]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/firmware/efi/vars.c
Merge remote-tracking branches 'asoc/topic/atmel', 'asoc/topic/bcm2835' and 'asoc...
[mirror_ubuntu-zesty-kernel.git] / drivers / firmware / efi / vars.c
1 /*
2 * Originally from efivars.c
3 *
4 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
5 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <linux/capability.h>
23 #include <linux/types.h>
24 #include <linux/errno.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/smp.h>
30 #include <linux/efi.h>
31 #include <linux/sysfs.h>
32 #include <linux/device.h>
33 #include <linux/slab.h>
34 #include <linux/ctype.h>
35 #include <linux/ucs2_string.h>
36
37 /* Private pointer to registered efivars */
38 static struct efivars *__efivars;
39
40 static bool efivar_wq_enabled = true;
41 DECLARE_WORK(efivar_work, NULL);
42 EXPORT_SYMBOL_GPL(efivar_work);
43
44 static bool
45 validate_device_path(efi_char16_t *var_name, int match, u8 *buffer,
46 unsigned long len)
47 {
48 struct efi_generic_dev_path *node;
49 int offset = 0;
50
51 node = (struct efi_generic_dev_path *)buffer;
52
53 if (len < sizeof(*node))
54 return false;
55
56 while (offset <= len - sizeof(*node) &&
57 node->length >= sizeof(*node) &&
58 node->length <= len - offset) {
59 offset += node->length;
60
61 if ((node->type == EFI_DEV_END_PATH ||
62 node->type == EFI_DEV_END_PATH2) &&
63 node->sub_type == EFI_DEV_END_ENTIRE)
64 return true;
65
66 node = (struct efi_generic_dev_path *)(buffer + offset);
67 }
68
69 /*
70 * If we're here then either node->length pointed past the end
71 * of the buffer or we reached the end of the buffer without
72 * finding a device path end node.
73 */
74 return false;
75 }
76
77 static bool
78 validate_boot_order(efi_char16_t *var_name, int match, u8 *buffer,
79 unsigned long len)
80 {
81 /* An array of 16-bit integers */
82 if ((len % 2) != 0)
83 return false;
84
85 return true;
86 }
87
88 static bool
89 validate_load_option(efi_char16_t *var_name, int match, u8 *buffer,
90 unsigned long len)
91 {
92 u16 filepathlength;
93 int i, desclength = 0, namelen;
94
95 namelen = ucs2_strnlen(var_name, EFI_VAR_NAME_LEN);
96
97 /* Either "Boot" or "Driver" followed by four digits of hex */
98 for (i = match; i < match+4; i++) {
99 if (var_name[i] > 127 ||
100 hex_to_bin(var_name[i] & 0xff) < 0)
101 return true;
102 }
103
104 /* Reject it if there's 4 digits of hex and then further content */
105 if (namelen > match + 4)
106 return false;
107
108 /* A valid entry must be at least 8 bytes */
109 if (len < 8)
110 return false;
111
112 filepathlength = buffer[4] | buffer[5] << 8;
113
114 /*
115 * There's no stored length for the description, so it has to be
116 * found by hand
117 */
118 desclength = ucs2_strsize((efi_char16_t *)(buffer + 6), len - 6) + 2;
119
120 /* Each boot entry must have a descriptor */
121 if (!desclength)
122 return false;
123
124 /*
125 * If the sum of the length of the description, the claimed filepath
126 * length and the original header are greater than the length of the
127 * variable, it's malformed
128 */
129 if ((desclength + filepathlength + 6) > len)
130 return false;
131
132 /*
133 * And, finally, check the filepath
134 */
135 return validate_device_path(var_name, match, buffer + desclength + 6,
136 filepathlength);
137 }
138
139 static bool
140 validate_uint16(efi_char16_t *var_name, int match, u8 *buffer,
141 unsigned long len)
142 {
143 /* A single 16-bit integer */
144 if (len != 2)
145 return false;
146
147 return true;
148 }
149
150 static bool
151 validate_ascii_string(efi_char16_t *var_name, int match, u8 *buffer,
152 unsigned long len)
153 {
154 int i;
155
156 for (i = 0; i < len; i++) {
157 if (buffer[i] > 127)
158 return false;
159
160 if (buffer[i] == 0)
161 return true;
162 }
163
164 return false;
165 }
166
167 struct variable_validate {
168 efi_guid_t vendor;
169 char *name;
170 bool (*validate)(efi_char16_t *var_name, int match, u8 *data,
171 unsigned long len);
172 };
173
174 /*
175 * This is the list of variables we need to validate, as well as the
176 * whitelist for what we think is safe not to default to immutable.
177 *
178 * If it has a validate() method that's not NULL, it'll go into the
179 * validation routine. If not, it is assumed valid, but still used for
180 * whitelisting.
