]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
Merge tag 'backlight-for-linus-3.17' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51 return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55 * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58 struct dentry *ent,
59 const void *key)
60 {
61 struct drm_info_node *node;
62
63 node = kmalloc(sizeof(*node), GFP_KERNEL);
64 if (node == NULL) {
65 debugfs_remove(ent);
66 return -ENOMEM;
67 }
68
69 node->minor = minor;
70 node->dent = ent;
71 node->info_ent = (void *) key;
72
73 mutex_lock(&minor->debugfs_lock);
74 list_add(&node->list, &minor->debugfs_list);
75 mutex_unlock(&minor->debugfs_lock);
76
77 return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82 struct drm_info_node *node = m->private;
83 struct drm_device *dev = node->minor->dev;
84 const struct intel_device_info *info = INTEL_INFO(dev);
85
86 seq_printf(m, "gen: %d\n", info->gen);
87 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94 return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 if (obj->user_pin_count > 0)
100 return "P";
101 else if (i915_gem_obj_is_pinned(obj))
102 return "p";
103 else
104 return " ";
105 }
106
107 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
108 {
109 switch (obj->tiling_mode) {
110 default:
111 case I915_TILING_NONE: return " ";
112 case I915_TILING_X: return "X";
113 case I915_TILING_Y: return "Y";
114 }
115 }
116
117 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
118 {
119 return obj->has_global_gtt_mapping ? "g" : " ";
120 }
121
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125 struct i915_vma *vma;
126 int pin_count = 0;
127
128 seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
129 &obj->base,
130 get_pin_flag(obj),
131 get_tiling_flag(obj),
132 get_global_flag(obj),
133 obj->base.size / 1024,
134 obj->base.read_domains,
135 obj->base.write_domain,
136 obj->last_read_seqno,
137 obj->last_write_seqno,
138 obj->last_fenced_seqno,
139 i915_cache_level_str(obj->cache_level),
140 obj->dirty ? " dirty" : "",
141 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
142 if (obj->base.name)
143 seq_printf(m, " (name: %d)", obj->base.name);
144 list_for_each_entry(vma, &obj->vma_list, vma_link)
145 if (vma->pin_count > 0)
146 pin_count++;
147 seq_printf(m, " (pinned x %d)", pin_count);
148 if (obj->pin_display)
149 seq_printf(m, " (display)");
150 if (obj->fence_reg != I915_FENCE_REG_NONE)
151 seq_printf(m, " (fence: %d)", obj->fence_reg);
152 list_for_each_entry(vma, &obj->vma_list, vma_link) {
153 if (!i915_is_ggtt(vma->vm))
154 seq_puts(m, " (pp");
155 else
156 seq_puts(m, " (g");
157 seq_printf(m, "gtt offset: %08lx, size: %08lx)",
158 vma->node.start, vma->node.size);
159 }
160 if (obj->stolen)
161 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
162 if (obj->pin_mappable || obj->fault_mappable) {
163 char s[3], *t = s;
164 if (obj->pin_mappable)
165 *t++ = 'p';
166 if (obj->fault_mappable)
167 *t++ = 'f';
168 *t = '\0';
169 seq_printf(m, " (%s mappable)", s);
170 }
171 if (obj->ring != NULL)
172 seq_printf(m, " (%s)", obj->ring->name);
173 }
174
175 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
176 {
177 seq_putc(m, ctx->is_initialized ? 'I' : 'i');
178 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
179 seq_putc(m, ' ');
180 }
181
182 static int i915_gem_object_list_info(struct seq_file *m, void *data)
183 {
184 struct drm_info_node *node = m->private;
185 uintptr_t list = (uintptr_t) node->info_ent->data;
186 struct list_head *head;
187 struct drm_device *dev = node->minor->dev;
188 struct drm_i915_private *dev_priv = dev->dev_private;
189 struct i915_address_space *vm = &dev_priv->gtt.base;
190 struct i915_vma *vma;
191 size_t total_obj_size, total_gtt_size;
192 int count, ret;
193
194 ret = mutex_lock_interruptible(&dev->struct_mutex);
195 if (ret)
196 return ret;
197
198 /* FIXME: the user of this interface might want more than just GGTT */
199 switch (list) {
200 case ACTIVE_LIST:
201 seq_puts(m, "Active:\n");
202 head = &vm->active_list;
203 break;
204 case INACTIVE_LIST:
205 seq_puts(m, "Inactive:\n");
206 head = &vm->inactive_list;
207 break;
208 default:
209 mutex_unlock(&dev->struct_mutex);
210 return -EINVAL;
211 }
212
213 total_obj_size = total_gtt_size = count = 0;
214 list_for_each_entry(vma, head, mm_list) {
215 seq_printf(m, " ");
216 describe_obj(m, vma->obj);
217 seq_printf(m, "\n");
218 total_obj_size += vma->obj->base.size;
219 total_gtt_size += vma->node.size;
220 count++;
221 }
222 mutex_unlock(&dev->struct_mutex);
223
224 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
225 count, total_obj_size, total_gtt_size);
226 return 0;
227 }
228
229 static int obj_rank_by_stolen(void *priv,
230 struct list_head *A, struct list_head *B)
231 {
232 struct drm_i915_gem_object *a =
233 container_of(A, struct drm_i915_gem_object, obj_exec_link);
234 struct drm_i915_gem_object *b =
235 container_of(B, struct drm_i915_gem_object, obj_exec_link);
236
237 return a->stolen->start - b->stolen->start;
238 }
239
240 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
241 {
242 struct drm_info_node *node = m->private;
243 struct drm_device *dev = node->minor->dev;
244 struct drm_i915_private *dev_priv = dev->dev_private;
245 struct drm_i915_gem_object *obj;
246 size_t total_obj_size, total_gtt_size;
247 LIST_HEAD(stolen);
248 int count, ret;
249
250 ret = mutex_lock_interruptible(&dev->struct_mutex);
251 if (ret)
252 return ret;
253
254 total_obj_size = total_gtt_size = count = 0;
255 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
256 if (obj->stolen == NULL)
257 continue;
258
259 list_add(&obj->obj_exec_link, &stolen);
260
261 total_obj_size += obj->base.size;
262 total_gtt_size += i915_gem_obj_ggtt_size(obj);
263 count++;
264 }
265 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
266 if (obj->stolen == NULL)
267 continue;
268
269 list_add(&obj->obj_exec_link, &stolen);
270
271 total_obj_size += obj->base.size;
272 count++;
273 }
274 list_sort(NULL, &stolen, obj_rank_by_stolen);
275 seq_puts(m, "Stolen:\n");
276 while (!list_empty(&stolen)) {
277 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
278 seq_puts(m, " ");
279 describe_obj(m, obj);
280 seq_putc(m, '\n');
281 list_del_init(&obj->obj_exec_link);
282 }
283 mutex_unlock(&dev->struct_mutex);
284
285 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
286 count, total_obj_size, total_gtt_size);
287 return 0;
288 }
289
290 #define count_objects(list, member) do { \
291 list_for_each_entry(obj, list, member) { \
292 size += i915_gem_obj_ggtt_size(obj); \
293 ++count; \
294 if (obj->map_and_fenceable) { \
295 mappable_size += i915_gem_obj_ggtt_size(obj); \
296 ++mappable_count; \
297 } \
298 } \
299 } while (0)
300
301 struct file_stats {
302 struct drm_i915_file_private *file_priv;
303 int count;
304 size_t total, unbound;
305 size_t global, shared;
306 size_t active, inactive;
307 };
308
309 static int per_file_stats(int id, void *ptr, void *data)
310 {
311 struct drm_i915_gem_object *obj = ptr;
312 struct file_stats *stats = data;
313 struct i915_vma *vma;
314
315 stats->count++;
316 stats->total += obj->base.size;
317
318 if (obj->base.name || obj->base.dma_buf)
319 stats->shared += obj->base.size;
320
321 if (USES_FULL_PPGTT(obj->base.dev)) {
322 list_for_each_entry(vma, &obj->vma_list, vma_link) {
323 struct i915_hw_ppgtt *ppgtt;
324
325 if (!drm_mm_node_allocated(&vma->node))
326 continue;
327
328 if (i915_is_ggtt(vma->vm)) {
329 stats->global += obj->base.size;
330 continue;
331 }
332
333 ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
334 if (ppgtt->ctx && ppgtt->ctx->file_priv != stats->file_priv)
335 continue;
336
337 if (obj->ring) /* XXX per-vma statistic */
338 stats->active += obj->base.size;
339 else
340 stats->inactive += obj->base.size;
341
342 return 0;
343 }
344 } else {
345 if (i915_gem_obj_ggtt_bound(obj)) {
346 stats->global += obj->base.size;
347 if (obj->ring)
348 stats->active += obj->base.size;
349 else
350 stats->inactive += obj->base.size;
351 return 0;
352 }
353 }
354
355 if (!list_empty(&obj->global_list))
356 stats->unbound += obj->base.size;
357
358 return 0;
359 }
360
361 #define count_vmas(list, member) do { \
362 list_for_each_entry(vma, list, member) { \
363 size += i915_gem_obj_ggtt_size(vma->obj); \
364 ++count; \
365 if (vma->obj->map_and_fenceable) { \
366 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
367 ++mappable_count; \
368 } \
369 } \
370 } while (0)
371
372 static int i915_gem_object_info(struct seq_file *m, void* data)
373 {
374 struct drm_info_node *node = m->private;
375 struct drm_device *dev = node->minor->dev;
376 struct drm_i915_private *dev_priv = dev->dev_private;
377 u32 count, mappable_count, purgeable_count;
378 size_t size, mappable_size, purgeable_size;
379 struct drm_i915_gem_object *obj;
380 struct i915_address_space *vm = &dev_priv->gtt.base;
381 struct drm_file *file;
382 struct i915_vma *vma;
383 int ret;
384
385 ret = mutex_lock_interruptible(&dev->struct_mutex);
386 if (ret)
387 return ret;
388
389 seq_printf(m, "%u objects, %zu bytes\n",
390 dev_priv->mm.object_count,
391 dev_priv->mm.object_memory);
392
393 size = count = mappable_size = mappable_count = 0;
394 count_objects(&dev_priv->mm.bound_list, global_list);
395 seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
396 count, mappable_count, size, mappable_size);
397
398 size = count = mappable_size = mappable_count = 0;
399 count_vmas(&vm->active_list, mm_list);
400 seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
401 count, mappable_count, size, mappable_size);
402
403 size = count = mappable_size = mappable_count = 0;
404 count_vmas(&vm->inactive_list, mm_list);
405 seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
406 count, mappable_count, size, mappable_size);
407
408 size = count = purgeable_size = purgeable_count = 0;
409 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
410 size += obj->base.size, ++count;
411 if (obj->madv == I915_MADV_DONTNEED)
412 purgeable_size += obj->base.size, ++purgeable_count;
413 }
414 seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
415
416 size = count = mappable_size = mappable_count = 0;
417 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
418 if (obj->fault_mappable) {
419 size += i915_gem_obj_ggtt_size(obj);
420 ++count;
421 }
422 if (obj->pin_mappable) {
423 mappable_size += i915_gem_obj_ggtt_size(obj);
424 ++mappable_count;
425 }
426 if (obj->madv == I915_MADV_DONTNEED) {
427 purgeable_size += obj->base.size;
428 ++purgeable_count;
429 }
430 }
431 seq_printf(m, "%u purgeable objects, %zu bytes\n",
432 purgeable_count, purgeable_size);
433 seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
434 mappable_count, mappable_size);
435 seq_printf(m, "%u fault mappable objects, %zu bytes\n",
436 count, size);
437
438 seq_printf(m, "%zu [%lu] gtt total\n",
439 dev_priv->gtt.base.total,
440 dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
441
442 seq_putc(m, '\n');
443 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
444 struct file_stats stats;
445 struct task_struct *task;
446
447 memset(&stats, 0, sizeof(stats));
448 stats.file_priv = file->driver_priv;
449 spin_lock(&file->table_lock);
450 idr_for_each(&file->object_idr, per_file_stats, &stats);
451 spin_unlock(&file->table_lock);
452 /*
453 * Although we have a valid reference on file->pid, that does
454 * not guarantee that the task_struct who called get_pid() is
455 * still alive (e.g. get_pid(current) => fork() => exit()).
456 * Therefore, we need to protect this ->comm access using RCU.
