]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/char/stallion.c
Merge ../linux-2.6/
[mirror_ubuntu-artful-kernel.git] / drivers / char / stallion.c
1 /*****************************************************************************/
2
3 /*
4 * stallion.c -- stallion multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27 /*****************************************************************************/
28
29 #include <linux/config.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/tty.h>
34 #include <linux/tty_flip.h>
35 #include <linux/serial.h>
36 #include <linux/cd1400.h>
37 #include <linux/sc26198.h>
38 #include <linux/comstats.h>
39 #include <linux/stallion.h>
40 #include <linux/ioport.h>
41 #include <linux/init.h>
42 #include <linux/smp_lock.h>
43 #include <linux/devfs_fs_kernel.h>
44 #include <linux/device.h>
45 #include <linux/delay.h>
46
47 #include <asm/io.h>
48 #include <asm/uaccess.h>
49
50 #ifdef CONFIG_PCI
51 #include <linux/pci.h>
52 #endif
53
54 /*****************************************************************************/
55
56 /*
57 * Define different board types. Use the standard Stallion "assigned"
58 * board numbers. Boards supported in this driver are abbreviated as
59 * EIO = EasyIO and ECH = EasyConnection 8/32.
60 */
61 #define BRD_EASYIO 20
62 #define BRD_ECH 21
63 #define BRD_ECHMC 22
64 #define BRD_ECHPCI 26
65 #define BRD_ECH64PCI 27
66 #define BRD_EASYIOPCI 28
67
68 /*
69 * Define a configuration structure to hold the board configuration.
70 * Need to set this up in the code (for now) with the boards that are
71 * to be configured into the system. This is what needs to be modified
72 * when adding/removing/modifying boards. Each line entry in the
73 * stl_brdconf[] array is a board. Each line contains io/irq/memory
74 * ranges for that board (as well as what type of board it is).
75 * Some examples:
76 * { BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },
77 * This line would configure an EasyIO board (4 or 8, no difference),
78 * at io address 2a0 and irq 10.
79 * Another example:
80 * { BRD_ECH, 0x2a8, 0x280, 0, 12, 0 },
81 * This line will configure an EasyConnection 8/32 board at primary io
82 * address 2a8, secondary io address 280 and irq 12.
83 * Enter as many lines into this array as you want (only the first 4
84 * will actually be used!). Any combination of EasyIO and EasyConnection
85 * boards can be specified. EasyConnection 8/32 boards can share their
86 * secondary io addresses between each other.
87 *
88 * NOTE: there is no need to put any entries in this table for PCI
89 * boards. They will be found automatically by the driver - provided
90 * PCI BIOS32 support is compiled into the kernel.
91 */
92
93 typedef struct {
94 int brdtype;
95 int ioaddr1;
96 int ioaddr2;
97 unsigned long memaddr;
98 int irq;
99 int irqtype;
100 } stlconf_t;
101
102 static stlconf_t stl_brdconf[] = {
103 /*{ BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },*/
104 };
105
106 static int stl_nrbrds = ARRAY_SIZE(stl_brdconf);
107
108 /*****************************************************************************/
109
110 /*
111 * Define some important driver characteristics. Device major numbers
112 * allocated as per Linux Device Registry.
113 */
114 #ifndef STL_SIOMEMMAJOR
115 #define STL_SIOMEMMAJOR 28
116 #endif
117 #ifndef STL_SERIALMAJOR
118 #define STL_SERIALMAJOR 24
119 #endif
120 #ifndef STL_CALLOUTMAJOR
121 #define STL_CALLOUTMAJOR 25
122 #endif
123
124 /*
125 * Set the TX buffer size. Bigger is better, but we don't want
126 * to chew too much memory with buffers!
127 */
128 #define STL_TXBUFLOW 512
129 #define STL_TXBUFSIZE 4096
130
131 /*****************************************************************************/
132
133 /*
134 * Define our local driver identity first. Set up stuff to deal with
135 * all the local structures required by a serial tty driver.
136 */
137 static char *stl_drvtitle = "Stallion Multiport Serial Driver";
138 static char *stl_drvname = "stallion";
139 static char *stl_drvversion = "5.6.0";
140
141 static struct tty_driver *stl_serial;
142
143 /*
144 * Define a local default termios struct. All ports will be created
145 * with this termios initially. Basically all it defines is a raw port
146 * at 9600, 8 data bits, 1 stop bit.
147 */
148 static struct termios stl_deftermios = {
149 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
150 .c_cc = INIT_C_CC,
151 };
152
153 /*
154 * Define global stats structures. Not used often, and can be
155 * re-used for each stats call.
156 */
157 static comstats_t stl_comstats;
158 static combrd_t stl_brdstats;
159 static stlbrd_t stl_dummybrd;
160 static stlport_t stl_dummyport;
161
162 /*
163 * Define global place to put buffer overflow characters.
164 */
165 static char stl_unwanted[SC26198_RXFIFOSIZE];
166
167 /*****************************************************************************/
168
169 static stlbrd_t *stl_brds[STL_MAXBRDS];
170
171 /*
172 * Per board state flags. Used with the state field of the board struct.
173 * Not really much here!
174 */
175 #define BRD_FOUND 0x1
176
177 /*
178 * Define the port structure istate flags. These set of flags are
179 * modified at interrupt time - so setting and reseting them needs
180 * to be atomic. Use the bit clear/setting routines for this.
181 */
182 #define ASYI_TXBUSY 1
183 #define ASYI_TXLOW 2
184 #define ASYI_DCDCHANGE 3
185 #define ASYI_TXFLOWED 4
186
187 /*
188 * Define an array of board names as printable strings. Handy for
189 * referencing boards when printing trace and stuff.
190 */
191 static char *stl_brdnames[] = {
192 (char *) NULL,
193 (char *) NULL,
194 (char *) NULL,
195 (char *) NULL,
196 (char *) NULL,
197 (char *) NULL,
198 (char *) NULL,
199 (char *) NULL,
200 (char *) NULL,
201 (char *) NULL,
202 (char *) NULL,
203 (char *) NULL,
204 (char *) NULL,
205 (char *) NULL,
206 (char *) NULL,
207 (char *) NULL,
208 (char *) NULL,
209 (char *) NULL,
210 (char *) NULL,
211 (char *) NULL,
212 "EasyIO",
213 "EC8/32-AT",
214 "EC8/32-MC",
215 (char *) NULL,
216 (char *) NULL,
217 (char *) NULL,
218 "EC8/32-PCI",
219 "EC8/64-PCI",
220 "EasyIO-PCI",
221 };
222
223 /*****************************************************************************/
224
225 /*
226 * Define some string labels for arguments passed from the module
227 * load line. These allow for easy board definitions, and easy
228 * modification of the io, memory and irq resoucres.
229 */
230 static int stl_nargs = 0;
231 static char *board0[4];
232 static char *board1[4];
233 static char *board2[4];
234 static char *board3[4];
235
236 static char **stl_brdsp[] = {
237 (char **) &board0,
238 (char **) &board1,
239 (char **) &board2,
240 (char **) &board3
241 };
242
243 /*
244 * Define a set of common board names, and types. This is used to
245 * parse any module arguments.
246 */
247
248 typedef struct stlbrdtype {
249 char *name;
250 int type;
251 } stlbrdtype_t;
252
253 static stlbrdtype_t stl_brdstr[] = {
254 { "easyio", BRD_EASYIO },
255 { "eio", BRD_EASYIO },
256 { "20", BRD_EASYIO },
257 { "ec8/32", BRD_ECH },
258 { "ec8/32-at", BRD_ECH },
259 { "ec8/32-isa", BRD_ECH },
260 { "ech", BRD_ECH },
261 { "echat", BRD_ECH },
262 { "21", BRD_ECH },
263 { "ec8/32-mc", BRD_ECHMC },
264 { "ec8/32-mca", BRD_ECHMC },
265 { "echmc", BRD_ECHMC },
266 { "echmca", BRD_ECHMC },
267 { "22", BRD_ECHMC },
268 { "ec8/32-pc", BRD_ECHPCI },
269 { "ec8/32-pci", BRD_ECHPCI },
270 { "26", BRD_ECHPCI },
271 { "ec8/64-pc", BRD_ECH64PCI },
272 { "ec8/64-pci", BRD_ECH64PCI },
273 { "ech-pci", BRD_ECH64PCI },
274 { "echpci", BRD_ECH64PCI },
275 { "echpc", BRD_ECH64PCI },
276 { "27", BRD_ECH64PCI },
277 { "easyio-pc", BRD_EASYIOPCI },
278 { "easyio-pci", BRD_EASYIOPCI },
279 { "eio-pci", BRD_EASYIOPCI },
280 { "eiopci", BRD_EASYIOPCI },
281 { "28", BRD_EASYIOPCI },
282 };
283
284 /*
285 * Define the module agruments.
286 */
287 MODULE_AUTHOR("Greg Ungerer");
288 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
289 MODULE_LICENSE("GPL");
290
291 module_param_array(board0, charp, &stl_nargs, 0);
292 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
293 module_param_array(board1, charp, &stl_nargs, 0);
294 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
295 module_param_array(board2, charp, &stl_nargs, 0);
296 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
297 module_param_array(board3, charp, &stl_nargs, 0);
298 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
299
300 /*****************************************************************************/
301
302 /*
303 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
304 * to the directly accessible io ports of these boards (not the uarts -
305 * they are in cd1400.h and sc26198.h).
306 */
307 #define EIO_8PORTRS 0x04
308 #define EIO_4PORTRS 0x05
309 #define EIO_8PORTDI 0x00
310 #define EIO_8PORTM 0x06
311 #define EIO_MK3 0x03
312 #define EIO_IDBITMASK 0x07
313
314 #define EIO_BRDMASK 0xf0
315 #define ID_BRD4 0x10
316 #define ID_BRD8 0x20
317 #define ID_BRD16 0x30
318
319 #define EIO_INTRPEND 0x08
320 #define EIO_INTEDGE 0x00
321 #define EIO_INTLEVEL 0x08
322 #define EIO_0WS 0x10
323
324 #define ECH_ID 0xa0
325 #define ECH_IDBITMASK 0xe0
326 #define ECH_BRDENABLE 0x08
327 #define ECH_BRDDISABLE 0x00
328 #define ECH_INTENABLE 0x01
329 #define ECH_INTDISABLE 0x00
330 #define ECH_INTLEVEL 0x02
331 #define ECH_INTEDGE 0x00
332 #define ECH_INTRPEND 0x01
333 #define ECH_BRDRESET 0x01
334
335 #define ECHMC_INTENABLE 0x01
336 #define ECHMC_BRDRESET 0x02
337
338 #define ECH_PNLSTATUS 2
339 #define ECH_PNL16PORT 0x20
340 #define ECH_PNLIDMASK 0x07
341 #define ECH_PNLXPID 0x40
342 #define ECH_PNLINTRPEND 0x80
343
344 #define ECH_ADDR2MASK 0x1e0
345
346 /*
347 * Define the vector mapping bits for the programmable interrupt board
348 * hardware. These bits encode the interrupt for the board to use - it
349 * is software selectable (except the EIO-8M).
350 */
351 static unsigned char stl_vecmap[] = {
352 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
353 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
354 };
355
356 /*
357 * Lock ordering is that you may not take stallion_lock holding
358 * brd_lock.
359 */
360
361 static spinlock_t brd_lock; /* Guard the board mapping */
362 static spinlock_t stallion_lock; /* Guard the tty driver */
363
364 /*
365 * Set up enable and disable macros for the ECH boards. They require
366 * the secondary io address space to be activated and deactivated.
367 * This way all ECH boards can share their secondary io region.
368 * If this is an ECH-PCI board then also need to set the page pointer
369 * to point to the correct page.
370 */
371 #define BRDENABLE(brdnr,pagenr) \
372 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
373 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
374 stl_brds[(brdnr)]->ioctrl); \
375 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
376 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
377
378 #define BRDDISABLE(brdnr) \
379 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
380 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
381 stl_brds[(brdnr)]->ioctrl);
382
383 #define STL_CD1400MAXBAUD 230400
384 #define STL_SC26198MAXBAUD 460800
385
386 #define STL_BAUDBASE 115200
387 #define STL_CLOSEDELAY (5 * HZ / 10)
388
389 /*****************************************************************************/
390
391 #ifdef CONFIG_PCI
392
393 /*
394 * Define the Stallion PCI vendor and device IDs.
395 */
396 #ifndef PCI_VENDOR_ID_STALLION
397 #define PCI_VENDOR_ID_STALLION 0x124d
398 #endif
399 #ifndef PCI_DEVICE_ID_ECHPCI832
400 #define PCI_DEVICE_ID_ECHPCI832 0x0000
401 #endif
402 #ifndef PCI_DEVICE_ID_ECHPCI864
403 #define PCI_DEVICE_ID_ECHPCI864 0x0002
404 #endif
405 #ifndef PCI_DEVICE_ID_EIOPCI
406 #define PCI_DEVICE_ID_EIOPCI 0x0003
407 #endif
408
409 /*
410 * Define structure to hold all Stallion PCI boards.
411 */
412 typedef struct stlpcibrd {
413 unsigned short vendid;
414 unsigned short devid;
415 int brdtype;
416 } stlpcibrd_t;
417
418 static stlpcibrd_t stl_pcibrds[] = {
419 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864, BRD_ECH64PCI },
420 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI, BRD_EASYIOPCI },
421 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832, BRD_ECHPCI },
422 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410, BRD_ECHPCI },
423 };
424
425 static int stl_nrpcibrds = ARRAY_SIZE(stl_pcibrds);
426
427 #endif
428
429 /*****************************************************************************/
430
431 /*
432 * Define macros to extract a brd/port number from a minor number.
433 */
434 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
435 #define MINOR2PORT(min) ((min) & 0x3f)
436
437 /*
438 * Define a baud rate table that converts termios baud rate selector
439 * into the actual baud rate value. All baud rate calculations are
440 * based on the actual baud rate required.
441 */
442 static unsigned int stl_baudrates[] = {
443 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
444 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
445 };
446
447 /*
448 * Define some handy local macros...
449 */
450 #undef MIN
451 #define MIN(a,b) (((a) <= (b)) ? (a) : (b))
452
453 #undef TOLOWER
454 #define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
455
456 /*****************************************************************************/
457
458 /*
459 * Declare all those functions in this driver!
460 */
461
462 static void stl_argbrds(void);
463 static int stl_parsebrd(stlconf_t *confp, char **argp);
464
465 static unsigned long stl_atol(char *str);
466
467 static int stl_init(void);
468 static int stl_open(struct tty_struct *tty, struct file *filp);
469 static void stl_close(struct tty_struct *tty, struct file *filp);
470 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count);
471 static void stl_putchar(struct tty_struct *tty, unsigned char ch);
472 static void stl_flushchars(struct tty_struct *tty);
473 static int stl_writeroom(struct tty_struct *tty);
474 static int stl_charsinbuffer(struct tty_struct *tty);
475 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
476 static void stl_settermios(struct tty_struct *tty, struct termios *old);
477 static void stl_throttle(struct tty_struct *tty);
478 static void stl_unthrottle(struct tty_struct *tty);
479 static void stl_stop(struct tty_struct *tty);
480 static void stl_start(struct tty_struct *tty);
481 static void stl_flushbuffer(struct tty_struct *tty);
482 static void stl_breakctl(struct tty_struct *tty, int state);
483 static void stl_waituntilsent(struct tty_struct *tty, int timeout);
484 static void stl_sendxchar(struct tty_struct *tty, char ch);
485 static void stl_hangup(struct tty_struct *tty);
486 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
487 static int stl_portinfo(stlport_t *portp, int portnr, char *pos);
488 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data);
489
490 static int stl_brdinit(stlbrd_t *brdp);
491 static int stl_initports(stlbrd_t *brdp, stlpanel_t *panelp);
492 static int stl_getserial(stlport_t *portp, struct serial_struct __user *sp);
493 static int stl_setserial(stlport_t *portp, struct serial_struct __user *sp);
494 static int stl_getbrdstats(combrd_t __user *bp);
495 static int stl_getportstats(stlport_t *portp, comstats_t __user *cp);
496 static int stl_clrportstats(stlport_t *portp, comstats_t __user *cp);
497 static int stl_getportstruct(stlport_t __user *arg);
498 static int stl_getbrdstruct(stlbrd_t __user *arg);
499 static int stl_waitcarrier(stlport_t *portp, struct file *filp);
500 static int stl_eiointr(stlbrd_t *brdp);
501 static int stl_echatintr(stlbrd_t *brdp);
502 static int stl_echmcaintr(stlbrd_t *brdp);
503 static int stl_echpciintr(stlbrd_t *brdp);
504 static int stl_echpci64intr(stlbrd_t *brdp);
505 static void stl_offintr(void *private);
506 static stlbrd_t *stl_allocbrd(void);
507 static stlport_t *stl_getport(int brdnr, int panelnr, int portnr);
508
509 static inline int stl_initbrds(void);
510 static inline int stl_initeio(stlbrd_t *brdp);
511 static inline int stl_initech(stlbrd_t *brdp);
512 static inline int stl_getbrdnr(void);
513
514 #ifdef CONFIG_PCI
515 static inline int stl_findpcibrds(void);
516 static inline int stl_initpcibrd(int brdtype, struct pci_dev *devp);
517 #endif
518
519 /*
520 * CD1400 uart specific handling functions.
521 */
522 static void stl_cd1400setreg(stlport_t *portp, int regnr, int value);
523 static int stl_cd1400getreg(stlport_t *portp, int regnr);
524 static int stl_cd1400updatereg(stlport_t *portp, int regnr, int value);
525 static int stl_cd1400panelinit(stlbrd_t *brdp, stlpanel_t *panelp);
526 static void stl_cd1400portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
527 static void stl_cd1400setport(stlport_t *portp, struct termios *tiosp);
528 static int stl_cd1400getsignals(stlport_t *portp);
529 static void stl_cd1400setsignals(stlport_t *portp, int dtr, int rts);
530 static void stl_cd1400ccrwait(stlport_t *portp);
531 static void stl_cd1400enablerxtx(stlport_t *portp, int rx, int tx);
532 static void stl_cd1400startrxtx(stlport_t *portp, int rx, int tx);
533 static void stl_cd1400disableintrs(stlport_t *portp);
534 static void stl_cd1400sendbreak(stlport_t *portp, int len);
535 static void stl_cd1400flowctrl(stlport_t *portp, int state);
536 static void stl_cd1400sendflow(stlport_t *portp, int state);
537 static void stl_cd1400flush(stlport_t *portp);
538 static int stl_cd1400datastate(stlport_t *portp);
539 static void stl_cd1400eiointr(stlpanel_t *panelp, unsigned int iobase);
540 static void stl_cd1400echintr(stlpanel_t *panelp, unsigned int iobase);
541 static void stl_cd1400txisr(stlpanel_t *panelp, int ioaddr);
542 static void stl_cd1400rxisr(stlpanel_t *panelp, int ioaddr);
543 static void stl_cd1400mdmisr(stlpanel_t *panelp, int ioaddr);
544
545 static inline int stl_cd1400breakisr(stlport_t *portp, int ioaddr);
546
547 /*
548 * SC26198 uart specific handling functions.
549 */
550 static void stl_sc26198setreg(stlport_t *portp, int regnr, int value);
551 static int stl_sc26198getreg(stlport_t *portp, int regnr);
552 static int stl_sc26198updatereg(stlport_t *portp, int regnr, int value);
553 static int stl_sc26198getglobreg(stlport_t *portp, int regnr);
554 static int stl_sc26198panelinit(stlbrd_t *brdp, stlpanel_t *panelp);
555 static void stl_sc26198portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
556 static void stl_sc26198setport(stlport_t *portp, struct termios *tiosp);
557 static int stl_sc26198getsignals(stlport_t *portp);
558 static void stl_sc26198setsignals(stlport_t *portp, int dtr, int rts);
559 static void stl_sc26198enablerxtx(stlport_t *portp, int rx, int tx);
560 static void stl_sc26198startrxtx(stlport_t *portp, int rx, int tx);
561 static void stl_sc26198disableintrs(stlport_t *portp);
562 static void stl_sc26198sendbreak(stlport_t *portp, int len);
563 static void stl_sc26198flowctrl(stlport_t *portp, int state);
564 static void stl_sc26198sendflow(stlport_t *portp, int state);
565 static void stl_sc26198flush(stlport_t *portp);
566 static int stl_sc26198datastate(stlport_t *portp);
567 static void stl_sc26198wait(stlport_t *portp);
568 static void stl_sc26198txunflow(stlport_t *portp, struct tty_struct *tty);
569 static void stl_sc26198intr(stlpanel_t *panelp, unsigned int iobase);
570 static void stl_sc26198txisr(stlport_t *port);
571 static void stl_sc26198rxisr(stlport_t *port, unsigned int iack);
572 static void stl_sc26198rxbadch(stlport_t *portp, unsigned char status, char ch);
573 static void stl_sc26198rxbadchars(stlport_t *portp);
574 static void stl_sc26198otherisr(stlport_t *port, unsigned int iack);
575
576 /*****************************************************************************/
577
578 /*
579 * Generic UART support structure.