181 *
182 * Note that it's sorted by {vendor,name}, but globbed names must come after
183 * any other name with the same prefix.
184 */
185 static const struct variable_validate variable_validate[] = {
186 { EFI_GLOBAL_VARIABLE_GUID, "BootNext", validate_uint16 },
187 { EFI_GLOBAL_VARIABLE_GUID, "BootOrder", validate_boot_order },
188 { EFI_GLOBAL_VARIABLE_GUID, "Boot*", validate_load_option },
189 { EFI_GLOBAL_VARIABLE_GUID, "DriverOrder", validate_boot_order },
190 { EFI_GLOBAL_VARIABLE_GUID, "Driver*", validate_load_option },
191 { EFI_GLOBAL_VARIABLE_GUID, "ConIn", validate_device_path },
192 { EFI_GLOBAL_VARIABLE_GUID, "ConInDev", validate_device_path },
193 { EFI_GLOBAL_VARIABLE_GUID, "ConOut", validate_device_path },
194 { EFI_GLOBAL_VARIABLE_GUID, "ConOutDev", validate_device_path },
195 { EFI_GLOBAL_VARIABLE_GUID, "ErrOut", validate_device_path },
196 { EFI_GLOBAL_VARIABLE_GUID, "ErrOutDev", validate_device_path },
197 { EFI_GLOBAL_VARIABLE_GUID, "Lang", validate_ascii_string },
198 { EFI_GLOBAL_VARIABLE_GUID, "OsIndications", NULL },
199 { EFI_GLOBAL_VARIABLE_GUID, "PlatformLang", validate_ascii_string },
200 { EFI_GLOBAL_VARIABLE_GUID, "Timeout", validate_uint16 },
201 { LINUX_EFI_CRASH_GUID, "*", NULL },
202 { NULL_GUID, "", NULL },
203 };
204
205 static bool
206 variable_matches(const char *var_name, size_t len, const char *match_name,
207 int *match)
208 {
209 for (*match = 0; ; (*match)++) {
210 char c = match_name[*match];
211 char u = var_name[*match];
212
213 /* Wildcard in the matching name means we've matched */
214 if (c == '*')
215 return true;
216
217 /* Case sensitive match */
218 if (!c && *match == len)
219 return true;
220
221 if (c != u)
222 return false;
223
224 if (!c)
225 return true;
226 }
227 return true;
228 }
229
230 bool
231 efivar_validate(efi_guid_t vendor, efi_char16_t *var_name, u8 *data,
232 unsigned long data_size)
233 {
234 int i;
235 unsigned long utf8_size;
236 u8 *utf8_name;
237
238 utf8_size = ucs2_utf8size(var_name);
239 utf8_name = kmalloc(utf8_size + 1, GFP_KERNEL);
240 if (!utf8_name)
241 return false;
242
243 ucs2_as_utf8(utf8_name, var_name, utf8_size);
244 utf8_name[utf8_size] = '\0';
245
246 for (i = 0; variable_validate[i].name[0] != '\0'; i++) {
247 const char *name = variable_validate[i].name;
248 int match = 0;
249
250 if (efi_guidcmp(vendor, variable_validate[i].vendor))
251 continue;
252
253 if (variable_matches(utf8_name, utf8_size+1, name, &match)) {
254 if (variable_validate[i].validate == NULL)
255 break;
256 kfree(utf8_name);
257 return variable_validate[i].validate(var_name, match,
258 data, data_size);
259 }
260 }
261 kfree(utf8_name);
262 return true;
263 }
264 EXPORT_SYMBOL_GPL(efivar_validate);
265
266 bool
267 efivar_variable_is_removable(efi_guid_t vendor, const char *var_name,
268 size_t len)
269 {
270 int i;
271 bool found = false;
272 int match = 0;
273
274 /*
275 * Check if our variable is in the validated variables list
276 */
277 for (i = 0; variable_validate[i].name[0] != '\0'; i++) {
278 if (efi_guidcmp(variable_validate[i].vendor, vendor))
279 continue;
280
281 if (variable_matches(var_name, len,
282 variable_validate[i].name, &match)) {
283 found = true;
284 break;
285 }
286 }
287
288 /*
289 * If it's in our list, it is removable.
