]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/amd/display/dc/dce110/dce110_hw_sequencer.c
drm/amd/display: add init calculation to scaler params
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / amd / display / dc / dce110 / dce110_hw_sequencer.c
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25 #include "dm_services.h"
26 #include "dc.h"
27 #include "dc_bios_types.h"
28 #include "core_types.h"
29 #include "core_status.h"
30 #include "resource.h"
31 #include "hw_sequencer.h"
32 #include "dm_helpers.h"
33 #include "dce110_hw_sequencer.h"
34 #include "dce110_timing_generator.h"
35
36 #include "bios/bios_parser_helper.h"
37 #include "timing_generator.h"
38 #include "mem_input.h"
39 #include "opp.h"
40 #include "ipp.h"
41 #include "transform.h"
42 #include "stream_encoder.h"
43 #include "link_encoder.h"
44 #include "clock_source.h"
45 #include "abm.h"
46 #include "audio.h"
47 #include "dce/dce_hwseq.h"
48
49 /* include DCE11 register header files */
50 #include "dce/dce_11_0_d.h"
51 #include "dce/dce_11_0_sh_mask.h"
52 #include "custom_float.h"
53
54 struct dce110_hw_seq_reg_offsets {
55 uint32_t crtc;
56 };
57
58 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
59 {
60 .crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
61 },
62 {
63 .crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
64 },
65 {
66 .crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
67 },
68 {
69 .crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
70 }
71 };
72
73 #define HW_REG_BLND(reg, id)\
74 (reg + reg_offsets[id].blnd)
75
76 #define HW_REG_CRTC(reg, id)\
77 (reg + reg_offsets[id].crtc)
78
79 #define MAX_WATERMARK 0xFFFF
80 #define SAFE_NBP_MARK 0x7FFF
81
82 /*******************************************************************************
83 * Private definitions
84 ******************************************************************************/
85 /***************************PIPE_CONTROL***********************************/
86 static void dce110_init_pte(struct dc_context *ctx)
87 {
88 uint32_t addr;
89 uint32_t value = 0;
90 uint32_t chunk_int = 0;
91 uint32_t chunk_mul = 0;
92
93 addr = mmUNP_DVMM_PTE_CONTROL;
94 value = dm_read_reg(ctx, addr);
95
96 set_reg_field_value(
97 value,
98 0,
99 DVMM_PTE_CONTROL,
100 DVMM_USE_SINGLE_PTE);
101
102 set_reg_field_value(
103 value,
104 1,
105 DVMM_PTE_CONTROL,
106 DVMM_PTE_BUFFER_MODE0);
107
108 set_reg_field_value(
109 value,
110 1,
111 DVMM_PTE_CONTROL,
112 DVMM_PTE_BUFFER_MODE1);
113
114 dm_write_reg(ctx, addr, value);
115
116 addr = mmDVMM_PTE_REQ;
117 value = dm_read_reg(ctx, addr);
118
119 chunk_int = get_reg_field_value(
120 value,
121 DVMM_PTE_REQ,
122 HFLIP_PTEREQ_PER_CHUNK_INT);
123
124 chunk_mul = get_reg_field_value(
125 value,
126 DVMM_PTE_REQ,
127 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
128
129 if (chunk_int != 0x4 || chunk_mul != 0x4) {
130
131 set_reg_field_value(
132 value,
133 255,
134 DVMM_PTE_REQ,
135 MAX_PTEREQ_TO_ISSUE);
136
137 set_reg_field_value(
138 value,
139 4,
140 DVMM_PTE_REQ,
141 HFLIP_PTEREQ_PER_CHUNK_INT);
142
143 set_reg_field_value(
144 value,
145 4,
146 DVMM_PTE_REQ,
147 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
148
149 dm_write_reg(ctx, addr, value);
150 }
151 }
152 /**************************************************************************/
153
154 static void enable_display_pipe_clock_gating(
155 struct dc_context *ctx,
156 bool clock_gating)
157 {
158 /*TODO*/
159 }
160
161 static bool dce110_enable_display_power_gating(
162 struct core_dc *dc,
163 uint8_t controller_id,
164 struct dc_bios *dcb,
165 enum pipe_gating_control power_gating)
166 {
167 enum bp_result bp_result = BP_RESULT_OK;
168 enum bp_pipe_control_action cntl;
169 struct dc_context *ctx = dc->ctx;
170 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
171
172 if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
173 return true;
174
175 if (power_gating == PIPE_GATING_CONTROL_INIT)
176 cntl = ASIC_PIPE_INIT;
177 else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
178 cntl = ASIC_PIPE_ENABLE;
179 else
180 cntl = ASIC_PIPE_DISABLE;
181
182 if (controller_id == underlay_idx)
183 controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
184
185 if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
186
187 bp_result = dcb->funcs->enable_disp_power_gating(
188 dcb, controller_id + 1, cntl);
189
190 /* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
191 * by default when command table is called
192 *
193 * Bios parser accepts controller_id = 6 as indicative of
194 * underlay pipe in dce110. But we do not support more
195 * than 3.
196 */
197 if (controller_id < CONTROLLER_ID_MAX - 1)
198 dm_write_reg(ctx,
199 HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
200 0);
201 }
202
203 if (power_gating != PIPE_GATING_CONTROL_ENABLE)
204 dce110_init_pte(ctx);
205
206 if (bp_result == BP_RESULT_OK)
207 return true;
208 else
209 return false;
210 }
211
212 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
213 const struct core_surface *surface)
214 {
215 prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
216
217 switch (surface->public.format) {
218 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
219 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
220 prescale_params->scale = 0x2020;
221 break;
222 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
223 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
224 prescale_params->scale = 0x2008;
225 break;
226 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
227 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
228 prescale_params->scale = 0x2000;
229 break;
230 default:
231 ASSERT(false);
232 break;
233 }
234 }
235
236
237 /* Only use LUT for 8 bit formats */
238 static bool use_lut(const struct core_surface *surface)
239 {
240 switch (surface->public.format) {
241 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
242 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
243 return true;
244 default:
245 return false;
246 }
247 }
248
249 static bool dce110_set_input_transfer_func(
250 struct pipe_ctx *pipe_ctx,
251 const struct core_surface *surface)
252 {
253 struct input_pixel_processor *ipp = pipe_ctx->ipp;
254 const struct core_transfer_func *tf = NULL;
255 struct ipp_prescale_params prescale_params = { 0 };
256 bool result = true;
257
258 if (ipp == NULL)
259 return false;
260
261 if (surface->public.in_transfer_func)
262 tf = DC_TRANSFER_FUNC_TO_CORE(surface->public.in_transfer_func);
263
264 build_prescale_params(&prescale_params, surface);
265 ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
266
267 if (surface->public.gamma_correction && use_lut(surface))
268 ipp->funcs->ipp_program_input_lut(ipp, surface->public.gamma_correction);
269
270 if (tf == NULL) {
271 /* Default case if no input transfer function specified */
272 ipp->funcs->ipp_set_degamma(ipp,
273 IPP_DEGAMMA_MODE_HW_sRGB);
274 } else if (tf->public.type == TF_TYPE_PREDEFINED) {
275 switch (tf->public.tf) {
276 case TRANSFER_FUNCTION_SRGB:
277 ipp->funcs->ipp_set_degamma(ipp,
278 IPP_DEGAMMA_MODE_HW_sRGB);
279 break;
280 case TRANSFER_FUNCTION_BT709:
281 ipp->funcs->ipp_set_degamma(ipp,
282 IPP_DEGAMMA_MODE_HW_xvYCC);
283 break;
284 case TRANSFER_FUNCTION_LINEAR:
285 ipp->funcs->ipp_set_degamma(ipp,
286 IPP_DEGAMMA_MODE_BYPASS);
287 break;
288 case TRANSFER_FUNCTION_PQ:
289 result = false;
290 break;
291 default:
292 result = false;
293 break;
294 }
295 } else if (tf->public.type == TF_TYPE_BYPASS) {
296 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
297 } else {
298 /*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
299 result = false;
300 }
301
302 return result;
303 }
304
305 static bool convert_to_custom_float(
306 struct pwl_result_data *rgb_resulted,
307 struct curve_points *arr_points,
308 uint32_t hw_points_num)
309 {
310 struct custom_float_format fmt;
311
312 struct pwl_result_data *rgb = rgb_resulted;
313
314 uint32_t i = 0;
315
316 fmt.exponenta_bits = 6;
317 fmt.mantissa_bits = 12;
318 fmt.sign = true;
319
320 if (!convert_to_custom_float_format(
321 arr_points[0].x,
322 &fmt,
323 &arr_points[0].custom_float_x)) {
324 BREAK_TO_DEBUGGER();
325 return false;
326 }
327
328 if (!convert_to_custom_float_format(
329 arr_points[0].offset,
330 &fmt,
331 &arr_points[0].custom_float_offset)) {
332 BREAK_TO_DEBUGGER();
333 return false;
334 }
335
336 if (!convert_to_custom_float_format(
337 arr_points[0].slope,
338 &fmt,
339 &arr_points[0].custom_float_slope)) {
340 BREAK_TO_DEBUGGER();
341 return false;
342 }
343
344 fmt.mantissa_bits = 10;
345 fmt.sign = false;
346
347 if (!convert_to_custom_float_format(
348 arr_points[1].x,
349 &fmt,
350 &arr_points[1].custom_float_x)) {
351 BREAK_TO_DEBUGGER();
352 return false;
353 }
354
355 if (!convert_to_custom_float_format(
356 arr_points[1].y,
357 &fmt,
358 &arr_points[1].custom_float_y)) {
359 BREAK_TO_DEBUGGER();
360 return false;
361 }
362
363 if (!convert_to_custom_float_format(
364 arr_points[2].slope,
365 &fmt,
366 &arr_points[2].custom_float_slope)) {
367 BREAK_TO_DEBUGGER();
368 return false;
369 }
370
371 fmt.mantissa_bits = 12;
372 fmt.sign = true;
373
374 while (i != hw_points_num) {
375 if (!convert_to_custom_float_format(
376 rgb->red,
377 &fmt,
378 &rgb->red_reg)) {
379 BREAK_TO_DEBUGGER();
380 return false;
381 }
382
383 if (!convert_to_custom_float_format(
384 rgb->green,
385 &fmt,
386 &rgb->green_reg)) {
387 BREAK_TO_DEBUGGER();
388 return false;
389 }
390
391 if (!convert_to_custom_float_format(
392 rgb->blue,
393 &fmt,
394 &rgb->blue_reg)) {
395 BREAK_TO_DEBUGGER();
396 return false;
397 }
398
399 if (!convert_to_custom_float_format(
400 rgb->delta_red,
401 &fmt,
402 &rgb->delta_red_reg)) {
403 BREAK_TO_DEBUGGER();
404 return false;
405 }
406
407 if (!convert_to_custom_float_format(
408 rgb->delta_green,
409 &fmt,
410 &rgb->delta_green_reg)) {
411 BREAK_TO_DEBUGGER();
412 return false;
413 }