457 */
458 rcu_read_lock();
459 task = pid_task(file->pid, PIDTYPE_PID);
460 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
461 task ? task->comm : "<unknown>",
462 stats.count,
463 stats.total,
464 stats.active,
465 stats.inactive,
466 stats.global,
467 stats.shared,
468 stats.unbound);
469 rcu_read_unlock();
470 }
471
472 mutex_unlock(&dev->struct_mutex);
473
474 return 0;
475 }
476
477 static int i915_gem_gtt_info(struct seq_file *m, void *data)
478 {
479 struct drm_info_node *node = m->private;
480 struct drm_device *dev = node->minor->dev;
481 uintptr_t list = (uintptr_t) node->info_ent->data;
482 struct drm_i915_private *dev_priv = dev->dev_private;
483 struct drm_i915_gem_object *obj;
484 size_t total_obj_size, total_gtt_size;
485 int count, ret;
486
487 ret = mutex_lock_interruptible(&dev->struct_mutex);
488 if (ret)
489 return ret;
490
491 total_obj_size = total_gtt_size = count = 0;
492 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
493 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
494 continue;
495
496 seq_puts(m, " ");
497 describe_obj(m, obj);
498 seq_putc(m, '\n');
499 total_obj_size += obj->base.size;
500 total_gtt_size += i915_gem_obj_ggtt_size(obj);
501 count++;
502 }
503
504 mutex_unlock(&dev->struct_mutex);
505
506 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
507 count, total_obj_size, total_gtt_size);
508
509 return 0;
510 }
511
512 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
513 {
514 struct drm_info_node *node = m->private;
515 struct drm_device *dev = node->minor->dev;
516 unsigned long flags;
517 struct intel_crtc *crtc;
518
519 for_each_intel_crtc(dev, crtc) {
520 const char pipe = pipe_name(crtc->pipe);
521 const char plane = plane_name(crtc->plane);
522 struct intel_unpin_work *work;
523
524 spin_lock_irqsave(&dev->event_lock, flags);
525 work = crtc->unpin_work;
526 if (work == NULL) {
527 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
528 pipe, plane);
529 } else {
530 if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
531 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
532 pipe, plane);
533 } else {
534 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
535 pipe, plane);
536 }
537 if (work->enable_stall_check)
538 seq_puts(m, "Stall check enabled, ");
539 else
540 seq_puts(m, "Stall check waiting for page flip ioctl, ");
541 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
542
543 if (work->old_fb_obj) {
544 struct drm_i915_gem_object *obj = work->old_fb_obj;
545 if (obj)
546 seq_printf(m, "Old framebuffer gtt_offset 0x%08lx\n",
547 i915_gem_obj_ggtt_offset(obj));
548 }
549 if (work->pending_flip_obj) {
550 struct drm_i915_gem_object *obj = work->pending_flip_obj;
551 if (obj)
552 seq_printf(m, "New framebuffer gtt_offset 0x%08lx\n",
553 i915_gem_obj_ggtt_offset(obj));
554 }
555 }
556 spin_unlock_irqrestore(&dev->event_lock, flags);
557 }
558
559 return 0;
560 }
561
562 static int i915_gem_request_info(struct seq_file *m, void *data)
563 {
564 struct drm_info_node *node = m->private;
565 struct drm_device *dev = node->minor->dev;
566 struct drm_i915_private *dev_priv = dev->dev_private;
567 struct intel_engine_cs *ring;
568 struct drm_i915_gem_request *gem_request;
569 int ret, count, i;
570
571 ret = mutex_lock_interruptible(&dev->struct_mutex);
572 if (ret)
573 return ret;
574
575 count = 0;
576 for_each_ring(ring, dev_priv, i) {
577 if (list_empty(&ring->request_list))
578 continue;
579
580 seq_printf(m, "%s requests:\n", ring->name);
581 list_for_each_entry(gem_request,
582 &ring->request_list,
583 list) {
584 seq_printf(m, " %d @ %d\n",
585 gem_request->seqno,
586 (int) (jiffies - gem_request->emitted_jiffies));
587 }
588 count++;
589 }
590 mutex_unlock(&dev->struct_mutex);
591
592 if (count == 0)
593 seq_puts(m, "No requests\n");
594
595 return 0;
596 }
597
598 static void i915_ring_seqno_info(struct seq_file *m,
599 struct intel_engine_cs *ring)
600 {
601 if (ring->get_seqno) {
602 seq_printf(m, "Current sequence (%s): %u\n",
603 ring->name, ring->get_seqno(ring, false));
604 }
605 }
606
607 static int i915_gem_seqno_info(struct seq_file *m, void *data)
608 {
609 struct drm_info_node *node = m->private;
610 struct drm_device *dev = node->minor->dev;
611 struct drm_i915_private *dev_priv = dev->dev_private;
612 struct intel_engine_cs *ring;
613 int ret, i;
614
615 ret = mutex_lock_interruptible(&dev->struct_mutex);
616 if (ret)
617 return ret;
618 intel_runtime_pm_get(dev_priv);
619
620 for_each_ring(ring, dev_priv, i)
621 i915_ring_seqno_info(m, ring);
622
623 intel_runtime_pm_put(dev_priv);
624 mutex_unlock(&dev->struct_mutex);
625
626 return 0;
627 }
628
629
630 static int i915_interrupt_info(struct seq_file *m, void *data)
631 {
632 struct drm_info_node *node = m->private;
633 struct drm_device *dev = node->minor->dev;
634 struct drm_i915_private *dev_priv = dev->dev_private;
635 struct intel_engine_cs *ring;
636 int ret, i, pipe;
637
638 ret = mutex_lock_interruptible(&dev->struct_mutex);
639 if (ret)
640 return ret;
641 intel_runtime_pm_get(dev_priv);
642
643 if (IS_CHERRYVIEW(dev)) {
644 int i;
645 seq_printf(m, "Master Interrupt Control:\t%08x\n",
646 I915_READ(GEN8_MASTER_IRQ));
647
648 seq_printf(m, "Display IER:\t%08x\n",
649 I915_READ(VLV_IER));
650 seq_printf(m, "Display IIR:\t%08x\n",
651 I915_READ(VLV_IIR));
652 seq_printf(m, "Display IIR_RW:\t%08x\n",
653 I915_READ(VLV_IIR_RW));
654 seq_printf(m, "Display IMR:\t%08x\n",
655 I915_READ(VLV_IMR));
656 for_each_pipe(pipe)
657 seq_printf(m, "Pipe %c stat:\t%08x\n",
658 pipe_name(pipe),
659 I915_READ(PIPESTAT(pipe)));
660
661 seq_printf(m, "Port hotplug:\t%08x\n",
662 I915_READ(PORT_HOTPLUG_EN));
663 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
664 I915_READ(VLV_DPFLIPSTAT));
665 seq_printf(m, "DPINVGTT:\t%08x\n",
666 I915_READ(DPINVGTT));
667
668 for (i = 0; i < 4; i++) {
669 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
670 i, I915_READ(GEN8_GT_IMR(i)));
671 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
672 i, I915_READ(GEN8_GT_IIR(i)));
673 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
674 i, I915_READ(GEN8_GT_IER(i)));
675 }
676
677 seq_printf(m, "PCU interrupt mask:\t%08x\n",
678 I915_READ(GEN8_PCU_IMR));
679 seq_printf(m, "PCU interrupt identity:\t%08x\n",
680 I915_READ(GEN8_PCU_IIR));
681 seq_printf(m, "PCU interrupt enable:\t%08x\n",
682 I915_READ(GEN8_PCU_IER));
683 } else if (INTEL_INFO(dev)->gen >= 8) {
684 seq_printf(m, "Master Interrupt Control:\t%08x\n",
685 I915_READ(GEN8_MASTER_IRQ));
686
687 for (i = 0; i < 4; i++) {
688 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
689 i, I915_READ(GEN8_GT_IMR(i)));
690 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
691 i, I915_READ(GEN8_GT_IIR(i)));
692 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
693 i, I915_READ(GEN8_GT_IER(i)));
694 }
695
696 for_each_pipe(pipe) {
697 seq_printf(m, "Pipe %c IMR:\t%08x\n",
698 pipe_name(pipe),
699 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
700 seq_printf(m, "Pipe %c IIR:\t%08x\n",
701 pipe_name(pipe),
702 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
703 seq_printf(m, "Pipe %c IER:\t%08x\n",
704 pipe_name(pipe),
705 I915_READ(GEN8_DE_PIPE_IER(pipe)));
706 }
707
708 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
709 I915_READ(GEN8_DE_PORT_IMR));
710 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
711 I915_READ(GEN8_DE_PORT_IIR));
712 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
713 I915_READ(GEN8_DE_PORT_IER));
714
715 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
716 I915_READ(GEN8_DE_MISC_IMR));
717 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
718 I915_READ(GEN8_DE_MISC_IIR));
719 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
720 I915_READ(GEN8_DE_MISC_IER));
721
722 seq_printf(m, "PCU interrupt mask:\t%08x\n",
723 I915_READ(GEN8_PCU_IMR));
724 seq_printf(m, "PCU interrupt identity:\t%08x\n",
725 I915_READ(GEN8_PCU_IIR));
726 seq_printf(m, "PCU interrupt enable:\t%08x\n",
727 I915_READ(GEN8_PCU_IER));
728 } else if (IS_VALLEYVIEW(dev)) {
729 seq_printf(m, "Display IER:\t%08x\n",
730 I915_READ(VLV_IER));
731 seq_printf(m, "Display IIR:\t%08x\n",
732 I915_READ(VLV_IIR));
733 seq_printf(m, "Display IIR_RW:\t%08x\n",
734 I915_READ(VLV_IIR_RW));
735 seq_printf(m, "Display IMR:\t%08x\n",
736 I915_READ(VLV_IMR));
737 for_each_pipe(pipe)
738 seq_printf(m, "Pipe %c stat:\t%08x\n",
739 pipe_name(pipe),
740 I915_READ(PIPESTAT(pipe)));
741
742 seq_printf(m, "Master IER:\t%08x\n",
743 I915_READ(VLV_MASTER_IER));
744
745 seq_printf(m, "Render IER:\t%08x\n",
746 I915_READ(GTIER));
747 seq_printf(m, "Render IIR:\t%08x\n",
748 I915_READ(GTIIR));
749 seq_printf(m, "Render IMR:\t%08x\n",
750 I915_READ(GTIMR));
751
752 seq_printf(m, "PM IER:\t\t%08x\n",
753 I915_READ(GEN6_PMIER));
754 seq_printf(m, "PM IIR:\t\t%08x\n",
755 I915_READ(GEN6_PMIIR));
756 seq_printf(m, "PM IMR:\t\t%08x\n",
757 I915_READ(GEN6_PMIMR));
758
759 seq_printf(m, "Port hotplug:\t%08x\n",
760 I915_READ(PORT_HOTPLUG_EN));
761 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
762 I915_READ(VLV_DPFLIPSTAT));
763 seq_printf(m, "DPINVGTT:\t%08x\n",
764 I915_READ(DPINVGTT));
765
766 } else if (!HAS_PCH_SPLIT(dev)) {
767 seq_printf(m, "Interrupt enable: %08x\n",
768 I915_READ(IER));
769 seq_printf(m, "Interrupt identity: %08x\n",
770 I915_READ(IIR));
771 seq_printf(m, "Interrupt mask: %08x\n",
772 I915_READ(IMR));
773 for_each_pipe(pipe)
774 seq_printf(m, "Pipe %c stat: %08x\n",
775 pipe_name(pipe),
776 I915_READ(PIPESTAT(pipe)));
777 } else {
778 seq_printf(m, "North Display Interrupt enable: %08x\n",
779 I915_READ(DEIER));
780 seq_printf(m, "North Display Interrupt identity: %08x\n",
781 I915_READ(DEIIR));
782 seq_printf(m, "North Display Interrupt mask: %08x\n",
783 I915_READ(DEIMR));
784 seq_printf(m, "South Display Interrupt enable: %08x\n",
785 I915_READ(SDEIER));
786 seq_printf(m, "South Display Interrupt identity: %08x\n",
787 I915_READ(SDEIIR));
788 seq_printf(m, "South Display Interrupt mask: %08x\n",
789 I915_READ(SDEIMR));
790 seq_printf(m, "Graphics Interrupt enable: %08x\n",
791 I915_READ(GTIER));
792 seq_printf(m, "Graphics Interrupt identity: %08x\n",
793 I915_READ(GTIIR));
794 seq_printf(m, "Graphics Interrupt mask: %08x\n",
795 I915_READ(GTIMR));
796 }
797 for_each_ring(ring, dev_priv, i) {
798 if (INTEL_INFO(dev)->gen >= 6) {
799 seq_printf(m,
800 "Graphics Interrupt mask (%s): %08x\n",
801 ring->name, I915_READ_IMR(ring));
802 }
803 i915_ring_seqno_info(m, ring);
804 }
805 intel_runtime_pm_put(dev_priv);
806 mutex_unlock(&dev->struct_mutex);
807
808 return 0;
809 }
810
811 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
812 {
813 struct drm_info_node *node = m->private;
814 struct drm_device *dev = node->minor->dev;
815 struct drm_i915_private *dev_priv = dev->dev_private;
816 int i, ret;
817
818 ret = mutex_lock_interruptible(&dev->struct_mutex);
819 if (ret)
820 return ret;
821
822 seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
823 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
824 for (i = 0; i < dev_priv->num_fence_regs; i++) {
825 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
826
827 seq_printf(m, "Fence %d, pin count = %d, object = ",
828 i, dev_priv->fence_regs[i].pin_count);
829 if (obj == NULL)
830 seq_puts(m, "unused");
831 else
832 describe_obj(m, obj);
833 seq_putc(m, '\n');
834 }
835
836 mutex_unlock(&dev->struct_mutex);
837 return 0;
838 }
839
840 static int i915_hws_info(struct seq_file *m, void *data)
841 {
842 struct drm_info_node *node = m->private;
843 struct drm_device *dev = node->minor->dev;
844 struct drm_i915_private *dev_priv = dev->dev_private;
845 struct intel_engine_cs *ring;
846 const u32 *hws;
847 int i;
848
849 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
850 hws = ring->status_page.page_addr;
851 if (hws == NULL)
852 return 0;
853
854 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
855 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
856 i * 4,
857 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
858 }
859 return 0;
860 }
861
862 static ssize_t
863 i915_error_state_write(struct file *filp,
864 const char __user *ubuf,
865 size_t cnt,
866 loff_t *ppos)
867 {
868 struct i915_error_state_file_priv *error_priv = filp->private_data;
869 struct drm_device *dev = error_priv->dev;
870 int ret;
871
872 DRM_DEBUG_DRIVER("Resetting error state\n");
873
874 ret = mutex_lock_interruptible(&dev->struct_mutex);
875 if (ret)
876 return ret;
877
878 i915_destroy_error_state(dev);
879 mutex_unlock(&dev->struct_mutex);
880
881 return cnt;
882 }
883
884 static int i915_error_state_open(struct inode *inode, struct file *file)
885 {
886 struct drm_device *dev = inode->i_private;
887 struct i915_error_state_file_priv *error_priv;
888
889 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
890 if (!error_priv)
891 return -ENOMEM;
892
893 error_priv->dev = dev;
894
895 i915_error_state_get(dev, error_priv);
896
897 file->private_data = error_priv;
898
899 return 0;
900 }
901
902 static int i915_error_state_release(struct inode *inode, struct file *file)
903 {
904 struct i915_error_state_file_priv *error_priv = file->private_data;
905
906 i915_error_state_put(error_priv);
907 kfree(error_priv);
908
909 return 0;
910 }
911
912 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
913 size_t count, loff_t *pos)
914 {
915 struct i915_error_state_file_priv *error_priv = file->private_data;
916 struct drm_i915_error_state_buf error_str;
917 loff_t tmp_pos = 0;
918 ssize_t ret_count = 0;
919 int ret;
920
921 ret = i915_error_state_buf_init(&error_str, count, *pos);
922 if (ret)
923 return ret;
924
925 ret = i915_error_state_to_str(&error_str, error_priv);
926 if (ret)
927 goto out;
928
929 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
930 error_str.buf,
931 error_str.bytes);
932
933 if (ret_count < 0)
934 ret = ret_count;
935 else
936 *pos = error_str.start + ret_count;
937 out:
938 i915_error_state_buf_release(&error_str);
939 return ret ?: ret_count;
940 }
941
942 static const struct file_operations i915_error_state_fops = {
943 .owner = THIS_MODULE,
944 .open = i915_error_state_open,
945 .read = i915_error_state_read,
946 .write = i915_error_state_write,
947 .llseek = default_llseek,
948 .release = i915_error_state_release,
949 };
950
951 static int
952 i915_next_seqno_get(void *data, u64 *val)
953 {
954 struct drm_device *dev = data;
955 struct drm_i915_private *dev_priv = dev->dev_private;
956 int ret;
957
958 ret = mutex_lock_interruptible(&dev->struct_mutex);
959 if (ret)
960 return ret;
961
962 *val = dev_priv->next_seqno;
963 mutex_unlock(&dev->struct_mutex);
964
965 return 0;
966 }
967
968 static int
969 i915_next_seqno_set(void *data, u64 val)
970 {
971 struct drm_device *dev = data;
972 int ret;
973
974 ret = mutex_lock_interruptible(&dev->struct_mutex);
975 if (ret)
976 return ret;
977
978 ret = i915_gem_set_seqno(dev, val);
979 mutex_unlock(&dev->struct_mutex);
980
981 return ret;
982 }
983
984 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
985 i915_next_seqno_get, i915_next_seqno_set,
986 "0x%llx\n");
987
988 static int i915_rstdby_delays(struct seq_file *m, void *unused)
989 {
990 struct drm_info_node *node = m->private;
991 struct drm_device *dev = node->minor->dev;