290 */
291 return found;
292 }
293 EXPORT_SYMBOL_GPL(efivar_variable_is_removable);
294
295 static efi_status_t
296 check_var_size(u32 attributes, unsigned long size)
297 {
298 const struct efivar_operations *fops = __efivars->ops;
299
300 if (!fops->query_variable_store)
301 return EFI_UNSUPPORTED;
302
303 return fops->query_variable_store(attributes, size);
304 }
305
306 static int efi_status_to_err(efi_status_t status)
307 {
308 int err;
309
310 switch (status) {
311 case EFI_SUCCESS:
312 err = 0;
313 break;
314 case EFI_INVALID_PARAMETER:
315 err = -EINVAL;
316 break;
317 case EFI_OUT_OF_RESOURCES:
318 err = -ENOSPC;
319 break;
320 case EFI_DEVICE_ERROR:
321 err = -EIO;
322 break;
323 case EFI_WRITE_PROTECTED:
324 err = -EROFS;
325 break;
326 case EFI_SECURITY_VIOLATION:
327 err = -EACCES;
328 break;
329 case EFI_NOT_FOUND:
330 err = -ENOENT;
331 break;
332 default:
333 err = -EINVAL;
334 }
335
336 return err;
337 }
338
339 static bool variable_is_present(efi_char16_t *variable_name, efi_guid_t *vendor,
340 struct list_head *head)
341 {
342 struct efivar_entry *entry, *n;
343 unsigned long strsize1, strsize2;
344 bool found = false;
345
346 strsize1 = ucs2_strsize(variable_name, 1024);
347 list_for_each_entry_safe(entry, n, head, list) {
348 strsize2 = ucs2_strsize(entry->var.VariableName, 1024);
349 if (strsize1 == strsize2 &&
350 !memcmp(variable_name, &(entry->var.VariableName),
351 strsize2) &&
352 !efi_guidcmp(entry->var.VendorGuid,
353 *vendor)) {
354 found = true;
355 break;
356 }
357 }
358 return found;
359 }
360
361 /*
362 * Returns the size of variable_name, in bytes, including the
363 * terminating NULL character, or variable_name_size if no NULL
364 * character is found among the first variable_name_size bytes.
365 */
366 static unsigned long var_name_strnsize(efi_char16_t *variable_name,
367 unsigned long variable_name_size)
368 {
369 unsigned long len;
370 efi_char16_t c;
371
372 /*
373 * The variable name is, by definition, a NULL-terminated
374 * string, so make absolutely sure that variable_name_size is
375 * the value we expect it to be. If not, return the real size.
376 */
377 for (len = 2; len <= variable_name_size; len += sizeof(c)) {
378 c = variable_name[(len / sizeof(c)) - 1];
379 if (!c)
380 break;
381 }
382
383 return min(len, variable_name_size);
384 }
385
386 /*
387 * Print a warning when duplicate EFI variables are encountered and
388 * disable the sysfs workqueue since the firmware is buggy.
389 */
390 static void dup_variable_bug(efi_char16_t *str16, efi_guid_t *vendor_guid,
391 unsigned long len16)
392 {
393 size_t i, len8 = len16 / sizeof(efi_char16_t);
394 char *str8;
395
396 /*
397 * Disable the workqueue since the algorithm it uses for
398 * detecting new variables won't work with this buggy
399 * implementation of GetNextVariableName().
400 */
401 efivar_wq_enabled = false;
402
403 str8 = kzalloc(len8, GFP_KERNEL);
404 if (!str8)
405 return;
406
407 for (i = 0; i < len8; i++)
408 str8[i] = str16[i];
409
410 printk(KERN_WARNING "efivars: duplicate variable: %s-%pUl\n",
411 str8, vendor_guid);
412 kfree(str8);
413 }
414
415 /**
416 * efivar_init - build the initial list of EFI variables
417 * @func: callback function to invoke for every variable
418 * @data: function-specific data to pass to @func
419 * @atomic: do we need to execute the @func-loop atomically?
420 * @duplicates: error if we encounter duplicates on @head?
421 * @head: initialised head of variable list
422 *
423 * Get every EFI variable from the firmware and invoke @func. @func
424 * should call efivar_entry_add() to build the list of variables.
425 *
426 * Returns 0 on success, or a kernel error code on failure.
427 */
428 int efivar_init(int (*func)(efi_char16_t *, efi_guid_t, unsigned long, void *),
429 void *data, bool atomic, bool duplicates,
430 struct list_head *head)
431 {
432 const struct efivar_operations *ops = __efivars->ops;
433 unsigned long variable_name_size = 1024;
434 efi_char16_t *variable_name;
435 efi_status_t status;
436 efi_guid_t vendor_guid;
437 int err = 0;
438
439 variable_name = kzalloc(variable_name_size, GFP_KERNEL);
440 if (!variable_name) {
441 printk(KERN_ERR "efivars: Memory allocation failed.\n");
442 return -ENOMEM;
443 }
444
445 spin_lock_irq(&__efivars->lock);
446
447 /*
448 * Per EFI spec, the maximum storage allocated for both
449 * the variable name and variable data is 1024 bytes.
