]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/char/stallion.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/devfs-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / char / stallion.c
1 /*****************************************************************************/
2
3 /*
4 * stallion.c -- stallion multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27 /*****************************************************************************/
28
29 #include <linux/config.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/tty.h>
34 #include <linux/tty_flip.h>
35 #include <linux/serial.h>
36 #include <linux/cd1400.h>
37 #include <linux/sc26198.h>
38 #include <linux/comstats.h>
39 #include <linux/stallion.h>
40 #include <linux/ioport.h>
41 #include <linux/init.h>
42 #include <linux/smp_lock.h>
43 #include <linux/device.h>
44 #include <linux/delay.h>
45
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48
49 #ifdef CONFIG_PCI
50 #include <linux/pci.h>
51 #endif
52
53 /*****************************************************************************/
54
55 /*
56 * Define different board types. Use the standard Stallion "assigned"
57 * board numbers. Boards supported in this driver are abbreviated as
58 * EIO = EasyIO and ECH = EasyConnection 8/32.
59 */
60 #define BRD_EASYIO 20
61 #define BRD_ECH 21
62 #define BRD_ECHMC 22
63 #define BRD_ECHPCI 26
64 #define BRD_ECH64PCI 27
65 #define BRD_EASYIOPCI 28
66
67 /*
68 * Define a configuration structure to hold the board configuration.
69 * Need to set this up in the code (for now) with the boards that are
70 * to be configured into the system. This is what needs to be modified
71 * when adding/removing/modifying boards. Each line entry in the
72 * stl_brdconf[] array is a board. Each line contains io/irq/memory
73 * ranges for that board (as well as what type of board it is).
74 * Some examples:
75 * { BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },
76 * This line would configure an EasyIO board (4 or 8, no difference),
77 * at io address 2a0 and irq 10.
78 * Another example:
79 * { BRD_ECH, 0x2a8, 0x280, 0, 12, 0 },
80 * This line will configure an EasyConnection 8/32 board at primary io
81 * address 2a8, secondary io address 280 and irq 12.
82 * Enter as many lines into this array as you want (only the first 4
83 * will actually be used!). Any combination of EasyIO and EasyConnection
84 * boards can be specified. EasyConnection 8/32 boards can share their
85 * secondary io addresses between each other.
86 *
87 * NOTE: there is no need to put any entries in this table for PCI
88 * boards. They will be found automatically by the driver - provided
89 * PCI BIOS32 support is compiled into the kernel.
90 */
91
92 typedef struct {
93 int brdtype;
94 int ioaddr1;
95 int ioaddr2;
96 unsigned long memaddr;
97 int irq;
98 int irqtype;
99 } stlconf_t;
100
101 static stlconf_t stl_brdconf[] = {
102 /*{ BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },*/
103 };
104
105 static int stl_nrbrds = ARRAY_SIZE(stl_brdconf);
106
107 /*****************************************************************************/
108
109 /*
110 * Define some important driver characteristics. Device major numbers
111 * allocated as per Linux Device Registry.
112 */
113 #ifndef STL_SIOMEMMAJOR
114 #define STL_SIOMEMMAJOR 28
115 #endif
116 #ifndef STL_SERIALMAJOR
117 #define STL_SERIALMAJOR 24
118 #endif
119 #ifndef STL_CALLOUTMAJOR
120 #define STL_CALLOUTMAJOR 25
121 #endif
122
123 /*
124 * Set the TX buffer size. Bigger is better, but we don't want
125 * to chew too much memory with buffers!
126 */
127 #define STL_TXBUFLOW 512
128 #define STL_TXBUFSIZE 4096
129
130 /*****************************************************************************/
131
132 /*
133 * Define our local driver identity first. Set up stuff to deal with
134 * all the local structures required by a serial tty driver.
135 */
136 static char *stl_drvtitle = "Stallion Multiport Serial Driver";
137 static char *stl_drvname = "stallion";
138 static char *stl_drvversion = "5.6.0";
139
140 static struct tty_driver *stl_serial;
141
142 /*
143 * Define a local default termios struct. All ports will be created
144 * with this termios initially. Basically all it defines is a raw port
145 * at 9600, 8 data bits, 1 stop bit.
146 */
147 static struct termios stl_deftermios = {
148 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
149 .c_cc = INIT_C_CC,
150 };
151
152 /*
153 * Define global stats structures. Not used often, and can be
154 * re-used for each stats call.
155 */
156 static comstats_t stl_comstats;
157 static combrd_t stl_brdstats;
158 static stlbrd_t stl_dummybrd;
159 static stlport_t stl_dummyport;
160
161 /*
162 * Define global place to put buffer overflow characters.
163 */
164 static char stl_unwanted[SC26198_RXFIFOSIZE];
165
166 /*****************************************************************************/
167
168 static stlbrd_t *stl_brds[STL_MAXBRDS];
169
170 /*
171 * Per board state flags. Used with the state field of the board struct.
172 * Not really much here!
173 */
174 #define BRD_FOUND 0x1
175
176 /*
177 * Define the port structure istate flags. These set of flags are
178 * modified at interrupt time - so setting and reseting them needs
179 * to be atomic. Use the bit clear/setting routines for this.
180 */
181 #define ASYI_TXBUSY 1
182 #define ASYI_TXLOW 2
183 #define ASYI_DCDCHANGE 3
184 #define ASYI_TXFLOWED 4
185
186 /*
187 * Define an array of board names as printable strings. Handy for
188 * referencing boards when printing trace and stuff.
189 */
190 static char *stl_brdnames[] = {
191 (char *) NULL,
192 (char *) NULL,
193 (char *) NULL,
194 (char *) NULL,
195 (char *) NULL,
196 (char *) NULL,
197 (char *) NULL,
198 (char *) NULL,
199 (char *) NULL,
200 (char *) NULL,
201 (char *) NULL,
202 (char *) NULL,
203 (char *) NULL,
204 (char *) NULL,
205 (char *) NULL,
206 (char *) NULL,
207 (char *) NULL,
208 (char *) NULL,
209 (char *) NULL,
210 (char *) NULL,
211 "EasyIO",
212 "EC8/32-AT",
213 "EC8/32-MC",
214 (char *) NULL,
215 (char *) NULL,
216 (char *) NULL,
217 "EC8/32-PCI",
218 "EC8/64-PCI",
219 "EasyIO-PCI",
220 };
221
222 /*****************************************************************************/
223
224 /*
225 * Define some string labels for arguments passed from the module
226 * load line. These allow for easy board definitions, and easy
227 * modification of the io, memory and irq resoucres.
228 */
229 static int stl_nargs = 0;
230 static char *board0[4];
231 static char *board1[4];
232 static char *board2[4];
233 static char *board3[4];
234
235 static char **stl_brdsp[] = {
236 (char **) &board0,
237 (char **) &board1,
238 (char **) &board2,
239 (char **) &board3
240 };
241
242 /*
243 * Define a set of common board names, and types. This is used to
244 * parse any module arguments.
245 */
246
247 typedef struct stlbrdtype {
248 char *name;
249 int type;
250 } stlbrdtype_t;
251
252 static stlbrdtype_t stl_brdstr[] = {
253 { "easyio", BRD_EASYIO },
254 { "eio", BRD_EASYIO },
255 { "20", BRD_EASYIO },
256 { "ec8/32", BRD_ECH },
257 { "ec8/32-at", BRD_ECH },
258 { "ec8/32-isa", BRD_ECH },
259 { "ech", BRD_ECH },
260 { "echat", BRD_ECH },
261 { "21", BRD_ECH },
262 { "ec8/32-mc", BRD_ECHMC },
263 { "ec8/32-mca", BRD_ECHMC },
264 { "echmc", BRD_ECHMC },
265 { "echmca", BRD_ECHMC },
266 { "22", BRD_ECHMC },
267 { "ec8/32-pc", BRD_ECHPCI },
268 { "ec8/32-pci", BRD_ECHPCI },
269 { "26", BRD_ECHPCI },
270 { "ec8/64-pc", BRD_ECH64PCI },
271 { "ec8/64-pci", BRD_ECH64PCI },
272 { "ech-pci", BRD_ECH64PCI },
273 { "echpci", BRD_ECH64PCI },
274 { "echpc", BRD_ECH64PCI },
275 { "27", BRD_ECH64PCI },
276 { "easyio-pc", BRD_EASYIOPCI },
277 { "easyio-pci", BRD_EASYIOPCI },
278 { "eio-pci", BRD_EASYIOPCI },
279 { "eiopci", BRD_EASYIOPCI },
280 { "28", BRD_EASYIOPCI },
281 };
282
283 /*
284 * Define the module agruments.
285 */
286 MODULE_AUTHOR("Greg Ungerer");
287 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
288 MODULE_LICENSE("GPL");
289
290 module_param_array(board0, charp, &stl_nargs, 0);
291 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
292 module_param_array(board1, charp, &stl_nargs, 0);
293 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
294 module_param_array(board2, charp, &stl_nargs, 0);
295 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
296 module_param_array(board3, charp, &stl_nargs, 0);
297 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
298
299 /*****************************************************************************/
300
301 /*
302 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
303 * to the directly accessible io ports of these boards (not the uarts -
304 * they are in cd1400.h and sc26198.h).
305 */
306 #define EIO_8PORTRS 0x04
307 #define EIO_4PORTRS 0x05
308 #define EIO_8PORTDI 0x00
309 #define EIO_8PORTM 0x06
310 #define EIO_MK3 0x03
311 #define EIO_IDBITMASK 0x07
312
313 #define EIO_BRDMASK 0xf0
314 #define ID_BRD4 0x10
315 #define ID_BRD8 0x20
316 #define ID_BRD16 0x30
317
318 #define EIO_INTRPEND 0x08
319 #define EIO_INTEDGE 0x00
320 #define EIO_INTLEVEL 0x08
321 #define EIO_0WS 0x10
322
323 #define ECH_ID 0xa0
324 #define ECH_IDBITMASK 0xe0
325 #define ECH_BRDENABLE 0x08
326 #define ECH_BRDDISABLE 0x00
327 #define ECH_INTENABLE 0x01
328 #define ECH_INTDISABLE 0x00
329 #define ECH_INTLEVEL 0x02
330 #define ECH_INTEDGE 0x00
331 #define ECH_INTRPEND 0x01
332 #define ECH_BRDRESET 0x01
333
334 #define ECHMC_INTENABLE 0x01
335 #define ECHMC_BRDRESET 0x02
336
337 #define ECH_PNLSTATUS 2
338 #define ECH_PNL16PORT 0x20
339 #define ECH_PNLIDMASK 0x07
340 #define ECH_PNLXPID 0x40
341 #define ECH_PNLINTRPEND 0x80
342
343 #define ECH_ADDR2MASK 0x1e0
344
345 /*
346 * Define the vector mapping bits for the programmable interrupt board
347 * hardware. These bits encode the interrupt for the board to use - it
348 * is software selectable (except the EIO-8M).
349 */
350 static unsigned char stl_vecmap[] = {
351 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
352 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
353 };
354
355 /*
356 * Lock ordering is that you may not take stallion_lock holding
357 * brd_lock.
358 */
359
360 static spinlock_t brd_lock; /* Guard the board mapping */
361 static spinlock_t stallion_lock; /* Guard the tty driver */
362
363 /*
364 * Set up enable and disable macros for the ECH boards. They require
365 * the secondary io address space to be activated and deactivated.
366 * This way all ECH boards can share their secondary io region.
367 * If this is an ECH-PCI board then also need to set the page pointer
368 * to point to the correct page.
369 */
370 #define BRDENABLE(brdnr,pagenr) \
371 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
372 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
373 stl_brds[(brdnr)]->ioctrl); \
374 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
375 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
376
377 #define BRDDISABLE(brdnr) \
378 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
379 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
380 stl_brds[(brdnr)]->ioctrl);
381
382 #define STL_CD1400MAXBAUD 230400
383 #define STL_SC26198MAXBAUD 460800
384
385 #define STL_BAUDBASE 115200
386 #define STL_CLOSEDELAY (5 * HZ / 10)
387
388 /*****************************************************************************/
389
390 #ifdef CONFIG_PCI
391
392 /*
393 * Define the Stallion PCI vendor and device IDs.
394 */
395 #ifndef PCI_VENDOR_ID_STALLION
396 #define PCI_VENDOR_ID_STALLION 0x124d
397 #endif
398 #ifndef PCI_DEVICE_ID_ECHPCI832
399 #define PCI_DEVICE_ID_ECHPCI832 0x0000
400 #endif
401 #ifndef PCI_DEVICE_ID_ECHPCI864
402 #define PCI_DEVICE_ID_ECHPCI864 0x0002
403 #endif
404 #ifndef PCI_DEVICE_ID_EIOPCI
405 #define PCI_DEVICE_ID_EIOPCI 0x0003
406 #endif
407
408 /*
409 * Define structure to hold all Stallion PCI boards.
410 */
411 typedef struct stlpcibrd {
412 unsigned short vendid;
413 unsigned short devid;
414 int brdtype;
415 } stlpcibrd_t;
416
417 static stlpcibrd_t stl_pcibrds[] = {
418 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864, BRD_ECH64PCI },
419 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI, BRD_EASYIOPCI },
420 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832, BRD_ECHPCI },
421 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410, BRD_ECHPCI },
422 };
423
424 static int stl_nrpcibrds = ARRAY_SIZE(stl_pcibrds);
425
426 #endif
427
428 /*****************************************************************************/
429
430 /*
431 * Define macros to extract a brd/port number from a minor number.
432 */
433 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
434 #define MINOR2PORT(min) ((min) & 0x3f)
435
436 /*
437 * Define a baud rate table that converts termios baud rate selector
438 * into the actual baud rate value. All baud rate calculations are
439 * based on the actual baud rate required.
440 */
441 static unsigned int stl_baudrates[] = {
442 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
443 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
444 };
445
446 /*
447 * Define some handy local macros...
448 */
449 #undef MIN
450 #define MIN(a,b) (((a) <= (b)) ? (a) : (b))
451
452 #undef TOLOWER
453 #define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
454
455 /*****************************************************************************/
456
457 /*
458 * Declare all those functions in this driver!
459 */
460
461 static void stl_argbrds(void);
462 static int stl_parsebrd(stlconf_t *confp, char **argp);
463
464 static unsigned long stl_atol(char *str);
465
466 static int stl_init(void);
467 static int stl_open(struct tty_struct *tty, struct file *filp);
468 static void stl_close(struct tty_struct *tty, struct file *filp);
469 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count);
470 static void stl_putchar(struct tty_struct *tty, unsigned char ch);
471 static void stl_flushchars(struct tty_struct *tty);
472 static int stl_writeroom(struct tty_struct *tty);
473 static int stl_charsinbuffer(struct tty_struct *tty);
474 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
475 static void stl_settermios(struct tty_struct *tty, struct termios *old);
476 static void stl_throttle(struct tty_struct *tty);
477 static void stl_unthrottle(struct tty_struct *tty);
478 static void stl_stop(struct tty_struct *tty);
479 static void stl_start(struct tty_struct *tty);
480 static void stl_flushbuffer(struct tty_struct *tty);
481 static void stl_breakctl(struct tty_struct *tty, int state);
482 static void stl_waituntilsent(struct tty_struct *tty, int timeout);
483 static void stl_sendxchar(struct tty_struct *tty, char ch);
484 static void stl_hangup(struct tty_struct *tty);
485 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
486 static int stl_portinfo(stlport_t *portp, int portnr, char *pos);
487 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data);
488
489 static int stl_brdinit(stlbrd_t *brdp);
490 static int stl_initports(stlbrd_t *brdp, stlpanel_t *panelp);
491 static int stl_getserial(stlport_t *portp, struct serial_struct __user *sp);
492 static int stl_setserial(stlport_t *portp, struct serial_struct __user *sp);
493 static int stl_getbrdstats(combrd_t __user *bp);
494 static int stl_getportstats(stlport_t *portp, comstats_t __user *cp);
495 static int stl_clrportstats(stlport_t *portp, comstats_t __user *cp);
496 static int stl_getportstruct(stlport_t __user *arg);
497 static int stl_getbrdstruct(stlbrd_t __user *arg);
498 static int stl_waitcarrier(stlport_t *portp, struct file *filp);
499 static int stl_eiointr(stlbrd_t *brdp);
500 static int stl_echatintr(stlbrd_t *brdp);
501 static int stl_echmcaintr(stlbrd_t *brdp);
502 static int stl_echpciintr(stlbrd_t *brdp);
503 static int stl_echpci64intr(stlbrd_t *brdp);
504 static void stl_offintr(void *private);
505 static stlbrd_t *stl_allocbrd(void);
506 static stlport_t *stl_getport(int brdnr, int panelnr, int portnr);
507
508 static inline int stl_initbrds(void);
509 static inline int stl_initeio(stlbrd_t *brdp);
510 static inline int stl_initech(stlbrd_t *brdp);
511 static inline int stl_getbrdnr(void);
512
513 #ifdef CONFIG_PCI
514 static inline int stl_findpcibrds(void);
515 static inline int stl_initpcibrd(int brdtype, struct pci_dev *devp);
516 #endif
517
518 /*
519 * CD1400 uart specific handling functions.
520 */
521 static void stl_cd1400setreg(stlport_t *portp, int regnr, int value);
522 static int stl_cd1400getreg(stlport_t *portp, int regnr);
523 static int stl_cd1400updatereg(stlport_t *portp, int regnr, int value);
524 static int stl_cd1400panelinit(stlbrd_t *brdp, stlpanel_t *panelp);
525 static void stl_cd1400portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
526 static void stl_cd1400setport(stlport_t *portp, struct termios *tiosp);
527 static int stl_cd1400getsignals(stlport_t *portp);
528 static void stl_cd1400setsignals(stlport_t *portp, int dtr, int rts);
529 static void stl_cd1400ccrwait(stlport_t *portp);
530 static void stl_cd1400enablerxtx(stlport_t *portp, int rx, int tx);
531 static void stl_cd1400startrxtx(stlport_t *portp, int rx, int tx);
532 static void stl_cd1400disableintrs(stlport_t *portp);
533 static void stl_cd1400sendbreak(stlport_t *portp, int len);
534 static void stl_cd1400flowctrl(stlport_t *portp, int state);
535 static void stl_cd1400sendflow(stlport_t *portp, int state);
536 static void stl_cd1400flush(stlport_t *portp);
537 static int stl_cd1400datastate(stlport_t *portp);
538 static void stl_cd1400eiointr(stlpanel_t *panelp, unsigned int iobase);
539 static void stl_cd1400echintr(stlpanel_t *panelp, unsigned int iobase);
540 static void stl_cd1400txisr(stlpanel_t *panelp, int ioaddr);
541 static void stl_cd1400rxisr(stlpanel_t *panelp, int ioaddr);
542 static void stl_cd1400mdmisr(stlpanel_t *panelp, int ioaddr);
543
544 static inline int stl_cd1400breakisr(stlport_t *portp, int ioaddr);
545
546 /*
547 * SC26198 uart specific handling functions.
548 */
549 static void stl_sc26198setreg(stlport_t *portp, int regnr, int value);
550 static int stl_sc26198getreg(stlport_t *portp, int regnr);
551 static int stl_sc26198updatereg(stlport_t *portp, int regnr, int value);
552 static int stl_sc26198getglobreg(stlport_t *portp, int regnr);
553 static int stl_sc26198panelinit(stlbrd_t *brdp, stlpanel_t *panelp);
554 static void stl_sc26198portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
555 static void stl_sc26198setport(stlport_t *portp, struct termios *tiosp);
556 static int stl_sc26198getsignals(stlport_t *portp);
557 static void stl_sc26198setsignals(stlport_t *portp, int dtr, int rts);
558 static void stl_sc26198enablerxtx(stlport_t *portp, int rx, int tx);
559 static void stl_sc26198startrxtx(stlport_t *portp, int rx, int tx);
560 static void stl_sc26198disableintrs(stlport_t *portp);
561 static void stl_sc26198sendbreak(stlport_t *portp, int len);
562 static void stl_sc26198flowctrl(stlport_t *portp, int state);
563 static void stl_sc26198sendflow(stlport_t *portp, int state);
564 static void stl_sc26198flush(stlport_t *portp);
565 static int stl_sc26198datastate(stlport_t *portp);
566 static void stl_sc26198wait(stlport_t *portp);
567 static void stl_sc26198txunflow(stlport_t *portp, struct tty_struct *tty);
568 static void stl_sc26198intr(stlpanel_t *panelp, unsigned int iobase);
569 static void stl_sc26198txisr(stlport_t *port);
570 static void stl_sc26198rxisr(stlport_t *port, unsigned int iack);
571 static void stl_sc26198rxbadch(stlport_t *portp, unsigned char status, char ch);
572 static void stl_sc26198rxbadchars(stlport_t *portp);
573 static void stl_sc26198otherisr(stlport_t *port, unsigned int iack);
574
575 /*****************************************************************************/
576
577 /*
578 * Generic UART support structure.