580 */
581 typedef struct uart {
582 int (*panelinit)(stlbrd_t *brdp, stlpanel_t *panelp);
583 void (*portinit)(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp);
584 void (*setport)(stlport_t *portp, struct termios *tiosp);
585 int (*getsignals)(stlport_t *portp);
586 void (*setsignals)(stlport_t *portp, int dtr, int rts);
587 void (*enablerxtx)(stlport_t *portp, int rx, int tx);
588 void (*startrxtx)(stlport_t *portp, int rx, int tx);
589 void (*disableintrs)(stlport_t *portp);
590 void (*sendbreak)(stlport_t *portp, int len);
591 void (*flowctrl)(stlport_t *portp, int state);
592 void (*sendflow)(stlport_t *portp, int state);
593 void (*flush)(stlport_t *portp);
594 int (*datastate)(stlport_t *portp);
595 void (*intr)(stlpanel_t *panelp, unsigned int iobase);
596 } uart_t;
597
598 /*
599 * Define some macros to make calling these functions nice and clean.
600 */
601 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
602 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
603 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
604 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
605 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
606 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
607 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
608 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
609 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
610 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
611 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
612 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
613 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
614
615 /*****************************************************************************/
616
617 /*
618 * CD1400 UART specific data initialization.
619 */
620 static uart_t stl_cd1400uart = {
621 stl_cd1400panelinit,
622 stl_cd1400portinit,
623 stl_cd1400setport,
624 stl_cd1400getsignals,
625 stl_cd1400setsignals,
626 stl_cd1400enablerxtx,
627 stl_cd1400startrxtx,
628 stl_cd1400disableintrs,
629 stl_cd1400sendbreak,
630 stl_cd1400flowctrl,
631 stl_cd1400sendflow,
632 stl_cd1400flush,
633 stl_cd1400datastate,
634 stl_cd1400eiointr
635 };
636
637 /*
638 * Define the offsets within the register bank of a cd1400 based panel.
639 * These io address offsets are common to the EasyIO board as well.
640 */
641 #define EREG_ADDR 0
642 #define EREG_DATA 4
643 #define EREG_RXACK 5
644 #define EREG_TXACK 6
645 #define EREG_MDACK 7
646
647 #define EREG_BANKSIZE 8
648
649 #define CD1400_CLK 25000000
650 #define CD1400_CLK8M 20000000
651
652 /*
653 * Define the cd1400 baud rate clocks. These are used when calculating
654 * what clock and divisor to use for the required baud rate. Also
655 * define the maximum baud rate allowed, and the default base baud.
656 */
657 static int stl_cd1400clkdivs[] = {
658 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
659 };
660
661 /*****************************************************************************/
662
663 /*
664 * SC26198 UART specific data initization.
665 */
666 static uart_t stl_sc26198uart = {
667 stl_sc26198panelinit,
668 stl_sc26198portinit,
669 stl_sc26198setport,
670 stl_sc26198getsignals,
671 stl_sc26198setsignals,
672 stl_sc26198enablerxtx,
673 stl_sc26198startrxtx,
674 stl_sc26198disableintrs,
675 stl_sc26198sendbreak,
676 stl_sc26198flowctrl,
677 stl_sc26198sendflow,
678 stl_sc26198flush,
679 stl_sc26198datastate,
680 stl_sc26198intr
681 };
682
683 /*
684 * Define the offsets within the register bank of a sc26198 based panel.
685 */
686 #define XP_DATA 0
687 #define XP_ADDR 1
688 #define XP_MODID 2
689 #define XP_STATUS 2
690 #define XP_IACK 3
691
692 #define XP_BANKSIZE 4
693
694 /*
695 * Define the sc26198 baud rate table. Offsets within the table
696 * represent the actual baud rate selector of sc26198 registers.
697 */
698 static unsigned int sc26198_baudtable[] = {
699 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
700 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
701 230400, 460800, 921600
702 };
703
704 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
705
706 /*****************************************************************************/
707
708 /*
709 * Define the driver info for a user level control device. Used mainly
710 * to get at port stats - only not using the port device itself.
711 */
712 static struct file_operations stl_fsiomem = {
713 .owner = THIS_MODULE,
714 .ioctl = stl_memioctl,
715 };
716
717 /*****************************************************************************/
718
719 static struct class *stallion_class;
720
721 /*
722 * Loadable module initialization stuff.
723 */
724
725 static int __init stallion_module_init(void)
726 {
727 stl_init();
728 return 0;
729 }
730
731 /*****************************************************************************/
732
733 static void __exit stallion_module_exit(void)
734 {
735 stlbrd_t *brdp;
736 stlpanel_t *panelp;
737 stlport_t *portp;
738 int i, j, k;
739
740 #ifdef DEBUG
741 printk("cleanup_module()\n");
742 #endif
743
744 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
745 stl_drvversion);
746
747 /*
748 * Free up all allocated resources used by the ports. This includes
749 * memory and interrupts. As part of this process we will also do
750 * a hangup on every open port - to try to flush out any processes
751 * hanging onto ports.
752 */
753 i = tty_unregister_driver(stl_serial);
754 put_tty_driver(stl_serial);
755 if (i) {
756 printk("STALLION: failed to un-register tty driver, "
757 "errno=%d\n", -i);
758 return;
759 }
760 for (i = 0; i < 4; i++) {
761 devfs_remove("staliomem/%d", i);
762 class_device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
763 }
764 devfs_remove("staliomem");
765 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
766 printk("STALLION: failed to un-register serial memory device, "
767 "errno=%d\n", -i);
768 class_destroy(stallion_class);
769
770 for (i = 0; (i < stl_nrbrds); i++) {
771 if ((brdp = stl_brds[i]) == (stlbrd_t *) NULL)
772 continue;
773
774 free_irq(brdp->irq, brdp);
775
776 for (j = 0; (j < STL_MAXPANELS); j++) {
777 panelp = brdp->panels[j];
778 if (panelp == (stlpanel_t *) NULL)
779 continue;
780 for (k = 0; (k < STL_PORTSPERPANEL); k++) {
781 portp = panelp->ports[k];
782 if (portp == (stlport_t *) NULL)
783 continue;
784 if (portp->tty != (struct tty_struct *) NULL)
785 stl_hangup(portp->tty);
786 kfree(portp->tx.buf);
787 kfree(portp);
788 }
789 kfree(panelp);
790 }
791
792 release_region(brdp->ioaddr1, brdp->iosize1);
793 if (brdp->iosize2 > 0)
794 release_region(brdp->ioaddr2, brdp->iosize2);
795
796 kfree(brdp);
797 stl_brds[i] = (stlbrd_t *) NULL;
798 }
799 }
800
801 module_init(stallion_module_init);
802 module_exit(stallion_module_exit);
803
804 /*****************************************************************************/
805
806 /*
807 * Check for any arguments passed in on the module load command line.
808 */
809
810 static void stl_argbrds(void)
811 {
812 stlconf_t conf;
813 stlbrd_t *brdp;
814 int i;
815
816 #ifdef DEBUG
817 printk("stl_argbrds()\n");
818 #endif
819
820 for (i = stl_nrbrds; (i < stl_nargs); i++) {
821 memset(&conf, 0, sizeof(conf));
822 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
823 continue;
824 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
825 continue;
826 stl_nrbrds = i + 1;
827 brdp->brdnr = i;
828 brdp->brdtype = conf.brdtype;
829 brdp->ioaddr1 = conf.ioaddr1;
830 brdp->ioaddr2 = conf.ioaddr2;
831 brdp->irq = conf.irq;
832 brdp->irqtype = conf.irqtype;
833 stl_brdinit(brdp);
834 }
835 }
836
837 /*****************************************************************************/
838
839 /*
840 * Convert an ascii string number into an unsigned long.
841 */
842
843 static unsigned long stl_atol(char *str)
844 {
845 unsigned long val;
846 int base, c;
847 char *sp;
848
849 val = 0;
850 sp = str;
851 if ((*sp == '0') && (*(sp+1) == 'x')) {
852 base = 16;
853 sp += 2;
854 } else if (*sp == '0') {
855 base = 8;
856 sp++;
857 } else {
858 base = 10;
859 }
860
861 for (; (*sp != 0); sp++) {
862 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
863 if ((c < 0) || (c >= base)) {
864 printk("STALLION: invalid argument %s\n", str);
865 val = 0;
866 break;
867 }
868 val = (val * base) + c;
869 }
870 return val;
871 }
872
873 /*****************************************************************************/
874
875 /*
876 * Parse the supplied argument string, into the board conf struct.
877 */
878
879 static int stl_parsebrd(stlconf_t *confp, char **argp)
880 {
881 char *sp;
882 int i;
883
884 #ifdef DEBUG
885 printk("stl_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
886 #endif
887
888 if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
889 return 0;
890
891 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
892 *sp = TOLOWER(*sp);
893
894 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++) {
895 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
896 break;
897 }
898 if (i == ARRAY_SIZE(stl_brdstr)) {
899 printk("STALLION: unknown board name, %s?\n", argp[0]);
900 return 0;
901 }
902
903 confp->brdtype = stl_brdstr[i].type;
904
905 i = 1;
906 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
907 confp->ioaddr1 = stl_atol(argp[i]);
908 i++;
909 if (confp->brdtype == BRD_ECH) {
910 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
911 confp->ioaddr2 = stl_atol(argp[i]);
912 i++;
913 }
914 if ((argp[i] != (char *) NULL) && (*argp[i] != 0))
915 confp->irq = stl_atol(argp[i]);
916 return 1;
917 }
918
919 /*****************************************************************************/
920
921 /*
922 * Allocate a new board structure. Fill out the basic info in it.
923 */
924
925 static stlbrd_t *stl_allocbrd(void)
926 {
927 stlbrd_t *brdp;
928
929 brdp = kzalloc(sizeof(stlbrd_t), GFP_KERNEL);
930 if (!brdp) {
931 printk("STALLION: failed to allocate memory (size=%Zd)\n",
932 sizeof(stlbrd_t));
933 return NULL;
934 }
935
936 brdp->magic = STL_BOARDMAGIC;
937 return brdp;
938 }
939
940 /*****************************************************************************/
941
942 static int stl_open(struct tty_struct *tty, struct file *filp)
943 {
944 stlport_t *portp;
945 stlbrd_t *brdp;
946 unsigned int minordev;
947 int brdnr, panelnr, portnr, rc;
948
949 #ifdef DEBUG
950 printk("stl_open(tty=%x,filp=%x): device=%s\n", (int) tty,
951 (int) filp, tty->name);
952 #endif
953
954 minordev = tty->index;
955 brdnr = MINOR2BRD(minordev);
956 if (brdnr >= stl_nrbrds)
957 return -ENODEV;
958 brdp = stl_brds[brdnr];
959 if (brdp == (stlbrd_t *) NULL)
960 return -ENODEV;
961 minordev = MINOR2PORT(minordev);
962 for (portnr = -1, panelnr = 0; (panelnr < STL_MAXPANELS); panelnr++) {
963 if (brdp->panels[panelnr] == (stlpanel_t *) NULL)
964 break;
965 if (minordev < brdp->panels[panelnr]->nrports) {
966 portnr = minordev;
967 break;
968 }
969 minordev -= brdp->panels[panelnr]->nrports;
970 }
971 if (portnr < 0)
972 return -ENODEV;
973
974 portp = brdp->panels[panelnr]->ports[portnr];
975 if (portp == (stlport_t *) NULL)
976 return -ENODEV;
977
978 /*
979 * On the first open of the device setup the port hardware, and
980 * initialize the per port data structure.
981 */
982 portp->tty = tty;
983 tty->driver_data = portp;
984 portp->refcount++;
985
986 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
987 if (!portp->tx.buf) {
988 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
989 if (!portp->tx.buf)
990 return -ENOMEM;
991 portp->tx.head = portp->tx.buf;
992 portp->tx.tail = portp->tx.buf;
993 }
994 stl_setport(portp, tty->termios);
995 portp->sigs = stl_getsignals(portp);
996 stl_setsignals(portp, 1, 1);
997 stl_enablerxtx(portp, 1, 1);
998 stl_startrxtx(portp, 1, 0);
999 clear_bit(TTY_IO_ERROR, &tty->flags);
1000 portp->flags |= ASYNC_INITIALIZED;
1001 }
1002
1003 /*
1004 * Check if this port is in the middle of closing. If so then wait
1005 * until it is closed then return error status, based on flag settings.
1006 * The sleep here does not need interrupt protection since the wakeup
1007 * for it is done with the same context.
1008 */
1009 if (portp->flags & ASYNC_CLOSING) {
1010 interruptible_sleep_on(&portp->close_wait);
1011 if (portp->flags & ASYNC_HUP_NOTIFY)
1012 return -EAGAIN;
1013 return -ERESTARTSYS;
1014 }
1015
1016 /*
1017 * Based on type of open being done check if it can overlap with any
1018 * previous opens still in effect. If we are a normal serial device
1019 * then also we might have to wait for carrier.
1020 */
1021 if (!(filp->f_flags & O_NONBLOCK)) {
1022 if ((rc = stl_waitcarrier(portp, filp)) != 0)
1023 return rc;
1024 }
1025 portp->flags |= ASYNC_NORMAL_ACTIVE;
1026
1027 return 0;
1028 }
1029
1030 /*****************************************************************************/
1031
1032 /*
1033 * Possibly need to wait for carrier (DCD signal) to come high. Say
1034 * maybe because if we are clocal then we don't need to wait...
1035 */
1036
1037 static int stl_waitcarrier(stlport_t *portp, struct file *filp)
1038 {
1039 unsigned long flags;
1040 int rc, doclocal;
1041
1042 #ifdef DEBUG
1043 printk("stl_waitcarrier(portp=%x,filp=%x)\n", (int) portp, (int) filp);
1044 #endif
1045
1046 rc = 0;
1047 doclocal = 0;
1048
1049 spin_lock_irqsave(&stallion_lock, flags);
1050
1051 if (portp->tty->termios->c_cflag & CLOCAL)
1052 doclocal++;
1053
1054 portp->openwaitcnt++;
1055 if (! tty_hung_up_p(filp))
1056 portp->refcount--;
1057
1058 for (;;) {
1059 /* Takes brd_lock internally */
1060 stl_setsignals(portp, 1, 1);
1061 if (tty_hung_up_p(filp) ||
1062 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1063 if (portp->flags & ASYNC_HUP_NOTIFY)
1064 rc = -EBUSY;
1065 else
1066 rc = -ERESTARTSYS;
1067 break;
1068 }
1069 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1070 (doclocal || (portp->sigs & TIOCM_CD))) {
1071 break;
1072 }
1073 if (signal_pending(current)) {
1074 rc = -ERESTARTSYS;
1075 break;
1076 }
1077 /* FIXME */
1078 interruptible_sleep_on(&portp->open_wait);
1079 }
1080
1081 if (! tty_hung_up_p(filp))
1082 portp->refcount++;
1083 portp->openwaitcnt--;
1084 spin_unlock_irqrestore(&stallion_lock, flags);
1085
1086 return rc;
1087 }
1088
1089 /*****************************************************************************/
1090
1091 static void stl_close(struct tty_struct *tty, struct file *filp)
1092 {
1093 stlport_t *portp;
1094 unsigned long flags;
1095
1096 #ifdef DEBUG
1097 printk("stl_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
1098 #endif
1099
1100 portp = tty->driver_data;
1101 if (portp == (stlport_t *) NULL)
1102 return;
1103
1104 spin_lock_irqsave(&stallion_lock, flags);
1105 if (tty_hung_up_p(filp)) {
1106 spin_unlock_irqrestore(&stallion_lock, flags);
1107 return;
1108 }
1109 if ((tty->count == 1) && (portp->refcount != 1))
1110 portp->refcount = 1;
1111 if (portp->refcount-- > 1) {
1112 spin_unlock_irqrestore(&stallion_lock, flags);
1113 return;
1114 }
1115
1116 portp->refcount = 0;
1117 portp->flags |= ASYNC_CLOSING;
1118
1119 /*
1120 * May want to wait for any data to drain before closing. The BUSY
1121 * flag keeps track of whether we are still sending or not - it is
1122 * very accurate for the cd1400, not quite so for the sc26198.
1123 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
1124 */
1125 tty->closing = 1;
1126
1127 spin_unlock_irqrestore(&stallion_lock, flags);
1128
1129 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1130 tty_wait_until_sent(tty, portp->closing_wait);
1131 stl_waituntilsent(tty, (HZ / 2));
1132
1133
1134 spin_lock_irqsave(&stallion_lock, flags);
1135 portp->flags &= ~ASYNC_INITIALIZED;
1136 spin_unlock_irqrestore(&stallion_lock, flags);
1137
1138 stl_disableintrs(portp);
1139 if (tty->termios->c_cflag & HUPCL)
1140 stl_setsignals(portp, 0, 0);
1141 stl_enablerxtx(portp, 0, 0);
1142 stl_flushbuffer(tty);
1143 portp->istate = 0;
1144 if (portp->tx.buf != (char *) NULL) {
1145 kfree(portp->tx.buf);
1146 portp->tx.buf = (char *) NULL;
1147 portp->tx.head = (char *) NULL;
1148 portp->tx.tail = (char *) NULL;
1149 }
1150 set_bit(TTY_IO_ERROR, &tty->flags);
1151 tty_ldisc_flush(tty);
1152
1153 tty->closing = 0;
1154 portp->tty = (struct tty_struct *) NULL;
1155
1156 if (portp->openwaitcnt) {
1157 if (portp->close_delay)
1158 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1159 wake_up_interruptible(&portp->open_wait);
1160 }
1161
1162 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1163 wake_up_interruptible(&portp->close_wait);
1164 }
1165
1166 /*****************************************************************************/
1167
1168 /*
1169 * Write routine. Take data and stuff it in to the TX ring queue.
1170 * If transmit interrupts are not running then start them.
1171 */
1172
1173 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
1174 {
1175 stlport_t *portp;
1176 unsigned int len, stlen;
1177 unsigned char *chbuf;
1178 char *head, *tail;
1179
1180 #ifdef DEBUG
1181 printk("stl_write(tty=%x,buf=%x,count=%d)\n",
1182 (int) tty, (int) buf, count);
1183 #endif
1184
1185 portp = tty->driver_data;
1186 if (portp == (stlport_t *) NULL)
1187 return 0;
1188 if (portp->tx.buf == (char *) NULL)
1189 return 0;
1190
1191 /*
1192 * If copying direct from user space we must cater for page faults,
1193 * causing us to "sleep" here for a while. To handle this copy in all
1194 * the data we need now, into a local buffer. Then when we got it all
1195 * copy it into the TX buffer.
1196 */
1197 chbuf = (unsigned char *) buf;
1198
1199 head = portp->tx.head;
1200 tail = portp->tx.tail;
1201 if (head >= tail) {
1202 len = STL_TXBUFSIZE - (head - tail) - 1;
1203 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
1204 } else {
1205 len = tail - head - 1;
1206 stlen = len;
1207 }
1208
1209 len = MIN(len, count);
1210 count = 0;
1211 while (len > 0) {
1212 stlen = MIN(len, stlen);
1213 memcpy(head, chbuf, stlen);
1214 len -= stlen;
1215 chbuf += stlen;
1216 count += stlen;
1217 head += stlen;
1218 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
1219 head = portp->tx.buf;
1220 stlen = tail - head;
1221 }
1222 }
1223 portp->tx.head = head;
1224
1225 clear_bit(ASYI_TXLOW, &portp->istate);
1226 stl_startrxtx(portp, -1, 1);
1227
1228 return count;
1229 }
1230
1231 /*****************************************************************************/
1232
1233 static void stl_putchar(struct tty_struct *tty, unsigned char ch)
1234 {
1235 stlport_t *portp;
1236 unsigned int len;
1237 char *head, *tail;
1238
1239 #ifdef DEBUG
1240 printk("stl_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
1241 #endif
1242
1243 if (tty == (struct tty_struct *) NULL)
1244 return;
1245 portp = tty->driver_data;
1246 if (portp == (stlport_t *) NULL)
1247 return;
1248 if (portp->tx.buf == (char *) NULL)
1249 return;
1250
1251 head = portp->tx.head;
1252 tail = portp->tx.tail;
1253
1254 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
1255 len--;
1256
1257 if (len > 0) {
1258 *head++ = ch;
1259 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
1260 head = portp->tx.buf;
1261 }
1262 portp->tx.head = head;
1263 }
1264
1265 /*****************************************************************************/
1266
1267 /*
1268 * If there are any characters in the buffer then make sure that TX
1269 * interrupts are on and get'em out. Normally used after the putchar
1270 * routine has been called.
1271 */
1272
1273 static void stl_flushchars(struct tty_struct *tty)
1274 {
1275 stlport_t *portp;
1276
1277 #ifdef DEBUG
1278 printk("stl_flushchars(tty=%x)\n", (int) tty);
1279 #endif
1280
1281 if (tty == (struct tty_struct *) NULL)
1282 return;
1283 portp = tty->driver_data;
1284 if (portp == (stlport_t *) NULL)
1285 return;
1286 if (portp->tx.buf == (char *) NULL)
1287 return;
1288
1289 stl_startrxtx(portp, -1, 1);
1290 }
1291
1292 /*****************************************************************************/
1293
1294 static int stl_writeroom(struct tty_struct *tty)
1295 {
1296 stlport_t *portp;
1297 char *head, *tail;
1298
1299 #ifdef DEBUG
1300 printk("stl_writeroom(tty=%x)\n", (int) tty);
1301 #endif
1302
1303 if (tty == (struct tty_struct *) NULL)
1304 return 0;
1305 portp = tty->driver_data;
1306 if (portp == (stlport_t *) NULL)
1307 return 0;
1308 if (portp->tx.buf == (char *) NULL)
1309 return 0;
1310
1311 head = portp->tx.head;
1312 tail = portp->tx.tail;
1313 return ((head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1));
1314 }
1315
1316 /*****************************************************************************/
1317
1318 /*
1319 * Return number of chars in the TX buffer. Normally we would just
1320 * calculate the number of chars in the buffer and return that, but if
1321 * the buffer is empty and TX interrupts are still on then we return
1322 * that the buffer still has 1 char in it. This way whoever called us
1323 * will not think that ALL chars have drained - since the UART still
1324 * must have some chars in it (we are busy after all).
