_poweredge_bt_xaction_handler,
2123 };
2124
2125 /*
2126 * setup_dell_poweredge_bt_xaction_handler
2127 * @info - smi_info.device_id must be filled in already
2128 *
2129 * Fills in smi_info.device_id.start_transaction_pre_hook
2130 * when we know what function to use there.
2131 */
2132 static void
2133 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2134 {
2135 struct ipmi_device_id *id = &smi_info->device_id;
2136 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2137 smi_info->si_type == SI_BT)
2138 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2139 }
2140
2141 /*
2142 * setup_oem_data_handler
2143 * @info - smi_info.device_id must be filled in already
2144 *
2145 * Fills in smi_info.device_id.oem_data_available_handler
2146 * when we know what function to use there.
2147 */
2148
2149 static void setup_oem_data_handler(struct smi_info *smi_info)
2150 {
2151 setup_dell_poweredge_oem_data_handler(smi_info);
2152 }
2153
2154 static void setup_xaction_handlers(struct smi_info *smi_info)
2155 {
2156 setup_dell_poweredge_bt_xaction_handler(smi_info);
2157 }
2158
2159 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2160 {
2161 if (smi_info->intf) {
2162 /* The timer and thread are only running if the
2163 interface has been started up and registered. */
2164 if (smi_info->thread != NULL)
2165 kthread_stop(smi_info->thread);
2166 del_timer_sync(&smi_info->si_timer);
2167 }
2168 }
2169
2170 static __devinitdata struct ipmi_default_vals
2171 {
2172 int type;
2173 int port;
2174 } ipmi_defaults[] =
2175 {
2176 { .type = SI_KCS, .port = 0xca2 },
2177 { .type = SI_SMIC, .port = 0xca9 },
2178 { .type = SI_BT, .port = 0xe4 },
2179 { .port = 0 }
2180 };
2181
2182 static __devinit void default_find_bmc(void)
2183 {
2184 struct smi_info *info;
2185 int i;
2186
2187 for (i = 0; ; i++) {
2188 if (!ipmi_defaults[i].port)
2189 break;
2190
2191 info = kzalloc(sizeof(*info), GFP_KERNEL);
2192 if (!info)
2193 return;
2194
2195 info->addr_source = NULL;
2196
2197 info->si_type = ipmi_defaults[i].type;
2198 info->io_setup = port_setup;
2199 info->io.addr_data = ipmi_defaults[i].port;
2200 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2201
2202 info->io.addr = NULL;
2203 info->io.regspacing = DEFAULT_REGSPACING;
2204 info->io.regsize = DEFAULT_REGSPACING;
2205 info->io.regshift = 0;
2206
2207 if (try_smi_init(info) == 0) {
2208 /* Found one... */
2209 printk(KERN_INFO "ipmi_si: Found default %s state"
2210 " machine at %s address 0x%lx\n",
2211 si_to_str[info->si_type],
2212 addr_space_to_str[info->io.addr_type],
2213 info->io.addr_data);
2214 return;
2215 }
2216 }
2217 }
2218
2219 static int is_new_interface(struct smi_info *info)
2220 {
2221 struct smi_info *e;
2222
2223 list_for_each_entry(e, &smi_infos, link) {
2224 if (e->io.addr_type != info->io.addr_type)
2225 continue;
2226 if (e->io.addr_data == info->io.addr_data)
2227 return 0;
2228 }
2229
2230 return 1;
2231 }
2232
2233 static int try_smi_init(struct smi_info *new_smi)
2234 {
2235 int rv;
2236
2237 if (new_smi->addr_source) {
2238 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2239 " machine at %s address 0x%lx, slave address 0x%x,"