992 struct drm_i915_private *dev_priv = dev->dev_private;
993 u16 crstanddelay;
994 int ret;
995
996 ret = mutex_lock_interruptible(&dev->struct_mutex);
997 if (ret)
998 return ret;
999 intel_runtime_pm_get(dev_priv);
1000
1001 crstanddelay = I915_READ16(CRSTANDVID);
1002
1003 intel_runtime_pm_put(dev_priv);
1004 mutex_unlock(&dev->struct_mutex);
1005
1006 seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
1007
1008 return 0;
1009 }
1010
1011 static int i915_frequency_info(struct seq_file *m, void *unused)
1012 {
1013 struct drm_info_node *node = m->private;
1014 struct drm_device *dev = node->minor->dev;
1015 struct drm_i915_private *dev_priv = dev->dev_private;
1016 int ret = 0;
1017
1018 intel_runtime_pm_get(dev_priv);
1019
1020 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1021
1022 if (IS_GEN5(dev)) {
1023 u16 rgvswctl = I915_READ16(MEMSWCTL);
1024 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1025
1026 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1027 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1028 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1029 MEMSTAT_VID_SHIFT);
1030 seq_printf(m, "Current P-state: %d\n",
1031 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1032 } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
1033 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1034 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1035 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1036 u32 rpmodectl, rpinclimit, rpdeclimit;
1037 u32 rpstat, cagf, reqf;
1038 u32 rpupei, rpcurup, rpprevup;
1039 u32 rpdownei, rpcurdown, rpprevdown;
1040 int max_freq;
1041
1042 /* RPSTAT1 is in the GT power well */
1043 ret = mutex_lock_interruptible(&dev->struct_mutex);
1044 if (ret)
1045 goto out;
1046
1047 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
1048
1049 reqf = I915_READ(GEN6_RPNSWREQ);
1050 reqf &= ~GEN6_TURBO_DISABLE;
1051 if (IS_HASWELL(dev))
1052 reqf >>= 24;
1053 else
1054 reqf >>= 25;
1055 reqf *= GT_FREQUENCY_MULTIPLIER;
1056
1057 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1058 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1059 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1060
1061 rpstat = I915_READ(GEN6_RPSTAT1);
1062 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1063 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1064 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1065 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1066 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1067 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1068 if (IS_HASWELL(dev))
1069 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1070 else
1071 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1072 cagf *= GT_FREQUENCY_MULTIPLIER;
1073
1074 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
1075 mutex_unlock(&dev->struct_mutex);
1076
1077 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1078 I915_READ(GEN6_PMIER),
1079 I915_READ(GEN6_PMIMR),
1080 I915_READ(GEN6_PMISR),
1081 I915_READ(GEN6_PMIIR),
1082 I915_READ(GEN6_PMINTRMSK));
1083 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1084 seq_printf(m, "Render p-state ratio: %d\n",
1085 (gt_perf_status & 0xff00) >> 8);
1086 seq_printf(m, "Render p-state VID: %d\n",
1087 gt_perf_status & 0xff);
1088 seq_printf(m, "Render p-state limit: %d\n",
1089 rp_state_limits & 0xff);
1090 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1091 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1092 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1093 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1094 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1095 seq_printf(m, "CAGF: %dMHz\n", cagf);
1096 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1097 GEN6_CURICONT_MASK);
1098 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1099 GEN6_CURBSYTAVG_MASK);
1100 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1101 GEN6_CURBSYTAVG_MASK);
1102 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1103 GEN6_CURIAVG_MASK);
1104 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1105 GEN6_CURBSYTAVG_MASK);
1106 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1107 GEN6_CURBSYTAVG_MASK);
1108
1109 max_freq = (rp_state_cap & 0xff0000) >> 16;
1110 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1111 max_freq * GT_FREQUENCY_MULTIPLIER);
1112
1113 max_freq = (rp_state_cap & 0xff00) >> 8;
1114 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1115 max_freq * GT_FREQUENCY_MULTIPLIER);
1116
1117 max_freq = rp_state_cap & 0xff;
1118 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1119 max_freq * GT_FREQUENCY_MULTIPLIER);
1120
1121 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1122 dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
1123 } else if (IS_VALLEYVIEW(dev)) {
1124 u32 freq_sts, val;
1125
1126 mutex_lock(&dev_priv->rps.hw_lock);
1127 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1128 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1129 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1130
1131 val = valleyview_rps_max_freq(dev_priv);
1132 seq_printf(m, "max GPU freq: %d MHz\n",
1133 vlv_gpu_freq(dev_priv, val));
1134
1135 val = valleyview_rps_min_freq(dev_priv);
1136 seq_printf(m, "min GPU freq: %d MHz\n",
1137 vlv_gpu_freq(dev_priv, val));
1138
1139 seq_printf(m, "current GPU freq: %d MHz\n",
1140 vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1141 mutex_unlock(&dev_priv->rps.hw_lock);
1142 } else {
1143 seq_puts(m, "no P-state info available\n");
1144 }
1145
1146 out:
1147 intel_runtime_pm_put(dev_priv);
1148 return ret;
1149 }
1150
1151 static int i915_delayfreq_table(struct seq_file *m, void *unused)
1152 {
1153 struct drm_info_node *node = m->private;
1154 struct drm_device *dev = node->minor->dev;
1155 struct drm_i915_private *dev_priv = dev->dev_private;
1156 u32 delayfreq;
1157 int ret, i;
1158
1159 ret = mutex_lock_interruptible(&dev->struct_mutex);
1160 if (ret)
1161 return ret;
1162 intel_runtime_pm_get(dev_priv);
1163
1164 for (i = 0; i < 16; i++) {
1165 delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
1166 seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
1167 (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
1168 }
1169
1170 intel_runtime_pm_put(dev_priv);
1171
1172 mutex_unlock(&dev->struct_mutex);
1173
1174 return 0;
1175 }
1176
1177 static inline int MAP_TO_MV(int map)
1178 {
1179 return 1250 - (map * 25);
1180 }
1181
1182 static int i915_inttoext_table(struct seq_file *m, void *unused)
1183 {
1184 struct drm_info_node *node = m->private;
1185 struct drm_device *dev = node->minor->dev;
1186 struct drm_i915_private *dev_priv = dev->dev_private;
1187 u32 inttoext;
1188 int ret, i;
1189
1190 ret = mutex_lock_interruptible(&dev->struct_mutex);
1191 if (ret)
1192 return ret;
1193 intel_runtime_pm_get(dev_priv);
1194
1195 for (i = 1; i <= 32; i++) {
1196 inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
1197 seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
1198 }
1199
1200 intel_runtime_pm_put(dev_priv);
1201 mutex_unlock(&dev->struct_mutex);
1202
1203 return 0;
1204 }
1205
1206 static int ironlake_drpc_info(struct seq_file *m)
1207 {
1208 struct drm_info_node *node = m->private;
1209 struct drm_device *dev = node->minor->dev;
1210 struct drm_i915_private *dev_priv = dev->dev_private;
1211 u32 rgvmodectl, rstdbyctl;
1212 u16 crstandvid;
1213 int ret;
1214
1215 ret = mutex_lock_interruptible(&dev->struct_mutex);
1216 if (ret)
1217 return ret;
1218 intel_runtime_pm_get(dev_priv);
1219
1220 rgvmodectl = I915_READ(MEMMODECTL);
1221 rstdbyctl = I915_READ(RSTDBYCTL);
1222 crstandvid = I915_READ16(CRSTANDVID);
1223
1224 intel_runtime_pm_put(dev_priv);
1225 mutex_unlock(&dev->struct_mutex);
1226
1227 seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1228 "yes" : "no");
1229 seq_printf(m, "Boost freq: %d\n",
1230 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1231 MEMMODE_BOOST_FREQ_SHIFT);
1232 seq_printf(m, "HW control enabled: %s\n",
1233 rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1234 seq_printf(m, "SW control enabled: %s\n",
1235 rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1236 seq_printf(m, "Gated voltage change: %s\n",
1237 rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1238 seq_printf(m, "Starting frequency: P%d\n",
1239 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1240 seq_printf(m, "Max P-state: P%d\n",
1241 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1242 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1243 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1244 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1245 seq_printf(m, "Render standby enabled: %s\n",
1246 (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1247 seq_puts(m, "Current RS state: ");
1248 switch (rstdbyctl & RSX_STATUS_MASK) {
1249 case RSX_STATUS_ON:
1250 seq_puts(m, "on\n");
1251 break;
1252 case RSX_STATUS_RC1:
1253 seq_puts(m, "RC1\n");
1254 break;
1255 case RSX_STATUS_RC1E:
1256 seq_puts(m, "RC1E\n");
1257 break;
1258 case RSX_STATUS_RS1:
1259 seq_puts(m, "RS1\n");
1260 break;
1261 case RSX_STATUS_RS2:
1262 seq_puts(m, "RS2 (RC6)\n");
1263 break;
1264 case RSX_STATUS_RS3:
1265 seq_puts(m, "RC3 (RC6+)\n");
1266 break;
1267 default:
1268 seq_puts(m, "unknown\n");
1269 break;
1270 }
1271
1272 return 0;
1273 }
1274
1275 static int vlv_drpc_info(struct seq_file *m)
1276 {
1277
1278 struct drm_info_node *node = m->private;
1279 struct drm_device *dev = node->minor->dev;
1280 struct drm_i915_private *dev_priv = dev->dev_private;
1281 u32 rpmodectl1, rcctl1;
1282 unsigned fw_rendercount = 0, fw_mediacount = 0;
1283
1284 intel_runtime_pm_get(dev_priv);
1285
1286 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1287 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1288
1289 intel_runtime_pm_put(dev_priv);
1290
1291 seq_printf(m, "Video Turbo Mode: %s\n",
1292 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1293 seq_printf(m, "Turbo enabled: %s\n",
1294 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1295 seq_printf(m, "HW control enabled: %s\n",
1296 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1297 seq_printf(m, "SW control enabled: %s\n",
1298 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1299 GEN6_RP_MEDIA_SW_MODE));
1300 seq_printf(m, "RC6 Enabled: %s\n",
1301 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1302 GEN6_RC_CTL_EI_MODE(1))));
1303 seq_printf(m, "Render Power Well: %s\n",
1304 (I915_READ(VLV_GTLC_PW_STATUS) &
1305 VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1306 seq_printf(m, "Media Power Well: %s\n",
1307 (I915_READ(VLV_GTLC_PW_STATUS) &
1308 VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1309
1310 seq_printf(m, "Render RC6 residency since boot: %u\n",
1311 I915_READ(VLV_GT_RENDER_RC6));
1312 seq_printf(m, "Media RC6 residency since boot: %u\n",
1313 I915_READ(VLV_GT_MEDIA_RC6));
1314
1315 spin_lock_irq(&dev_priv->uncore.lock);
1316 fw_rendercount = dev_priv->uncore.fw_rendercount;
1317 fw_mediacount = dev_priv->uncore.fw_mediacount;
1318 spin_unlock_irq(&dev_priv->uncore.lock);
1319
1320 seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1321 seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1322
1323
1324 return 0;
1325 }
1326
1327
1328 static int gen6_drpc_info(struct seq_file *m)
1329 {
1330
1331 struct drm_info_node *node = m->private;
1332 struct drm_device *dev = node->minor->dev;
1333 struct drm_i915_private *dev_priv = dev->dev_private;
1334 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1335 unsigned forcewake_count;
1336 int count = 0, ret;
1337
1338 ret = mutex_lock_interruptible(&dev->struct_mutex);
1339 if (ret)
1340 return ret;
1341 intel_runtime_pm_get(dev_priv);
1342
1343 spin_lock_irq(&dev_priv->uncore.lock);
1344 forcewake_count = dev_priv->uncore.forcewake_count;
1345 spin_unlock_irq(&dev_priv->uncore.lock);
1346
1347 if (forcewake_count) {
1348 seq_puts(m, "RC information inaccurate because somebody "
1349 "holds a forcewake reference \n");
1350 } else {
1351 /* NB: we cannot use forcewake, else we read the wrong values */
1352 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1353 udelay(10);
1354 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1355 }
1356
1357 gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1358 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1359
1360 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1361 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1362 mutex_unlock(&dev->struct_mutex);
1363 mutex_lock(&dev_priv->rps.hw_lock);
1364 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1365 mutex_unlock(&dev_priv->rps.hw_lock);
1366
1367 intel_runtime_pm_put(dev_priv);
1368
1369 seq_printf(m, "Video Turbo Mode: %s\n",
1370 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1371 seq_printf(m, "HW control enabled: %s\n",
1372 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1373 seq_printf(m, "SW control enabled: %s\n",
1374 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1375 GEN6_RP_MEDIA_SW_MODE));
1376 seq_printf(m, "RC1e Enabled: %s\n",
1377 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1378 seq_printf(m, "RC6 Enabled: %s\n",
1379 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1380 seq_printf(m, "Deep RC6 Enabled: %s\n",
1381 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1382 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1383 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1384 seq_puts(m, "Current RC state: ");
1385 switch (gt_core_status & GEN6_RCn_MASK) {
1386 case GEN6_RC0:
1387 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1388 seq_puts(m, "Core Power Down\n");
1389 else
1390 seq_puts(m, "on\n");
1391 break;
1392 case GEN6_RC3:
1393 seq_puts(m, "RC3\n");
1394 break;
1395 case GEN6_RC6:
1396 seq_puts(m, "RC6\n");
1397 break;
1398 case GEN6_RC7:
1399 seq_puts(m, "RC7\n");
1400 break;
1401 default:
1402 seq_puts(m, "Unknown\n");
1403 break;
1404 }
1405
1406 seq_printf(m, "Core Power Down: %s\n",
1407 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1408
1409 /* Not exactly sure what this is */
1410 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1411 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1412 seq_printf(m, "RC6 residency since boot: %u\n",
1413 I915_READ(GEN6_GT_GFX_RC6));
1414 seq_printf(m, "RC6+ residency since boot: %u\n",
1415 I915_READ(GEN6_GT_GFX_RC6p));
1416 seq_printf(m, "RC6++ residency since boot: %u\n",
1417 I915_READ(GEN6_GT_GFX_RC6pp));
1418
1419 seq_printf(m, "RC6 voltage: %dmV\n",
1420 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1421 seq_printf(m, "RC6+ voltage: %dmV\n",
1422 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1423 seq_printf(m, "RC6++ voltage: %dmV\n",
1424 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1425 return 0;
1426 }
1427
1428 static int i915_drpc_info(struct seq_file *m, void *unused)
1429 {
1430 struct drm_info_node *node = m->private;
1431 struct drm_device *dev = node->minor->dev;
1432
1433 if (IS_VALLEYVIEW(dev))
1434 return vlv_drpc_info(m);
1435 else if (IS_GEN6(dev) || IS_GEN7(dev))
1436 return gen6_drpc_info(m);
1437 else
1438 return ironlake_drpc_info(m);
1439 }
1440
1441 static int i915_fbc_status(struct seq_file *m, void *unused)