1325 */
1326
1327 static int stl_charsinbuffer(struct tty_struct *tty)
1328 {
1329 stlport_t *portp;
1330 unsigned int size;
1331 char *head, *tail;
1332
1333 #ifdef DEBUG
1334 printk("stl_charsinbuffer(tty=%x)\n", (int) tty);
1335 #endif
1336
1337 if (tty == (struct tty_struct *) NULL)
1338 return 0;
1339 portp = tty->driver_data;
1340 if (portp == (stlport_t *) NULL)
1341 return 0;
1342 if (portp->tx.buf == (char *) NULL)
1343 return 0;
1344
1345 head = portp->tx.head;
1346 tail = portp->tx.tail;
1347 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1348 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1349 size = 1;
1350 return size;
1351 }
1352
1353 /*****************************************************************************/
1354
1355 /*
1356 * Generate the serial struct info.
1357 */
1358
1359 static int stl_getserial(stlport_t *portp, struct serial_struct __user *sp)
1360 {
1361 struct serial_struct sio;
1362 stlbrd_t *brdp;
1363
1364 #ifdef DEBUG
1365 printk("stl_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1366 #endif
1367
1368 memset(&sio, 0, sizeof(struct serial_struct));
1369 sio.line = portp->portnr;
1370 sio.port = portp->ioaddr;
1371 sio.flags = portp->flags;
1372 sio.baud_base = portp->baud_base;
1373 sio.close_delay = portp->close_delay;
1374 sio.closing_wait = portp->closing_wait;
1375 sio.custom_divisor = portp->custom_divisor;
1376 sio.hub6 = 0;
1377 if (portp->uartp == &stl_cd1400uart) {
1378 sio.type = PORT_CIRRUS;
1379 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1380 } else {
1381 sio.type = PORT_UNKNOWN;
1382 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1383 }
1384
1385 brdp = stl_brds[portp->brdnr];
1386 if (brdp != (stlbrd_t *) NULL)
1387 sio.irq = brdp->irq;
1388
1389 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1390 }
1391
1392 /*****************************************************************************/
1393
1394 /*
1395 * Set port according to the serial struct info.
1396 * At this point we do not do any auto-configure stuff, so we will
1397 * just quietly ignore any requests to change irq, etc.
1398 */
1399
1400 static int stl_setserial(stlport_t *portp, struct serial_struct __user *sp)
1401 {
1402 struct serial_struct sio;
1403
1404 #ifdef DEBUG
1405 printk("stl_setserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1406 #endif
1407
1408 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1409 return -EFAULT;
1410 if (!capable(CAP_SYS_ADMIN)) {
1411 if ((sio.baud_base != portp->baud_base) ||
1412 (sio.close_delay != portp->close_delay) ||
1413 ((sio.flags & ~ASYNC_USR_MASK) !=
1414 (portp->flags & ~ASYNC_USR_MASK)))
1415 return -EPERM;
1416 }
1417
1418 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1419 (sio.flags & ASYNC_USR_MASK);
1420 portp->baud_base = sio.baud_base;
1421 portp->close_delay = sio.close_delay;
1422 portp->closing_wait = sio.closing_wait;
1423 portp->custom_divisor = sio.custom_divisor;
1424 stl_setport(portp, portp->tty->termios);
1425 return 0;
1426 }
1427
1428 /*****************************************************************************/
1429
1430 static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1431 {
1432 stlport_t *portp;
1433
1434 if (tty == (struct tty_struct *) NULL)
1435 return -ENODEV;
1436 portp = tty->driver_data;
1437 if (portp == (stlport_t *) NULL)
1438 return -ENODEV;
1439 if (tty->flags & (1 << TTY_IO_ERROR))
1440 return -EIO;
1441
1442 return stl_getsignals(portp);
1443 }
1444
1445 static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1446 unsigned int set, unsigned int clear)
1447 {
1448 stlport_t *portp;
1449 int rts = -1, dtr = -1;
1450
1451 if (tty == (struct tty_struct *) NULL)
1452 return -ENODEV;
1453 portp = tty->driver_data;
1454 if (portp == (stlport_t *) NULL)
1455 return -ENODEV;
1456 if (tty->flags & (1 << TTY_IO_ERROR))
1457 return -EIO;
1458
1459 if (set & TIOCM_RTS)
1460 rts = 1;
1461 if (set & TIOCM_DTR)
1462 dtr = 1;
1463 if (clear & TIOCM_RTS)
1464 rts = 0;
1465 if (clear & TIOCM_DTR)
1466 dtr = 0;
1467
1468 stl_setsignals(portp, dtr, rts);
1469 return 0;
1470 }
1471
1472 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1473 {
1474 stlport_t *portp;
1475 unsigned int ival;
1476 int rc;
1477 void __user *argp = (void __user *)arg;
1478
1479 #ifdef DEBUG
1480 printk("stl_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1481 (int) tty, (int) file, cmd, (int) arg);
1482 #endif
1483
1484 if (tty == (struct tty_struct *) NULL)
1485 return -ENODEV;
1486 portp = tty->driver_data;
1487 if (portp == (stlport_t *) NULL)
1488 return -ENODEV;
1489
1490 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1491 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1492 if (tty->flags & (1 << TTY_IO_ERROR))
1493 return -EIO;
1494 }
1495
1496 rc = 0;
1497
1498 switch (cmd) {
1499 case TIOCGSOFTCAR:
1500 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
1501 (unsigned __user *) argp);
1502 break;
1503 case TIOCSSOFTCAR:
1504 if (get_user(ival, (unsigned int __user *) arg))
1505 return -EFAULT;
1506 tty->termios->c_cflag =
1507 (tty->termios->c_cflag & ~CLOCAL) |
1508 (ival ? CLOCAL : 0);
1509 break;
1510 case TIOCGSERIAL:
1511 rc = stl_getserial(portp, argp);
1512 break;
1513 case TIOCSSERIAL:
1514 rc = stl_setserial(portp, argp);
1515 break;
1516 case COM_GETPORTSTATS:
1517 rc = stl_getportstats(portp, argp);
1518 break;
1519 case COM_CLRPORTSTATS:
1520 rc = stl_clrportstats(portp, argp);
1521 break;
1522 case TIOCSERCONFIG:
1523 case TIOCSERGWILD:
1524 case TIOCSERSWILD:
1525 case TIOCSERGETLSR:
1526 case TIOCSERGSTRUCT:
1527 case TIOCSERGETMULTI:
1528 case TIOCSERSETMULTI:
1529 default:
1530 rc = -ENOIOCTLCMD;
1531 break;
1532 }
1533
1534 return rc;
1535 }
1536
1537 /*****************************************************************************/
1538
1539 static void stl_settermios(struct tty_struct *tty, struct termios *old)
1540 {
1541 stlport_t *portp;
1542 struct termios *tiosp;
1543
1544 #ifdef DEBUG
1545 printk("stl_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
1546 #endif
1547
1548 if (tty == (struct tty_struct *) NULL)
1549 return;
1550 portp = tty->driver_data;
1551 if (portp == (stlport_t *) NULL)
1552 return;
1553
1554 tiosp = tty->termios;
1555 if ((tiosp->c_cflag == old->c_cflag) &&
1556 (tiosp->c_iflag == old->c_iflag))
1557 return;
1558
1559 stl_setport(portp, tiosp);
1560 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1561 -1);
1562 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1563 tty->hw_stopped = 0;
1564 stl_start(tty);
1565 }
1566 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1567 wake_up_interruptible(&portp->open_wait);
1568 }
1569
1570 /*****************************************************************************/
1571
1572 /*
1573 * Attempt to flow control who ever is sending us data. Based on termios
1574 * settings use software or/and hardware flow control.
1575 */
1576
1577 static void stl_throttle(struct tty_struct *tty)
1578 {
1579 stlport_t *portp;
1580
1581 #ifdef DEBUG
1582 printk("stl_throttle(tty=%x)\n", (int) tty);
1583 #endif
1584
1585 if (tty == (struct tty_struct *) NULL)
1586 return;
1587 portp = tty->driver_data;
1588 if (portp == (stlport_t *) NULL)
1589 return;
1590 stl_flowctrl(portp, 0);
1591 }
1592
1593 /*****************************************************************************/
1594
1595 /*
1596 * Unflow control the device sending us data...
1597 */
1598
1599 static void stl_unthrottle(struct tty_struct *tty)
1600 {
1601 stlport_t *portp;
1602
1603 #ifdef DEBUG
1604 printk("stl_unthrottle(tty=%x)\n", (int) tty);
1605 #endif
1606
1607 if (tty == (struct tty_struct *) NULL)
1608 return;
1609 portp = tty->driver_data;
1610 if (portp == (stlport_t *) NULL)
1611 return;
1612 stl_flowctrl(portp, 1);
1613 }
1614
1615 /*****************************************************************************/
1616
1617 /*
1618 * Stop the transmitter. Basically to do this we will just turn TX
1619 * interrupts off.
1620 */
1621
1622 static void stl_stop(struct tty_struct *tty)
1623 {
1624 stlport_t *portp;
1625
1626 #ifdef DEBUG
1627 printk("stl_stop(tty=%x)\n", (int) tty);
1628 #endif
1629
1630 if (tty == (struct tty_struct *) NULL)
1631 return;
1632 portp = tty->driver_data;
1633 if (portp == (stlport_t *) NULL)
1634 return;
1635 stl_startrxtx(portp, -1, 0);
1636 }
1637
1638 /*****************************************************************************/
1639
1640 /*
1641 * Start the transmitter again. Just turn TX interrupts back on.
1642 */
1643
1644 static void stl_start(struct tty_struct *tty)
1645 {
1646 stlport_t *portp;
1647
1648 #ifdef DEBUG
1649 printk("stl_start(tty=%x)\n", (int) tty);
1650 #endif
1651
1652 if (tty == (struct tty_struct *) NULL)
1653 return;
1654 portp = tty->driver_data;
1655 if (portp == (stlport_t *) NULL)
1656 return;
1657 stl_startrxtx(portp, -1, 1);
1658 }
1659
1660 /*****************************************************************************/
1661
1662 /*
1663 * Hangup this port. This is pretty much like closing the port, only
1664 * a little more brutal. No waiting for data to drain. Shutdown the
1665 * port and maybe drop signals.
1666 */
1667
1668 static void stl_hangup(struct tty_struct *tty)
1669 {
1670 stlport_t *portp;
1671
1672 #ifdef DEBUG
1673 printk("stl_hangup(tty=%x)\n", (int) tty);
1674 #endif
1675
1676 if (tty == (struct tty_struct *) NULL)
1677 return;
1678 portp = tty->driver_data;
1679 if (portp == (stlport_t *) NULL)
1680 return;
1681
1682 portp->flags &= ~ASYNC_INITIALIZED;
1683 stl_disableintrs(portp);
1684 if (tty->termios->c_cflag & HUPCL)
1685 stl_setsignals(portp, 0, 0);
1686 stl_enablerxtx(portp, 0, 0);
1687 stl_flushbuffer(tty);
1688 portp->istate = 0;
1689 set_bit(TTY_IO_ERROR, &tty->flags);
1690 if (portp->tx.buf != (char *) NULL) {
1691 kfree(portp->tx.buf);
1692 portp->tx.buf = (char *) NULL;
1693 portp->tx.head = (char *) NULL;
1694 portp->tx.tail = (char *) NULL;
1695 }
1696 portp->tty = (struct tty_struct *) NULL;
1697 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
1698 portp->refcount = 0;
1699 wake_up_interruptible(&portp->open_wait);
1700 }
1701
1702 /*****************************************************************************/
1703
1704 static void stl_flushbuffer(struct tty_struct *tty)
1705 {
1706 stlport_t *portp;
1707
1708 #ifdef DEBUG
1709 printk("stl_flushbuffer(tty=%x)\n", (int) tty);
1710 #endif
1711
1712 if (tty == (struct tty_struct *) NULL)
1713 return;
1714 portp = tty->driver_data;
1715 if (portp == (stlport_t *) NULL)
1716 return;
1717
1718 stl_flush(portp);
1719 tty_wakeup(tty);
1720 }
1721
1722 /*****************************************************************************/
1723
1724 static void stl_breakctl(struct tty_struct *tty, int state)
1725 {
1726 stlport_t *portp;
1727
1728 #ifdef DEBUG
1729 printk("stl_breakctl(tty=%x,state=%d)\n", (int) tty, state);
1730 #endif
1731
1732 if (tty == (struct tty_struct *) NULL)
1733 return;
1734 portp = tty->driver_data;
1735 if (portp == (stlport_t *) NULL)
1736 return;
1737
1738 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1739 }
1740
1741 /*****************************************************************************/
1742
1743 static void stl_waituntilsent(struct tty_struct *tty, int timeout)
1744 {
1745 stlport_t *portp;
1746 unsigned long tend;
1747
1748 #ifdef DEBUG
1749 printk("stl_waituntilsent(tty=%x,timeout=%d)\n", (int) tty, timeout);
1750 #endif
1751
1752 if (tty == (struct tty_struct *) NULL)
1753 return;
1754 portp = tty->driver_data;
1755 if (portp == (stlport_t *) NULL)
1756 return;
1757
1758 if (timeout == 0)
1759 timeout = HZ;
1760 tend = jiffies + timeout;
1761
1762 while (stl_datastate(portp)) {
1763 if (signal_pending(current))
1764 break;
1765 msleep_interruptible(20);
1766 if (time_after_eq(jiffies, tend))
1767 break;
1768 }
1769 }
1770
1771 /*****************************************************************************/
1772
1773 static void stl_sendxchar(struct tty_struct *tty, char ch)
1774 {
1775 stlport_t *portp;
1776
1777 #ifdef DEBUG
1778 printk("stl_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
1779 #endif
1780
1781 if (tty == (struct tty_struct *) NULL)
1782 return;
1783 portp = tty->driver_data;
1784 if (portp == (stlport_t *) NULL)
1785 return;
1786
1787 if (ch == STOP_CHAR(tty))
1788 stl_sendflow(portp, 0);
1789 else if (ch == START_CHAR(tty))
1790 stl_sendflow(portp, 1);
1791 else
1792 stl_putchar(tty, ch);
1793 }
1794
1795 /*****************************************************************************/
1796
1797 #define MAXLINE 80
1798
1799 /*
1800 * Format info for a specified port. The line is deliberately limited
1801 * to 80 characters. (If it is too long it will be truncated, if too
1802 * short then padded with spaces).
1803 */
1804
1805 static int stl_portinfo(stlport_t *portp, int portnr, char *pos)
1806 {
1807 char *sp;
1808 int sigs, cnt;
1809
1810 sp = pos;
1811 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1812 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1813 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1814
1815 if (portp->stats.rxframing)
1816 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1817 if (portp->stats.rxparity)
1818 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1819 if (portp->stats.rxbreaks)
1820 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1821 if (portp->stats.rxoverrun)
1822 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1823
1824 sigs = stl_getsignals(portp);
1825 cnt = sprintf(sp, "%s%s%s%s%s ",
1826 (sigs & TIOCM_RTS) ? "|RTS" : "",
1827 (sigs & TIOCM_CTS) ? "|CTS" : "",
1828 (sigs & TIOCM_DTR) ? "|DTR" : "",
1829 (sigs & TIOCM_CD) ? "|DCD" : "",
1830 (sigs & TIOCM_DSR) ? "|DSR" : "");
1831 *sp = ' ';
1832 sp += cnt;
1833
1834 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
1835 *sp++ = ' ';
1836 if (cnt >= MAXLINE)
1837 pos[(MAXLINE - 2)] = '+';
1838 pos[(MAXLINE - 1)] = '\n';
1839
1840 return MAXLINE;
1841 }
1842
1843 /*****************************************************************************/
1844
1845 /*
1846 * Port info, read from the /proc file system.
1847 */
1848
1849 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1850 {
1851 stlbrd_t *brdp;
1852 stlpanel_t *panelp;
1853 stlport_t *portp;
1854 int brdnr, panelnr, portnr, totalport;
1855 int curoff, maxoff;
1856 char *pos;
1857
1858 #ifdef DEBUG
1859 printk("stl_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
1860 "data=%x\n", (int) page, (int) start, (int) off, count,
1861 (int) eof, (int) data);
1862 #endif
1863
1864 pos = page;
1865 totalport = 0;
1866 curoff = 0;
1867
1868 if (off == 0) {
1869 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1870 stl_drvversion);
1871 while (pos < (page + MAXLINE - 1))
1872 *pos++ = ' ';
1873 *pos++ = '\n';
1874 }
1875 curoff = MAXLINE;
1876
1877 /*
1878 * We scan through for each board, panel and port. The offset is
1879 * calculated on the fly, and irrelevant ports are skipped.
1880 */
1881 for (brdnr = 0; (brdnr < stl_nrbrds); brdnr++) {
1882 brdp = stl_brds[brdnr];
1883 if (brdp == (stlbrd_t *) NULL)
1884 continue;
1885 if (brdp->state == 0)
1886 continue;
1887
1888 maxoff = curoff + (brdp->nrports * MAXLINE);
1889 if (off >= maxoff) {
1890 curoff = maxoff;
1891 continue;
1892 }
1893
1894 totalport = brdnr * STL_MAXPORTS;
1895 for (panelnr = 0; (panelnr < brdp->nrpanels); panelnr++) {
1896 panelp = brdp->panels[panelnr];
1897 if (panelp == (stlpanel_t *) NULL)
1898 continue;
1899
1900 maxoff = curoff + (panelp->nrports * MAXLINE);
1901 if (off >= maxoff) {
1902 curoff = maxoff;
1903 totalport += panelp->nrports;
1904 continue;
1905 }
1906
1907 for (portnr = 0; (portnr < panelp->nrports); portnr++,
1908 totalport++) {
1909 portp = panelp->ports[portnr];
1910 if (portp == (stlport_t *) NULL)
1911 continue;
1912 if (off >= (curoff += MAXLINE))
1913 continue;
1914 if ((pos - page + MAXLINE) > count)
1915 goto stl_readdone;
1916 pos += stl_portinfo(portp, totalport, pos);
1917 }
1918 }
1919 }
1920
1921 *eof = 1;
1922
1923 stl_readdone:
1924 *start = page;
1925 return (pos - page);
1926 }
1927
1928 /*****************************************************************************/
1929
1930 /*
1931 * All board interrupts are vectored through here first. This code then
1932 * calls off to the approrpriate board interrupt handlers.
1933 */
1934
1935 static irqreturn_t stl_intr(int irq, void *dev_id, struct pt_regs *regs)
1936 {
1937 stlbrd_t *brdp = (stlbrd_t *) dev_id;
1938
1939 #ifdef DEBUG
1940 printk("stl_intr(brdp=%x,irq=%d,regs=%x)\n", (int) brdp, irq,
1941 (int) regs);
1942 #endif
1943
1944 return IRQ_RETVAL((* brdp->isr)(brdp));
1945 }
1946
1947 /*****************************************************************************/
1948
1949 /*
1950 * Interrupt service routine for EasyIO board types.
1951 */
1952
1953 static int stl_eiointr(stlbrd_t *brdp)
1954 {
1955 stlpanel_t *panelp;
1956 unsigned int iobase;
1957 int handled = 0;
1958
1959 spin_lock(&brd_lock);
1960 panelp = brdp->panels[0];
1961 iobase = panelp->iobase;
1962 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1963 handled = 1;
1964 (* panelp->isr)(panelp, iobase);
1965 }
1966 spin_unlock(&brd_lock);
1967 return handled;
1968 }
1969
1970 /*****************************************************************************/
1971
1972 /*
1973 * Interrupt service routine for ECH-AT board types.
1974 */
1975
1976 static int stl_echatintr(stlbrd_t *brdp)
1977 {
1978 stlpanel_t *panelp;
1979 unsigned int ioaddr;
1980 int bnknr;
1981 int handled = 0;
1982
1983 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1984
1985 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1986 handled = 1;
1987 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
1988 ioaddr = brdp->bnkstataddr[bnknr];
1989 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1990 panelp = brdp->bnk2panel[bnknr];
1991 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1992 }
1993 }
1994 }
1995
1996 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
1997
1998 return handled;
1999 }
2000
2001 /*****************************************************************************/
2002
2003 /*
2004 * Interrupt service routine for ECH-MCA board types.