2240 " irq %d\n",
2241 new_smi->addr_source,
2242 si_to_str[new_smi->si_type],
2243 addr_space_to_str[new_smi->io.addr_type],
2244 new_smi->io.addr_data,
2245 new_smi->slave_addr, new_smi->irq);
2246 }
2247
2248 mutex_lock(&smi_infos_lock);
2249 if (!is_new_interface(new_smi)) {
2250 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2251 rv = -EBUSY;
2252 goto out_err;
2253 }
2254
2255 /* So we know not to free it unless we have allocated one. */
2256 new_smi->intf = NULL;
2257 new_smi->si_sm = NULL;
2258 new_smi->handlers = NULL;
2259
2260 switch (new_smi->si_type) {
2261 case SI_KCS:
2262 new_smi->handlers = &kcs_smi_handlers;
2263 break;
2264
2265 case SI_SMIC:
2266 new_smi->handlers = &smic_smi_handlers;
2267 break;
2268
2269 case SI_BT:
2270 new_smi->handlers = &bt_smi_handlers;
2271 break;
2272
2273 default:
2274 /* No support for anything else yet. */
2275 rv = -EIO;
2276 goto out_err;
2277 }
2278
2279 /* Allocate the state machine's data and initialize it. */
2280 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2281 if (!new_smi->si_sm) {
2282 printk(" Could not allocate state machine memory\n");
2283 rv = -ENOMEM;
2284 goto out_err;
2285 }
2286 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2287 &new_smi->io);
2288
2289 /* Now that we know the I/O size, we can set up the I/O. */
2290 rv = new_smi->io_setup(new_smi);
2291 if (rv) {
2292 printk(" Could not set up I/O space\n");
2293 goto out_err;
2294 }
2295
2296 spin_lock_init(&(new_smi->si_lock));
2297 spin_lock_init(&(new_smi->msg_lock));
2298 spin_lock_init(&(new_smi->count_lock));
2299
2300 /* Do low-level detection first. */
2301 if (new_smi->handlers->detect(new_smi->si_sm)) {
2302 if (new_smi->addr_source)
2303 printk(KERN_INFO "ipmi_si: Interface detection"
2304 " failed\n");
2305 rv = -ENODEV;
2306 goto out_err;
2307 }
2308
2309 /* Attempt a get device id command. If it fails, we probably
2310 don't have a BMC here. */
2311 rv = try_get_dev_id(new_smi);
2312 if (rv) {
2313 if (new_smi->addr_source)
2314 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2315 " at this location\n");
2316 goto out_err;
2317 }
2318
2319 setup_oem_data_handler(new_smi);
2320 setup_xaction_handlers(new_smi);
2321
2322 /* Try to claim any interrupts. */
2323 if (new_smi->irq_setup)
2324 new_smi->irq_setup(new_smi);
2325
2326 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2327 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2328 new_smi->curr_msg = NULL;
2329 atomic_set(&new_smi->req_events, 0);
2330 new_smi->run_to_completion = 0;
2331
2332 new_smi->interrupt_disabled = 0;
2333 atomic_set(&new_smi->stop_operation, 0);
2334 new_smi->intf_num = smi_num;
2335 smi_num++;
2336
2337 /* Start clearing the flags before we enable interrupts or the
2338 timer to avoid racing with the timer. */
2339 start_clear_flags(new_smi);
2340 /* IRQ is defined to be set when non-zero. */
2341 if (new_smi->irq)
2342 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2343
2344 if (!new_smi->dev) {
2345 /* If we don't already have a device from something
2346 * else (like PCI), then register a new one. */
2347 new_smi->pdev = platform_device_alloc("ipmi_si",