579 */
580 typedef struct uart {
581 int (*panelinit)(stlbrd_t *brdp, stlpanel_t *panelp);
582 void (*portinit)(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
583 void (*setport)(stlport_t *portp, struct termios *tiosp);
584 int (*getsignals)(stlport_t *portp);
585 void (*setsignals)(stlport_t *portp, int dtr, int rts);
586 void (*enablerxtx)(stlport_t *portp, int rx, int tx);
587 void (*startrxtx)(stlport_t *portp, int rx, int tx);
588 void (*disableintrs)(stlport_t *portp);
589 void (*sendbreak)(stlport_t *portp, int len);
590 void (*flowctrl)(stlport_t *portp, int state);
591 void (*sendflow)(stlport_t *portp, int state);
592 void (*flush)(stlport_t *portp);
593 int (*datastate)(stlport_t *portp);
594 void (*intr)(stlpanel_t *panelp, unsigned int iobase);
595 } uart_t;
596
597 /*
598 * Define some macros to make calling these functions nice and clean.
599 */
600 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
601 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
602 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
603 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
604 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
605 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
606 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
607 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
608 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
609 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
610 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
611 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
612 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
613
614 /*****************************************************************************/
615
616 /*
617 * CD1400 UART specific data initialization.
618 */
619 static uart_t stl_cd1400uart = {
620 stl_cd1400panelinit,
621 stl_cd1400portinit,
622 stl_cd1400setport,
623 stl_cd1400getsignals,
624 stl_cd1400setsignals,
625 stl_cd1400enablerxtx,
626 stl_cd1400startrxtx,
627 stl_cd1400disableintrs,
628 stl_cd1400sendbreak,
629 stl_cd1400flowctrl,
630 stl_cd1400sendflow,
631 stl_cd1400flush,
632 stl_cd1400datastate,
633 stl_cd1400eiointr
634 };
635
636 /*
637 * Define the offsets within the register bank of a cd1400 based panel.
638 * These io address offsets are common to the EasyIO board as well.
639 */
640 #define EREG_ADDR 0
641 #define EREG_DATA 4
642 #define EREG_RXACK 5
643 #define EREG_TXACK 6
644 #define EREG_MDACK 7
645
646 #define EREG_BANKSIZE 8
647
648 #define CD1400_CLK 25000000
649 #define CD1400_CLK8M 20000000
650
651 /*
652 * Define the cd1400 baud rate clocks. These are used when calculating
653 * what clock and divisor to use for the required baud rate. Also
654 * define the maximum baud rate allowed, and the default base baud.
655 */
656 static int stl_cd1400clkdivs[] = {
657 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
658 };
659
660 /*****************************************************************************/
661
662 /*
663 * SC26198 UART specific data initization.
664 */
665 static uart_t stl_sc26198uart = {
666 stl_sc26198panelinit,
667 stl_sc26198portinit,
668 stl_sc26198setport,
669 stl_sc26198getsignals,
670 stl_sc26198setsignals,
671 stl_sc26198enablerxtx,
672 stl_sc26198startrxtx,
673 stl_sc26198disableintrs,
674 stl_sc26198sendbreak,
675 stl_sc26198flowctrl,
676 stl_sc26198sendflow,
677 stl_sc26198flush,
678 stl_sc26198datastate,
679 stl_sc26198intr
680 };
681
682 /*
683 * Define the offsets within the register bank of a sc26198 based panel.
684 */
685 #define XP_DATA 0
686 #define XP_ADDR 1
687 #define XP_MODID 2
688 #define XP_STATUS 2
689 #define XP_IACK 3
690
691 #define XP_BANKSIZE 4
692
693 /*
694 * Define the sc26198 baud rate table. Offsets within the table
695 * represent the actual baud rate selector of sc26198 registers.
696 */
697 static unsigned int sc26198_baudtable[] = {
698 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
699 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
700 230400, 460800, 921600
701 };
702
703 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
704
705 /*****************************************************************************/
706
707 /*
708 * Define the driver info for a user level control device. Used mainly
709 * to get at port stats - only not using the port device itself.
710 */
711 static struct file_operations stl_fsiomem = {
712 .owner = THIS_MODULE,
713 .ioctl = stl_memioctl,
714 };
715
716 /*****************************************************************************/
717
718 static struct class *stallion_class;
719
720 /*
721 * Loadable module initialization stuff.
722 */
723
724 static int __init stallion_module_init(void)
725 {
726 stl_init();
727 return 0;
728 }
729
730 /*****************************************************************************/
731
732 static void __exit stallion_module_exit(void)
733 {
734 stlbrd_t *brdp;
735 stlpanel_t *panelp;
736 stlport_t *portp;
737 int i, j, k;
738
739 #ifdef DEBUG
740 printk("cleanup_module()\n");
741 #endif
742
743 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
744 stl_drvversion);
745
746 /*
747 * Free up all allocated resources used by the ports. This includes
748 * memory and interrupts. As part of this process we will also do
749 * a hangup on every open port - to try to flush out any processes
750 * hanging onto ports.
751 */
752 i = tty_unregister_driver(stl_serial);
753 put_tty_driver(stl_serial);
754 if (i) {
755 printk("STALLION: failed to un-register tty driver, "
756 "errno=%d\n", -i);
757 return;
758 }
759 for (i = 0; i < 4; i++)
760 class_device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
761 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
762 printk("STALLION: failed to un-register serial memory device, "
763 "errno=%d\n", -i);
764 class_destroy(stallion_class);
765
766 for (i = 0; (i < stl_nrbrds); i++) {
767 if ((brdp = stl_brds[i]) == (stlbrd_t *) NULL)
768 continue;
769
770 free_irq(brdp->irq, brdp);
771
772 for (j = 0; (j < STL_MAXPANELS); j++) {
773 panelp = brdp->panels[j];
774 if (panelp == (stlpanel_t *) NULL)
775 continue;
776 for (k = 0; (k < STL_PORTSPERPANEL); k++) {
777 portp = panelp->ports[k];
778 if (portp == (stlport_t *) NULL)
779 continue;
780 if (portp->tty != (struct tty_struct *) NULL)
781 stl_hangup(portp->tty);
782 kfree(portp->tx.buf);
783 kfree(portp);
784 }
785 kfree(panelp);
786 }
787
788 release_region(brdp->ioaddr1, brdp->iosize1);
789 if (brdp->iosize2 > 0)
790 release_region(brdp->ioaddr2, brdp->iosize2);
791
792 kfree(brdp);
793 stl_brds[i] = (stlbrd_t *) NULL;
794 }
795 }
796
797 module_init(stallion_module_init);
798 module_exit(stallion_module_exit);
799
800 /*****************************************************************************/
801
802 /*
803 * Check for any arguments passed in on the module load command line.
804 */
805
806 static void stl_argbrds(void)
807 {
808 stlconf_t conf;
809 stlbrd_t *brdp;
810 int i;
811
812 #ifdef DEBUG
813 printk("stl_argbrds()\n");
814 #endif
815
816 for (i = stl_nrbrds; (i < stl_nargs); i++) {
817 memset(&conf, 0, sizeof(conf));
818 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
819 continue;
820 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
821 continue;
822 stl_nrbrds = i + 1;
823 brdp->brdnr = i;
824 brdp->brdtype = conf.brdtype;
825 brdp->ioaddr1 = conf.ioaddr1;
826 brdp->ioaddr2 = conf.ioaddr2;
827 brdp->irq = conf.irq;
828 brdp->irqtype = conf.irqtype;
829 stl_brdinit(brdp);
830 }
831 }
832
833 /*****************************************************************************/
834
835 /*
836 * Convert an ascii string number into an unsigned long.
837 */
838
839 static unsigned long stl_atol(char *str)
840 {
841 unsigned long val;
842 int base, c;
843 char *sp;
844
845 val = 0;
846 sp = str;
847 if ((*sp == '0') && (*(sp+1) == 'x')) {
848 base = 16;
849 sp += 2;
850 } else if (*sp == '0') {
851 base = 8;
852 sp++;
853 } else {
854 base = 10;
855 }
856
857 for (; (*sp != 0); sp++) {
858 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
859 if ((c < 0) || (c >= base)) {
860 printk("STALLION: invalid argument %s\n", str);
861 val = 0;
862 break;
863 }
864 val = (val * base) + c;
865 }
866 return val;
867 }
868
869 /*****************************************************************************/
870
871 /*
872 * Parse the supplied argument string, into the board conf struct.
873 */
874
875 static int stl_parsebrd(stlconf_t *confp, char **argp)
876 {
877 char *sp;
878 int i;
879
880 #ifdef DEBUG
881 printk("stl_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
882 #endif
883
884 if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
885 return 0;
886
887 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
888 *sp = TOLOWER(*sp);
889
890 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++) {
891 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
892 break;
893 }
894 if (i == ARRAY_SIZE(stl_brdstr)) {
895 printk("STALLION: unknown board name, %s?\n", argp[0]);
896 return 0;
897 }
898
899 confp->brdtype = stl_brdstr[i].type;
900
901 i = 1;
902 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
903 confp->ioaddr1 = stl_atol(argp[i]);
904 i++;
905 if (confp->brdtype == BRD_ECH) {
906 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
907 confp->ioaddr2 = stl_atol(argp[i]);
908 i++;
909 }
910 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
911 confp->irq = stl_atol(argp[i]);
912 return 1;
913 }
914
915 /*****************************************************************************/
916
917 /*
918 * Allocate a new board structure. Fill out the basic info in it.
919 */
920
921 static stlbrd_t *stl_allocbrd(void)
922 {
923 stlbrd_t *brdp;
924
925 brdp = kzalloc(sizeof(stlbrd_t), GFP_KERNEL);
926 if (!brdp) {
927 printk("STALLION: failed to allocate memory (size=%Zd)\n",
928 sizeof(stlbrd_t));
929 return NULL;
930 }
931
932 brdp->magic = STL_BOARDMAGIC;
933 return brdp;
934 }
935
936 /*****************************************************************************/
937
938 static int stl_open(struct tty_struct *tty, struct file *filp)
939 {
940 stlport_t *portp;
941 stlbrd_t *brdp;
942 unsigned int minordev;
943 int brdnr, panelnr, portnr, rc;
944
945 #ifdef DEBUG
946 printk("stl_open(tty=%x,filp=%x): device=%s\n", (int) tty,
947 (int) filp, tty->name);
948 #endif
949
950 minordev = tty->index;
951 brdnr = MINOR2BRD(minordev);
952 if (brdnr >= stl_nrbrds)
953 return -ENODEV;
954 brdp = stl_brds[brdnr];
955 if (brdp == (stlbrd_t *) NULL)
956 return -ENODEV;
957 minordev = MINOR2PORT(minordev);
958 for (portnr = -1, panelnr = 0; (panelnr < STL_MAXPANELS); panelnr++) {
959 if (brdp->panels[panelnr] == (stlpanel_t *) NULL)
960 break;
961 if (minordev < brdp->panels[panelnr]->nrports) {
962 portnr = minordev;
963 break;
964 }
965 minordev -= brdp->panels[panelnr]->nrports;
966 }
967 if (portnr < 0)
968 return -ENODEV;
969
970 portp = brdp->panels[panelnr]->ports[portnr];
971 if (portp == (stlport_t *) NULL)
972 return -ENODEV;
973
974 /*
975 * On the first open of the device setup the port hardware, and
976 * initialize the per port data structure.
977 */
978 portp->tty = tty;
979 tty->driver_data = portp;
980 portp->refcount++;
981
982 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
983 if (!portp->tx.buf) {
984 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
985 if (!portp->tx.buf)
986 return -ENOMEM;
987 portp->tx.head = portp->tx.buf;
988 portp->tx.tail = portp->tx.buf;
989 }
990 stl_setport(portp, tty->termios);
991 portp->sigs = stl_getsignals(portp);
992 stl_setsignals(portp, 1, 1);
993 stl_enablerxtx(portp, 1, 1);
994 stl_startrxtx(portp, 1, 0);
995 clear_bit(TTY_IO_ERROR, &tty->flags);
996 portp->flags |= ASYNC_INITIALIZED;
997 }
998
999 /*
1000 * Check if this port is in the middle of closing. If so then wait
1001 * until it is closed then return error status, based on flag settings.
1002 * The sleep here does not need interrupt protection since the wakeup
1003 * for it is done with the same context.
1004 */
1005 if (portp->flags & ASYNC_CLOSING) {
1006 interruptible_sleep_on(&portp->close_wait);
1007 if (portp->flags & ASYNC_HUP_NOTIFY)
1008 return -EAGAIN;
1009 return -ERESTARTSYS;
1010 }
1011
1012 /*
1013 * Based on type of open being done check if it can overlap with any
1014 * previous opens still in effect. If we are a normal serial device
1015 * then also we might have to wait for carrier.
1016 */
1017 if (!(filp->f_flags & O_NONBLOCK)) {
1018 if ((rc = stl_waitcarrier(portp, filp)) != 0)
1019 return rc;
1020 }
1021 portp->flags |= ASYNC_NORMAL_ACTIVE;
1022
1023 return 0;
1024 }
1025
1026 /*****************************************************************************/
1027
1028 /*
1029 * Possibly need to wait for carrier (DCD signal) to come high. Say
1030 * maybe because if we are clocal then we don't need to wait...
1031 */
1032
1033 static int stl_waitcarrier(stlport_t *portp, struct file *filp)
1034 {
1035 unsigned long flags;
1036 int rc, doclocal;
1037
1038 #ifdef DEBUG
1039 printk("stl_waitcarrier(portp=%x,filp=%x)\n", (int) portp, (int) filp);
1040 #endif
1041
1042 rc = 0;
1043 doclocal = 0;
1044
1045 spin_lock_irqsave(&stallion_lock, flags);
1046
1047 if (portp->tty->termios->c_cflag & CLOCAL)
1048 doclocal++;
1049
1050 portp->openwaitcnt++;
1051 if (! tty_hung_up_p(filp))
1052 portp->refcount--;
1053
1054 for (;;) {
1055 /* Takes brd_lock internally */
1056 stl_setsignals(portp, 1, 1);
1057 if (tty_hung_up_p(filp) ||
1058 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1059 if (portp->flags & ASYNC_HUP_NOTIFY)
1060 rc = -EBUSY;
1061 else
1062 rc = -ERESTARTSYS;
1063 break;
1064 }
1065 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1066 (doclocal || (portp->sigs & TIOCM_CD))) {
1067 break;
1068 }
1069 if (signal_pending(current)) {
1070 rc = -ERESTARTSYS;
1071 break;
1072 }
1073 /* FIXME */
1074 interruptible_sleep_on(&portp->open_wait);
1075 }
1076
1077 if (! tty_hung_up_p(filp))
1078 portp->refcount++;
1079 portp->openwaitcnt--;
1080 spin_unlock_irqrestore(&stallion_lock, flags);
1081
1082 return rc;
1083 }
1084
1085 /*****************************************************************************/
1086
1087 static void stl_close(struct tty_struct *tty, struct file *filp)
1088 {
1089 stlport_t *portp;
1090 unsigned long flags;
1091
1092 #ifdef DEBUG
1093 printk("stl_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
1094 #endif
1095
1096 portp = tty->driver_data;
1097 if (portp == (stlport_t *) NULL)
1098 return;
1099
1100 spin_lock_irqsave(&stallion_lock, flags);
1101 if (tty_hung_up_p(filp)) {
1102 spin_unlock_irqrestore(&stallion_lock, flags);
1103 return;
1104 }
1105 if ((tty->count == 1) && (portp->refcount != 1))
1106 portp->refcount = 1;
1107 if (portp->refcount-- > 1) {
1108 spin_unlock_irqrestore(&stallion_lock, flags);
1109 return;
1110 }
1111
1112 portp->refcount = 0;
1113 portp->flags |= ASYNC_CLOSING;
1114
1115 /*
1116 * May want to wait for any data to drain before closing. The BUSY
1117 * flag keeps track of whether we are still sending or not - it is
1118 * very accurate for the cd1400, not quite so for the sc26198.
1119 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
1120 */
1121 tty->closing = 1;
1122
1123 spin_unlock_irqrestore(&stallion_lock, flags);
1124
1125 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1126 tty_wait_until_sent(tty, portp->closing_wait);
1127 stl_waituntilsent(tty, (HZ / 2));
1128
1129
1130 spin_lock_irqsave(&stallion_lock, flags);
1131 portp->flags &= ~ASYNC_INITIALIZED;
1132 spin_unlock_irqrestore(&stallion_lock, flags);
1133
1134 stl_disableintrs(portp);
1135 if (tty->termios->c_cflag & HUPCL)
1136 stl_setsignals(portp, 0, 0);
1137 stl_enablerxtx(portp, 0, 0);
1138 stl_flushbuffer(tty);
1139 portp->istate = 0;
1140 if (portp->tx.buf != (char *) NULL) {
1141 kfree(portp->tx.buf);
1142 portp->tx.buf = (char *) NULL;
1143 portp->tx.head = (char *) NULL;
1144 portp->tx.tail = (char *) NULL;
1145 }
1146 set_bit(TTY_IO_ERROR, &tty->flags);
1147 tty_ldisc_flush(tty);
1148
1149 tty->closing = 0;
1150 portp->tty = (struct tty_struct *) NULL;
1151
1152 if (portp->openwaitcnt) {
1153 if (portp->close_delay)
1154 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1155 wake_up_interruptible(&portp->open_wait);
1156 }
1157
1158 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1159 wake_up_interruptible(&portp->close_wait);
1160 }
1161
1162 /*****************************************************************************/
1163
1164 /*
1165 * Write routine. Take data and stuff it in to the TX ring queue.
1166 * If transmit interrupts are not running then start them.
1167 */
1168
1169 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
1170 {
1171 stlport_t *portp;
1172 unsigned int len, stlen;
1173 unsigned char *chbuf;
1174 char *head, *tail;
1175
1176 #ifdef DEBUG
1177 printk("stl_write(tty=%x,buf=%x,count=%d)\n",
1178 (int) tty, (int) buf, count);
1179 #endif
1180
1181 portp = tty->driver_data;
1182 if (portp == (stlport_t *) NULL)
1183 return 0;
1184 if (portp->tx.buf == (char *) NULL)
1185 return 0;
1186
1187 /*
1188 * If copying direct from user space we must cater for page faults,
1189 * causing us to "sleep" here for a while. To handle this copy in all
1190 * the data we need now, into a local buffer. Then when we got it all
1191 * copy it into the TX buffer.
1192 */
1193 chbuf = (unsigned char *) buf;
1194
1195 head = portp->tx.head;
1196 tail = portp->tx.tail;
1197 if (head >= tail) {
1198 len = STL_TXBUFSIZE - (head - tail) - 1;
1199 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
1200 } else {
1201 len = tail - head - 1;
1202 stlen = len;
1203 }
1204
1205 len = MIN(len, count);
1206 count = 0;
1207 while (len > 0) {
1208 stlen = MIN(len, stlen);
1209 memcpy(head, chbuf, stlen);
1210 len -= stlen;
1211 chbuf += stlen;
1212 count += stlen;
1213 head += stlen;
1214 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
1215 head = portp->tx.buf;
1216 stlen = tail - head;
1217 }
1218 }
1219 portp->tx.head = head;
1220
1221 clear_bit(ASYI_TXLOW, &portp->istate);
1222 stl_startrxtx(portp, -1, 1);
1223
1224 return count;
1225 }
1226
1227 /*****************************************************************************/
1228
1229 static void stl_putchar(struct tty_struct *tty, unsigned char ch)
1230 {
1231 stlport_t *portp;
1232 unsigned int len;
1233 char *head, *tail;
1234
1235 #ifdef DEBUG
1236 printk("stl_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
1237 #endif
1238
1239 if (tty == (struct tty_struct *) NULL)
1240 return;
1241 portp = tty->driver_data;
1242 if (portp == (stlport_t *) NULL)
1243 return;
1244 if (portp->tx.buf == (char *) NULL)
1245 return;
1246
1247 head = portp->tx.head;
1248 tail = portp->tx.tail;
1249
1250 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
1251 len--;
1252
1253 if (len > 0) {
1254 *head++ = ch;
1255 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
1256 head = portp->tx.buf;
1257 }
1258 portp->tx.head = head;
1259 }
1260
1261 /*****************************************************************************/
1262
1263 /*
1264 * If there are any characters in the buffer then make sure that TX
1265 * interrupts are on and get'em out. Normally used after the putchar
1266 * routine has been called.
1267 */
1268
1269 static void stl_flushchars(struct tty_struct *tty)
1270 {
1271 stlport_t *portp;
1272
1273 #ifdef DEBUG
1274 printk("stl_flushchars(tty=%x)\n", (int) tty);
1275 #endif
1276
1277 if (tty == (struct tty_struct *) NULL)
1278 return;
1279 portp = tty->driver_data;
1280 if (portp == (stlport_t *) NULL)
1281 return;
1282 if (portp->tx.buf == (char *) NULL)
1283 return;
1284
1285 stl_startrxtx(portp, -1, 1);
1286 }
1287
1288 /*****************************************************************************/
1289
1290 static int stl_writeroom(struct tty_struct *tty)
1291 {
1292 stlport_t *portp;
1293 char *head, *tail;
1294
1295 #ifdef DEBUG
1296 printk("stl_writeroom(tty=%x)\n", (int) tty);
1297 #endif
1298
1299 if (tty == (struct tty_struct *) NULL)
1300 return 0;
1301 portp = tty->driver_data;
1302 if (portp == (stlport_t *) NULL)
1303 return 0;
1304 if (portp->tx.buf == (char *) NULL)
1305 return 0;
1306
1307 head = portp->tx.head;
1308 tail = portp->tx.tail;
1309 return ((head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1));
1310 }
1311
1312 /*****************************************************************************/
1313
1314 /*
1315 * Return number of chars in the TX buffer. Normally we would just
1316 * calculate the number of chars in the buffer and return that, but if
1317 * the buffer is empty and TX interrupts are still on then we return
1318 * that the buffer still has 1 char in it. This way whoever called us
1319 * will not think that ALL chars have drained - since the UART still
1320 * must have some chars in it (we are busy after all).
