]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.c
Merge tag 'drm-intel-next-2017-07-17' of git://anongit.freedesktop.org/git/drm-intel...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_atomic_helper.h>
47 #include <drm/i915_drm.h>
48
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "i915_vgpu.h"
52 #include "intel_drv.h"
53 #include "intel_uc.h"
54
55 static struct drm_driver driver;
56
57 static unsigned int i915_load_fail_count;
58
59 bool __i915_inject_load_failure(const char *func, int line)
60 {
61 if (i915_load_fail_count >= i915.inject_load_failure)
62 return false;
63
64 if (++i915_load_fail_count == i915.inject_load_failure) {
65 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
66 i915.inject_load_failure, func, line);
67 return true;
68 }
69
70 return false;
71 }
72
73 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
74 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
75 "providing the dmesg log by booting with drm.debug=0xf"
76
77 void
78 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
79 const char *fmt, ...)
80 {
81 static bool shown_bug_once;
82 struct device *kdev = dev_priv->drm.dev;
83 bool is_error = level[1] <= KERN_ERR[1];
84 bool is_debug = level[1] == KERN_DEBUG[1];
85 struct va_format vaf;
86 va_list args;
87
88 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
89 return;
90
91 va_start(args, fmt);
92
93 vaf.fmt = fmt;
94 vaf.va = &args;
95
96 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
97 __builtin_return_address(0), &vaf);
98
99 if (is_error && !shown_bug_once) {
100 dev_notice(kdev, "%s", FDO_BUG_MSG);
101 shown_bug_once = true;
102 }
103
104 va_end(args);
105 }
106
107 static bool i915_error_injected(struct drm_i915_private *dev_priv)
108 {
109 return i915.inject_load_failure &&
110 i915_load_fail_count == i915.inject_load_failure;
111 }
112
113 #define i915_load_error(dev_priv, fmt, ...) \
114 __i915_printk(dev_priv, \
115 i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
116 fmt, ##__VA_ARGS__)
117
118
119 static enum intel_pch intel_virt_detect_pch(struct drm_i915_private *dev_priv)
120 {
121 enum intel_pch ret = PCH_NOP;
122
123 /*
124 * In a virtualized passthrough environment we can be in a
125 * setup where the ISA bridge is not able to be passed through.
126 * In this case, a south bridge can be emulated and we have to
127 * make an educated guess as to which PCH is really there.
128 */
129
130 if (IS_GEN5(dev_priv)) {
131 ret = PCH_IBX;
132 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
133 } else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
134 ret = PCH_CPT;
135 DRM_DEBUG_KMS("Assuming CougarPoint PCH\n");
136 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
137 ret = PCH_LPT;
138 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
139 dev_priv->pch_id = INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
140 else
141 dev_priv->pch_id = INTEL_PCH_LPT_DEVICE_ID_TYPE;
142 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
143 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
144 ret = PCH_SPT;
145 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
146 } else if (IS_COFFEELAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) {
147 ret = PCH_CNP;
148 DRM_DEBUG_KMS("Assuming CannonPoint PCH\n");
149 }
150
151 return ret;
152 }
153
154 static void intel_detect_pch(struct drm_i915_private *dev_priv)
155 {
156 struct pci_dev *pch = NULL;
157
158 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
159 * (which really amounts to a PCH but no South Display).
160 */
161 if (INTEL_INFO(dev_priv)->num_pipes == 0) {
162 dev_priv->pch_type = PCH_NOP;
163 return;
164 }
165
166 /*
167 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
168 * make graphics device passthrough work easy for VMM, that only
169 * need to expose ISA bridge to let driver know the real hardware
170 * underneath. This is a requirement from virtualization team.
171 *
172 * In some virtualized environments (e.g. XEN), there is irrelevant
173 * ISA bridge in the system. To work reliably, we should scan trhough
174 * all the ISA bridge devices and check for the first match, instead
175 * of only checking the first one.
176 */
177 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
178 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
179 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
180
181 dev_priv->pch_id = id;
182
183 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
184 dev_priv->pch_type = PCH_IBX;
185 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
186 WARN_ON(!IS_GEN5(dev_priv));
187 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
188 dev_priv->pch_type = PCH_CPT;
189 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
190 WARN_ON(!IS_GEN6(dev_priv) &&
191 !IS_IVYBRIDGE(dev_priv));
192 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
193 /* PantherPoint is CPT compatible */
194 dev_priv->pch_type = PCH_CPT;
195 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
196 WARN_ON(!IS_GEN6(dev_priv) &&
197 !IS_IVYBRIDGE(dev_priv));
198 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
199 dev_priv->pch_type = PCH_LPT;
200 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
201 WARN_ON(!IS_HASWELL(dev_priv) &&
202 !IS_BROADWELL(dev_priv));
203 WARN_ON(IS_HSW_ULT(dev_priv) ||
204 IS_BDW_ULT(dev_priv));
205 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
206 dev_priv->pch_type = PCH_LPT;
207 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
208 WARN_ON(!IS_HASWELL(dev_priv) &&
209 !IS_BROADWELL(dev_priv));
210 WARN_ON(!IS_HSW_ULT(dev_priv) &&
211 !IS_BDW_ULT(dev_priv));
212 } else if (id == INTEL_PCH_WPT_DEVICE_ID_TYPE) {
213 /* WildcatPoint is LPT compatible */
214 dev_priv->pch_type = PCH_LPT;
215 DRM_DEBUG_KMS("Found WildcatPoint PCH\n");
216 WARN_ON(!IS_HASWELL(dev_priv) &&
217 !IS_BROADWELL(dev_priv));
218 WARN_ON(IS_HSW_ULT(dev_priv) ||
219 IS_BDW_ULT(dev_priv));
220 } else if (id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) {
221 /* WildcatPoint is LPT compatible */
222 dev_priv->pch_type = PCH_LPT;
223 DRM_DEBUG_KMS("Found WildcatPoint LP PCH\n");
224 WARN_ON(!IS_HASWELL(dev_priv) &&
225 !IS_BROADWELL(dev_priv));
226 WARN_ON(!IS_HSW_ULT(dev_priv) &&
227 !IS_BDW_ULT(dev_priv));
228 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
229 dev_priv->pch_type = PCH_SPT;
230 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
231 WARN_ON(!IS_SKYLAKE(dev_priv) &&
232 !IS_KABYLAKE(dev_priv));
233 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
234 dev_priv->pch_type = PCH_SPT;
235 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
236 WARN_ON(!IS_SKYLAKE(dev_priv) &&
237 !IS_KABYLAKE(dev_priv));
238 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
239 dev_priv->pch_type = PCH_KBP;
240 DRM_DEBUG_KMS("Found KabyPoint PCH\n");
241 WARN_ON(!IS_SKYLAKE(dev_priv) &&
242 !IS_KABYLAKE(dev_priv));
243 } else if (id == INTEL_PCH_CNP_DEVICE_ID_TYPE) {
244 dev_priv->pch_type = PCH_CNP;
245 DRM_DEBUG_KMS("Found CannonPoint PCH\n");
246 WARN_ON(!IS_CANNONLAKE(dev_priv) &&
247 !IS_COFFEELAKE(dev_priv));
248 } else if (id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) {
249 dev_priv->pch_type = PCH_CNP;
250 DRM_DEBUG_KMS("Found CannonPoint LP PCH\n");
251 WARN_ON(!IS_CANNONLAKE(dev_priv) &&
252 !IS_COFFEELAKE(dev_priv));
253 } else if (id == INTEL_PCH_P2X_DEVICE_ID_TYPE ||
254 id == INTEL_PCH_P3X_DEVICE_ID_TYPE ||
255 (id == INTEL_PCH_QEMU_DEVICE_ID_TYPE &&
256 pch->subsystem_vendor ==
257 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
258 pch->subsystem_device ==
259 PCI_SUBDEVICE_ID_QEMU)) {
260 dev_priv->pch_type =
261 intel_virt_detect_pch(dev_priv);
262 } else
263 continue;
264
265 break;
266 }
267 }
268 if (!pch)
269 DRM_DEBUG_KMS("No PCH found.\n");
270
271 pci_dev_put(pch);
272 }
273
274 static int i915_getparam(struct drm_device *dev, void *data,
275 struct drm_file *file_priv)
276 {
277 struct drm_i915_private *dev_priv = to_i915(dev);
278 struct pci_dev *pdev = dev_priv->drm.pdev;
279 drm_i915_getparam_t *param = data;
280 int value;
281
282 switch (param->param) {
283 case I915_PARAM_IRQ_ACTIVE:
284 case I915_PARAM_ALLOW_BATCHBUFFER:
285 case I915_PARAM_LAST_DISPATCH:
286 case I915_PARAM_HAS_EXEC_CONSTANTS:
287 /* Reject all old ums/dri params. */
288 return -ENODEV;
289 case I915_PARAM_CHIPSET_ID:
290 value = pdev->device;
291 break;
292 case I915_PARAM_REVISION:
293 value = pdev->revision;
294 break;
295 case I915_PARAM_NUM_FENCES_AVAIL:
296 value = dev_priv->num_fence_regs;
297 break;
298 case I915_PARAM_HAS_OVERLAY:
299 value = dev_priv->overlay ? 1 : 0;
300 break;
301 case I915_PARAM_HAS_BSD:
302 value = !!dev_priv->engine[VCS];
303 break;
304 case I915_PARAM_HAS_BLT:
305 value = !!dev_priv->engine[BCS];
306 break;
307 case I915_PARAM_HAS_VEBOX:
308 value = !!dev_priv->engine[VECS];
309 break;
310 case I915_PARAM_HAS_BSD2:
311 value = !!dev_priv->engine[VCS2];
312 break;
313 case I915_PARAM_HAS_LLC:
314 value = HAS_LLC(dev_priv);
315 break;
316 case I915_PARAM_HAS_WT:
317 value = HAS_WT(dev_priv);
318 break;
319 case I915_PARAM_HAS_ALIASING_PPGTT:
320 value = USES_PPGTT(dev_priv);
321 break;
322 case I915_PARAM_HAS_SEMAPHORES:
323 value = i915.semaphores;
324 break;
325 case I915_PARAM_HAS_SECURE_BATCHES:
326 value = capable(CAP_SYS_ADMIN);
327 break;
328 case I915_PARAM_CMD_PARSER_VERSION:
329 value = i915_cmd_parser_get_version(dev_priv);
330 break;
331 case I915_PARAM_SUBSLICE_TOTAL:
332 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
333 if (!value)
334 return -ENODEV;
335 break;
336 case I915_PARAM_EU_TOTAL:
337 value = INTEL_INFO(dev_priv)->sseu.eu_total;
338 if (!value)
339 return -ENODEV;
340 break;
341 case I915_PARAM_HAS_GPU_RESET:
342 value = i915.enable_hangcheck && intel_has_gpu_reset(dev_priv);
343 if (value && intel_has_reset_engine(dev_priv))
344 value = 2;
345 break;
346 case I915_PARAM_HAS_RESOURCE_STREAMER:
347 value = HAS_RESOURCE_STREAMER(dev_priv);
348 break;
349 case I915_PARAM_HAS_POOLED_EU:
350 value = HAS_POOLED_EU(dev_priv);
351 break;
352 case I915_PARAM_MIN_EU_IN_POOL:
353 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
354 break;
355 case I915_PARAM_HUC_STATUS:
356 intel_runtime_pm_get(dev_priv);
357 value = I915_READ(HUC_STATUS2) & HUC_FW_VERIFIED;
358 intel_runtime_pm_put(dev_priv);
359 break;
360 case I915_PARAM_MMAP_GTT_VERSION:
361 /* Though we've started our numbering from 1, and so class all
362 * earlier versions as 0, in effect their value is undefined as
363 * the ioctl will report EINVAL for the unknown param!