2348 new_smi->intf_num);
2349 if (rv) {
2350 printk(KERN_ERR
2351 "ipmi_si_intf:"
2352 " Unable to allocate platform device\n");
2353 goto out_err;
2354 }
2355 new_smi->dev = &new_smi->pdev->dev;
2356 new_smi->dev->driver = &ipmi_driver;
2357
2358 rv = platform_device_add(new_smi->pdev);
2359 if (rv) {
2360 printk(KERN_ERR
2361 "ipmi_si_intf:"
2362 " Unable to register system interface device:"
2363 " %d\n",
2364 rv);
2365 goto out_err;
2366 }
2367 new_smi->dev_registered = 1;
2368 }
2369
2370 rv = ipmi_register_smi(&handlers,
2371 new_smi,
2372 &new_smi->device_id,
2373 new_smi->dev,
2374 "bmc",
2375 new_smi->slave_addr);
2376 if (rv) {
2377 printk(KERN_ERR
2378 "ipmi_si: Unable to register device: error %d\n",
2379 rv);
2380 goto out_err_stop_timer;
2381 }
2382
2383 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2384 type_file_read_proc, NULL,
2385 new_smi, THIS_MODULE);
2386 if (rv) {
2387 printk(KERN_ERR
2388 "ipmi_si: Unable to create proc entry: %d\n",
2389 rv);
2390 goto out_err_stop_timer;
2391 }
2392
2393 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2394 stat_file_read_proc, NULL,
2395 new_smi, THIS_MODULE);
2396 if (rv) {
2397 printk(KERN_ERR
2398 "ipmi_si: Unable to create proc entry: %d\n",
2399 rv);
2400 goto out_err_stop_timer;
2401 }
2402
2403 list_add_tail(&new_smi->link, &smi_infos);
2404
2405 mutex_unlock(&smi_infos_lock);
2406
2407 printk(" IPMI %s interface initialized\n",si_to_str[new_smi->si_type]);
2408
2409 return 0;
2410
2411 out_err_stop_timer:
2412 atomic_inc(&new_smi->stop_operation);
2413 wait_for_timer_and_thread(new_smi);
2414
2415 out_err:
2416 if (new_smi->intf)
2417 ipmi_unregister_smi(new_smi->intf);
2418
2419 if (new_smi->irq_cleanup)
2420 new_smi->irq_cleanup(new_smi);
2421
2422 /* Wait until we know that we are out of any interrupt
2423 handlers might have been running before we freed the
2424 interrupt. */
2425 synchronize_sched();
2426
2427 if (new_smi->si_sm) {
2428 if (new_smi->handlers)
2429 new_smi->handlers->cleanup(new_smi->si_sm);
2430 kfree(new_smi->si_sm);
2431 }
2432 if (new_smi->addr_source_cleanup)
2433 new_smi->addr_source_cleanup(new_smi);
2434 if (new_smi->io_cleanup)
2435 new_smi->io_cleanup(new_smi);
2436
2437 if (new_smi->dev_registered)
2438 platform_device_unregister(new_smi->pdev);
2439
2440 kfree(new_smi);
2441
2442 mutex_unlock(&smi_infos_lock);
2443
2444 return rv;
2445 }
2446
2447 static __devinit int init_ipmi_si(void)
2448 {
2449 int i;
2450 char *str;
2451 int rv;
2452
2453 if (initialized)
2454 return 0;
2455 initialized = 1;
2456
2457 /* Register the device drivers. */
2458 rv = driver_register(&ipmi_driver);
2459 if (rv) {
2460 printk(KERN_ERR
2461 "init_ipmi_si: Unable to register driver: %d\n",
2462 rv);
2463 return rv;
2464 }
2465
2466
2467 /* Parse out the si_type string into its components. */
2468 str = si_type_str;
2469 if (*str != '\0') {
2470 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
2471 si_type[i] = str;
2472 str = strchr(str, ',');
2473 if (str) {
2474 *str = '\0';
2475 str++;
2476 } else {
2477 break;
2478 }
2479 }
2480 }
2481
2482 printk(KERN_INFO "IPMI System Interface driver.\n");