450 */
451
452 do {
453 variable_name_size = 1024;
454
455 status = ops->get_next_variable(&variable_name_size,
456 variable_name,
457 &vendor_guid);
458 switch (status) {
459 case EFI_SUCCESS:
460 if (!atomic)
461 spin_unlock_irq(&__efivars->lock);
462
463 variable_name_size = var_name_strnsize(variable_name,
464 variable_name_size);
465
466 /*
467 * Some firmware implementations return the
468 * same variable name on multiple calls to
469 * get_next_variable(). Terminate the loop
470 * immediately as there is no guarantee that
471 * we'll ever see a different variable name,
472 * and may end up looping here forever.
473 */
474 if (duplicates &&
475 variable_is_present(variable_name, &vendor_guid, head)) {
476 dup_variable_bug(variable_name, &vendor_guid,
477 variable_name_size);
478 if (!atomic)
479 spin_lock_irq(&__efivars->lock);
480
481 status = EFI_NOT_FOUND;
482 break;
483 }
484
485 err = func(variable_name, vendor_guid, variable_name_size, data);
486 if (err)
487 status = EFI_NOT_FOUND;
488
489 if (!atomic)
490 spin_lock_irq(&__efivars->lock);
491
492 break;
493 case EFI_NOT_FOUND:
494 break;
495 default:
496 printk(KERN_WARNING "efivars: get_next_variable: status=%lx\n",
497 status);
498 status = EFI_NOT_FOUND;
499 break;
500 }
501
502 } while (status != EFI_NOT_FOUND);
503
504 spin_unlock_irq(&__efivars->lock);
505
506 kfree(variable_name);
507
508 return err;
509 }
510 EXPORT_SYMBOL_GPL(efivar_init);
511
512 /**
513 * efivar_entry_add - add entry to variable list
514 * @entry: entry to add to list
515 * @head: list head
516 */
517 void efivar_entry_add(struct efivar_entry *entry, struct list_head *head)
518 {
519 spin_lock_irq(&__efivars->lock);
520 list_add(&entry->list, head);
521 spin_unlock_irq(&__efivars->lock);
522 }
523 EXPORT_SYMBOL_GPL(efivar_entry_add);
524
525 /**
526 * efivar_entry_remove - remove entry from variable list
527 * @entry: entry to remove from list
528 */
529 void efivar_entry_remove(struct efivar_entry *entry)
530 {
531 spin_lock_irq(&__efivars->lock);
532 list_del(&entry->list);
533 spin_unlock_irq(&__efivars->lock);
534 }
535 EXPORT_SYMBOL_GPL(efivar_entry_remove);
536
537 /*
538 * efivar_entry_list_del_unlock - remove entry from variable list
539 * @entry: entry to remove
540 *
541 * Remove @entry from the variable list and release the list lock.
542 *
543 * NOTE: slightly weird locking semantics here - we expect to be
544 * called with the efivars lock already held, and we release it before
545 * returning. This is because this function is usually called after
546 * set_variable() while the lock is still held.
547 */
548 static void efivar_entry_list_del_unlock(struct efivar_entry *entry)
549 {
550 lockdep_assert_held(&__efivars->lock);
551
552 list_del(&entry->list);
553 spin_unlock_irq(&__efivars->lock);
554 }
555
556 /**
557 * __efivar_entry_delete - delete an EFI variable
558 * @entry: entry containing EFI variable to delete
559 *
560 * Delete the variable from the firmware but leave @entry on the
561 * variable list.
562 *
563 * This function differs from efivar_entry_delete() because it does
564 * not remove @entry from the variable list. Also, it is safe to be
565 * called from within a efivar_entry_iter_begin() and
566 * efivar_entry_iter_end() region, unlike efivar_entry_delete().
567 *
568 * Returns 0 on success, or a converted EFI status code if
569 * set_variable() fails.
570 */
571 int __efivar_entry_delete(struct efivar_entry *entry)
572 {
573 const struct efivar_operations *ops = __efivars->ops;
574 efi_status_t status;
575
576 lockdep_assert_held(&__efivars->lock);
577
578 status = ops->set_variable(entry->var.VariableName,
579 &entry->var.VendorGuid,
580 0, 0, NULL);
581
582 return efi_status_to_err(status);
583 }
584 EXPORT_SYMBOL_GPL(__efivar_entry_delete);
585
586 /**
587 * efivar_entry_delete - delete variable and remove entry from list
588 * @entry: entry containing variable to delete
589 *
590 * Delete the variable from the firmware and remove @entry from the
591 * variable list. It is the caller's responsibility to free @entry
592 * once we return.
593 *
594 * Returns 0 on success, or a converted EFI status code if
595 * set_variable() fails.
