]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
8f50919ba9b40e59b2db9c550abc29dd0dbb0356
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51 {
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 return false;
59
60 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 return true;
62
63 return obj->pin_display;
64 }
65
66 static int
67 insert_mappable_node(struct drm_i915_private *i915,
68 struct drm_mm_node *node, u32 size)
69 {
70 memset(node, 0, sizeof(*node));
71 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
72 size, 0, 0, 0,
73 i915->ggtt.mappable_end,
74 DRM_MM_SEARCH_DEFAULT,
75 DRM_MM_CREATE_DEFAULT);
76 }
77
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81 drm_mm_remove_node(node);
82 }
83
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 size_t size)
87 {
88 spin_lock(&dev_priv->mm.object_stat_lock);
89 dev_priv->mm.object_count++;
90 dev_priv->mm.object_memory += size;
91 spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 size_t size)
96 {
97 spin_lock(&dev_priv->mm.object_stat_lock);
98 dev_priv->mm.object_count--;
99 dev_priv->mm.object_memory -= size;
100 spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106 int ret;
107
108 if (!i915_reset_in_progress(error))
109 return 0;
110
111 /*
112 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
113 * userspace. If it takes that long something really bad is going on and
114 * we should simply try to bail out and fail as gracefully as possible.
115 */
116 ret = wait_event_interruptible_timeout(error->reset_queue,
117 !i915_reset_in_progress(error),
118 10*HZ);
119 if (ret == 0) {
120 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
121 return -EIO;
122 } else if (ret < 0) {
123 return ret;
124 } else {
125 return 0;
126 }
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = to_i915(dev);
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = to_i915(dev);
151 struct i915_ggtt *ggtt = &dev_priv->ggtt;
152 struct drm_i915_gem_get_aperture *args = data;
153 struct i915_vma *vma;
154 size_t pinned;
155
156 pinned = 0;
157 mutex_lock(&dev->struct_mutex);
158 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 if (vma->pin_count)
160 pinned += vma->node.size;
161 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 if (vma->pin_count)
163 pinned += vma->node.size;
164 mutex_unlock(&dev->struct_mutex);
165
166 args->aper_size = ggtt->base.total;
167 args->aper_available_size = args->aper_size - pinned;
168
169 return 0;
170 }
171
172 static int
173 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174 {
175 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
176 char *vaddr = obj->phys_handle->vaddr;
177 struct sg_table *st;
178 struct scatterlist *sg;
179 int i;
180
181 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182 return -EINVAL;
183
184 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185 struct page *page;
186 char *src;
187
188 page = shmem_read_mapping_page(mapping, i);
189 if (IS_ERR(page))
190 return PTR_ERR(page);
191
192 src = kmap_atomic(page);
193 memcpy(vaddr, src, PAGE_SIZE);
194 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195 kunmap_atomic(src);
196
197 put_page(page);
198 vaddr += PAGE_SIZE;
199 }
200
201 i915_gem_chipset_flush(to_i915(obj->base.dev));
202
203 st = kmalloc(sizeof(*st), GFP_KERNEL);
204 if (st == NULL)
205 return -ENOMEM;
206
207 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208 kfree(st);
209 return -ENOMEM;
210 }
211
212 sg = st->sgl;
213 sg->offset = 0;
214 sg->length = obj->base.size;
215
216 sg_dma_address(sg) = obj->phys_handle->busaddr;
217 sg_dma_len(sg) = obj->base.size;
218
219 obj->pages = st;
220 return 0;
221 }
222
223 static void
224 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
225 {
226 int ret;
227
228 BUG_ON(obj->madv == __I915_MADV_PURGED);
229
230 ret = i915_gem_object_set_to_cpu_domain(obj, true);
231 if (WARN_ON(ret)) {
232 /* In the event of a disaster, abandon all caches and
233 * hope for the best.