414
415 if (!convert_to_custom_float_format(
416 rgb->delta_blue,
417 &fmt,
418 &rgb->delta_blue_reg)) {
419 BREAK_TO_DEBUGGER();
420 return false;
421 }
422
423 ++rgb;
424 ++i;
425 }
426
427 return true;
428 }
429
430 static bool dce110_translate_regamma_to_hw_format(const struct dc_transfer_func
431 *output_tf, struct pwl_params *regamma_params)
432 {
433 struct curve_points *arr_points;
434 struct pwl_result_data *rgb_resulted;
435 struct pwl_result_data *rgb;
436 struct pwl_result_data *rgb_plus_1;
437 struct fixed31_32 y_r;
438 struct fixed31_32 y_g;
439 struct fixed31_32 y_b;
440 struct fixed31_32 y1_min;
441 struct fixed31_32 y3_max;
442
443 int32_t segment_start, segment_end;
444 uint32_t i, j, k, seg_distr[16], increment, start_index, hw_points;
445
446 if (output_tf == NULL || regamma_params == NULL ||
447 output_tf->type == TF_TYPE_BYPASS)
448 return false;
449
450 arr_points = regamma_params->arr_points;
451 rgb_resulted = regamma_params->rgb_resulted;
452 hw_points = 0;
453
454 memset(regamma_params, 0, sizeof(struct pwl_params));
455
456 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
457 /* 16 segments
458 * segments are from 2^-11 to 2^5
459 */
460 segment_start = -11;
461 segment_end = 5;
462
463 seg_distr[0] = 2;
464 seg_distr[1] = 2;
465 seg_distr[2] = 2;
466 seg_distr[3] = 2;
467 seg_distr[4] = 2;
468 seg_distr[5] = 2;
469 seg_distr[6] = 3;
470 seg_distr[7] = 4;
471 seg_distr[8] = 4;
472 seg_distr[9] = 4;
473 seg_distr[10] = 4;
474 seg_distr[11] = 5;
475 seg_distr[12] = 5;
476 seg_distr[13] = 5;
477 seg_distr[14] = 5;
478 seg_distr[15] = 5;
479
480 } else {
481 /* 10 segments
482 * segment is from 2^-10 to 2^0
483 */
484 segment_start = -10;
485 segment_end = 0;
486
487 seg_distr[0] = 3;
488 seg_distr[1] = 4;
489 seg_distr[2] = 4;
490 seg_distr[3] = 4;
491 seg_distr[4] = 4;
492 seg_distr[5] = 4;
493 seg_distr[6] = 4;
494 seg_distr[7] = 4;
495 seg_distr[8] = 5;
496 seg_distr[9] = 5;
497 seg_distr[10] = -1;
498 seg_distr[11] = -1;
499 seg_distr[12] = -1;
500 seg_distr[13] = -1;
501 seg_distr[14] = -1;
502 seg_distr[15] = -1;
503 }
504
505 for (k = 0; k < 16; k++) {
506 if (seg_distr[k] != -1)
507 hw_points += (1 << seg_distr[k]);
508 }
509
510 j = 0;
511 for (k = 0; k < (segment_end - segment_start); k++) {
512 increment = 32 / (1 << seg_distr[k]);
513 start_index = (segment_start + k + 25) * 32;
514 for (i = start_index; i < start_index + 32; i += increment) {
515 if (j == hw_points - 1)
516 break;
517 rgb_resulted[j].red = output_tf->tf_pts.red[i];
518 rgb_resulted[j].green = output_tf->tf_pts.green[i];
519 rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
520 j++;
521 }
522 }
523
524 /* last point */
525 start_index = (segment_end + 25) * 32;
526 rgb_resulted[hw_points - 1].red =
527 output_tf->tf_pts.red[start_index];
528 rgb_resulted[hw_points - 1].green =
529 output_tf->tf_pts.green[start_index];
530 rgb_resulted[hw_points - 1].blue =
531 output_tf->tf_pts.blue[start_index];
532
533 arr_points[0].x = dal_fixed31_32_pow(dal_fixed31_32_from_int(2),
534 dal_fixed31_32_from_int(segment_start));
535 arr_points[1].x = dal_fixed31_32_pow(dal_fixed31_32_from_int(2),
536 dal_fixed31_32_from_int(segment_end));
537 arr_points[2].x = dal_fixed31_32_pow(dal_fixed31_32_from_int(2),
538 dal_fixed31_32_from_int(segment_end));
539
540 y_r = rgb_resulted[0].red;
541 y_g = rgb_resulted[0].green;
542 y_b = rgb_resulted[0].blue;
543
544 y1_min = dal_fixed31_32_min(y_r, dal_fixed31_32_min(y_g, y_b));
545
546 arr_points[0].y = y1_min;
547 arr_points[0].slope = dal_fixed31_32_div(
548 arr_points[0].y,
549 arr_points[0].x);
550
551 y_r = rgb_resulted[hw_points - 1].red;
552 y_g = rgb_resulted[hw_points - 1].green;
553 y_b = rgb_resulted[hw_points - 1].blue;
554
555 /* see comment above, m_arrPoints[1].y should be the Y value for the
556 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
557 */
558 y3_max = dal_fixed31_32_max(y_r, dal_fixed31_32_max(y_g, y_b));
559
560 arr_points[1].y = y3_max;
561 arr_points[2].y = y3_max;
562
563 arr_points[1].slope = dal_fixed31_32_zero;
564 arr_points[2].slope = dal_fixed31_32_zero;
565
566 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
567 /* for PQ, we want to have a straight line from last HW X point,
568 * and the slope to be such that we hit 1.0 at 10000 nits.
569 */
570 const struct fixed31_32 end_value =
571 dal_fixed31_32_from_int(125);
572
573 arr_points[1].slope = dal_fixed31_32_div(
574 dal_fixed31_32_sub(dal_fixed31_32_one, arr_points[1].y),
575 dal_fixed31_32_sub(end_value, arr_points[1].x));
576 arr_points[2].slope = dal_fixed31_32_div(
577 dal_fixed31_32_sub(dal_fixed31_32_one, arr_points[1].y),
578 dal_fixed31_32_sub(end_value, arr_points[1].x));
579 }
580
581 regamma_params->hw_points_num = hw_points;
582
583 i = 1;
584 for (k = 0; k < 16 && i < 16; k++) {
585 if (seg_distr[k] != -1) {
586 regamma_params->arr_curve_points[k].segments_num =
587 seg_distr[k];
588 regamma_params->arr_curve_points[i].offset =
589 regamma_params->arr_curve_points[k].
590 offset + (1 << seg_distr[k]);
591 }
592 i++;
593 }
594
595 if (seg_distr[k] != -1)
596 regamma_params->arr_curve_points[k].segments_num =
597 seg_distr[k];
598
599 rgb = rgb_resulted;
600 rgb_plus_1 = rgb_resulted + 1;
601
602 i = 1;
603
604 while (i != hw_points + 1) {
605 if (dal_fixed31_32_lt(rgb_plus_1->red, rgb->red))
606 rgb_plus_1->red = rgb->red;
607 if (dal_fixed31_32_lt(rgb_plus_1->green, rgb->green))
608 rgb_plus_1->green = rgb->green;
609 if (dal_fixed31_32_lt(rgb_plus_1->blue, rgb->blue))
610 rgb_plus_1->blue = rgb->blue;
611
612 rgb->delta_red = dal_fixed31_32_sub(
613 rgb_plus_1->red,
614 rgb->red);
615 rgb->delta_green = dal_fixed31_32_sub(
616 rgb_plus_1->green,
617 rgb->green);
618 rgb->delta_blue = dal_fixed31_32_sub(
619 rgb_plus_1->blue,
620 rgb->blue);
621
622 ++rgb_plus_1;
623 ++rgb;
624 ++i;
625 }
626
627 convert_to_custom_float(rgb_resulted, arr_points, hw_points);
628
629 return true;
630 }
631
632 static bool dce110_set_output_transfer_func(
633 struct pipe_ctx *pipe_ctx,
634 const struct core_surface *surface, /* Surface - To be removed */
635 const struct core_stream *stream)
636 {
637 struct output_pixel_processor *opp = pipe_ctx->opp;
638
639 opp->funcs->opp_power_on_regamma_lut(opp, true);
640 opp->regamma_params->hw_points_num = GAMMA_HW_POINTS_NUM;
641
642 if (stream->public.out_transfer_func &&
643 stream->public.out_transfer_func->type ==
644 TF_TYPE_PREDEFINED &&
645 stream->public.out_transfer_func->tf ==
646 TRANSFER_FUNCTION_SRGB) {
647 opp->funcs->opp_set_regamma_mode(opp, OPP_REGAMMA_SRGB);
648 } else if (dce110_translate_regamma_to_hw_format(
649 stream->public.out_transfer_func, opp->regamma_params)) {
650 opp->funcs->opp_program_regamma_pwl(opp, opp->regamma_params);
651 opp->funcs->opp_set_regamma_mode(opp, OPP_REGAMMA_USER);
652 } else {
653 opp->funcs->opp_set_regamma_mode(opp, OPP_REGAMMA_BYPASS);
654 }
655
656 opp->funcs->opp_power_on_regamma_lut(opp, false);
657
658 return true;
659 }
660
661 static enum dc_status bios_parser_crtc_source_select(
662 struct pipe_ctx *pipe_ctx)
663 {
664 struct dc_bios *dcb;
665 /* call VBIOS table to set CRTC source for the HW
666 * encoder block
667 * note: video bios clears all FMT setting here. */
668 struct bp_crtc_source_select crtc_source_select = {0};
669 const struct core_sink *sink = pipe_ctx->stream->sink;
670
671 crtc_source_select.engine_id = pipe_ctx->stream_enc->id;
672 crtc_source_select.controller_id = pipe_ctx->pipe_idx + 1;
673 /*TODO: Need to un-hardcode color depth, dp_audio and account for
674 * the case where signal and sink signal is different (translator
675 * encoder)*/
676 crtc_source_select.signal = pipe_ctx->stream->signal;
677 crtc_source_select.enable_dp_audio = false;
678 crtc_source_select.sink_signal = pipe_ctx->stream->signal;
679 crtc_source_select.display_output_bit_depth = PANEL_8BIT_COLOR;
680
681 dcb = sink->ctx->dc_bios;
682
683 if (BP_RESULT_OK != dcb->funcs->crtc_source_select(
684 dcb,
685 &crtc_source_select)) {
686 return DC_ERROR_UNEXPECTED;
687 }
688
689 return DC_OK;
690 }
691
692 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
693 {
694 ASSERT(pipe_ctx->stream);
695
696 if (pipe_ctx->stream_enc == NULL)
697 return; /* this is not root pipe */
698
699 if (dc_is_hdmi_signal(pipe_ctx->stream->signal))
700 pipe_ctx->stream_enc->funcs->update_hdmi_info_packets(
701 pipe_ctx->stream_enc,
702 &pipe_ctx->encoder_info_frame);
703 else if (dc_is_dp_signal(pipe_ctx->stream->signal))
704 pipe_ctx->stream_enc->funcs->update_dp_info_packets(
705 pipe_ctx->stream_enc,
706 &pipe_ctx->encoder_info_frame);
707 }
708
709 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
710 {
711 enum dc_lane_count lane_count =
712 pipe_ctx->stream->sink->link->public.cur_link_settings.lane_count;
713
714 struct dc_crtc_timing *timing = &pipe_ctx->stream->public.timing;
715 struct core_link *link = pipe_ctx->stream->sink->link;
716
717 /* 1. update AVI info frame (HDMI, DP)
718 * we always need to update info frame
719 */
720 uint32_t active_total_with_borders;
721 uint32_t early_control = 0;
722 struct timing_generator *tg = pipe_ctx->tg;
723
724 /* TODOFPGA may change to hwss.update_info_frame */
725 dce110_update_info_frame(pipe_ctx);
726 /* enable early control to avoid corruption on DP monitor*/
727 active_total_with_borders =
728 timing->h_addressable
729 + timing->h_border_left
730 + timing->h_border_right;
731
732 if (lane_count != 0)
733 early_control = active_total_with_borders % lane_count;
734
735 if (early_control == 0)
736 early_control = lane_count;
737
738 tg->funcs->set_early_control(tg, early_control);
739
740 /* enable audio only within mode set */
741 if (pipe_ctx->audio != NULL) {
742 if (dc_is_dp_signal(pipe_ctx->stream->signal))
743 pipe_ctx->stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_enc);
744 }
745
746 /* For MST, there are multiply stream go to only one link.