1321 */
1322
1323 static int stl_charsinbuffer(struct tty_struct *tty)
1324 {
1325 stlport_t *portp;
1326 unsigned int size;
1327 char *head, *tail;
1328
1329 #ifdef DEBUG
1330 printk("stl_charsinbuffer(tty=%x)\n", (int) tty);
1331 #endif
1332
1333 if (tty == (struct tty_struct *) NULL)
1334 return 0;
1335 portp = tty->driver_data;
1336 if (portp == (stlport_t *) NULL)
1337 return 0;
1338 if (portp->tx.buf == (char *) NULL)
1339 return 0;
1340
1341 head = portp->tx.head;
1342 tail = portp->tx.tail;
1343 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1344 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1345 size = 1;
1346 return size;
1347 }
1348
1349 /*****************************************************************************/
1350
1351 /*
1352 * Generate the serial struct info.
1353 */
1354
1355 static int stl_getserial(stlport_t *portp, struct serial_struct __user *sp)
1356 {
1357 struct serial_struct sio;
1358 stlbrd_t *brdp;
1359
1360 #ifdef DEBUG
1361 printk("stl_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1362 #endif
1363
1364 memset(&sio, 0, sizeof(struct serial_struct));
1365 sio.line = portp->portnr;
1366 sio.port = portp->ioaddr;
1367 sio.flags = portp->flags;
1368 sio.baud_base = portp->baud_base;
1369 sio.close_delay = portp->close_delay;
1370 sio.closing_wait = portp->closing_wait;
1371 sio.custom_divisor = portp->custom_divisor;
1372 sio.hub6 = 0;
1373 if (portp->uartp == &stl_cd1400uart) {
1374 sio.type = PORT_CIRRUS;
1375 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1376 } else {
1377 sio.type = PORT_UNKNOWN;
1378 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1379 }
1380
1381 brdp = stl_brds[portp->brdnr];
1382 if (brdp != (stlbrd_t *) NULL)
1383 sio.irq = brdp->irq;
1384
1385 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1386 }
1387
1388 /*****************************************************************************/
1389
1390 /*
1391 * Set port according to the serial struct info.
1392 * At this point we do not do any auto-configure stuff, so we will
1393 * just quietly ignore any requests to change irq, etc.
1394 */
1395
1396 static int stl_setserial(stlport_t *portp, struct serial_struct __user *sp)
1397 {
1398 struct serial_struct sio;
1399
1400 #ifdef DEBUG
1401 printk("stl_setserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1402 #endif
1403
1404 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1405 return -EFAULT;
1406 if (!capable(CAP_SYS_ADMIN)) {
1407 if ((sio.baud_base != portp->baud_base) ||
1408 (sio.close_delay != portp->close_delay) ||
1409 ((sio.flags & ~ASYNC_USR_MASK) !=
1410 (portp->flags & ~ASYNC_USR_MASK)))
1411 return -EPERM;
1412 }
1413
1414 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1415 (sio.flags & ASYNC_USR_MASK);
1416 portp->baud_base = sio.baud_base;
1417 portp->close_delay = sio.close_delay;
1418 portp->closing_wait = sio.closing_wait;
1419 portp->custom_divisor = sio.custom_divisor;
1420 stl_setport(portp, portp->tty->termios);
1421 return 0;
1422 }
1423
1424 /*****************************************************************************/
1425
1426 static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1427 {
1428 stlport_t *portp;
1429
1430 if (tty == (struct tty_struct *) NULL)
1431 return -ENODEV;
1432 portp = tty->driver_data;
1433 if (portp == (stlport_t *) NULL)
1434 return -ENODEV;
1435 if (tty->flags & (1 << TTY_IO_ERROR))
1436 return -EIO;
1437
1438 return stl_getsignals(portp);
1439 }
1440
1441 static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1442 unsigned int set, unsigned int clear)
1443 {
1444 stlport_t *portp;
1445 int rts = -1, dtr = -1;
1446
1447 if (tty == (struct tty_struct *) NULL)
1448 return -ENODEV;
1449 portp = tty->driver_data;
1450 if (portp == (stlport_t *) NULL)
1451 return -ENODEV;
1452 if (tty->flags & (1 << TTY_IO_ERROR))
1453 return -EIO;
1454
1455 if (set & TIOCM_RTS)
1456 rts = 1;
1457 if (set & TIOCM_DTR)
1458 dtr = 1;
1459 if (clear & TIOCM_RTS)
1460 rts = 0;
1461 if (clear & TIOCM_DTR)
1462 dtr = 0;
1463
1464 stl_setsignals(portp, dtr, rts);
1465 return 0;
1466 }
1467
1468 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1469 {
1470 stlport_t *portp;
1471 unsigned int ival;
1472 int rc;
1473 void __user *argp = (void __user *)arg;
1474
1475 #ifdef DEBUG
1476 printk("stl_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1477 (int) tty, (int) file, cmd, (int) arg);
1478 #endif
1479
1480 if (tty == (struct tty_struct *) NULL)
1481 return -ENODEV;
1482 portp = tty->driver_data;
1483 if (portp == (stlport_t *) NULL)
1484 return -ENODEV;
1485
1486 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1487 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1488 if (tty->flags & (1 << TTY_IO_ERROR))
1489 return -EIO;
1490 }
1491
1492 rc = 0;
1493
1494 switch (cmd) {
1495 case TIOCGSOFTCAR:
1496 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
1497 (unsigned __user *) argp);
1498 break;
1499 case TIOCSSOFTCAR:
1500 if (get_user(ival, (unsigned int __user *) arg))
1501 return -EFAULT;
1502 tty->termios->c_cflag =
1503 (tty->termios->c_cflag & ~CLOCAL) |
1504 (ival ? CLOCAL : 0);
1505 break;
1506 case TIOCGSERIAL:
1507 rc = stl_getserial(portp, argp);
1508 break;
1509 case TIOCSSERIAL:
1510 rc = stl_setserial(portp, argp);
1511 break;
1512 case COM_GETPORTSTATS:
1513 rc = stl_getportstats(portp, argp);
1514 break;
1515 case COM_CLRPORTSTATS:
1516 rc = stl_clrportstats(portp, argp);
1517 break;
1518 case TIOCSERCONFIG:
1519 case TIOCSERGWILD:
1520 case TIOCSERSWILD:
1521 case TIOCSERGETLSR:
1522 case TIOCSERGSTRUCT:
1523 case TIOCSERGETMULTI:
1524 case TIOCSERSETMULTI:
1525 default:
1526 rc = -ENOIOCTLCMD;
1527 break;
1528 }
1529
1530 return rc;
1531 }
1532
1533 /*****************************************************************************/
1534
1535 static void stl_settermios(struct tty_struct *tty, struct termios *old)
1536 {
1537 stlport_t *portp;
1538 struct termios *tiosp;
1539
1540 #ifdef DEBUG
1541 printk("stl_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
1542 #endif
1543
1544 if (tty == (struct tty_struct *) NULL)
1545 return;
1546 portp = tty->driver_data;
1547 if (portp == (stlport_t *) NULL)
1548 return;
1549
1550 tiosp = tty->termios;
1551 if ((tiosp->c_cflag == old->c_cflag) &&
1552 (tiosp->c_iflag == old->c_iflag))
1553 return;
1554
1555 stl_setport(portp, tiosp);
1556 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1557 -1);
1558 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1559 tty->hw_stopped = 0;
1560 stl_start(tty);
1561 }
1562 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1563 wake_up_interruptible(&portp->open_wait);
1564 }
1565
1566 /*****************************************************************************/
1567
1568 /*
1569 * Attempt to flow control who ever is sending us data. Based on termios
1570 * settings use software or/and hardware flow control.
1571 */
1572
1573 static void stl_throttle(struct tty_struct *tty)
1574 {
1575 stlport_t *portp;
1576
1577 #ifdef DEBUG
1578 printk("stl_throttle(tty=%x)\n", (int) tty);
1579 #endif
1580
1581 if (tty == (struct tty_struct *) NULL)
1582 return;
1583 portp = tty->driver_data;
1584 if (portp == (stlport_t *) NULL)
1585 return;
1586 stl_flowctrl(portp, 0);
1587 }
1588
1589 /*****************************************************************************/
1590
1591 /*
1592 * Unflow control the device sending us data...
1593 */
1594
1595 static void stl_unthrottle(struct tty_struct *tty)
1596 {
1597 stlport_t *portp;
1598
1599 #ifdef DEBUG
1600 printk("stl_unthrottle(tty=%x)\n", (int) tty);
1601 #endif
1602
1603 if (tty == (struct tty_struct *) NULL)
1604 return;
1605 portp = tty->driver_data;
1606 if (portp == (stlport_t *) NULL)
1607 return;
1608 stl_flowctrl(portp, 1);
1609 }
1610
1611 /*****************************************************************************/
1612
1613 /*
1614 * Stop the transmitter. Basically to do this we will just turn TX
1615 * interrupts off.
1616 */
1617
1618 static void stl_stop(struct tty_struct *tty)
1619 {
1620 stlport_t *portp;
1621
1622 #ifdef DEBUG
1623 printk("stl_stop(tty=%x)\n", (int) tty);
1624 #endif
1625
1626 if (tty == (struct tty_struct *) NULL)
1627 return;
1628 portp = tty->driver_data;
1629 if (portp == (stlport_t *) NULL)
1630 return;
1631 stl_startrxtx(portp, -1, 0);
1632 }
1633
1634 /*****************************************************************************/
1635
1636 /*
1637 * Start the transmitter again. Just turn TX interrupts back on.
1638 */
1639
1640 static void stl_start(struct tty_struct *tty)
1641 {
1642 stlport_t *portp;
1643
1644 #ifdef DEBUG
1645 printk("stl_start(tty=%x)\n", (int) tty);
1646 #endif
1647
1648 if (tty == (struct tty_struct *) NULL)
1649 return;
1650 portp = tty->driver_data;
1651 if (portp == (stlport_t *) NULL)
1652 return;
1653 stl_startrxtx(portp, -1, 1);
1654 }
1655
1656 /*****************************************************************************/
1657
1658 /*
1659 * Hangup this port. This is pretty much like closing the port, only
1660 * a little more brutal. No waiting for data to drain. Shutdown the
1661 * port and maybe drop signals.
1662 */
1663
1664 static void stl_hangup(struct tty_struct *tty)
1665 {
1666 stlport_t *portp;
1667
1668 #ifdef DEBUG
1669 printk("stl_hangup(tty=%x)\n", (int) tty);
1670 #endif
1671
1672 if (tty == (struct tty_struct *) NULL)
1673 return;
1674 portp = tty->driver_data;
1675 if (portp == (stlport_t *) NULL)
1676 return;
1677
1678 portp->flags &= ~ASYNC_INITIALIZED;
1679 stl_disableintrs(portp);
1680 if (tty->termios->c_cflag & HUPCL)
1681 stl_setsignals(portp, 0, 0);
1682 stl_enablerxtx(portp, 0, 0);
1683 stl_flushbuffer(tty);
1684 portp->istate = 0;
1685 set_bit(TTY_IO_ERROR, &tty->flags);
1686 if (portp->tx.buf != (char *) NULL) {
1687 kfree(portp->tx.buf);
1688 portp->tx.buf = (char *) NULL;
1689 portp->tx.head = (char *) NULL;
1690 portp->tx.tail = (char *) NULL;
1691 }
1692 portp->tty = (struct tty_struct *) NULL;
1693 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
1694 portp->refcount = 0;
1695 wake_up_interruptible(&portp->open_wait);
1696 }
1697
1698 /*****************************************************************************/
1699
1700 static void stl_flushbuffer(struct tty_struct *tty)
1701 {
1702 stlport_t *portp;
1703
1704 #ifdef DEBUG
1705 printk("stl_flushbuffer(tty=%x)\n", (int) tty);
1706 #endif
1707
1708 if (tty == (struct tty_struct *) NULL)
1709 return;
1710 portp = tty->driver_data;
1711 if (portp == (stlport_t *) NULL)
1712 return;
1713
1714 stl_flush(portp);
1715 tty_wakeup(tty);
1716 }
1717
1718 /*****************************************************************************/
1719
1720 static void stl_breakctl(struct tty_struct *tty, int state)
1721 {
1722 stlport_t *portp;
1723
1724 #ifdef DEBUG
1725 printk("stl_breakctl(tty=%x,state=%d)\n", (int) tty, state);
1726 #endif
1727
1728 if (tty == (struct tty_struct *) NULL)
1729 return;
1730 portp = tty->driver_data;
1731 if (portp == (stlport_t *) NULL)
1732 return;
1733
1734 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1735 }
1736
1737 /*****************************************************************************/
1738
1739 static void stl_waituntilsent(struct tty_struct *tty, int timeout)
1740 {
1741 stlport_t *portp;
1742 unsigned long tend;
1743
1744 #ifdef DEBUG
1745 printk("stl_waituntilsent(tty=%x,timeout=%d)\n", (int) tty, timeout);
1746 #endif
1747
1748 if (tty == (struct tty_struct *) NULL)
1749 return;
1750 portp = tty->driver_data;
1751 if (portp == (stlport_t *) NULL)
1752 return;
1753
1754 if (timeout == 0)
1755 timeout = HZ;
1756 tend = jiffies + timeout;
1757
1758 while (stl_datastate(portp)) {
1759 if (signal_pending(current))
1760 break;
1761 msleep_interruptible(20);
1762 if (time_after_eq(jiffies, tend))
1763 break;
1764 }
1765 }
1766
1767 /*****************************************************************************/
1768
1769 static void stl_sendxchar(struct tty_struct *tty, char ch)
1770 {
1771 stlport_t *portp;
1772
1773 #ifdef DEBUG
1774 printk("stl_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
1775 #endif
1776
1777 if (tty == (struct tty_struct *) NULL)
1778 return;
1779 portp = tty->driver_data;
1780 if (portp == (stlport_t *) NULL)
1781 return;
1782
1783 if (ch == STOP_CHAR(tty))
1784 stl_sendflow(portp, 0);
1785 else if (ch == START_CHAR(tty))
1786 stl_sendflow(portp, 1);
1787 else
1788 stl_putchar(tty, ch);
1789 }
1790
1791 /*****************************************************************************/
1792
1793 #define MAXLINE 80
1794
1795 /*
1796 * Format info for a specified port. The line is deliberately limited
1797 * to 80 characters. (If it is too long it will be truncated, if too
1798 * short then padded with spaces).
1799 */
1800
1801 static int stl_portinfo(stlport_t *portp, int portnr, char *pos)
1802 {
1803 char *sp;
1804 int sigs, cnt;
1805
1806 sp = pos;
1807 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1808 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1809 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1810
1811 if (portp->stats.rxframing)
1812 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1813 if (portp->stats.rxparity)
1814 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1815 if (portp->stats.rxbreaks)
1816 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1817 if (portp->stats.rxoverrun)
1818 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1819
1820 sigs = stl_getsignals(portp);
1821 cnt = sprintf(sp, "%s%s%s%s%s ",
1822 (sigs & TIOCM_RTS) ? "|RTS" : "",
1823 (sigs & TIOCM_CTS) ? "|CTS" : "",
1824 (sigs & TIOCM_DTR) ? "|DTR" : "",
1825 (sigs & TIOCM_CD) ? "|DCD" : "",
1826 (sigs & TIOCM_DSR) ? "|DSR" : "");
1827 *sp = ' ';
1828 sp += cnt;
1829
1830 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
1831 *sp++ = ' ';
1832 if (cnt >= MAXLINE)
1833 pos[(MAXLINE - 2)] = '+';
1834 pos[(MAXLINE - 1)] = '\n';
1835
1836 return MAXLINE;
1837 }
1838
1839 /*****************************************************************************/
1840
1841 /*
1842 * Port info, read from the /proc file system.
1843 */
1844
1845 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1846 {
1847 stlbrd_t *brdp;
1848 stlpanel_t *panelp;
1849 stlport_t *portp;
1850 int brdnr, panelnr, portnr, totalport;
1851 int curoff, maxoff;
1852 char *pos;
1853
1854 #ifdef DEBUG
1855 printk("stl_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
1856 "data=%x\n", (int) page, (int) start, (int) off, count,
1857 (int) eof, (int) data);
1858 #endif
1859
1860 pos = page;
1861 totalport = 0;
1862 curoff = 0;
1863
1864 if (off == 0) {
1865 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1866 stl_drvversion);
1867 while (pos < (page + MAXLINE - 1))
1868 *pos++ = ' ';
1869 *pos++ = '\n';
1870 }
1871 curoff = MAXLINE;
1872
1873 /*
1874 * We scan through for each board, panel and port. The offset is
1875 * calculated on the fly, and irrelevant ports are skipped.
1876 */
1877 for (brdnr = 0; (brdnr < stl_nrbrds); brdnr++) {
1878 brdp = stl_brds[brdnr];
1879 if (brdp == (stlbrd_t *) NULL)
1880 continue;
1881 if (brdp->state == 0)
1882 continue;
1883
1884 maxoff = curoff + (brdp->nrports * MAXLINE);
1885 if (off >= maxoff) {
1886 curoff = maxoff;
1887 continue;
1888 }
1889
1890 totalport = brdnr * STL_MAXPORTS;
1891 for (panelnr = 0; (panelnr < brdp->nrpanels); panelnr++) {
1892 panelp = brdp->panels[panelnr];
1893 if (panelp == (stlpanel_t *) NULL)
1894 continue;
1895
1896 maxoff = curoff + (panelp->nrports * MAXLINE);
1897 if (off >= maxoff) {
1898 curoff = maxoff;
1899 totalport += panelp->nrports;
1900 continue;
1901 }
1902
1903 for (portnr = 0; (portnr < panelp->nrports); portnr++,
1904 totalport++) {
1905 portp = panelp->ports[portnr];
1906 if (portp == (stlport_t *) NULL)
1907 continue;
1908 if (off >= (curoff += MAXLINE))
1909 continue;
1910 if ((pos - page + MAXLINE) > count)
1911 goto stl_readdone;
1912 pos += stl_portinfo(portp, totalport, pos);
1913 }
1914 }
1915 }
1916
1917 *eof = 1;
1918
1919 stl_readdone:
1920 *start = page;
1921 return (pos - page);
1922 }
1923
1924 /*****************************************************************************/
1925
1926 /*
1927 * All board interrupts are vectored through here first. This code then
1928 * calls off to the approrpriate board interrupt handlers.
1929 */
1930
1931 static irqreturn_t stl_intr(int irq, void *dev_id, struct pt_regs *regs)
1932 {
1933 stlbrd_t *brdp = (stlbrd_t *) dev_id;
1934
1935 #ifdef DEBUG
1936 printk("stl_intr(brdp=%x,irq=%d,regs=%x)\n", (int) brdp, irq,
1937 (int) regs);
1938 #endif
1939
1940 return IRQ_RETVAL((* brdp->isr)(brdp));
1941 }
1942
1943 /*****************************************************************************/
1944
1945 /*
1946 * Interrupt service routine for EasyIO board types.
1947 */
1948
1949 static int stl_eiointr(stlbrd_t *brdp)
1950 {
1951 stlpanel_t *panelp;
1952 unsigned int iobase;
1953 int handled = 0;
1954
1955 spin_lock(&brd_lock);
1956 panelp = brdp->panels[0];
1957 iobase = panelp->iobase;
1958 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1959 handled = 1;
1960 (* panelp->isr)(panelp, iobase);
1961 }
1962 spin_unlock(&brd_lock);
1963 return handled;
1964 }
1965
1966 /*****************************************************************************/
1967
1968 /*
1969 * Interrupt service routine for ECH-AT board types.
1970 */
1971
1972 static int stl_echatintr(stlbrd_t *brdp)
1973 {
1974 stlpanel_t *panelp;
1975 unsigned int ioaddr;
1976 int bnknr;
1977 int handled = 0;
1978
1979 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1980
1981 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1982 handled = 1;
1983 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
1984 ioaddr = brdp->bnkstataddr[bnknr];
1985 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1986 panelp = brdp->bnk2panel[bnknr];
1987 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1988 }
1989 }
1990 }
1991
1992 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
1993
1994 return handled;
1995 }
1996
1997 /*****************************************************************************/
1998
1999 /*
2000 * Interrupt service routine for ECH-MCA board types.
2001 */
2002
2003 static int stl_echmcaintr(stlbrd_t *brdp)
2004 {
2005 stlpanel_t *panelp;
2006 unsigned int ioaddr;
2007 int bnknr;
2008 int handled = 0;
2009
2010 while (inb(brdp->iostatus) & ECH_INTRPEND) {
2011 handled = 1;
2012 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2013 ioaddr = brdp->bnkstataddr[bnknr];
2014 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2015 panelp = brdp->bnk2panel[bnknr];
2016 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2017 }
2018 }
2019 }
2020 return handled;
2021 }
2022
2023 /*****************************************************************************/
2024
2025 /*
2026 * Interrupt service routine for ECH-PCI board types.