596 */
597 int efivar_entry_delete(struct efivar_entry *entry)
598 {
599 const struct efivar_operations *ops = __efivars->ops;
600 efi_status_t status;
601
602 spin_lock_irq(&__efivars->lock);
603 status = ops->set_variable(entry->var.VariableName,
604 &entry->var.VendorGuid,
605 0, 0, NULL);
606 if (!(status == EFI_SUCCESS || status == EFI_NOT_FOUND)) {
607 spin_unlock_irq(&__efivars->lock);
608 return efi_status_to_err(status);
609 }
610
611 efivar_entry_list_del_unlock(entry);
612 return 0;
613 }
614 EXPORT_SYMBOL_GPL(efivar_entry_delete);
615
616 /**
617 * efivar_entry_set - call set_variable()
618 * @entry: entry containing the EFI variable to write
619 * @attributes: variable attributes
620 * @size: size of @data buffer
621 * @data: buffer containing variable data
622 * @head: head of variable list
623 *
624 * Calls set_variable() for an EFI variable. If creating a new EFI
625 * variable, this function is usually followed by efivar_entry_add().
626 *
627 * Before writing the variable, the remaining EFI variable storage
628 * space is checked to ensure there is enough room available.
629 *
630 * If @head is not NULL a lookup is performed to determine whether
631 * the entry is already on the list.
632 *
633 * Returns 0 on success, -EEXIST if a lookup is performed and the entry
634 * already exists on the list, or a converted EFI status code if
635 * set_variable() fails.
636 */
637 int efivar_entry_set(struct efivar_entry *entry, u32 attributes,
638 unsigned long size, void *data, struct list_head *head)
639 {
640 const struct efivar_operations *ops = __efivars->ops;
641 efi_status_t status;
642 efi_char16_t *name = entry->var.VariableName;
643 efi_guid_t vendor = entry->var.VendorGuid;
644
645 spin_lock_irq(&__efivars->lock);
646
647 if (head && efivar_entry_find(name, vendor, head, false)) {
648 spin_unlock_irq(&__efivars->lock);
649 return -EEXIST;
650 }
651
652 status = check_var_size(attributes, size + ucs2_strsize(name, 1024));
653 if (status == EFI_SUCCESS || status == EFI_UNSUPPORTED)
654 status = ops->set_variable(name, &vendor,
655 attributes, size, data);
656
657 spin_unlock_irq(&__efivars->lock);
658
659 return efi_status_to_err(status);
660
661 }
662 EXPORT_SYMBOL_GPL(efivar_entry_set);
663
664 /*
665 * efivar_entry_set_nonblocking - call set_variable_nonblocking()
666 *
667 * This function is guaranteed to not block and is suitable for calling
668 * from crash/panic handlers.
669 *
670 * Crucially, this function will not block if it cannot acquire
671 * __efivars->lock. Instead, it returns -EBUSY.
672 */
673 static int
674 efivar_entry_set_nonblocking(efi_char16_t *name, efi_guid_t vendor,
675 u32 attributes, unsigned long size, void *data)
676 {
677 const struct efivar_operations *ops = __efivars->ops;
678 unsigned long flags;
679 efi_status_t status;
680
681 if (!spin_trylock_irqsave(&__efivars->lock, flags))
682 return -EBUSY;
683
684 status = check_var_size(attributes, size + ucs2_strsize(name, 1024));
685 if (status != EFI_SUCCESS) {
686 spin_unlock_irqrestore(&__efivars->lock, flags);
687 return -ENOSPC;
688 }
689
690 status = ops->set_variable_nonblocking(name, &vendor, attributes,
691 size, data);
692
693 spin_unlock_irqrestore(&__efivars->lock, flags);
694 return efi_status_to_err(status);
695 }
696
697 /**
698 * efivar_entry_set_safe - call set_variable() if enough space in firmware
699 * @name: buffer containing the variable name
700 * @vendor: variable vendor guid
701 * @attributes: variable attributes
702 * @block: can we block in this context?
703 * @size: size of @data buffer
704 * @data: buffer containing variable data
705 *
706 * Ensures there is enough free storage in the firmware for this variable, and
707 * if so, calls set_variable(). If creating a new EFI variable, this function
708 * is usually followed by efivar_entry_add().
709 *
710 * Returns 0 on success, -ENOSPC if the firmware does not have enough
711 * space for set_variable() to succeed, or a converted EFI status code
712 * if set_variable() fails.
713 */
714 int efivar_entry_set_safe(efi_char16_t *name, efi_guid_t vendor, u32 attributes,
715 bool block, unsigned long size, void *data)
716 {
717 const struct efivar_operations *ops = __efivars->ops;
718 unsigned long flags;
719 efi_status_t status;
720
721 if (!ops->query_variable_store)
722 return -ENOSYS;
723
724 /*
725 * If the EFI variable backend provides a non-blocking
726 * ->set_variable() operation and we're in a context where we
727 * cannot block, then we need to use it to avoid live-locks,
728 * since the implication is that the regular ->set_variable()
729 * will block.
730 *
731 * If no ->set_variable_nonblocking() is provided then
732 * ->set_variable() is assumed to be non-blocking.