2005 */
2006
2007 static int stl_echmcaintr(stlbrd_t *brdp)
2008 {
2009 stlpanel_t *panelp;
2010 unsigned int ioaddr;
2011 int bnknr;
2012 int handled = 0;
2013
2014 while (inb(brdp->iostatus) & ECH_INTRPEND) {
2015 handled = 1;
2016 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2017 ioaddr = brdp->bnkstataddr[bnknr];
2018 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2019 panelp = brdp->bnk2panel[bnknr];
2020 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2021 }
2022 }
2023 }
2024 return handled;
2025 }
2026
2027 /*****************************************************************************/
2028
2029 /*
2030 * Interrupt service routine for ECH-PCI board types.
2031 */
2032
2033 static int stl_echpciintr(stlbrd_t *brdp)
2034 {
2035 stlpanel_t *panelp;
2036 unsigned int ioaddr;
2037 int bnknr, recheck;
2038 int handled = 0;
2039
2040 while (1) {
2041 recheck = 0;
2042 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2043 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
2044 ioaddr = brdp->bnkstataddr[bnknr];
2045 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2046 panelp = brdp->bnk2panel[bnknr];
2047 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2048 recheck++;
2049 handled = 1;
2050 }
2051 }
2052 if (! recheck)
2053 break;
2054 }
2055 return handled;
2056 }
2057
2058 /*****************************************************************************/
2059
2060 /*
2061 * Interrupt service routine for ECH-8/64-PCI board types.
2062 */
2063
2064 static int stl_echpci64intr(stlbrd_t *brdp)
2065 {
2066 stlpanel_t *panelp;
2067 unsigned int ioaddr;
2068 int bnknr;
2069 int handled = 0;
2070
2071 while (inb(brdp->ioctrl) & 0x1) {
2072 handled = 1;
2073 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
2074 ioaddr = brdp->bnkstataddr[bnknr];
2075 if (inb(ioaddr) & ECH_PNLINTRPEND) {
2076 panelp = brdp->bnk2panel[bnknr];
2077 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
2078 }
2079 }
2080 }
2081
2082 return handled;
2083 }
2084
2085 /*****************************************************************************/
2086
2087 /*
2088 * Service an off-level request for some channel.
2089 */
2090 static void stl_offintr(void *private)
2091 {
2092 stlport_t *portp;
2093 struct tty_struct *tty;
2094 unsigned int oldsigs;
2095
2096 portp = private;
2097
2098 #ifdef DEBUG
2099 printk("stl_offintr(portp=%x)\n", (int) portp);
2100 #endif
2101
2102 if (portp == (stlport_t *) NULL)
2103 return;
2104
2105 tty = portp->tty;
2106 if (tty == (struct tty_struct *) NULL)
2107 return;
2108
2109 lock_kernel();
2110 if (test_bit(ASYI_TXLOW, &portp->istate)) {
2111 tty_wakeup(tty);
2112 }
2113 if (test_bit(ASYI_DCDCHANGE, &portp->istate)) {
2114 clear_bit(ASYI_DCDCHANGE, &portp->istate);
2115 oldsigs = portp->sigs;
2116 portp->sigs = stl_getsignals(portp);
2117 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
2118 wake_up_interruptible(&portp->open_wait);
2119 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0)) {
2120 if (portp->flags & ASYNC_CHECK_CD)
2121 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2122 }
2123 }
2124 unlock_kernel();
2125 }
2126
2127 /*****************************************************************************/
2128
2129 /*
2130 * Initialize all the ports on a panel.
2131 */
2132
2133 static int __init stl_initports(stlbrd_t *brdp, stlpanel_t *panelp)
2134 {
2135 stlport_t *portp;
2136 int chipmask, i;
2137
2138 #ifdef DEBUG
2139 printk("stl_initports(brdp=%x,panelp=%x)\n", (int) brdp, (int) panelp);
2140 #endif
2141
2142 chipmask = stl_panelinit(brdp, panelp);
2143
2144 /*
2145 * All UART's are initialized (if found!). Now go through and setup
2146 * each ports data structures.
2147 */
2148 for (i = 0; (i < panelp->nrports); i++) {
2149 portp = kzalloc(sizeof(stlport_t), GFP_KERNEL);
2150 if (!portp) {
2151 printk("STALLION: failed to allocate memory "
2152 "(size=%Zd)\n", sizeof(stlport_t));
2153 break;
2154 }
2155
2156 portp->magic = STL_PORTMAGIC;
2157 portp->portnr = i;
2158 portp->brdnr = panelp->brdnr;
2159 portp->panelnr = panelp->panelnr;
2160 portp->uartp = panelp->uartp;
2161 portp->clk = brdp->clk;
2162 portp->baud_base = STL_BAUDBASE;
2163 portp->close_delay = STL_CLOSEDELAY;
2164 portp->closing_wait = 30 * HZ;
2165 INIT_WORK(&portp->tqueue, stl_offintr, portp);
2166 init_waitqueue_head(&portp->open_wait);
2167 init_waitqueue_head(&portp->close_wait);
2168 portp->stats.brd = portp->brdnr;
2169 portp->stats.panel = portp->panelnr;
2170 portp->stats.port = portp->portnr;
2171 panelp->ports[i] = portp;
2172 stl_portinit(brdp, panelp, portp);
2173 }
2174
2175 return(0);
2176 }
2177
2178 /*****************************************************************************/
2179
2180 /*
2181 * Try to find and initialize an EasyIO board.
2182 */
2183
2184 static inline int stl_initeio(stlbrd_t *brdp)
2185 {
2186 stlpanel_t *panelp;
2187 unsigned int status;
2188 char *name;
2189 int rc;
2190
2191 #ifdef DEBUG
2192 printk("stl_initeio(brdp=%x)\n", (int) brdp);
2193 #endif
2194
2195 brdp->ioctrl = brdp->ioaddr1 + 1;
2196 brdp->iostatus = brdp->ioaddr1 + 2;
2197
2198 status = inb(brdp->iostatus);
2199 if ((status & EIO_IDBITMASK) == EIO_MK3)
2200 brdp->ioctrl++;
2201
2202 /*
2203 * Handle board specific stuff now. The real difference is PCI
2204 * or not PCI.
2205 */
2206 if (brdp->brdtype == BRD_EASYIOPCI) {
2207 brdp->iosize1 = 0x80;
2208 brdp->iosize2 = 0x80;
2209 name = "serial(EIO-PCI)";
2210 outb(0x41, (brdp->ioaddr2 + 0x4c));
2211 } else {
2212 brdp->iosize1 = 8;
2213 name = "serial(EIO)";
2214 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2215 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2216 printk("STALLION: invalid irq=%d for brd=%d\n",
2217 brdp->irq, brdp->brdnr);
2218 return(-EINVAL);
2219 }
2220 outb((stl_vecmap[brdp->irq] | EIO_0WS |
2221 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
2222 brdp->ioctrl);
2223 }
2224
2225 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2226 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2227 "%x conflicts with another device\n", brdp->brdnr,
2228 brdp->ioaddr1);
2229 return(-EBUSY);
2230 }
2231
2232 if (brdp->iosize2 > 0)
2233 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2234 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2235 "address %x conflicts with another device\n",
2236 brdp->brdnr, brdp->ioaddr2);
2237 printk(KERN_WARNING "STALLION: Warning, also "
2238 "releasing board %d I/O address %x \n",
2239 brdp->brdnr, brdp->ioaddr1);
2240 release_region(brdp->ioaddr1, brdp->iosize1);
2241 return(-EBUSY);
2242 }
2243
2244 /*
2245 * Everything looks OK, so let's go ahead and probe for the hardware.
2246 */
2247 brdp->clk = CD1400_CLK;
2248 brdp->isr = stl_eiointr;
2249
2250 switch (status & EIO_IDBITMASK) {
2251 case EIO_8PORTM:
2252 brdp->clk = CD1400_CLK8M;
2253 /* fall thru */
2254 case EIO_8PORTRS:
2255 case EIO_8PORTDI:
2256 brdp->nrports = 8;
2257 break;
2258 case EIO_4PORTRS:
2259 brdp->nrports = 4;
2260 break;
2261 case EIO_MK3:
2262 switch (status & EIO_BRDMASK) {
2263 case ID_BRD4:
2264 brdp->nrports = 4;
2265 break;
2266 case ID_BRD8:
2267 brdp->nrports = 8;
2268 break;
2269 case ID_BRD16:
2270 brdp->nrports = 16;
2271 break;
2272 default:
2273 return(-ENODEV);
2274 }
2275 break;
2276 default:
2277 return(-ENODEV);
2278 }
2279
2280 /*
2281 * We have verified that the board is actually present, so now we
2282 * can complete the setup.
2283 */
2284
2285 panelp = kzalloc(sizeof(stlpanel_t), GFP_KERNEL);
2286 if (!panelp) {
2287 printk(KERN_WARNING "STALLION: failed to allocate memory "
2288 "(size=%Zd)\n", sizeof(stlpanel_t));
2289 return -ENOMEM;
2290 }
2291
2292 panelp->magic = STL_PANELMAGIC;
2293 panelp->brdnr = brdp->brdnr;
2294 panelp->panelnr = 0;
2295 panelp->nrports = brdp->nrports;
2296 panelp->iobase = brdp->ioaddr1;
2297 panelp->hwid = status;
2298 if ((status & EIO_IDBITMASK) == EIO_MK3) {
2299 panelp->uartp = (void *) &stl_sc26198uart;
2300 panelp->isr = stl_sc26198intr;
2301 } else {
2302 panelp->uartp = (void *) &stl_cd1400uart;
2303 panelp->isr = stl_cd1400eiointr;
2304 }
2305
2306 brdp->panels[0] = panelp;
2307 brdp->nrpanels = 1;
2308 brdp->state |= BRD_FOUND;
2309 brdp->hwid = status;
2310 if (request_irq(brdp->irq, stl_intr, SA_SHIRQ, name, brdp) != 0) {
2311 printk("STALLION: failed to register interrupt "
2312 "routine for %s irq=%d\n", name, brdp->irq);
2313 rc = -ENODEV;
2314 } else {
2315 rc = 0;
2316 }
2317 return rc;
2318 }
2319
2320 /*****************************************************************************/
2321
2322 /*
2323 * Try to find an ECH board and initialize it. This code is capable of
2324 * dealing with all types of ECH board.
2325 */
2326
2327 static inline int stl_initech(stlbrd_t *brdp)
2328 {
2329 stlpanel_t *panelp;
2330 unsigned int status, nxtid, ioaddr, conflict;
2331 int panelnr, banknr, i;
2332 char *name;
2333
2334 #ifdef DEBUG
2335 printk("stl_initech(brdp=%x)\n", (int) brdp);
2336 #endif
2337
2338 status = 0;
2339 conflict = 0;
2340
2341 /*
2342 * Set up the initial board register contents for boards. This varies a
2343 * bit between the different board types. So we need to handle each
2344 * separately. Also do a check that the supplied IRQ is good.
2345 */
2346 switch (brdp->brdtype) {
2347
2348 case BRD_ECH:
2349 brdp->isr = stl_echatintr;
2350 brdp->ioctrl = brdp->ioaddr1 + 1;
2351 brdp->iostatus = brdp->ioaddr1 + 1;
2352 status = inb(brdp->iostatus);
2353 if ((status & ECH_IDBITMASK) != ECH_ID)
2354 return(-ENODEV);
2355 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2356 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2357 printk("STALLION: invalid irq=%d for brd=%d\n",
2358 brdp->irq, brdp->brdnr);
2359 return(-EINVAL);
2360 }
2361 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
2362 status |= (stl_vecmap[brdp->irq] << 1);
2363 outb((status | ECH_BRDRESET), brdp->ioaddr1);
2364 brdp->ioctrlval = ECH_INTENABLE |
2365 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
2366 for (i = 0; (i < 10); i++)
2367 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2368 brdp->iosize1 = 2;
2369 brdp->iosize2 = 32;
2370 name = "serial(EC8/32)";
2371 outb(status, brdp->ioaddr1);
2372 break;
2373
2374 case BRD_ECHMC:
2375 brdp->isr = stl_echmcaintr;
2376 brdp->ioctrl = brdp->ioaddr1 + 0x20;
2377 brdp->iostatus = brdp->ioctrl;
2378 status = inb(brdp->iostatus);
2379 if ((status & ECH_IDBITMASK) != ECH_ID)
2380 return(-ENODEV);
2381 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2382 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2383 printk("STALLION: invalid irq=%d for brd=%d\n",
2384 brdp->irq, brdp->brdnr);
2385 return(-EINVAL);
2386 }
2387 outb(ECHMC_BRDRESET, brdp->ioctrl);
2388 outb(ECHMC_INTENABLE, brdp->ioctrl);
2389 brdp->iosize1 = 64;
2390 name = "serial(EC8/32-MC)";
2391 break;
2392
2393 case BRD_ECHPCI:
2394 brdp->isr = stl_echpciintr;
2395 brdp->ioctrl = brdp->ioaddr1 + 2;
2396 brdp->iosize1 = 4;
2397 brdp->iosize2 = 8;
2398 name = "serial(EC8/32-PCI)";
2399 break;
2400
2401 case BRD_ECH64PCI:
2402 brdp->isr = stl_echpci64intr;
2403 brdp->ioctrl = brdp->ioaddr2 + 0x40;
2404 outb(0x43, (brdp->ioaddr1 + 0x4c));
2405 brdp->iosize1 = 0x80;
2406 brdp->iosize2 = 0x80;
2407 name = "serial(EC8/64-PCI)";
2408 break;
2409
2410 default:
2411 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
2412 return(-EINVAL);
2413 break;
2414 }
2415
2416 /*
2417 * Check boards for possible IO address conflicts and return fail status
2418 * if an IO conflict found.
2419 */
2420 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2421 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2422 "%x conflicts with another device\n", brdp->brdnr,
2423 brdp->ioaddr1);
2424 return(-EBUSY);
2425 }
2426
2427 if (brdp->iosize2 > 0)
2428 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2429 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2430 "address %x conflicts with another device\n",
2431 brdp->brdnr, brdp->ioaddr2);
2432 printk(KERN_WARNING "STALLION: Warning, also "
2433 "releasing board %d I/O address %x \n",
2434 brdp->brdnr, brdp->ioaddr1);
2435 release_region(brdp->ioaddr1, brdp->iosize1);
2436 return(-EBUSY);
2437 }
2438
2439 /*
2440 * Scan through the secondary io address space looking for panels.
2441 * As we find'em allocate and initialize panel structures for each.
2442 */
2443 brdp->clk = CD1400_CLK;
2444 brdp->hwid = status;
2445
2446 ioaddr = brdp->ioaddr2;
2447 banknr = 0;
2448 panelnr = 0;
2449 nxtid = 0;
2450
2451 for (i = 0; (i < STL_MAXPANELS); i++) {
2452 if (brdp->brdtype == BRD_ECHPCI) {
2453 outb(nxtid, brdp->ioctrl);
2454 ioaddr = brdp->ioaddr2;
2455 }
2456 status = inb(ioaddr + ECH_PNLSTATUS);
2457 if ((status & ECH_PNLIDMASK) != nxtid)
2458 break;
2459 panelp = kzalloc(sizeof(stlpanel_t), GFP_KERNEL);
2460 if (!panelp) {
2461 printk("STALLION: failed to allocate memory "
2462 "(size=%Zd)\n", sizeof(stlpanel_t));
2463 break;
2464 }
2465 panelp->magic = STL_PANELMAGIC;
2466 panelp->brdnr = brdp->brdnr;
2467 panelp->panelnr = panelnr;
2468 panelp->iobase = ioaddr;
2469 panelp->pagenr = nxtid;
2470 panelp->hwid = status;
2471 brdp->bnk2panel[banknr] = panelp;
2472 brdp->bnkpageaddr[banknr] = nxtid;
2473 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2474
2475 if (status & ECH_PNLXPID) {
2476 panelp->uartp = (void *) &stl_sc26198uart;
2477 panelp->isr = stl_sc26198intr;
2478 if (status & ECH_PNL16PORT) {
2479 panelp->nrports = 16;
2480 brdp->bnk2panel[banknr] = panelp;
2481 brdp->bnkpageaddr[banknr] = nxtid;
2482 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2483 ECH_PNLSTATUS;
2484 } else {
2485 panelp->nrports = 8;
2486 }
2487 } else {
2488 panelp->uartp = (void *) &stl_cd1400uart;
2489 panelp->isr = stl_cd1400echintr;
2490 if (status & ECH_PNL16PORT) {
2491 panelp->nrports = 16;
2492 panelp->ackmask = 0x80;
2493 if (brdp->brdtype != BRD_ECHPCI)
2494 ioaddr += EREG_BANKSIZE;
2495 brdp->bnk2panel[banknr] = panelp;
2496 brdp->bnkpageaddr[banknr] = ++nxtid;
2497 brdp->bnkstataddr[banknr++] = ioaddr +
2498 ECH_PNLSTATUS;
2499 } else {
2500 panelp->nrports = 8;
2501 panelp->ackmask = 0xc0;
2502 }
2503 }
2504
2505 nxtid++;
2506 ioaddr += EREG_BANKSIZE;
2507 brdp->nrports += panelp->nrports;
2508 brdp->panels[panelnr++] = panelp;
2509 if ((brdp->brdtype != BRD_ECHPCI) &&
2510 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2)))
2511 break;
2512 }
2513
2514 brdp->nrpanels = panelnr;
2515 brdp->nrbnks = banknr;
2516 if (brdp->brdtype == BRD_ECH)
2517 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2518
2519 brdp->state |= BRD_FOUND;
2520 if (request_irq(brdp->irq, stl_intr, SA_SHIRQ, name, brdp) != 0) {
2521 printk("STALLION: failed to register interrupt "
2522 "routine for %s irq=%d\n", name, brdp->irq);
2523 i = -ENODEV;
2524 } else {
2525 i = 0;
2526 }
2527
2528 return(i);
2529 }
2530
2531 /*****************************************************************************/
2532
2533 /*
2534 * Initialize and configure the specified board.
2535 * Scan through all the boards in the configuration and see what we
2536 * can find. Handle EIO and the ECH boards a little differently here
2537 * since the initial search and setup is very different.
2538 */
2539
2540 static int __init stl_brdinit(stlbrd_t *brdp)
2541 {
2542 int i;
2543
2544 #ifdef DEBUG
2545 printk("stl_brdinit(brdp=%x)\n", (int) brdp);
2546 #endif
2547
2548 switch (brdp->brdtype) {
2549 case BRD_EASYIO:
2550 case BRD_EASYIOPCI:
2551 stl_initeio(brdp);
2552 break;
2553 case BRD_ECH:
2554 case BRD_ECHMC:
2555 case BRD_ECHPCI:
2556 case BRD_ECH64PCI:
2557 stl_initech(brdp);
2558 break;
2559 default:
2560 printk("STALLION: board=%d is unknown board type=%d\n",
2561 brdp->brdnr, brdp->brdtype);
2562 return(ENODEV);
2563 }
2564
2565 stl_brds[brdp->brdnr] = brdp;
2566 if ((brdp->state & BRD_FOUND) == 0) {
2567 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2568 stl_brdnames[brdp->brdtype], brdp->brdnr,
2569 brdp->ioaddr1, brdp->irq);
2570 return(ENODEV);
2571 }
2572
2573 for (i = 0; (i < STL_MAXPANELS); i++)
2574 if (brdp->panels[i] != (stlpanel_t *) NULL)
2575 stl_initports(brdp, brdp->panels[i]);
2576
2577 printk("STALLION: %s found, board=%d io=%x irq=%d "
2578 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2579 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2580 brdp->nrports);
2581 return(0);
2582 }
2583
2584 /*****************************************************************************/
2585
2586 /*
2587 * Find the next available board number that is free.
2588 */
2589
2590 static inline int stl_getbrdnr(void)
2591 {
2592 int i;
2593
2594 for (i = 0; (i < STL_MAXBRDS); i++) {
2595 if (stl_brds[i] == (stlbrd_t *) NULL) {
2596 if (i >= stl_nrbrds)
2597 stl_nrbrds = i + 1;
2598 return(i);
2599 }
2600 }
2601 return(-1);
2602 }
2603
2604 /*****************************************************************************/
2605
2606 #ifdef CONFIG_PCI
2607
2608 /*
2609 * We have a Stallion board. Allocate a board structure and
2610 * initialize it. Read its IO and IRQ resources from PCI
2611 * configuration space.
2612 */
2613
2614 static inline int stl_initpcibrd(int brdtype, struct pci_dev *devp)
2615 {
2616 stlbrd_t *brdp;
2617
2618 #ifdef DEBUG
2619 printk("stl_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n", brdtype,
2620 devp->bus->number, devp->devfn);
2621 #endif
2622
2623 if (pci_enable_device(devp))
2624 return(-EIO);
2625 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
2626 return(-ENOMEM);
2627 if ((brdp->brdnr = stl_getbrdnr()) < 0) {
2628 printk("STALLION: too many boards found, "
2629 "maximum supported %d\n", STL_MAXBRDS);
2630 return(0);
2631 }
2632 brdp->brdtype = brdtype;
2633
2634 /*
2635 * Different Stallion boards use the BAR registers in different ways,
2636 * so set up io addresses based on board type.
2637 */
2638 #ifdef DEBUG
2639 printk("%s(%d): BAR[]=%x,%x,%x,%x IRQ=%x\n", __FILE__, __LINE__,
2640 pci_resource_start(devp, 0), pci_resource_start(devp, 1),
2641 pci_resource_start(devp, 2), pci_resource_start(devp, 3), devp->irq);
2642 #endif
2643
2644 /*
2645 * We have all resources from the board, so let's setup the actual
2646 * board structure now.