747 * connect DIG back_end to front_end while enable_stream and
748 * disconnect them during disable_stream
749 * BY this, it is logic clean to separate stream and link */
750 link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc,
751 pipe_ctx->stream_enc->id, true);
752
753 }
754
755 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
756 {
757 struct core_stream *stream = pipe_ctx->stream;
758 struct core_link *link = stream->sink->link;
759
760 if (pipe_ctx->audio) {
761 pipe_ctx->audio->funcs->az_disable(pipe_ctx->audio);
762
763 if (dc_is_dp_signal(pipe_ctx->stream->signal))
764 pipe_ctx->stream_enc->funcs->dp_audio_disable(
765 pipe_ctx->stream_enc);
766 else
767 pipe_ctx->stream_enc->funcs->hdmi_audio_disable(
768 pipe_ctx->stream_enc);
769
770 pipe_ctx->audio = NULL;
771
772 /* TODO: notify audio driver for if audio modes list changed
773 * add audio mode list change flag */
774 /* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
775 * stream->stream_engine_id);
776 */
777 }
778
779 if (dc_is_hdmi_signal(pipe_ctx->stream->signal))
780 pipe_ctx->stream_enc->funcs->stop_hdmi_info_packets(
781 pipe_ctx->stream_enc);
782
783 if (dc_is_dp_signal(pipe_ctx->stream->signal))
784 pipe_ctx->stream_enc->funcs->stop_dp_info_packets(
785 pipe_ctx->stream_enc);
786
787 pipe_ctx->stream_enc->funcs->audio_mute_control(
788 pipe_ctx->stream_enc, true);
789
790
791 /* blank at encoder level */
792 if (dc_is_dp_signal(pipe_ctx->stream->signal))
793 pipe_ctx->stream_enc->funcs->dp_blank(pipe_ctx->stream_enc);
794
795 link->link_enc->funcs->connect_dig_be_to_fe(
796 link->link_enc,
797 pipe_ctx->stream_enc->id,
798 false);
799
800 }
801
802 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
803 struct dc_link_settings *link_settings)
804 {
805 struct encoder_unblank_param params = { { 0 } };
806
807 /* only 3 items below are used by unblank */
808 params.pixel_clk_khz =
809 pipe_ctx->stream->public.timing.pix_clk_khz;
810 params.link_settings.link_rate = link_settings->link_rate;
811 pipe_ctx->stream_enc->funcs->dp_unblank(pipe_ctx->stream_enc, &params);
812 }
813
814 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
815 {
816 switch (crtc_id) {
817 case CONTROLLER_ID_D0:
818 return DTO_SOURCE_ID0;
819 case CONTROLLER_ID_D1:
820 return DTO_SOURCE_ID1;
821 case CONTROLLER_ID_D2:
822 return DTO_SOURCE_ID2;
823 case CONTROLLER_ID_D3:
824 return DTO_SOURCE_ID3;
825 case CONTROLLER_ID_D4:
826 return DTO_SOURCE_ID4;
827 case CONTROLLER_ID_D5:
828 return DTO_SOURCE_ID5;
829 default:
830 return DTO_SOURCE_UNKNOWN;
831 }
832 }
833
834 static void build_audio_output(
835 const struct pipe_ctx *pipe_ctx,
836 struct audio_output *audio_output)
837 {
838 const struct core_stream *stream = pipe_ctx->stream;
839 audio_output->engine_id = pipe_ctx->stream_enc->id;
840
841 audio_output->signal = pipe_ctx->stream->signal;
842
843 /* audio_crtc_info */
844
845 audio_output->crtc_info.h_total =
846 stream->public.timing.h_total;
847
848 /*
849 * Audio packets are sent during actual CRTC blank physical signal, we
850 * need to specify actual active signal portion
851 */
852 audio_output->crtc_info.h_active =
853 stream->public.timing.h_addressable
854 + stream->public.timing.h_border_left
855 + stream->public.timing.h_border_right;
856
857 audio_output->crtc_info.v_active =
858 stream->public.timing.v_addressable
859 + stream->public.timing.v_border_top
860 + stream->public.timing.v_border_bottom;
861
862 audio_output->crtc_info.pixel_repetition = 1;
863
864 audio_output->crtc_info.interlaced =
865 stream->public.timing.flags.INTERLACE;
866
867 audio_output->crtc_info.refresh_rate =
868 (stream->public.timing.pix_clk_khz*1000)/
869 (stream->public.timing.h_total*stream->public.timing.v_total);
870
871 audio_output->crtc_info.color_depth =
872 stream->public.timing.display_color_depth;
873
874 audio_output->crtc_info.requested_pixel_clock =
875 pipe_ctx->pix_clk_params.requested_pix_clk;
876
877 audio_output->crtc_info.calculated_pixel_clock =
878 pipe_ctx->pix_clk_params.requested_pix_clk;
879
880 /*for HDMI, audio ACR is with deep color ratio factor*/
881 if (dc_is_hdmi_signal(pipe_ctx->stream->signal) &&
882 audio_output->crtc_info.requested_pixel_clock ==
883 stream->public.timing.pix_clk_khz) {
884 if (pipe_ctx->pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
885 audio_output->crtc_info.requested_pixel_clock =
886 audio_output->crtc_info.requested_pixel_clock/2;
887 audio_output->crtc_info.calculated_pixel_clock =
888 pipe_ctx->pix_clk_params.requested_pix_clk/2;
889
890 }
891 }
892
893 if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
894 pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
895 audio_output->pll_info.dp_dto_source_clock_in_khz =
896 pipe_ctx->dis_clk->funcs->get_dp_ref_clk_frequency(
897 pipe_ctx->dis_clk);
898 }
899
900 audio_output->pll_info.feed_back_divider =
901 pipe_ctx->pll_settings.feedback_divider;
902
903 audio_output->pll_info.dto_source =
904 translate_to_dto_source(
905 pipe_ctx->pipe_idx + 1);
906
907 /* TODO hard code to enable for now. Need get from stream */
908 audio_output->pll_info.ss_enabled = true;
909
910 audio_output->pll_info.ss_percentage =
911 pipe_ctx->pll_settings.ss_percentage;
912 }
913
914 static void get_surface_visual_confirm_color(const struct pipe_ctx *pipe_ctx,
915 struct tg_color *color)
916 {
917 uint32_t color_value = MAX_TG_COLOR_VALUE * (4 - pipe_ctx->pipe_idx) / 4;
918
919 switch (pipe_ctx->scl_data.format) {
920 case PIXEL_FORMAT_ARGB8888:
921 /* set boarder color to red */
922 color->color_r_cr = color_value;
923 break;
924
925 case PIXEL_FORMAT_ARGB2101010:
926 /* set boarder color to blue */
927 color->color_b_cb = color_value;
928 break;
929 case PIXEL_FORMAT_420BPP12:
930 case PIXEL_FORMAT_420BPP15:
931 /* set boarder color to green */
932 color->color_g_y = color_value;
933 break;
934 case PIXEL_FORMAT_FP16:
935 /* set boarder color to white */
936 color->color_r_cr = color_value;
937 color->color_b_cb = color_value;
938 color->color_g_y = color_value;
939 break;
940 default:
941 break;
942 }
943 }
944
945 static void program_scaler(const struct core_dc *dc,
946 const struct pipe_ctx *pipe_ctx)
947 {
948 struct tg_color color = {0};
949
950 if (dc->public.debug.surface_visual_confirm)
951 get_surface_visual_confirm_color(pipe_ctx, &color);
952 else
953 color_space_to_black_color(dc,
954 pipe_ctx->stream->public.output_color_space,
955 &color);
956
957 pipe_ctx->xfm->funcs->transform_set_pixel_storage_depth(
958 pipe_ctx->xfm,
959 pipe_ctx->scl_data.lb_params.depth,
960 &pipe_ctx->stream->bit_depth_params);
961
962 if (pipe_ctx->tg->funcs->set_overscan_blank_color)
963 pipe_ctx->tg->funcs->set_overscan_blank_color(
964 pipe_ctx->tg,
965 &color);
966
967 pipe_ctx->xfm->funcs->transform_set_scaler(pipe_ctx->xfm,
968 &pipe_ctx->scl_data);
969 }
970
971 static enum dc_status dce110_prog_pixclk_crtc_otg(
972 struct pipe_ctx *pipe_ctx,
973 struct validate_context *context,
974 struct core_dc *dc)
975 {
976 struct core_stream *stream = pipe_ctx->stream;
977 struct pipe_ctx *pipe_ctx_old = &dc->current_context->res_ctx.
978 pipe_ctx[pipe_ctx->pipe_idx];
979 struct tg_color black_color = {0};
980
981 if (!pipe_ctx_old->stream) {
982
983 /* program blank color */
984 color_space_to_black_color(dc,
985 stream->public.output_color_space, &black_color);
986 pipe_ctx->tg->funcs->set_blank_color(
987 pipe_ctx->tg,
988 &black_color);
989
990 /*
991 * Must blank CRTC after disabling power gating and before any
992 * programming, otherwise CRTC will be hung in bad state
993 */
994 pipe_ctx->tg->funcs->set_blank(pipe_ctx->tg, true);
995
996 if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
997 pipe_ctx->clock_source,
998 &pipe_ctx->pix_clk_params,
999 &pipe_ctx->pll_settings)) {
1000 BREAK_TO_DEBUGGER();
1001 return DC_ERROR_UNEXPECTED;
1002 }
1003
1004 pipe_ctx->tg->funcs->program_timing(
1005 pipe_ctx->tg,
1006 &stream->public.timing,
1007 true);
1008 }
1009
1010 if (!pipe_ctx_old->stream) {
1011 if (false == pipe_ctx->tg->funcs->enable_crtc(
1012 pipe_ctx->tg)) {
1013 BREAK_TO_DEBUGGER();
1014 return DC_ERROR_UNEXPECTED;
1015 }
1016 }
1017
1018 return DC_OK;
1019 }
1020
1021 static enum dc_status apply_single_controller_ctx_to_hw(
1022 struct pipe_ctx *pipe_ctx,
1023 struct validate_context *context,
1024 struct core_dc *dc)
1025 {
1026 struct core_stream *stream = pipe_ctx->stream;
1027 struct pipe_ctx *pipe_ctx_old = &dc->current_context->res_ctx.