234 */
235 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
236 }
237
238 if (obj->madv == I915_MADV_DONTNEED)
239 obj->dirty = 0;
240
241 if (obj->dirty) {
242 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
243 char *vaddr = obj->phys_handle->vaddr;
244 int i;
245
246 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 struct page *page;
248 char *dst;
249
250 page = shmem_read_mapping_page(mapping, i);
251 if (IS_ERR(page))
252 continue;
253
254 dst = kmap_atomic(page);
255 drm_clflush_virt_range(vaddr, PAGE_SIZE);
256 memcpy(dst, vaddr, PAGE_SIZE);
257 kunmap_atomic(dst);
258
259 set_page_dirty(page);
260 if (obj->madv == I915_MADV_WILLNEED)
261 mark_page_accessed(page);
262 put_page(page);
263 vaddr += PAGE_SIZE;
264 }
265 obj->dirty = 0;
266 }
267
268 sg_free_table(obj->pages);
269 kfree(obj->pages);
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = u64_to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(to_i915(dev));
372
373 out:
374 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = to_i915(dev);
381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
387 kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_object_create(dev, size);
406 if (IS_ERR(obj))
407 return PTR_ERR(obj);
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 * @dev: drm device pointer
434 * @data: ioctl data blob
435 * @file: drm file pointer
436 */
437 int
438 i915_gem_create_ioctl(struct drm_device *dev, void *data,
439 struct drm_file *file)
440 {
441 struct drm_i915_gem_create *args = data;
442
443 return i915_gem_create(file, dev,
444 args->size, &args->handle);
445 }
446
447 static inline int
448 __copy_to_user_swizzled(char __user *cpu_vaddr,
449 const char *gpu_vaddr, int gpu_offset,
450 int length)
451 {
452 int ret, cpu_offset = 0;
453
454 while (length > 0) {
455 int cacheline_end = ALIGN(gpu_offset + 1, 64);
456 int this_length = min(cacheline_end - gpu_offset, length);
457 int swizzled_gpu_offset = gpu_offset ^ 64;
458
459 ret = __copy_to_user(cpu_vaddr + cpu_offset,
460 gpu_vaddr + swizzled_gpu_offset,
461 this_length);
462 if (ret)
463 return ret + length;
464
465 cpu_offset += this_length;
466 gpu_offset += this_length;
467 length -= this_length;
468 }
469
470 return 0;
471 }
472
473 static inline int
474 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475 const char __user *cpu_vaddr,
476 int length)
477 {
478 int ret, cpu_offset = 0;
479
480 while (length > 0) {
481 int cacheline_end = ALIGN(gpu_offset + 1, 64);
482 int this_length = min(cacheline_end - gpu_offset, length);
483 int swizzled_gpu_offset = gpu_offset ^ 64;
484
485 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486 cpu_vaddr + cpu_offset,
487 this_length);
488 if (ret)
489 return ret + length;
490
491 cpu_offset += this_length;
492 gpu_offset += this_length;
493 length -= this_length;
494 }
495
496 return 0;
497 }
498
499 /*
500 * Pins the specified object's pages and synchronizes the object with
501 * GPU accesses. Sets needs_clflush to non-zero if the caller should
502 * flush the object from the CPU cache.
503 */
504 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505 int *needs_clflush)
506 {
507 int ret;
508
509 *needs_clflush = 0;
510
511 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512 return -EINVAL;
513
514 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515 /* If we're not in the cpu read domain, set ourself into the gtt
516 * read domain and manually flush cachelines (if required). This
517 * optimizes for the case when the gpu will dirty the data
518 * anyway again before the next pread happens. */
519 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520 obj->cache_level);
521 ret = i915_gem_object_wait_rendering(obj, true);
522 if (ret)
523 return ret;
524 }
525
526 ret = i915_gem_object_get_pages(obj);
527 if (ret)
528 return ret;
529
530 i915_gem_object_pin_pages(obj);
531
532 return ret;
533 }
534
535 /* Per-page copy function for the shmem pread fastpath.