1442 {
1443 struct drm_info_node *node = m->private;
1444 struct drm_device *dev = node->minor->dev;
1445 struct drm_i915_private *dev_priv = dev->dev_private;
1446
1447 if (!HAS_FBC(dev)) {
1448 seq_puts(m, "FBC unsupported on this chipset\n");
1449 return 0;
1450 }
1451
1452 intel_runtime_pm_get(dev_priv);
1453
1454 if (intel_fbc_enabled(dev)) {
1455 seq_puts(m, "FBC enabled\n");
1456 } else {
1457 seq_puts(m, "FBC disabled: ");
1458 switch (dev_priv->fbc.no_fbc_reason) {
1459 case FBC_OK:
1460 seq_puts(m, "FBC actived, but currently disabled in hardware");
1461 break;
1462 case FBC_UNSUPPORTED:
1463 seq_puts(m, "unsupported by this chipset");
1464 break;
1465 case FBC_NO_OUTPUT:
1466 seq_puts(m, "no outputs");
1467 break;
1468 case FBC_STOLEN_TOO_SMALL:
1469 seq_puts(m, "not enough stolen memory");
1470 break;
1471 case FBC_UNSUPPORTED_MODE:
1472 seq_puts(m, "mode not supported");
1473 break;
1474 case FBC_MODE_TOO_LARGE:
1475 seq_puts(m, "mode too large");
1476 break;
1477 case FBC_BAD_PLANE:
1478 seq_puts(m, "FBC unsupported on plane");
1479 break;
1480 case FBC_NOT_TILED:
1481 seq_puts(m, "scanout buffer not tiled");
1482 break;
1483 case FBC_MULTIPLE_PIPES:
1484 seq_puts(m, "multiple pipes are enabled");
1485 break;
1486 case FBC_MODULE_PARAM:
1487 seq_puts(m, "disabled per module param (default off)");
1488 break;
1489 case FBC_CHIP_DEFAULT:
1490 seq_puts(m, "disabled per chip default");
1491 break;
1492 default:
1493 seq_puts(m, "unknown reason");
1494 }
1495 seq_putc(m, '\n');
1496 }
1497
1498 intel_runtime_pm_put(dev_priv);
1499
1500 return 0;
1501 }
1502
1503 static int i915_ips_status(struct seq_file *m, void *unused)
1504 {
1505 struct drm_info_node *node = m->private;
1506 struct drm_device *dev = node->minor->dev;
1507 struct drm_i915_private *dev_priv = dev->dev_private;
1508
1509 if (!HAS_IPS(dev)) {
1510 seq_puts(m, "not supported\n");
1511 return 0;
1512 }
1513
1514 intel_runtime_pm_get(dev_priv);
1515
1516 if (IS_BROADWELL(dev) || I915_READ(IPS_CTL) & IPS_ENABLE)
1517 seq_puts(m, "enabled\n");
1518 else
1519 seq_puts(m, "disabled\n");
1520
1521 intel_runtime_pm_put(dev_priv);
1522
1523 return 0;
1524 }
1525
1526 static int i915_sr_status(struct seq_file *m, void *unused)
1527 {
1528 struct drm_info_node *node = m->private;
1529 struct drm_device *dev = node->minor->dev;
1530 struct drm_i915_private *dev_priv = dev->dev_private;
1531 bool sr_enabled = false;
1532
1533 intel_runtime_pm_get(dev_priv);
1534
1535 if (HAS_PCH_SPLIT(dev))
1536 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1537 else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1538 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1539 else if (IS_I915GM(dev))
1540 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1541 else if (IS_PINEVIEW(dev))
1542 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1543
1544 intel_runtime_pm_put(dev_priv);
1545
1546 seq_printf(m, "self-refresh: %s\n",
1547 sr_enabled ? "enabled" : "disabled");
1548
1549 return 0;
1550 }
1551
1552 static int i915_emon_status(struct seq_file *m, void *unused)
1553 {
1554 struct drm_info_node *node = m->private;
1555 struct drm_device *dev = node->minor->dev;
1556 struct drm_i915_private *dev_priv = dev->dev_private;
1557 unsigned long temp, chipset, gfx;
1558 int ret;
1559
1560 if (!IS_GEN5(dev))
1561 return -ENODEV;
1562
1563 ret = mutex_lock_interruptible(&dev->struct_mutex);
1564 if (ret)
1565 return ret;
1566
1567 temp = i915_mch_val(dev_priv);
1568 chipset = i915_chipset_val(dev_priv);
1569 gfx = i915_gfx_val(dev_priv);
1570 mutex_unlock(&dev->struct_mutex);
1571
1572 seq_printf(m, "GMCH temp: %ld\n", temp);
1573 seq_printf(m, "Chipset power: %ld\n", chipset);
1574 seq_printf(m, "GFX power: %ld\n", gfx);
1575 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1576
1577 return 0;
1578 }
1579
1580 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1581 {
1582 struct drm_info_node *node = m->private;
1583 struct drm_device *dev = node->minor->dev;
1584 struct drm_i915_private *dev_priv = dev->dev_private;
1585 int ret = 0;
1586 int gpu_freq, ia_freq;
1587
1588 if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1589 seq_puts(m, "unsupported on this chipset\n");
1590 return 0;
1591 }
1592
1593 intel_runtime_pm_get(dev_priv);
1594
1595 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1596
1597 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1598 if (ret)
1599 goto out;
1600
1601 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1602
1603 for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1604 gpu_freq <= dev_priv->rps.max_freq_softlimit;
1605 gpu_freq++) {
1606 ia_freq = gpu_freq;
1607 sandybridge_pcode_read(dev_priv,
1608 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1609 &ia_freq);
1610 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1611 gpu_freq * GT_FREQUENCY_MULTIPLIER,
1612 ((ia_freq >> 0) & 0xff) * 100,
1613 ((ia_freq >> 8) & 0xff) * 100);
1614 }
1615
1616 mutex_unlock(&dev_priv->rps.hw_lock);
1617
1618 out:
1619 intel_runtime_pm_put(dev_priv);
1620 return ret;
1621 }
1622
1623 static int i915_gfxec(struct seq_file *m, void *unused)
1624 {
1625 struct drm_info_node *node = m->private;
1626 struct drm_device *dev = node->minor->dev;
1627 struct drm_i915_private *dev_priv = dev->dev_private;
1628 int ret;
1629
1630 ret = mutex_lock_interruptible(&dev->struct_mutex);
1631 if (ret)
1632 return ret;
1633 intel_runtime_pm_get(dev_priv);
1634
1635 seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
1636 intel_runtime_pm_put(dev_priv);
1637
1638 mutex_unlock(&dev->struct_mutex);
1639
1640 return 0;
1641 }
1642
1643 static int i915_opregion(struct seq_file *m, void *unused)
1644 {
1645 struct drm_info_node *node = m->private;
1646 struct drm_device *dev = node->minor->dev;
1647 struct drm_i915_private *dev_priv = dev->dev_private;
1648 struct intel_opregion *opregion = &dev_priv->opregion;
1649 void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1650 int ret;
1651
1652 if (data == NULL)
1653 return -ENOMEM;
1654
1655 ret = mutex_lock_interruptible(&dev->struct_mutex);
1656 if (ret)
1657 goto out;
1658
1659 if (opregion->header) {
1660 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1661 seq_write(m, data, OPREGION_SIZE);
1662 }
1663
1664 mutex_unlock(&dev->struct_mutex);
1665
1666 out:
1667 kfree(data);
1668 return 0;
1669 }
1670
1671 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1672 {
1673 struct drm_info_node *node = m->private;
1674 struct drm_device *dev = node->minor->dev;
1675 struct intel_fbdev *ifbdev = NULL;
1676 struct intel_framebuffer *fb;
1677
1678 #ifdef CONFIG_DRM_I915_FBDEV
1679 struct drm_i915_private *dev_priv = dev->dev_private;
1680 int ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1681 if (ret)
1682 return ret;
1683
1684 ifbdev = dev_priv->fbdev;
1685 fb = to_intel_framebuffer(ifbdev->helper.fb);
1686
1687 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1688 fb->base.width,
1689 fb->base.height,
1690 fb->base.depth,
1691 fb->base.bits_per_pixel,
1692 atomic_read(&fb->base.refcount.refcount));
1693 describe_obj(m, fb->obj);
1694 seq_putc(m, '\n');
1695 mutex_unlock(&dev->mode_config.mutex);
1696 #endif
1697
1698 mutex_lock(&dev->mode_config.fb_lock);
1699 list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1700 if (ifbdev && &fb->base == ifbdev->helper.fb)
1701 continue;
1702
1703 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1704 fb->base.width,
1705 fb->base.height,
1706 fb->base.depth,
1707 fb->base.bits_per_pixel,
1708 atomic_read(&fb->base.refcount.refcount));
1709 describe_obj(m, fb->obj);
1710 seq_putc(m, '\n');
1711 }
1712 mutex_unlock(&dev->mode_config.fb_lock);
1713
1714 return 0;
1715 }
1716
1717 static int i915_context_status(struct seq_file *m, void *unused)
1718 {
1719 struct drm_info_node *node = m->private;
1720 struct drm_device *dev = node->minor->dev;
1721 struct drm_i915_private *dev_priv = dev->dev_private;
1722 struct intel_engine_cs *ring;
1723 struct intel_context *ctx;
1724 int ret, i;
1725
1726 ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1727 if (ret)
1728 return ret;
1729
1730 if (dev_priv->ips.pwrctx) {
1731 seq_puts(m, "power context ");
1732 describe_obj(m, dev_priv->ips.pwrctx);
1733 seq_putc(m, '\n');
1734 }
1735
1736 if (dev_priv->ips.renderctx) {
1737 seq_puts(m, "render context ");
1738 describe_obj(m, dev_priv->ips.renderctx);
1739 seq_putc(m, '\n');
1740 }
1741
1742 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1743 if (ctx->obj == NULL)
1744 continue;
1745
1746 seq_puts(m, "HW context ");
1747 describe_ctx(m, ctx);
1748 for_each_ring(ring, dev_priv, i)
1749 if (ring->default_context == ctx)
1750 seq_printf(m, "(default context %s) ", ring->name);
1751
1752 describe_obj(m, ctx->obj);
1753 seq_putc(m, '\n');
1754 }
1755
1756 mutex_unlock(&dev->mode_config.mutex);
1757
1758 return 0;
1759 }
1760
1761 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1762 {
1763 struct drm_info_node *node = m->private;
1764 struct drm_device *dev = node->minor->dev;
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1767
1768 spin_lock_irq(&dev_priv->uncore.lock);
1769 if (IS_VALLEYVIEW(dev)) {
1770 fw_rendercount = dev_priv->uncore.fw_rendercount;
1771 fw_mediacount = dev_priv->uncore.fw_mediacount;
1772 } else
1773 forcewake_count = dev_priv->uncore.forcewake_count;
1774 spin_unlock_irq(&dev_priv->uncore.lock);
1775
1776 if (IS_VALLEYVIEW(dev)) {
1777 seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1778 seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1779 } else
1780 seq_printf(m, "forcewake count = %u\n", forcewake_count);
1781
1782 return 0;
1783 }
1784
1785 static const char *swizzle_string(unsigned swizzle)
1786 {
1787 switch (swizzle) {
1788 case I915_BIT_6_SWIZZLE_NONE:
1789 return "none";
1790 case I915_BIT_6_SWIZZLE_9:
1791 return "bit9";
1792 case I915_BIT_6_SWIZZLE_9_10:
1793 return "bit9/bit10";
1794 case I915_BIT_6_SWIZZLE_9_11:
1795 return "bit9/bit11";
1796 case I915_BIT_6_SWIZZLE_9_10_11:
1797 return "bit9/bit10/bit11";
1798 case I915_BIT_6_SWIZZLE_9_17:
1799 return "bit9/bit17";
1800 case I915_BIT_6_SWIZZLE_9_10_17:
1801 return "bit9/bit10/bit17";
1802 case I915_BIT_6_SWIZZLE_UNKNOWN:
1803 return "unknown";
1804 }
1805
1806 return "bug";
1807 }
1808
1809 static int i915_swizzle_info(struct seq_file *m, void *data)
1810 {
1811 struct drm_info_node *node = m->private;
1812 struct drm_device *dev = node->minor->dev;
1813 struct drm_i915_private *dev_priv = dev->dev_private;
1814 int ret;
1815
1816 ret = mutex_lock_interruptible(&dev->struct_mutex);
1817 if (ret)
1818 return ret;
1819 intel_runtime_pm_get(dev_priv);
1820
1821 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1822 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1823 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1824 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1825
1826 if (IS_GEN3(dev) || IS_GEN4(dev)) {
1827 seq_printf(m, "DDC = 0x%08x\n",
1828 I915_READ(DCC));
1829 seq_printf(m, "C0DRB3 = 0x%04x\n",
1830 I915_READ16(C0DRB3));
1831 seq_printf(m, "C1DRB3 = 0x%04x\n",
1832 I915_READ16(C1DRB3));
1833 } else if (INTEL_INFO(dev)->gen >= 6) {
1834 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1835 I915_READ(MAD_DIMM_C0));
1836 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1837 I915_READ(MAD_DIMM_C1));
1838 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1839 I915_READ(MAD_DIMM_C2));
1840 seq_printf(m, "TILECTL = 0x%08x\n",
1841 I915_READ(TILECTL));
1842 if (IS_GEN8(dev))
1843 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1844 I915_READ(GAMTARBMODE));
1845 else
1846 seq_printf(m, "ARB_MODE = 0x%08x\n",
1847 I915_READ(ARB_MODE));
1848 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1849 I915_READ(DISP_ARB_CTL));
1850 }
1851 intel_runtime_pm_put(dev_priv);
1852 mutex_unlock(&dev->struct_mutex);
1853
1854 return 0;
1855 }
1856
1857 static int per_file_ctx(int id, void *ptr, void *data)
1858 {
1859 struct intel_context *ctx = ptr;
1860 struct seq_file *m = data;
1861 struct i915_hw_ppgtt *ppgtt = ctx_to_ppgtt(ctx);
1862
1863 if (i915_gem_context_is_default(ctx))
1864 seq_puts(m, " default context:\n");
1865 else
1866 seq_printf(m, " context %d:\n", ctx->id);
1867 ppgtt->debug_dump(ppgtt, m);
1868
1869 return 0;
1870 }
1871
1872 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1873 {
1874 struct drm_i915_private *dev_priv = dev->dev_private;
1875 struct intel_engine_cs *ring;
1876 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1877 int unused, i;
1878
1879 if (!ppgtt)
1880 return;
1881
1882 seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
1883 seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
1884 for_each_ring(ring, dev_priv, unused) {
1885 seq_printf(m, "%s\n", ring->name);
1886 for (i = 0; i < 4; i++) {
1887 u32 offset = 0x270 + i * 8;
1888 u64 pdp = I915_READ(ring->mmio_base + offset + 4);
1889 pdp <<= 32;
1890 pdp |= I915_READ(ring->mmio_base + offset);
1891 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
1892 }
1893 }
1894 }
1895
1896 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1897 {
1898 struct drm_i915_private *dev_priv = dev->dev_private;
1899 struct intel_engine_cs *ring;
1900 struct drm_file *file;
1901 int i;
1902
1903 if (INTEL_INFO(dev)->gen == 6)
1904 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
1905
1906 for_each_ring(ring, dev_priv, i) {
1907 seq_printf(m, "%s\n", ring->name);
1908 if (INTEL_INFO(dev)->gen == 7)
1909 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
1910 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
1911 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
1912 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
1913 }
1914 if (dev_priv->mm.aliasing_ppgtt) {
1915 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1916
1917 seq_puts(m, "aliasing PPGTT:\n");
1918 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
1919
1920 ppgtt->debug_dump(ppgtt, m);
1921 } else
1922 return;
1923
1924 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
1925 struct drm_i915_file_private *file_priv = file->driver_priv;
1926
1927 seq_printf(m, "proc: %s\n",
1928 get_pid_task(file->pid, PIDTYPE_PID)->comm);
1929 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
1930 }
1931 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
1932 }
1933
1934 static int i915_ppgtt_info(struct seq_file *m, void *data)
1935 {
1936 struct drm_info_node *node = m->private;
1937 struct drm_device *dev = node->minor->dev;
1938 struct drm_i915_private *dev_priv = dev->dev_private;
1939
1940 int ret = mutex_lock_interruptible(&dev->struct_mutex);
1941 if (ret)
1942 return ret;
1943 intel_runtime_pm_get(dev_priv);
1944
1945 if (INTEL_INFO(dev)->gen >= 8)
1946 gen8_ppgtt_info(m, dev);
1947 else if (INTEL_INFO(dev)->gen >= 6)
1948 gen6_ppgtt_info(m, dev);
1949
1950 intel_runtime_pm_put(dev_priv);
1951 mutex_unlock(&dev->struct_mutex);
1952
1953 return 0;
1954 }
1955
1956 static int i915_llc(struct seq_file *m, void *data)
1957 {
1958 struct drm_info_node *node = m->private;
1959 struct drm_device *dev = node->minor->dev;
1960 struct drm_i915_private *dev_priv = dev->dev_private;
1961
1962 /* Size calculation for LLC is a bit of a pain. Ignore for now. */