364 */
365 value = i915_gem_mmap_gtt_version();
366 break;
367 case I915_PARAM_HAS_SCHEDULER:
368 value = dev_priv->engine[RCS] &&
369 dev_priv->engine[RCS]->schedule;
370 break;
371 case I915_PARAM_MMAP_VERSION:
372 /* Remember to bump this if the version changes! */
373 case I915_PARAM_HAS_GEM:
374 case I915_PARAM_HAS_PAGEFLIPPING:
375 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
376 case I915_PARAM_HAS_RELAXED_FENCING:
377 case I915_PARAM_HAS_COHERENT_RINGS:
378 case I915_PARAM_HAS_RELAXED_DELTA:
379 case I915_PARAM_HAS_GEN7_SOL_RESET:
380 case I915_PARAM_HAS_WAIT_TIMEOUT:
381 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
382 case I915_PARAM_HAS_PINNED_BATCHES:
383 case I915_PARAM_HAS_EXEC_NO_RELOC:
384 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
385 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
386 case I915_PARAM_HAS_EXEC_SOFTPIN:
387 case I915_PARAM_HAS_EXEC_ASYNC:
388 case I915_PARAM_HAS_EXEC_FENCE:
389 case I915_PARAM_HAS_EXEC_CAPTURE:
390 case I915_PARAM_HAS_EXEC_BATCH_FIRST:
391 /* For the time being all of these are always true;
392 * if some supported hardware does not have one of these
393 * features this value needs to be provided from
394 * INTEL_INFO(), a feature macro, or similar.
395 */
396 value = 1;
397 break;
398 case I915_PARAM_SLICE_MASK:
399 value = INTEL_INFO(dev_priv)->sseu.slice_mask;
400 if (!value)
401 return -ENODEV;
402 break;
403 case I915_PARAM_SUBSLICE_MASK:
404 value = INTEL_INFO(dev_priv)->sseu.subslice_mask;
405 if (!value)
406 return -ENODEV;
407 break;
408 default:
409 DRM_DEBUG("Unknown parameter %d\n", param->param);
410 return -EINVAL;
411 }
412
413 if (put_user(value, param->value))
414 return -EFAULT;
415
416 return 0;
417 }
418
419 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
420 {
421 dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
422 if (!dev_priv->bridge_dev) {
423 DRM_ERROR("bridge device not found\n");
424 return -1;
425 }
426 return 0;
427 }
428
429 /* Allocate space for the MCH regs if needed, return nonzero on error */
430 static int
431 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
432 {
433 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
434 u32 temp_lo, temp_hi = 0;
435 u64 mchbar_addr;
436 int ret;
437
438 if (INTEL_GEN(dev_priv) >= 4)
439 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
440 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
441 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
442
443 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
444 #ifdef CONFIG_PNP
445 if (mchbar_addr &&
446 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
447 return 0;
448 #endif
449
450 /* Get some space for it */
451 dev_priv->mch_res.name = "i915 MCHBAR";
452 dev_priv->mch_res.flags = IORESOURCE_MEM;
453 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
454 &dev_priv->mch_res,
455 MCHBAR_SIZE, MCHBAR_SIZE,
456 PCIBIOS_MIN_MEM,
457 0, pcibios_align_resource,
458 dev_priv->bridge_dev);
459 if (ret) {
460 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
461 dev_priv->mch_res.start = 0;
462 return ret;
463 }
464
465 if (INTEL_GEN(dev_priv) >= 4)
466 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
467 upper_32_bits(dev_priv->mch_res.start));
468
469 pci_write_config_dword(dev_priv->bridge_dev, reg,
470 lower_32_bits(dev_priv->mch_res.start));
471 return 0;
472 }
473
474 /* Setup MCHBAR if possible, return true if we should disable it again */
475 static void
476 intel_setup_mchbar(struct drm_i915_private *dev_priv)
477 {
478 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
479 u32 temp;
480 bool enabled;
481
482 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
483 return;
484
485 dev_priv->mchbar_need_disable = false;
486
487 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
488 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
489 enabled = !!(temp & DEVEN_MCHBAR_EN);
490 } else {
491 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
492 enabled = temp & 1;
493 }
494
495 /* If it's already enabled, don't have to do anything */
496 if (enabled)
497 return;
498
499 if (intel_alloc_mchbar_resource(dev_priv))
500 return;
501
502 dev_priv->mchbar_need_disable = true;
503
504 /* Space is allocated or reserved, so enable it. */
505 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
506 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
507 temp | DEVEN_MCHBAR_EN);
508 } else {
509 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
510 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
511 }
512 }
513
514 static void
515 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
516 {
517 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
518
519 if (dev_priv->mchbar_need_disable) {
520 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
521 u32 deven_val;
522
523 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
524 &deven_val);
525 deven_val &= ~DEVEN_MCHBAR_EN;
526 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
527 deven_val);
528 } else {
529 u32 mchbar_val;
530
531 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
532 &mchbar_val);
533 mchbar_val &= ~1;
534 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
535 mchbar_val);
536 }
537 }
538
539 if (dev_priv->mch_res.start)
540 release_resource(&dev_priv->mch_res);
541 }
542
543 /* true = enable decode, false = disable decoder */
544 static unsigned int i915_vga_set_decode(void *cookie, bool state)
545 {
546 struct drm_i915_private *dev_priv = cookie;
547
548 intel_modeset_vga_set_state(dev_priv, state);
549 if (state)
550 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
551 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
552 else
553 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
554 }
555
556 static int i915_resume_switcheroo(struct drm_device *dev);
557 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
558
559 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
560 {
561 struct drm_device *dev = pci_get_drvdata(pdev);
562 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
563
564 if (state == VGA_SWITCHEROO_ON) {
565 pr_info("switched on\n");
566 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
567 /* i915 resume handler doesn't set to D0 */
568 pci_set_power_state(pdev, PCI_D0);
569 i915_resume_switcheroo(dev);
570 dev->switch_power_state = DRM_SWITCH_POWER_ON;
571 } else {
572 pr_info("switched off\n");
573 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
574 i915_suspend_switcheroo(dev, pmm);
575 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
576 }
577 }
578
579 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
580 {
581 struct drm_device *dev = pci_get_drvdata(pdev);
582
583 /*
584 * FIXME: open_count is protected by drm_global_mutex but that would lead to
585 * locking inversion with the driver load path. And the access here is
586 * completely racy anyway. So don't bother with locking for now.
587 */
588 return dev->open_count == 0;
589 }
590
591 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
592 .set_gpu_state = i915_switcheroo_set_state,
593 .reprobe = NULL,
594 .can_switch = i915_switcheroo_can_switch,
595 };
596
597 static void i915_gem_fini(struct drm_i915_private *dev_priv)
598 {
599 flush_workqueue(dev_priv->wq);
600
601 mutex_lock(&dev_priv->drm.struct_mutex);
602 intel_uc_fini_hw(dev_priv);
603 i915_gem_cleanup_engines(dev_priv);
604 i915_gem_contexts_fini(dev_priv);
605 i915_gem_cleanup_userptr(dev_priv);
606 mutex_unlock(&dev_priv->drm.struct_mutex);
607
608 i915_gem_drain_freed_objects(dev_priv);
609
610 WARN_ON(!list_empty(&dev_priv->contexts.list));
611 }
612
613 static int i915_load_modeset_init(struct drm_device *dev)
614 {
615 struct drm_i915_private *dev_priv = to_i915(dev);
616 struct pci_dev *pdev = dev_priv->drm.pdev;
617 int ret;
618
619 if (i915_inject_load_failure())
620 return -ENODEV;
621
622 intel_bios_init(dev_priv);
623
624 /* If we have > 1 VGA cards, then we need to arbitrate access
625 * to the common VGA resources.
626 *
627 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
628 * then we do not take part in VGA arbitration and the
629 * vga_client_register() fails with -ENODEV.