2647 */
2648 switch (brdtype) {
2649 case BRD_ECHPCI:
2650 brdp->ioaddr2 = pci_resource_start(devp, 0);
2651 brdp->ioaddr1 = pci_resource_start(devp, 1);
2652 break;
2653 case BRD_ECH64PCI:
2654 brdp->ioaddr2 = pci_resource_start(devp, 2);
2655 brdp->ioaddr1 = pci_resource_start(devp, 1);
2656 break;
2657 case BRD_EASYIOPCI:
2658 brdp->ioaddr1 = pci_resource_start(devp, 2);
2659 brdp->ioaddr2 = pci_resource_start(devp, 1);
2660 break;
2661 default:
2662 printk("STALLION: unknown PCI board type=%d\n", brdtype);
2663 break;
2664 }
2665
2666 brdp->irq = devp->irq;
2667 stl_brdinit(brdp);
2668
2669 return(0);
2670 }
2671
2672 /*****************************************************************************/
2673
2674 /*
2675 * Find all Stallion PCI boards that might be installed. Initialize each
2676 * one as it is found.
2677 */
2678
2679
2680 static inline int stl_findpcibrds(void)
2681 {
2682 struct pci_dev *dev = NULL;
2683 int i, rc;
2684
2685 #ifdef DEBUG
2686 printk("stl_findpcibrds()\n");
2687 #endif
2688
2689 for (i = 0; (i < stl_nrpcibrds); i++)
2690 while ((dev = pci_find_device(stl_pcibrds[i].vendid,
2691 stl_pcibrds[i].devid, dev))) {
2692
2693 /*
2694 * Found a device on the PCI bus that has our vendor and
2695 * device ID. Need to check now that it is really us.
2696 */
2697 if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2698 continue;
2699
2700 rc = stl_initpcibrd(stl_pcibrds[i].brdtype, dev);
2701 if (rc)
2702 return(rc);
2703 }
2704
2705 return(0);
2706 }
2707
2708 #endif
2709
2710 /*****************************************************************************/
2711
2712 /*
2713 * Scan through all the boards in the configuration and see what we
2714 * can find. Handle EIO and the ECH boards a little differently here
2715 * since the initial search and setup is too different.
2716 */
2717
2718 static inline int stl_initbrds(void)
2719 {
2720 stlbrd_t *brdp;
2721 stlconf_t *confp;
2722 int i;
2723
2724 #ifdef DEBUG
2725 printk("stl_initbrds()\n");
2726 #endif
2727
2728 if (stl_nrbrds > STL_MAXBRDS) {
2729 printk("STALLION: too many boards in configuration table, "
2730 "truncating to %d\n", STL_MAXBRDS);
2731 stl_nrbrds = STL_MAXBRDS;
2732 }
2733
2734 /*
2735 * Firstly scan the list of static boards configured. Allocate
2736 * resources and initialize the boards as found.
2737 */
2738 for (i = 0; (i < stl_nrbrds); i++) {
2739 confp = &stl_brdconf[i];
2740 stl_parsebrd(confp, stl_brdsp[i]);
2741 if ((brdp = stl_allocbrd()) == (stlbrd_t *) NULL)
2742 return(-ENOMEM);
2743 brdp->brdnr = i;
2744 brdp->brdtype = confp->brdtype;
2745 brdp->ioaddr1 = confp->ioaddr1;
2746 brdp->ioaddr2 = confp->ioaddr2;
2747 brdp->irq = confp->irq;
2748 brdp->irqtype = confp->irqtype;
2749 stl_brdinit(brdp);
2750 }
2751
2752 /*
2753 * Find any dynamically supported boards. That is via module load
2754 * line options or auto-detected on the PCI bus.
2755 */
2756 stl_argbrds();
2757 #ifdef CONFIG_PCI
2758 stl_findpcibrds();
2759 #endif
2760
2761 return(0);
2762 }
2763
2764 /*****************************************************************************/
2765
2766 /*
2767 * Return the board stats structure to user app.
2768 */
2769
2770 static int stl_getbrdstats(combrd_t __user *bp)
2771 {
2772 stlbrd_t *brdp;
2773 stlpanel_t *panelp;
2774 int i;
2775
2776 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2777 return -EFAULT;
2778 if (stl_brdstats.brd >= STL_MAXBRDS)
2779 return(-ENODEV);
2780 brdp = stl_brds[stl_brdstats.brd];
2781 if (brdp == (stlbrd_t *) NULL)
2782 return(-ENODEV);
2783
2784 memset(&stl_brdstats, 0, sizeof(combrd_t));
2785 stl_brdstats.brd = brdp->brdnr;
2786 stl_brdstats.type = brdp->brdtype;
2787 stl_brdstats.hwid = brdp->hwid;
2788 stl_brdstats.state = brdp->state;
2789 stl_brdstats.ioaddr = brdp->ioaddr1;
2790 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2791 stl_brdstats.irq = brdp->irq;
2792 stl_brdstats.nrpanels = brdp->nrpanels;
2793 stl_brdstats.nrports = brdp->nrports;
2794 for (i = 0; (i < brdp->nrpanels); i++) {
2795 panelp = brdp->panels[i];
2796 stl_brdstats.panels[i].panel = i;
2797 stl_brdstats.panels[i].hwid = panelp->hwid;
2798 stl_brdstats.panels[i].nrports = panelp->nrports;
2799 }
2800
2801 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2802 }
2803
2804 /*****************************************************************************/
2805
2806 /*
2807 * Resolve the referenced port number into a port struct pointer.
2808 */
2809
2810 static stlport_t *stl_getport(int brdnr, int panelnr, int portnr)
2811 {
2812 stlbrd_t *brdp;
2813 stlpanel_t *panelp;
2814
2815 if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
2816 return((stlport_t *) NULL);
2817 brdp = stl_brds[brdnr];
2818 if (brdp == (stlbrd_t *) NULL)
2819 return((stlport_t *) NULL);
2820 if ((panelnr < 0) || (panelnr >= brdp->nrpanels))
2821 return((stlport_t *) NULL);
2822 panelp = brdp->panels[panelnr];
2823 if (panelp == (stlpanel_t *) NULL)
2824 return((stlport_t *) NULL);
2825 if ((portnr < 0) || (portnr >= panelp->nrports))
2826 return((stlport_t *) NULL);
2827 return(panelp->ports[portnr]);
2828 }
2829
2830 /*****************************************************************************/
2831
2832 /*
2833 * Return the port stats structure to user app. A NULL port struct
2834 * pointer passed in means that we need to find out from the app
2835 * what port to get stats for (used through board control device).
2836 */
2837
2838 static int stl_getportstats(stlport_t *portp, comstats_t __user *cp)
2839 {
2840 unsigned char *head, *tail;
2841 unsigned long flags;
2842
2843 if (!portp) {
2844 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2845 return -EFAULT;
2846 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2847 stl_comstats.port);
2848 if (portp == (stlport_t *) NULL)
2849 return(-ENODEV);
2850 }
2851
2852 portp->stats.state = portp->istate;
2853 portp->stats.flags = portp->flags;
2854 portp->stats.hwid = portp->hwid;
2855
2856 portp->stats.ttystate = 0;
2857 portp->stats.cflags = 0;
2858 portp->stats.iflags = 0;
2859 portp->stats.oflags = 0;
2860 portp->stats.lflags = 0;
2861 portp->stats.rxbuffered = 0;
2862
2863 spin_lock_irqsave(&stallion_lock, flags);
2864 if (portp->tty != (struct tty_struct *) NULL) {
2865 if (portp->tty->driver_data == portp) {
2866 portp->stats.ttystate = portp->tty->flags;
2867 /* No longer available as a statistic */
2868 portp->stats.rxbuffered = 1; /*portp->tty->flip.count; */
2869 if (portp->tty->termios != (struct termios *) NULL) {
2870 portp->stats.cflags = portp->tty->termios->c_cflag;
2871 portp->stats.iflags = portp->tty->termios->c_iflag;
2872 portp->stats.oflags = portp->tty->termios->c_oflag;
2873 portp->stats.lflags = portp->tty->termios->c_lflag;
2874 }
2875 }
2876 }
2877 spin_unlock_irqrestore(&stallion_lock, flags);
2878
2879 head = portp->tx.head;
2880 tail = portp->tx.tail;
2881 portp->stats.txbuffered = ((head >= tail) ? (head - tail) :
2882 (STL_TXBUFSIZE - (tail - head)));
2883
2884 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2885
2886 return copy_to_user(cp, &portp->stats,
2887 sizeof(comstats_t)) ? -EFAULT : 0;
2888 }
2889
2890 /*****************************************************************************/
2891
2892 /*
2893 * Clear the port stats structure. We also return it zeroed out...
2894 */
2895
2896 static int stl_clrportstats(stlport_t *portp, comstats_t __user *cp)
2897 {
2898 if (!portp) {
2899 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2900 return -EFAULT;
2901 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2902 stl_comstats.port);
2903 if (portp == (stlport_t *) NULL)
2904 return(-ENODEV);
2905 }
2906
2907 memset(&portp->stats, 0, sizeof(comstats_t));
2908 portp->stats.brd = portp->brdnr;
2909 portp->stats.panel = portp->panelnr;
2910 portp->stats.port = portp->portnr;
2911 return copy_to_user(cp, &portp->stats,
2912 sizeof(comstats_t)) ? -EFAULT : 0;
2913 }
2914
2915 /*****************************************************************************/
2916
2917 /*
2918 * Return the entire driver ports structure to a user app.
2919 */
2920
2921 static int stl_getportstruct(stlport_t __user *arg)
2922 {
2923 stlport_t *portp;
2924
2925 if (copy_from_user(&stl_dummyport, arg, sizeof(stlport_t)))
2926 return -EFAULT;
2927 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2928 stl_dummyport.portnr);
2929 if (!portp)
2930 return -ENODEV;
2931 return copy_to_user(arg, portp, sizeof(stlport_t)) ? -EFAULT : 0;
2932 }
2933
2934 /*****************************************************************************/
2935
2936 /*
2937 * Return the entire driver board structure to a user app.
2938 */
2939
2940 static int stl_getbrdstruct(stlbrd_t __user *arg)
2941 {
2942 stlbrd_t *brdp;
2943
2944 if (copy_from_user(&stl_dummybrd, arg, sizeof(stlbrd_t)))
2945 return -EFAULT;
2946 if ((stl_dummybrd.brdnr < 0) || (stl_dummybrd.brdnr >= STL_MAXBRDS))
2947 return -ENODEV;
2948 brdp = stl_brds[stl_dummybrd.brdnr];
2949 if (!brdp)
2950 return(-ENODEV);
2951 return copy_to_user(arg, brdp, sizeof(stlbrd_t)) ? -EFAULT : 0;
2952 }
2953
2954 /*****************************************************************************/
2955
2956 /*
2957 * The "staliomem" device is also required to do some special operations
2958 * on the board and/or ports. In this driver it is mostly used for stats
2959 * collection.
2960 */
2961
2962 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
2963 {
2964 int brdnr, rc;
2965 void __user *argp = (void __user *)arg;
2966
2967 #ifdef DEBUG
2968 printk("stl_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n", (int) ip,
2969 (int) fp, cmd, (int) arg);
2970 #endif
2971
2972 brdnr = iminor(ip);
2973 if (brdnr >= STL_MAXBRDS)
2974 return(-ENODEV);
2975 rc = 0;
2976
2977 switch (cmd) {
2978 case COM_GETPORTSTATS:
2979 rc = stl_getportstats(NULL, argp);
2980 break;
2981 case COM_CLRPORTSTATS:
2982 rc = stl_clrportstats(NULL, argp);
2983 break;
2984 case COM_GETBRDSTATS:
2985 rc = stl_getbrdstats(argp);
2986 break;
2987 case COM_READPORT:
2988 rc = stl_getportstruct(argp);
2989 break;
2990 case COM_READBOARD:
2991 rc = stl_getbrdstruct(argp);
2992 break;
2993 default:
2994 rc = -ENOIOCTLCMD;
2995 break;
2996 }
2997
2998 return(rc);
2999 }
3000
3001 static struct tty_operations stl_ops = {
3002 .open = stl_open,
3003 .close = stl_close,
3004 .write = stl_write,
3005 .put_char = stl_putchar,
3006 .flush_chars = stl_flushchars,
3007 .write_room = stl_writeroom,
3008 .chars_in_buffer = stl_charsinbuffer,
3009 .ioctl = stl_ioctl,
3010 .set_termios = stl_settermios,
3011 .throttle = stl_throttle,
3012 .unthrottle = stl_unthrottle,
3013 .stop = stl_stop,
3014 .start = stl_start,
3015 .hangup = stl_hangup,
3016 .flush_buffer = stl_flushbuffer,
3017 .break_ctl = stl_breakctl,
3018 .wait_until_sent = stl_waituntilsent,
3019 .send_xchar = stl_sendxchar,
3020 .read_proc = stl_readproc,
3021 .tiocmget = stl_tiocmget,
3022 .tiocmset = stl_tiocmset,
3023 };
3024
3025 /*****************************************************************************/
3026
3027 static int __init stl_init(void)
3028 {
3029 int i;
3030 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
3031
3032 stl_initbrds();
3033
3034 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
3035 if (!stl_serial)
3036 return -1;
3037
3038 /*
3039 * Set up a character driver for per board stuff. This is mainly used
3040 * to do stats ioctls on the ports.
3041 */
3042 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
3043 printk("STALLION: failed to register serial board device\n");
3044 devfs_mk_dir("staliomem");
3045
3046 stallion_class = class_create(THIS_MODULE, "staliomem");
3047 for (i = 0; i < 4; i++) {
3048 devfs_mk_cdev(MKDEV(STL_SIOMEMMAJOR, i),
3049 S_IFCHR|S_IRUSR|S_IWUSR,
3050 "staliomem/%d", i);
3051 class_device_create(stallion_class, NULL,
3052 MKDEV(STL_SIOMEMMAJOR, i), NULL,
3053 "staliomem%d", i);
3054 }
3055
3056 stl_serial->owner = THIS_MODULE;
3057 stl_serial->driver_name = stl_drvname;
3058 stl_serial->name = "ttyE";
3059 stl_serial->devfs_name = "tts/E";
3060 stl_serial->major = STL_SERIALMAJOR;
3061 stl_serial->minor_start = 0;
3062 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
3063 stl_serial->subtype = SERIAL_TYPE_NORMAL;
3064 stl_serial->init_termios = stl_deftermios;
3065 stl_serial->flags = TTY_DRIVER_REAL_RAW;
3066 tty_set_operations(stl_serial, &stl_ops);
3067
3068 if (tty_register_driver(stl_serial)) {
3069 put_tty_driver(stl_serial);
3070 printk("STALLION: failed to register serial driver\n");
3071 return -1;
3072 }
3073
3074 return 0;
3075 }
3076
3077 /*****************************************************************************/
3078 /* CD1400 HARDWARE FUNCTIONS */
3079 /*****************************************************************************/
3080
3081 /*
3082 * These functions get/set/update the registers of the cd1400 UARTs.
3083 * Access to the cd1400 registers is via an address/data io port pair.
3084 * (Maybe should make this inline...)
3085 */
3086
3087 static int stl_cd1400getreg(stlport_t *portp, int regnr)
3088 {
3089 outb((regnr + portp->uartaddr), portp->ioaddr);
3090 return inb(portp->ioaddr + EREG_DATA);
3091 }
3092
3093 static void stl_cd1400setreg(stlport_t *portp, int regnr, int value)
3094 {
3095 outb((regnr + portp->uartaddr), portp->ioaddr);
3096 outb(value, portp->ioaddr + EREG_DATA);
3097 }
3098
3099 static int stl_cd1400updatereg(stlport_t *portp, int regnr, int value)
3100 {
3101 outb((regnr + portp->uartaddr), portp->ioaddr);
3102 if (inb(portp->ioaddr + EREG_DATA) != value) {
3103 outb(value, portp->ioaddr + EREG_DATA);
3104 return 1;
3105 }
3106 return 0;
3107 }
3108
3109 /*****************************************************************************/
3110
3111 /*
3112 * Inbitialize the UARTs in a panel. We don't care what sort of board
3113 * these ports are on - since the port io registers are almost
3114 * identical when dealing with ports.
3115 */
3116
3117 static int stl_cd1400panelinit(stlbrd_t *brdp, stlpanel_t *panelp)
3118 {
3119 unsigned int gfrcr;
3120 int chipmask, i, j;
3121 int nrchips, uartaddr, ioaddr;
3122 unsigned long flags;
3123
3124 #ifdef DEBUG
3125 printk("stl_panelinit(brdp=%x,panelp=%x)\n", (int) brdp, (int) panelp);
3126 #endif
3127
3128 spin_lock_irqsave(&brd_lock, flags);
3129 BRDENABLE(panelp->brdnr, panelp->pagenr);
3130
3131 /*
3132 * Check that each chip is present and started up OK.
3133 */
3134 chipmask = 0;
3135 nrchips = panelp->nrports / CD1400_PORTS;
3136 for (i = 0; (i < nrchips); i++) {
3137 if (brdp->brdtype == BRD_ECHPCI) {
3138 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
3139 ioaddr = panelp->iobase;
3140 } else {
3141 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
3142 }
3143 uartaddr = (i & 0x01) ? 0x080 : 0;
3144 outb((GFRCR + uartaddr), ioaddr);
3145 outb(0, (ioaddr + EREG_DATA));
3146 outb((CCR + uartaddr), ioaddr);
3147 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
3148 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
3149 outb((GFRCR + uartaddr), ioaddr);
3150 for (j = 0; (j < CCR_MAXWAIT); j++) {
3151 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
3152 break;
3153 }
3154 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
3155 printk("STALLION: cd1400 not responding, "
3156 "brd=%d panel=%d chip=%d\n",
3157 panelp->brdnr, panelp->panelnr, i);
3158 continue;
3159 }
3160 chipmask |= (0x1 << i);
3161 outb((PPR + uartaddr), ioaddr);
3162 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
3163 }
3164
3165 BRDDISABLE(panelp->brdnr);
3166 spin_unlock_irqrestore(&brd_lock, flags);
3167 return chipmask;
3168 }
3169
3170 /*****************************************************************************/
3171
3172 /*
3173 * Initialize hardware specific port registers.
3174 */
3175
3176 static void stl_cd1400portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp)
3177 {
3178 unsigned long flags;
3179 #ifdef DEBUG
3180 printk("stl_cd1400portinit(brdp=%x,panelp=%x,portp=%x)\n",
3181 (int) brdp, (int) panelp, (int) portp);
3182 #endif
3183
3184 if ((brdp == (stlbrd_t *) NULL) || (panelp == (stlpanel_t *) NULL) ||
3185 (portp == (stlport_t *) NULL))
3186 return;
3187
3188 spin_lock_irqsave(&brd_lock, flags);
3189 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
3190 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
3191 portp->uartaddr = (portp->portnr & 0x04) << 5;
3192 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
3193
3194 BRDENABLE(portp->brdnr, portp->pagenr);
3195 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3196 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
3197 portp->hwid = stl_cd1400getreg(portp, GFRCR);
3198 BRDDISABLE(portp->brdnr);
3199 spin_unlock_irqrestore(&brd_lock, flags);
3200 }
3201
3202 /*****************************************************************************/
3203
3204 /*
3205 * Wait for the command register to be ready. We will poll this,
3206 * since it won't usually take too long to be ready.
3207 */
3208
3209 static void stl_cd1400ccrwait(stlport_t *portp)
3210 {
3211 int i;
3212
3213 for (i = 0; (i < CCR_MAXWAIT); i++) {
3214 if (stl_cd1400getreg(portp, CCR) == 0) {
3215 return;
3216 }
3217 }
3218
3219 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
3220 portp->portnr, portp->panelnr, portp->brdnr);
3221 }
3222
3223 /*****************************************************************************/
3224
3225 /*
3226 * Set up the cd1400 registers for a port based on the termios port
3227 * settings.
3228 */
3229
3230 static void stl_cd1400setport(stlport_t *portp, struct termios *tiosp)
3231 {
3232 stlbrd_t *brdp;
3233 unsigned long flags;
3234 unsigned int clkdiv, baudrate;
3235 unsigned char cor1, cor2, cor3;
3236 unsigned char cor4, cor5, ccr;
3237 unsigned char srer, sreron, sreroff;
3238 unsigned char mcor1, mcor2, rtpr;
3239 unsigned char clk, div;
3240
3241 cor1 = 0;
3242 cor2 = 0;
3243 cor3 = 0;
3244 cor4 = 0;
3245 cor5 = 0;
3246 ccr = 0;
3247 rtpr = 0;
3248 clk = 0;
3249 div = 0;
3250 mcor1 = 0;
3251 mcor2 = 0;
3252 sreron = 0;
3253 sreroff = 0;
3254
3255 brdp = stl_brds[portp->brdnr];
3256 if (brdp == (stlbrd_t *) NULL)
3257 return;
3258
3259 /*
3260 * Set up the RX char ignore mask with those RX error types we
3261 * can ignore. We can get the cd1400 to help us out a little here,
3262 * it will ignore parity errors and breaks for us.