2027 */
2028
2029 static int stl_echpciintr(stlbrd_t *brdp)
2030 {
2031 stlpanel_t *panelp;
2032 unsigned int ioaddr;
2033 int bnknr, recheck;
2034 int handled = 0;
2035
2036 while (1) {
2037 recheck = 0;
2038 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2039 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
2040 ioaddr = brdp->bnkstataddr[bnknr];
2041 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2042 panelp = brdp->bnk2panel[bnknr];
2043 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2044 recheck++;
2045 handled = 1;
2046 }
2047 }
2048 if (! recheck)
2049 break;
2050 }
2051 return handled;
2052 }
2053
2054 /*****************************************************************************/
2055
2056 /*
2057 * Interrupt service routine for ECH-8/64-PCI board types.
2058 */
2059
2060 static int stl_echpci64intr(stlbrd_t *brdp)
2061 {
2062 stlpanel_t *panelp;
2063 unsigned int ioaddr;
2064 int bnknr;
2065 int handled = 0;
2066
2067 while (inb(brdp->ioctrl) & 0x1) {
2068 handled = 1;
2069 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2070 ioaddr = brdp->bnkstataddr[bnknr];
2071 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2072 panelp = brdp->bnk2panel[bnknr];
2073 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2074 }
2075 }
2076 }
2077
2078 return handled;
2079 }
2080
2081 /*****************************************************************************/
2082
2083 /*
2084 * Service an off-level request for some channel.
2085 */
2086 static void stl_offintr(void *private)
2087 {
2088 stlport_t *portp;
2089 struct tty_struct *tty;
2090 unsigned int oldsigs;
2091
2092 portp = private;
2093
2094 #ifdef DEBUG
2095 printk("stl_offintr(portp=%x)\n", (int) portp);
2096 #endif
2097
2098 if (portp == (stlport_t *) NULL)
2099 return;
2100
2101 tty = portp->tty;
2102 if (tty == (struct tty_struct *) NULL)
2103 return;
2104
2105 lock_kernel();
2106 if (test_bit(ASYI_TXLOW, &portp->istate)) {
2107 tty_wakeup(tty);
2108 }
2109 if (test_bit(ASYI_DCDCHANGE, &portp->istate)) {
2110 clear_bit(ASYI_DCDCHANGE, &portp->istate);
2111 oldsigs = portp->sigs;
2112 portp->sigs = stl_getsignals(portp);
2113 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
2114 wake_up_interruptible(&portp->open_wait);
2115 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0)) {
2116 if (portp->flags & ASYNC_CHECK_CD)
2117 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2118 }
2119 }
2120 unlock_kernel();
2121 }
2122
2123 /*****************************************************************************/
2124
2125 /*
2126 * Initialize all the ports on a panel.
2127 */
2128
2129 static int __init stl_initports(stlbrd_t *brdp, stlpanel_t *panelp)
2130 {
2131 stlport_t *portp;
2132 int chipmask, i;
2133
2134 #ifdef DEBUG
2135 printk("stl_initports(brdp=%x,panelp=%x)\n", (int) brdp, (int) panelp);
2136 #endif
2137
2138 chipmask = stl_panelinit(brdp, panelp);
2139
2140 /*
2141 * All UART's are initialized (if found!). Now go through and setup
2142 * each ports data structures.
2143 */
2144 for (i = 0; (i < panelp->nrports); i++) {
2145 portp = kzalloc(sizeof(stlport_t), GFP_KERNEL);
2146 if (!portp) {
2147 printk("STALLION: failed to allocate memory "
2148 "(size=%Zd)\n", sizeof(stlport_t));
2149 break;
2150 }
2151
2152 portp->magic = STL_PORTMAGIC;
2153 portp->portnr = i;
2154 portp->brdnr = panelp->brdnr;
2155 portp->panelnr = panelp->panelnr;
2156 portp->uartp = panelp->uartp;
2157 portp->clk = brdp->clk;
2158 portp->baud_base = STL_BAUDBASE;
2159 portp->close_delay = STL_CLOSEDELAY;
2160 portp->closing_wait = 30 * HZ;
2161 INIT_WORK(&portp->tqueue, stl_offintr, portp);
2162 init_waitqueue_head(&portp->open_wait);
2163 init_waitqueue_head(&portp->close_wait);
2164 portp->stats.brd = portp->brdnr;
2165 portp->stats.panel = portp->panelnr;
2166 portp->stats.port = portp->portnr;
2167 panelp->ports[i] = portp;
2168 stl_portinit(brdp, panelp, portp);
2169 }
2170
2171 return(0);
2172 }
2173
2174 /*****************************************************************************/
2175
2176 /*
2177 * Try to find and initialize an EasyIO board.
2178 */
2179
2180 static inline int stl_initeio(stlbrd_t *brdp)
2181 {
2182 stlpanel_t *panelp;
2183 unsigned int status;
2184 char *name;
2185 int rc;
2186
2187 #ifdef DEBUG
2188 printk("stl_initeio(brdp=%x)\n", (int) brdp);
2189 #endif
2190
2191 brdp->ioctrl = brdp->ioaddr1 + 1;
2192 brdp->iostatus = brdp->ioaddr1 + 2;
2193
2194 status = inb(brdp->iostatus);
2195 if ((status & EIO_IDBITMASK) == EIO_MK3)
2196 brdp->ioctrl++;
2197
2198 /*
2199 * Handle board specific stuff now. The real difference is PCI
2200 * or not PCI.
2201 */
2202 if (brdp->brdtype == BRD_EASYIOPCI) {
2203 brdp->iosize1 = 0x80;
2204 brdp->iosize2 = 0x80;
2205 name = "serial(EIO-PCI)";
2206 outb(0x41, (brdp->ioaddr2 + 0x4c));
2207 } else {
2208 brdp->iosize1 = 8;
2209 name = "serial(EIO)";
2210 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2211 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2212 printk("STALLION: invalid irq=%d for brd=%d\n",
2213 brdp->irq, brdp->brdnr);
2214 return(-EINVAL);
2215 }
2216 outb((stl_vecmap[brdp->irq] | EIO_0WS |
2217 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
2218 brdp->ioctrl);
2219 }
2220
2221 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2222 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2223 "%x conflicts with another device\n", brdp->brdnr,
2224 brdp->ioaddr1);
2225 return(-EBUSY);
2226 }
2227
2228 if (brdp->iosize2 > 0)
2229 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2230 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2231 "address %x conflicts with another device\n",
2232 brdp->brdnr, brdp->ioaddr2);
2233 printk(KERN_WARNING "STALLION: Warning, also "
2234 "releasing board %d I/O address %x \n",
2235 brdp->brdnr, brdp->ioaddr1);
2236 release_region(brdp->ioaddr1, brdp->iosize1);
2237 return(-EBUSY);
2238 }
2239
2240 /*
2241 * Everything looks OK, so let's go ahead and probe for the hardware.
2242 */
2243 brdp->clk = CD1400_CLK;
2244 brdp->isr = stl_eiointr;
2245
2246 switch (status & EIO_IDBITMASK) {
2247 case EIO_8PORTM:
2248 brdp->clk = CD1400_CLK8M;
2249 /* fall thru */
2250 case EIO_8PORTRS:
2251 case EIO_8PORTDI:
2252 brdp->nrports = 8;
2253 break;
2254 case EIO_4PORTRS:
2255 brdp->nrports = 4;
2256 break;
2257 case EIO_MK3:
2258 switch (status & EIO_BRDMASK) {
2259 case ID_BRD4:
2260 brdp->nrports = 4;
2261 break;
2262 case ID_BRD8:
2263 brdp->nrports = 8;
2264 break;
2265 case ID_BRD16:
2266 brdp->nrports = 16;
2267 break;
2268 default:
2269 return(-ENODEV);
2270 }
2271 break;
2272 default:
2273 return(-ENODEV);
2274 }
2275
2276 /*
2277 * We have verified that the board is actually present, so now we
2278 * can complete the setup.
2279 */
2280
2281 panelp = kzalloc(sizeof(stlpanel_t), GFP_KERNEL);
2282 if (!panelp) {
2283 printk(KERN_WARNING "STALLION: failed to allocate memory "
2284 "(size=%Zd)\n", sizeof(stlpanel_t));
2285 return -ENOMEM;
2286 }
2287
2288 panelp->magic = STL_PANELMAGIC;
2289 panelp->brdnr = brdp->brdnr;
2290 panelp->panelnr = 0;
2291 panelp->nrports = brdp->nrports;
2292 panelp->iobase = brdp->ioaddr1;
2293 panelp->hwid = status;
2294 if ((status & EIO_IDBITMASK) == EIO_MK3) {
2295 panelp->uartp = (void *) &stl_sc26198uart;
2296 panelp->isr = stl_sc26198intr;
2297 } else {
2298 panelp->uartp = (void *) &stl_cd1400uart;
2299 panelp->isr = stl_cd1400eiointr;
2300 }
2301
2302 brdp->panels[0] = panelp;
2303 brdp->nrpanels = 1;
2304 brdp->state |= BRD_FOUND;
2305 brdp->hwid = status;
2306 if (request_irq(brdp->irq, stl_intr, SA_SHIRQ, name, brdp) != 0) {
2307 printk("STALLION: failed to register interrupt "
2308 "routine for %s irq=%d\n", name, brdp->irq);
2309 rc = -ENODEV;
2310 } else {
2311 rc = 0;
2312 }
2313 return rc;
2314 }
2315
2316 /*****************************************************************************/
2317
2318 /*
2319 * Try to find an ECH board and initialize it. This code is capable of
2320 * dealing with all types of ECH board.
2321 */
2322
2323 static inline int stl_initech(stlbrd_t *brdp)
2324 {
2325 stlpanel_t *panelp;
2326 unsigned int status, nxtid, ioaddr, conflict;
2327 int panelnr, banknr, i;
2328 char *name;
2329
2330 #ifdef DEBUG
2331 printk("stl_initech(brdp=%x)\n", (int) brdp);
2332 #endif
2333
2334 status = 0;
2335 conflict = 0;
2336
2337 /*
2338 * Set up the initial board register contents for boards. This varies a
2339 * bit between the different board types. So we need to handle each
2340 * separately. Also do a check that the supplied IRQ is good.
2341 */
2342 switch (brdp->brdtype) {
2343
2344 case BRD_ECH:
2345 brdp->isr = stl_echatintr;
2346 brdp->ioctrl = brdp->ioaddr1 + 1;
2347 brdp->iostatus = brdp->ioaddr1 + 1;
2348 status = inb(brdp->iostatus);
2349 if ((status & ECH_IDBITMASK) != ECH_ID)
2350 return(-ENODEV);
2351 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2352 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2353 printk("STALLION: invalid irq=%d for brd=%d\n",
2354 brdp->irq, brdp->brdnr);
2355 return(-EINVAL);
2356 }
2357 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
2358 status |= (stl_vecmap[brdp->irq] << 1);
2359 outb((status | ECH_BRDRESET), brdp->ioaddr1);
2360 brdp->ioctrlval = ECH_INTENABLE |
2361 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
2362 for (i = 0; (i < 10); i++)
2363 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2364 brdp->iosize1 = 2;
2365 brdp->iosize2 = 32;
2366 name = "serial(EC8/32)";
2367 outb(status, brdp->ioaddr1);
2368 break;
2369
2370 case BRD_ECHMC:
2371 brdp->isr = stl_echmcaintr;
2372 brdp->ioctrl = brdp->ioaddr1 + 0x20;
2373 brdp->iostatus = brdp->ioctrl;
2374 status = inb(brdp->iostatus);
2375 if ((status & ECH_IDBITMASK) != ECH_ID)
2376 return(-ENODEV);
2377 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2378 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2379 printk("STALLION: invalid irq=%d for brd=%d\n",
2380 brdp->irq, brdp->brdnr);
2381 return(-EINVAL);
2382 }
2383 outb(ECHMC_BRDRESET, brdp->ioctrl);
2384 outb(ECHMC_INTENABLE, brdp->ioctrl);
2385 brdp->iosize1 = 64;
2386 name = "serial(EC8/32-MC)";
2387 break;
2388
2389 case BRD_ECHPCI:
2390 brdp->isr = stl_echpciintr;
2391 brdp->ioctrl = brdp->ioaddr1 + 2;
2392 brdp->iosize1 = 4;
2393 brdp->iosize2 = 8;
2394 name = "serial(EC8/32-PCI)";
2395 break;
2396
2397 case BRD_ECH64PCI:
2398 brdp->isr = stl_echpci64intr;
2399 brdp->ioctrl = brdp->ioaddr2 + 0x40;
2400 outb(0x43, (brdp->ioaddr1 + 0x4c));
2401 brdp->iosize1 = 0x80;
2402 brdp->iosize2 = 0x80;
2403 name = "serial(EC8/64-PCI)";
2404 break;
2405
2406 default:
2407 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
2408 return(-EINVAL);
2409 break;
2410 }
2411
2412 /*
2413 * Check boards for possible IO address conflicts and return fail status
2414 * if an IO conflict found.
2415 */
2416 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2417 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2418 "%x conflicts with another device\n", brdp->brdnr,
2419 brdp->ioaddr1);
2420 return(-EBUSY);
2421 }
2422
2423 if (brdp->iosize2 > 0)
2424 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2425 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2426 "address %x conflicts with another device\n",
2427 brdp->brdnr, brdp->ioaddr2);
2428 printk(KERN_WARNING "STALLION: Warning, also "
2429 "releasing board %d I/O address %x \n",
2430 brdp->brdnr, brdp->ioaddr1);
2431 release_region(brdp->ioaddr1, brdp->iosize1);
2432 return(-EBUSY);
2433 }
2434
2435 /*
2436 * Scan through the secondary io address space looking for panels.
2437 * As we find'em allocate and initialize panel structures for each.
2438 */
2439 brdp->clk = CD1400_CLK;
2440 brdp->hwid = status;
2441
2442 ioaddr = brdp->ioaddr2;
2443 banknr = 0;
2444 panelnr = 0;
2445 nxtid = 0;
2446
2447 for (i = 0; (i < STL_MAXPANELS); i++) {
2448 if (brdp->brdtype == BRD_ECHPCI) {
2449 outb(nxtid, brdp->ioctrl);
2450 ioaddr = brdp->ioaddr2;
2451 }
2452 status = inb(ioaddr + ECH_PNLSTATUS);
2453 if ((status & ECH_PNLIDMASK) != nxtid)
2454 break;
2455 panelp = kzalloc(sizeof(stlpanel_t), GFP_KERNEL);
2456 if (!panelp) {
2457 printk("STALLION: failed to allocate memory "
2458 "(size=%Zd)\n", sizeof(stlpanel_t));
2459 break;
2460 }
2461 panelp->magic = STL_PANELMAGIC;
2462 panelp->brdnr = brdp->brdnr;
2463 panelp->panelnr = panelnr;
2464 panelp->iobase = ioaddr;
2465 panelp->pagenr = nxtid;
2466 panelp->hwid = status;
2467 brdp->bnk2panel[banknr] = panelp;
2468 brdp->bnkpageaddr[banknr] = nxtid;
2469 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2470
2471 if (status & ECH_PNLXPID) {
2472 panelp->uartp = (void *) &stl_sc26198uart;
2473 panelp->isr = stl_sc26198intr;
2474 if (status & ECH_PNL16PORT) {
2475 panelp->nrports = 16;
2476 brdp->bnk2panel[banknr] = panelp;
2477 brdp->bnkpageaddr[banknr] = nxtid;
2478 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2479 ECH_PNLSTATUS;
2480 } else {
2481 panelp->nrports = 8;
2482 }
2483 } else {
2484 panelp->uartp = (void *) &stl_cd1400uart;
2485 panelp->isr = stl_cd1400echintr;
2486 if (status & ECH_PNL16PORT) {
2487 panelp->nrports = 16;
2488 panelp->ackmask = 0x80;
2489 if (brdp->brdtype != BRD_ECHPCI)
2490 ioaddr += EREG_BANKSIZE;
2491 brdp->bnk2panel[banknr] = panelp;
2492 brdp->bnkpageaddr[banknr] = ++nxtid;
2493 brdp->bnkstataddr[banknr++] = ioaddr +
2494 ECH_PNLSTATUS;
2495 } else {
2496 panelp->nrports = 8;
2497 panelp->ackmask = 0xc0;
2498 }
2499 }
2500
2501 nxtid++;
2502 ioaddr += EREG_BANKSIZE;
2503 brdp->nrports += panelp->nrports;
2504 brdp->panels[panelnr++] = panelp;
2505 if ((brdp->brdtype != BRD_ECHPCI) &&
2506 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2)))
2507 break;
2508 }
2509
2510 brdp->nrpanels = panelnr;
2511 brdp->nrbnks = banknr;
2512 if (brdp->brdtype == BRD_ECH)
2513 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2514
2515 brdp->state |= BRD_FOUND;
2516 if (request_irq(brdp->irq, stl_intr, SA_SHIRQ, name, brdp) != 0) {
2517 printk("STALLION: failed to register interrupt "
2518 "routine for %s irq=%d\n", name, brdp->irq);
2519 i = -ENODEV;
2520 } else {
2521 i = 0;
2522 }
2523
2524 return(i);
2525 }
2526
2527 /*****************************************************************************/
2528
2529 /*
2530 * Initialize and configure the specified board.
2531 * Scan through all the boards in the configuration and see what we
2532 * can find. Handle EIO and the ECH boards a little differently here
2533 * since the initial search and setup is very different.
2534 */
2535
2536 static int __init stl_brdinit(stlbrd_t *brdp)
2537 {
2538 int i;
2539
2540 #ifdef DEBUG
2541 printk("stl_brdinit(brdp=%x)\n", (int) brdp);
2542 #endif
2543
2544 switch (brdp->brdtype) {
2545 case BRD_EASYIO:
2546 case BRD_EASYIOPCI:
2547 stl_initeio(brdp);
2548 break;
2549 case BRD_ECH:
2550 case BRD_ECHMC:
2551 case BRD_ECHPCI:
2552 case BRD_ECH64PCI:
2553 stl_initech(brdp);
2554 break;
2555 default:
2556 printk("STALLION: board=%d is unknown board type=%d\n",
2557 brdp->brdnr, brdp->brdtype);
2558 return(ENODEV);
2559 }
2560
2561 stl_brds[brdp->brdnr] = brdp;
2562 if ((brdp->state & BRD_FOUND) == 0) {
2563 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2564 stl_brdnames[brdp->brdtype], brdp->brdnr,
2565 brdp->ioaddr1, brdp->irq);
2566 return(ENODEV);
2567 }
2568
2569 for (i = 0; (i < STL_MAXPANELS); i++)
2570 if (brdp->panels[i] != (stlpanel_t *) NULL)
2571 stl_initports(brdp, brdp->panels[i]);
2572
2573 printk("STALLION: %s found, board=%d io=%x irq=%d "
2574 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2575 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2576 brdp->nrports);
2577 return(0);
2578 }
2579
2580 /*****************************************************************************/
2581
2582 /*
2583 * Find the next available board number that is free.
2584 */
2585
2586 static inline int stl_getbrdnr(void)
2587 {
2588 int i;
2589
2590 for (i = 0; (i < STL_MAXBRDS); i++) {
2591 if (stl_brds[i] == (stlbrd_t *) NULL) {
2592 if (i >= stl_nrbrds)
2593 stl_nrbrds = i + 1;
2594 return(i);
2595 }
2596 }
2597 return(-1);
2598 }
2599
2600 /*****************************************************************************/
2601
2602 #ifdef CONFIG_PCI
2603
2604 /*
2605 * We have a Stallion board. Allocate a board structure and
2606 * initialize it. Read its IO and IRQ resources from PCI
2607 * configuration space.
2608 */
2609
2610 static inline int stl_initpcibrd(int brdtype, struct pci_dev *devp)
2611 {
2612 stlbrd_t *brdp;
2613
2614 #ifdef DEBUG
2615 printk("stl_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n", brdtype,
2616 devp->bus->number, devp->devfn);
2617 #endif
2618
2619 if (pci_enable_device(devp))
2620 return(-EIO);
2621 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
2622 return(-ENOMEM);
2623 if ((brdp->brdnr = stl_getbrdnr()) < 0) {
2624 printk("STALLION: too many boards found, "
2625 "maximum supported %d\n", STL_MAXBRDS);
2626 return(0);
2627 }
2628 brdp->brdtype = brdtype;
2629
2630 /*
2631 * Different Stallion boards use the BAR registers in different ways,
2632 * so set up io addresses based on board type.
2633 */
2634 #ifdef DEBUG
2635 printk("%s(%d): BAR[]=%x,%x,%x,%x IRQ=%x\n", __FILE__, __LINE__,
2636 pci_resource_start(devp, 0), pci_resource_start(devp, 1),
2637 pci_resource_start(devp, 2), pci_resource_start(devp, 3), devp->irq);
2638 #endif
2639
2640 /*
2641 * We have all resources from the board, so let's setup the actual
2642 * board structure now.