1963 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
1964 seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
1965
1966 return 0;
1967 }
1968
1969 static int i915_edp_psr_status(struct seq_file *m, void *data)
1970 {
1971 struct drm_info_node *node = m->private;
1972 struct drm_device *dev = node->minor->dev;
1973 struct drm_i915_private *dev_priv = dev->dev_private;
1974 u32 psrperf = 0;
1975 bool enabled = false;
1976
1977 intel_runtime_pm_get(dev_priv);
1978
1979 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
1980 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
1981
1982 enabled = HAS_PSR(dev) &&
1983 I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1984 seq_printf(m, "Enabled: %s\n", yesno(enabled));
1985
1986 if (HAS_PSR(dev))
1987 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
1988 EDP_PSR_PERF_CNT_MASK;
1989 seq_printf(m, "Performance_Counter: %u\n", psrperf);
1990
1991 intel_runtime_pm_put(dev_priv);
1992 return 0;
1993 }
1994
1995 static int i915_sink_crc(struct seq_file *m, void *data)
1996 {
1997 struct drm_info_node *node = m->private;
1998 struct drm_device *dev = node->minor->dev;
1999 struct intel_encoder *encoder;
2000 struct intel_connector *connector;
2001 struct intel_dp *intel_dp = NULL;
2002 int ret;
2003 u8 crc[6];
2004
2005 drm_modeset_lock_all(dev);
2006 list_for_each_entry(connector, &dev->mode_config.connector_list,
2007 base.head) {
2008
2009 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2010 continue;
2011
2012 if (!connector->base.encoder)
2013 continue;
2014
2015 encoder = to_intel_encoder(connector->base.encoder);
2016 if (encoder->type != INTEL_OUTPUT_EDP)
2017 continue;
2018
2019 intel_dp = enc_to_intel_dp(&encoder->base);
2020
2021 ret = intel_dp_sink_crc(intel_dp, crc);
2022 if (ret)
2023 goto out;
2024
2025 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2026 crc[0], crc[1], crc[2],
2027 crc[3], crc[4], crc[5]);
2028 goto out;
2029 }
2030 ret = -ENODEV;
2031 out:
2032 drm_modeset_unlock_all(dev);
2033 return ret;
2034 }
2035
2036 static int i915_energy_uJ(struct seq_file *m, void *data)
2037 {
2038 struct drm_info_node *node = m->private;
2039 struct drm_device *dev = node->minor->dev;
2040 struct drm_i915_private *dev_priv = dev->dev_private;
2041 u64 power;
2042 u32 units;
2043
2044 if (INTEL_INFO(dev)->gen < 6)
2045 return -ENODEV;
2046
2047 intel_runtime_pm_get(dev_priv);
2048
2049 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2050 power = (power & 0x1f00) >> 8;
2051 units = 1000000 / (1 << power); /* convert to uJ */
2052 power = I915_READ(MCH_SECP_NRG_STTS);
2053 power *= units;
2054
2055 intel_runtime_pm_put(dev_priv);
2056
2057 seq_printf(m, "%llu", (long long unsigned)power);
2058
2059 return 0;
2060 }
2061
2062 static int i915_pc8_status(struct seq_file *m, void *unused)
2063 {
2064 struct drm_info_node *node = m->private;
2065 struct drm_device *dev = node->minor->dev;
2066 struct drm_i915_private *dev_priv = dev->dev_private;
2067
2068 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2069 seq_puts(m, "not supported\n");
2070 return 0;
2071 }
2072
2073 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2074 seq_printf(m, "IRQs disabled: %s\n",
2075 yesno(dev_priv->pm.irqs_disabled));
2076
2077 return 0;
2078 }
2079
2080 static const char *power_domain_str(enum intel_display_power_domain domain)
2081 {
2082 switch (domain) {
2083 case POWER_DOMAIN_PIPE_A:
2084 return "PIPE_A";
2085 case POWER_DOMAIN_PIPE_B:
2086 return "PIPE_B";
2087 case POWER_DOMAIN_PIPE_C:
2088 return "PIPE_C";
2089 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2090 return "PIPE_A_PANEL_FITTER";
2091 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2092 return "PIPE_B_PANEL_FITTER";
2093 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2094 return "PIPE_C_PANEL_FITTER";
2095 case POWER_DOMAIN_TRANSCODER_A:
2096 return "TRANSCODER_A";
2097 case POWER_DOMAIN_TRANSCODER_B:
2098 return "TRANSCODER_B";
2099 case POWER_DOMAIN_TRANSCODER_C:
2100 return "TRANSCODER_C";
2101 case POWER_DOMAIN_TRANSCODER_EDP:
2102 return "TRANSCODER_EDP";
2103 case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2104 return "PORT_DDI_A_2_LANES";
2105 case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2106 return "PORT_DDI_A_4_LANES";
2107 case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2108 return "PORT_DDI_B_2_LANES";
2109 case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2110 return "PORT_DDI_B_4_LANES";
2111 case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2112 return "PORT_DDI_C_2_LANES";
2113 case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2114 return "PORT_DDI_C_4_LANES";
2115 case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2116 return "PORT_DDI_D_2_LANES";
2117 case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2118 return "PORT_DDI_D_4_LANES";
2119 case POWER_DOMAIN_PORT_DSI:
2120 return "PORT_DSI";
2121 case POWER_DOMAIN_PORT_CRT:
2122 return "PORT_CRT";
2123 case POWER_DOMAIN_PORT_OTHER:
2124 return "PORT_OTHER";
2125 case POWER_DOMAIN_VGA:
2126 return "VGA";
2127 case POWER_DOMAIN_AUDIO:
2128 return "AUDIO";
2129 case POWER_DOMAIN_INIT:
2130 return "INIT";
2131 default:
2132 WARN_ON(1);
2133 return "?";
2134 }
2135 }
2136
2137 static int i915_power_domain_info(struct seq_file *m, void *unused)
2138 {
2139 struct drm_info_node *node = m->private;
2140 struct drm_device *dev = node->minor->dev;
2141 struct drm_i915_private *dev_priv = dev->dev_private;
2142 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2143 int i;
2144
2145 mutex_lock(&power_domains->lock);
2146
2147 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2148 for (i = 0; i < power_domains->power_well_count; i++) {
2149 struct i915_power_well *power_well;
2150 enum intel_display_power_domain power_domain;
2151
2152 power_well = &power_domains->power_wells[i];
2153 seq_printf(m, "%-25s %d\n", power_well->name,
2154 power_well->count);
2155
2156 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2157 power_domain++) {
2158 if (!(BIT(power_domain) & power_well->domains))
2159 continue;
2160
2161 seq_printf(m, " %-23s %d\n",
2162 power_domain_str(power_domain),
2163 power_domains->domain_use_count[power_domain]);
2164 }
2165 }
2166
2167 mutex_unlock(&power_domains->lock);
2168
2169 return 0;
2170 }
2171
2172 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2173 struct drm_display_mode *mode)
2174 {
2175 int i;
2176
2177 for (i = 0; i < tabs; i++)
2178 seq_putc(m, '\t');
2179
2180 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2181 mode->base.id, mode->name,
2182 mode->vrefresh, mode->clock,
2183 mode->hdisplay, mode->hsync_start,
2184 mode->hsync_end, mode->htotal,
2185 mode->vdisplay, mode->vsync_start,
2186 mode->vsync_end, mode->vtotal,
2187 mode->type, mode->flags);
2188 }
2189
2190 static void intel_encoder_info(struct seq_file *m,
2191 struct intel_crtc *intel_crtc,
2192 struct intel_encoder *intel_encoder)
2193 {
2194 struct drm_info_node *node = m->private;
2195 struct drm_device *dev = node->minor->dev;
2196 struct drm_crtc *crtc = &intel_crtc->base;
2197 struct intel_connector *intel_connector;
2198 struct drm_encoder *encoder;
2199
2200 encoder = &intel_encoder->base;
2201 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2202 encoder->base.id, encoder->name);
2203 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2204 struct drm_connector *connector = &intel_connector->base;
2205 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2206 connector->base.id,
2207 connector->name,
2208 drm_get_connector_status_name(connector->status));
2209 if (connector->status == connector_status_connected) {
2210 struct drm_display_mode *mode = &crtc->mode;
2211 seq_printf(m, ", mode:\n");
2212 intel_seq_print_mode(m, 2, mode);
2213 } else {
2214 seq_putc(m, '\n');
2215 }
2216 }
2217 }
2218
2219 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2220 {
2221 struct drm_info_node *node = m->private;
2222 struct drm_device *dev = node->minor->dev;
2223 struct drm_crtc *crtc = &intel_crtc->base;
2224 struct intel_encoder *intel_encoder;
2225
2226 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2227 crtc->primary->fb->base.id, crtc->x, crtc->y,
2228 crtc->primary->fb->width, crtc->primary->fb->height);
2229 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2230 intel_encoder_info(m, intel_crtc, intel_encoder);
2231 }
2232
2233 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2234 {
2235 struct drm_display_mode *mode = panel->fixed_mode;
2236
2237 seq_printf(m, "\tfixed mode:\n");
2238 intel_seq_print_mode(m, 2, mode);
2239 }
2240
2241 static void intel_dp_info(struct seq_file *m,
2242 struct intel_connector *intel_connector)
2243 {
2244 struct intel_encoder *intel_encoder = intel_connector->encoder;
2245 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2246
2247 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2248 seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2249 "no");
2250 if (intel_encoder->type == INTEL_OUTPUT_EDP)
2251 intel_panel_info(m, &intel_connector->panel);
2252 }
2253
2254 static void intel_hdmi_info(struct seq_file *m,
2255 struct intel_connector *intel_connector)
2256 {
2257 struct intel_encoder *intel_encoder = intel_connector->encoder;
2258 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2259
2260 seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2261 "no");
2262 }
2263
2264 static void intel_lvds_info(struct seq_file *m,
2265 struct intel_connector *intel_connector)
2266 {
2267 intel_panel_info(m, &intel_connector->panel);
2268 }
2269
2270 static void intel_connector_info(struct seq_file *m,
2271 struct drm_connector *connector)
2272 {
2273 struct intel_connector *intel_connector = to_intel_connector(connector);
2274 struct intel_encoder *intel_encoder = intel_connector->encoder;
2275 struct drm_display_mode *mode;
2276
2277 seq_printf(m, "connector %d: type %s, status: %s\n",
2278 connector->base.id, connector->name,
2279 drm_get_connector_status_name(connector->status));
2280 if (connector->status == connector_status_connected) {
2281 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2282 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2283 connector->display_info.width_mm,
2284 connector->display_info.height_mm);
2285 seq_printf(m, "\tsubpixel order: %s\n",
2286 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2287 seq_printf(m, "\tCEA rev: %d\n",
2288 connector->display_info.cea_rev);
2289 }
2290 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2291 intel_encoder->type == INTEL_OUTPUT_EDP)
2292 intel_dp_info(m, intel_connector);
2293 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2294 intel_hdmi_info(m, intel_connector);
2295 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2296 intel_lvds_info(m, intel_connector);
2297
2298 seq_printf(m, "\tmodes:\n");
2299 list_for_each_entry(mode, &connector->modes, head)
2300 intel_seq_print_mode(m, 2, mode);
2301 }
2302
2303 static bool cursor_active(struct drm_device *dev, int pipe)
2304 {
2305 struct drm_i915_private *dev_priv = dev->dev_private;
2306 u32 state;
2307
2308 if (IS_845G(dev) || IS_I865G(dev))
2309 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2310 else
2311 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2312
2313 return state;
2314 }
2315
2316 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2317 {
2318 struct drm_i915_private *dev_priv = dev->dev_private;
2319 u32 pos;
2320
2321 pos = I915_READ(CURPOS(pipe));
2322
2323 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2324 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2325 *x = -*x;
2326
2327 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2328 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2329 *y = -*y;
2330
2331 return cursor_active(dev, pipe);
2332 }
2333
2334 static int i915_display_info(struct seq_file *m, void *unused)
2335 {
2336 struct drm_info_node *node = m->private;
2337 struct drm_device *dev = node->minor->dev;
2338 struct drm_i915_private *dev_priv = dev->dev_private;
2339 struct intel_crtc *crtc;
2340 struct drm_connector *connector;
2341
2342 intel_runtime_pm_get(dev_priv);
2343 drm_modeset_lock_all(dev);
2344 seq_printf(m, "CRTC info\n");
2345 seq_printf(m, "---------\n");
2346 for_each_intel_crtc(dev, crtc) {
2347 bool active;
2348 int x, y;
2349
2350 seq_printf(m, "CRTC %d: pipe: %c, active: %s\n",
2351 crtc->base.base.id, pipe_name(crtc->pipe),
2352 yesno(crtc->active));
2353 if (crtc->active) {
2354 intel_crtc_info(m, crtc);
2355
2356 active = cursor_position(dev, crtc->pipe, &x, &y);
2357 seq_printf(m, "\tcursor visible? %s, position (%d, %d), addr 0x%08x, active? %s\n",
2358 yesno(crtc->cursor_base),
2359 x, y, crtc->cursor_addr,
2360 yesno(active));
2361 }
2362
2363 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2364 yesno(!crtc->cpu_fifo_underrun_disabled),
2365 yesno(!crtc->pch_fifo_underrun_disabled));
2366 }
2367
2368 seq_printf(m, "\n");
2369 seq_printf(m, "Connector info\n");
2370 seq_printf(m, "--------------\n");
2371 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2372 intel_connector_info(m, connector);
2373 }
2374 drm_modeset_unlock_all(dev);
2375 intel_runtime_pm_put(dev_priv);
2376
2377 return 0;
2378 }
2379
2380 struct pipe_crc_info {
2381 const char *name;
2382 struct drm_device *dev;
2383 enum pipe pipe;
2384 };
2385
2386 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2387 {
2388 struct pipe_crc_info *info = inode->i_private;
2389 struct drm_i915_private *dev_priv = info->dev->dev_private;
2390 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2391
2392 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2393 return -ENODEV;
2394
2395 spin_lock_irq(&pipe_crc->lock);
2396
2397 if (pipe_crc->opened) {
2398 spin_unlock_irq(&pipe_crc->lock);
2399 return -EBUSY; /* already open */
2400 }
2401
2402 pipe_crc->opened = true;
2403 filep->private_data = inode->i_private;
2404
2405 spin_unlock_irq(&pipe_crc->lock);
2406
2407 return 0;
2408 }
2409
2410 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2411 {
2412 struct pipe_crc_info *info = inode->i_private;
2413 struct drm_i915_private *dev_priv = info->dev->dev_private;
2414 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2415
2416 spin_lock_irq(&pipe_crc->lock);
2417 pipe_crc->opened = false;
2418 spin_unlock_irq(&pipe_crc->lock);
2419
2420 return 0;
2421 }
2422
2423 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2424 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
2425 /* account for \'0' */
2426 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
2427
2428 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2429 {
2430 assert_spin_locked(&pipe_crc->lock);
2431 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2432 INTEL_PIPE_CRC_ENTRIES_NR);
2433 }
2434
2435 static ssize_t
2436 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2437 loff_t *pos)
2438 {
2439 struct pipe_crc_info *info = filep->private_data;
2440 struct drm_device *dev = info->dev;
2441 struct drm_i915_private *dev_priv = dev->dev_private;
2442 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2443 char buf[PIPE_CRC_BUFFER_LEN];
2444 int head, tail, n_entries, n;
2445 ssize_t bytes_read;
2446
2447 /*
2448 * Don't allow user space to provide buffers not big enough to hold
2449 * a line of data.