3263 */
3264 portp->rxignoremsk = 0;
3265 if (tiosp->c_iflag & IGNPAR) {
3266 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
3267 cor1 |= COR1_PARIGNORE;
3268 }
3269 if (tiosp->c_iflag & IGNBRK) {
3270 portp->rxignoremsk |= ST_BREAK;
3271 cor4 |= COR4_IGNBRK;
3272 }
3273
3274 portp->rxmarkmsk = ST_OVERRUN;
3275 if (tiosp->c_iflag & (INPCK | PARMRK))
3276 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
3277 if (tiosp->c_iflag & BRKINT)
3278 portp->rxmarkmsk |= ST_BREAK;
3279
3280 /*
3281 * Go through the char size, parity and stop bits and set all the
3282 * option register appropriately.
3283 */
3284 switch (tiosp->c_cflag & CSIZE) {
3285 case CS5:
3286 cor1 |= COR1_CHL5;
3287 break;
3288 case CS6:
3289 cor1 |= COR1_CHL6;
3290 break;
3291 case CS7:
3292 cor1 |= COR1_CHL7;
3293 break;
3294 default:
3295 cor1 |= COR1_CHL8;
3296 break;
3297 }
3298
3299 if (tiosp->c_cflag & CSTOPB)
3300 cor1 |= COR1_STOP2;
3301 else
3302 cor1 |= COR1_STOP1;
3303
3304 if (tiosp->c_cflag & PARENB) {
3305 if (tiosp->c_cflag & PARODD)
3306 cor1 |= (COR1_PARENB | COR1_PARODD);
3307 else
3308 cor1 |= (COR1_PARENB | COR1_PAREVEN);
3309 } else {
3310 cor1 |= COR1_PARNONE;
3311 }
3312
3313 /*
3314 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
3315 * space for hardware flow control and the like. This should be set to
3316 * VMIN. Also here we will set the RX data timeout to 10ms - this should
3317 * really be based on VTIME.
3318 */
3319 cor3 |= FIFO_RXTHRESHOLD;
3320 rtpr = 2;
3321
3322 /*
3323 * Calculate the baud rate timers. For now we will just assume that
3324 * the input and output baud are the same. Could have used a baud
3325 * table here, but this way we can generate virtually any baud rate
3326 * we like!
3327 */
3328 baudrate = tiosp->c_cflag & CBAUD;
3329 if (baudrate & CBAUDEX) {
3330 baudrate &= ~CBAUDEX;
3331 if ((baudrate < 1) || (baudrate > 4))
3332 tiosp->c_cflag &= ~CBAUDEX;
3333 else
3334 baudrate += 15;
3335 }
3336 baudrate = stl_baudrates[baudrate];
3337 if ((tiosp->c_cflag & CBAUD) == B38400) {
3338 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3339 baudrate = 57600;
3340 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3341 baudrate = 115200;
3342 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3343 baudrate = 230400;
3344 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3345 baudrate = 460800;
3346 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3347 baudrate = (portp->baud_base / portp->custom_divisor);
3348 }
3349 if (baudrate > STL_CD1400MAXBAUD)
3350 baudrate = STL_CD1400MAXBAUD;
3351
3352 if (baudrate > 0) {
3353 for (clk = 0; (clk < CD1400_NUMCLKS); clk++) {
3354 clkdiv = ((portp->clk / stl_cd1400clkdivs[clk]) / baudrate);
3355 if (clkdiv < 0x100)
3356 break;
3357 }
3358 div = (unsigned char) clkdiv;
3359 }
3360
3361 /*
3362 * Check what form of modem signaling is required and set it up.
3363 */
3364 if ((tiosp->c_cflag & CLOCAL) == 0) {
3365 mcor1 |= MCOR1_DCD;
3366 mcor2 |= MCOR2_DCD;
3367 sreron |= SRER_MODEM;
3368 portp->flags |= ASYNC_CHECK_CD;
3369 } else {
3370 portp->flags &= ~ASYNC_CHECK_CD;
3371 }
3372
3373 /*
3374 * Setup cd1400 enhanced modes if we can. In particular we want to
3375 * handle as much of the flow control as possible automatically. As
3376 * well as saving a few CPU cycles it will also greatly improve flow
3377 * control reliability.
3378 */
3379 if (tiosp->c_iflag & IXON) {
3380 cor2 |= COR2_TXIBE;
3381 cor3 |= COR3_SCD12;
3382 if (tiosp->c_iflag & IXANY)
3383 cor2 |= COR2_IXM;
3384 }
3385
3386 if (tiosp->c_cflag & CRTSCTS) {
3387 cor2 |= COR2_CTSAE;
3388 mcor1 |= FIFO_RTSTHRESHOLD;
3389 }
3390
3391 /*
3392 * All cd1400 register values calculated so go through and set
3393 * them all up.
3394 */
3395
3396 #ifdef DEBUG
3397 printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3398 portp->portnr, portp->panelnr, portp->brdnr);
3399 printk(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
3400 cor1, cor2, cor3, cor4, cor5);
3401 printk(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
3402 mcor1, mcor2, rtpr, sreron, sreroff);
3403 printk(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
3404 printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3405 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3406 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3407 #endif
3408
3409 spin_lock_irqsave(&brd_lock, flags);
3410 BRDENABLE(portp->brdnr, portp->pagenr);
3411 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
3412 srer = stl_cd1400getreg(portp, SRER);
3413 stl_cd1400setreg(portp, SRER, 0);
3414 if (stl_cd1400updatereg(portp, COR1, cor1))
3415 ccr = 1;
3416 if (stl_cd1400updatereg(portp, COR2, cor2))
3417 ccr = 1;
3418 if (stl_cd1400updatereg(portp, COR3, cor3))
3419 ccr = 1;
3420 if (ccr) {
3421 stl_cd1400ccrwait(portp);
3422 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
3423 }
3424 stl_cd1400setreg(portp, COR4, cor4);
3425 stl_cd1400setreg(portp, COR5, cor5);
3426 stl_cd1400setreg(portp, MCOR1, mcor1);
3427 stl_cd1400setreg(portp, MCOR2, mcor2);
3428 if (baudrate > 0) {
3429 stl_cd1400setreg(portp, TCOR, clk);
3430 stl_cd1400setreg(portp, TBPR, div);
3431 stl_cd1400setreg(portp, RCOR, clk);
3432 stl_cd1400setreg(portp, RBPR, div);
3433 }
3434 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
3435 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
3436 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
3437 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
3438 stl_cd1400setreg(portp, RTPR, rtpr);
3439 mcor1 = stl_cd1400getreg(portp, MSVR1);
3440 if (mcor1 & MSVR1_DCD)
3441 portp->sigs |= TIOCM_CD;
3442 else
3443 portp->sigs &= ~TIOCM_CD;
3444 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
3445 BRDDISABLE(portp->brdnr);
3446 spin_unlock_irqrestore(&brd_lock, flags);
3447 }
3448
3449 /*****************************************************************************/
3450
3451 /*
3452 * Set the state of the DTR and RTS signals.
3453 */
3454
3455 static void stl_cd1400setsignals(stlport_t *portp, int dtr, int rts)
3456 {
3457 unsigned char msvr1, msvr2;
3458 unsigned long flags;
3459
3460 #ifdef DEBUG
3461 printk("stl_cd1400setsignals(portp=%x,dtr=%d,rts=%d)\n",
3462 (int) portp, dtr, rts);
3463 #endif
3464
3465 msvr1 = 0;
3466 msvr2 = 0;
3467 if (dtr > 0)
3468 msvr1 = MSVR1_DTR;
3469 if (rts > 0)
3470 msvr2 = MSVR2_RTS;
3471
3472 spin_lock_irqsave(&brd_lock, flags);
3473 BRDENABLE(portp->brdnr, portp->pagenr);
3474 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3475 if (rts >= 0)
3476 stl_cd1400setreg(portp, MSVR2, msvr2);
3477 if (dtr >= 0)
3478 stl_cd1400setreg(portp, MSVR1, msvr1);
3479 BRDDISABLE(portp->brdnr);
3480 spin_unlock_irqrestore(&brd_lock, flags);
3481 }
3482
3483 /*****************************************************************************/
3484
3485 /*
3486 * Return the state of the signals.
3487 */
3488
3489 static int stl_cd1400getsignals(stlport_t *portp)
3490 {
3491 unsigned char msvr1, msvr2;
3492 unsigned long flags;
3493 int sigs;
3494
3495 #ifdef DEBUG
3496 printk("stl_cd1400getsignals(portp=%x)\n", (int) portp);
3497 #endif
3498
3499 spin_lock_irqsave(&brd_lock, flags);
3500 BRDENABLE(portp->brdnr, portp->pagenr);
3501 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3502 msvr1 = stl_cd1400getreg(portp, MSVR1);
3503 msvr2 = stl_cd1400getreg(portp, MSVR2);
3504 BRDDISABLE(portp->brdnr);
3505 spin_unlock_irqrestore(&brd_lock, flags);
3506
3507 sigs = 0;
3508 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
3509 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
3510 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
3511 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3512 #if 0
3513 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3514 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3515 #else
3516 sigs |= TIOCM_DSR;
3517 #endif
3518 return sigs;
3519 }
3520
3521 /*****************************************************************************/
3522
3523 /*
3524 * Enable/Disable the Transmitter and/or Receiver.
3525 */
3526
3527 static void stl_cd1400enablerxtx(stlport_t *portp, int rx, int tx)
3528 {
3529 unsigned char ccr;
3530 unsigned long flags;
3531
3532 #ifdef DEBUG
3533 printk("stl_cd1400enablerxtx(portp=%x,rx=%d,tx=%d)\n",
3534 (int) portp, rx, tx);
3535 #endif
3536 ccr = 0;
3537
3538 if (tx == 0)
3539 ccr |= CCR_TXDISABLE;
3540 else if (tx > 0)
3541 ccr |= CCR_TXENABLE;
3542 if (rx == 0)
3543 ccr |= CCR_RXDISABLE;
3544 else if (rx > 0)
3545 ccr |= CCR_RXENABLE;
3546
3547 spin_lock_irqsave(&brd_lock, flags);
3548 BRDENABLE(portp->brdnr, portp->pagenr);
3549 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3550 stl_cd1400ccrwait(portp);
3551 stl_cd1400setreg(portp, CCR, ccr);
3552 stl_cd1400ccrwait(portp);
3553 BRDDISABLE(portp->brdnr);
3554 spin_unlock_irqrestore(&brd_lock, flags);
3555 }
3556
3557 /*****************************************************************************/
3558
3559 /*
3560 * Start/stop the Transmitter and/or Receiver.
3561 */
3562
3563 static void stl_cd1400startrxtx(stlport_t *portp, int rx, int tx)
3564 {
3565 unsigned char sreron, sreroff;
3566 unsigned long flags;
3567
3568 #ifdef DEBUG
3569 printk("stl_cd1400startrxtx(portp=%x,rx=%d,tx=%d)\n",
3570 (int) portp, rx, tx);
3571 #endif
3572
3573 sreron = 0;
3574 sreroff = 0;
3575 if (tx == 0)
3576 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3577 else if (tx == 1)
3578 sreron |= SRER_TXDATA;
3579 else if (tx >= 2)
3580 sreron |= SRER_TXEMPTY;
3581 if (rx == 0)
3582 sreroff |= SRER_RXDATA;
3583 else if (rx > 0)
3584 sreron |= SRER_RXDATA;
3585
3586 spin_lock_irqsave(&brd_lock, flags);
3587 BRDENABLE(portp->brdnr, portp->pagenr);
3588 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3589 stl_cd1400setreg(portp, SRER,
3590 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3591 BRDDISABLE(portp->brdnr);
3592 if (tx > 0)
3593 set_bit(ASYI_TXBUSY, &portp->istate);
3594 spin_unlock_irqrestore(&brd_lock, flags);
3595 }
3596
3597 /*****************************************************************************/
3598
3599 /*
3600 * Disable all interrupts from this port.
3601 */
3602
3603 static void stl_cd1400disableintrs(stlport_t *portp)
3604 {
3605 unsigned long flags;
3606
3607 #ifdef DEBUG
3608 printk("stl_cd1400disableintrs(portp=%x)\n", (int) portp);
3609 #endif
3610 spin_lock_irqsave(&brd_lock, flags);
3611 BRDENABLE(portp->brdnr, portp->pagenr);
3612 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3613 stl_cd1400setreg(portp, SRER, 0);
3614 BRDDISABLE(portp->brdnr);
3615 spin_unlock_irqrestore(&brd_lock, flags);
3616 }
3617
3618 /*****************************************************************************/
3619
3620 static void stl_cd1400sendbreak(stlport_t *portp, int len)
3621 {
3622 unsigned long flags;
3623
3624 #ifdef DEBUG
3625 printk("stl_cd1400sendbreak(portp=%x,len=%d)\n", (int) portp, len);
3626 #endif
3627
3628 spin_lock_irqsave(&brd_lock, flags);
3629 BRDENABLE(portp->brdnr, portp->pagenr);
3630 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3631 stl_cd1400setreg(portp, SRER,
3632 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3633 SRER_TXEMPTY));
3634 BRDDISABLE(portp->brdnr);
3635 portp->brklen = len;
3636 if (len == 1)
3637 portp->stats.txbreaks++;
3638 spin_unlock_irqrestore(&brd_lock, flags);
3639 }
3640
3641 /*****************************************************************************/
3642
3643 /*
3644 * Take flow control actions...
3645 */
3646
3647 static void stl_cd1400flowctrl(stlport_t *portp, int state)
3648 {
3649 struct tty_struct *tty;
3650 unsigned long flags;
3651
3652 #ifdef DEBUG
3653 printk("stl_cd1400flowctrl(portp=%x,state=%x)\n", (int) portp, state);
3654 #endif
3655
3656 if (portp == (stlport_t *) NULL)
3657 return;
3658 tty = portp->tty;
3659 if (tty == (struct tty_struct *) NULL)
3660 return;
3661
3662 spin_lock_irqsave(&brd_lock, flags);
3663 BRDENABLE(portp->brdnr, portp->pagenr);
3664 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3665
3666 if (state) {
3667 if (tty->termios->c_iflag & IXOFF) {
3668 stl_cd1400ccrwait(portp);
3669 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3670 portp->stats.rxxon++;
3671 stl_cd1400ccrwait(portp);
3672 }
3673 /*
3674 * Question: should we return RTS to what it was before? It may
3675 * have been set by an ioctl... Suppose not, since if you have
3676 * hardware flow control set then it is pretty silly to go and
3677 * set the RTS line by hand.
3678 */
3679 if (tty->termios->c_cflag & CRTSCTS) {
3680 stl_cd1400setreg(portp, MCOR1,
3681 (stl_cd1400getreg(portp, MCOR1) |
3682 FIFO_RTSTHRESHOLD));
3683 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3684 portp->stats.rxrtson++;
3685 }
3686 } else {
3687 if (tty->termios->c_iflag & IXOFF) {
3688 stl_cd1400ccrwait(portp);
3689 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3690 portp->stats.rxxoff++;
3691 stl_cd1400ccrwait(portp);
3692 }
3693 if (tty->termios->c_cflag & CRTSCTS) {
3694 stl_cd1400setreg(portp, MCOR1,
3695 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3696 stl_cd1400setreg(portp, MSVR2, 0);
3697 portp->stats.rxrtsoff++;
3698 }
3699 }
3700
3701 BRDDISABLE(portp->brdnr);
3702 spin_unlock_irqrestore(&brd_lock, flags);
3703 }
3704
3705 /*****************************************************************************/
3706
3707 /*
3708 * Send a flow control character...
3709 */
3710
3711 static void stl_cd1400sendflow(stlport_t *portp, int state)
3712 {
3713 struct tty_struct *tty;
3714 unsigned long flags;
3715
3716 #ifdef DEBUG
3717 printk("stl_cd1400sendflow(portp=%x,state=%x)\n", (int) portp, state);
3718 #endif
3719
3720 if (portp == (stlport_t *) NULL)
3721 return;
3722 tty = portp->tty;
3723 if (tty == (struct tty_struct *) NULL)
3724 return;
3725
3726 spin_lock_irqsave(&brd_lock, flags);
3727 BRDENABLE(portp->brdnr, portp->pagenr);
3728 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3729 if (state) {
3730 stl_cd1400ccrwait(portp);
3731 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3732 portp->stats.rxxon++;
3733 stl_cd1400ccrwait(portp);
3734 } else {
3735 stl_cd1400ccrwait(portp);
3736 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3737 portp->stats.rxxoff++;
3738 stl_cd1400ccrwait(portp);
3739 }
3740 BRDDISABLE(portp->brdnr);
3741 spin_unlock_irqrestore(&brd_lock, flags);
3742 }
3743
3744 /*****************************************************************************/
3745
3746 static void stl_cd1400flush(stlport_t *portp)
3747 {
3748 unsigned long flags;
3749
3750 #ifdef DEBUG
3751 printk("stl_cd1400flush(portp=%x)\n", (int) portp);
3752 #endif
3753
3754 if (portp == (stlport_t *) NULL)
3755 return;
3756
3757 spin_lock_irqsave(&brd_lock, flags);
3758 BRDENABLE(portp->brdnr, portp->pagenr);
3759 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3760 stl_cd1400ccrwait(portp);
3761 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3762 stl_cd1400ccrwait(portp);
3763 portp->tx.tail = portp->tx.head;
3764 BRDDISABLE(portp->brdnr);
3765 spin_unlock_irqrestore(&brd_lock, flags);
3766 }
3767
3768 /*****************************************************************************/
3769
3770 /*
3771 * Return the current state of data flow on this port. This is only
3772 * really interresting when determining if data has fully completed
3773 * transmission or not... This is easy for the cd1400, it accurately
3774 * maintains the busy port flag.
3775 */
3776
3777 static int stl_cd1400datastate(stlport_t *portp)
3778 {
3779 #ifdef DEBUG
3780 printk("stl_cd1400datastate(portp=%x)\n", (int) portp);
3781 #endif
3782
3783 if (portp == (stlport_t *) NULL)
3784 return 0;
3785
3786 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
3787 }
3788
3789 /*****************************************************************************/
3790
3791 /*
3792 * Interrupt service routine for cd1400 EasyIO boards.
3793 */
3794
3795 static void stl_cd1400eiointr(stlpanel_t *panelp, unsigned int iobase)
3796 {
3797 unsigned char svrtype;
3798
3799 #ifdef DEBUG
3800 printk("stl_cd1400eiointr(panelp=%x,iobase=%x)\n",
3801 (int) panelp, iobase);
3802 #endif
3803
3804 spin_lock(&brd_lock);
3805 outb(SVRR, iobase);
3806 svrtype = inb(iobase + EREG_DATA);
3807 if (panelp->nrports > 4) {
3808 outb((SVRR + 0x80), iobase);
3809 svrtype |= inb(iobase + EREG_DATA);
3810 }
3811
3812 if (svrtype & SVRR_RX)
3813 stl_cd1400rxisr(panelp, iobase);
3814 else if (svrtype & SVRR_TX)
3815 stl_cd1400txisr(panelp, iobase);
3816 else if (svrtype & SVRR_MDM)
3817 stl_cd1400mdmisr(panelp, iobase);
3818
3819 spin_unlock(&brd_lock);
3820 }
3821
3822 /*****************************************************************************/
3823
3824 /*
3825 * Interrupt service routine for cd1400 panels.
3826 */
3827
3828 static void stl_cd1400echintr(stlpanel_t *panelp, unsigned int iobase)
3829 {
3830 unsigned char svrtype;
3831
3832 #ifdef DEBUG
3833 printk("stl_cd1400echintr(panelp=%x,iobase=%x)\n", (int) panelp,
3834 iobase);
3835 #endif
3836
3837 outb(SVRR, iobase);
3838 svrtype = inb(iobase + EREG_DATA);
3839 outb((SVRR + 0x80), iobase);
3840 svrtype |= inb(iobase + EREG_DATA);
3841 if (svrtype & SVRR_RX)
3842 stl_cd1400rxisr(panelp, iobase);
3843 else if (svrtype & SVRR_TX)
3844 stl_cd1400txisr(panelp, iobase);
3845 else if (svrtype & SVRR_MDM)
3846 stl_cd1400mdmisr(panelp, iobase);
3847 }
3848
3849
3850 /*****************************************************************************/
3851
3852 /*
3853 * Unfortunately we need to handle breaks in the TX data stream, since
3854 * this is the only way to generate them on the cd1400.
3855 */
3856
3857 static inline int stl_cd1400breakisr(stlport_t *portp, int ioaddr)
3858 {
3859 if (portp->brklen == 1) {
3860 outb((COR2 + portp->uartaddr), ioaddr);
3861 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3862 (ioaddr + EREG_DATA));
3863 outb((TDR + portp->uartaddr), ioaddr);
3864 outb(ETC_CMD, (ioaddr + EREG_DATA));
3865 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3866 outb((SRER + portp->uartaddr), ioaddr);
3867 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3868 (ioaddr + EREG_DATA));
3869 return 1;
3870 } else if (portp->brklen > 1) {
3871 outb((TDR + portp->uartaddr), ioaddr);
3872 outb(ETC_CMD, (ioaddr + EREG_DATA));
3873 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3874 portp->brklen = -1;
3875 return 1;
3876 } else {
3877 outb((COR2 + portp->uartaddr), ioaddr);
3878 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3879 (ioaddr + EREG_DATA));
3880 portp->brklen = 0;
3881 }
3882 return 0;
3883 }
3884
3885 /*****************************************************************************/
3886
3887 /*
3888 * Transmit interrupt handler. This has gotta be fast! Handling TX
3889 * chars is pretty simple, stuff as many as possible from the TX buffer
3890 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3891 * are embedded as commands in the data stream. Oh no, had to use a goto!