2643 */
2644 switch (brdtype) {
2645 case BRD_ECHPCI:
2646 brdp->ioaddr2 = pci_resource_start(devp, 0);
2647 brdp->ioaddr1 = pci_resource_start(devp, 1);
2648 break;
2649 case BRD_ECH64PCI:
2650 brdp->ioaddr2 = pci_resource_start(devp, 2);
2651 brdp->ioaddr1 = pci_resource_start(devp, 1);
2652 break;
2653 case BRD_EASYIOPCI:
2654 brdp->ioaddr1 = pci_resource_start(devp, 2);
2655 brdp->ioaddr2 = pci_resource_start(devp, 1);
2656 break;
2657 default:
2658 printk("STALLION: unknown PCI board type=%d\n", brdtype);
2659 break;
2660 }
2661
2662 brdp->irq = devp->irq;
2663 stl_brdinit(brdp);
2664
2665 return(0);
2666 }
2667
2668 /*****************************************************************************/
2669
2670 /*
2671 * Find all Stallion PCI boards that might be installed. Initialize each
2672 * one as it is found.
2673 */
2674
2675
2676 static inline int stl_findpcibrds(void)
2677 {
2678 struct pci_dev *dev = NULL;
2679 int i, rc;
2680
2681 #ifdef DEBUG
2682 printk("stl_findpcibrds()\n");
2683 #endif
2684
2685 for (i = 0; (i < stl_nrpcibrds); i++)
2686 while ((dev = pci_find_device(stl_pcibrds[i].vendid,
2687 stl_pcibrds[i].devid, dev))) {
2688
2689 /*
2690 * Found a device on the PCI bus that has our vendor and
2691 * device ID. Need to check now that it is really us.
2692 */
2693 if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2694 continue;
2695
2696 rc = stl_initpcibrd(stl_pcibrds[i].brdtype, dev);
2697 if (rc)
2698 return(rc);
2699 }
2700
2701 return(0);
2702 }
2703
2704 #endif
2705
2706 /*****************************************************************************/
2707
2708 /*
2709 * Scan through all the boards in the configuration and see what we
2710 * can find. Handle EIO and the ECH boards a little differently here
2711 * since the initial search and setup is too different.
2712 */
2713
2714 static inline int stl_initbrds(void)
2715 {
2716 stlbrd_t *brdp;
2717 stlconf_t *confp;
2718 int i;
2719
2720 #ifdef DEBUG
2721 printk("stl_initbrds()\n");
2722 #endif
2723
2724 if (stl_nrbrds > STL_MAXBRDS) {
2725 printk("STALLION: too many boards in configuration table, "
2726 "truncating to %d\n", STL_MAXBRDS);
2727 stl_nrbrds = STL_MAXBRDS;
2728 }
2729
2730 /*
2731 * Firstly scan the list of static boards configured. Allocate
2732 * resources and initialize the boards as found.
2733 */
2734 for (i = 0; (i < stl_nrbrds); i++) {
2735 confp = &stl_brdconf[i];
2736 stl_parsebrd(confp, stl_brdsp[i]);
2737 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
2738 return(-ENOMEM);
2739 brdp->brdnr = i;
2740 brdp->brdtype = confp->brdtype;
2741 brdp->ioaddr1 = confp->ioaddr1;
2742 brdp->ioaddr2 = confp->ioaddr2;
2743 brdp->irq = confp->irq;
2744 brdp->irqtype = confp->irqtype;
2745 stl_brdinit(brdp);
2746 }
2747
2748 /*
2749 * Find any dynamically supported boards. That is via module load
2750 * line options or auto-detected on the PCI bus.
2751 */
2752 stl_argbrds();
2753 #ifdef CONFIG_PCI
2754 stl_findpcibrds();
2755 #endif
2756
2757 return(0);
2758 }
2759
2760 /*****************************************************************************/
2761
2762 /*
2763 * Return the board stats structure to user app.
2764 */
2765
2766 static int stl_getbrdstats(combrd_t __user *bp)
2767 {
2768 stlbrd_t *brdp;
2769 stlpanel_t *panelp;
2770 int i;
2771
2772 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2773 return -EFAULT;
2774 if (stl_brdstats.brd >= STL_MAXBRDS)
2775 return(-ENODEV);
2776 brdp = stl_brds[stl_brdstats.brd];
2777 if (brdp == (stlbrd_t *) NULL)
2778 return(-ENODEV);
2779
2780 memset(&stl_brdstats, 0, sizeof(combrd_t));
2781 stl_brdstats.brd = brdp->brdnr;
2782 stl_brdstats.type = brdp->brdtype;
2783 stl_brdstats.hwid = brdp->hwid;
2784 stl_brdstats.state = brdp->state;
2785 stl_brdstats.ioaddr = brdp->ioaddr1;
2786 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2787 stl_brdstats.irq = brdp->irq;
2788 stl_brdstats.nrpanels = brdp->nrpanels;
2789 stl_brdstats.nrports = brdp->nrports;
2790 for (i = 0; (i < brdp->nrpanels); i++) {
2791 panelp = brdp->panels[i];
2792 stl_brdstats.panels[i].panel = i;
2793 stl_brdstats.panels[i].hwid = panelp->hwid;
2794 stl_brdstats.panels[i].nrports = panelp->nrports;
2795 }
2796
2797 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2798 }
2799
2800 /*****************************************************************************/
2801
2802 /*
2803 * Resolve the referenced port number into a port struct pointer.
2804 */
2805
2806 static stlport_t *stl_getport(int brdnr, int panelnr, int portnr)
2807 {
2808 stlbrd_t *brdp;
2809 stlpanel_t *panelp;
2810
2811 if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
2812 return((stlport_t *) NULL);
2813 brdp = stl_brds[brdnr];
2814 if (brdp == (stlbrd_t *) NULL)
2815 return((stlport_t *) NULL);
2816 if ((panelnr < 0) || (panelnr >= brdp->nrpanels))
2817 return((stlport_t *) NULL);
2818 panelp = brdp->panels[panelnr];
2819 if (panelp == (stlpanel_t *) NULL)
2820 return((stlport_t *) NULL);
2821 if ((portnr < 0) || (portnr >= panelp->nrports))
2822 return((stlport_t *) NULL);
2823 return(panelp->ports[portnr]);
2824 }
2825
2826 /*****************************************************************************/
2827
2828 /*
2829 * Return the port stats structure to user app. A NULL port struct
2830 * pointer passed in means that we need to find out from the app
2831 * what port to get stats for (used through board control device).
2832 */
2833
2834 static int stl_getportstats(stlport_t *portp, comstats_t __user *cp)
2835 {
2836 unsigned char *head, *tail;
2837 unsigned long flags;
2838
2839 if (!portp) {
2840 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2841 return -EFAULT;
2842 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2843 stl_comstats.port);
2844 if (portp == (stlport_t *) NULL)
2845 return(-ENODEV);
2846 }
2847
2848 portp->stats.state = portp->istate;
2849 portp->stats.flags = portp->flags;
2850 portp->stats.hwid = portp->hwid;
2851
2852 portp->stats.ttystate = 0;
2853 portp->stats.cflags = 0;
2854 portp->stats.iflags = 0;
2855 portp->stats.oflags = 0;
2856 portp->stats.lflags = 0;
2857 portp->stats.rxbuffered = 0;
2858
2859 spin_lock_irqsave(&stallion_lock, flags);
2860 if (portp->tty != (struct tty_struct *) NULL) {
2861 if (portp->tty->driver_data == portp) {
2862 portp->stats.ttystate = portp->tty->flags;
2863 /* No longer available as a statistic */
2864 portp->stats.rxbuffered = 1; /*portp->tty->flip.count; */
2865 if (portp->tty->termios != (struct termios *) NULL) {
2866 portp->stats.cflags = portp->tty->termios->c_cflag;
2867 portp->stats.iflags = portp->tty->termios->c_iflag;
2868 portp->stats.oflags = portp->tty->termios->c_oflag;
2869 portp->stats.lflags = portp->tty->termios->c_lflag;
2870 }
2871 }
2872 }
2873 spin_unlock_irqrestore(&stallion_lock, flags);
2874
2875 head = portp->tx.head;
2876 tail = portp->tx.tail;
2877 portp->stats.txbuffered = ((head >= tail) ? (head - tail) :
2878 (STL_TXBUFSIZE - (tail - head)));
2879
2880 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2881
2882 return copy_to_user(cp, &portp->stats,
2883 sizeof(comstats_t)) ? -EFAULT : 0;
2884 }
2885
2886 /*****************************************************************************/
2887
2888 /*
2889 * Clear the port stats structure. We also return it zeroed out...
2890 */
2891
2892 static int stl_clrportstats(stlport_t *portp, comstats_t __user *cp)
2893 {
2894 if (!portp) {
2895 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2896 return -EFAULT;
2897 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2898 stl_comstats.port);
2899 if (portp == (stlport_t *) NULL)
2900 return(-ENODEV);
2901 }
2902
2903 memset(&portp->stats, 0, sizeof(comstats_t));
2904 portp->stats.brd = portp->brdnr;
2905 portp->stats.panel = portp->panelnr;
2906 portp->stats.port = portp->portnr;
2907 return copy_to_user(cp, &portp->stats,
2908 sizeof(comstats_t)) ? -EFAULT : 0;
2909 }
2910
2911 /*****************************************************************************/
2912
2913 /*
2914 * Return the entire driver ports structure to a user app.
2915 */
2916
2917 static int stl_getportstruct(stlport_t __user *arg)
2918 {
2919 stlport_t *portp;
2920
2921 if (copy_from_user(&stl_dummyport, arg, sizeof(stlport_t)))
2922 return -EFAULT;
2923 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2924 stl_dummyport.portnr);
2925 if (!portp)
2926 return -ENODEV;
2927 return copy_to_user(arg, portp, sizeof(stlport_t)) ? -EFAULT : 0;
2928 }
2929
2930 /*****************************************************************************/
2931
2932 /*
2933 * Return the entire driver board structure to a user app.
2934 */
2935
2936 static int stl_getbrdstruct(stlbrd_t __user *arg)
2937 {
2938 stlbrd_t *brdp;
2939
2940 if (copy_from_user(&stl_dummybrd, arg, sizeof(stlbrd_t)))
2941 return -EFAULT;
2942 if ((stl_dummybrd.brdnr < 0) || (stl_dummybrd.brdnr >= STL_MAXBRDS))
2943 return -ENODEV;
2944 brdp = stl_brds[stl_dummybrd.brdnr];
2945 if (!brdp)
2946 return(-ENODEV);
2947 return copy_to_user(arg, brdp, sizeof(stlbrd_t)) ? -EFAULT : 0;
2948 }
2949
2950 /*****************************************************************************/
2951
2952 /*
2953 * The "staliomem" device is also required to do some special operations
2954 * on the board and/or ports. In this driver it is mostly used for stats
2955 * collection.
2956 */
2957
2958 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
2959 {
2960 int brdnr, rc;
2961 void __user *argp = (void __user *)arg;
2962
2963 #ifdef DEBUG
2964 printk("stl_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n", (int) ip,
2965 (int) fp, cmd, (int) arg);
2966 #endif
2967
2968 brdnr = iminor(ip);
2969 if (brdnr >= STL_MAXBRDS)
2970 return(-ENODEV);
2971 rc = 0;
2972
2973 switch (cmd) {
2974 case COM_GETPORTSTATS:
2975 rc = stl_getportstats(NULL, argp);
2976 break;
2977 case COM_CLRPORTSTATS:
2978 rc = stl_clrportstats(NULL, argp);
2979 break;
2980 case COM_GETBRDSTATS:
2981 rc = stl_getbrdstats(argp);
2982 break;
2983 case COM_READPORT:
2984 rc = stl_getportstruct(argp);
2985 break;
2986 case COM_READBOARD:
2987 rc = stl_getbrdstruct(argp);
2988 break;
2989 default:
2990 rc = -ENOIOCTLCMD;
2991 break;
2992 }
2993
2994 return(rc);
2995 }
2996
2997 static struct tty_operations stl_ops = {
2998 .open = stl_open,
2999 .close = stl_close,
3000 .write = stl_write,
3001 .put_char = stl_putchar,
3002 .flush_chars = stl_flushchars,
3003 .write_room = stl_writeroom,
3004 .chars_in_buffer = stl_charsinbuffer,
3005 .ioctl = stl_ioctl,
3006 .set_termios = stl_settermios,
3007 .throttle = stl_throttle,
3008 .unthrottle = stl_unthrottle,
3009 .stop = stl_stop,
3010 .start = stl_start,
3011 .hangup = stl_hangup,
3012 .flush_buffer = stl_flushbuffer,
3013 .break_ctl = stl_breakctl,
3014 .wait_until_sent = stl_waituntilsent,
3015 .send_xchar = stl_sendxchar,
3016 .read_proc = stl_readproc,
3017 .tiocmget = stl_tiocmget,
3018 .tiocmset = stl_tiocmset,
3019 };
3020
3021 /*****************************************************************************/
3022
3023 static int __init stl_init(void)
3024 {
3025 int i;
3026 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
3027
3028 spin_lock_init(&stallion_lock);
3029 spin_lock_init(&brd_lock);
3030
3031 stl_initbrds();
3032
3033 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
3034 if (!stl_serial)
3035 return -1;
3036
3037 /*
3038 * Set up a character driver for per board stuff. This is mainly used
3039 * to do stats ioctls on the ports.
3040 */
3041 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
3042 printk("STALLION: failed to register serial board device\n");
3043
3044 stallion_class = class_create(THIS_MODULE, "staliomem");
3045 for (i = 0; i < 4; i++)
3046 class_device_create(stallion_class, NULL,
3047 MKDEV(STL_SIOMEMMAJOR, i), NULL,
3048 "staliomem%d", i);
3049
3050 stl_serial->owner = THIS_MODULE;
3051 stl_serial->driver_name = stl_drvname;
3052 stl_serial->name = "ttyE";
3053 stl_serial->major = STL_SERIALMAJOR;
3054 stl_serial->minor_start = 0;
3055 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
3056 stl_serial->subtype = SERIAL_TYPE_NORMAL;
3057 stl_serial->init_termios = stl_deftermios;
3058 stl_serial->flags = TTY_DRIVER_REAL_RAW;
3059 tty_set_operations(stl_serial, &stl_ops);
3060
3061 if (tty_register_driver(stl_serial)) {
3062 put_tty_driver(stl_serial);
3063 printk("STALLION: failed to register serial driver\n");
3064 return -1;
3065 }
3066
3067 return 0;
3068 }
3069
3070 /*****************************************************************************/
3071 /* CD1400 HARDWARE FUNCTIONS */
3072 /*****************************************************************************/
3073
3074 /*
3075 * These functions get/set/update the registers of the cd1400 UARTs.
3076 * Access to the cd1400 registers is via an address/data io port pair.
3077 * (Maybe should make this inline...)
3078 */
3079
3080 static int stl_cd1400getreg(stlport_t *portp, int regnr)
3081 {
3082 outb((regnr + portp->uartaddr), portp->ioaddr);
3083 return inb(portp->ioaddr + EREG_DATA);
3084 }
3085
3086 static void stl_cd1400setreg(stlport_t *portp, int regnr, int value)
3087 {
3088 outb((regnr + portp->uartaddr), portp->ioaddr);
3089 outb(value, portp->ioaddr + EREG_DATA);
3090 }
3091
3092 static int stl_cd1400updatereg(stlport_t *portp, int regnr, int value)
3093 {
3094 outb((regnr + portp->uartaddr), portp->ioaddr);
3095 if (inb(portp->ioaddr + EREG_DATA) != value) {
3096 outb(value, portp->ioaddr + EREG_DATA);
3097 return 1;
3098 }
3099 return 0;
3100 }
3101
3102 /*****************************************************************************/
3103
3104 /*
3105 * Inbitialize the UARTs in a panel. We don't care what sort of board
3106 * these ports are on - since the port io registers are almost
3107 * identical when dealing with ports.
3108 */
3109
3110 static int stl_cd1400panelinit(stlbrd_t *brdp, stlpanel_t *panelp)
3111 {
3112 unsigned int gfrcr;
3113 int chipmask, i, j;
3114 int nrchips, uartaddr, ioaddr;
3115 unsigned long flags;
3116
3117 #ifdef DEBUG
3118 printk("stl_panelinit(brdp=%x,panelp=%x)\n", (int) brdp, (int) panelp);
3119 #endif
3120
3121 spin_lock_irqsave(&brd_lock, flags);
3122 BRDENABLE(panelp->brdnr, panelp->pagenr);
3123
3124 /*
3125 * Check that each chip is present and started up OK.
3126 */
3127 chipmask = 0;
3128 nrchips = panelp->nrports / CD1400_PORTS;
3129 for (i = 0; (i < nrchips); i++) {
3130 if (brdp->brdtype == BRD_ECHPCI) {
3131 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
3132 ioaddr = panelp->iobase;
3133 } else {
3134 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
3135 }
3136 uartaddr = (i & 0x01) ? 0x080 : 0;
3137 outb((GFRCR + uartaddr), ioaddr);
3138 outb(0, (ioaddr + EREG_DATA));
3139 outb((CCR + uartaddr), ioaddr);
3140 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
3141 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
3142 outb((GFRCR + uartaddr), ioaddr);
3143 for (j = 0; (j < CCR_MAXWAIT); j++) {
3144 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
3145 break;
3146 }
3147 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
3148 printk("STALLION: cd1400 not responding, "
3149 "brd=%d panel=%d chip=%d\n",
3150 panelp->brdnr, panelp->panelnr, i);
3151 continue;
3152 }
3153 chipmask |= (0x1 << i);
3154 outb((PPR + uartaddr), ioaddr);
3155 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
3156 }
3157
3158 BRDDISABLE(panelp->brdnr);
3159 spin_unlock_irqrestore(&brd_lock, flags);
3160 return chipmask;
3161 }
3162
3163 /*****************************************************************************/
3164
3165 /*
3166 * Initialize hardware specific port registers.
3167 */
3168
3169 static void stl_cd1400portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp)
3170 {
3171 unsigned long flags;
3172 #ifdef DEBUG
3173 printk("stl_cd1400portinit(brdp=%x,panelp=%x,portp=%x)\n",
3174 (int) brdp, (int) panelp, (int) portp);
3175 #endif
3176
3177 if ((brdp == (stlbrd_t *) NULL) || (panelp == (stlpanel_t *) NULL) ||
3178 (portp == (stlport_t *) NULL))
3179 return;
3180
3181 spin_lock_irqsave(&brd_lock, flags);
3182 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
3183 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
3184 portp->uartaddr = (portp->portnr & 0x04) << 5;
3185 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
3186
3187 BRDENABLE(portp->brdnr, portp->pagenr);
3188 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3189 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
3190 portp->hwid = stl_cd1400getreg(portp, GFRCR);
3191 BRDDISABLE(portp->brdnr);
3192 spin_unlock_irqrestore(&brd_lock, flags);
3193 }
3194
3195 /*****************************************************************************/
3196
3197 /*
3198 * Wait for the command register to be ready. We will poll this,
3199 * since it won't usually take too long to be ready.
3200 */
3201
3202 static void stl_cd1400ccrwait(stlport_t *portp)
3203 {
3204 int i;
3205
3206 for (i = 0; (i < CCR_MAXWAIT); i++) {
3207 if (stl_cd1400getreg(portp, CCR) == 0) {
3208 return;
3209 }
3210 }
3211
3212 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
3213 portp->portnr, portp->panelnr, portp->brdnr);
3214 }
3215
3216 /*****************************************************************************/
3217
3218 /*
3219 * Set up the cd1400 registers for a port based on the termios port
3220 * settings.
3221 */
3222
3223 static void stl_cd1400setport(stlport_t *portp, struct termios *tiosp)
3224 {
3225 stlbrd_t *brdp;
3226 unsigned long flags;
3227 unsigned int clkdiv, baudrate;
3228 unsigned char cor1, cor2, cor3;
3229 unsigned char cor4, cor5, ccr;
3230 unsigned char srer, sreron, sreroff;
3231 unsigned char mcor1, mcor2, rtpr;
3232 unsigned char clk, div;
3233
3234 cor1 = 0;
3235 cor2 = 0;
3236 cor3 = 0;
3237 cor4 = 0;
3238 cor5 = 0;
3239 ccr = 0;
3240 rtpr = 0;
3241 clk = 0;
3242 div = 0;
3243 mcor1 = 0;
3244 mcor2 = 0;
3245 sreron = 0;
3246 sreroff = 0;
3247
3248 brdp = stl_brds[portp->brdnr];
3249 if (brdp == (stlbrd_t *) NULL)
3250 return;
3251
3252 /*
3253 * Set up the RX char ignore mask with those RX error types we
3254 * can ignore. We can get the cd1400 to help us out a little here,
3255 * it will ignore parity errors and breaks for us.