2450 */
2451 if (count < PIPE_CRC_LINE_LEN)
2452 return -EINVAL;
2453
2454 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2455 return 0;
2456
2457 /* nothing to read */
2458 spin_lock_irq(&pipe_crc->lock);
2459 while (pipe_crc_data_count(pipe_crc) == 0) {
2460 int ret;
2461
2462 if (filep->f_flags & O_NONBLOCK) {
2463 spin_unlock_irq(&pipe_crc->lock);
2464 return -EAGAIN;
2465 }
2466
2467 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2468 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2469 if (ret) {
2470 spin_unlock_irq(&pipe_crc->lock);
2471 return ret;
2472 }
2473 }
2474
2475 /* We now have one or more entries to read */
2476 head = pipe_crc->head;
2477 tail = pipe_crc->tail;
2478 n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2479 count / PIPE_CRC_LINE_LEN);
2480 spin_unlock_irq(&pipe_crc->lock);
2481
2482 bytes_read = 0;
2483 n = 0;
2484 do {
2485 struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2486 int ret;
2487
2488 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2489 "%8u %8x %8x %8x %8x %8x\n",
2490 entry->frame, entry->crc[0],
2491 entry->crc[1], entry->crc[2],
2492 entry->crc[3], entry->crc[4]);
2493
2494 ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2495 buf, PIPE_CRC_LINE_LEN);
2496 if (ret == PIPE_CRC_LINE_LEN)
2497 return -EFAULT;
2498
2499 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2500 tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2501 n++;
2502 } while (--n_entries);
2503
2504 spin_lock_irq(&pipe_crc->lock);
2505 pipe_crc->tail = tail;
2506 spin_unlock_irq(&pipe_crc->lock);
2507
2508 return bytes_read;
2509 }
2510
2511 static const struct file_operations i915_pipe_crc_fops = {
2512 .owner = THIS_MODULE,
2513 .open = i915_pipe_crc_open,
2514 .read = i915_pipe_crc_read,
2515 .release = i915_pipe_crc_release,
2516 };
2517
2518 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2519 {
2520 .name = "i915_pipe_A_crc",
2521 .pipe = PIPE_A,
2522 },
2523 {
2524 .name = "i915_pipe_B_crc",
2525 .pipe = PIPE_B,
2526 },
2527 {
2528 .name = "i915_pipe_C_crc",
2529 .pipe = PIPE_C,
2530 },
2531 };
2532
2533 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2534 enum pipe pipe)
2535 {
2536 struct drm_device *dev = minor->dev;
2537 struct dentry *ent;
2538 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2539
2540 info->dev = dev;
2541 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2542 &i915_pipe_crc_fops);
2543 if (!ent)
2544 return -ENOMEM;
2545
2546 return drm_add_fake_info_node(minor, ent, info);
2547 }
2548
2549 static const char * const pipe_crc_sources[] = {
2550 "none",
2551 "plane1",
2552 "plane2",
2553 "pf",
2554 "pipe",
2555 "TV",
2556 "DP-B",
2557 "DP-C",
2558 "DP-D",
2559 "auto",
2560 };
2561
2562 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2563 {
2564 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2565 return pipe_crc_sources[source];
2566 }
2567
2568 static int display_crc_ctl_show(struct seq_file *m, void *data)
2569 {
2570 struct drm_device *dev = m->private;
2571 struct drm_i915_private *dev_priv = dev->dev_private;
2572 int i;
2573
2574 for (i = 0; i < I915_MAX_PIPES; i++)
2575 seq_printf(m, "%c %s\n", pipe_name(i),
2576 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2577
2578 return 0;
2579 }
2580
2581 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2582 {
2583 struct drm_device *dev = inode->i_private;
2584
2585 return single_open(file, display_crc_ctl_show, dev);
2586 }
2587
2588 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2589 uint32_t *val)
2590 {
2591 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2592 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2593
2594 switch (*source) {
2595 case INTEL_PIPE_CRC_SOURCE_PIPE:
2596 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2597 break;
2598 case INTEL_PIPE_CRC_SOURCE_NONE:
2599 *val = 0;
2600 break;
2601 default:
2602 return -EINVAL;
2603 }
2604
2605 return 0;
2606 }
2607
2608 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2609 enum intel_pipe_crc_source *source)
2610 {
2611 struct intel_encoder *encoder;
2612 struct intel_crtc *crtc;
2613 struct intel_digital_port *dig_port;
2614 int ret = 0;
2615
2616 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2617
2618 drm_modeset_lock_all(dev);
2619 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2620 base.head) {
2621 if (!encoder->base.crtc)
2622 continue;
2623
2624 crtc = to_intel_crtc(encoder->base.crtc);
2625
2626 if (crtc->pipe != pipe)
2627 continue;
2628
2629 switch (encoder->type) {
2630 case INTEL_OUTPUT_TVOUT:
2631 *source = INTEL_PIPE_CRC_SOURCE_TV;
2632 break;
2633 case INTEL_OUTPUT_DISPLAYPORT:
2634 case INTEL_OUTPUT_EDP:
2635 dig_port = enc_to_dig_port(&encoder->base);
2636 switch (dig_port->port) {
2637 case PORT_B:
2638 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
2639 break;
2640 case PORT_C:
2641 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
2642 break;
2643 case PORT_D:
2644 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
2645 break;
2646 default:
2647 WARN(1, "nonexisting DP port %c\n",
2648 port_name(dig_port->port));
2649 break;
2650 }
2651 break;
2652 }
2653 }
2654 drm_modeset_unlock_all(dev);
2655
2656 return ret;
2657 }
2658
2659 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
2660 enum pipe pipe,
2661 enum intel_pipe_crc_source *source,
2662 uint32_t *val)
2663 {
2664 struct drm_i915_private *dev_priv = dev->dev_private;
2665 bool need_stable_symbols = false;
2666
2667 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2668 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2669 if (ret)
2670 return ret;
2671 }
2672
2673 switch (*source) {
2674 case INTEL_PIPE_CRC_SOURCE_PIPE:
2675 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
2676 break;
2677 case INTEL_PIPE_CRC_SOURCE_DP_B:
2678 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
2679 need_stable_symbols = true;
2680 break;
2681 case INTEL_PIPE_CRC_SOURCE_DP_C:
2682 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
2683 need_stable_symbols = true;
2684 break;
2685 case INTEL_PIPE_CRC_SOURCE_NONE:
2686 *val = 0;
2687 break;
2688 default:
2689 return -EINVAL;
2690 }
2691
2692 /*
2693 * When the pipe CRC tap point is after the transcoders we need
2694 * to tweak symbol-level features to produce a deterministic series of
2695 * symbols for a given frame. We need to reset those features only once
2696 * a frame (instead of every nth symbol):
2697 * - DC-balance: used to ensure a better clock recovery from the data
2698 * link (SDVO)
2699 * - DisplayPort scrambling: used for EMI reduction
2700 */
2701 if (need_stable_symbols) {
2702 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2703
2704 tmp |= DC_BALANCE_RESET_VLV;
2705 if (pipe == PIPE_A)
2706 tmp |= PIPE_A_SCRAMBLE_RESET;
2707 else
2708 tmp |= PIPE_B_SCRAMBLE_RESET;
2709
2710 I915_WRITE(PORT_DFT2_G4X, tmp);
2711 }
2712
2713 return 0;
2714 }
2715
2716 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
2717 enum pipe pipe,
2718 enum intel_pipe_crc_source *source,
2719 uint32_t *val)
2720 {
2721 struct drm_i915_private *dev_priv = dev->dev_private;
2722 bool need_stable_symbols = false;
2723
2724 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2725 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2726 if (ret)
2727 return ret;
2728 }
2729
2730 switch (*source) {
2731 case INTEL_PIPE_CRC_SOURCE_PIPE:
2732 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
2733 break;
2734 case INTEL_PIPE_CRC_SOURCE_TV:
2735 if (!SUPPORTS_TV(dev))
2736 return -EINVAL;
2737 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
2738 break;
2739 case INTEL_PIPE_CRC_SOURCE_DP_B:
2740 if (!IS_G4X(dev))
2741 return -EINVAL;
2742 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
2743 need_stable_symbols = true;
2744 break;
2745 case INTEL_PIPE_CRC_SOURCE_DP_C:
2746 if (!IS_G4X(dev))
2747 return -EINVAL;
2748 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
2749 need_stable_symbols = true;
2750 break;
2751 case INTEL_PIPE_CRC_SOURCE_DP_D:
2752 if (!IS_G4X(dev))
2753 return -EINVAL;
2754 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
2755 need_stable_symbols = true;
2756 break;
2757 case INTEL_PIPE_CRC_SOURCE_NONE:
2758 *val = 0;
2759 break;
2760 default:
2761 return -EINVAL;
2762 }
2763
2764 /*
2765 * When the pipe CRC tap point is after the transcoders we need
2766 * to tweak symbol-level features to produce a deterministic series of
2767 * symbols for a given frame. We need to reset those features only once
2768 * a frame (instead of every nth symbol):
2769 * - DC-balance: used to ensure a better clock recovery from the data
2770 * link (SDVO)
2771 * - DisplayPort scrambling: used for EMI reduction
2772 */
2773 if (need_stable_symbols) {
2774 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2775
2776 WARN_ON(!IS_G4X(dev));
2777
2778 I915_WRITE(PORT_DFT_I9XX,
2779 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
2780
2781 if (pipe == PIPE_A)
2782 tmp |= PIPE_A_SCRAMBLE_RESET;
2783 else
2784 tmp |= PIPE_B_SCRAMBLE_RESET;
2785
2786 I915_WRITE(PORT_DFT2_G4X, tmp);
2787 }
2788
2789 return 0;
2790 }
2791
2792 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
2793 enum pipe pipe)
2794 {
2795 struct drm_i915_private *dev_priv = dev->dev_private;
2796 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2797
2798 if (pipe == PIPE_A)
2799 tmp &= ~PIPE_A_SCRAMBLE_RESET;
2800 else
2801 tmp &= ~PIPE_B_SCRAMBLE_RESET;
2802 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
2803 tmp &= ~DC_BALANCE_RESET_VLV;
2804 I915_WRITE(PORT_DFT2_G4X, tmp);
2805
2806 }
2807
2808 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
2809 enum pipe pipe)
2810 {
2811 struct drm_i915_private *dev_priv = dev->dev_private;
2812 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2813
2814 if (pipe == PIPE_A)
2815 tmp &= ~PIPE_A_SCRAMBLE_RESET;
2816 else
2817 tmp &= ~PIPE_B_SCRAMBLE_RESET;
2818 I915_WRITE(PORT_DFT2_G4X, tmp);
2819
2820 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
2821 I915_WRITE(PORT_DFT_I9XX,
2822 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
2823 }
2824 }
2825
2826 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2827 uint32_t *val)
2828 {
2829 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2830 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2831
2832 switch (*source) {
2833 case INTEL_PIPE_CRC_SOURCE_PLANE1:
2834 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
2835 break;
2836 case INTEL_PIPE_CRC_SOURCE_PLANE2:
2837 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
2838 break;
2839 case INTEL_PIPE_CRC_SOURCE_PIPE:
2840 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
2841 break;
2842 case INTEL_PIPE_CRC_SOURCE_NONE:
2843 *val = 0;
2844 break;
2845 default:
2846 return -EINVAL;
2847 }
2848
2849 return 0;
2850 }
2851
2852 static int ivb_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2853 uint32_t *val)
2854 {
2855 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2856 *source = INTEL_PIPE_CRC_SOURCE_PF;
2857
2858 switch (*source) {
2859 case INTEL_PIPE_CRC_SOURCE_PLANE1:
2860 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
2861 break;
2862 case INTEL_PIPE_CRC_SOURCE_PLANE2:
2863 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
2864 break;
2865 case INTEL_PIPE_CRC_SOURCE_PF:
2866 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
2867 break;
2868 case INTEL_PIPE_CRC_SOURCE_NONE:
2869 *val = 0;
2870 break;
2871 default:
2872 return -EINVAL;
2873 }
2874
2875 return 0;
2876 }
2877
2878 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
2879 enum intel_pipe_crc_source source)
2880 {
2881 struct drm_i915_private *dev_priv = dev->dev_private;
2882 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
2883 u32 val = 0; /* shut up gcc */
2884 int ret;
2885
2886 if (pipe_crc->source == source)
2887 return 0;
2888
2889 /* forbid changing the source without going back to 'none' */
2890 if (pipe_crc->source && source)
2891 return -EINVAL;
2892
2893 if (IS_GEN2(dev))
2894 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
2895 else if (INTEL_INFO(dev)->gen < 5)
2896 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
2897 else if (IS_VALLEYVIEW(dev))
2898 ret = vlv_pipe_crc_ctl_reg(dev,pipe, &source, &val);
2899 else if (IS_GEN5(dev) || IS_GEN6(dev))
2900 ret = ilk_pipe_crc_ctl_reg(&source, &val);
2901 else
2902 ret = ivb_pipe_crc_ctl_reg(&source, &val);
2903
2904 if (ret != 0)
2905 return ret;
2906
2907 /* none -> real source transition */
2908 if (source) {
2909 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
2910 pipe_name(pipe), pipe_crc_source_name(source));
2911
2912 pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
2913 INTEL_PIPE_CRC_ENTRIES_NR,
2914 GFP_KERNEL);
2915 if (!pipe_crc->entries)
2916 return -ENOMEM;
2917
2918 spin_lock_irq(&pipe_crc->lock);
2919 pipe_crc->head = 0;
2920 pipe_crc->tail = 0;
2921 spin_unlock_irq(&pipe_crc->lock);
2922 }
2923
2924 pipe_crc->source = source;
2925
2926 I915_WRITE(PIPE_CRC_CTL(pipe), val);
2927 POSTING_READ(PIPE_CRC_CTL(pipe));
2928
2929 /* real source -> none transition */
2930 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
2931 struct intel_pipe_crc_entry *entries;
2932
2933 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
2934 pipe_name(pipe));
2935
2936 intel_wait_for_vblank(dev, pipe);
2937
2938 spin_lock_irq(&pipe_crc->lock);
2939 entries = pipe_crc->entries;
2940 pipe_crc->entries = NULL;
2941 spin_unlock_irq(&pipe_crc->lock);
2942
2943 kfree(entries);
2944
2945 if (IS_G4X(dev))
2946 g4x_undo_pipe_scramble_reset(dev, pipe);
2947 else if (IS_VALLEYVIEW(dev))
2948 vlv_undo_pipe_scramble_reset(dev, pipe);
2949 }
2950
2951 return 0;
2952 }
2953
2954 /*
2955 * Parse pipe CRC command strings:
2956 * command: wsp* object wsp+ name wsp+ source wsp*
2957 * object: 'pipe'
2958 * name: (A | B | C)
2959 * source: (none | plane1 | plane2 | pf)
2960 * wsp: (#0x20 | #0x9 | #0xA)+
2961 *
2962 * eg.:
2963 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
2964 * "pipe A none" -> Stop CRC
2965 */
2966 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
2967 {
2968 int n_words = 0;
2969
2970 while (*buf) {
2971 char *end;
2972