2483
2484 hardcode_find_bmc();
2485
2486 #ifdef CONFIG_DMI
2487 dmi_find_bmc();
2488 #endif
2489
2490 #ifdef CONFIG_ACPI
2491 if (si_trydefaults)
2492 acpi_find_bmc();
2493 #endif
2494
2495 #ifdef CONFIG_PCI
2496 pci_module_init(&ipmi_pci_driver);
2497 #endif
2498
2499 if (si_trydefaults) {
2500 mutex_lock(&smi_infos_lock);
2501 if (list_empty(&smi_infos)) {
2502 /* No BMC was found, try defaults. */
2503 mutex_unlock(&smi_infos_lock);
2504 default_find_bmc();
2505 } else {
2506 mutex_unlock(&smi_infos_lock);
2507 }
2508 }
2509
2510 mutex_lock(&smi_infos_lock);
2511 if (list_empty(&smi_infos)) {
2512 mutex_unlock(&smi_infos_lock);
2513 #ifdef CONFIG_PCI
2514 pci_unregister_driver(&ipmi_pci_driver);
2515 #endif
2516 driver_unregister(&ipmi_driver);
2517 printk("ipmi_si: Unable to find any System Interface(s)\n");
2518 return -ENODEV;
2519 } else {
2520 mutex_unlock(&smi_infos_lock);
2521 return 0;
2522 }
2523 }
2524 module_init(init_ipmi_si);
2525
2526 static void __devexit cleanup_one_si(struct smi_info *to_clean)
2527 {
2528 int rv;
2529 unsigned long flags;
2530
2531 if (!to_clean)
2532 return;
2533
2534 list_del(&to_clean->link);
2535
2536 /* Tell the timer and interrupt handlers that we are shutting
2537 down. */
2538 spin_lock_irqsave(&(to_clean->si_lock), flags);
2539 spin_lock(&(to_clean->msg_lock));
2540
2541 atomic_inc(&to_clean->stop_operation);
2542
2543 if (to_clean->irq_cleanup)
2544 to_clean->irq_cleanup(to_clean);
2545
2546 spin_unlock(&(to_clean->msg_lock));
2547 spin_unlock_irqrestore(&(to_clean->si_lock), flags);
2548
2549 /* Wait until we know that we are out of any interrupt
2550 handlers might have been running before we freed the
2551 interrupt. */
2552 synchronize_sched();
2553
2554 wait_for_timer_and_thread(to_clean);
2555
2556 /* Interrupts and timeouts are stopped, now make sure the
2557 interface is in a clean state. */
2558 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
2559 poll(to_clean);
2560 schedule_timeout_uninterruptible(1);
2561 }
2562
2563 rv = ipmi_unregister_smi(to_clean->intf);
2564 if (rv) {
2565 printk(KERN_ERR
2566 "ipmi_si: Unable to unregister device: errno=%d\n",
2567 rv);
2568 }
2569
2570 to_clean->handlers->cleanup(to_clean->si_sm);
2571
2572 kfree(to_clean->si_sm);
2573
2574 if (to_clean->addr_source_cleanup)
2575 to_clean->addr_source_cleanup(to_clean);
2576 if (to_clean->io_cleanup)
2577 to_clean->io_cleanup(to_clean);
2578
2579 if (to_clean->dev_registered)
2580 platform_device_unregister(to_clean->pdev);
2581
2582 kfree(to_clean);
2583 }
2584
2585 static __exit void cleanup_ipmi_si(void)
2586 {
2587 struct smi_info *e, *tmp_e;
2588
2589 if (!initialized)
2590 return;
2591
2592 #ifdef CONFIG_PCI
2593 pci_unregister_driver(&ipmi_pci_driver);
2594 #endif
2595
2596 mutex_lock(&smi_infos_lock);
2597 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2598 cleanup_one_si(e);
2599 mutex_unlock(&smi_infos_lock);
2600
2601 driver_unregister(&ipmi_driver);
2602 }
2603 module_exit(cleanup_ipmi_si);
2604
2605 MODULE_LICENSE("GPL");
2606 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2607 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");