1028 pipe_ctx[pipe_ctx->pipe_idx];
1029
1030 /* */
1031 dc->hwss.prog_pixclk_crtc_otg(pipe_ctx, context, dc);
1032
1033 pipe_ctx->opp->funcs->opp_set_dyn_expansion(
1034 pipe_ctx->opp,
1035 COLOR_SPACE_YCBCR601,
1036 stream->public.timing.display_color_depth,
1037 pipe_ctx->stream->signal);
1038
1039 /* FPGA does not program backend */
1040 if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
1041 pipe_ctx->opp->funcs->opp_program_fmt(
1042 pipe_ctx->opp,
1043 &stream->bit_depth_params,
1044 &stream->clamping);
1045 return DC_OK;
1046 }
1047 /* TODO: move to stream encoder */
1048 if (pipe_ctx->stream->signal != SIGNAL_TYPE_VIRTUAL)
1049 if (DC_OK != bios_parser_crtc_source_select(pipe_ctx)) {
1050 BREAK_TO_DEBUGGER();
1051 return DC_ERROR_UNEXPECTED;
1052 }
1053
1054 if (pipe_ctx->stream->signal != SIGNAL_TYPE_VIRTUAL)
1055 stream->sink->link->link_enc->funcs->setup(
1056 stream->sink->link->link_enc,
1057 pipe_ctx->stream->signal);
1058
1059 /*vbios crtc_source_selection and encoder_setup will override fmt_C*/
1060 pipe_ctx->opp->funcs->opp_program_fmt(
1061 pipe_ctx->opp,
1062 &stream->bit_depth_params,
1063 &stream->clamping);
1064
1065 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1066 pipe_ctx->stream_enc->funcs->dp_set_stream_attribute(
1067 pipe_ctx->stream_enc,
1068 &stream->public.timing,
1069 stream->public.output_color_space);
1070
1071 if (dc_is_hdmi_signal(pipe_ctx->stream->signal))
1072 pipe_ctx->stream_enc->funcs->hdmi_set_stream_attribute(
1073 pipe_ctx->stream_enc,
1074 &stream->public.timing,
1075 stream->phy_pix_clk,
1076 pipe_ctx->audio != NULL);
1077
1078 if (dc_is_dvi_signal(pipe_ctx->stream->signal))
1079 pipe_ctx->stream_enc->funcs->dvi_set_stream_attribute(
1080 pipe_ctx->stream_enc,
1081 &stream->public.timing,
1082 (pipe_ctx->stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK) ?
1083 true : false);
1084
1085 if (!pipe_ctx_old->stream) {
1086 core_link_enable_stream(pipe_ctx);
1087
1088 resource_build_info_frame(pipe_ctx);
1089 dce110_update_info_frame(pipe_ctx);
1090 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1091 dce110_unblank_stream(pipe_ctx,
1092 &stream->sink->link->public.cur_link_settings);
1093 }
1094
1095 pipe_ctx->scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
1096 /* program_scaler and allocate_mem_input are not new asic */
1097 if (!pipe_ctx_old || memcmp(&pipe_ctx_old->scl_data,
1098 &pipe_ctx->scl_data,
1099 sizeof(struct scaler_data)) != 0)
1100 program_scaler(dc, pipe_ctx);
1101
1102 /* mst support - use total stream count */
1103 pipe_ctx->mi->funcs->allocate_mem_input(
1104 pipe_ctx->mi,
1105 stream->public.timing.h_total,
1106 stream->public.timing.v_total,
1107 stream->public.timing.pix_clk_khz,
1108 context->stream_count);
1109
1110 return DC_OK;
1111 }
1112
1113 /******************************************************************************/
1114
1115 static void power_down_encoders(struct core_dc *dc)
1116 {
1117 int i;
1118
1119 for (i = 0; i < dc->link_count; i++) {
1120 dc->links[i]->link_enc->funcs->disable_output(
1121 dc->links[i]->link_enc, SIGNAL_TYPE_NONE);
1122 }
1123 }
1124
1125 static void power_down_controllers(struct core_dc *dc)
1126 {
1127 int i;
1128
1129 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1130 dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1131 dc->res_pool->timing_generators[i]);
1132 }
1133 }
1134
1135 static void power_down_clock_sources(struct core_dc *dc)
1136 {
1137 int i;
1138
1139 if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1140 dc->res_pool->dp_clock_source) == false)
1141 dm_error("Failed to power down pll! (dp clk src)\n");
1142
1143 for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1144 if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1145 dc->res_pool->clock_sources[i]) == false)
1146 dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1147 }
1148 }
1149
1150 static void power_down_all_hw_blocks(struct core_dc *dc)
1151 {
1152 power_down_encoders(dc);
1153
1154 power_down_controllers(dc);
1155
1156 power_down_clock_sources(dc);
1157 }
1158
1159 static void disable_vga_and_power_gate_all_controllers(
1160 struct core_dc *dc)
1161 {
1162 int i;
1163 struct timing_generator *tg;
1164 struct dc_context *ctx = dc->ctx;
1165
1166 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1167 tg = dc->res_pool->timing_generators[i];
1168
1169 tg->funcs->disable_vga(tg);
1170
1171 /* Enable CLOCK gating for each pipe BEFORE controller
1172 * powergating. */
1173 enable_display_pipe_clock_gating(ctx,
1174 true);
1175
1176 dc->hwss.power_down_front_end(
1177 dc, &dc->current_context->res_ctx.pipe_ctx[i]);
1178 }
1179 }
1180
1181 /**
1182 * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1183 * 1. Power down all DC HW blocks
1184 * 2. Disable VGA engine on all controllers
1185 * 3. Enable power gating for controller
1186 * 4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1187 */
1188 void dce110_enable_accelerated_mode(struct core_dc *dc)
1189 {
1190 power_down_all_hw_blocks(dc);
1191
1192 disable_vga_and_power_gate_all_controllers(dc);
1193 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios);
1194 }
1195
1196 static uint32_t compute_pstate_blackout_duration(
1197 struct bw_fixed blackout_duration,
1198 const struct core_stream *stream)
1199 {
1200 uint32_t total_dest_line_time_ns;
1201 uint32_t pstate_blackout_duration_ns;
1202
1203 pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1204
1205 total_dest_line_time_ns = 1000000UL *
1206 stream->public.timing.h_total /
1207 stream->public.timing.pix_clk_khz +
1208 pstate_blackout_duration_ns;
1209
1210 return total_dest_line_time_ns;
1211 }
1212
1213 void dce110_set_displaymarks(
1214 const struct core_dc *dc,
1215 struct validate_context *context)
1216 {
1217 uint8_t i, num_pipes;
1218 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1219
1220 for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1221 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1222 uint32_t total_dest_line_time_ns;
1223
1224 if (pipe_ctx->stream == NULL)
1225 continue;
1226
1227 total_dest_line_time_ns = compute_pstate_blackout_duration(
1228 dc->bw_vbios.blackout_duration, pipe_ctx->stream);
1229 pipe_ctx->mi->funcs->mem_input_program_display_marks(
1230 pipe_ctx->mi,
1231 context->bw_results.nbp_state_change_wm_ns[num_pipes],
1232 context->bw_results.stutter_exit_wm_ns[num_pipes],
1233 context->bw_results.urgent_wm_ns[num_pipes],
1234 total_dest_line_time_ns);
1235 if (i == underlay_idx) {
1236 num_pipes++;
1237 pipe_ctx->mi->funcs->mem_input_program_chroma_display_marks(
1238 pipe_ctx->mi,
1239 context->bw_results.nbp_state_change_wm_ns[num_pipes],
1240 context->bw_results.stutter_exit_wm_ns[num_pipes],
1241 context->bw_results.urgent_wm_ns[num_pipes],
1242 total_dest_line_time_ns);
1243 }
1244 num_pipes++;
1245 }
1246 }
1247
1248 static void set_safe_displaymarks(struct resource_context *res_ctx)
1249 {
1250 int i;
1251 int underlay_idx = res_ctx->pool->underlay_pipe_index;
1252 struct bw_watermarks max_marks = {
1253 MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1254 struct bw_watermarks nbp_marks = {
1255 SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1256
1257 for (i = 0; i < MAX_PIPES; i++) {
1258 if (res_ctx->pipe_ctx[i].stream == NULL)
1259 continue;
1260
1261 res_ctx->pipe_ctx[i].mi->funcs->mem_input_program_display_marks(
1262 res_ctx->pipe_ctx[i].mi,
1263 nbp_marks,
1264 max_marks,
1265 max_marks,
1266 MAX_WATERMARK);
1267 if (i == underlay_idx)
1268 res_ctx->pipe_ctx[i].mi->funcs->mem_input_program_chroma_display_marks(
1269 res_ctx->pipe_ctx[i].mi,
1270 nbp_marks,
1271 max_marks,
1272 max_marks,
1273 MAX_WATERMARK);
1274 }
1275 }
1276
1277 static void switch_dp_clock_sources(
1278 const struct core_dc *dc,
1279 struct resource_context *res_ctx)
1280 {
1281 uint8_t i;
1282 for (i = 0; i < MAX_PIPES; i++) {
1283 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1284
1285 if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
1286 continue;
1287
1288 if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1289 struct clock_source *clk_src =
1290 resource_find_used_clk_src_for_sharing(
1291 res_ctx, pipe_ctx);
1292
1293 if (clk_src &&
1294 clk_src != pipe_ctx->clock_source) {
1295 resource_unreference_clock_source(
1296 res_ctx, &pipe_ctx->clock_source);
1297 pipe_ctx->clock_source = clk_src;
1298 resource_reference_clock_source(res_ctx, clk_src);
1299
1300 dce_crtc_switch_to_clk_src(dc->hwseq, clk_src, i);
1301 }
1302 }
1303 }
1304 }
1305
1306 /*******************************************************************************
1307 * Public functions
1308 ******************************************************************************/
1309
1310 static void reset_single_pipe_hw_ctx(
1311 const struct core_dc *dc,
1312 struct pipe_ctx *pipe_ctx,
1313 struct validate_context *context)
1314 {
1315 core_link_disable_stream(pipe_ctx);
1316 pipe_ctx->tg->funcs->set_blank(pipe_ctx->tg, true);
1317 if (!hwss_wait_for_blank_complete(pipe_ctx->tg)) {
1318 dm_error("DC: failed to blank crtc!\n");
1319 BREAK_TO_DEBUGGER();
1320 }
1321 pipe_ctx->tg->funcs->disable_crtc(pipe_ctx->tg);
1322 pipe_ctx->mi->funcs->free_mem_input(
1323 pipe_ctx->mi, context->stream_count);
1324 resource_unreference_clock_source(
1325 &context->res_ctx, &pipe_ctx->clock_source);
1326
1327 dc->hwss.power_down_front_end((struct core_dc *)dc, pipe_ctx);
1328
1329 pipe_ctx->stream = NULL;
1330 }
1331
1332 static void set_drr(struct pipe_ctx **pipe_ctx,
1333 int num_pipes, int vmin, int vmax)
1334 {
1335 int i = 0;
1336 struct drr_params params = {0};
1337
1338 params.vertical_total_max = vmax;
1339 params.vertical_total_min = vmin;
1340
1341 /* TODO: If multiple pipes are to be supported, you need
1342 * some GSL stuff
1343 */
1344
1345 for (i = 0; i < num_pipes; i++) {
1346 pipe_ctx[i]->tg->funcs->set_drr(pipe_ctx[i]->tg, &params);
1347 }
1348 }
1349
1350 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1351 int num_pipes, int value)
1352 {
1353 unsigned int i;
1354
1355 for (i = 0; i < num_pipes; i++)
1356 pipe_ctx[i]->tg->funcs->
1357 set_static_screen_control(pipe_ctx[i]->tg, value);
1358 }
1359
1360 /* unit: in_khz before mode set, get pixel clock from context. ASIC register
1361 * may not be programmed yet.