3256 */
3257 portp->rxignoremsk = 0;
3258 if (tiosp->c_iflag & IGNPAR) {
3259 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
3260 cor1 |= COR1_PARIGNORE;
3261 }
3262 if (tiosp->c_iflag & IGNBRK) {
3263 portp->rxignoremsk |= ST_BREAK;
3264 cor4 |= COR4_IGNBRK;
3265 }
3266
3267 portp->rxmarkmsk = ST_OVERRUN;
3268 if (tiosp->c_iflag & (INPCK | PARMRK))
3269 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
3270 if (tiosp->c_iflag & BRKINT)
3271 portp->rxmarkmsk |= ST_BREAK;
3272
3273 /*
3274 * Go through the char size, parity and stop bits and set all the
3275 * option register appropriately.
3276 */
3277 switch (tiosp->c_cflag & CSIZE) {
3278 case CS5:
3279 cor1 |= COR1_CHL5;
3280 break;
3281 case CS6:
3282 cor1 |= COR1_CHL6;
3283 break;
3284 case CS7:
3285 cor1 |= COR1_CHL7;
3286 break;
3287 default:
3288 cor1 |= COR1_CHL8;
3289 break;
3290 }
3291
3292 if (tiosp->c_cflag & CSTOPB)
3293 cor1 |= COR1_STOP2;
3294 else
3295 cor1 |= COR1_STOP1;
3296
3297 if (tiosp->c_cflag & PARENB) {
3298 if (tiosp->c_cflag & PARODD)
3299 cor1 |= (COR1_PARENB | COR1_PARODD);
3300 else
3301 cor1 |= (COR1_PARENB | COR1_PAREVEN);
3302 } else {
3303 cor1 |= COR1_PARNONE;
3304 }
3305
3306 /*
3307 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
3308 * space for hardware flow control and the like. This should be set to
3309 * VMIN. Also here we will set the RX data timeout to 10ms - this should
3310 * really be based on VTIME.
3311 */
3312 cor3 |= FIFO_RXTHRESHOLD;
3313 rtpr = 2;
3314
3315 /*
3316 * Calculate the baud rate timers. For now we will just assume that
3317 * the input and output baud are the same. Could have used a baud
3318 * table here, but this way we can generate virtually any baud rate
3319 * we like!
3320 */
3321 baudrate = tiosp->c_cflag & CBAUD;
3322 if (baudrate & CBAUDEX) {
3323 baudrate &= ~CBAUDEX;
3324 if ((baudrate < 1) || (baudrate > 4))
3325 tiosp->c_cflag &= ~CBAUDEX;
3326 else
3327 baudrate += 15;
3328 }
3329 baudrate = stl_baudrates[baudrate];
3330 if ((tiosp->c_cflag & CBAUD) == B38400) {
3331 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3332 baudrate = 57600;
3333 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3334 baudrate = 115200;
3335 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3336 baudrate = 230400;
3337 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3338 baudrate = 460800;
3339 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3340 baudrate = (portp->baud_base / portp->custom_divisor);
3341 }
3342 if (baudrate > STL_CD1400MAXBAUD)
3343 baudrate = STL_CD1400MAXBAUD;
3344
3345 if (baudrate > 0) {
3346 for (clk = 0; (clk < CD1400_NUMCLKS); clk++) {
3347 clkdiv = ((portp->clk / stl_cd1400clkdivs[clk]) / baudrate);
3348 if (clkdiv < 0x100)
3349 break;
3350 }
3351 div = (unsigned char) clkdiv;
3352 }
3353
3354 /*
3355 * Check what form of modem signaling is required and set it up.
3356 */
3357 if ((tiosp->c_cflag & CLOCAL) == 0) {
3358 mcor1 |= MCOR1_DCD;
3359 mcor2 |= MCOR2_DCD;
3360 sreron |= SRER_MODEM;
3361 portp->flags |= ASYNC_CHECK_CD;
3362 } else {
3363 portp->flags &= ~ASYNC_CHECK_CD;
3364 }
3365
3366 /*
3367 * Setup cd1400 enhanced modes if we can. In particular we want to
3368 * handle as much of the flow control as possible automatically. As
3369 * well as saving a few CPU cycles it will also greatly improve flow
3370 * control reliability.
3371 */
3372 if (tiosp->c_iflag & IXON) {
3373 cor2 |= COR2_TXIBE;
3374 cor3 |= COR3_SCD12;
3375 if (tiosp->c_iflag & IXANY)
3376 cor2 |= COR2_IXM;
3377 }
3378
3379 if (tiosp->c_cflag & CRTSCTS) {
3380 cor2 |= COR2_CTSAE;
3381 mcor1 |= FIFO_RTSTHRESHOLD;
3382 }
3383
3384 /*
3385 * All cd1400 register values calculated so go through and set
3386 * them all up.
3387 */
3388
3389 #ifdef DEBUG
3390 printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3391 portp->portnr, portp->panelnr, portp->brdnr);
3392 printk(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
3393 cor1, cor2, cor3, cor4, cor5);
3394 printk(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
3395 mcor1, mcor2, rtpr, sreron, sreroff);
3396 printk(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
3397 printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3398 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3399 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3400 #endif
3401
3402 spin_lock_irqsave(&brd_lock, flags);
3403 BRDENABLE(portp->brdnr, portp->pagenr);
3404 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
3405 srer = stl_cd1400getreg(portp, SRER);
3406 stl_cd1400setreg(portp, SRER, 0);
3407 if (stl_cd1400updatereg(portp, COR1, cor1))
3408 ccr = 1;
3409 if (stl_cd1400updatereg(portp, COR2, cor2))
3410 ccr = 1;
3411 if (stl_cd1400updatereg(portp, COR3, cor3))
3412 ccr = 1;
3413 if (ccr) {
3414 stl_cd1400ccrwait(portp);
3415 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
3416 }
3417 stl_cd1400setreg(portp, COR4, cor4);
3418 stl_cd1400setreg(portp, COR5, cor5);
3419 stl_cd1400setreg(portp, MCOR1, mcor1);
3420 stl_cd1400setreg(portp, MCOR2, mcor2);
3421 if (baudrate > 0) {
3422 stl_cd1400setreg(portp, TCOR, clk);
3423 stl_cd1400setreg(portp, TBPR, div);
3424 stl_cd1400setreg(portp, RCOR, clk);
3425 stl_cd1400setreg(portp, RBPR, div);
3426 }
3427 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
3428 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
3429 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
3430 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
3431 stl_cd1400setreg(portp, RTPR, rtpr);
3432 mcor1 = stl_cd1400getreg(portp, MSVR1);
3433 if (mcor1 & MSVR1_DCD)
3434 portp->sigs |= TIOCM_CD;
3435 else
3436 portp->sigs &= ~TIOCM_CD;
3437 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
3438 BRDDISABLE(portp->brdnr);
3439 spin_unlock_irqrestore(&brd_lock, flags);
3440 }
3441
3442 /*****************************************************************************/
3443
3444 /*
3445 * Set the state of the DTR and RTS signals.
3446 */
3447
3448 static void stl_cd1400setsignals(stlport_t *portp, int dtr, int rts)
3449 {
3450 unsigned char msvr1, msvr2;
3451 unsigned long flags;
3452
3453 #ifdef DEBUG
3454 printk("stl_cd1400setsignals(portp=%x,dtr=%d,rts=%d)\n",
3455 (int) portp, dtr, rts);
3456 #endif
3457
3458 msvr1 = 0;
3459 msvr2 = 0;
3460 if (dtr > 0)
3461 msvr1 = MSVR1_DTR;
3462 if (rts > 0)
3463 msvr2 = MSVR2_RTS;
3464
3465 spin_lock_irqsave(&brd_lock, flags);
3466 BRDENABLE(portp->brdnr, portp->pagenr);
3467 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3468 if (rts >= 0)
3469 stl_cd1400setreg(portp, MSVR2, msvr2);
3470 if (dtr >= 0)
3471 stl_cd1400setreg(portp, MSVR1, msvr1);
3472 BRDDISABLE(portp->brdnr);
3473 spin_unlock_irqrestore(&brd_lock, flags);
3474 }
3475
3476 /*****************************************************************************/
3477
3478 /*
3479 * Return the state of the signals.
3480 */
3481
3482 static int stl_cd1400getsignals(stlport_t *portp)
3483 {
3484 unsigned char msvr1, msvr2;
3485 unsigned long flags;
3486 int sigs;
3487
3488 #ifdef DEBUG
3489 printk("stl_cd1400getsignals(portp=%x)\n", (int) portp);
3490 #endif
3491
3492 spin_lock_irqsave(&brd_lock, flags);
3493 BRDENABLE(portp->brdnr, portp->pagenr);
3494 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3495 msvr1 = stl_cd1400getreg(portp, MSVR1);
3496 msvr2 = stl_cd1400getreg(portp, MSVR2);
3497 BRDDISABLE(portp->brdnr);
3498 spin_unlock_irqrestore(&brd_lock, flags);
3499
3500 sigs = 0;
3501 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
3502 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
3503 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
3504 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3505 #if 0
3506 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3507 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3508 #else
3509 sigs |= TIOCM_DSR;
3510 #endif
3511 return sigs;
3512 }
3513
3514 /*****************************************************************************/
3515
3516 /*
3517 * Enable/Disable the Transmitter and/or Receiver.
3518 */
3519
3520 static void stl_cd1400enablerxtx(stlport_t *portp, int rx, int tx)
3521 {
3522 unsigned char ccr;
3523 unsigned long flags;
3524
3525 #ifdef DEBUG
3526 printk("stl_cd1400enablerxtx(portp=%x,rx=%d,tx=%d)\n",
3527 (int) portp, rx, tx);
3528 #endif
3529 ccr = 0;
3530
3531 if (tx == 0)
3532 ccr |= CCR_TXDISABLE;
3533 else if (tx > 0)
3534 ccr |= CCR_TXENABLE;
3535 if (rx == 0)
3536 ccr |= CCR_RXDISABLE;
3537 else if (rx > 0)
3538 ccr |= CCR_RXENABLE;
3539
3540 spin_lock_irqsave(&brd_lock, flags);
3541 BRDENABLE(portp->brdnr, portp->pagenr);
3542 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3543 stl_cd1400ccrwait(portp);
3544 stl_cd1400setreg(portp, CCR, ccr);
3545 stl_cd1400ccrwait(portp);
3546 BRDDISABLE(portp->brdnr);
3547 spin_unlock_irqrestore(&brd_lock, flags);
3548 }
3549
3550 /*****************************************************************************/
3551
3552 /*
3553 * Start/stop the Transmitter and/or Receiver.
3554 */
3555
3556 static void stl_cd1400startrxtx(stlport_t *portp, int rx, int tx)
3557 {
3558 unsigned char sreron, sreroff;
3559 unsigned long flags;
3560
3561 #ifdef DEBUG
3562 printk("stl_cd1400startrxtx(portp=%x,rx=%d,tx=%d)\n",
3563 (int) portp, rx, tx);
3564 #endif
3565
3566 sreron = 0;
3567 sreroff = 0;
3568 if (tx == 0)
3569 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3570 else if (tx == 1)
3571 sreron |= SRER_TXDATA;
3572 else if (tx >= 2)
3573 sreron |= SRER_TXEMPTY;
3574 if (rx == 0)
3575 sreroff |= SRER_RXDATA;
3576 else if (rx > 0)
3577 sreron |= SRER_RXDATA;
3578
3579 spin_lock_irqsave(&brd_lock, flags);
3580 BRDENABLE(portp->brdnr, portp->pagenr);
3581 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3582 stl_cd1400setreg(portp, SRER,
3583 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3584 BRDDISABLE(portp->brdnr);
3585 if (tx > 0)
3586 set_bit(ASYI_TXBUSY, &portp->istate);
3587 spin_unlock_irqrestore(&brd_lock, flags);
3588 }
3589
3590 /*****************************************************************************/
3591
3592 /*
3593 * Disable all interrupts from this port.
3594 */
3595
3596 static void stl_cd1400disableintrs(stlport_t *portp)
3597 {
3598 unsigned long flags;
3599
3600 #ifdef DEBUG
3601 printk("stl_cd1400disableintrs(portp=%x)\n", (int) portp);
3602 #endif
3603 spin_lock_irqsave(&brd_lock, flags);
3604 BRDENABLE(portp->brdnr, portp->pagenr);
3605 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3606 stl_cd1400setreg(portp, SRER, 0);
3607 BRDDISABLE(portp->brdnr);
3608 spin_unlock_irqrestore(&brd_lock, flags);
3609 }
3610
3611 /*****************************************************************************/
3612
3613 static void stl_cd1400sendbreak(stlport_t *portp, int len)
3614 {
3615 unsigned long flags;
3616
3617 #ifdef DEBUG
3618 printk("stl_cd1400sendbreak(portp=%x,len=%d)\n", (int) portp, len);
3619 #endif
3620
3621 spin_lock_irqsave(&brd_lock, flags);
3622 BRDENABLE(portp->brdnr, portp->pagenr);
3623 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3624 stl_cd1400setreg(portp, SRER,
3625 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3626 SRER_TXEMPTY));
3627 BRDDISABLE(portp->brdnr);
3628 portp->brklen = len;
3629 if (len == 1)
3630 portp->stats.txbreaks++;
3631 spin_unlock_irqrestore(&brd_lock, flags);
3632 }
3633
3634 /*****************************************************************************/
3635
3636 /*
3637 * Take flow control actions...
3638 */
3639
3640 static void stl_cd1400flowctrl(stlport_t *portp, int state)
3641 {
3642 struct tty_struct *tty;
3643 unsigned long flags;
3644
3645 #ifdef DEBUG
3646 printk("stl_cd1400flowctrl(portp=%x,state=%x)\n", (int) portp, state);
3647 #endif
3648
3649 if (portp == (stlport_t *) NULL)
3650 return;
3651 tty = portp->tty;
3652 if (tty == (struct tty_struct *) NULL)
3653 return;
3654
3655 spin_lock_irqsave(&brd_lock, flags);
3656 BRDENABLE(portp->brdnr, portp->pagenr);
3657 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3658
3659 if (state) {
3660 if (tty->termios->c_iflag & IXOFF) {
3661 stl_cd1400ccrwait(portp);
3662 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3663 portp->stats.rxxon++;
3664 stl_cd1400ccrwait(portp);
3665 }
3666 /*
3667 * Question: should we return RTS to what it was before? It may
3668 * have been set by an ioctl... Suppose not, since if you have
3669 * hardware flow control set then it is pretty silly to go and
3670 * set the RTS line by hand.
3671 */
3672 if (tty->termios->c_cflag & CRTSCTS) {
3673 stl_cd1400setreg(portp, MCOR1,
3674 (stl_cd1400getreg(portp, MCOR1) |
3675 FIFO_RTSTHRESHOLD));
3676 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3677 portp->stats.rxrtson++;
3678 }
3679 } else {
3680 if (tty->termios->c_iflag & IXOFF) {
3681 stl_cd1400ccrwait(portp);
3682 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3683 portp->stats.rxxoff++;
3684 stl_cd1400ccrwait(portp);
3685 }
3686 if (tty->termios->c_cflag & CRTSCTS) {
3687 stl_cd1400setreg(portp, MCOR1,
3688 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3689 stl_cd1400setreg(portp, MSVR2, 0);
3690 portp->stats.rxrtsoff++;
3691 }
3692 }
3693
3694 BRDDISABLE(portp->brdnr);
3695 spin_unlock_irqrestore(&brd_lock, flags);
3696 }
3697
3698 /*****************************************************************************/
3699
3700 /*
3701 * Send a flow control character...
3702 */
3703
3704 static void stl_cd1400sendflow(stlport_t *portp, int state)
3705 {
3706 struct tty_struct *tty;
3707 unsigned long flags;
3708
3709 #ifdef DEBUG
3710 printk("stl_cd1400sendflow(portp=%x,state=%x)\n", (int) portp, state);
3711 #endif
3712
3713 if (portp == (stlport_t *) NULL)
3714 return;
3715 tty = portp->tty;
3716 if (tty == (struct tty_struct *) NULL)
3717 return;
3718
3719 spin_lock_irqsave(&brd_lock, flags);
3720 BRDENABLE(portp->brdnr, portp->pagenr);
3721 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3722 if (state) {
3723 stl_cd1400ccrwait(portp);
3724 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3725 portp->stats.rxxon++;
3726 stl_cd1400ccrwait(portp);
3727 } else {
3728 stl_cd1400ccrwait(portp);
3729 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3730 portp->stats.rxxoff++;
3731 stl_cd1400ccrwait(portp);
3732 }
3733 BRDDISABLE(portp->brdnr);
3734 spin_unlock_irqrestore(&brd_lock, flags);
3735 }
3736
3737 /*****************************************************************************/
3738
3739 static void stl_cd1400flush(stlport_t *portp)
3740 {
3741 unsigned long flags;
3742
3743 #ifdef DEBUG
3744 printk("stl_cd1400flush(portp=%x)\n", (int) portp);
3745 #endif
3746
3747 if (portp == (stlport_t *) NULL)
3748 return;
3749
3750 spin_lock_irqsave(&brd_lock, flags);
3751 BRDENABLE(portp->brdnr, portp->pagenr);
3752 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3753 stl_cd1400ccrwait(portp);
3754 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3755 stl_cd1400ccrwait(portp);
3756 portp->tx.tail = portp->tx.head;
3757 BRDDISABLE(portp->brdnr);
3758 spin_unlock_irqrestore(&brd_lock, flags);
3759 }
3760
3761 /*****************************************************************************/
3762
3763 /*
3764 * Return the current state of data flow on this port. This is only
3765 * really interresting when determining if data has fully completed
3766 * transmission or not... This is easy for the cd1400, it accurately
3767 * maintains the busy port flag.
3768 */
3769
3770 static int stl_cd1400datastate(stlport_t *portp)
3771 {
3772 #ifdef DEBUG
3773 printk("stl_cd1400datastate(portp=%x)\n", (int) portp);
3774 #endif
3775
3776 if (portp == (stlport_t *) NULL)
3777 return 0;
3778
3779 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
3780 }
3781
3782 /*****************************************************************************/
3783
3784 /*
3785 * Interrupt service routine for cd1400 EasyIO boards.
3786 */
3787
3788 static void stl_cd1400eiointr(stlpanel_t *panelp, unsigned int iobase)
3789 {
3790 unsigned char svrtype;
3791
3792 #ifdef DEBUG
3793 printk("stl_cd1400eiointr(panelp=%x,iobase=%x)\n",
3794 (int) panelp, iobase);
3795 #endif
3796
3797 spin_lock(&brd_lock);
3798 outb(SVRR, iobase);
3799 svrtype = inb(iobase + EREG_DATA);
3800 if (panelp->nrports > 4) {
3801 outb((SVRR + 0x80), iobase);
3802 svrtype |= inb(iobase + EREG_DATA);
3803 }
3804
3805 if (svrtype & SVRR_RX)
3806 stl_cd1400rxisr(panelp, iobase);
3807 else if (svrtype & SVRR_TX)
3808 stl_cd1400txisr(panelp, iobase);
3809 else if (svrtype & SVRR_MDM)
3810 stl_cd1400mdmisr(panelp, iobase);
3811
3812 spin_unlock(&brd_lock);
3813 }
3814
3815 /*****************************************************************************/
3816
3817 /*
3818 * Interrupt service routine for cd1400 panels.
3819 */
3820
3821 static void stl_cd1400echintr(stlpanel_t *panelp, unsigned int iobase)
3822 {
3823 unsigned char svrtype;
3824
3825 #ifdef DEBUG
3826 printk("stl_cd1400echintr(panelp=%x,iobase=%x)\n", (int) panelp,
3827 iobase);
3828 #endif
3829
3830 outb(SVRR, iobase);
3831 svrtype = inb(iobase + EREG_DATA);
3832 outb((SVRR + 0x80), iobase);
3833 svrtype |= inb(iobase + EREG_DATA);
3834 if (svrtype & SVRR_RX)
3835 stl_cd1400rxisr(panelp, iobase);
3836 else if (svrtype & SVRR_TX)
3837 stl_cd1400txisr(panelp, iobase);
3838 else if (svrtype & SVRR_MDM)
3839 stl_cd1400mdmisr(panelp, iobase);
3840 }
3841
3842
3843 /*****************************************************************************/
3844
3845 /*
3846 * Unfortunately we need to handle breaks in the TX data stream, since
3847 * this is the only way to generate them on the cd1400.
3848 */
3849
3850 static inline int stl_cd1400breakisr(stlport_t *portp, int ioaddr)
3851 {
3852 if (portp->brklen == 1) {
3853 outb((COR2 + portp->uartaddr), ioaddr);
3854 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3855 (ioaddr + EREG_DATA));
3856 outb((TDR + portp->uartaddr), ioaddr);
3857 outb(ETC_CMD, (ioaddr + EREG_DATA));
3858 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3859 outb((SRER + portp->uartaddr), ioaddr);
3860 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3861 (ioaddr + EREG_DATA));
3862 return 1;
3863 } else if (portp->brklen > 1) {
3864 outb((TDR + portp->uartaddr), ioaddr);
3865 outb(ETC_CMD, (ioaddr + EREG_DATA));
3866 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3867 portp->brklen = -1;
3868 return 1;
3869 } else {
3870 outb((COR2 + portp->uartaddr), ioaddr);
3871 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3872 (ioaddr + EREG_DATA));
3873 portp->brklen = 0;
3874 }
3875 return 0;
3876 }
3877
3878 /*****************************************************************************/
3879
3880 /*
3881 * Transmit interrupt handler. This has gotta be fast! Handling TX
3882 * chars is pretty simple, stuff as many as possible from the TX buffer
3883 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3884 * are embedded as commands in the data stream. Oh no, had to use a goto!