536 * Flushes invalid cachelines before reading the target if
537 * needs_clflush is set. */
538 static int
539 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
540 char __user *user_data,
541 bool page_do_bit17_swizzling, bool needs_clflush)
542 {
543 char *vaddr;
544 int ret;
545
546 if (unlikely(page_do_bit17_swizzling))
547 return -EINVAL;
548
549 vaddr = kmap_atomic(page);
550 if (needs_clflush)
551 drm_clflush_virt_range(vaddr + shmem_page_offset,
552 page_length);
553 ret = __copy_to_user_inatomic(user_data,
554 vaddr + shmem_page_offset,
555 page_length);
556 kunmap_atomic(vaddr);
557
558 return ret ? -EFAULT : 0;
559 }
560
561 static void
562 shmem_clflush_swizzled_range(char *addr, unsigned long length,
563 bool swizzled)
564 {
565 if (unlikely(swizzled)) {
566 unsigned long start = (unsigned long) addr;
567 unsigned long end = (unsigned long) addr + length;
568
569 /* For swizzling simply ensure that we always flush both
570 * channels. Lame, but simple and it works. Swizzled
571 * pwrite/pread is far from a hotpath - current userspace
572 * doesn't use it at all. */
573 start = round_down(start, 128);
574 end = round_up(end, 128);
575
576 drm_clflush_virt_range((void *)start, end - start);
577 } else {
578 drm_clflush_virt_range(addr, length);
579 }
580
581 }
582
583 /* Only difference to the fast-path function is that this can handle bit17
584 * and uses non-atomic copy and kmap functions. */
585 static int
586 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
587 char __user *user_data,
588 bool page_do_bit17_swizzling, bool needs_clflush)
589 {
590 char *vaddr;
591 int ret;
592
593 vaddr = kmap(page);
594 if (needs_clflush)
595 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
596 page_length,
597 page_do_bit17_swizzling);
598
599 if (page_do_bit17_swizzling)
600 ret = __copy_to_user_swizzled(user_data,
601 vaddr, shmem_page_offset,
602 page_length);
603 else
604 ret = __copy_to_user(user_data,
605 vaddr + shmem_page_offset,
606 page_length);
607 kunmap(page);
608
609 return ret ? - EFAULT : 0;
610 }
611
612 static inline unsigned long
613 slow_user_access(struct io_mapping *mapping,
614 uint64_t page_base, int page_offset,
615 char __user *user_data,
616 unsigned long length, bool pwrite)
617 {
618 void __iomem *ioaddr;
619 void *vaddr;
620 uint64_t unwritten;
621
622 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
623 /* We can use the cpu mem copy function because this is X86. */
624 vaddr = (void __force *)ioaddr + page_offset;
625 if (pwrite)
626 unwritten = __copy_from_user(vaddr, user_data, length);
627 else
628 unwritten = __copy_to_user(user_data, vaddr, length);
629
630 io_mapping_unmap(ioaddr);
631 return unwritten;
632 }
633
634 static int
635 i915_gem_gtt_pread(struct drm_device *dev,
636 struct drm_i915_gem_object *obj, uint64_t size,
637 uint64_t data_offset, uint64_t data_ptr)
638 {
639 struct drm_i915_private *dev_priv = to_i915(dev);
640 struct i915_ggtt *ggtt = &dev_priv->ggtt;
641 struct drm_mm_node node;
642 char __user *user_data;
643 uint64_t remain;
644 uint64_t offset;
645 int ret;
646
647 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
648 if (ret) {
649 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
650 if (ret)
651 goto out;
652
653 ret = i915_gem_object_get_pages(obj);
654 if (ret) {
655 remove_mappable_node(&node);
656 goto out;
657 }
658
659 i915_gem_object_pin_pages(obj);
660 } else {
661 node.start = i915_gem_obj_ggtt_offset(obj);
662 node.allocated = false;
663 ret = i915_gem_object_put_fence(obj);
664 if (ret)
665 goto out_unpin;
666 }
667
668 ret = i915_gem_object_set_to_gtt_domain(obj, false);
669 if (ret)
670 goto out_unpin;
671
672 user_data = u64_to_user_ptr(data_ptr);
673 remain = size;
674 offset = data_offset;
675
676 mutex_unlock(&dev->struct_mutex);
677 if (likely(!i915.prefault_disable)) {
678 ret = fault_in_multipages_writeable(user_data, remain);
679 if (ret) {
680 mutex_lock(&dev->struct_mutex);
681 goto out_unpin;
682 }
683 }
684
685 while (remain > 0) {
686 /* Operation in this page
687 *
688 * page_base = page offset within aperture
689 * page_offset = offset within page
690 * page_length = bytes to copy for this page
691 */
692 u32 page_base = node.start;
693 unsigned page_offset = offset_in_page(offset);
694 unsigned page_length = PAGE_SIZE - page_offset;
695 page_length = remain < page_length ? remain : page_length;
696 if (node.allocated) {
697 wmb();
698 ggtt->base.insert_page(&ggtt->base,
699 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
700 node.start,
701 I915_CACHE_NONE, 0);
702 wmb();
703 } else {
704 page_base += offset & PAGE_MASK;
705 }
706 /* This is a slow read/write as it tries to read from
707 * and write to user memory which may result into page
708 * faults, and so we cannot perform this under struct_mutex.