733 */
734 if (!block && ops->set_variable_nonblocking)
735 return efivar_entry_set_nonblocking(name, vendor, attributes,
736 size, data);
737
738 if (!block) {
739 if (!spin_trylock_irqsave(&__efivars->lock, flags))
740 return -EBUSY;
741 } else {
742 spin_lock_irqsave(&__efivars->lock, flags);
743 }
744
745 status = check_var_size(attributes, size + ucs2_strsize(name, 1024));
746 if (status != EFI_SUCCESS) {
747 spin_unlock_irqrestore(&__efivars->lock, flags);
748 return -ENOSPC;
749 }
750
751 status = ops->set_variable(name, &vendor, attributes, size, data);
752
753 spin_unlock_irqrestore(&__efivars->lock, flags);
754
755 return efi_status_to_err(status);
756 }
757 EXPORT_SYMBOL_GPL(efivar_entry_set_safe);
758
759 /**
760 * efivar_entry_find - search for an entry
761 * @name: the EFI variable name
762 * @guid: the EFI variable vendor's guid
763 * @head: head of the variable list
764 * @remove: should we remove the entry from the list?
765 *
766 * Search for an entry on the variable list that has the EFI variable
767 * name @name and vendor guid @guid. If an entry is found on the list
768 * and @remove is true, the entry is removed from the list.
769 *
770 * The caller MUST call efivar_entry_iter_begin() and
771 * efivar_entry_iter_end() before and after the invocation of this
772 * function, respectively.
773 *
774 * Returns the entry if found on the list, %NULL otherwise.
775 */
776 struct efivar_entry *efivar_entry_find(efi_char16_t *name, efi_guid_t guid,
777 struct list_head *head, bool remove)
778 {
779 struct efivar_entry *entry, *n;
780 int strsize1, strsize2;
781 bool found = false;
782
783 lockdep_assert_held(&__efivars->lock);
784
785 list_for_each_entry_safe(entry, n, head, list) {
786 strsize1 = ucs2_strsize(name, 1024);
787 strsize2 = ucs2_strsize(entry->var.VariableName, 1024);
788 if (strsize1 == strsize2 &&
789 !memcmp(name, &(entry->var.VariableName), strsize1) &&
790 !efi_guidcmp(guid, entry->var.VendorGuid)) {
791 found = true;
792 break;
793 }
794 }
795
796 if (!found)
797 return NULL;
798
799 if (remove) {
800 if (entry->scanning) {
801 /*
802 * The entry will be deleted
803 * after scanning is completed.
804 */
805 entry->deleting = true;
806 } else
807 list_del(&entry->list);
808 }
809
810 return entry;
811 }
812 EXPORT_SYMBOL_GPL(efivar_entry_find);
813
814 /**
815 * efivar_entry_size - obtain the size of a variable
816 * @entry: entry for this variable
817 * @size: location to store the variable's size
818 */
819 int efivar_entry_size(struct efivar_entry *entry, unsigned long *size)
820 {
821 const struct efivar_operations *ops = __efivars->ops;
822 efi_status_t status;
823
824 *size = 0;
825
826 spin_lock_irq(&__efivars->lock);
827 status = ops->get_variable(entry->var.VariableName,
828 &entry->var.VendorGuid, NULL, size, NULL);
829 spin_unlock_irq(&__efivars->lock);
830
831 if (status != EFI_BUFFER_TOO_SMALL)
832 return efi_status_to_err(status);
833
834 return 0;
835 }
836 EXPORT_SYMBOL_GPL(efivar_entry_size);
837
838 /**
839 * __efivar_entry_get - call get_variable()
840 * @entry: read data for this variable
841 * @attributes: variable attributes
842 * @size: size of @data buffer
843 * @data: buffer to store variable data
844 *
845 * The caller MUST call efivar_entry_iter_begin() and
846 * efivar_entry_iter_end() before and after the invocation of this
847 * function, respectively.
848 */
849 int __efivar_entry_get(struct efivar_entry *entry, u32 *attributes,
850 unsigned long *size, void *data)
851 {
852 const struct efivar_operations *ops = __efivars->ops;
853 efi_status_t status;
854
855 lockdep_assert_held(&__efivars->lock);
856
857 status = ops->get_variable(entry->var.VariableName,
858 &entry->var.VendorGuid,
859 attributes, size, data);
860
861 return efi_status_to_err(status);
862 }
863 EXPORT_SYMBOL_GPL(__efivar_entry_get);
864
865 /**
866 * efivar_entry_get - call get_variable()
867 * @entry: read data for this variable
868 * @attributes: variable attributes
869 * @size: size of @data buffer
870 * @data: buffer to store variable data
871 */
872 int efivar_entry_get(struct efivar_entry *entry, u32 *attributes,
873 unsigned long *size, void *data)
874 {
875 const struct efivar_operations *ops = __efivars->ops;
876 efi_status_t status;
877
878 spin_lock_irq(&__efivars->lock);
879 status = ops->get_variable(entry->var.VariableName,
880 &entry->var.VendorGuid,
881 attributes, size, data);
882 spin_unlock_irq(&__efivars->lock);
883
884 return efi_status_to_err(status);
885 }
886 EXPORT_SYMBOL_GPL(efivar_entry_get);
887
888 /**
889 * efivar_entry_set_get_size - call set_variable() and get new size (atomic)
890 * @entry: entry containing variable to set and get
891 * @attributes: attributes of variable to be written
892 * @size: size of data buffer
893 * @data: buffer containing data to write
894 * @set: did the set_variable() call succeed?