1362 * TODO: after mode set, pre_mode_set = false,
1363 * may read PLL register to get pixel clock
1364 */
1365 static uint32_t get_max_pixel_clock_for_all_paths(
1366 struct core_dc *dc,
1367 struct validate_context *context,
1368 bool pre_mode_set)
1369 {
1370 uint32_t max_pix_clk = 0;
1371 int i;
1372
1373 if (!pre_mode_set) {
1374 /* TODO: read ASIC register to get pixel clock */
1375 ASSERT(0);
1376 }
1377
1378 for (i = 0; i < MAX_PIPES; i++) {
1379 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1380
1381 if (pipe_ctx->stream == NULL)
1382 continue;
1383
1384 /* do not check under lay */
1385 if (pipe_ctx->top_pipe)
1386 continue;
1387
1388 if (pipe_ctx->pix_clk_params.requested_pix_clk > max_pix_clk)
1389 max_pix_clk =
1390 pipe_ctx->pix_clk_params.requested_pix_clk;
1391 }
1392
1393 if (max_pix_clk == 0)
1394 ASSERT(0);
1395
1396 return max_pix_clk;
1397 }
1398
1399 /*
1400 * Find clock state based on clock requested. if clock value is 0, simply
1401 * set clock state as requested without finding clock state by clock value
1402 */
1403 static void apply_min_clocks(
1404 struct core_dc *dc,
1405 struct validate_context *context,
1406 enum dm_pp_clocks_state *clocks_state,
1407 bool pre_mode_set)
1408 {
1409 struct state_dependent_clocks req_clocks = {0};
1410 struct pipe_ctx *pipe_ctx;
1411 int i;
1412
1413 for (i = 0; i < MAX_PIPES; i++) {
1414 pipe_ctx = &context->res_ctx.pipe_ctx[i];
1415 if (pipe_ctx->dis_clk != NULL)
1416 break;
1417 }
1418
1419 if (!pre_mode_set) {
1420 /* set clock_state without verification */
1421 if (pipe_ctx->dis_clk->funcs->set_min_clocks_state) {
1422 pipe_ctx->dis_clk->funcs->set_min_clocks_state(
1423 pipe_ctx->dis_clk, *clocks_state);
1424 return;
1425 }
1426
1427 /* TODOFPGA */
1428 }
1429
1430 /* get the required state based on state dependent clocks:
1431 * display clock and pixel clock
1432 */
1433 req_clocks.display_clk_khz = context->dispclk_khz;
1434
1435 req_clocks.pixel_clk_khz = get_max_pixel_clock_for_all_paths(
1436 dc, context, true);
1437
1438 if (pipe_ctx->dis_clk->funcs->get_required_clocks_state) {
1439 *clocks_state = pipe_ctx->dis_clk->funcs->get_required_clocks_state(
1440 pipe_ctx->dis_clk, &req_clocks);
1441 pipe_ctx->dis_clk->funcs->set_min_clocks_state(
1442 pipe_ctx->dis_clk, *clocks_state);
1443 } else {
1444 }
1445 }
1446
1447 static enum dc_status apply_ctx_to_hw_fpga(
1448 struct core_dc *dc,
1449 struct validate_context *context)
1450 {
1451 enum dc_status status = DC_ERROR_UNEXPECTED;
1452 int i;
1453
1454 for (i = 0; i < context->res_ctx.pool->pipe_count; i++) {
1455 struct pipe_ctx *pipe_ctx_old =
1456 &dc->current_context->res_ctx.pipe_ctx[i];
1457 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1458
1459 if (pipe_ctx->stream == NULL)
1460 continue;
1461
1462 if (pipe_ctx->stream == pipe_ctx_old->stream)
1463 continue;
1464
1465 status = apply_single_controller_ctx_to_hw(
1466 pipe_ctx,
1467 context,
1468 dc);
1469
1470 if (status != DC_OK)
1471 return status;
1472 }
1473
1474 return DC_OK;
1475 }
1476
1477 static void reset_hw_ctx_wrap(
1478 struct core_dc *dc,
1479 struct validate_context *context)
1480 {
1481 int i;
1482
1483 /* Reset old context */
1484 /* look up the targets that have been removed since last commit */
1485 for (i = 0; i < context->res_ctx.pool->pipe_count; i++) {
1486 struct pipe_ctx *pipe_ctx_old =
1487 &dc->current_context->res_ctx.pipe_ctx[i];
1488 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1489
1490 /* Note: We need to disable output if clock sources change,
1491 * since bios does optimization and doesn't apply if changing
1492 * PHY when not already disabled.
1493 */
1494
1495 /* Skip underlay pipe since it will be handled in commit surface*/
1496 if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
1497 continue;
1498
1499 if (!pipe_ctx->stream ||
1500 pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
1501 reset_single_pipe_hw_ctx(
1502 dc, pipe_ctx_old, dc->current_context);
1503 }
1504 }
1505
1506
1507 enum dc_status dce110_apply_ctx_to_hw(
1508 struct core_dc *dc,
1509 struct validate_context *context)
1510 {
1511 struct dc_bios *dcb = dc->ctx->dc_bios;
1512 enum dc_status status;
1513 int i;
1514 enum dm_pp_clocks_state clocks_state = DM_PP_CLOCKS_STATE_INVALID;
1515
1516 /* Reset old context */
1517 /* look up the targets that have been removed since last commit */
1518 dc->hwss.reset_hw_ctx_wrap(dc, context);
1519
1520 /* Skip applying if no targets */
1521 if (context->stream_count <= 0)
1522 return DC_OK;
1523
1524 if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
1525 apply_ctx_to_hw_fpga(dc, context);
1526 return DC_OK;
1527 }
1528
1529 /* Apply new context */
1530 dcb->funcs->set_scratch_critical_state(dcb, true);
1531
1532 /* below is for real asic only */
1533 for (i = 0; i < context->res_ctx.pool->pipe_count; i++) {
1534 struct pipe_ctx *pipe_ctx_old =
1535 &dc->current_context->res_ctx.pipe_ctx[i];
1536 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1537
1538 if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
1539 continue;
1540
1541 if (pipe_ctx->stream == pipe_ctx_old->stream) {
1542 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
1543 dce_crtc_switch_to_clk_src(dc->hwseq,
1544 pipe_ctx->clock_source, i);
1545 continue;
1546 }
1547
1548 dc->hwss.enable_display_power_gating(
1549 dc, i, dc->ctx->dc_bios,
1550 PIPE_GATING_CONTROL_DISABLE);
1551 }
1552
1553 set_safe_displaymarks(&context->res_ctx);
1554 /*TODO: when pplib works*/
1555 apply_min_clocks(dc, context, &clocks_state, true);
1556
1557 if (context->dispclk_khz
1558 > dc->current_context->dispclk_khz)
1559 context->res_ctx.pool->display_clock->funcs->set_clock(
1560 context->res_ctx.pool->display_clock,
1561 context->dispclk_khz * 115 / 100);
1562
1563 /* program audio wall clock. use HDMI as clock source if HDMI
1564 * audio active. Otherwise, use DP as clock source
1565 * first, loop to find any HDMI audio, if not, loop find DP audio
1566 */
1567 /* Setup audio rate clock source */
1568 /* Issue:
1569 * Audio lag happened on DP monitor when unplug a HDMI monitor
1570 *
1571 * Cause:
1572 * In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
1573 * is set to either dto0 or dto1, audio should work fine.
1574 * In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
1575 * set to dto0 will cause audio lag.
1576 *
1577 * Solution:
1578 * Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
1579 * find first available pipe with audio, setup audio wall DTO per topology
1580 * instead of per pipe.