630 */
631 ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
632 if (ret && ret != -ENODEV)
633 goto out;
634
635 intel_register_dsm_handler();
636
637 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
638 if (ret)
639 goto cleanup_vga_client;
640
641 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
642 intel_update_rawclk(dev_priv);
643
644 intel_power_domains_init_hw(dev_priv, false);
645
646 intel_csr_ucode_init(dev_priv);
647
648 ret = intel_irq_install(dev_priv);
649 if (ret)
650 goto cleanup_csr;
651
652 intel_setup_gmbus(dev_priv);
653
654 /* Important: The output setup functions called by modeset_init need
655 * working irqs for e.g. gmbus and dp aux transfers. */
656 ret = intel_modeset_init(dev);
657 if (ret)
658 goto cleanup_irq;
659
660 intel_uc_init_fw(dev_priv);
661
662 ret = i915_gem_init(dev_priv);
663 if (ret)
664 goto cleanup_uc;
665
666 intel_modeset_gem_init(dev);
667
668 if (INTEL_INFO(dev_priv)->num_pipes == 0)
669 return 0;
670
671 ret = intel_fbdev_init(dev);
672 if (ret)
673 goto cleanup_gem;
674
675 /* Only enable hotplug handling once the fbdev is fully set up. */
676 intel_hpd_init(dev_priv);
677
678 drm_kms_helper_poll_init(dev);
679
680 return 0;
681
682 cleanup_gem:
683 if (i915_gem_suspend(dev_priv))
684 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
685 i915_gem_fini(dev_priv);
686 cleanup_uc:
687 intel_uc_fini_fw(dev_priv);
688 cleanup_irq:
689 drm_irq_uninstall(dev);
690 intel_teardown_gmbus(dev_priv);
691 cleanup_csr:
692 intel_csr_ucode_fini(dev_priv);
693 intel_power_domains_fini(dev_priv);
694 vga_switcheroo_unregister_client(pdev);
695 cleanup_vga_client:
696 vga_client_register(pdev, NULL, NULL, NULL);
697 out:
698 return ret;
699 }
700
701 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
702 {
703 struct apertures_struct *ap;
704 struct pci_dev *pdev = dev_priv->drm.pdev;
705 struct i915_ggtt *ggtt = &dev_priv->ggtt;
706 bool primary;
707 int ret;
708
709 ap = alloc_apertures(1);
710 if (!ap)
711 return -ENOMEM;
712
713 ap->ranges[0].base = ggtt->mappable_base;
714 ap->ranges[0].size = ggtt->mappable_end;
715
716 primary =
717 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
718
719 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
720
721 kfree(ap);
722
723 return ret;
724 }
725
726 #if !defined(CONFIG_VGA_CONSOLE)
727 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
728 {
729 return 0;
730 }
731 #elif !defined(CONFIG_DUMMY_CONSOLE)
732 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
733 {
734 return -ENODEV;
735 }
736 #else
737 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
738 {
739 int ret = 0;
740
741 DRM_INFO("Replacing VGA console driver\n");
742
743 console_lock();
744 if (con_is_bound(&vga_con))
745 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
746 if (ret == 0) {
747 ret = do_unregister_con_driver(&vga_con);
748
749 /* Ignore "already unregistered". */
750 if (ret == -ENODEV)
751 ret = 0;
752 }
753 console_unlock();
754
755 return ret;
756 }
757 #endif
758
759 static void intel_init_dpio(struct drm_i915_private *dev_priv)
760 {
761 /*
762 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
763 * CHV x1 PHY (DP/HDMI D)
764 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
765 */
766 if (IS_CHERRYVIEW(dev_priv)) {
767 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
768 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
769 } else if (IS_VALLEYVIEW(dev_priv)) {
770 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
771 }
772 }
773
774 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
775 {
776 /*
777 * The i915 workqueue is primarily used for batched retirement of
778 * requests (and thus managing bo) once the task has been completed
779 * by the GPU. i915_gem_retire_requests() is called directly when we
780 * need high-priority retirement, such as waiting for an explicit
781 * bo.
782 *
783 * It is also used for periodic low-priority events, such as
784 * idle-timers and recording error state.
785 *
786 * All tasks on the workqueue are expected to acquire the dev mutex
787 * so there is no point in running more than one instance of the
788 * workqueue at any time. Use an ordered one.
789 */
790 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
791 if (dev_priv->wq == NULL)
792 goto out_err;
793
794 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
795 if (dev_priv->hotplug.dp_wq == NULL)
796 goto out_free_wq;
797
798 return 0;
799
800 out_free_wq:
801 destroy_workqueue(dev_priv->wq);
802 out_err:
803 DRM_ERROR("Failed to allocate workqueues.\n");
804
805 return -ENOMEM;
806 }
807
808 static void i915_engines_cleanup(struct drm_i915_private *i915)
809 {
810 struct intel_engine_cs *engine;
811 enum intel_engine_id id;
812
813 for_each_engine(engine, i915, id)
814 kfree(engine);
815 }
816
817 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
818 {
819 destroy_workqueue(dev_priv->hotplug.dp_wq);
820 destroy_workqueue(dev_priv->wq);
821 }
822
823 /*
824 * We don't keep the workarounds for pre-production hardware, so we expect our
825 * driver to fail on these machines in one way or another. A little warning on
826 * dmesg may help both the user and the bug triagers.
827 */
828 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
829 {
830 bool pre = false;
831
832 pre |= IS_HSW_EARLY_SDV(dev_priv);
833 pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
834 pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
835
836 if (pre) {
837 DRM_ERROR("This is a pre-production stepping. "
838 "It may not be fully functional.\n");
839 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
840 }
841 }
842
843 /**
844 * i915_driver_init_early - setup state not requiring device access
845 * @dev_priv: device private
846 *
847 * Initialize everything that is a "SW-only" state, that is state not
848 * requiring accessing the device or exposing the driver via kernel internal
849 * or userspace interfaces. Example steps belonging here: lock initialization,
850 * system memory allocation, setting up device specific attributes and
851 * function hooks not requiring accessing the device.
852 */
853 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
854 const struct pci_device_id *ent)
855 {
856 const struct intel_device_info *match_info =
857 (struct intel_device_info *)ent->driver_data;
858 struct intel_device_info *device_info;
859 int ret = 0;
860
861 if (i915_inject_load_failure())
862 return -ENODEV;
863
864 /* Setup the write-once "constant" device info */
865 device_info = mkwrite_device_info(dev_priv);
866 memcpy(device_info, match_info, sizeof(*device_info));
867 device_info->device_id = dev_priv->drm.pdev->device;
868
869 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
870 device_info->gen_mask = BIT(device_info->gen - 1);
871
872 spin_lock_init(&dev_priv->irq_lock);
873 spin_lock_init(&dev_priv->gpu_error.lock);
874 mutex_init(&dev_priv->backlight_lock);
875 spin_lock_init(&dev_priv->uncore.lock);
876
877 spin_lock_init(&dev_priv->mm.object_stat_lock);
878 spin_lock_init(&dev_priv->mmio_flip_lock);
879 mutex_init(&dev_priv->sb_lock);
880 mutex_init(&dev_priv->modeset_restore_lock);
881 mutex_init(&dev_priv->av_mutex);
882 mutex_init(&dev_priv->wm.wm_mutex);
883 mutex_init(&dev_priv->pps_mutex);
884
885 intel_uc_init_early(dev_priv);
886 i915_memcpy_init_early(dev_priv);
887
888 ret = i915_workqueues_init(dev_priv);
889 if (ret < 0)
890 goto err_engines;
891
892 /* This must be called before any calls to HAS_PCH_* */
893 intel_detect_pch(dev_priv);
894
895 intel_pm_setup(dev_priv);
896 intel_init_dpio(dev_priv);
897 intel_power_domains_init(dev_priv);
898 intel_irq_init(dev_priv);
899 intel_hangcheck_init(dev_priv);
900 intel_init_display_hooks(dev_priv);
901 intel_init_clock_gating_hooks(dev_priv);
902 intel_init_audio_hooks(dev_priv);
903 ret = i915_gem_load_init(dev_priv);
904 if (ret < 0)
905 goto err_irq;
906
907 intel_display_crc_init(dev_priv);
908
909 intel_device_info_dump(dev_priv);
910
911 intel_detect_preproduction_hw(dev_priv);
912
913 i915_perf_init(dev_priv);
914
915 return 0;
916
917 err_irq:
918 intel_irq_fini(dev_priv);
919 i915_workqueues_cleanup(dev_priv);
920 err_engines:
921 i915_engines_cleanup(dev_priv);
922 return ret;
923 }
924
925 /**
926 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
927 * @dev_priv: device private
928 */
929 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
930 {
931 i915_perf_fini(dev_priv);
932 i915_gem_load_cleanup(dev_priv);
933 intel_irq_fini(dev_priv);
934 i915_workqueues_cleanup(dev_priv);
935 i915_engines_cleanup(dev_priv);
936 }
937
938 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
939 {
940 struct pci_dev *pdev = dev_priv->drm.pdev;
941 int mmio_bar;
942 int mmio_size;
943
944 mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
945 /*
946 * Before gen4, the registers and the GTT are behind different BARs.
947 * However, from gen4 onwards, the registers and the GTT are shared
948 * in the same BAR, so we want to restrict this ioremap from
949 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
950 * the register BAR remains the same size for all the earlier
951 * generations up to Ironlake.
952 */
953 if (INTEL_GEN(dev_priv) < 5)
954 mmio_size = 512 * 1024;
955 else
956 mmio_size = 2 * 1024 * 1024;
957 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
958 if (dev_priv->regs == NULL) {
959 DRM_ERROR("failed to map registers\n");
960
961 return -EIO;
962 }
963
964 /* Try to make sure MCHBAR is enabled before poking at it */
965 intel_setup_mchbar(dev_priv);
966
967 return 0;
968 }
969
970 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
971 {
972 struct pci_dev *pdev = dev_priv->drm.pdev;
973
974 intel_teardown_mchbar(dev_priv);
975 pci_iounmap(pdev, dev_priv->regs);
976 }
977
978 /**
979 * i915_driver_init_mmio - setup device MMIO
980 * @dev_priv: device private
981 *
982 * Setup minimal device state necessary for MMIO accesses later in the
983 * initialization sequence. The setup here should avoid any other device-wide
984 * side effects or exposing the driver via kernel internal or user space
985 * interfaces.
986 */
987 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
988 {
989 int ret;
990
991 if (i915_inject_load_failure())
992 return -ENODEV;
993
994 if (i915_get_bridge_dev(dev_priv))
995 return -EIO;
996
997 ret = i915_mmio_setup(dev_priv);
998 if (ret < 0)
999 goto err_bridge;
1000
1001 intel_uncore_init(dev_priv);
1002
1003 ret = intel_engines_init_mmio(dev_priv);
1004 if (ret)
1005 goto err_uncore;
1006
1007 i915_gem_init_mmio(dev_priv);
1008
1009 return 0;
1010
1011 err_uncore:
1012 intel_uncore_fini(dev_priv);
1013 err_bridge:
1014 pci_dev_put(dev_priv->bridge_dev);
1015
1016 return ret;
1017 }
1018
1019 /**
1020 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
1021 * @dev_priv: device private
1022 */
1023 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
1024 {
1025 intel_uncore_fini(dev_priv);
1026 i915_mmio_cleanup(dev_priv);
1027 pci_dev_put(dev_priv->bridge_dev);
1028 }
1029
1030 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
1031 {
1032 i915.enable_execlists =
1033 intel_sanitize_enable_execlists(dev_priv,
1034 i915.enable_execlists);
1035
1036 /*
1037 * i915.enable_ppgtt is read-only, so do an early pass to validate the
1038 * user's requested state against the hardware/driver capabilities. We
1039 * do this now so that we can print out any log messages once rather
1040 * than every time we check intel_enable_ppgtt().