3885 * This could be optimized more, will do when I get time...
3886 * In practice it is possible that interrupts are enabled but that the
3887 * port has been hung up. Need to handle not having any TX buffer here,
3888 * this is done by using the side effect that head and tail will also
3889 * be NULL if the buffer has been freed.
3890 */
3891
3892 static void stl_cd1400txisr(stlpanel_t *panelp, int ioaddr)
3893 {
3894 stlport_t *portp;
3895 int len, stlen;
3896 char *head, *tail;
3897 unsigned char ioack, srer;
3898
3899 #ifdef DEBUG
3900 printk("stl_cd1400txisr(panelp=%x,ioaddr=%x)\n", (int) panelp, ioaddr);
3901 #endif
3902
3903 ioack = inb(ioaddr + EREG_TXACK);
3904 if (((ioack & panelp->ackmask) != 0) ||
3905 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3906 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3907 return;
3908 }
3909 portp = panelp->ports[(ioack >> 3)];
3910
3911 /*
3912 * Unfortunately we need to handle breaks in the data stream, since
3913 * this is the only way to generate them on the cd1400. Do it now if
3914 * a break is to be sent.
3915 */
3916 if (portp->brklen != 0)
3917 if (stl_cd1400breakisr(portp, ioaddr))
3918 goto stl_txalldone;
3919
3920 head = portp->tx.head;
3921 tail = portp->tx.tail;
3922 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3923 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3924 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3925 set_bit(ASYI_TXLOW, &portp->istate);
3926 schedule_work(&portp->tqueue);
3927 }
3928
3929 if (len == 0) {
3930 outb((SRER + portp->uartaddr), ioaddr);
3931 srer = inb(ioaddr + EREG_DATA);
3932 if (srer & SRER_TXDATA) {
3933 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3934 } else {
3935 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3936 clear_bit(ASYI_TXBUSY, &portp->istate);
3937 }
3938 outb(srer, (ioaddr + EREG_DATA));
3939 } else {
3940 len = MIN(len, CD1400_TXFIFOSIZE);
3941 portp->stats.txtotal += len;
3942 stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
3943 outb((TDR + portp->uartaddr), ioaddr);
3944 outsb((ioaddr + EREG_DATA), tail, stlen);
3945 len -= stlen;
3946 tail += stlen;
3947 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3948 tail = portp->tx.buf;
3949 if (len > 0) {
3950 outsb((ioaddr + EREG_DATA), tail, len);
3951 tail += len;
3952 }
3953 portp->tx.tail = tail;
3954 }
3955
3956 stl_txalldone:
3957 outb((EOSRR + portp->uartaddr), ioaddr);
3958 outb(0, (ioaddr + EREG_DATA));
3959 }
3960
3961 /*****************************************************************************/
3962
3963 /*
3964 * Receive character interrupt handler. Determine if we have good chars
3965 * or bad chars and then process appropriately. Good chars are easy
3966 * just shove the lot into the RX buffer and set all status byte to 0.
3967 * If a bad RX char then process as required. This routine needs to be
3968 * fast! In practice it is possible that we get an interrupt on a port
3969 * that is closed. This can happen on hangups - since they completely
3970 * shutdown a port not in user context. Need to handle this case.
3971 */
3972
3973 static void stl_cd1400rxisr(stlpanel_t *panelp, int ioaddr)
3974 {
3975 stlport_t *portp;
3976 struct tty_struct *tty;
3977 unsigned int ioack, len, buflen;
3978 unsigned char status;
3979 char ch;
3980
3981 #ifdef DEBUG
3982 printk("stl_cd1400rxisr(panelp=%x,ioaddr=%x)\n", (int) panelp, ioaddr);
3983 #endif
3984
3985 ioack = inb(ioaddr + EREG_RXACK);
3986 if ((ioack & panelp->ackmask) != 0) {
3987 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3988 return;
3989 }
3990 portp = panelp->ports[(ioack >> 3)];
3991 tty = portp->tty;
3992
3993 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
3994 outb((RDCR + portp->uartaddr), ioaddr);
3995 len = inb(ioaddr + EREG_DATA);
3996 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
3997 len = MIN(len, sizeof(stl_unwanted));
3998 outb((RDSR + portp->uartaddr), ioaddr);
3999 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
4000 portp->stats.rxlost += len;
4001 portp->stats.rxtotal += len;
4002 } else {
4003 len = MIN(len, buflen);
4004 if (len > 0) {
4005 unsigned char *ptr;
4006 outb((RDSR + portp->uartaddr), ioaddr);
4007 tty_prepare_flip_string(tty, &ptr, len);
4008 insb((ioaddr + EREG_DATA), ptr, len);
4009 tty_schedule_flip(tty);
4010 portp->stats.rxtotal += len;
4011 }
4012 }
4013 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
4014 outb((RDSR + portp->uartaddr), ioaddr);
4015 status = inb(ioaddr + EREG_DATA);
4016 ch = inb(ioaddr + EREG_DATA);
4017 if (status & ST_PARITY)
4018 portp->stats.rxparity++;
4019 if (status & ST_FRAMING)
4020 portp->stats.rxframing++;
4021 if (status & ST_OVERRUN)
4022 portp->stats.rxoverrun++;
4023 if (status & ST_BREAK)
4024 portp->stats.rxbreaks++;
4025 if (status & ST_SCHARMASK) {
4026 if ((status & ST_SCHARMASK) == ST_SCHAR1)
4027 portp->stats.txxon++;
4028 if ((status & ST_SCHARMASK) == ST_SCHAR2)
4029 portp->stats.txxoff++;
4030 goto stl_rxalldone;
4031 }
4032 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
4033 if (portp->rxmarkmsk & status) {
4034 if (status & ST_BREAK) {
4035 status = TTY_BREAK;
4036 if (portp->flags & ASYNC_SAK) {
4037 do_SAK(tty);
4038 BRDENABLE(portp->brdnr, portp->pagenr);
4039 }
4040 } else if (status & ST_PARITY) {
4041 status = TTY_PARITY;
4042 } else if (status & ST_FRAMING) {
4043 status = TTY_FRAME;
4044 } else if(status & ST_OVERRUN) {
4045 status = TTY_OVERRUN;
4046 } else {
4047 status = 0;
4048 }
4049 } else {
4050 status = 0;
4051 }
4052 tty_insert_flip_char(tty, ch, status);
4053 tty_schedule_flip(tty);
4054 }
4055 } else {
4056 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
4057 return;
4058 }
4059
4060 stl_rxalldone:
4061 outb((EOSRR + portp->uartaddr), ioaddr);
4062 outb(0, (ioaddr + EREG_DATA));
4063 }
4064
4065 /*****************************************************************************/
4066
4067 /*
4068 * Modem interrupt handler. The is called when the modem signal line
4069 * (DCD) has changed state. Leave most of the work to the off-level
4070 * processing routine.
4071 */
4072
4073 static void stl_cd1400mdmisr(stlpanel_t *panelp, int ioaddr)
4074 {
4075 stlport_t *portp;
4076 unsigned int ioack;
4077 unsigned char misr;
4078
4079 #ifdef DEBUG
4080 printk("stl_cd1400mdmisr(panelp=%x)\n", (int) panelp);
4081 #endif
4082
4083 ioack = inb(ioaddr + EREG_MDACK);
4084 if (((ioack & panelp->ackmask) != 0) ||
4085 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
4086 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
4087 return;
4088 }
4089 portp = panelp->ports[(ioack >> 3)];
4090
4091 outb((MISR + portp->uartaddr), ioaddr);
4092 misr = inb(ioaddr + EREG_DATA);
4093 if (misr & MISR_DCD) {
4094 set_bit(ASYI_DCDCHANGE, &portp->istate);
4095 schedule_work(&portp->tqueue);
4096 portp->stats.modem++;
4097 }
4098
4099 outb((EOSRR + portp->uartaddr), ioaddr);
4100 outb(0, (ioaddr + EREG_DATA));
4101 }
4102
4103 /*****************************************************************************/
4104 /* SC26198 HARDWARE FUNCTIONS */
4105 /*****************************************************************************/
4106
4107 /*
4108 * These functions get/set/update the registers of the sc26198 UARTs.
4109 * Access to the sc26198 registers is via an address/data io port pair.
4110 * (Maybe should make this inline...)
4111 */
4112
4113 static int stl_sc26198getreg(stlport_t *portp, int regnr)
4114 {
4115 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4116 return inb(portp->ioaddr + XP_DATA);
4117 }
4118
4119 static void stl_sc26198setreg(stlport_t *portp, int regnr, int value)
4120 {
4121 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4122 outb(value, (portp->ioaddr + XP_DATA));
4123 }
4124
4125 static int stl_sc26198updatereg(stlport_t *portp, int regnr, int value)
4126 {
4127 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4128 if (inb(portp->ioaddr + XP_DATA) != value) {
4129 outb(value, (portp->ioaddr + XP_DATA));
4130 return 1;
4131 }
4132 return 0;
4133 }
4134
4135 /*****************************************************************************/
4136
4137 /*
4138 * Functions to get and set the sc26198 global registers.
4139 */
4140
4141 static int stl_sc26198getglobreg(stlport_t *portp, int regnr)
4142 {
4143 outb(regnr, (portp->ioaddr + XP_ADDR));
4144 return inb(portp->ioaddr + XP_DATA);
4145 }
4146
4147 #if 0
4148 static void stl_sc26198setglobreg(stlport_t *portp, int regnr, int value)
4149 {
4150 outb(regnr, (portp->ioaddr + XP_ADDR));
4151 outb(value, (portp->ioaddr + XP_DATA));
4152 }
4153 #endif
4154
4155 /*****************************************************************************/
4156
4157 /*
4158 * Inbitialize the UARTs in a panel. We don't care what sort of board
4159 * these ports are on - since the port io registers are almost
4160 * identical when dealing with ports.
4161 */
4162
4163 static int stl_sc26198panelinit(stlbrd_t *brdp, stlpanel_t *panelp)
4164 {
4165 int chipmask, i;
4166 int nrchips, ioaddr;
4167
4168 #ifdef DEBUG
4169 printk("stl_sc26198panelinit(brdp=%x,panelp=%x)\n",
4170 (int) brdp, (int) panelp);
4171 #endif
4172
4173 BRDENABLE(panelp->brdnr, panelp->pagenr);
4174
4175 /*
4176 * Check that each chip is present and started up OK.
4177 */
4178 chipmask = 0;
4179 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
4180 if (brdp->brdtype == BRD_ECHPCI)
4181 outb(panelp->pagenr, brdp->ioctrl);
4182
4183 for (i = 0; (i < nrchips); i++) {
4184 ioaddr = panelp->iobase + (i * 4);
4185 outb(SCCR, (ioaddr + XP_ADDR));
4186 outb(CR_RESETALL, (ioaddr + XP_DATA));
4187 outb(TSTR, (ioaddr + XP_ADDR));
4188 if (inb(ioaddr + XP_DATA) != 0) {
4189 printk("STALLION: sc26198 not responding, "
4190 "brd=%d panel=%d chip=%d\n",
4191 panelp->brdnr, panelp->panelnr, i);
4192 continue;
4193 }
4194 chipmask |= (0x1 << i);
4195 outb(GCCR, (ioaddr + XP_ADDR));
4196 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
4197 outb(WDTRCR, (ioaddr + XP_ADDR));
4198 outb(0xff, (ioaddr + XP_DATA));
4199 }
4200
4201 BRDDISABLE(panelp->brdnr);
4202 return chipmask;
4203 }
4204
4205 /*****************************************************************************/
4206
4207 /*
4208 * Initialize hardware specific port registers.
4209 */
4210
4211 static void stl_sc26198portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp)
4212 {
4213 #ifdef DEBUG
4214 printk("stl_sc26198portinit(brdp=%x,panelp=%x,portp=%x)\n",
4215 (int) brdp, (int) panelp, (int) portp);
4216 #endif
4217
4218 if ((brdp == (stlbrd_t *) NULL) || (panelp == (stlpanel_t *) NULL) ||
4219 (portp == (stlport_t *) NULL))
4220 return;
4221
4222 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
4223 portp->uartaddr = (portp->portnr & 0x07) << 4;
4224 portp->pagenr = panelp->pagenr;
4225 portp->hwid = 0x1;
4226
4227 BRDENABLE(portp->brdnr, portp->pagenr);
4228 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
4229 BRDDISABLE(portp->brdnr);
4230 }
4231
4232 /*****************************************************************************/
4233
4234 /*
4235 * Set up the sc26198 registers for a port based on the termios port
4236 * settings.
4237 */
4238
4239 static void stl_sc26198setport(stlport_t *portp, struct termios *tiosp)
4240 {
4241 stlbrd_t *brdp;
4242 unsigned long flags;
4243 unsigned int baudrate;
4244 unsigned char mr0, mr1, mr2, clk;
4245 unsigned char imron, imroff, iopr, ipr;
4246
4247 mr0 = 0;
4248 mr1 = 0;
4249 mr2 = 0;
4250 clk = 0;
4251 iopr = 0;
4252 imron = 0;
4253 imroff = 0;
4254
4255 brdp = stl_brds[portp->brdnr];
4256 if (brdp == (stlbrd_t *) NULL)
4257 return;
4258
4259 /*
4260 * Set up the RX char ignore mask with those RX error types we
4261 * can ignore.
4262 */
4263 portp->rxignoremsk = 0;
4264 if (tiosp->c_iflag & IGNPAR)
4265 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
4266 SR_RXOVERRUN);
4267 if (tiosp->c_iflag & IGNBRK)
4268 portp->rxignoremsk |= SR_RXBREAK;
4269
4270 portp->rxmarkmsk = SR_RXOVERRUN;
4271 if (tiosp->c_iflag & (INPCK | PARMRK))
4272 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
4273 if (tiosp->c_iflag & BRKINT)
4274 portp->rxmarkmsk |= SR_RXBREAK;
4275
4276 /*
4277 * Go through the char size, parity and stop bits and set all the
4278 * option register appropriately.
4279 */
4280 switch (tiosp->c_cflag & CSIZE) {
4281 case CS5:
4282 mr1 |= MR1_CS5;
4283 break;
4284 case CS6:
4285 mr1 |= MR1_CS6;
4286 break;
4287 case CS7:
4288 mr1 |= MR1_CS7;
4289 break;
4290 default:
4291 mr1 |= MR1_CS8;
4292 break;
4293 }
4294
4295 if (tiosp->c_cflag & CSTOPB)
4296 mr2 |= MR2_STOP2;
4297 else
4298 mr2 |= MR2_STOP1;
4299
4300 if (tiosp->c_cflag & PARENB) {
4301 if (tiosp->c_cflag & PARODD)
4302 mr1 |= (MR1_PARENB | MR1_PARODD);
4303 else
4304 mr1 |= (MR1_PARENB | MR1_PAREVEN);
4305 } else {
4306 mr1 |= MR1_PARNONE;
4307 }
4308
4309 mr1 |= MR1_ERRBLOCK;
4310
4311 /*
4312 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
4313 * space for hardware flow control and the like. This should be set to
4314 * VMIN.
4315 */
4316 mr2 |= MR2_RXFIFOHALF;
4317
4318 /*
4319 * Calculate the baud rate timers. For now we will just assume that
4320 * the input and output baud are the same. The sc26198 has a fixed
4321 * baud rate table, so only discrete baud rates possible.
4322 */
4323 baudrate = tiosp->c_cflag & CBAUD;
4324 if (baudrate & CBAUDEX) {
4325 baudrate &= ~CBAUDEX;
4326 if ((baudrate < 1) || (baudrate > 4))
4327 tiosp->c_cflag &= ~CBAUDEX;
4328 else
4329 baudrate += 15;
4330 }
4331 baudrate = stl_baudrates[baudrate];
4332 if ((tiosp->c_cflag & CBAUD) == B38400) {
4333 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
4334 baudrate = 57600;
4335 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
4336 baudrate = 115200;
4337 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
4338 baudrate = 230400;
4339 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
4340 baudrate = 460800;
4341 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
4342 baudrate = (portp->baud_base / portp->custom_divisor);
4343 }
4344 if (baudrate > STL_SC26198MAXBAUD)
4345 baudrate = STL_SC26198MAXBAUD;
4346
4347 if (baudrate > 0) {
4348 for (clk = 0; (clk < SC26198_NRBAUDS); clk++) {
4349 if (baudrate <= sc26198_baudtable[clk])
4350 break;
4351 }
4352 }
4353
4354 /*
4355 * Check what form of modem signaling is required and set it up.
4356 */
4357 if (tiosp->c_cflag & CLOCAL) {
4358 portp->flags &= ~ASYNC_CHECK_CD;
4359 } else {
4360 iopr |= IOPR_DCDCOS;
4361 imron |= IR_IOPORT;
4362 portp->flags |= ASYNC_CHECK_CD;
4363 }
4364
4365 /*
4366 * Setup sc26198 enhanced modes if we can. In particular we want to
4367 * handle as much of the flow control as possible automatically. As
4368 * well as saving a few CPU cycles it will also greatly improve flow
4369 * control reliability.
4370 */
4371 if (tiosp->c_iflag & IXON) {
4372 mr0 |= MR0_SWFTX | MR0_SWFT;
4373 imron |= IR_XONXOFF;
4374 } else {
4375 imroff |= IR_XONXOFF;
4376 }
4377 if (tiosp->c_iflag & IXOFF)
4378 mr0 |= MR0_SWFRX;
4379
4380 if (tiosp->c_cflag & CRTSCTS) {
4381 mr2 |= MR2_AUTOCTS;
4382 mr1 |= MR1_AUTORTS;
4383 }
4384
4385 /*
4386 * All sc26198 register values calculated so go through and set
4387 * them all up.
4388 */
4389
4390 #ifdef DEBUG
4391 printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
4392 portp->portnr, portp->panelnr, portp->brdnr);
4393 printk(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
4394 printk(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
4395 printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
4396 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
4397 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
4398 #endif
4399
4400 spin_lock_irqsave(&brd_lock, flags);
4401 BRDENABLE(portp->brdnr, portp->pagenr);
4402 stl_sc26198setreg(portp, IMR, 0);
4403 stl_sc26198updatereg(portp, MR0, mr0);
4404 stl_sc26198updatereg(portp, MR1, mr1);
4405 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
4406 stl_sc26198updatereg(portp, MR2, mr2);
4407 stl_sc26198updatereg(portp, IOPIOR,
4408 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
4409
4410 if (baudrate > 0) {
4411 stl_sc26198setreg(portp, TXCSR, clk);
4412 stl_sc26198setreg(portp, RXCSR, clk);
4413 }
4414
4415 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
4416 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
4417
4418 ipr = stl_sc26198getreg(portp, IPR);
4419 if (ipr & IPR_DCD)
4420 portp->sigs &= ~TIOCM_CD;
4421 else
4422 portp->sigs |= TIOCM_CD;
4423
4424 portp->imr = (portp->imr & ~imroff) | imron;
4425 stl_sc26198setreg(portp, IMR, portp->imr);
4426 BRDDISABLE(portp->brdnr);
4427 spin_unlock_irqrestore(&brd_lock, flags);
4428 }
4429
4430 /*****************************************************************************/
4431
4432 /*
4433 * Set the state of the DTR and RTS signals.
4434 */
4435
4436 static void stl_sc26198setsignals(stlport_t *portp, int dtr, int rts)
4437 {
4438 unsigned char iopioron, iopioroff;
4439 unsigned long flags;
4440
4441 #ifdef DEBUG
4442 printk("stl_sc26198setsignals(portp=%x,dtr=%d,rts=%d)\n",
4443 (int) portp, dtr, rts);
4444 #endif
4445
4446 iopioron = 0;
4447 iopioroff = 0;
4448 if (dtr == 0)
4449 iopioroff |= IPR_DTR;
4450 else if (dtr > 0)
4451 iopioron |= IPR_DTR;
4452 if (rts == 0)
4453 iopioroff |= IPR_RTS;
4454 else if (rts > 0)
4455 iopioron |= IPR_RTS;
4456
4457 spin_lock_irqsave(&brd_lock, flags);
4458 BRDENABLE(portp->brdnr, portp->pagenr);
4459 stl_sc26198setreg(portp, IOPIOR,
4460 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
4461 BRDDISABLE(portp->brdnr);
4462 spin_unlock_irqrestore(&brd_lock, flags);
4463 }
4464
4465 /*****************************************************************************/
4466
4467 /*
4468 * Return the state of the signals.
4469 */
4470
4471 static int stl_sc26198getsignals(stlport_t *portp)
4472 {
4473 unsigned char ipr;
4474 unsigned long flags;
4475 int sigs;
4476
4477 #ifdef DEBUG
4478 printk("stl_sc26198getsignals(portp=%x)\n", (int) portp);
4479 #endif
4480
4481 spin_lock_irqsave(&brd_lock, flags);
4482 BRDENABLE(portp->brdnr, portp->pagenr);
4483 ipr = stl_sc26198getreg(portp, IPR);
4484 BRDDISABLE(portp->brdnr);
4485 spin_unlock_irqrestore(&brd_lock, flags);
4486
4487 sigs = 0;
4488 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
4489 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
4490 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
4491 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
4492 sigs |= TIOCM_DSR;
4493 return sigs;
4494 }
4495
4496 /*****************************************************************************/
4497
4498 /*
4499 * Enable/Disable the Transmitter and/or Receiver.