1581 */
1582 for (i = 0; i < context->res_ctx.pool->pipe_count; i++) {
1583 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1584
1585 if (pipe_ctx->stream == NULL)
1586 continue;
1587
1588 if (pipe_ctx->top_pipe)
1589 continue;
1590
1591 if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
1592 continue;
1593
1594 if (pipe_ctx->audio != NULL) {
1595 struct audio_output audio_output;
1596
1597 build_audio_output(pipe_ctx, &audio_output);
1598
1599 pipe_ctx->audio->funcs->wall_dto_setup(
1600 pipe_ctx->audio,
1601 pipe_ctx->stream->signal,
1602 &audio_output.crtc_info,
1603 &audio_output.pll_info);
1604 break;
1605 }
1606 }
1607
1608 /* no HDMI audio is found, try DP audio */
1609 if (i == context->res_ctx.pool->pipe_count) {
1610 for (i = 0; i < context->res_ctx.pool->pipe_count; i++) {
1611 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1612
1613 if (pipe_ctx->stream == NULL)
1614 continue;
1615
1616 if (pipe_ctx->top_pipe)
1617 continue;
1618
1619 if (!dc_is_dp_signal(pipe_ctx->stream->signal))
1620 continue;
1621
1622 if (pipe_ctx->audio != NULL) {
1623 struct audio_output audio_output;
1624
1625 build_audio_output(pipe_ctx, &audio_output);
1626
1627 pipe_ctx->audio->funcs->wall_dto_setup(
1628 pipe_ctx->audio,
1629 pipe_ctx->stream->signal,
1630 &audio_output.crtc_info,
1631 &audio_output.pll_info);
1632 break;
1633 }
1634 }
1635 }
1636
1637 for (i = 0; i < context->res_ctx.pool->pipe_count; i++) {
1638 struct pipe_ctx *pipe_ctx_old =
1639 &dc->current_context->res_ctx.pipe_ctx[i];
1640 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1641
1642 if (pipe_ctx->stream == NULL)
1643 continue;
1644
1645 if (pipe_ctx->stream == pipe_ctx_old->stream)
1646 continue;
1647
1648 if (pipe_ctx->top_pipe)
1649 continue;
1650
1651 if (context->res_ctx.pipe_ctx[i].audio != NULL) {
1652
1653 struct audio_output audio_output;
1654
1655 build_audio_output(pipe_ctx, &audio_output);
1656
1657 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1658 pipe_ctx->stream_enc->funcs->dp_audio_setup(
1659 pipe_ctx->stream_enc,
1660 pipe_ctx->audio->inst,
1661 &pipe_ctx->stream->public.audio_info);
1662 else
1663 pipe_ctx->stream_enc->funcs->hdmi_audio_setup(
1664 pipe_ctx->stream_enc,
1665 pipe_ctx->audio->inst,
1666 &pipe_ctx->stream->public.audio_info,
1667 &audio_output.crtc_info);
1668
1669 pipe_ctx->audio->funcs->az_configure(
1670 pipe_ctx->audio,
1671 pipe_ctx->stream->signal,
1672 &audio_output.crtc_info,
1673 &pipe_ctx->stream->public.audio_info);
1674 }
1675
1676 status = apply_single_controller_ctx_to_hw(
1677 pipe_ctx,
1678 context,
1679 dc);
1680
1681 if (DC_OK != status)
1682 return status;
1683 }
1684
1685 dc->hwss.set_bandwidth(dc, context, true);
1686
1687 /* to save power */
1688 apply_min_clocks(dc, context, &clocks_state, false);
1689
1690 dcb->funcs->set_scratch_critical_state(dcb, false);
1691
1692 switch_dp_clock_sources(dc, &context->res_ctx);
1693
1694
1695 return DC_OK;
1696 }
1697
1698 /*******************************************************************************
1699 * Front End programming
1700 ******************************************************************************/
1701 static void set_default_colors(struct pipe_ctx *pipe_ctx)
1702 {
1703 struct default_adjustment default_adjust = { 0 };
1704
1705 default_adjust.force_hw_default = false;
1706 if (pipe_ctx->surface == NULL)
1707 default_adjust.in_color_space = COLOR_SPACE_SRGB;
1708 else
1709 default_adjust.in_color_space =
1710 pipe_ctx->surface->public.color_space;
1711 if (pipe_ctx->stream == NULL)
1712 default_adjust.out_color_space = COLOR_SPACE_SRGB;
1713 else
1714 default_adjust.out_color_space =
1715 pipe_ctx->stream->public.output_color_space;
1716 default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
1717 default_adjust.surface_pixel_format = pipe_ctx->scl_data.format;
1718
1719 /* display color depth */
1720 default_adjust.color_depth =
1721 pipe_ctx->stream->public.timing.display_color_depth;
1722
1723 /* Lb color depth */
1724 default_adjust.lb_color_depth = pipe_ctx->scl_data.lb_params.depth;
1725
1726 pipe_ctx->opp->funcs->opp_set_csc_default(
1727 pipe_ctx->opp, &default_adjust);
1728 }
1729
1730
1731 /*******************************************************************************
1732 * In order to turn on/off specific surface we will program
1733 * Blender + CRTC
1734 *
1735 * In case that we have two surfaces and they have a different visibility
1736 * we can't turn off the CRTC since it will turn off the entire display
1737 *
1738 * |----------------------------------------------- |
1739 * |bottom pipe|curr pipe | | |
1740 * |Surface |Surface | Blender | CRCT |
1741 * |visibility |visibility | Configuration| |
1742 * |------------------------------------------------|
1743 * | off | off | CURRENT_PIPE | blank |
1744 * | off | on | CURRENT_PIPE | unblank |
1745 * | on | off | OTHER_PIPE | unblank |
1746 * | on | on | BLENDING | unblank |
1747 * -------------------------------------------------|
1748 *
1749 ******************************************************************************/
1750 static void program_surface_visibility(const struct core_dc *dc,
1751 struct pipe_ctx *pipe_ctx)
1752 {
1753 enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
1754 bool blank_target = false;
1755
1756 if (pipe_ctx->bottom_pipe) {
1757
1758 /* For now we are supporting only two pipes */
1759 ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
1760
1761 if (pipe_ctx->bottom_pipe->surface->public.visible) {
1762 if (pipe_ctx->surface->public.visible)
1763 blender_mode = BLND_MODE_BLENDING;
1764 else
1765 blender_mode = BLND_MODE_OTHER_PIPE;
1766
1767 } else if (!pipe_ctx->surface->public.visible)
1768 blank_target = true;
1769
1770 } else if (!pipe_ctx->surface->public.visible)
1771 blank_target = true;
1772
1773 dce_set_blender_mode(dc->hwseq, pipe_ctx->pipe_idx, blender_mode);
1774 pipe_ctx->tg->funcs->set_blank(pipe_ctx->tg, blank_target);
1775
1776 }
1777
1778 /**
1779 * TODO REMOVE, USE UPDATE INSTEAD
1780 */
1781 static void set_plane_config(
1782 const struct core_dc *dc,
1783 struct pipe_ctx *pipe_ctx,
1784 struct resource_context *res_ctx)
1785 {
1786 struct mem_input *mi = pipe_ctx->mi;
1787 struct core_surface *surface = pipe_ctx->surface;
1788 struct xfm_grph_csc_adjustment adjust;
1789 struct out_csc_color_matrix tbl_entry;
1790 unsigned int i;
1791
1792 memset(&adjust, 0, sizeof(adjust));
1793 memset(&tbl_entry, 0, sizeof(tbl_entry));
1794 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
1795
1796 dce_enable_fe_clock(dc->hwseq, pipe_ctx->pipe_idx, true);
1797
1798 set_default_colors(pipe_ctx);
1799 if (pipe_ctx->stream->public.csc_color_matrix.enable_adjustment
1800 == true) {
1801 tbl_entry.color_space =
1802 pipe_ctx->stream->public.output_color_space;
1803
1804 for (i = 0; i < 12; i++)
1805 tbl_entry.regval[i] =
1806 pipe_ctx->stream->public.csc_color_matrix.matrix[i];
1807
1808 pipe_ctx->opp->funcs->opp_set_csc_adjustment
1809 (pipe_ctx->opp, &tbl_entry);
1810 }
1811
1812 if (pipe_ctx->stream->public.gamut_remap_matrix.enable_remap == true) {
1813 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
1814 adjust.temperature_matrix[0] =
1815 pipe_ctx->stream->
1816 public.gamut_remap_matrix.matrix[0];
1817 adjust.temperature_matrix[1] =
1818 pipe_ctx->stream->
1819 public.gamut_remap_matrix.matrix[1];
1820 adjust.temperature_matrix[2] =
1821 pipe_ctx->stream->
1822 public.gamut_remap_matrix.matrix[2];
1823 adjust.temperature_matrix[3] =
1824 pipe_ctx->stream->
1825 public.gamut_remap_matrix.matrix[4];
1826 adjust.temperature_matrix[4] =
1827 pipe_ctx->stream->
1828 public.gamut_remap_matrix.matrix[5];
1829 adjust.temperature_matrix[5] =
1830 pipe_ctx->stream->
1831 public.gamut_remap_matrix.matrix[6];
1832 adjust.temperature_matrix[6] =
1833 pipe_ctx->stream->
1834 public.gamut_remap_matrix.matrix[8];
1835 adjust.temperature_matrix[7] =
1836 pipe_ctx->stream->
1837 public.gamut_remap_matrix.matrix[9];
1838 adjust.temperature_matrix[8] =
1839 pipe_ctx->stream->
1840 public.gamut_remap_matrix.matrix[10];
1841 }
1842
1843 pipe_ctx->xfm->funcs->transform_set_gamut_remap(pipe_ctx->xfm, &adjust);
1844
1845 pipe_ctx->scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
1846 program_scaler(dc, pipe_ctx);
1847
1848 program_surface_visibility(dc, pipe_ctx);
1849
1850 mi->funcs->mem_input_program_surface_config(
1851 mi,
1852 surface->public.format,
1853 &surface->public.tiling_info,
1854 &surface->public.plane_size,
1855 surface->public.rotation,
1856 NULL,
1857 false,
1858 pipe_ctx->surface->public.visible);
1859
1860 if (dc->public.config.gpu_vm_support)
1861 mi->funcs->mem_input_program_pte_vm(
1862 pipe_ctx->mi,
1863 surface->public.format,
1864 &surface->public.tiling_info,
1865 surface->public.rotation);
1866 }
1867
1868 static void update_plane_addr(const struct core_dc *dc,
1869 struct pipe_ctx *pipe_ctx)
1870 {
1871 struct core_surface *surface = pipe_ctx->surface;
1872
1873 if (surface == NULL)
1874 return;
1875
1876 pipe_ctx->mi->funcs->mem_input_program_surface_flip_and_addr(
1877 pipe_ctx->mi,
1878 &surface->public.address,
1879 surface->public.flip_immediate);
1880
1881 surface->status.requested_address = surface->public.address;
1882 }
1883
1884 void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
1885 {
1886 struct core_surface *surface = pipe_ctx->surface;
1887
1888 if (surface == NULL)
1889 return;
1890
1891 surface->status.is_flip_pending =
1892 pipe_ctx->mi->funcs->mem_input_is_flip_pending(
1893 pipe_ctx->mi);
1894
1895 if (surface->status.is_flip_pending && !surface->public.visible)
1896 pipe_ctx->mi->current_address = pipe_ctx->mi->request_address;
1897
1898 surface->status.current_address = pipe_ctx->mi->current_address;
1899 }
1900
1901 void dce110_power_down(struct core_dc *dc)
1902 {
1903 power_down_all_hw_blocks(dc);
1904 disable_vga_and_power_gate_all_controllers(dc);
1905 }
1906
1907 static bool wait_for_reset_trigger_to_occur(
1908 struct dc_context *dc_ctx,
1909 struct timing_generator *tg)
1910 {
1911 bool rc = false;
1912
1913 /* To avoid endless loop we wait at most
1914 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
1915 const uint32_t frames_to_wait_on_triggered_reset = 10;
1916 uint32_t i;
1917
1918 for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
1919
1920 if (!tg->funcs->is_counter_moving(tg)) {
1921 DC_ERROR("TG counter is not moving!\n");
1922 break;
1923 }
1924
1925 if (tg->funcs->did_triggered_reset_occur(tg)) {
1926 rc = true;
1927 /* usually occurs at i=1 */
1928 DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
1929 i);
1930 break;
1931 }
1932
1933 /* Wait for one frame. */
1934 tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
1935 tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
1936 }
1937
1938 if (false == rc)
1939 DC_ERROR("GSL: Timeout on reset trigger!\n");
1940
1941 return rc;
1942 }
1943
1944 /* Enable timing synchronization for a group of Timing Generators. */
1945 static void dce110_enable_timing_synchronization(
1946 struct core_dc *dc,
1947 int group_index,
1948 int group_size,
1949 struct pipe_ctx *grouped_pipes[])
1950 {
1951 struct dc_context *dc_ctx = dc->ctx;
1952 struct dcp_gsl_params gsl_params = { 0 };
1953 int i;
1954
1955 DC_SYNC_INFO("GSL: Setting-up...\n");
1956
1957 /* Designate a single TG in the group as a master.