1041 */
1042 i915.enable_ppgtt =
1043 intel_sanitize_enable_ppgtt(dev_priv, i915.enable_ppgtt);
1044 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
1045
1046 i915.semaphores = intel_sanitize_semaphores(dev_priv, i915.semaphores);
1047 DRM_DEBUG_DRIVER("use GPU semaphores? %s\n", yesno(i915.semaphores));
1048
1049 intel_uc_sanitize_options(dev_priv);
1050
1051 intel_gvt_sanitize_options(dev_priv);
1052 }
1053
1054 /**
1055 * i915_driver_init_hw - setup state requiring device access
1056 * @dev_priv: device private
1057 *
1058 * Setup state that requires accessing the device, but doesn't require
1059 * exposing the driver via kernel internal or userspace interfaces.
1060 */
1061 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1062 {
1063 struct pci_dev *pdev = dev_priv->drm.pdev;
1064 int ret;
1065
1066 if (i915_inject_load_failure())
1067 return -ENODEV;
1068
1069 intel_device_info_runtime_init(dev_priv);
1070
1071 intel_sanitize_options(dev_priv);
1072
1073 ret = i915_ggtt_probe_hw(dev_priv);
1074 if (ret)
1075 return ret;
1076
1077 /* WARNING: Apparently we must kick fbdev drivers before vgacon,
1078 * otherwise the vga fbdev driver falls over. */
1079 ret = i915_kick_out_firmware_fb(dev_priv);
1080 if (ret) {
1081 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1082 goto out_ggtt;
1083 }
1084
1085 ret = i915_kick_out_vgacon(dev_priv);
1086 if (ret) {
1087 DRM_ERROR("failed to remove conflicting VGA console\n");
1088 goto out_ggtt;
1089 }
1090
1091 ret = i915_ggtt_init_hw(dev_priv);
1092 if (ret)
1093 return ret;
1094
1095 ret = i915_ggtt_enable_hw(dev_priv);
1096 if (ret) {
1097 DRM_ERROR("failed to enable GGTT\n");
1098 goto out_ggtt;
1099 }
1100
1101 pci_set_master(pdev);
1102
1103 /* overlay on gen2 is broken and can't address above 1G */
1104 if (IS_GEN2(dev_priv)) {
1105 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1106 if (ret) {
1107 DRM_ERROR("failed to set DMA mask\n");
1108
1109 goto out_ggtt;
1110 }
1111 }
1112
1113 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1114 * using 32bit addressing, overwriting memory if HWS is located
1115 * above 4GB.
1116 *
1117 * The documentation also mentions an issue with undefined
1118 * behaviour if any general state is accessed within a page above 4GB,
1119 * which also needs to be handled carefully.
1120 */
1121 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1122 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1123
1124 if (ret) {
1125 DRM_ERROR("failed to set DMA mask\n");
1126
1127 goto out_ggtt;
1128 }
1129 }
1130
1131 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1132 PM_QOS_DEFAULT_VALUE);
1133
1134 intel_uncore_sanitize(dev_priv);
1135
1136 intel_opregion_setup(dev_priv);
1137
1138 i915_gem_load_init_fences(dev_priv);
1139
1140 /* On the 945G/GM, the chipset reports the MSI capability on the
1141 * integrated graphics even though the support isn't actually there
1142 * according to the published specs. It doesn't appear to function
1143 * correctly in testing on 945G.
1144 * This may be a side effect of MSI having been made available for PEG
1145 * and the registers being closely associated.
1146 *
1147 * According to chipset errata, on the 965GM, MSI interrupts may
1148 * be lost or delayed, and was defeatured. MSI interrupts seem to
1149 * get lost on g4x as well, and interrupt delivery seems to stay
1150 * properly dead afterwards. So we'll just disable them for all
1151 * pre-gen5 chipsets.
1152 */
1153 if (INTEL_GEN(dev_priv) >= 5) {
1154 if (pci_enable_msi(pdev) < 0)
1155 DRM_DEBUG_DRIVER("can't enable MSI");
1156 }
1157
1158 ret = intel_gvt_init(dev_priv);
1159 if (ret)
1160 goto out_ggtt;
1161
1162 return 0;
1163
1164 out_ggtt:
1165 i915_ggtt_cleanup_hw(dev_priv);
1166
1167 return ret;
1168 }
1169
1170 /**
1171 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1172 * @dev_priv: device private
1173 */
1174 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1175 {
1176 struct pci_dev *pdev = dev_priv->drm.pdev;
1177
1178 if (pdev->msi_enabled)
1179 pci_disable_msi(pdev);
1180
1181 pm_qos_remove_request(&dev_priv->pm_qos);
1182 i915_ggtt_cleanup_hw(dev_priv);
1183 }
1184
1185 /**
1186 * i915_driver_register - register the driver with the rest of the system
1187 * @dev_priv: device private
1188 *
1189 * Perform any steps necessary to make the driver available via kernel
1190 * internal or userspace interfaces.
1191 */
1192 static void i915_driver_register(struct drm_i915_private *dev_priv)
1193 {
1194 struct drm_device *dev = &dev_priv->drm;
1195
1196 i915_gem_shrinker_init(dev_priv);
1197
1198 /*
1199 * Notify a valid surface after modesetting,
1200 * when running inside a VM.
1201 */
1202 if (intel_vgpu_active(dev_priv))
1203 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1204
1205 /* Reveal our presence to userspace */
1206 if (drm_dev_register(dev, 0) == 0) {
1207 i915_debugfs_register(dev_priv);
1208 i915_guc_log_register(dev_priv);
1209 i915_setup_sysfs(dev_priv);
1210
1211 /* Depends on sysfs having been initialized */
1212 i915_perf_register(dev_priv);
1213 } else
1214 DRM_ERROR("Failed to register driver for userspace access!\n");
1215
1216 if (INTEL_INFO(dev_priv)->num_pipes) {
1217 /* Must be done after probing outputs */
1218 intel_opregion_register(dev_priv);
1219 acpi_video_register();
1220 }
1221
1222 if (IS_GEN5(dev_priv))
1223 intel_gpu_ips_init(dev_priv);
1224
1225 intel_audio_init(dev_priv);
1226
1227 /*
1228 * Some ports require correctly set-up hpd registers for detection to
1229 * work properly (leading to ghost connected connector status), e.g. VGA
1230 * on gm45. Hence we can only set up the initial fbdev config after hpd
1231 * irqs are fully enabled. We do it last so that the async config
1232 * cannot run before the connectors are registered.
1233 */
1234 intel_fbdev_initial_config_async(dev);
1235 }
1236
1237 /**
1238 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1239 * @dev_priv: device private
1240 */
1241 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1242 {
1243 intel_audio_deinit(dev_priv);
1244
1245 intel_gpu_ips_teardown();
1246 acpi_video_unregister();
1247 intel_opregion_unregister(dev_priv);
1248
1249 i915_perf_unregister(dev_priv);
1250
1251 i915_teardown_sysfs(dev_priv);
1252 i915_guc_log_unregister(dev_priv);
1253 drm_dev_unregister(&dev_priv->drm);
1254
1255 i915_gem_shrinker_cleanup(dev_priv);
1256 }
1257
1258 /**
1259 * i915_driver_load - setup chip and create an initial config
1260 * @pdev: PCI device
1261 * @ent: matching PCI ID entry
1262 *
1263 * The driver load routine has to do several things:
1264 * - drive output discovery via intel_modeset_init()
1265 * - initialize the memory manager
1266 * - allocate initial config memory
1267 * - setup the DRM framebuffer with the allocated memory
1268 */
1269 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1270 {
1271 const struct intel_device_info *match_info =
1272 (struct intel_device_info *)ent->driver_data;
1273 struct drm_i915_private *dev_priv;
1274 int ret;
1275
1276 /* Enable nuclear pageflip on ILK+ */
1277 if (!i915.nuclear_pageflip && match_info->gen < 5)
1278 driver.driver_features &= ~DRIVER_ATOMIC;
1279
1280 ret = -ENOMEM;
1281 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1282 if (dev_priv)
1283 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1284 if (ret) {
1285 DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1286 goto out_free;
1287 }
1288
1289 dev_priv->drm.pdev = pdev;
1290 dev_priv->drm.dev_private = dev_priv;
1291
1292 ret = pci_enable_device(pdev);
1293 if (ret)
1294 goto out_fini;
1295
1296 pci_set_drvdata(pdev, &dev_priv->drm);
1297 /*
1298 * Disable the system suspend direct complete optimization, which can
1299 * leave the device suspended skipping the driver's suspend handlers
1300 * if the device was already runtime suspended. This is needed due to
1301 * the difference in our runtime and system suspend sequence and
1302 * becaue the HDA driver may require us to enable the audio power
1303 * domain during system suspend.
1304 */
1305 pdev->dev_flags |= PCI_DEV_FLAGS_NEEDS_RESUME;
1306
1307 ret = i915_driver_init_early(dev_priv, ent);
1308 if (ret < 0)
1309 goto out_pci_disable;
1310
1311 intel_runtime_pm_get(dev_priv);
1312
1313 ret = i915_driver_init_mmio(dev_priv);
1314 if (ret < 0)
1315 goto out_runtime_pm_put;
1316
1317 ret = i915_driver_init_hw(dev_priv);
1318 if (ret < 0)
1319 goto out_cleanup_mmio;
1320
1321 /*
1322 * TODO: move the vblank init and parts of modeset init steps into one
1323 * of the i915_driver_init_/i915_driver_register functions according
1324 * to the role/effect of the given init step.