4500 */
4501
4502 static void stl_sc26198enablerxtx(stlport_t *portp, int rx, int tx)
4503 {
4504 unsigned char ccr;
4505 unsigned long flags;
4506
4507 #ifdef DEBUG
4508 printk("stl_sc26198enablerxtx(portp=%x,rx=%d,tx=%d)\n",
4509 (int) portp, rx, tx);
4510 #endif
4511
4512 ccr = portp->crenable;
4513 if (tx == 0)
4514 ccr &= ~CR_TXENABLE;
4515 else if (tx > 0)
4516 ccr |= CR_TXENABLE;
4517 if (rx == 0)
4518 ccr &= ~CR_RXENABLE;
4519 else if (rx > 0)
4520 ccr |= CR_RXENABLE;
4521
4522 spin_lock_irqsave(&brd_lock, flags);
4523 BRDENABLE(portp->brdnr, portp->pagenr);
4524 stl_sc26198setreg(portp, SCCR, ccr);
4525 BRDDISABLE(portp->brdnr);
4526 portp->crenable = ccr;
4527 spin_unlock_irqrestore(&brd_lock, flags);
4528 }
4529
4530 /*****************************************************************************/
4531
4532 /*
4533 * Start/stop the Transmitter and/or Receiver.
4534 */
4535
4536 static void stl_sc26198startrxtx(stlport_t *portp, int rx, int tx)
4537 {
4538 unsigned char imr;
4539 unsigned long flags;
4540
4541 #ifdef DEBUG
4542 printk("stl_sc26198startrxtx(portp=%x,rx=%d,tx=%d)\n",
4543 (int) portp, rx, tx);
4544 #endif
4545
4546 imr = portp->imr;
4547 if (tx == 0)
4548 imr &= ~IR_TXRDY;
4549 else if (tx == 1)
4550 imr |= IR_TXRDY;
4551 if (rx == 0)
4552 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4553 else if (rx > 0)
4554 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4555
4556 spin_lock_irqsave(&brd_lock, flags);
4557 BRDENABLE(portp->brdnr, portp->pagenr);
4558 stl_sc26198setreg(portp, IMR, imr);
4559 BRDDISABLE(portp->brdnr);
4560 portp->imr = imr;
4561 if (tx > 0)
4562 set_bit(ASYI_TXBUSY, &portp->istate);
4563 spin_unlock_irqrestore(&brd_lock, flags);
4564 }
4565
4566 /*****************************************************************************/
4567
4568 /*
4569 * Disable all interrupts from this port.
4570 */
4571
4572 static void stl_sc26198disableintrs(stlport_t *portp)
4573 {
4574 unsigned long flags;
4575
4576 #ifdef DEBUG
4577 printk("stl_sc26198disableintrs(portp=%x)\n", (int) portp);
4578 #endif
4579
4580 spin_lock_irqsave(&brd_lock, flags);
4581 BRDENABLE(portp->brdnr, portp->pagenr);
4582 portp->imr = 0;
4583 stl_sc26198setreg(portp, IMR, 0);
4584 BRDDISABLE(portp->brdnr);
4585 spin_unlock_irqrestore(&brd_lock, flags);
4586 }
4587
4588 /*****************************************************************************/
4589
4590 static void stl_sc26198sendbreak(stlport_t *portp, int len)
4591 {
4592 unsigned long flags;
4593
4594 #ifdef DEBUG
4595 printk("stl_sc26198sendbreak(portp=%x,len=%d)\n", (int) portp, len);
4596 #endif
4597
4598 spin_lock_irqsave(&brd_lock, flags);
4599 BRDENABLE(portp->brdnr, portp->pagenr);
4600 if (len == 1) {
4601 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4602 portp->stats.txbreaks++;
4603 } else {
4604 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4605 }
4606 BRDDISABLE(portp->brdnr);
4607 spin_unlock_irqrestore(&brd_lock, flags);
4608 }
4609
4610 /*****************************************************************************/
4611
4612 /*
4613 * Take flow control actions...
4614 */
4615
4616 static void stl_sc26198flowctrl(stlport_t *portp, int state)
4617 {
4618 struct tty_struct *tty;
4619 unsigned long flags;
4620 unsigned char mr0;
4621
4622 #ifdef DEBUG
4623 printk("stl_sc26198flowctrl(portp=%x,state=%x)\n", (int) portp, state);
4624 #endif
4625
4626 if (portp == (stlport_t *) NULL)
4627 return;
4628 tty = portp->tty;
4629 if (tty == (struct tty_struct *) NULL)
4630 return;
4631
4632 spin_lock_irqsave(&brd_lock, flags);
4633 BRDENABLE(portp->brdnr, portp->pagenr);
4634
4635 if (state) {
4636 if (tty->termios->c_iflag & IXOFF) {
4637 mr0 = stl_sc26198getreg(portp, MR0);
4638 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4639 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4640 mr0 |= MR0_SWFRX;
4641 portp->stats.rxxon++;
4642 stl_sc26198wait(portp);
4643 stl_sc26198setreg(portp, MR0, mr0);
4644 }
4645 /*
4646 * Question: should we return RTS to what it was before? It may
4647 * have been set by an ioctl... Suppose not, since if you have
4648 * hardware flow control set then it is pretty silly to go and
4649 * set the RTS line by hand.
4650 */
4651 if (tty->termios->c_cflag & CRTSCTS) {
4652 stl_sc26198setreg(portp, MR1,
4653 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4654 stl_sc26198setreg(portp, IOPIOR,
4655 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4656 portp->stats.rxrtson++;
4657 }
4658 } else {
4659 if (tty->termios->c_iflag & IXOFF) {
4660 mr0 = stl_sc26198getreg(portp, MR0);
4661 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4662 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4663 mr0 &= ~MR0_SWFRX;
4664 portp->stats.rxxoff++;
4665 stl_sc26198wait(portp);
4666 stl_sc26198setreg(portp, MR0, mr0);
4667 }
4668 if (tty->termios->c_cflag & CRTSCTS) {
4669 stl_sc26198setreg(portp, MR1,
4670 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4671 stl_sc26198setreg(portp, IOPIOR,
4672 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4673 portp->stats.rxrtsoff++;
4674 }
4675 }
4676
4677 BRDDISABLE(portp->brdnr);
4678 spin_unlock_irqrestore(&brd_lock, flags);
4679 }
4680
4681 /*****************************************************************************/
4682
4683 /*
4684 * Send a flow control character.
4685 */
4686
4687 static void stl_sc26198sendflow(stlport_t *portp, int state)
4688 {
4689 struct tty_struct *tty;
4690 unsigned long flags;
4691 unsigned char mr0;
4692
4693 #ifdef DEBUG
4694 printk("stl_sc26198sendflow(portp=%x,state=%x)\n", (int) portp, state);
4695 #endif
4696
4697 if (portp == (stlport_t *) NULL)
4698 return;
4699 tty = portp->tty;
4700 if (tty == (struct tty_struct *) NULL)
4701 return;
4702
4703 spin_lock_irqsave(&brd_lock, flags);
4704 BRDENABLE(portp->brdnr, portp->pagenr);
4705 if (state) {
4706 mr0 = stl_sc26198getreg(portp, MR0);
4707 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4708 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4709 mr0 |= MR0_SWFRX;
4710 portp->stats.rxxon++;
4711 stl_sc26198wait(portp);
4712 stl_sc26198setreg(portp, MR0, mr0);
4713 } else {
4714 mr0 = stl_sc26198getreg(portp, MR0);
4715 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4716 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4717 mr0 &= ~MR0_SWFRX;
4718 portp->stats.rxxoff++;
4719 stl_sc26198wait(portp);
4720 stl_sc26198setreg(portp, MR0, mr0);
4721 }
4722 BRDDISABLE(portp->brdnr);
4723 spin_unlock_irqrestore(&brd_lock, flags);
4724 }
4725
4726 /*****************************************************************************/
4727
4728 static void stl_sc26198flush(stlport_t *portp)
4729 {
4730 unsigned long flags;
4731
4732 #ifdef DEBUG
4733 printk("stl_sc26198flush(portp=%x)\n", (int) portp);
4734 #endif
4735
4736 if (portp == (stlport_t *) NULL)
4737 return;
4738
4739 spin_lock_irqsave(&brd_lock, flags);
4740 BRDENABLE(portp->brdnr, portp->pagenr);
4741 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4742 stl_sc26198setreg(portp, SCCR, portp->crenable);
4743 BRDDISABLE(portp->brdnr);
4744 portp->tx.tail = portp->tx.head;
4745 spin_unlock_irqrestore(&brd_lock, flags);
4746 }
4747
4748 /*****************************************************************************/
4749
4750 /*
4751 * Return the current state of data flow on this port. This is only
4752 * really interresting when determining if data has fully completed
4753 * transmission or not... The sc26198 interrupt scheme cannot
4754 * determine when all data has actually drained, so we need to
4755 * check the port statusy register to be sure.
4756 */
4757
4758 static int stl_sc26198datastate(stlport_t *portp)
4759 {
4760 unsigned long flags;
4761 unsigned char sr;
4762
4763 #ifdef DEBUG
4764 printk("stl_sc26198datastate(portp=%x)\n", (int) portp);
4765 #endif
4766
4767 if (portp == (stlport_t *) NULL)
4768 return 0;
4769 if (test_bit(ASYI_TXBUSY, &portp->istate))
4770 return 1;
4771
4772 spin_lock_irqsave(&brd_lock, flags);
4773 BRDENABLE(portp->brdnr, portp->pagenr);
4774 sr = stl_sc26198getreg(portp, SR);
4775 BRDDISABLE(portp->brdnr);
4776 spin_unlock_irqrestore(&brd_lock, flags);
4777
4778 return (sr & SR_TXEMPTY) ? 0 : 1;
4779 }
4780
4781 /*****************************************************************************/
4782
4783 /*
4784 * Delay for a small amount of time, to give the sc26198 a chance
4785 * to process a command...
4786 */
4787
4788 static void stl_sc26198wait(stlport_t *portp)
4789 {
4790 int i;
4791
4792 #ifdef DEBUG
4793 printk("stl_sc26198wait(portp=%x)\n", (int) portp);
4794 #endif
4795
4796 if (portp == (stlport_t *) NULL)
4797 return;
4798
4799 for (i = 0; (i < 20); i++)
4800 stl_sc26198getglobreg(portp, TSTR);
4801 }
4802
4803 /*****************************************************************************/
4804
4805 /*
4806 * If we are TX flow controlled and in IXANY mode then we may
4807 * need to unflow control here. We gotta do this because of the
4808 * automatic flow control modes of the sc26198.
4809 */
4810
4811 static inline void stl_sc26198txunflow(stlport_t *portp, struct tty_struct *tty)
4812 {
4813 unsigned char mr0;
4814
4815 mr0 = stl_sc26198getreg(portp, MR0);
4816 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4817 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4818 stl_sc26198wait(portp);
4819 stl_sc26198setreg(portp, MR0, mr0);
4820 clear_bit(ASYI_TXFLOWED, &portp->istate);
4821 }
4822
4823 /*****************************************************************************/
4824
4825 /*
4826 * Interrupt service routine for sc26198 panels.
4827 */
4828
4829 static void stl_sc26198intr(stlpanel_t *panelp, unsigned int iobase)
4830 {
4831 stlport_t *portp;
4832 unsigned int iack;
4833
4834 spin_lock(&brd_lock);
4835
4836 /*
4837 * Work around bug in sc26198 chip... Cannot have A6 address
4838 * line of UART high, else iack will be returned as 0.
4839 */
4840 outb(0, (iobase + 1));
4841
4842 iack = inb(iobase + XP_IACK);
4843 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4844
4845 if (iack & IVR_RXDATA)
4846 stl_sc26198rxisr(portp, iack);
4847 else if (iack & IVR_TXDATA)
4848 stl_sc26198txisr(portp);
4849 else
4850 stl_sc26198otherisr(portp, iack);
4851
4852 spin_unlock(&brd_lock);
4853 }
4854
4855 /*****************************************************************************/
4856
4857 /*
4858 * Transmit interrupt handler. This has gotta be fast! Handling TX
4859 * chars is pretty simple, stuff as many as possible from the TX buffer
4860 * into the sc26198 FIFO.
4861 * In practice it is possible that interrupts are enabled but that the
4862 * port has been hung up. Need to handle not having any TX buffer here,
4863 * this is done by using the side effect that head and tail will also
4864 * be NULL if the buffer has been freed.
4865 */
4866
4867 static void stl_sc26198txisr(stlport_t *portp)
4868 {
4869 unsigned int ioaddr;
4870 unsigned char mr0;
4871 int len, stlen;
4872 char *head, *tail;
4873
4874 #ifdef DEBUG
4875 printk("stl_sc26198txisr(portp=%x)\n", (int) portp);
4876 #endif
4877
4878 ioaddr = portp->ioaddr;
4879 head = portp->tx.head;
4880 tail = portp->tx.tail;
4881 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4882 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4883 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4884 set_bit(ASYI_TXLOW, &portp->istate);
4885 schedule_work(&portp->tqueue);
4886 }
4887
4888 if (len == 0) {
4889 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4890 mr0 = inb(ioaddr + XP_DATA);
4891 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4892 portp->imr &= ~IR_TXRDY;
4893 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4894 outb(portp->imr, (ioaddr + XP_DATA));
4895 clear_bit(ASYI_TXBUSY, &portp->istate);
4896 } else {
4897 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4898 outb(mr0, (ioaddr + XP_DATA));
4899 }
4900 } else {
4901 len = MIN(len, SC26198_TXFIFOSIZE);
4902 portp->stats.txtotal += len;
4903 stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
4904 outb(GTXFIFO, (ioaddr + XP_ADDR));
4905 outsb((ioaddr + XP_DATA), tail, stlen);
4906 len -= stlen;
4907 tail += stlen;
4908 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4909 tail = portp->tx.buf;
4910 if (len > 0) {
4911 outsb((ioaddr + XP_DATA), tail, len);
4912 tail += len;
4913 }
4914 portp->tx.tail = tail;
4915 }
4916 }
4917
4918 /*****************************************************************************/
4919
4920 /*
4921 * Receive character interrupt handler. Determine if we have good chars
4922 * or bad chars and then process appropriately. Good chars are easy
4923 * just shove the lot into the RX buffer and set all status byte to 0.
4924 * If a bad RX char then process as required. This routine needs to be
4925 * fast! In practice it is possible that we get an interrupt on a port
4926 * that is closed. This can happen on hangups - since they completely
4927 * shutdown a port not in user context. Need to handle this case.
4928 */
4929
4930 static void stl_sc26198rxisr(stlport_t *portp, unsigned int iack)
4931 {
4932 struct tty_struct *tty;
4933 unsigned int len, buflen, ioaddr;
4934
4935 #ifdef DEBUG
4936 printk("stl_sc26198rxisr(portp=%x,iack=%x)\n", (int) portp, iack);
4937 #endif
4938
4939 tty = portp->tty;
4940 ioaddr = portp->ioaddr;
4941 outb(GIBCR, (ioaddr + XP_ADDR));
4942 len = inb(ioaddr + XP_DATA) + 1;
4943
4944 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
4945 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4946 len = MIN(len, sizeof(stl_unwanted));
4947 outb(GRXFIFO, (ioaddr + XP_ADDR));
4948 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4949 portp->stats.rxlost += len;
4950 portp->stats.rxtotal += len;
4951 } else {
4952 len = MIN(len, buflen);
4953 if (len > 0) {
4954 unsigned char *ptr;
4955 outb(GRXFIFO, (ioaddr + XP_ADDR));
4956 tty_prepare_flip_string(tty, &ptr, len);
4957 insb((ioaddr + XP_DATA), ptr, len);
4958 tty_schedule_flip(tty);
4959 portp->stats.rxtotal += len;
4960 }
4961 }
4962 } else {
4963 stl_sc26198rxbadchars(portp);
4964 }
4965
4966 /*
4967 * If we are TX flow controlled and in IXANY mode then we may need
4968 * to unflow control here. We gotta do this because of the automatic
4969 * flow control modes of the sc26198.
4970 */
4971 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
4972 if ((tty != (struct tty_struct *) NULL) &&
4973 (tty->termios != (struct termios *) NULL) &&
4974 (tty->termios->c_iflag & IXANY)) {
4975 stl_sc26198txunflow(portp, tty);
4976 }
4977 }
4978 }
4979
4980 /*****************************************************************************/
4981
4982 /*
4983 * Process an RX bad character.
4984 */
4985
4986 static inline void stl_sc26198rxbadch(stlport_t *portp, unsigned char status, char ch)
4987 {
4988 struct tty_struct *tty;
4989 unsigned int ioaddr;
4990
4991 tty = portp->tty;
4992 ioaddr = portp->ioaddr;
4993
4994 if (status & SR_RXPARITY)
4995 portp->stats.rxparity++;
4996 if (status & SR_RXFRAMING)
4997 portp->stats.rxframing++;
4998 if (status & SR_RXOVERRUN)
4999 portp->stats.rxoverrun++;
5000 if (status & SR_RXBREAK)
5001 portp->stats.rxbreaks++;
5002
5003 if ((tty != (struct tty_struct *) NULL) &&
5004 ((portp->rxignoremsk & status) == 0)) {
5005 if (portp->rxmarkmsk & status) {
5006 if (status & SR_RXBREAK) {
5007 status = TTY_BREAK;
5008 if (portp->flags & ASYNC_SAK) {
5009 do_SAK(tty);
5010 BRDENABLE(portp->brdnr, portp->pagenr);
5011 }
5012 } else if (status & SR_RXPARITY) {
5013 status = TTY_PARITY;
5014 } else if (status & SR_RXFRAMING) {
5015 status = TTY_FRAME;
5016 } else if(status & SR_RXOVERRUN) {
5017 status = TTY_OVERRUN;
5018 } else {
5019 status = 0;
5020 }
5021 } else {
5022 status = 0;
5023 }
5024
5025 tty_insert_flip_char(tty, ch, status);
5026 tty_schedule_flip(tty);
5027
5028 if (status == 0)
5029 portp->stats.rxtotal++;
5030 }
5031 }
5032
5033 /*****************************************************************************/
5034
5035 /*
5036 * Process all characters in the RX FIFO of the UART. Check all char
5037 * status bytes as well, and process as required. We need to check
5038 * all bytes in the FIFO, in case some more enter the FIFO while we
5039 * are here. To get the exact character error type we need to switch
5040 * into CHAR error mode (that is why we need to make sure we empty
5041 * the FIFO).
5042 */
5043
5044 static void stl_sc26198rxbadchars(stlport_t *portp)
5045 {
5046 unsigned char status, mr1;
5047 char ch;
5048
5049 /*
5050 * To get the precise error type for each character we must switch
5051 * back into CHAR error mode.
5052 */
5053 mr1 = stl_sc26198getreg(portp, MR1);
5054 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
5055
5056 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
5057 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
5058 ch = stl_sc26198getreg(portp, RXFIFO);
5059 stl_sc26198rxbadch(portp, status, ch);
5060 }
5061
5062 /*
5063 * To get correct interrupt class we must switch back into BLOCK
5064 * error mode.
5065 */
5066 stl_sc26198setreg(portp, MR1, mr1);
5067 }
5068
5069 /*****************************************************************************/
5070
5071 /*
5072 * Other interrupt handler. This includes modem signals, flow
5073 * control actions, etc. Most stuff is left to off-level interrupt
5074 * processing time.
5075 */
5076
5077 static void stl_sc26198otherisr(stlport_t *portp, unsigned int iack)
5078 {
5079 unsigned char cir, ipr, xisr;
5080
5081 #ifdef DEBUG
5082 printk("stl_sc26198otherisr(portp=%x,iack=%x)\n", (int) portp, iack);
5083 #endif
5084
5085 cir = stl_sc26198getglobreg(portp, CIR);
5086
5087 switch (cir & CIR_SUBTYPEMASK) {
5088 case CIR_SUBCOS:
5089 ipr = stl_sc26198getreg(portp, IPR);
5090 if (ipr & IPR_DCDCHANGE) {
5091 set_bit(ASYI_DCDCHANGE, &portp->istate);
5092 schedule_work(&portp->tqueue);
5093 portp->stats.modem++;
5094 }
5095 break;
5096 case CIR_SUBXONXOFF:
5097 xisr = stl_sc26198getreg(portp, XISR);
5098 if (xisr & XISR_RXXONGOT) {
5099 set_bit(ASYI_TXFLOWED, &portp->istate);
5100 portp->stats.txxoff++;
5101 }
5102 if (xisr & XISR_RXXOFFGOT) {
5103 clear_bit(ASYI_TXFLOWED, &portp->istate);
5104 portp->stats.txxon++;
5105 }
5106 break;
5107 case CIR_SUBBREAK:
5108 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
5109 stl_sc26198rxbadchars(portp);
5110 break;
5111 default:
5112 break;
5113 }
5114 }
5115
5116 /*****************************************************************************/