1958 * Since HW doesn't care which one, we always assign
1959 * the 1st one in the group. */
1960 gsl_params.gsl_group = 0;
1961 gsl_params.gsl_master = grouped_pipes[0]->tg->inst;
1962
1963 for (i = 0; i < group_size; i++)
1964 grouped_pipes[i]->tg->funcs->setup_global_swap_lock(
1965 grouped_pipes[i]->tg, &gsl_params);
1966
1967 /* Reset slave controllers on master VSync */
1968 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
1969
1970 for (i = 1 /* skip the master */; i < group_size; i++)
1971 grouped_pipes[i]->tg->funcs->enable_reset_trigger(
1972 grouped_pipes[i]->tg, gsl_params.gsl_group);
1973
1974
1975
1976 for (i = 1 /* skip the master */; i < group_size; i++) {
1977 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
1978 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->tg);
1979 /* Regardless of success of the wait above, remove the reset or
1980 * the driver will start timing out on Display requests. */
1981 DC_SYNC_INFO("GSL: disabling trigger-reset.\n");
1982 grouped_pipes[i]->tg->funcs->disable_reset_trigger(grouped_pipes[i]->tg);
1983 }
1984
1985
1986 /* GSL Vblank synchronization is a one time sync mechanism, assumption
1987 * is that the sync'ed displays will not drift out of sync over time*/
1988 DC_SYNC_INFO("GSL: Restoring register states.\n");
1989 for (i = 0; i < group_size; i++)
1990 grouped_pipes[i]->tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->tg);
1991
1992 DC_SYNC_INFO("GSL: Set-up complete.\n");
1993 }
1994
1995 static void init_hw(struct core_dc *dc)
1996 {
1997 int i;
1998 struct dc_bios *bp;
1999 struct transform *xfm;
2000 struct abm *abm;
2001
2002 bp = dc->ctx->dc_bios;
2003 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2004 xfm = dc->res_pool->transforms[i];
2005 xfm->funcs->transform_reset(xfm);
2006
2007 dc->hwss.enable_display_power_gating(
2008 dc, i, bp,
2009 PIPE_GATING_CONTROL_INIT);
2010 dc->hwss.enable_display_power_gating(
2011 dc, i, bp,
2012 PIPE_GATING_CONTROL_DISABLE);
2013 dc->hwss.enable_display_pipe_clock_gating(
2014 dc->ctx,
2015 true);
2016 }
2017
2018 dce_clock_gating_power_up(dc->hwseq, false);
2019 /***************************************/
2020
2021 for (i = 0; i < dc->link_count; i++) {
2022 /****************************************/
2023 /* Power up AND update implementation according to the
2024 * required signal (which may be different from the
2025 * default signal on connector). */
2026 struct core_link *link = dc->links[i];
2027 link->link_enc->funcs->hw_init(link->link_enc);
2028 }
2029
2030 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2031 struct timing_generator *tg = dc->res_pool->timing_generators[i];
2032
2033 tg->funcs->disable_vga(tg);
2034
2035 /* Blank controller using driver code instead of
2036 * command table. */
2037 tg->funcs->set_blank(tg, true);
2038 hwss_wait_for_blank_complete(tg);
2039 }
2040
2041 for (i = 0; i < dc->res_pool->audio_count; i++) {
2042 struct audio *audio = dc->res_pool->audios[i];
2043 audio->funcs->hw_init(audio);
2044 }
2045
2046 abm = dc->res_pool->abm;
2047 if (abm != NULL) {
2048 abm->funcs->init_backlight(abm);
2049 abm->funcs->abm_init(abm);
2050 }
2051 }
2052
2053 static void dce110_power_on_pipe_if_needed(
2054 struct core_dc *dc,
2055 struct pipe_ctx *pipe_ctx,
2056 struct validate_context *context)
2057 {
2058 struct pipe_ctx *old_pipe_ctx = &dc->current_context->res_ctx.pipe_ctx[pipe_ctx->pipe_idx];
2059 struct dc_bios *dcb = dc->ctx->dc_bios;
2060 struct tg_color black_color = {0};
2061
2062 if (!old_pipe_ctx->stream && pipe_ctx->stream) {
2063 dc->hwss.enable_display_power_gating(
2064 dc,
2065 pipe_ctx->pipe_idx,
2066 dcb, PIPE_GATING_CONTROL_DISABLE);
2067
2068 /*
2069 * This is for powering on underlay, so crtc does not
2070 * need to be enabled
2071 */
2072
2073 pipe_ctx->tg->funcs->program_timing(pipe_ctx->tg,
2074 &pipe_ctx->stream->public.timing,
2075 false);
2076
2077 pipe_ctx->tg->funcs->enable_advanced_request(
2078 pipe_ctx->tg,
2079 true,
2080 &pipe_ctx->stream->public.timing);
2081
2082 pipe_ctx->mi->funcs->allocate_mem_input(pipe_ctx->mi,
2083 pipe_ctx->stream->public.timing.h_total,
2084 pipe_ctx->stream->public.timing.v_total,
2085 pipe_ctx->stream->public.timing.pix_clk_khz,
2086 context->stream_count);
2087
2088 /* TODO unhardcode*/
2089 color_space_to_black_color(dc,
2090 COLOR_SPACE_YCBCR601, &black_color);
2091 pipe_ctx->tg->funcs->set_blank_color(
2092 pipe_ctx->tg,
2093 &black_color);
2094 }
2095 }
2096
2097 static void fill_display_configs(
2098 const struct validate_context *context,
2099 struct dm_pp_display_configuration *pp_display_cfg)
2100 {
2101 int j;
2102 int num_cfgs = 0;
2103
2104 for (j = 0; j < context->stream_count; j++) {
2105 int k;
2106
2107 const struct core_stream *stream = context->streams[j];
2108 struct dm_pp_single_disp_config *cfg =
2109 &pp_display_cfg->disp_configs[num_cfgs];
2110 const struct pipe_ctx *pipe_ctx = NULL;
2111
2112 for (k = 0; k < MAX_PIPES; k++)
2113 if (stream == context->res_ctx.pipe_ctx[k].stream) {
2114 pipe_ctx = &context->res_ctx.pipe_ctx[k];
2115 break;
2116 }
2117
2118 ASSERT(pipe_ctx != NULL);
2119
2120 num_cfgs++;
2121 cfg->signal = pipe_ctx->stream->signal;
2122 cfg->pipe_idx = pipe_ctx->pipe_idx;
2123 cfg->src_height = stream->public.src.height;
2124 cfg->src_width = stream->public.src.width;
2125 cfg->ddi_channel_mapping =
2126 stream->sink->link->ddi_channel_mapping.raw;
2127 cfg->transmitter =
2128 stream->sink->link->link_enc->transmitter;
2129 cfg->link_settings.lane_count =
2130 stream->sink->link->public.cur_link_settings.lane_count;
2131 cfg->link_settings.link_rate =
2132 stream->sink->link->public.cur_link_settings.link_rate;
2133 cfg->link_settings.link_spread =
2134 stream->sink->link->public.cur_link_settings.link_spread;
2135 cfg->sym_clock = stream->phy_pix_clk;
2136 /* Round v_refresh*/
2137 cfg->v_refresh = stream->public.timing.pix_clk_khz * 1000;
2138 cfg->v_refresh /= stream->public.timing.h_total;
2139 cfg->v_refresh = (cfg->v_refresh + stream->public.timing.v_total / 2)
2140 / stream->public.timing.v_total;
2141 }
2142
2143 pp_display_cfg->display_count = num_cfgs;
2144 }
2145
2146 static uint32_t get_min_vblank_time_us(const struct validate_context *context)
2147 {
2148 uint8_t j;
2149 uint32_t min_vertical_blank_time = -1;
2150
2151 for (j = 0; j < context->stream_count; j++) {
2152 const struct dc_stream *stream = &context->streams[j]->public;
2153 uint32_t vertical_blank_in_pixels = 0;
2154 uint32_t vertical_blank_time = 0;
2155
2156 vertical_blank_in_pixels = stream->timing.h_total *
2157 (stream->timing.v_total
2158 - stream->timing.v_addressable);
2159
2160 vertical_blank_time = vertical_blank_in_pixels
2161 * 1000 / stream->timing.pix_clk_khz;
2162
2163 if (min_vertical_blank_time > vertical_blank_time)
2164 min_vertical_blank_time = vertical_blank_time;
2165 }
2166
2167 return min_vertical_blank_time;
2168 }
2169
2170 static int determine_sclk_from_bounding_box(
2171 const struct core_dc *dc,
2172 int required_sclk)
2173 {
2174 int i;
2175
2176 /*
2177 * Some asics do not give us sclk levels, so we just report the actual
2178 * required sclk
2179 */
2180 if (dc->sclk_lvls.num_levels == 0)
2181 return required_sclk;
2182
2183 for (i = 0; i < dc->sclk_lvls.num_levels; i++) {
2184 if (dc->sclk_lvls.clocks_in_khz[i] >= required_sclk)
2185 return dc->sclk_lvls.clocks_in_khz[i];
2186 }
2187 /*
2188 * even maximum level could not satisfy requirement, this
2189 * is unexpected at this stage, should have been caught at
2190 * validation time
2191 */
2192 ASSERT(0);
2193 return dc->sclk_lvls.clocks_in_khz[dc->sclk_lvls.num_levels - 1];
2194 }
2195
2196 static void pplib_apply_display_requirements(
2197 struct core_dc *dc,
2198 struct validate_context *context)
2199 {
2200 struct dm_pp_display_configuration *pp_display_cfg = &context->pp_display_cfg;
2201
2202 pp_display_cfg->all_displays_in_sync =
2203 context->bw_results.all_displays_in_sync;
2204 pp_display_cfg->nb_pstate_switch_disable =
2205 context->bw_results.nbp_state_change_enable == false;
2206 pp_display_cfg->cpu_cc6_disable =
2207 context->bw_results.cpuc_state_change_enable == false;
2208 pp_display_cfg->cpu_pstate_disable =
2209 context->bw_results.cpup_state_change_enable == false;
2210 pp_display_cfg->cpu_pstate_separation_time =
2211 context->bw_results.blackout_recovery_time_us;
2212
2213 pp_display_cfg->min_memory_clock_khz = context->bw_results.required_yclk
2214 / MEMORY_TYPE_MULTIPLIER;
2215
2216 pp_display_cfg->min_engine_clock_khz = determine_sclk_from_bounding_box(
2217 dc,
2218 context->bw_results.required_sclk);
2219
2220 pp_display_cfg->min_engine_clock_deep_sleep_khz