709 */
710 if (slow_user_access(ggtt->mappable, page_base,
711 page_offset, user_data,
712 page_length, false)) {
713 ret = -EFAULT;
714 break;
715 }
716
717 remain -= page_length;
718 user_data += page_length;
719 offset += page_length;
720 }
721
722 mutex_lock(&dev->struct_mutex);
723 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
724 /* The user has modified the object whilst we tried
725 * reading from it, and we now have no idea what domain
726 * the pages should be in. As we have just been touching
727 * them directly, flush everything back to the GTT
728 * domain.
729 */
730 ret = i915_gem_object_set_to_gtt_domain(obj, false);
731 }
732
733 out_unpin:
734 if (node.allocated) {
735 wmb();
736 ggtt->base.clear_range(&ggtt->base,
737 node.start, node.size,
738 true);
739 i915_gem_object_unpin_pages(obj);
740 remove_mappable_node(&node);
741 } else {
742 i915_gem_object_ggtt_unpin(obj);
743 }
744 out:
745 return ret;
746 }
747
748 static int
749 i915_gem_shmem_pread(struct drm_device *dev,
750 struct drm_i915_gem_object *obj,
751 struct drm_i915_gem_pread *args,
752 struct drm_file *file)
753 {
754 char __user *user_data;
755 ssize_t remain;
756 loff_t offset;
757 int shmem_page_offset, page_length, ret = 0;
758 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759 int prefaulted = 0;
760 int needs_clflush = 0;
761 struct sg_page_iter sg_iter;
762
763 if (!i915_gem_object_has_struct_page(obj))
764 return -ENODEV;
765
766 user_data = u64_to_user_ptr(args->data_ptr);
767 remain = args->size;
768
769 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770
771 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772 if (ret)
773 return ret;
774
775 offset = args->offset;
776
777 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
778 offset >> PAGE_SHIFT) {
779 struct page *page = sg_page_iter_page(&sg_iter);
780
781 if (remain <= 0)
782 break;
783
784 /* Operation in this page
785 *
786 * shmem_page_offset = offset within page in shmem file
787 * page_length = bytes to copy for this page
788 */
789 shmem_page_offset = offset_in_page(offset);
790 page_length = remain;
791 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792 page_length = PAGE_SIZE - shmem_page_offset;
793
794 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
795 (page_to_phys(page) & (1 << 17)) != 0;
796
797 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
798 user_data, page_do_bit17_swizzling,
799 needs_clflush);
800 if (ret == 0)
801 goto next_page;
802
803 mutex_unlock(&dev->struct_mutex);
804
805 if (likely(!i915.prefault_disable) && !prefaulted) {
806 ret = fault_in_multipages_writeable(user_data, remain);
807 /* Userspace is tricking us, but we've already clobbered
808 * its pages with the prefault and promised to write the
809 * data up to the first fault. Hence ignore any errors
810 * and just continue. */
811 (void)ret;
812 prefaulted = 1;
813 }
814
815 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 needs_clflush);
818
819 mutex_lock(&dev->struct_mutex);
820
821 if (ret)
822 goto out;
823
824 next_page:
825 remain -= page_length;
826 user_data += page_length;
827 offset += page_length;
828 }
829
830 out:
831 i915_gem_object_unpin_pages(obj);
832
833 return ret;
834 }
835
836 /**
837 * Reads data from the object referenced by handle.
838 * @dev: drm device pointer
839 * @data: ioctl data blob
840 * @file: drm file pointer
841 *
842 * On error, the contents of *data are undefined.