2973 /* skip leading white space */
2974 buf = skip_spaces(buf);
2975 if (!*buf)
2976 break; /* end of buffer */
2977
2978 /* find end of word */
2979 for (end = buf; *end && !isspace(*end); end++)
2980 ;
2981
2982 if (n_words == max_words) {
2983 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
2984 max_words);
2985 return -EINVAL; /* ran out of words[] before bytes */
2986 }
2987
2988 if (*end)
2989 *end++ = '\0';
2990 words[n_words++] = buf;
2991 buf = end;
2992 }
2993
2994 return n_words;
2995 }
2996
2997 enum intel_pipe_crc_object {
2998 PIPE_CRC_OBJECT_PIPE,
2999 };
3000
3001 static const char * const pipe_crc_objects[] = {
3002 "pipe",
3003 };
3004
3005 static int
3006 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3007 {
3008 int i;
3009
3010 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3011 if (!strcmp(buf, pipe_crc_objects[i])) {
3012 *o = i;
3013 return 0;
3014 }
3015
3016 return -EINVAL;
3017 }
3018
3019 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3020 {
3021 const char name = buf[0];
3022
3023 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3024 return -EINVAL;
3025
3026 *pipe = name - 'A';
3027
3028 return 0;
3029 }
3030
3031 static int
3032 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3033 {
3034 int i;
3035
3036 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3037 if (!strcmp(buf, pipe_crc_sources[i])) {
3038 *s = i;
3039 return 0;
3040 }
3041
3042 return -EINVAL;
3043 }
3044
3045 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3046 {
3047 #define N_WORDS 3
3048 int n_words;
3049 char *words[N_WORDS];
3050 enum pipe pipe;
3051 enum intel_pipe_crc_object object;
3052 enum intel_pipe_crc_source source;
3053
3054 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3055 if (n_words != N_WORDS) {
3056 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3057 N_WORDS);
3058 return -EINVAL;
3059 }
3060
3061 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3062 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3063 return -EINVAL;
3064 }
3065
3066 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3067 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3068 return -EINVAL;
3069 }
3070
3071 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3072 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3073 return -EINVAL;
3074 }
3075
3076 return pipe_crc_set_source(dev, pipe, source);
3077 }
3078
3079 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3080 size_t len, loff_t *offp)
3081 {
3082 struct seq_file *m = file->private_data;
3083 struct drm_device *dev = m->private;
3084 char *tmpbuf;
3085 int ret;
3086
3087 if (len == 0)
3088 return 0;
3089
3090 if (len > PAGE_SIZE - 1) {
3091 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3092 PAGE_SIZE);
3093 return -E2BIG;
3094 }
3095
3096 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3097 if (!tmpbuf)
3098 return -ENOMEM;
3099
3100 if (copy_from_user(tmpbuf, ubuf, len)) {
3101 ret = -EFAULT;
3102 goto out;
3103 }
3104 tmpbuf[len] = '\0';
3105
3106 ret = display_crc_ctl_parse(dev, tmpbuf, len);
3107
3108 out:
3109 kfree(tmpbuf);
3110 if (ret < 0)
3111 return ret;
3112
3113 *offp += len;
3114 return len;
3115 }
3116
3117 static const struct file_operations i915_display_crc_ctl_fops = {
3118 .owner = THIS_MODULE,
3119 .open = display_crc_ctl_open,
3120 .read = seq_read,
3121 .llseek = seq_lseek,
3122 .release = single_release,
3123 .write = display_crc_ctl_write
3124 };
3125
3126 static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
3127 {
3128 struct drm_device *dev = m->private;
3129 int num_levels = ilk_wm_max_level(dev) + 1;
3130 int level;
3131
3132 drm_modeset_lock_all(dev);
3133
3134 for (level = 0; level < num_levels; level++) {
3135 unsigned int latency = wm[level];
3136
3137 /* WM1+ latency values in 0.5us units */
3138 if (level > 0)
3139 latency *= 5;
3140
3141 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3142 level, wm[level],
3143 latency / 10, latency % 10);
3144 }
3145
3146 drm_modeset_unlock_all(dev);
3147 }
3148
3149 static int pri_wm_latency_show(struct seq_file *m, void *data)
3150 {
3151 struct drm_device *dev = m->private;
3152
3153 wm_latency_show(m, to_i915(dev)->wm.pri_latency);
3154
3155 return 0;
3156 }
3157
3158 static int spr_wm_latency_show(struct seq_file *m, void *data)
3159 {
3160 struct drm_device *dev = m->private;
3161
3162 wm_latency_show(m, to_i915(dev)->wm.spr_latency);
3163
3164 return 0;
3165 }
3166
3167 static int cur_wm_latency_show(struct seq_file *m, void *data)
3168 {
3169 struct drm_device *dev = m->private;
3170
3171 wm_latency_show(m, to_i915(dev)->wm.cur_latency);
3172
3173 return 0;
3174 }
3175
3176 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3177 {
3178 struct drm_device *dev = inode->i_private;
3179
3180 if (!HAS_PCH_SPLIT(dev))
3181 return -ENODEV;
3182
3183 return single_open(file, pri_wm_latency_show, dev);
3184 }
3185
3186 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3187 {
3188 struct drm_device *dev = inode->i_private;
3189
3190 if (!HAS_PCH_SPLIT(dev))
3191 return -ENODEV;
3192
3193 return single_open(file, spr_wm_latency_show, dev);
3194 }
3195
3196 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3197 {
3198 struct drm_device *dev = inode->i_private;
3199
3200 if (!HAS_PCH_SPLIT(dev))
3201 return -ENODEV;
3202
3203 return single_open(file, cur_wm_latency_show, dev);
3204 }
3205
3206 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3207 size_t len, loff_t *offp, uint16_t wm[5])
3208 {
3209 struct seq_file *m = file->private_data;
3210 struct drm_device *dev = m->private;
3211 uint16_t new[5] = { 0 };
3212 int num_levels = ilk_wm_max_level(dev) + 1;
3213 int level;
3214 int ret;
3215 char tmp[32];
3216
3217 if (len >= sizeof(tmp))
3218 return -EINVAL;
3219
3220 if (copy_from_user(tmp, ubuf, len))
3221 return -EFAULT;
3222
3223 tmp[len] = '\0';
3224
3225 ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
3226 if (ret != num_levels)
3227 return -EINVAL;
3228
3229 drm_modeset_lock_all(dev);
3230
3231 for (level = 0; level < num_levels; level++)
3232 wm[level] = new[level];
3233
3234 drm_modeset_unlock_all(dev);
3235
3236 return len;
3237 }
3238
3239
3240 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3241 size_t len, loff_t *offp)
3242 {
3243 struct seq_file *m = file->private_data;
3244 struct drm_device *dev = m->private;
3245
3246 return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
3247 }
3248
3249 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3250 size_t len, loff_t *offp)
3251 {
3252 struct seq_file *m = file->private_data;
3253 struct drm_device *dev = m->private;
3254
3255 return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
3256 }
3257
3258 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3259 size_t len, loff_t *offp)
3260 {
3261 struct seq_file *m = file->private_data;
3262 struct drm_device *dev = m->private;
3263
3264 return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
3265 }
3266
3267 static const struct file_operations i915_pri_wm_latency_fops = {
3268 .owner = THIS_MODULE,
3269 .open = pri_wm_latency_open,
3270 .read = seq_read,
3271 .llseek = seq_lseek,
3272 .release = single_release,
3273 .write = pri_wm_latency_write
3274 };
3275
3276 static const struct file_operations i915_spr_wm_latency_fops = {
3277 .owner = THIS_MODULE,
3278 .open = spr_wm_latency_open,
3279 .read = seq_read,
3280 .llseek = seq_lseek,
3281 .release = single_release,
3282 .write = spr_wm_latency_write
3283 };
3284
3285 static const struct file_operations i915_cur_wm_latency_fops = {
3286 .owner = THIS_MODULE,
3287 .open = cur_wm_latency_open,
3288 .read = seq_read,
3289 .llseek = seq_lseek,
3290 .release = single_release,
3291 .write = cur_wm_latency_write
3292 };
3293
3294 static int
3295 i915_wedged_get(void *data, u64 *val)
3296 {
3297 struct drm_device *dev = data;
3298 struct drm_i915_private *dev_priv = dev->dev_private;
3299
3300 *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3301
3302 return 0;
3303 }
3304
3305 static int
3306 i915_wedged_set(void *data, u64 val)
3307 {
3308 struct drm_device *dev = data;
3309 struct drm_i915_private *dev_priv = dev->dev_private;
3310
3311 intel_runtime_pm_get(dev_priv);
3312
3313 i915_handle_error(dev, val,
3314 "Manually setting wedged to %llu", val);
3315
3316 intel_runtime_pm_put(dev_priv);
3317
3318 return 0;
3319 }
3320
3321 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3322 i915_wedged_get, i915_wedged_set,
3323 "%llu\n");
3324
3325 static int
3326 i915_ring_stop_get(void *data, u64 *val)
3327 {
3328 struct drm_device *dev = data;
3329 struct drm_i915_private *dev_priv = dev->dev_private;
3330
3331 *val = dev_priv->gpu_error.stop_rings;
3332
3333 return 0;
3334 }
3335
3336 static int
3337 i915_ring_stop_set(void *data, u64 val)
3338 {
3339 struct drm_device *dev = data;
3340 struct drm_i915_private *dev_priv = dev->dev_private;
3341 int ret;
3342
3343 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3344
3345 ret = mutex_lock_interruptible(&dev->struct_mutex);
3346 if (ret)
3347 return ret;
3348
3349 dev_priv->gpu_error.stop_rings = val;
3350 mutex_unlock(&dev->struct_mutex);
3351
3352 return 0;
3353 }
3354
3355 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3356 i915_ring_stop_get, i915_ring_stop_set,
3357 "0x%08llx\n");
3358
3359 static int
3360 i915_ring_missed_irq_get(void *data, u64 *val)
3361 {
3362 struct drm_device *dev = data;
3363 struct drm_i915_private *dev_priv = dev->dev_private;
3364
3365 *val = dev_priv->gpu_error.missed_irq_rings;
3366 return 0;
3367 }
3368
3369 static int
3370 i915_ring_missed_irq_set(void *data, u64 val)
3371 {
3372 struct drm_device *dev = data;
3373 struct drm_i915_private *dev_priv = dev->dev_private;
3374 int ret;
3375
3376 /* Lock against concurrent debugfs callers */
3377 ret = mutex_lock_interruptible(&dev->struct_mutex);
3378 if (ret)
3379 return ret;
3380 dev_priv->gpu_error.missed_irq_rings = val;
3381 mutex_unlock(&dev->struct_mutex);
3382
3383 return 0;
3384 }
3385
3386 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3387 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3388 "0x%08llx\n");
3389
3390 static int
3391 i915_ring_test_irq_get(void *data, u64 *val)
3392 {
3393 struct drm_device *dev = data;
3394 struct drm_i915_private *dev_priv = dev->dev_private;
3395
3396 *val = dev_priv->gpu_error.test_irq_rings;
3397
3398 return 0;
3399 }
3400
3401 static int
3402 i915_ring_test_irq_set(void *data, u64 val)
3403 {
3404 struct drm_device *dev = data;
3405 struct drm_i915_private *dev_priv = dev->dev_private;
3406 int ret;
3407
3408 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
3409
3410 /* Lock against concurrent debugfs callers */
3411 ret = mutex_lock_interruptible(&dev->struct_mutex);
3412 if (ret)
3413 return ret;
3414
3415 dev_priv->gpu_error.test_irq_rings = val;
3416 mutex_unlock(&dev->struct_mutex);
3417
3418 return 0;
3419 }
3420
3421 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
3422 i915_ring_test_irq_get, i915_ring_test_irq_set,
3423 "0x%08llx\n");
3424
3425 #define DROP_UNBOUND 0x1
3426 #define DROP_BOUND 0x2
3427 #define DROP_RETIRE 0x4
3428 #define DROP_ACTIVE 0x8
3429 #define DROP_ALL (DROP_UNBOUND | \
3430 DROP_BOUND | \
3431 DROP_RETIRE | \
3432 DROP_ACTIVE)
3433 static int
3434 i915_drop_caches_get(void *data, u64 *val)
3435 {
3436 *val = DROP_ALL;
3437
3438 return 0;
3439 }
3440
3441 static int
3442 i915_drop_caches_set(void *data, u64 val)
3443 {
3444 struct drm_device *dev = data;
3445 struct drm_i915_private *dev_priv = dev->dev_private;
3446 struct drm_i915_gem_object *obj, *next;
3447 struct i915_address_space *vm;
3448 struct i915_vma *vma, *x;
3449 int ret;
3450
3451 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
3452
3453 /* No need to check and wait for gpu resets, only libdrm auto-restarts
3454 * on ioctls on -EAGAIN. */
3455 ret = mutex_lock_interruptible(&dev->struct_mutex);
3456 if (ret)
3457 return ret;
3458
3459 if (val & DROP_ACTIVE) {
3460 ret = i915_gpu_idle(dev);
3461 if (ret)
3462 goto unlock;
3463 }
3464
3465 if (val & (DROP_RETIRE | DROP_ACTIVE))
3466 i915_gem_retire_requests(dev);
3467
3468 if (val & DROP_BOUND) {
3469 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3470 list_for_each_entry_safe(vma, x, &vm->inactive_list,
3471 mm_list) {
3472 if (vma->pin_count)
3473 continue;
3474
3475 ret = i915_vma_unbind(vma);
3476 if (ret)
3477 goto unlock;
3478 }
3479 }
3480 }
3481
3482 if (val & DROP_UNBOUND) {
3483 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
3484 global_list)
3485 if (obj->pages_pin_count == 0) {
3486 ret = i915_gem_object_put_pages(obj);
3487 if (ret)
3488 goto unlock;
3489 }
3490 }
3491
3492 unlock:
3493 mutex_unlock(&dev->struct_mutex);
3494
3495 return ret;
3496 }
3497
3498 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
3499 i915_drop_caches_get, i915_drop_caches_set,
3500 "0x%08llx\n");
3501
3502 static int
3503 i915_max_freq_get(void *data, u64 *val)
3504 {
3505 struct drm_device *dev = data;
3506 struct drm_i915_private *dev_priv = dev->dev_private;
3507 int ret;
3508
3509 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3510 return -ENODEV;
3511
3512 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3513
3514 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3515 if (ret)
3516 return ret;
3517
3518 if (IS_VALLEYVIEW(dev))
3519 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
3520 else
3521 *val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3522 mutex_unlock(&dev_priv->rps.hw_lock);
3523
3524 return 0;
3525 }
3526
3527 static int
3528 i915_max_freq_set(void *data, u64 val)
3529 {
3530 struct drm_device *dev = data;
3531 struct drm_i915_private *dev_priv = dev->dev_private;
3532 u32 rp_state_cap, hw_max, hw_min;
3533 int ret;
3534
3535 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3536 return -ENODEV;
3537
3538 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3539
3540 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
3541
3542 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3543 if (ret)
3544 return ret;
3545
3546 /*
3547 * Turbo will still be enabled, but won't go above the set value.