895 *
896 * This is a pretty special (complex) function. See efivarfs_file_write().
897 *
898 * Atomically call set_variable() for @entry and if the call is
899 * successful, return the new size of the variable from get_variable()
900 * in @size. The success of set_variable() is indicated by @set.
901 *
902 * Returns 0 on success, -EINVAL if the variable data is invalid,
903 * -ENOSPC if the firmware does not have enough available space, or a
904 * converted EFI status code if either of set_variable() or
905 * get_variable() fail.
906 *
907 * If the EFI variable does not exist when calling set_variable()
908 * (EFI_NOT_FOUND), @entry is removed from the variable list.
909 */
910 int efivar_entry_set_get_size(struct efivar_entry *entry, u32 attributes,
911 unsigned long *size, void *data, bool *set)
912 {
913 const struct efivar_operations *ops = __efivars->ops;
914 efi_char16_t *name = entry->var.VariableName;
915 efi_guid_t *vendor = &entry->var.VendorGuid;
916 efi_status_t status;
917 int err;
918
919 *set = false;
920
921 if (efivar_validate(*vendor, name, data, *size) == false)
922 return -EINVAL;
923
924 /*
925 * The lock here protects the get_variable call, the conditional
926 * set_variable call, and removal of the variable from the efivars
927 * list (in the case of an authenticated delete).
928 */
929 spin_lock_irq(&__efivars->lock);
930
931 /*
932 * Ensure that the available space hasn't shrunk below the safe level
933 */
934 status = check_var_size(attributes, *size + ucs2_strsize(name, 1024));
935 if (status != EFI_SUCCESS) {
936 if (status != EFI_UNSUPPORTED) {
937 err = efi_status_to_err(status);
938 goto out;
939 }
940
941 if (*size > 65536) {
942 err = -ENOSPC;
943 goto out;
944 }
945 }
946
947 status = ops->set_variable(name, vendor, attributes, *size, data);
948 if (status != EFI_SUCCESS) {
949 err = efi_status_to_err(status);
950 goto out;
951 }
952
953 *set = true;
954
955 /*
956 * Writing to the variable may have caused a change in size (which
957 * could either be an append or an overwrite), or the variable to be
958 * deleted. Perform a GetVariable() so we can tell what actually
959 * happened.
960 */
961 *size = 0;
962 status = ops->get_variable(entry->var.VariableName,
963 &entry->var.VendorGuid,
964 NULL, size, NULL);
965
966 if (status == EFI_NOT_FOUND)
967 efivar_entry_list_del_unlock(entry);
968 else
969 spin_unlock_irq(&__efivars->lock);
970
971 if (status && status != EFI_BUFFER_TOO_SMALL)
972 return efi_status_to_err(status);
973
974 return 0;
975
976 out:
977 spin_unlock_irq(&__efivars->lock);
978 return err;
979
980 }
981 EXPORT_SYMBOL_GPL(efivar_entry_set_get_size);
982
983 /**
984 * efivar_entry_iter_begin - begin iterating the variable list
985 *
986 * Lock the variable list to prevent entry insertion and removal until
987 * efivar_entry_iter_end() is called. This function is usually used in
988 * conjunction with __efivar_entry_iter() or efivar_entry_iter().
989 */
990 void efivar_entry_iter_begin(void)
991 {
992 spin_lock_irq(&__efivars->lock);
993 }
994 EXPORT_SYMBOL_GPL(efivar_entry_iter_begin);
995
996 /**
997 * efivar_entry_iter_end - finish iterating the variable list
998 *
999 * Unlock the variable list and allow modifications to the list again.
1000 */
1001 void efivar_entry_iter_end(void)
1002 {
1003 spin_unlock_irq(&__efivars->lock);
1004 }
1005 EXPORT_SYMBOL_GPL(efivar_entry_iter_end);
1006
1007 /**
1008 * __efivar_entry_iter - iterate over variable list
1009 * @func: callback function
1010 * @head: head of the variable list
1011 * @data: function-specific data to pass to callback
1012 * @prev: entry to begin iterating from
1013 *
1014 * Iterate over the list of EFI variables and call @func with every
1015 * entry on the list. It is safe for @func to remove entries in the
1016 * list via efivar_entry_delete().