3892 * This could be optimized more, will do when I get time...
3893 * In practice it is possible that interrupts are enabled but that the
3894 * port has been hung up. Need to handle not having any TX buffer here,
3895 * this is done by using the side effect that head and tail will also
3896 * be NULL if the buffer has been freed.
3897 */
3898
3899 static void stl_cd1400txisr(stlpanel_t *panelp, int ioaddr)
3900 {
3901 stlport_t *portp;
3902 int len, stlen;
3903 char *head, *tail;
3904 unsigned char ioack, srer;
3905
3906 #ifdef DEBUG
3907 printk("stl_cd1400txisr(panelp=%x,ioaddr=%x)\n", (int) panelp, ioaddr);
3908 #endif
3909
3910 ioack = inb(ioaddr + EREG_TXACK);
3911 if (((ioack & panelp->ackmask) != 0) ||
3912 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3913 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3914 return;
3915 }
3916 portp = panelp->ports[(ioack >> 3)];
3917
3918 /*
3919 * Unfortunately we need to handle breaks in the data stream, since
3920 * this is the only way to generate them on the cd1400. Do it now if
3921 * a break is to be sent.
3922 */
3923 if (portp->brklen != 0)
3924 if (stl_cd1400breakisr(portp, ioaddr))
3925 goto stl_txalldone;
3926
3927 head = portp->tx.head;
3928 tail = portp->tx.tail;
3929 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3930 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3931 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3932 set_bit(ASYI_TXLOW, &portp->istate);
3933 schedule_work(&portp->tqueue);
3934 }
3935
3936 if (len == 0) {
3937 outb((SRER + portp->uartaddr), ioaddr);
3938 srer = inb(ioaddr + EREG_DATA);
3939 if (srer & SRER_TXDATA) {
3940 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3941 } else {
3942 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3943 clear_bit(ASYI_TXBUSY, &portp->istate);
3944 }
3945 outb(srer, (ioaddr + EREG_DATA));
3946 } else {
3947 len = MIN(len, CD1400_TXFIFOSIZE);
3948 portp->stats.txtotal += len;
3949 stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
3950 outb((TDR + portp->uartaddr), ioaddr);
3951 outsb((ioaddr + EREG_DATA), tail, stlen);
3952 len -= stlen;
3953 tail += stlen;
3954 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3955 tail = portp->tx.buf;
3956 if (len > 0) {
3957 outsb((ioaddr + EREG_DATA), tail, len);
3958 tail += len;
3959 }
3960 portp->tx.tail = tail;
3961 }
3962
3963 stl_txalldone:
3964 outb((EOSRR + portp->uartaddr), ioaddr);
3965 outb(0, (ioaddr + EREG_DATA));
3966 }
3967
3968 /*****************************************************************************/
3969
3970 /*
3971 * Receive character interrupt handler. Determine if we have good chars
3972 * or bad chars and then process appropriately. Good chars are easy
3973 * just shove the lot into the RX buffer and set all status byte to 0.
3974 * If a bad RX char then process as required. This routine needs to be
3975 * fast! In practice it is possible that we get an interrupt on a port
3976 * that is closed. This can happen on hangups - since they completely
3977 * shutdown a port not in user context. Need to handle this case.
3978 */
3979
3980 static void stl_cd1400rxisr(stlpanel_t *panelp, int ioaddr)
3981 {
3982 stlport_t *portp;
3983 struct tty_struct *tty;
3984 unsigned int ioack, len, buflen;
3985 unsigned char status;
3986 char ch;
3987
3988 #ifdef DEBUG
3989 printk("stl_cd1400rxisr(panelp=%x,ioaddr=%x)\n", (int) panelp, ioaddr);
3990 #endif
3991
3992 ioack = inb(ioaddr + EREG_RXACK);
3993 if ((ioack & panelp->ackmask) != 0) {
3994 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3995 return;
3996 }
3997 portp = panelp->ports[(ioack >> 3)];
3998 tty = portp->tty;
3999
4000 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
4001 outb((RDCR + portp->uartaddr), ioaddr);
4002 len = inb(ioaddr + EREG_DATA);
4003 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4004 len = MIN(len, sizeof(stl_unwanted));
4005 outb((RDSR + portp->uartaddr), ioaddr);
4006 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
4007 portp->stats.rxlost += len;
4008 portp->stats.rxtotal += len;
4009 } else {
4010 len = MIN(len, buflen);
4011 if (len > 0) {
4012 unsigned char *ptr;
4013 outb((RDSR + portp->uartaddr), ioaddr);
4014 tty_prepare_flip_string(tty, &ptr, len);
4015 insb((ioaddr + EREG_DATA), ptr, len);
4016 tty_schedule_flip(tty);
4017 portp->stats.rxtotal += len;
4018 }
4019 }
4020 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
4021 outb((RDSR + portp->uartaddr), ioaddr);
4022 status = inb(ioaddr + EREG_DATA);
4023 ch = inb(ioaddr + EREG_DATA);
4024 if (status & ST_PARITY)
4025 portp->stats.rxparity++;
4026 if (status & ST_FRAMING)
4027 portp->stats.rxframing++;
4028 if (status & ST_OVERRUN)
4029 portp->stats.rxoverrun++;
4030 if (status & ST_BREAK)
4031 portp->stats.rxbreaks++;
4032 if (status & ST_SCHARMASK) {
4033 if ((status & ST_SCHARMASK) == ST_SCHAR1)
4034 portp->stats.txxon++;
4035 if ((status & ST_SCHARMASK) == ST_SCHAR2)
4036 portp->stats.txxoff++;
4037 goto stl_rxalldone;
4038 }
4039 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
4040 if (portp->rxmarkmsk & status) {
4041 if (status & ST_BREAK) {
4042 status = TTY_BREAK;
4043 if (portp->flags & ASYNC_SAK) {
4044 do_SAK(tty);
4045 BRDENABLE(portp->brdnr, portp->pagenr);
4046 }
4047 } else if (status & ST_PARITY) {
4048 status = TTY_PARITY;
4049 } else if (status & ST_FRAMING) {
4050 status = TTY_FRAME;
4051 } else if(status & ST_OVERRUN) {
4052 status = TTY_OVERRUN;
4053 } else {
4054 status = 0;
4055 }
4056 } else {
4057 status = 0;
4058 }
4059 tty_insert_flip_char(tty, ch, status);
4060 tty_schedule_flip(tty);
4061 }
4062 } else {
4063 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
4064 return;
4065 }
4066
4067 stl_rxalldone:
4068 outb((EOSRR + portp->uartaddr), ioaddr);
4069 outb(0, (ioaddr + EREG_DATA));
4070 }
4071
4072 /*****************************************************************************/
4073
4074 /*
4075 * Modem interrupt handler. The is called when the modem signal line
4076 * (DCD) has changed state. Leave most of the work to the off-level
4077 * processing routine.
4078 */
4079
4080 static void stl_cd1400mdmisr(stlpanel_t *panelp, int ioaddr)
4081 {
4082 stlport_t *portp;
4083 unsigned int ioack;
4084 unsigned char misr;
4085
4086 #ifdef DEBUG
4087 printk("stl_cd1400mdmisr(panelp=%x)\n", (int) panelp);
4088 #endif
4089
4090 ioack = inb(ioaddr + EREG_MDACK);
4091 if (((ioack & panelp->ackmask) != 0) ||
4092 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
4093 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
4094 return;
4095 }
4096 portp = panelp->ports[(ioack >> 3)];
4097
4098 outb((MISR + portp->uartaddr), ioaddr);
4099 misr = inb(ioaddr + EREG_DATA);
4100 if (misr & MISR_DCD) {
4101 set_bit(ASYI_DCDCHANGE, &portp->istate);
4102 schedule_work(&portp->tqueue);
4103 portp->stats.modem++;
4104 }
4105
4106 outb((EOSRR + portp->uartaddr), ioaddr);
4107 outb(0, (ioaddr + EREG_DATA));
4108 }
4109
4110 /*****************************************************************************/
4111 /* SC26198 HARDWARE FUNCTIONS */
4112 /*****************************************************************************/
4113
4114 /*
4115 * These functions get/set/update the registers of the sc26198 UARTs.
4116 * Access to the sc26198 registers is via an address/data io port pair.
4117 * (Maybe should make this inline...)
4118 */
4119
4120 static int stl_sc26198getreg(stlport_t *portp, int regnr)
4121 {
4122 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4123 return inb(portp->ioaddr + XP_DATA);
4124 }
4125
4126 static void stl_sc26198setreg(stlport_t *portp, int regnr, int value)
4127 {
4128 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4129 outb(value, (portp->ioaddr + XP_DATA));
4130 }
4131
4132 static int stl_sc26198updatereg(stlport_t *portp, int regnr, int value)
4133 {
4134 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
4135 if (inb(portp->ioaddr + XP_DATA) != value) {
4136 outb(value, (portp->ioaddr + XP_DATA));
4137 return 1;
4138 }
4139 return 0;
4140 }
4141
4142 /*****************************************************************************/
4143
4144 /*
4145 * Functions to get and set the sc26198 global registers.
4146 */
4147
4148 static int stl_sc26198getglobreg(stlport_t *portp, int regnr)
4149 {
4150 outb(regnr, (portp->ioaddr + XP_ADDR));
4151 return inb(portp->ioaddr + XP_DATA);
4152 }
4153
4154 #if 0
4155 static void stl_sc26198setglobreg(stlport_t *portp, int regnr, int value)
4156 {
4157 outb(regnr, (portp->ioaddr + XP_ADDR));
4158 outb(value, (portp->ioaddr + XP_DATA));
4159 }
4160 #endif
4161
4162 /*****************************************************************************/
4163
4164 /*
4165 * Inbitialize the UARTs in a panel. We don't care what sort of board
4166 * these ports are on - since the port io registers are almost
4167 * identical when dealing with ports.
4168 */
4169
4170 static int stl_sc26198panelinit(stlbrd_t *brdp, stlpanel_t *panelp)
4171 {
4172 int chipmask, i;
4173 int nrchips, ioaddr;
4174
4175 #ifdef DEBUG
4176 printk("stl_sc26198panelinit(brdp=%x,panelp=%x)\n",
4177 (int) brdp, (int) panelp);
4178 #endif
4179
4180 BRDENABLE(panelp->brdnr, panelp->pagenr);
4181
4182 /*
4183 * Check that each chip is present and started up OK.
4184 */
4185 chipmask = 0;
4186 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
4187 if (brdp->brdtype == BRD_ECHPCI)
4188 outb(panelp->pagenr, brdp->ioctrl);
4189
4190 for (i = 0; (i < nrchips); i++) {
4191 ioaddr = panelp->iobase + (i * 4);
4192 outb(SCCR, (ioaddr + XP_ADDR));
4193 outb(CR_RESETALL, (ioaddr + XP_DATA));
4194 outb(TSTR, (ioaddr + XP_ADDR));
4195 if (inb(ioaddr + XP_DATA) != 0) {
4196 printk("STALLION: sc26198 not responding, "
4197 "brd=%d panel=%d chip=%d\n",
4198 panelp->brdnr, panelp->panelnr, i);
4199 continue;
4200 }
4201 chipmask |= (0x1 << i);
4202 outb(GCCR, (ioaddr + XP_ADDR));
4203 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
4204 outb(WDTRCR, (ioaddr + XP_ADDR));
4205 outb(0xff, (ioaddr + XP_DATA));
4206 }
4207
4208 BRDDISABLE(panelp->brdnr);
4209 return chipmask;
4210 }
4211
4212 /*****************************************************************************/
4213
4214 /*
4215 * Initialize hardware specific port registers.
4216 */
4217
4218 static void stl_sc26198portinit(stlbrd_t *brdp, stlpanel_t *panelp, stlport_t *portp)
4219 {
4220 #ifdef DEBUG
4221 printk("stl_sc26198portinit(brdp=%x,panelp=%x,portp=%x)\n",
4222 (int) brdp, (int) panelp, (int) portp);
4223 #endif
4224
4225 if ((brdp == (stlbrd_t *) NULL) || (panelp == (stlpanel_t *) NULL) ||
4226 (portp == (stlport_t *) NULL))
4227 return;
4228
4229 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
4230 portp->uartaddr = (portp->portnr & 0x07) << 4;
4231 portp->pagenr = panelp->pagenr;
4232 portp->hwid = 0x1;
4233
4234 BRDENABLE(portp->brdnr, portp->pagenr);
4235 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
4236 BRDDISABLE(portp->brdnr);
4237 }
4238
4239 /*****************************************************************************/
4240
4241 /*
4242 * Set up the sc26198 registers for a port based on the termios port
4243 * settings.
4244 */
4245
4246 static void stl_sc26198setport(stlport_t *portp, struct termios *tiosp)
4247 {
4248 stlbrd_t *brdp;
4249 unsigned long flags;
4250 unsigned int baudrate;
4251 unsigned char mr0, mr1, mr2, clk;
4252 unsigned char imron, imroff, iopr, ipr;
4253
4254 mr0 = 0;
4255 mr1 = 0;
4256 mr2 = 0;
4257 clk = 0;
4258 iopr = 0;
4259 imron = 0;
4260 imroff = 0;
4261
4262 brdp = stl_brds[portp->brdnr];
4263 if (brdp == (stlbrd_t *) NULL)
4264 return;
4265
4266 /*
4267 * Set up the RX char ignore mask with those RX error types we
4268 * can ignore.
4269 */
4270 portp->rxignoremsk = 0;
4271 if (tiosp->c_iflag & IGNPAR)
4272 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
4273 SR_RXOVERRUN);
4274 if (tiosp->c_iflag & IGNBRK)
4275 portp->rxignoremsk |= SR_RXBREAK;
4276
4277 portp->rxmarkmsk = SR_RXOVERRUN;
4278 if (tiosp->c_iflag & (INPCK | PARMRK))
4279 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
4280 if (tiosp->c_iflag & BRKINT)
4281 portp->rxmarkmsk |= SR_RXBREAK;
4282
4283 /*
4284 * Go through the char size, parity and stop bits and set all the
4285 * option register appropriately.
4286 */
4287 switch (tiosp->c_cflag & CSIZE) {
4288 case CS5:
4289 mr1 |= MR1_CS5;
4290 break;
4291 case CS6:
4292 mr1 |= MR1_CS6;
4293 break;
4294 case CS7:
4295 mr1 |= MR1_CS7;
4296 break;
4297 default:
4298 mr1 |= MR1_CS8;
4299 break;
4300 }
4301
4302 if (tiosp->c_cflag & CSTOPB)
4303 mr2 |= MR2_STOP2;
4304 else
4305 mr2 |= MR2_STOP1;
4306
4307 if (tiosp->c_cflag & PARENB) {
4308 if (tiosp->c_cflag & PARODD)
4309 mr1 |= (MR1_PARENB | MR1_PARODD);
4310 else
4311 mr1 |= (MR1_PARENB | MR1_PAREVEN);
4312 } else {
4313 mr1 |= MR1_PARNONE;
4314 }
4315
4316 mr1 |= MR1_ERRBLOCK;
4317
4318 /*
4319 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
4320 * space for hardware flow control and the like. This should be set to
4321 * VMIN.
4322 */
4323 mr2 |= MR2_RXFIFOHALF;
4324
4325 /*
4326 * Calculate the baud rate timers. For now we will just assume that
4327 * the input and output baud are the same. The sc26198 has a fixed
4328 * baud rate table, so only discrete baud rates possible.
4329 */
4330 baudrate = tiosp->c_cflag & CBAUD;
4331 if (baudrate & CBAUDEX) {
4332 baudrate &= ~CBAUDEX;
4333 if ((baudrate < 1) || (baudrate > 4))
4334 tiosp->c_cflag &= ~CBAUDEX;
4335 else
4336 baudrate += 15;
4337 }
4338 baudrate = stl_baudrates[baudrate];
4339 if ((tiosp->c_cflag & CBAUD) == B38400) {
4340 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
4341 baudrate = 57600;
4342 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
4343 baudrate = 115200;
4344 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
4345 baudrate = 230400;
4346 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
4347 baudrate = 460800;
4348 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
4349 baudrate = (portp->baud_base / portp->custom_divisor);
4350 }
4351 if (baudrate > STL_SC26198MAXBAUD)
4352 baudrate = STL_SC26198MAXBAUD;
4353
4354 if (baudrate > 0) {
4355 for (clk = 0; (clk < SC26198_NRBAUDS); clk++) {
4356 if (baudrate <= sc26198_baudtable[clk])
4357 break;
4358 }
4359 }
4360
4361 /*
4362 * Check what form of modem signaling is required and set it up.
4363 */
4364 if (tiosp->c_cflag & CLOCAL) {
4365 portp->flags &= ~ASYNC_CHECK_CD;
4366 } else {
4367 iopr |= IOPR_DCDCOS;
4368 imron |= IR_IOPORT;
4369 portp->flags |= ASYNC_CHECK_CD;
4370 }
4371
4372 /*
4373 * Setup sc26198 enhanced modes if we can. In particular we want to
4374 * handle as much of the flow control as possible automatically. As
4375 * well as saving a few CPU cycles it will also greatly improve flow
4376 * control reliability.
4377 */
4378 if (tiosp->c_iflag & IXON) {
4379 mr0 |= MR0_SWFTX | MR0_SWFT;
4380 imron |= IR_XONXOFF;
4381 } else {
4382 imroff |= IR_XONXOFF;
4383 }
4384 if (tiosp->c_iflag & IXOFF)
4385 mr0 |= MR0_SWFRX;
4386
4387 if (tiosp->c_cflag & CRTSCTS) {
4388 mr2 |= MR2_AUTOCTS;
4389 mr1 |= MR1_AUTORTS;
4390 }
4391
4392 /*
4393 * All sc26198 register values calculated so go through and set
4394 * them all up.
4395 */
4396
4397 #ifdef DEBUG
4398 printk("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
4399 portp->portnr, portp->panelnr, portp->brdnr);
4400 printk(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
4401 printk(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
4402 printk(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
4403 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
4404 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
4405 #endif
4406
4407 spin_lock_irqsave(&brd_lock, flags);
4408 BRDENABLE(portp->brdnr, portp->pagenr);
4409 stl_sc26198setreg(portp, IMR, 0);
4410 stl_sc26198updatereg(portp, MR0, mr0);
4411 stl_sc26198updatereg(portp, MR1, mr1);
4412 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
4413 stl_sc26198updatereg(portp, MR2, mr2);
4414 stl_sc26198updatereg(portp, IOPIOR,
4415 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
4416
4417 if (baudrate > 0) {
4418 stl_sc26198setreg(portp, TXCSR, clk);
4419 stl_sc26198setreg(portp, RXCSR, clk);
4420 }
4421
4422 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
4423 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
4424
4425 ipr = stl_sc26198getreg(portp, IPR);
4426 if (ipr & IPR_DCD)
4427 portp->sigs &= ~TIOCM_CD;
4428 else
4429 portp->sigs |= TIOCM_CD;
4430
4431 portp->imr = (portp->imr & ~imroff) | imron;
4432 stl_sc26198setreg(portp, IMR, portp->imr);
4433 BRDDISABLE(portp->brdnr);
4434 spin_unlock_irqrestore(&brd_lock, flags);
4435 }
4436
4437 /*****************************************************************************/
4438
4439 /*
4440 * Set the state of the DTR and RTS signals.
4441 */
4442
4443 static void stl_sc26198setsignals(stlport_t *portp, int dtr, int rts)
4444 {
4445 unsigned char iopioron, iopioroff;
4446 unsigned long flags;
4447
4448 #ifdef DEBUG
4449 printk("stl_sc26198setsignals(portp=%x,dtr=%d,rts=%d)\n",
4450 (int) portp, dtr, rts);
4451 #endif
4452
4453 iopioron = 0;
4454 iopioroff = 0;
4455 if (dtr == 0)
4456 iopioroff |= IPR_DTR;
4457 else if (dtr > 0)
4458 iopioron |= IPR_DTR;
4459 if (rts == 0)
4460 iopioroff |= IPR_RTS;
4461 else if (rts > 0)
4462 iopioron |= IPR_RTS;
4463
4464 spin_lock_irqsave(&brd_lock, flags);
4465 BRDENABLE(portp->brdnr, portp->pagenr);
4466 stl_sc26198setreg(portp, IOPIOR,
4467 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
4468 BRDDISABLE(portp->brdnr);
4469 spin_unlock_irqrestore(&brd_lock, flags);
4470 }
4471
4472 /*****************************************************************************/
4473
4474 /*
4475 * Return the state of the signals.
4476 */
4477
4478 static int stl_sc26198getsignals(stlport_t *portp)
4479 {
4480 unsigned char ipr;
4481 unsigned long flags;
4482 int sigs;
4483
4484 #ifdef DEBUG
4485 printk("stl_sc26198getsignals(portp=%x)\n", (int) portp);
4486 #endif
4487
4488 spin_lock_irqsave(&brd_lock, flags);
4489 BRDENABLE(portp->brdnr, portp->pagenr);
4490 ipr = stl_sc26198getreg(portp, IPR);
4491 BRDDISABLE(portp->brdnr);
4492 spin_unlock_irqrestore(&brd_lock, flags);
4493
4494 sigs = 0;
4495 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
4496 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
4497 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
4498 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
4499 sigs |= TIOCM_DSR;
4500 return sigs;
4501 }
4502
4503 /*****************************************************************************/
4504
4505 /*
4506 * Enable/Disable the Transmitter and/or Receiver.