3548 */
3549 if (IS_VALLEYVIEW(dev)) {
3550 val = vlv_freq_opcode(dev_priv, val);
3551
3552 hw_max = valleyview_rps_max_freq(dev_priv);
3553 hw_min = valleyview_rps_min_freq(dev_priv);
3554 } else {
3555 do_div(val, GT_FREQUENCY_MULTIPLIER);
3556
3557 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3558 hw_max = dev_priv->rps.max_freq;
3559 hw_min = (rp_state_cap >> 16) & 0xff;
3560 }
3561
3562 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
3563 mutex_unlock(&dev_priv->rps.hw_lock);
3564 return -EINVAL;
3565 }
3566
3567 dev_priv->rps.max_freq_softlimit = val;
3568
3569 if (IS_VALLEYVIEW(dev))
3570 valleyview_set_rps(dev, val);
3571 else
3572 gen6_set_rps(dev, val);
3573
3574 mutex_unlock(&dev_priv->rps.hw_lock);
3575
3576 return 0;
3577 }
3578
3579 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
3580 i915_max_freq_get, i915_max_freq_set,
3581 "%llu\n");
3582
3583 static int
3584 i915_min_freq_get(void *data, u64 *val)
3585 {
3586 struct drm_device *dev = data;
3587 struct drm_i915_private *dev_priv = dev->dev_private;
3588 int ret;
3589
3590 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3591 return -ENODEV;
3592
3593 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3594
3595 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3596 if (ret)
3597 return ret;
3598
3599 if (IS_VALLEYVIEW(dev))
3600 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
3601 else
3602 *val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3603 mutex_unlock(&dev_priv->rps.hw_lock);
3604
3605 return 0;
3606 }
3607
3608 static int
3609 i915_min_freq_set(void *data, u64 val)
3610 {
3611 struct drm_device *dev = data;
3612 struct drm_i915_private *dev_priv = dev->dev_private;
3613 u32 rp_state_cap, hw_max, hw_min;
3614 int ret;
3615
3616 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3617 return -ENODEV;
3618
3619 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3620
3621 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
3622
3623 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3624 if (ret)
3625 return ret;
3626
3627 /*
3628 * Turbo will still be enabled, but won't go below the set value.
3629 */
3630 if (IS_VALLEYVIEW(dev)) {
3631 val = vlv_freq_opcode(dev_priv, val);
3632
3633 hw_max = valleyview_rps_max_freq(dev_priv);
3634 hw_min = valleyview_rps_min_freq(dev_priv);
3635 } else {
3636 do_div(val, GT_FREQUENCY_MULTIPLIER);
3637
3638 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3639 hw_max = dev_priv->rps.max_freq;
3640 hw_min = (rp_state_cap >> 16) & 0xff;
3641 }
3642
3643 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
3644 mutex_unlock(&dev_priv->rps.hw_lock);
3645 return -EINVAL;
3646 }
3647
3648 dev_priv->rps.min_freq_softlimit = val;
3649
3650 if (IS_VALLEYVIEW(dev))
3651 valleyview_set_rps(dev, val);
3652 else
3653 gen6_set_rps(dev, val);
3654
3655 mutex_unlock(&dev_priv->rps.hw_lock);
3656
3657 return 0;
3658 }
3659
3660 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
3661 i915_min_freq_get, i915_min_freq_set,
3662 "%llu\n");
3663
3664 static int
3665 i915_cache_sharing_get(void *data, u64 *val)
3666 {
3667 struct drm_device *dev = data;
3668 struct drm_i915_private *dev_priv = dev->dev_private;
3669 u32 snpcr;
3670 int ret;
3671
3672 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3673 return -ENODEV;
3674
3675 ret = mutex_lock_interruptible(&dev->struct_mutex);
3676 if (ret)
3677 return ret;
3678 intel_runtime_pm_get(dev_priv);
3679
3680 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3681
3682 intel_runtime_pm_put(dev_priv);
3683 mutex_unlock(&dev_priv->dev->struct_mutex);
3684
3685 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
3686
3687 return 0;
3688 }
3689
3690 static int
3691 i915_cache_sharing_set(void *data, u64 val)
3692 {
3693 struct drm_device *dev = data;
3694 struct drm_i915_private *dev_priv = dev->dev_private;
3695 u32 snpcr;
3696
3697 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3698 return -ENODEV;
3699
3700 if (val > 3)
3701 return -EINVAL;
3702
3703 intel_runtime_pm_get(dev_priv);
3704 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
3705
3706 /* Update the cache sharing policy here as well */
3707 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3708 snpcr &= ~GEN6_MBC_SNPCR_MASK;
3709 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
3710 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3711
3712 intel_runtime_pm_put(dev_priv);
3713 return 0;
3714 }
3715
3716 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
3717 i915_cache_sharing_get, i915_cache_sharing_set,
3718 "%llu\n");
3719
3720 static int i915_forcewake_open(struct inode *inode, struct file *file)
3721 {
3722 struct drm_device *dev = inode->i_private;
3723 struct drm_i915_private *dev_priv = dev->dev_private;
3724
3725 if (INTEL_INFO(dev)->gen < 6)
3726 return 0;
3727
3728 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3729
3730 return 0;
3731 }
3732
3733 static int i915_forcewake_release(struct inode *inode, struct file *file)
3734 {
3735 struct drm_device *dev = inode->i_private;
3736 struct drm_i915_private *dev_priv = dev->dev_private;
3737
3738 if (INTEL_INFO(dev)->gen < 6)
3739 return 0;
3740
3741 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3742
3743 return 0;
3744 }
3745
3746 static const struct file_operations i915_forcewake_fops = {
3747 .owner = THIS_MODULE,
3748 .open = i915_forcewake_open,
3749 .release = i915_forcewake_release,
3750 };
3751
3752 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
3753 {
3754 struct drm_device *dev = minor->dev;
3755 struct dentry *ent;
3756
3757 ent = debugfs_create_file("i915_forcewake_user",
3758 S_IRUSR,
3759 root, dev,
3760 &i915_forcewake_fops);
3761 if (!ent)
3762 return -ENOMEM;
3763
3764 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
3765 }
3766
3767 static int i915_debugfs_create(struct dentry *root,
3768 struct drm_minor *minor,
3769 const char *name,
3770 const struct file_operations *fops)
3771 {
3772 struct drm_device *dev = minor->dev;
3773 struct dentry *ent;
3774
3775 ent = debugfs_create_file(name,
3776 S_IRUGO | S_IWUSR,
3777 root, dev,
3778 fops);
3779 if (!ent)
3780 return -ENOMEM;
3781
3782 return drm_add_fake_info_node(minor, ent, fops);
3783 }
3784
3785 static const struct drm_info_list i915_debugfs_list[] = {
3786 {"i915_capabilities", i915_capabilities, 0},
3787 {"i915_gem_objects", i915_gem_object_info, 0},
3788 {"i915_gem_gtt", i915_gem_gtt_info, 0},
3789 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
3790 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
3791 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
3792 {"i915_gem_stolen", i915_gem_stolen_list_info },
3793 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
3794 {"i915_gem_request", i915_gem_request_info, 0},
3795 {"i915_gem_seqno", i915_gem_seqno_info, 0},
3796 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
3797 {"i915_gem_interrupt", i915_interrupt_info, 0},
3798 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
3799 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
3800 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
3801 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
3802 {"i915_rstdby_delays", i915_rstdby_delays, 0},
3803 {"i915_frequency_info", i915_frequency_info, 0},
3804 {"i915_delayfreq_table", i915_delayfreq_table, 0},
3805 {"i915_inttoext_table", i915_inttoext_table, 0},
3806 {"i915_drpc_info", i915_drpc_info, 0},
3807 {"i915_emon_status", i915_emon_status, 0},
3808 {"i915_ring_freq_table", i915_ring_freq_table, 0},
3809 {"i915_gfxec", i915_gfxec, 0},
3810 {"i915_fbc_status", i915_fbc_status, 0},
3811 {"i915_ips_status", i915_ips_status, 0},
3812 {"i915_sr_status", i915_sr_status, 0},
3813 {"i915_opregion", i915_opregion, 0},
3814 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
3815 {"i915_context_status", i915_context_status, 0},
3816 {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
3817 {"i915_swizzle_info", i915_swizzle_info, 0},
3818 {"i915_ppgtt_info", i915_ppgtt_info, 0},
3819 {"i915_llc", i915_llc, 0},
3820 {"i915_edp_psr_status", i915_edp_psr_status, 0},
3821 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
3822 {"i915_energy_uJ", i915_energy_uJ, 0},
3823 {"i915_pc8_status", i915_pc8_status, 0},
3824 {"i915_power_domain_info", i915_power_domain_info, 0},
3825 {"i915_display_info", i915_display_info, 0},
3826 };
3827 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
3828
3829 static const struct i915_debugfs_files {
3830 const char *name;
3831 const struct file_operations *fops;
3832 } i915_debugfs_files[] = {
3833 {"i915_wedged", &i915_wedged_fops},
3834 {"i915_max_freq", &i915_max_freq_fops},
3835 {"i915_min_freq", &i915_min_freq_fops},
3836 {"i915_cache_sharing", &i915_cache_sharing_fops},
3837 {"i915_ring_stop", &i915_ring_stop_fops},
3838 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
3839 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
3840 {"i915_gem_drop_caches", &i915_drop_caches_fops},
3841 {"i915_error_state", &i915_error_state_fops},
3842 {"i915_next_seqno", &i915_next_seqno_fops},
3843 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
3844 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
3845 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
3846 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
3847 };
3848
3849 void intel_display_crc_init(struct drm_device *dev)
3850 {
3851 struct drm_i915_private *dev_priv = dev->dev_private;
3852 enum pipe pipe;
3853
3854 for_each_pipe(pipe) {
3855 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3856
3857 pipe_crc->opened = false;
3858 spin_lock_init(&pipe_crc->lock);
3859 init_waitqueue_head(&pipe_crc->wq);
3860 }
3861 }
3862
3863 int i915_debugfs_init(struct drm_minor *minor)
3864 {
3865 int ret, i;
3866
3867 ret = i915_forcewake_create(minor->debugfs_root, minor);
3868 if (ret)
3869 return ret;
3870
3871 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3872 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
3873 if (ret)
3874 return ret;
3875 }
3876
3877 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3878 ret = i915_debugfs_create(minor->debugfs_root, minor,
3879 i915_debugfs_files[i].name,
3880 i915_debugfs_files[i].fops);
3881 if (ret)
3882 return ret;
3883 }
3884
3885 return drm_debugfs_create_files(i915_debugfs_list,
3886 I915_DEBUGFS_ENTRIES,
3887 minor->debugfs_root, minor);
3888 }
3889
3890 void i915_debugfs_cleanup(struct drm_minor *minor)
3891 {
3892 int i;
3893
3894 drm_debugfs_remove_files(i915_debugfs_list,
3895 I915_DEBUGFS_ENTRIES, minor);
3896
3897 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
3898 1, minor);
3899
3900 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3901 struct drm_info_list *info_list =
3902 (struct drm_info_list *)&i915_pipe_crc_data[i];
3903
3904 drm_debugfs_remove_files(info_list, 1, minor);
3905 }
3906
3907 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3908 struct drm_info_list *info_list =
3909 (struct drm_info_list *) i915_debugfs_files[i].fops;
3910
3911 drm_debugfs_remove_files(info_list, 1, minor);
3912 }
3913 }