843 */
844 int
845 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846 struct drm_file *file)
847 {
848 struct drm_i915_gem_pread *args = data;
849 struct drm_i915_gem_object *obj;
850 int ret = 0;
851
852 if (args->size == 0)
853 return 0;
854
855 if (!access_ok(VERIFY_WRITE,
856 u64_to_user_ptr(args->data_ptr),
857 args->size))
858 return -EFAULT;
859
860 ret = i915_mutex_lock_interruptible(dev);
861 if (ret)
862 return ret;
863
864 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865 if (&obj->base == NULL) {
866 ret = -ENOENT;
867 goto unlock;
868 }
869
870 /* Bounds check source. */
871 if (args->offset > obj->base.size ||
872 args->size > obj->base.size - args->offset) {
873 ret = -EINVAL;
874 goto out;
875 }
876
877 trace_i915_gem_object_pread(obj, args->offset, args->size);
878
879 ret = i915_gem_shmem_pread(dev, obj, args, file);
880
881 /* pread for non shmem backed objects */
882 if (ret == -EFAULT || ret == -ENODEV)
883 ret = i915_gem_gtt_pread(dev, obj, args->size,
884 args->offset, args->data_ptr);
885
886 out:
887 drm_gem_object_unreference(&obj->base);
888 unlock:
889 mutex_unlock(&dev->struct_mutex);
890 return ret;
891 }
892
893 /* This is the fast write path which cannot handle
894 * page faults in the source data
895 */
896
897 static inline int
898 fast_user_write(struct io_mapping *mapping,
899 loff_t page_base, int page_offset,
900 char __user *user_data,
901 int length)
902 {
903 void __iomem *vaddr_atomic;
904 void *vaddr;
905 unsigned long unwritten;
906
907 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
908 /* We can use the cpu mem copy function because this is X86. */
909 vaddr = (void __force*)vaddr_atomic + page_offset;
910 unwritten = __copy_from_user_inatomic_nocache(vaddr,
911 user_data, length);
912 io_mapping_unmap_atomic(vaddr_atomic);
913 return unwritten;
914 }
915
916 /**
917 * This is the fast pwrite path, where we copy the data directly from the
918 * user into the GTT, uncached.
919 * @dev: drm device pointer
920 * @obj: i915 gem object
921 * @args: pwrite arguments structure
922 * @file: drm file pointer
923 */
924 static int
925 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
926 struct drm_i915_gem_object *obj,
927 struct drm_i915_gem_pwrite *args,
928 struct drm_file *file)
929 {
930 struct i915_ggtt *ggtt = &i915->ggtt;
931 struct drm_device *dev = obj->base.dev;
932 struct drm_mm_node node;
933 uint64_t remain, offset;
934 char __user *user_data;
935 int ret;
936 bool hit_slow_path = false;
937
938 if (obj->tiling_mode != I915_TILING_NONE)
939 return -EFAULT;
940
941 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
942 if (ret) {
943 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
944 if (ret)
945 goto out;
946
947 ret = i915_gem_object_get_pages(obj);
948 if (ret) {
949 remove_mappable_node(&node);
950 goto out;
951 }
952
953 i915_gem_object_pin_pages(obj);
954 } else {
955 node.start = i915_gem_obj_ggtt_offset(obj);
956 node.allocated = false;
957 ret = i915_gem_object_put_fence(obj);
958 if (ret)
959 goto out_unpin;
960 }
961
962 ret = i915_gem_object_set_to_gtt_domain(obj, true);
963 if (ret)
964 goto out_unpin;
965
966 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
967 obj->dirty = true;
968
969 user_data = u64_to_user_ptr(args->data_ptr);
970 offset = args->offset;
971 remain = args->size;
972 while (remain) {
973 /* Operation in this page
974 *
975 * page_base = page offset within aperture
976 * page_offset = offset within page
977 * page_length = bytes to copy for this page
978 */
979 u32 page_base = node.start;
980 unsigned page_offset = offset_in_page(offset);
981 unsigned page_length = PAGE_SIZE - page_offset;
982 page_length = remain < page_length ? remain : page_length;
983 if (node.allocated) {
984 wmb(); /* flush the write before we modify the GGTT */
985 ggtt->base.insert_page(&ggtt->base,
986 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
987 node.start, I915_CACHE_NONE, 0);
988 wmb(); /* flush modifications to the GGTT (insert_page) */
989 } else {
990 page_base += offset & PAGE_MASK;
991 }
992 /* If we get a fault while copying data, then (presumably) our
993 * source page isn't available. Return the error and we'll
994 * retry in the slow path.