2221 = context->bw_results.required_sclk_deep_sleep;
2222
2223 pp_display_cfg->avail_mclk_switch_time_us =
2224 get_min_vblank_time_us(context);
2225 /* TODO: dce11.2*/
2226 pp_display_cfg->avail_mclk_switch_time_in_disp_active_us = 0;
2227
2228 pp_display_cfg->disp_clk_khz = context->dispclk_khz;
2229
2230 fill_display_configs(context, pp_display_cfg);
2231
2232 /* TODO: is this still applicable?*/
2233 if (pp_display_cfg->display_count == 1) {
2234 const struct dc_crtc_timing *timing =
2235 &context->streams[0]->public.timing;
2236
2237 pp_display_cfg->crtc_index =
2238 pp_display_cfg->disp_configs[0].pipe_idx;
2239 pp_display_cfg->line_time_in_us = timing->h_total * 1000
2240 / timing->pix_clk_khz;
2241 }
2242
2243 if (memcmp(&dc->prev_display_config, pp_display_cfg, sizeof(
2244 struct dm_pp_display_configuration)) != 0)
2245 dm_pp_apply_display_requirements(dc->ctx, pp_display_cfg);
2246
2247 dc->prev_display_config = *pp_display_cfg;
2248 }
2249
2250 static void dce110_set_bandwidth(
2251 struct core_dc *dc,
2252 struct validate_context *context,
2253 bool decrease_allowed)
2254 {
2255 dc->hwss.set_displaymarks(dc, context);
2256
2257 if (decrease_allowed || context->dispclk_khz > dc->current_context->dispclk_khz) {
2258 context->res_ctx.pool->display_clock->funcs->set_clock(
2259 context->res_ctx.pool->display_clock,
2260 context->dispclk_khz * 115 / 100);
2261 dc->current_context->bw_results.dispclk_khz = context->dispclk_khz;
2262 dc->current_context->dispclk_khz = context->dispclk_khz;
2263 }
2264
2265 pplib_apply_display_requirements(dc, context);
2266 }
2267
2268 static void dce110_program_front_end_for_pipe(
2269 struct core_dc *dc, struct pipe_ctx *pipe_ctx)
2270 {
2271 struct mem_input *mi = pipe_ctx->mi;
2272 struct pipe_ctx *old_pipe = NULL;
2273 struct core_surface *surface = pipe_ctx->surface;
2274 struct xfm_grph_csc_adjustment adjust;
2275 struct out_csc_color_matrix tbl_entry;
2276 unsigned int i;
2277
2278 memset(&tbl_entry, 0, sizeof(tbl_entry));
2279
2280 if (dc->current_context)
2281 old_pipe = &dc->current_context->res_ctx.pipe_ctx[pipe_ctx->pipe_idx];
2282
2283 memset(&adjust, 0, sizeof(adjust));
2284 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2285
2286 dce_enable_fe_clock(dc->hwseq, pipe_ctx->pipe_idx, true);
2287
2288 set_default_colors(pipe_ctx);
2289 if (pipe_ctx->stream->public.csc_color_matrix.enable_adjustment
2290 == true) {
2291 tbl_entry.color_space =
2292 pipe_ctx->stream->public.output_color_space;
2293
2294 for (i = 0; i < 12; i++)
2295 tbl_entry.regval[i] =
2296 pipe_ctx->stream->public.csc_color_matrix.matrix[i];
2297
2298 pipe_ctx->opp->funcs->opp_set_csc_adjustment
2299 (pipe_ctx->opp, &tbl_entry);
2300 }
2301
2302 if (pipe_ctx->stream->public.gamut_remap_matrix.enable_remap == true) {
2303 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2304 adjust.temperature_matrix[0] =
2305 pipe_ctx->stream->
2306 public.gamut_remap_matrix.matrix[0];
2307 adjust.temperature_matrix[1] =
2308 pipe_ctx->stream->
2309 public.gamut_remap_matrix.matrix[1];
2310 adjust.temperature_matrix[2] =
2311 pipe_ctx->stream->
2312 public.gamut_remap_matrix.matrix[2];
2313 adjust.temperature_matrix[3] =
2314 pipe_ctx->stream->
2315 public.gamut_remap_matrix.matrix[4];
2316 adjust.temperature_matrix[4] =
2317 pipe_ctx->stream->
2318 public.gamut_remap_matrix.matrix[5];
2319 adjust.temperature_matrix[5] =
2320 pipe_ctx->stream->
2321 public.gamut_remap_matrix.matrix[6];
2322 adjust.temperature_matrix[6] =
2323 pipe_ctx->stream->
2324 public.gamut_remap_matrix.matrix[8];
2325 adjust.temperature_matrix[7] =
2326 pipe_ctx->stream->
2327 public.gamut_remap_matrix.matrix[9];
2328 adjust.temperature_matrix[8] =
2329 pipe_ctx->stream->
2330 public.gamut_remap_matrix.matrix[10];
2331 }
2332
2333 pipe_ctx->xfm->funcs->transform_set_gamut_remap(pipe_ctx->xfm, &adjust);
2334
2335 pipe_ctx->scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
2336 if (old_pipe && memcmp(&old_pipe->scl_data,
2337 &pipe_ctx->scl_data,
2338 sizeof(struct scaler_data)) != 0)
2339 program_scaler(dc, pipe_ctx);
2340
2341 mi->funcs->mem_input_program_surface_config(
2342 mi,
2343 surface->public.format,
2344 &surface->public.tiling_info,
2345 &surface->public.plane_size,
2346 surface->public.rotation,
2347 NULL,
2348 false,
2349 pipe_ctx->surface->public.visible);
2350
2351 if (dc->public.config.gpu_vm_support)
2352 mi->funcs->mem_input_program_pte_vm(
2353 pipe_ctx->mi,
2354 surface->public.format,
2355 &surface->public.tiling_info,
2356 surface->public.rotation);
2357
2358 dm_logger_write(dc->ctx->logger, LOG_SURFACE,
2359 "Pipe:%d 0x%x: addr hi:0x%x, "
2360 "addr low:0x%x, "
2361 "src: %d, %d, %d,"
2362 " %d; dst: %d, %d, %d, %d;"
2363 "clip: %d, %d, %d, %d\n",
2364 pipe_ctx->pipe_idx,
2365 pipe_ctx->surface,
2366 pipe_ctx->surface->public.address.grph.addr.high_part,
2367 pipe_ctx->surface->public.address.grph.addr.low_part,
2368 pipe_ctx->surface->public.src_rect.x,
2369 pipe_ctx->surface->public.src_rect.y,
2370 pipe_ctx->surface->public.src_rect.width,
2371 pipe_ctx->surface->public.src_rect.height,
2372 pipe_ctx->surface->public.dst_rect.x,
2373 pipe_ctx->surface->public.dst_rect.y,
2374 pipe_ctx->surface->public.dst_rect.width,
2375 pipe_ctx->surface->public.dst_rect.height,
2376 pipe_ctx->surface->public.clip_rect.x,
2377 pipe_ctx->surface->public.clip_rect.y,
2378 pipe_ctx->surface->public.clip_rect.width,
2379 pipe_ctx->surface->public.clip_rect.height);
2380
2381 dm_logger_write(dc->ctx->logger, LOG_SURFACE,
2382 "Pipe %d: width, height, x, y\n"
2383 "viewport:%d, %d, %d, %d\n"
2384 "recout: %d, %d, %d, %d\n",
2385 pipe_ctx->pipe_idx,
2386 pipe_ctx->scl_data.viewport.width,
2387 pipe_ctx->scl_data.viewport.height,
2388 pipe_ctx->scl_data.viewport.x,
2389 pipe_ctx->scl_data.viewport.y,
2390 pipe_ctx->scl_data.recout.width,
2391 pipe_ctx->scl_data.recout.height,
2392 pipe_ctx->scl_data.recout.x,
2393 pipe_ctx->scl_data.recout.y);
2394 }
2395
2396 static void dce110_apply_ctx_for_surface(
2397 struct core_dc *dc,
2398 struct core_surface *surface,
2399 struct validate_context *context)
2400 {
2401 int i;
2402
2403 /* TODO remove when removing the surface reset workaroud*/
2404 if (!surface)
2405 return;
2406
2407 for (i = 0; i < context->res_ctx.pool->pipe_count; i++) {
2408 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2409
2410 if (pipe_ctx->surface != surface)
2411 continue;
2412
2413 dce110_program_front_end_for_pipe(dc, pipe_ctx);
2414 program_surface_visibility(dc, pipe_ctx);
2415
2416 }
2417 }
2418
2419 static void dce110_power_down_fe(struct core_dc *dc, struct pipe_ctx *pipe)
2420 {
2421 int i;
2422
2423 for (i = 0; i < dc->res_pool->pipe_count; i++)
2424 if (&dc->current_context->res_ctx.pipe_ctx[i] == pipe)
2425 break;
2426
2427 if (i == dc->res_pool->pipe_count)
2428 return;
2429
2430 dc->hwss.enable_display_power_gating(
2431 dc, i, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2432 if (pipe->xfm)
2433 pipe->xfm->funcs->transform_reset(pipe->xfm);
2434 memset(&pipe->scl_data, 0, sizeof(struct scaler_data));
2435 }
2436
2437 static const struct hw_sequencer_funcs dce110_funcs = {
2438 .init_hw = init_hw,
2439 .apply_ctx_to_hw = dce110_apply_ctx_to_hw,
2440 .prepare_pipe_for_context = dce110_power_on_pipe_if_needed,
2441 .apply_ctx_for_surface = dce110_apply_ctx_for_surface,
2442 .set_plane_config = set_plane_config,
2443 .update_plane_addr = update_plane_addr,
2444 .update_pending_status = dce110_update_pending_status,
2445 .set_input_transfer_func = dce110_set_input_transfer_func,
2446 .set_output_transfer_func = dce110_set_output_transfer_func,
2447 .power_down = dce110_power_down,
2448 .enable_accelerated_mode = dce110_enable_accelerated_mode,
2449 .enable_timing_synchronization = dce110_enable_timing_synchronization,
2450 .update_info_frame = dce110_update_info_frame,
2451 .enable_stream = dce110_enable_stream,
2452 .disable_stream = dce110_disable_stream,
2453 .unblank_stream = dce110_unblank_stream,
2454 .enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
2455 .enable_display_power_gating = dce110_enable_display_power_gating,
2456 .power_down_front_end = dce110_power_down_fe,
2457 .pipe_control_lock = dce_pipe_control_lock,
2458 .set_displaymarks = dce110_set_displaymarks,
2459 .set_bandwidth = dce110_set_bandwidth,
2460 .set_drr = set_drr,
2461 .set_static_screen_control = set_static_screen_control,
2462 .reset_hw_ctx_wrap = reset_hw_ctx_wrap,
2463 .prog_pixclk_crtc_otg = dce110_prog_pixclk_crtc_otg,
2464 };
2465
2466 bool dce110_hw_sequencer_construct(struct core_dc *dc)
2467 {
2468 dc->hwss = dce110_funcs;
2469
2470 return true;
2471 }
2472