1017 *
1018 * You MUST call efivar_enter_iter_begin() before this function, and
1019 * efivar_entry_iter_end() afterwards.
1020 *
1021 * It is possible to begin iteration from an arbitrary entry within
1022 * the list by passing @prev. @prev is updated on return to point to
1023 * the last entry passed to @func. To begin iterating from the
1024 * beginning of the list @prev must be %NULL.
1025 *
1026 * The restrictions for @func are the same as documented for
1027 * efivar_entry_iter().
1028 */
1029 int __efivar_entry_iter(int (*func)(struct efivar_entry *, void *),
1030 struct list_head *head, void *data,
1031 struct efivar_entry **prev)
1032 {
1033 struct efivar_entry *entry, *n;
1034 int err = 0;
1035
1036 if (!prev || !*prev) {
1037 list_for_each_entry_safe(entry, n, head, list) {
1038 err = func(entry, data);
1039 if (err)
1040 break;
1041 }
1042
1043 if (prev)
1044 *prev = entry;
1045
1046 return err;
1047 }
1048
1049
1050 list_for_each_entry_safe_continue((*prev), n, head, list) {
1051 err = func(*prev, data);
1052 if (err)
1053 break;
1054 }
1055
1056 return err;
1057 }
1058 EXPORT_SYMBOL_GPL(__efivar_entry_iter);
1059
1060 /**
1061 * efivar_entry_iter - iterate over variable list
1062 * @func: callback function
1063 * @head: head of variable list
1064 * @data: function-specific data to pass to callback
1065 *
1066 * Iterate over the list of EFI variables and call @func with every
1067 * entry on the list. It is safe for @func to remove entries in the
1068 * list via efivar_entry_delete() while iterating.
1069 *
1070 * Some notes for the callback function:
1071 * - a non-zero return value indicates an error and terminates the loop
1072 * - @func is called from atomic context
1073 */
1074 int efivar_entry_iter(int (*func)(struct efivar_entry *, void *),
1075 struct list_head *head, void *data)
1076 {
1077 int err = 0;
1078
1079 efivar_entry_iter_begin();
1080 err = __efivar_entry_iter(func, head, data, NULL);
1081 efivar_entry_iter_end();
1082
1083 return err;
1084 }
1085 EXPORT_SYMBOL_GPL(efivar_entry_iter);
1086
1087 /**
1088 * efivars_kobject - get the kobject for the registered efivars
1089 *
1090 * If efivars_register() has not been called we return NULL,
1091 * otherwise return the kobject used at registration time.
1092 */
1093 struct kobject *efivars_kobject(void)
1094 {
1095 if (!__efivars)
1096 return NULL;
1097
1098 return __efivars->kobject;
1099 }
1100 EXPORT_SYMBOL_GPL(efivars_kobject);
1101
1102 /**
1103 * efivar_run_worker - schedule the efivar worker thread
1104 */
1105 void efivar_run_worker(void)
1106 {
1107 if (efivar_wq_enabled)
1108 schedule_work(&efivar_work);
1109 }
1110 EXPORT_SYMBOL_GPL(efivar_run_worker);
1111
1112 /**
1113 * efivars_register - register an efivars
1114 * @efivars: efivars to register
1115 * @ops: efivars operations
1116 * @kobject: @efivars-specific kobject
1117 *
1118 * Only a single efivars can be registered at any time.
1119 */
1120 int efivars_register(struct efivars *efivars,
1121 const struct efivar_operations *ops,
1122 struct kobject *kobject)
1123 {
1124 spin_lock_init(&efivars->lock);
1125 efivars->ops = ops;
1126 efivars->kobject = kobject;
1127
1128 __efivars = efivars;
1129
1130 return 0;
1131 }
1132 EXPORT_SYMBOL_GPL(efivars_register);
1133
1134 /**
1135 * efivars_unregister - unregister an efivars
1136 * @efivars: efivars to unregister
1137 *
1138 * The caller must have already removed every entry from the list,
1139 * failure to do so is an error.
1140 */
1141 int efivars_unregister(struct efivars *efivars)
1142 {
1143 int rv;
1144
1145 if (!__efivars) {
1146 printk(KERN_ERR "efivars not registered\n");
1147 rv = -EINVAL;
1148 goto out;
1149 }
1150
1151 if (__efivars != efivars) {
1152 rv = -EINVAL;
1153 goto out;
1154 }
1155
1156 __efivars = NULL;
1157
1158 rv = 0;
1159 out:
1160 return rv;
1161 }
1162 EXPORT_SYMBOL_GPL(efivars_unregister);