1325 */
1326 if (INTEL_INFO(dev_priv)->num_pipes) {
1327 ret = drm_vblank_init(&dev_priv->drm,
1328 INTEL_INFO(dev_priv)->num_pipes);
1329 if (ret)
1330 goto out_cleanup_hw;
1331 }
1332
1333 ret = i915_load_modeset_init(&dev_priv->drm);
1334 if (ret < 0)
1335 goto out_cleanup_vblank;
1336
1337 i915_driver_register(dev_priv);
1338
1339 intel_runtime_pm_enable(dev_priv);
1340
1341 dev_priv->ipc_enabled = false;
1342
1343 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1344 DRM_INFO("DRM_I915_DEBUG enabled\n");
1345 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1346 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1347
1348 intel_runtime_pm_put(dev_priv);
1349
1350 return 0;
1351
1352 out_cleanup_vblank:
1353 drm_vblank_cleanup(&dev_priv->drm);
1354 out_cleanup_hw:
1355 i915_driver_cleanup_hw(dev_priv);
1356 out_cleanup_mmio:
1357 i915_driver_cleanup_mmio(dev_priv);
1358 out_runtime_pm_put:
1359 intel_runtime_pm_put(dev_priv);
1360 i915_driver_cleanup_early(dev_priv);
1361 out_pci_disable:
1362 pci_disable_device(pdev);
1363 out_fini:
1364 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1365 drm_dev_fini(&dev_priv->drm);
1366 out_free:
1367 kfree(dev_priv);
1368 return ret;
1369 }
1370
1371 void i915_driver_unload(struct drm_device *dev)
1372 {
1373 struct drm_i915_private *dev_priv = to_i915(dev);
1374 struct pci_dev *pdev = dev_priv->drm.pdev;
1375
1376 intel_fbdev_fini(dev);
1377
1378 if (i915_gem_suspend(dev_priv))
1379 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1380
1381 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1382
1383 drm_atomic_helper_shutdown(dev);
1384
1385 intel_gvt_cleanup(dev_priv);
1386
1387 i915_driver_unregister(dev_priv);
1388
1389 drm_vblank_cleanup(dev);
1390
1391 intel_modeset_cleanup(dev);
1392
1393 /*
1394 * free the memory space allocated for the child device
1395 * config parsed from VBT
1396 */
1397 if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1398 kfree(dev_priv->vbt.child_dev);
1399 dev_priv->vbt.child_dev = NULL;
1400 dev_priv->vbt.child_dev_num = 0;
1401 }
1402 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1403 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1404 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1405 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1406
1407 vga_switcheroo_unregister_client(pdev);
1408 vga_client_register(pdev, NULL, NULL, NULL);
1409
1410 intel_csr_ucode_fini(dev_priv);
1411
1412 /* Free error state after interrupts are fully disabled. */
1413 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1414 i915_reset_error_state(dev_priv);
1415
1416 /* Flush any outstanding unpin_work. */
1417 drain_workqueue(dev_priv->wq);
1418
1419 i915_gem_fini(dev_priv);
1420 intel_uc_fini_fw(dev_priv);
1421 intel_fbc_cleanup_cfb(dev_priv);
1422
1423 intel_power_domains_fini(dev_priv);
1424
1425 i915_driver_cleanup_hw(dev_priv);
1426 i915_driver_cleanup_mmio(dev_priv);
1427
1428 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1429 }
1430
1431 static void i915_driver_release(struct drm_device *dev)
1432 {
1433 struct drm_i915_private *dev_priv = to_i915(dev);
1434
1435 i915_driver_cleanup_early(dev_priv);
1436 drm_dev_fini(&dev_priv->drm);
1437
1438 kfree(dev_priv);
1439 }
1440
1441 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1442 {
1443 struct drm_i915_private *i915 = to_i915(dev);
1444 int ret;
1445
1446 ret = i915_gem_open(i915, file);
1447 if (ret)
1448 return ret;
1449
1450 return 0;
1451 }
1452
1453 /**
1454 * i915_driver_lastclose - clean up after all DRM clients have exited
1455 * @dev: DRM device
1456 *
1457 * Take care of cleaning up after all DRM clients have exited. In the
1458 * mode setting case, we want to restore the kernel's initial mode (just
1459 * in case the last client left us in a bad state).
1460 *
1461 * Additionally, in the non-mode setting case, we'll tear down the GTT
1462 * and DMA structures, since the kernel won't be using them, and clea
1463 * up any GEM state.
1464 */
1465 static void i915_driver_lastclose(struct drm_device *dev)
1466 {
1467 intel_fbdev_restore_mode(dev);
1468 vga_switcheroo_process_delayed_switch();
1469 }
1470
1471 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1472 {
1473 struct drm_i915_file_private *file_priv = file->driver_priv;
1474
1475 mutex_lock(&dev->struct_mutex);
1476 i915_gem_context_close(file);
1477 i915_gem_release(dev, file);
1478 mutex_unlock(&dev->struct_mutex);
1479
1480 kfree(file_priv);
1481 }
1482
1483 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1484 {
1485 struct drm_device *dev = &dev_priv->drm;
1486 struct intel_encoder *encoder;
1487
1488 drm_modeset_lock_all(dev);
1489 for_each_intel_encoder(dev, encoder)
1490 if (encoder->suspend)
1491 encoder->suspend(encoder);
1492 drm_modeset_unlock_all(dev);
1493 }
1494
1495 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1496 bool rpm_resume);
1497 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1498
1499 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1500 {
1501 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1502 if (acpi_target_system_state() < ACPI_STATE_S3)
1503 return true;
1504 #endif
1505 return false;
1506 }
1507
1508 static int i915_drm_suspend(struct drm_device *dev)
1509 {
1510 struct drm_i915_private *dev_priv = to_i915(dev);
1511 struct pci_dev *pdev = dev_priv->drm.pdev;
1512 pci_power_t opregion_target_state;
1513 int error;
1514
1515 /* ignore lid events during suspend */
1516 mutex_lock(&dev_priv->modeset_restore_lock);
1517 dev_priv->modeset_restore = MODESET_SUSPENDED;
1518 mutex_unlock(&dev_priv->modeset_restore_lock);
1519
1520 disable_rpm_wakeref_asserts(dev_priv);
1521
1522 /* We do a lot of poking in a lot of registers, make sure they work
1523 * properly. */
1524 intel_display_set_init_power(dev_priv, true);
1525
1526 drm_kms_helper_poll_disable(dev);
1527
1528 pci_save_state(pdev);
1529
1530 error = i915_gem_suspend(dev_priv);
1531 if (error) {
1532 dev_err(&pdev->dev,
1533 "GEM idle failed, resume might fail\n");
1534 goto out;
1535 }
1536
1537 intel_display_suspend(dev);
1538
1539 intel_dp_mst_suspend(dev);
1540
1541 intel_runtime_pm_disable_interrupts(dev_priv);
1542 intel_hpd_cancel_work(dev_priv);
1543
1544 intel_suspend_encoders(dev_priv);
1545
1546 intel_suspend_hw(dev_priv);
1547
1548 i915_gem_suspend_gtt_mappings(dev_priv);
1549
1550 i915_save_state(dev_priv);
1551
1552 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1553 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1554
1555 intel_uncore_suspend(dev_priv);
1556 intel_opregion_unregister(dev_priv);
1557
1558 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1559
1560 dev_priv->suspend_count++;
1561
1562 intel_csr_ucode_suspend(dev_priv);
1563
1564 out:
1565 enable_rpm_wakeref_asserts(dev_priv);
1566
1567 return error;
1568 }
1569
1570 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1571 {
1572 struct drm_i915_private *dev_priv = to_i915(dev);
1573 struct pci_dev *pdev = dev_priv->drm.pdev;
1574 bool fw_csr;
1575 int ret;
1576
1577 disable_rpm_wakeref_asserts(dev_priv);
1578
1579 intel_display_set_init_power(dev_priv, false);
1580
1581 fw_csr = !IS_GEN9_LP(dev_priv) &&
1582 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1583 /*
1584 * In case of firmware assisted context save/restore don't manually
1585 * deinit the power domains. This also means the CSR/DMC firmware will
1586 * stay active, it will power down any HW resources as required and
1587 * also enable deeper system power states that would be blocked if the
1588 * firmware was inactive.
1589 */
1590 if (!fw_csr)
1591 intel_power_domains_suspend(dev_priv);
1592
1593 ret = 0;
1594 if (IS_GEN9_LP(dev_priv))
1595 bxt_enable_dc9(dev_priv);
1596 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1597 hsw_enable_pc8(dev_priv);
1598 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1599 ret = vlv_suspend_complete(dev_priv);
1600
1601 if (ret) {
1602 DRM_ERROR("Suspend complete failed: %d\n", ret);
1603 if (!fw_csr)
1604 intel_power_domains_init_hw(dev_priv, true);
1605
1606 goto out;
1607 }
1608
1609 pci_disable_device(pdev);
1610 /*
1611 * During hibernation on some platforms the BIOS may try to access
1612 * the device even though it's already in D3 and hang the machine. So
1613 * leave the device in D0 on those platforms and hope the BIOS will
1614 * power down the device properly. The issue was seen on multiple old
1615 * GENs with different BIOS vendors, so having an explicit blacklist
1616 * is inpractical; apply the workaround on everything pre GEN6. The
1617 * platforms where the issue was seen:
1618 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1619 * Fujitsu FSC S7110
1620 * Acer Aspire 1830T
1621 */
1622 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1623 pci_set_power_state(pdev, PCI_D3hot);
1624
1625 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1626
1627 out:
1628 enable_rpm_wakeref_asserts(dev_priv);
1629
1630 return ret;
1631 }
1632
1633 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1634 {
1635 int error;
1636
1637 if (!dev) {
1638 DRM_ERROR("dev: %p\n", dev);
1639 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1640 return -ENODEV;
1641 }
1642
1643 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1644 state.event != PM_EVENT_FREEZE))
1645 return -EINVAL;
1646
1647 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1648 return 0;
1649
1650 error = i915_drm_suspend(dev);
1651 if (error)
1652 return error;
1653
1654 return i915_drm_suspend_late(dev, false);
1655 }
1656
1657 static int i915_drm_resume(struct drm_device *dev)
1658 {
1659 struct drm_i915_private *dev_priv = to_i915(dev);
1660 int ret;
1661
1662 disable_rpm_wakeref_asserts(dev_priv);
1663 intel_sanitize_gt_powersave(dev_priv);
1664
1665 ret = i915_ggtt_enable_hw(dev_priv);
1666 if (ret)
1667 DRM_ERROR("failed to re-enable GGTT\n");
1668
1669 intel_csr_ucode_resume(dev_priv);
1670
1671 i915_gem_resume(dev_priv);
1672
1673 i915_restore_state(dev_priv);
1674 intel_pps_unlock_regs_wa(dev_priv);
1675 intel_opregion_setup(dev_priv);
1676
1677 intel_init_pch_refclk(dev_priv);
1678
1679 /*
1680 * Interrupts have to be enabled before any batches are run. If not the
1681 * GPU will hang. i915_gem_init_hw() will initiate batches to
1682 * update/restore the context.
1683 *
1684 * drm_mode_config_reset() needs AUX interrupts.