4507 */
4508
4509 static void stl_sc26198enablerxtx(stlport_t *portp, int rx, int tx)
4510 {
4511 unsigned char ccr;
4512 unsigned long flags;
4513
4514 #ifdef DEBUG
4515 printk("stl_sc26198enablerxtx(portp=%x,rx=%d,tx=%d)\n",
4516 (int) portp, rx, tx);
4517 #endif
4518
4519 ccr = portp->crenable;
4520 if (tx == 0)
4521 ccr &= ~CR_TXENABLE;
4522 else if (tx > 0)
4523 ccr |= CR_TXENABLE;
4524 if (rx == 0)
4525 ccr &= ~CR_RXENABLE;
4526 else if (rx > 0)
4527 ccr |= CR_RXENABLE;
4528
4529 spin_lock_irqsave(&brd_lock, flags);
4530 BRDENABLE(portp->brdnr, portp->pagenr);
4531 stl_sc26198setreg(portp, SCCR, ccr);
4532 BRDDISABLE(portp->brdnr);
4533 portp->crenable = ccr;
4534 spin_unlock_irqrestore(&brd_lock, flags);
4535 }
4536
4537 /*****************************************************************************/
4538
4539 /*
4540 * Start/stop the Transmitter and/or Receiver.
4541 */
4542
4543 static void stl_sc26198startrxtx(stlport_t *portp, int rx, int tx)
4544 {
4545 unsigned char imr;
4546 unsigned long flags;
4547
4548 #ifdef DEBUG
4549 printk("stl_sc26198startrxtx(portp=%x,rx=%d,tx=%d)\n",
4550 (int) portp, rx, tx);
4551 #endif
4552
4553 imr = portp->imr;
4554 if (tx == 0)
4555 imr &= ~IR_TXRDY;
4556 else if (tx == 1)
4557 imr |= IR_TXRDY;
4558 if (rx == 0)
4559 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4560 else if (rx > 0)
4561 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4562
4563 spin_lock_irqsave(&brd_lock, flags);
4564 BRDENABLE(portp->brdnr, portp->pagenr);
4565 stl_sc26198setreg(portp, IMR, imr);
4566 BRDDISABLE(portp->brdnr);
4567 portp->imr = imr;
4568 if (tx > 0)
4569 set_bit(ASYI_TXBUSY, &portp->istate);
4570 spin_unlock_irqrestore(&brd_lock, flags);
4571 }
4572
4573 /*****************************************************************************/
4574
4575 /*
4576 * Disable all interrupts from this port.
4577 */
4578
4579 static void stl_sc26198disableintrs(stlport_t *portp)
4580 {
4581 unsigned long flags;
4582
4583 #ifdef DEBUG
4584 printk("stl_sc26198disableintrs(portp=%x)\n", (int) portp);
4585 #endif
4586
4587 spin_lock_irqsave(&brd_lock, flags);
4588 BRDENABLE(portp->brdnr, portp->pagenr);
4589 portp->imr = 0;
4590 stl_sc26198setreg(portp, IMR, 0);
4591 BRDDISABLE(portp->brdnr);
4592 spin_unlock_irqrestore(&brd_lock, flags);
4593 }
4594
4595 /*****************************************************************************/
4596
4597 static void stl_sc26198sendbreak(stlport_t *portp, int len)
4598 {
4599 unsigned long flags;
4600
4601 #ifdef DEBUG
4602 printk("stl_sc26198sendbreak(portp=%x,len=%d)\n", (int) portp, len);
4603 #endif
4604
4605 spin_lock_irqsave(&brd_lock, flags);
4606 BRDENABLE(portp->brdnr, portp->pagenr);
4607 if (len == 1) {
4608 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4609 portp->stats.txbreaks++;
4610 } else {
4611 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4612 }
4613 BRDDISABLE(portp->brdnr);
4614 spin_unlock_irqrestore(&brd_lock, flags);
4615 }
4616
4617 /*****************************************************************************/
4618
4619 /*
4620 * Take flow control actions...
4621 */
4622
4623 static void stl_sc26198flowctrl(stlport_t *portp, int state)
4624 {
4625 struct tty_struct *tty;
4626 unsigned long flags;
4627 unsigned char mr0;
4628
4629 #ifdef DEBUG
4630 printk("stl_sc26198flowctrl(portp=%x,state=%x)\n", (int) portp, state);
4631 #endif
4632
4633 if (portp == (stlport_t *) NULL)
4634 return;
4635 tty = portp->tty;
4636 if (tty == (struct tty_struct *) NULL)
4637 return;
4638
4639 spin_lock_irqsave(&brd_lock, flags);
4640 BRDENABLE(portp->brdnr, portp->pagenr);
4641
4642 if (state) {
4643 if (tty->termios->c_iflag & IXOFF) {
4644 mr0 = stl_sc26198getreg(portp, MR0);
4645 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4646 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4647 mr0 |= MR0_SWFRX;
4648 portp->stats.rxxon++;
4649 stl_sc26198wait(portp);
4650 stl_sc26198setreg(portp, MR0, mr0);
4651 }
4652 /*
4653 * Question: should we return RTS to what it was before? It may
4654 * have been set by an ioctl... Suppose not, since if you have
4655 * hardware flow control set then it is pretty silly to go and
4656 * set the RTS line by hand.
4657 */
4658 if (tty->termios->c_cflag & CRTSCTS) {
4659 stl_sc26198setreg(portp, MR1,
4660 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4661 stl_sc26198setreg(portp, IOPIOR,
4662 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4663 portp->stats.rxrtson++;
4664 }
4665 } else {
4666 if (tty->termios->c_iflag & IXOFF) {
4667 mr0 = stl_sc26198getreg(portp, MR0);
4668 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4669 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4670 mr0 &= ~MR0_SWFRX;
4671 portp->stats.rxxoff++;
4672 stl_sc26198wait(portp);
4673 stl_sc26198setreg(portp, MR0, mr0);
4674 }
4675 if (tty->termios->c_cflag & CRTSCTS) {
4676 stl_sc26198setreg(portp, MR1,
4677 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4678 stl_sc26198setreg(portp, IOPIOR,
4679 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4680 portp->stats.rxrtsoff++;
4681 }
4682 }
4683
4684 BRDDISABLE(portp->brdnr);
4685 spin_unlock_irqrestore(&brd_lock, flags);
4686 }
4687
4688 /*****************************************************************************/
4689
4690 /*
4691 * Send a flow control character.
4692 */
4693
4694 static void stl_sc26198sendflow(stlport_t *portp, int state)
4695 {
4696 struct tty_struct *tty;
4697 unsigned long flags;
4698 unsigned char mr0;
4699
4700 #ifdef DEBUG
4701 printk("stl_sc26198sendflow(portp=%x,state=%x)\n", (int) portp, state);
4702 #endif
4703
4704 if (portp == (stlport_t *) NULL)
4705 return;
4706 tty = portp->tty;
4707 if (tty == (struct tty_struct *) NULL)
4708 return;
4709
4710 spin_lock_irqsave(&brd_lock, flags);
4711 BRDENABLE(portp->brdnr, portp->pagenr);
4712 if (state) {
4713 mr0 = stl_sc26198getreg(portp, MR0);
4714 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4715 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4716 mr0 |= MR0_SWFRX;
4717 portp->stats.rxxon++;
4718 stl_sc26198wait(portp);
4719 stl_sc26198setreg(portp, MR0, mr0);
4720 } else {
4721 mr0 = stl_sc26198getreg(portp, MR0);
4722 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4723 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4724 mr0 &= ~MR0_SWFRX;
4725 portp->stats.rxxoff++;
4726 stl_sc26198wait(portp);
4727 stl_sc26198setreg(portp, MR0, mr0);
4728 }
4729 BRDDISABLE(portp->brdnr);
4730 spin_unlock_irqrestore(&brd_lock, flags);
4731 }
4732
4733 /*****************************************************************************/
4734
4735 static void stl_sc26198flush(stlport_t *portp)
4736 {
4737 unsigned long flags;
4738
4739 #ifdef DEBUG
4740 printk("stl_sc26198flush(portp=%x)\n", (int) portp);
4741 #endif
4742
4743 if (portp == (stlport_t *) NULL)
4744 return;
4745
4746 spin_lock_irqsave(&brd_lock, flags);
4747 BRDENABLE(portp->brdnr, portp->pagenr);
4748 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4749 stl_sc26198setreg(portp, SCCR, portp->crenable);
4750 BRDDISABLE(portp->brdnr);
4751 portp->tx.tail = portp->tx.head;
4752 spin_unlock_irqrestore(&brd_lock, flags);
4753 }
4754
4755 /*****************************************************************************/
4756
4757 /*
4758 * Return the current state of data flow on this port. This is only
4759 * really interresting when determining if data has fully completed
4760 * transmission or not... The sc26198 interrupt scheme cannot
4761 * determine when all data has actually drained, so we need to
4762 * check the port statusy register to be sure.
4763 */
4764
4765 static int stl_sc26198datastate(stlport_t *portp)
4766 {
4767 unsigned long flags;
4768 unsigned char sr;
4769
4770 #ifdef DEBUG
4771 printk("stl_sc26198datastate(portp=%x)\n", (int) portp);
4772 #endif
4773
4774 if (portp == (stlport_t *) NULL)
4775 return 0;
4776 if (test_bit(ASYI_TXBUSY, &portp->istate))
4777 return 1;
4778
4779 spin_lock_irqsave(&brd_lock, flags);
4780 BRDENABLE(portp->brdnr, portp->pagenr);
4781 sr = stl_sc26198getreg(portp, SR);
4782 BRDDISABLE(portp->brdnr);
4783 spin_unlock_irqrestore(&brd_lock, flags);
4784
4785 return (sr & SR_TXEMPTY) ? 0 : 1;
4786 }
4787
4788 /*****************************************************************************/
4789
4790 /*
4791 * Delay for a small amount of time, to give the sc26198 a chance
4792 * to process a command...
4793 */
4794
4795 static void stl_sc26198wait(stlport_t *portp)
4796 {
4797 int i;
4798
4799 #ifdef DEBUG
4800 printk("stl_sc26198wait(portp=%x)\n", (int) portp);
4801 #endif
4802
4803 if (portp == (stlport_t *) NULL)
4804 return;
4805
4806 for (i = 0; (i < 20); i++)
4807 stl_sc26198getglobreg(portp, TSTR);
4808 }
4809
4810 /*****************************************************************************/
4811
4812 /*
4813 * If we are TX flow controlled and in IXANY mode then we may
4814 * need to unflow control here. We gotta do this because of the
4815 * automatic flow control modes of the sc26198.
4816 */
4817
4818 static inline void stl_sc26198txunflow(stlport_t *portp, struct tty_struct *tty)
4819 {
4820 unsigned char mr0;
4821
4822 mr0 = stl_sc26198getreg(portp, MR0);
4823 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4824 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4825 stl_sc26198wait(portp);
4826 stl_sc26198setreg(portp, MR0, mr0);
4827 clear_bit(ASYI_TXFLOWED, &portp->istate);
4828 }
4829
4830 /*****************************************************************************/
4831
4832 /*
4833 * Interrupt service routine for sc26198 panels.
4834 */
4835
4836 static void stl_sc26198intr(stlpanel_t *panelp, unsigned int iobase)
4837 {
4838 stlport_t *portp;
4839 unsigned int iack;
4840
4841 spin_lock(&brd_lock);
4842
4843 /*
4844 * Work around bug in sc26198 chip... Cannot have A6 address
4845 * line of UART high, else iack will be returned as 0.
4846 */
4847 outb(0, (iobase + 1));
4848
4849 iack = inb(iobase + XP_IACK);
4850 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4851
4852 if (iack & IVR_RXDATA)
4853 stl_sc26198rxisr(portp, iack);
4854 else if (iack & IVR_TXDATA)
4855 stl_sc26198txisr(portp);
4856 else
4857 stl_sc26198otherisr(portp, iack);
4858
4859 spin_unlock(&brd_lock);
4860 }
4861
4862 /*****************************************************************************/
4863
4864 /*
4865 * Transmit interrupt handler. This has gotta be fast! Handling TX
4866 * chars is pretty simple, stuff as many as possible from the TX buffer
4867 * into the sc26198 FIFO.
4868 * In practice it is possible that interrupts are enabled but that the
4869 * port has been hung up. Need to handle not having any TX buffer here,
4870 * this is done by using the side effect that head and tail will also
4871 * be NULL if the buffer has been freed.
4872 */
4873
4874 static void stl_sc26198txisr(stlport_t *portp)
4875 {
4876 unsigned int ioaddr;
4877 unsigned char mr0;
4878 int len, stlen;
4879 char *head, *tail;
4880
4881 #ifdef DEBUG
4882 printk("stl_sc26198txisr(portp=%x)\n", (int) portp);
4883 #endif
4884
4885 ioaddr = portp->ioaddr;
4886 head = portp->tx.head;
4887 tail = portp->tx.tail;
4888 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4889 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4890 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4891 set_bit(ASYI_TXLOW, &portp->istate);
4892 schedule_work(&portp->tqueue);
4893 }
4894
4895 if (len == 0) {
4896 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4897 mr0 = inb(ioaddr + XP_DATA);
4898 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4899 portp->imr &= ~IR_TXRDY;
4900 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4901 outb(portp->imr, (ioaddr + XP_DATA));
4902 clear_bit(ASYI_TXBUSY, &portp->istate);
4903 } else {
4904 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4905 outb(mr0, (ioaddr + XP_DATA));
4906 }
4907 } else {
4908 len = MIN(len, SC26198_TXFIFOSIZE);
4909 portp->stats.txtotal += len;
4910 stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
4911 outb(GTXFIFO, (ioaddr + XP_ADDR));
4912 outsb((ioaddr + XP_DATA), tail, stlen);
4913 len -= stlen;
4914 tail += stlen;
4915 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4916 tail = portp->tx.buf;
4917 if (len > 0) {
4918 outsb((ioaddr + XP_DATA), tail, len);
4919 tail += len;
4920 }
4921 portp->tx.tail = tail;
4922 }
4923 }
4924
4925 /*****************************************************************************/
4926
4927 /*
4928 * Receive character interrupt handler. Determine if we have good chars
4929 * or bad chars and then process appropriately. Good chars are easy
4930 * just shove the lot into the RX buffer and set all status byte to 0.
4931 * If a bad RX char then process as required. This routine needs to be
4932 * fast! In practice it is possible that we get an interrupt on a port
4933 * that is closed. This can happen on hangups - since they completely
4934 * shutdown a port not in user context. Need to handle this case.
4935 */
4936
4937 static void stl_sc26198rxisr(stlport_t *portp, unsigned int iack)
4938 {
4939 struct tty_struct *tty;
4940 unsigned int len, buflen, ioaddr;
4941
4942 #ifdef DEBUG
4943 printk("stl_sc26198rxisr(portp=%x,iack=%x)\n", (int) portp, iack);
4944 #endif
4945
4946 tty = portp->tty;
4947 ioaddr = portp->ioaddr;
4948 outb(GIBCR, (ioaddr + XP_ADDR));
4949 len = inb(ioaddr + XP_DATA) + 1;
4950
4951 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
4952 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4953 len = MIN(len, sizeof(stl_unwanted));
4954 outb(GRXFIFO, (ioaddr + XP_ADDR));
4955 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4956 portp->stats.rxlost += len;
4957 portp->stats.rxtotal += len;
4958 } else {
4959 len = MIN(len, buflen);
4960 if (len > 0) {
4961 unsigned char *ptr;
4962 outb(GRXFIFO, (ioaddr + XP_ADDR));
4963 tty_prepare_flip_string(tty, &ptr, len);
4964 insb((ioaddr + XP_DATA), ptr, len);
4965 tty_schedule_flip(tty);
4966 portp->stats.rxtotal += len;
4967 }
4968 }
4969 } else {
4970 stl_sc26198rxbadchars(portp);
4971 }
4972
4973 /*
4974 * If we are TX flow controlled and in IXANY mode then we may need
4975 * to unflow control here. We gotta do this because of the automatic
4976 * flow control modes of the sc26198.
4977 */
4978 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
4979 if ((tty != (struct tty_struct *) NULL) &&
4980 (tty->termios != (struct termios *) NULL) &&
4981 (tty->termios->c_iflag & IXANY)) {
4982 stl_sc26198txunflow(portp, tty);
4983 }
4984 }
4985 }
4986
4987 /*****************************************************************************/
4988
4989 /*
4990 * Process an RX bad character.
4991 */
4992
4993 static inline void stl_sc26198rxbadch(stlport_t *portp, unsigned char status, char ch)
4994 {
4995 struct tty_struct *tty;
4996 unsigned int ioaddr;
4997
4998 tty = portp->tty;
4999 ioaddr = portp->ioaddr;
5000
5001 if (status & SR_RXPARITY)
5002 portp->stats.rxparity++;
5003 if (status & SR_RXFRAMING)
5004 portp->stats.rxframing++;
5005 if (status & SR_RXOVERRUN)
5006 portp->stats.rxoverrun++;
5007 if (status & SR_RXBREAK)
5008 portp->stats.rxbreaks++;
5009
5010 if ((tty != (struct tty_struct *) NULL) &&
5011 ((portp->rxignoremsk & status) == 0)) {
5012 if (portp->rxmarkmsk & status) {
5013 if (status & SR_RXBREAK) {
5014 status = TTY_BREAK;
5015 if (portp->flags & ASYNC_SAK) {
5016 do_SAK(tty);
5017 BRDENABLE(portp->brdnr, portp->pagenr);
5018 }
5019 } else if (status & SR_RXPARITY) {
5020 status = TTY_PARITY;
5021 } else if (status & SR_RXFRAMING) {
5022 status = TTY_FRAME;
5023 } else if(status & SR_RXOVERRUN) {
5024 status = TTY_OVERRUN;
5025 } else {
5026 status = 0;
5027 }
5028 } else {
5029 status = 0;
5030 }
5031
5032 tty_insert_flip_char(tty, ch, status);
5033 tty_schedule_flip(tty);
5034
5035 if (status == 0)
5036 portp->stats.rxtotal++;
5037 }
5038 }
5039
5040 /*****************************************************************************/
5041
5042 /*
5043 * Process all characters in the RX FIFO of the UART. Check all char
5044 * status bytes as well, and process as required. We need to check
5045 * all bytes in the FIFO, in case some more enter the FIFO while we
5046 * are here. To get the exact character error type we need to switch
5047 * into CHAR error mode (that is why we need to make sure we empty
5048 * the FIFO).
5049 */
5050
5051 static void stl_sc26198rxbadchars(stlport_t *portp)
5052 {
5053 unsigned char status, mr1;
5054 char ch;
5055
5056 /*
5057 * To get the precise error type for each character we must switch
5058 * back into CHAR error mode.
5059 */
5060 mr1 = stl_sc26198getreg(portp, MR1);
5061 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
5062
5063 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
5064 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
5065 ch = stl_sc26198getreg(portp, RXFIFO);
5066 stl_sc26198rxbadch(portp, status, ch);
5067 }
5068
5069 /*
5070 * To get correct interrupt class we must switch back into BLOCK
5071 * error mode.
5072 */
5073 stl_sc26198setreg(portp, MR1, mr1);
5074 }
5075
5076 /*****************************************************************************/
5077
5078 /*
5079 * Other interrupt handler. This includes modem signals, flow
5080 * control actions, etc. Most stuff is left to off-level interrupt
5081 * processing time.
5082 */
5083
5084 static void stl_sc26198otherisr(stlport_t *portp, unsigned int iack)
5085 {
5086 unsigned char cir, ipr, xisr;
5087
5088 #ifdef DEBUG
5089 printk("stl_sc26198otherisr(portp=%x,iack=%x)\n", (int) portp, iack);
5090 #endif
5091
5092 cir = stl_sc26198getglobreg(portp, CIR);
5093
5094 switch (cir & CIR_SUBTYPEMASK) {
5095 case CIR_SUBCOS:
5096 ipr = stl_sc26198getreg(portp, IPR);
5097 if (ipr & IPR_DCDCHANGE) {
5098 set_bit(ASYI_DCDCHANGE, &portp->istate);
5099 schedule_work(&portp->tqueue);
5100 portp->stats.modem++;
5101 }
5102 break;
5103 case CIR_SUBXONXOFF:
5104 xisr = stl_sc26198getreg(portp, XISR);
5105 if (xisr & XISR_RXXONGOT) {
5106 set_bit(ASYI_TXFLOWED, &portp->istate);
5107 portp->stats.txxoff++;
5108 }
5109 if (xisr & XISR_RXXOFFGOT) {
5110 clear_bit(ASYI_TXFLOWED, &portp->istate);
5111 portp->stats.txxon++;
5112 }
5113 break;
5114 case CIR_SUBBREAK:
5115 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
5116 stl_sc26198rxbadchars(portp);
5117 break;
5118 default:
5119 break;
5120 }
5121 }
5122
5123 /*****************************************************************************/