1685 *
1686 * Modeset enabling in intel_modeset_init_hw() also needs working
1687 * interrupts.
1688 */
1689 intel_runtime_pm_enable_interrupts(dev_priv);
1690
1691 drm_mode_config_reset(dev);
1692
1693 mutex_lock(&dev->struct_mutex);
1694 if (i915_gem_init_hw(dev_priv)) {
1695 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1696 i915_gem_set_wedged(dev_priv);
1697 }
1698 mutex_unlock(&dev->struct_mutex);
1699
1700 intel_guc_resume(dev_priv);
1701
1702 intel_modeset_init_hw(dev);
1703
1704 spin_lock_irq(&dev_priv->irq_lock);
1705 if (dev_priv->display.hpd_irq_setup)
1706 dev_priv->display.hpd_irq_setup(dev_priv);
1707 spin_unlock_irq(&dev_priv->irq_lock);
1708
1709 intel_dp_mst_resume(dev);
1710
1711 intel_display_resume(dev);
1712
1713 drm_kms_helper_poll_enable(dev);
1714
1715 /*
1716 * ... but also need to make sure that hotplug processing
1717 * doesn't cause havoc. Like in the driver load code we don't
1718 * bother with the tiny race here where we might loose hotplug
1719 * notifications.
1720 * */
1721 intel_hpd_init(dev_priv);
1722
1723 intel_opregion_register(dev_priv);
1724
1725 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1726
1727 mutex_lock(&dev_priv->modeset_restore_lock);
1728 dev_priv->modeset_restore = MODESET_DONE;
1729 mutex_unlock(&dev_priv->modeset_restore_lock);
1730
1731 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1732
1733 intel_autoenable_gt_powersave(dev_priv);
1734
1735 enable_rpm_wakeref_asserts(dev_priv);
1736
1737 return 0;
1738 }
1739
1740 static int i915_drm_resume_early(struct drm_device *dev)
1741 {
1742 struct drm_i915_private *dev_priv = to_i915(dev);
1743 struct pci_dev *pdev = dev_priv->drm.pdev;
1744 int ret;
1745
1746 /*
1747 * We have a resume ordering issue with the snd-hda driver also
1748 * requiring our device to be power up. Due to the lack of a
1749 * parent/child relationship we currently solve this with an early
1750 * resume hook.
1751 *
1752 * FIXME: This should be solved with a special hdmi sink device or
1753 * similar so that power domains can be employed.
1754 */
1755
1756 /*
1757 * Note that we need to set the power state explicitly, since we
1758 * powered off the device during freeze and the PCI core won't power
1759 * it back up for us during thaw. Powering off the device during
1760 * freeze is not a hard requirement though, and during the
1761 * suspend/resume phases the PCI core makes sure we get here with the
1762 * device powered on. So in case we change our freeze logic and keep
1763 * the device powered we can also remove the following set power state
1764 * call.
1765 */
1766 ret = pci_set_power_state(pdev, PCI_D0);
1767 if (ret) {
1768 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1769 goto out;
1770 }
1771
1772 /*
1773 * Note that pci_enable_device() first enables any parent bridge
1774 * device and only then sets the power state for this device. The
1775 * bridge enabling is a nop though, since bridge devices are resumed
1776 * first. The order of enabling power and enabling the device is
1777 * imposed by the PCI core as described above, so here we preserve the
1778 * same order for the freeze/thaw phases.
1779 *
1780 * TODO: eventually we should remove pci_disable_device() /
1781 * pci_enable_enable_device() from suspend/resume. Due to how they
1782 * depend on the device enable refcount we can't anyway depend on them
1783 * disabling/enabling the device.
1784 */
1785 if (pci_enable_device(pdev)) {
1786 ret = -EIO;
1787 goto out;
1788 }
1789
1790 pci_set_master(pdev);
1791
1792 disable_rpm_wakeref_asserts(dev_priv);
1793
1794 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1795 ret = vlv_resume_prepare(dev_priv, false);
1796 if (ret)
1797 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1798 ret);
1799
1800 intel_uncore_resume_early(dev_priv);
1801
1802 if (IS_GEN9_LP(dev_priv)) {
1803 if (!dev_priv->suspended_to_idle)
1804 gen9_sanitize_dc_state(dev_priv);
1805 bxt_disable_dc9(dev_priv);
1806 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1807 hsw_disable_pc8(dev_priv);
1808 }
1809
1810 intel_uncore_sanitize(dev_priv);
1811
1812 if (IS_GEN9_LP(dev_priv) ||
1813 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1814 intel_power_domains_init_hw(dev_priv, true);
1815
1816 i915_gem_sanitize(dev_priv);
1817
1818 enable_rpm_wakeref_asserts(dev_priv);
1819
1820 out:
1821 dev_priv->suspended_to_idle = false;
1822
1823 return ret;
1824 }
1825
1826 static int i915_resume_switcheroo(struct drm_device *dev)
1827 {
1828 int ret;
1829
1830 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1831 return 0;
1832
1833 ret = i915_drm_resume_early(dev);
1834 if (ret)
1835 return ret;
1836
1837 return i915_drm_resume(dev);
1838 }
1839
1840 /**
1841 * i915_reset - reset chip after a hang
1842 * @dev_priv: device private to reset
1843 *
1844 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1845 * on failure.
1846 *
1847 * Caller must hold the struct_mutex.
1848 *
1849 * Procedure is fairly simple:
1850 * - reset the chip using the reset reg
1851 * - re-init context state
1852 * - re-init hardware status page
1853 * - re-init ring buffer
1854 * - re-init interrupt state
1855 * - re-init display
1856 */
1857 void i915_reset(struct drm_i915_private *dev_priv)
1858 {
1859 struct i915_gpu_error *error = &dev_priv->gpu_error;
1860 int ret;
1861
1862 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1863 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
1864
1865 if (!test_bit(I915_RESET_HANDOFF, &error->flags))
1866 return;
1867
1868 /* Clear any previous failed attempts at recovery. Time to try again. */
1869 if (!i915_gem_unset_wedged(dev_priv))
1870 goto wakeup;
1871
1872 error->reset_count++;
1873
1874 pr_notice("drm/i915: Resetting chip after gpu hang\n");
1875 disable_irq(dev_priv->drm.irq);
1876 ret = i915_gem_reset_prepare(dev_priv);
1877 if (ret) {
1878 DRM_ERROR("GPU recovery failed\n");
1879 intel_gpu_reset(dev_priv, ALL_ENGINES);
1880 goto error;
1881 }
1882
1883 ret = intel_gpu_reset(dev_priv, ALL_ENGINES);
1884 if (ret) {
1885 if (ret != -ENODEV)
1886 DRM_ERROR("Failed to reset chip: %i\n", ret);
1887 else
1888 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1889 goto error;
1890 }
1891
1892 i915_gem_reset(dev_priv);
1893 intel_overlay_reset(dev_priv);
1894
1895 /* Ok, now get things going again... */
1896
1897 /*
1898 * Everything depends on having the GTT running, so we need to start
1899 * there. Fortunately we don't need to do this unless we reset the
1900 * chip at a PCI level.
1901 *
1902 * Next we need to restore the context, but we don't use those
1903 * yet either...
1904 *
1905 * Ring buffer needs to be re-initialized in the KMS case, or if X
1906 * was running at the time of the reset (i.e. we weren't VT
1907 * switched away).
1908 */
1909 ret = i915_gem_init_hw(dev_priv);
1910 if (ret) {
1911 DRM_ERROR("Failed hw init on reset %d\n", ret);
1912 goto error;
1913 }
1914
1915 i915_queue_hangcheck(dev_priv);
1916
1917 finish:
1918 i915_gem_reset_finish(dev_priv);
1919 enable_irq(dev_priv->drm.irq);
1920
1921 wakeup:
1922 clear_bit(I915_RESET_HANDOFF, &error->flags);
1923 wake_up_bit(&error->flags, I915_RESET_HANDOFF);
1924 return;
1925
1926 error:
1927 i915_gem_set_wedged(dev_priv);
1928 i915_gem_retire_requests(dev_priv);
1929 goto finish;
1930 }
1931
1932 /**
1933 * i915_reset_engine - reset GPU engine to recover from a hang
1934 * @engine: engine to reset
1935 *
1936 * Reset a specific GPU engine. Useful if a hang is detected.
1937 * Returns zero on successful reset or otherwise an error code.
1938 *
1939 * Procedure is:
1940 * - identifies the request that caused the hang and it is dropped
1941 * - reset engine (which will force the engine to idle)
1942 * - re-init/configure engine
1943 */
1944 int i915_reset_engine(struct intel_engine_cs *engine)
1945 {
1946 struct i915_gpu_error *error = &engine->i915->gpu_error;
1947 struct drm_i915_gem_request *active_request;
1948 int ret;
1949
1950 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &error->flags));
1951
1952 DRM_DEBUG_DRIVER("resetting %s\n", engine->name);
1953
1954 active_request = i915_gem_reset_prepare_engine(engine);
1955 if (IS_ERR(active_request)) {
1956 DRM_DEBUG_DRIVER("Previous reset failed, promote to full reset\n");
1957 ret = PTR_ERR(active_request);
1958 goto out;
1959 }
1960
1961 /*
1962 * The request that caused the hang is stuck on elsp, we know the
1963 * active request and can drop it, adjust head to skip the offending
1964 * request to resume executing remaining requests in the queue.
1965 */
1966 i915_gem_reset_engine(engine, active_request);
1967
1968 /* Finally, reset just this engine. */
1969 ret = intel_gpu_reset(engine->i915, intel_engine_flag(engine));
1970
1971 i915_gem_reset_finish_engine(engine);
1972
1973 if (ret) {
1974 /* If we fail here, we expect to fallback to a global reset */
1975 DRM_DEBUG_DRIVER("Failed to reset %s, ret=%d\n",
1976 engine->name, ret);
1977 goto out;
1978 }
1979
1980 /*
1981 * The engine and its registers (and workarounds in case of render)
1982 * have been reset to their default values. Follow the init_ring
1983 * process to program RING_MODE, HWSP and re-enable submission.
1984 */
1985 ret = engine->init_hw(engine);
1986 if (ret)
1987 goto out;
1988
1989 error->reset_engine_count[engine->id]++;
1990 out:
1991 return ret;
1992 }
1993
1994 static int i915_pm_suspend(struct device *kdev)
1995 {
1996 struct pci_dev *pdev = to_pci_dev(kdev);
1997 struct drm_device *dev = pci_get_drvdata(pdev);
1998
1999 if (!dev) {
2000 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2001 return -ENODEV;
2002 }
2003
2004 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2005 return 0;
2006
2007 return i915_drm_suspend(dev);
2008 }
2009
2010 static int i915_pm_suspend_late(struct device *kdev)
2011 {
2012 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2013
2014 /*
2015 * We have a suspend ordering issue with the snd-hda driver also
2016 * requiring our device to be power up. Due to the lack of a
2017 * parent/child relationship we currently solve this with an late
2018 * suspend hook.
2019 *
2020 * FIXME: This should be solved with a special hdmi sink device or
2021 * similar so that power domains can be employed.
2022 */
2023 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2024 return 0;
2025
2026 return i915_drm_suspend_late(dev, false);
2027 }
2028
2029 static int i915_pm_poweroff_late(struct device *kdev)
2030 {
2031 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2032
2033 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2034 return 0;
2035
2036 return i915_drm_suspend_late(dev, true);
2037 }
2038
2039 static int i915_pm_resume_early(struct device *kdev)
2040 {
2041 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2042
2043 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2044 return 0;
2045
2046 return i915_drm_resume_early(dev);
2047 }
2048
2049 static int i915_pm_resume(struct device *kdev)
2050 {
2051 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2052
2053 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2054 return 0;
2055
2056 return i915_drm_resume(dev);
2057 }
2058
2059 /* freeze: before creating the hibernation_image */
2060 static int i915_pm_freeze(struct device *kdev)
2061 {
2062 int ret;
2063
2064 ret = i915_pm_suspend(kdev);
2065 if (ret)
2066 return ret;
2067
2068 ret = i915_gem_freeze(kdev_to_i915(kdev));
2069 if (ret)
2070 return ret;
2071
2072 return 0;
2073 }
2074
2075 static int i915_pm_freeze_late(struct device *kdev)
2076 {
2077 int ret;
2078
2079 ret = i915_pm_suspend_late(kdev);
2080 if (ret)
2081 return ret;
2082
2083 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
2084 if (ret)
2085 return ret;
2086
2087 return 0;
2088 }
2089
2090 /* thaw: called after creating the hibernation image, but before turning off. */
2091 static int i915_pm_thaw_early(struct device *kdev)
2092 {
2093 return i915_pm_resume_early(kdev);
2094 }
2095
2096 static int i915_pm_thaw(struct device *kdev)
2097 {
2098 return i915_pm_resume(kdev);
2099 }
2100
2101 /* restore: called after loading the hibernation image. */
2102 static int i915_pm_restore_early(struct device *kdev)
2103 {
2104 return i915_pm_resume_early(kdev);
2105 }
2106
2107 static int i915_pm_restore(struct device *kdev)
2108 {
2109 return i915_pm_resume(kdev);
2110 }
2111
2112 /*
2113 * Save all Gunit registers that may be lost after a D3 and a subsequent
2114 * S0i[R123] transition. The list of registers needing a save/restore is
2115 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2116 * registers in the following way:
2117 * - Driver: saved/restored by the driver
2118 * - Punit : saved/restored by the Punit firmware
2119 * - No, w/o marking: no need to save/restore, since the register is R/O or
2120 * used internally by the HW in a way that doesn't depend
2121 * keeping the content across a suspend/resume.
2122 * - Debug : used for debugging
2123 *
2124 * We save/restore all registers marked with 'Driver', with the following
2125 * exceptions:
2126 * - Registers out of use, including also registers marked with 'Debug'.
2127 * These have no effect on the driver's operation, so we don't save/restore
2128 * them to reduce the overhead.
2129 * - Registers that are fully setup by an initialization function called from
2130 * the resume path. For example many clock gating and RPS/RC6 registers.
2131 * - Registers that provide the right functionality with their reset defaults.
2132 *
2133 * TODO: Except for registers that based on the above 3 criteria can be safely
2134 * ignored, we save/restore all others, practically treating the HW context as
2135 * a black-box for the driver. Further investigation is needed to reduce the
2136 * saved/restored registers even further, by following the same 3 criteria.
2137 */
2138 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2139 {
2140 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2141 int i;
2142
2143 /* GAM 0x4000-0x4770 */
2144 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2145 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2146 s->arb_mode = I915_READ(ARB_MODE);
2147 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2148 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2149
2150 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2151 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2152
2153 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2154 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2155
2156 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2157 s->ecochk = I915_READ(GAM_ECOCHK);
2158 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2159 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2160
2161 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2162
2163 /* MBC 0x9024-0x91D0, 0x8500 */
2164 s->g3dctl = I915_READ(VLV_G3DCTL);
2165 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2166 s->mbctl = I915_READ(GEN6_MBCTL);
2167
2168 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2169 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2170 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2171 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2172 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2173 s->rstctl = I915_READ(GEN6_RSTCTL);
2174 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2175
2176 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2177 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2178 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2179 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2180 s->ecobus = I915_READ(ECOBUS);
2181 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2182 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2183 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2184 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2185 s->rcedata = I915_READ(VLV_RCEDATA);
2186 s->spare2gh = I915_READ(VLV_SPAREG2H);
2187
2188 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2189 s->gt_imr = I915_READ(GTIMR);
2190 s->gt_ier = I915_READ(GTIER);
2191 s->pm_imr = I915_READ(GEN6_PMIMR);
2192 s->pm_ier = I915_READ(GEN6_PMIER);
2193
2194 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2195 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2196
2197 /* GT SA CZ domain, 0x100000-0x138124 */
2198 s->tilectl = I915_READ(TILECTL);
2199 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2200 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2201 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2202 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2203
2204 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2205 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2206 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2207 s->pcbr = I915_READ(VLV_PCBR);
2208 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2209
2210 /*
2211 * Not saving any of:
2212 * DFT, 0x9800-0x9EC0
2213 * SARB, 0xB000-0xB1FC
2214 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2215 * PCI CFG
2216 */
2217 }
2218
2219 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2220 {
2221 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2222 u32 val;
2223 int i;
2224
2225 /* GAM 0x4000-0x4770 */
2226 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2227 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2228 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2229 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2230 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2231
2232 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2233 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2234
2235 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2236 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2237
2238 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2239 I915_WRITE(GAM_ECOCHK, s->ecochk);
2240 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2241 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2242
2243 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2244
2245 /* MBC 0x9024-0x91D0, 0x8500 */
2246 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2247 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2248 I915_WRITE(GEN6_MBCTL, s->mbctl);
2249
2250 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2251 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2252 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2253 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2254 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2255 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2256 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2257
2258 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2259 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2260 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2261 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2262 I915_WRITE(ECOBUS, s->ecobus);
2263 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2264 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2265 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2266 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2267 I915_WRITE(VLV_RCEDATA, s->rcedata);
2268 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2269
2270 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2271 I915_WRITE(GTIMR, s->gt_imr);
2272 I915_WRITE(GTIER, s->gt_ier);
2273 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2274 I915_WRITE(GEN6_PMIER, s->pm_ier);
2275
2276 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2277 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2278
2279 /* GT SA CZ domain, 0x100000-0x138124 */
2280 I915_WRITE(TILECTL, s->tilectl);
2281 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2282 /*
2283 * Preserve the GT allow wake and GFX force clock bit, they are not
2284 * be restored, as they are used to control the s0ix suspend/resume
2285 * sequence by the caller.
2286 */
2287 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2288 val &= VLV_GTLC_ALLOWWAKEREQ;
2289 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2290 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2291
2292 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2293 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2294 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2295 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2296
2297 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2298
2299 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2300 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2301 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2302 I915_WRITE(VLV_PCBR, s->pcbr);
2303 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2304 }
2305
2306 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2307 u32 mask, u32 val)
2308 {
2309 /* The HW does not like us polling for PW_STATUS frequently, so
2310 * use the sleeping loop rather than risk the busy spin within
2311 * intel_wait_for_register().
2312 *
2313 * Transitioning between RC6 states should be at most 2ms (see
2314 * valleyview_enable_rps) so use a 3ms timeout.
2315 */
2316 return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2317 3);
2318 }
2319
2320 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2321 {
2322 u32 val;
2323 int err;
2324
2325 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2326 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2327 if (force_on)
2328 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2329 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2330
2331 if (!force_on)
2332 return 0;
2333
2334 err = intel_wait_for_register(dev_priv,
2335 VLV_GTLC_SURVIVABILITY_REG,
2336 VLV_GFX_CLK_STATUS_BIT,
2337 VLV_GFX_CLK_STATUS_BIT,
2338 20);
2339 if (err)
2340 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2341 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2342
2343 return err;
2344 }
2345
2346 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2347 {
2348 u32 mask;
2349 u32 val;
2350 int err;
2351
2352 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2353 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2354 if (allow)
2355 val |= VLV_GTLC_ALLOWWAKEREQ;
2356 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2357 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2358
2359 mask = VLV_GTLC_ALLOWWAKEACK;
2360 val = allow ? mask : 0;
2361
2362 err = vlv_wait_for_pw_status(dev_priv, mask, val);
2363 if (err)
2364 DRM_ERROR("timeout disabling GT waking\n");
2365
2366 return err;
2367 }
2368
2369 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2370 bool wait_for_on)
2371 {
2372 u32 mask;
2373 u32 val;
2374
2375 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2376 val = wait_for_on ? mask : 0;
2377
2378 /*
2379 * RC6 transitioning can be delayed up to 2 msec (see
2380 * valleyview_enable_rps), use 3 msec for safety.
2381 */
2382 if (vlv_wait_for_pw_status(dev_priv, mask, val))
2383 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2384 onoff(wait_for_on));
2385 }
2386
2387 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2388 {
2389 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2390 return;
2391
2392 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2393 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2394 }
2395
2396 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2397 {
2398 u32 mask;
2399 int err;
2400
2401 /*
2402 * Bspec defines the following GT well on flags as debug only, so
2403 * don't treat them as hard failures.
2404 */
2405 vlv_wait_for_gt_wells(dev_priv, false);
2406
2407 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2408 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2409
2410 vlv_check_no_gt_access(dev_priv);
2411
2412 err = vlv_force_gfx_clock(dev_priv, true);
2413 if (err)
2414 goto err1;
2415
2416 err = vlv_allow_gt_wake(dev_priv, false);
2417 if (err)
2418 goto err2;
2419
2420 if (!IS_CHERRYVIEW(dev_priv))
2421 vlv_save_gunit_s0ix_state(dev_priv);
2422
2423 err = vlv_force_gfx_clock(dev_priv, false);
2424 if (err)
2425 goto err2;
2426
2427 return 0;
2428
2429 err2:
2430 /* For safety always re-enable waking and disable gfx clock forcing */
2431 vlv_allow_gt_wake(dev_priv, true);
2432 err1:
2433 vlv_force_gfx_clock(dev_priv, false);
2434
2435 return err;
2436 }
2437
2438 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2439 bool rpm_resume)
2440 {
2441 int err;
2442 int ret;
2443
2444 /*
2445 * If any of the steps fail just try to continue, that's the best we
2446 * can do at this point. Return the first error code (which will also
2447 * leave RPM permanently disabled).
2448 */
2449 ret = vlv_force_gfx_clock(dev_priv, true);
2450
2451 if (!IS_CHERRYVIEW(dev_priv))
2452 vlv_restore_gunit_s0ix_state(dev_priv);
2453
2454 err = vlv_allow_gt_wake(dev_priv, true);
2455 if (!ret)
2456 ret = err;
2457
2458 err = vlv_force_gfx_clock(dev_priv, false);
2459 if (!ret)
2460 ret = err;
2461
2462 vlv_check_no_gt_access(dev_priv);
2463
2464 if (rpm_resume)
2465 intel_init_clock_gating(dev_priv);
2466
2467 return ret;
2468 }
2469
2470 static int intel_runtime_suspend(struct device *kdev)
2471 {
2472 struct pci_dev *pdev = to_pci_dev(kdev);
2473 struct drm_device *dev = pci_get_drvdata(pdev);
2474 struct drm_i915_private *dev_priv = to_i915(dev);
2475 int ret;
2476
2477 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6())))
2478 return -ENODEV;
2479
2480 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2481 return -ENODEV;
2482
2483 DRM_DEBUG_KMS("Suspending device\n");
2484
2485 disable_rpm_wakeref_asserts(dev_priv);
2486
2487 /*
2488 * We are safe here against re-faults, since the fault handler takes
2489 * an RPM reference.
2490 */
2491 i915_gem_runtime_suspend(dev_priv);
2492
2493 intel_guc_suspend(dev_priv);
2494
2495 intel_runtime_pm_disable_interrupts(dev_priv);
2496
2497 ret = 0;
2498 if (IS_GEN9_LP(dev_priv)) {
2499 bxt_display_core_uninit(dev_priv);
2500 bxt_enable_dc9(dev_priv);
2501 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2502 hsw_enable_pc8(dev_priv);
2503 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2504 ret = vlv_suspend_complete(dev_priv);
2505 }
2506
2507 if (ret) {
2508 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2509 intel_runtime_pm_enable_interrupts(dev_priv);
2510
2511 enable_rpm_wakeref_asserts(dev_priv);
2512
2513 return ret;
2514 }
2515
2516 intel_uncore_suspend(dev_priv);
2517
2518 enable_rpm_wakeref_asserts(dev_priv);
2519 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2520
2521 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2522 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2523
2524 dev_priv->pm.suspended = true;
2525
2526 /*
2527 * FIXME: We really should find a document that references the arguments
2528 * used below!
2529 */
2530 if (IS_BROADWELL(dev_priv)) {
2531 /*
2532 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2533 * being detected, and the call we do at intel_runtime_resume()
2534 * won't be able to restore them. Since PCI_D3hot matches the
2535 * actual specification and appears to be working, use it.
2536 */
2537 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2538 } else {
2539 /*
2540 * current versions of firmware which depend on this opregion
2541 * notification have repurposed the D1 definition to mean
2542 * "runtime suspended" vs. what you would normally expect (D3)
2543 * to distinguish it from notifications that might be sent via
2544 * the suspend path.
2545 */
2546 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2547 }
2548
2549 assert_forcewakes_inactive(dev_priv);
2550
2551 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2552 intel_hpd_poll_init(dev_priv);
2553
2554 DRM_DEBUG_KMS("Device suspended\n");
2555 return 0;
2556 }
2557
2558 static int intel_runtime_resume(struct device *kdev)
2559 {
2560 struct pci_dev *pdev = to_pci_dev(kdev);
2561 struct drm_device *dev = pci_get_drvdata(pdev);
2562 struct drm_i915_private *dev_priv = to_i915(dev);
2563 int ret = 0;
2564
2565 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2566 return -ENODEV;
2567
2568 DRM_DEBUG_KMS("Resuming device\n");
2569
2570 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2571 disable_rpm_wakeref_asserts(dev_priv);
2572
2573 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2574 dev_priv->pm.suspended = false;
2575 if (intel_uncore_unclaimed_mmio(dev_priv))
2576 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2577
2578 intel_guc_resume(dev_priv);
2579
2580 if (IS_GEN9_LP(dev_priv)) {
2581 bxt_disable_dc9(dev_priv);
2582 bxt_display_core_init(dev_priv, true);
2583 if (dev_priv->csr.dmc_payload &&
2584 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2585 gen9_enable_dc5(dev_priv);
2586 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2587 hsw_disable_pc8(dev_priv);
2588 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2589 ret = vlv_resume_prepare(dev_priv, true);
2590 }
2591
2592 /*
2593 * No point of rolling back things in case of an error, as the best
2594 * we can do is to hope that things will still work (and disable RPM).
2595 */
2596 i915_gem_init_swizzling(dev_priv);
2597 i915_gem_restore_fences(dev_priv);
2598
2599 intel_runtime_pm_enable_interrupts(dev_priv);
2600
2601 /*
2602 * On VLV/CHV display interrupts are part of the display
2603 * power well, so hpd is reinitialized from there. For
2604 * everyone else do it here.
2605 */
2606 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2607 intel_hpd_init(dev_priv);
2608
2609 enable_rpm_wakeref_asserts(dev_priv);
2610
2611 if (ret)
2612 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2613 else
2614 DRM_DEBUG_KMS("Device resumed\n");
2615
2616 return ret;
2617 }
2618
2619 const struct dev_pm_ops i915_pm_ops = {
2620 /*
2621 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2622 * PMSG_RESUME]
2623 */
2624 .suspend = i915_pm_suspend,
2625 .suspend_late = i915_pm_suspend_late,
2626 .resume_early = i915_pm_resume_early,
2627 .resume = i915_pm_resume,
2628
2629 /*
2630 * S4 event handlers
2631 * @freeze, @freeze_late : called (1) before creating the
2632 * hibernation image [PMSG_FREEZE] and
2633 * (2) after rebooting, before restoring
2634 * the image [PMSG_QUIESCE]
2635 * @thaw, @thaw_early : called (1) after creating the hibernation
2636 * image, before writing it [PMSG_THAW]
2637 * and (2) after failing to create or
2638 * restore the image [PMSG_RECOVER]
2639 * @poweroff, @poweroff_late: called after writing the hibernation
2640 * image, before rebooting [PMSG_HIBERNATE]
2641 * @restore, @restore_early : called after rebooting and restoring the
2642 * hibernation image [PMSG_RESTORE]
2643 */
2644 .freeze = i915_pm_freeze,
2645 .freeze_late = i915_pm_freeze_late,
2646 .thaw_early = i915_pm_thaw_early,
2647 .thaw = i915_pm_thaw,
2648 .poweroff = i915_pm_suspend,
2649 .poweroff_late = i915_pm_poweroff_late,
2650 .restore_early = i915_pm_restore_early,
2651 .restore = i915_pm_restore,
2652
2653 /* S0ix (via runtime suspend) event handlers */
2654 .runtime_suspend = intel_runtime_suspend,
2655 .runtime_resume = intel_runtime_resume,
2656 };
2657
2658 static const struct vm_operations_struct i915_gem_vm_ops = {
2659 .fault = i915_gem_fault,
2660 .open = drm_gem_vm_open,
2661 .close = drm_gem_vm_close,
2662 };
2663
2664 static const struct file_operations i915_driver_fops = {
2665 .owner = THIS_MODULE,
2666 .open = drm_open,
2667 .release = drm_release,
2668 .unlocked_ioctl = drm_ioctl,
2669 .mmap = drm_gem_mmap,
2670 .poll = drm_poll,
2671 .read = drm_read,
2672 .compat_ioctl = i915_compat_ioctl,
2673 .llseek = noop_llseek,
2674 };
2675
2676 static int
2677 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2678 struct drm_file *file)
2679 {
2680 return -ENODEV;
2681 }
2682
2683 static const struct drm_ioctl_desc i915_ioctls[] = {
2684 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2685 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2686 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2687 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2688 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2689 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2690 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2691 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2692 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2693 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2694 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2695 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2696 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2697 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2698 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2699 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2700 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2701 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2702 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2703 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2704 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2705 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2706 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2707 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2708 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2709 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2710 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2711 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2712 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2713 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2714 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2715 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2716 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2717 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2718 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2719 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2720 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2721 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2722 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2723 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2724 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2725 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2726 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2727 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2728 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2729 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2730 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2731 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2732 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2733 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2734 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2735 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2736 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2737 };
2738
2739 static struct drm_driver driver = {
2740 /* Don't use MTRRs here; the Xserver or userspace app should
2741 * deal with them for Intel hardware.
2742 */
2743 .driver_features =
2744 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2745 DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC,
2746 .release = i915_driver_release,
2747 .open = i915_driver_open,
2748 .lastclose = i915_driver_lastclose,
2749 .postclose = i915_driver_postclose,
2750 .set_busid = drm_pci_set_busid,
2751
2752 .gem_close_object = i915_gem_close_object,
2753 .gem_free_object_unlocked = i915_gem_free_object,
2754 .gem_vm_ops = &i915_gem_vm_ops,
2755
2756 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2757 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2758 .gem_prime_export = i915_gem_prime_export,
2759 .gem_prime_import = i915_gem_prime_import,
2760
2761 .dumb_create = i915_gem_dumb_create,
2762 .dumb_map_offset = i915_gem_mmap_gtt,
2763 .dumb_destroy = drm_gem_dumb_destroy,
2764 .ioctls = i915_ioctls,
2765 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2766 .fops = &i915_driver_fops,
2767 .name = DRIVER_NAME,
2768 .desc = DRIVER_DESC,
2769 .date = DRIVER_DATE,
2770 .major = DRIVER_MAJOR,
2771 .minor = DRIVER_MINOR,
2772 .patchlevel = DRIVER_PATCHLEVEL,
2773 };
2774
2775 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2776 #include "selftests/mock_drm.c"
2777 #endif