995 * If the object is non-shmem backed, we retry again with the
996 * path that handles page fault.
997 */
998 if (fast_user_write(ggtt->mappable, page_base,
999 page_offset, user_data, page_length)) {
1000 hit_slow_path = true;
1001 mutex_unlock(&dev->struct_mutex);
1002 if (slow_user_access(ggtt->mappable,
1003 page_base,
1004 page_offset, user_data,
1005 page_length, true)) {
1006 ret = -EFAULT;
1007 mutex_lock(&dev->struct_mutex);
1008 goto out_flush;
1009 }
1010
1011 mutex_lock(&dev->struct_mutex);
1012 }
1013
1014 remain -= page_length;
1015 user_data += page_length;
1016 offset += page_length;
1017 }
1018
1019 out_flush:
1020 if (hit_slow_path) {
1021 if (ret == 0 &&
1022 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1023 /* The user has modified the object whilst we tried
1024 * reading from it, and we now have no idea what domain
1025 * the pages should be in. As we have just been touching
1026 * them directly, flush everything back to the GTT
1027 * domain.
1028 */
1029 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030 }
1031 }
1032
1033 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
1034 out_unpin:
1035 if (node.allocated) {
1036 wmb();
1037 ggtt->base.clear_range(&ggtt->base,
1038 node.start, node.size,
1039 true);
1040 i915_gem_object_unpin_pages(obj);
1041 remove_mappable_node(&node);
1042 } else {
1043 i915_gem_object_ggtt_unpin(obj);
1044 }
1045 out:
1046 return ret;
1047 }
1048
1049 /* Per-page copy function for the shmem pwrite fastpath.
1050 * Flushes invalid cachelines before writing to the target if
1051 * needs_clflush_before is set and flushes out any written cachelines after
1052 * writing if needs_clflush is set. */
1053 static int
1054 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1055 char __user *user_data,
1056 bool page_do_bit17_swizzling,
1057 bool needs_clflush_before,
1058 bool needs_clflush_after)
1059 {
1060 char *vaddr;
1061 int ret;
1062
1063 if (unlikely(page_do_bit17_swizzling))
1064 return -EINVAL;
1065
1066 vaddr = kmap_atomic(page);
1067 if (needs_clflush_before)
1068 drm_clflush_virt_range(vaddr + shmem_page_offset,
1069 page_length);
1070 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1071 user_data, page_length);
1072 if (needs_clflush_after)
1073 drm_clflush_virt_range(vaddr + shmem_page_offset,
1074 page_length);
1075 kunmap_atomic(vaddr);
1076
1077 return ret ? -EFAULT : 0;
1078 }
1079
1080 /* Only difference to the fast-path function is that this can handle bit17
1081 * and uses non-atomic copy and kmap functions. */
1082 static int
1083 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1084 char __user *user_data,
1085 bool page_do_bit17_swizzling,
1086 bool needs_clflush_before,
1087 bool needs_clflush_after)
1088 {
1089 char *vaddr;
1090 int ret;
1091
1092 vaddr = kmap(page);
1093 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1094 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1095 page_length,
1096 page_do_bit17_swizzling);
1097 if (page_do_bit17_swizzling)
1098 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1099 user_data,
1100 page_length);
1101 else
1102 ret = __copy_from_user(vaddr + shmem_page_offset,
1103 user_data,
1104 page_length);
1105 if (needs_clflush_after)
1106 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1107 page_length,
1108 page_do_bit17_swizzling);
1109 kunmap(page);
1110
1111 return ret ? -EFAULT : 0;
1112 }
1113
1114 static int
1115 i915_gem_shmem_pwrite(struct drm_device *dev,
1116 struct drm_i915_gem_object *obj,
1117 struct drm_i915_gem_pwrite *args,
1118 struct drm_file *file)
1119 {
1120 ssize_t remain;
1121 loff_t offset;
1122 char __user *user_data;
1123 int shmem_page_offset, page_length, ret = 0;
1124 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1125 int hit_slowpath = 0;
1126 int needs_clflush_after = 0;
1127 int needs_clflush_before = 0;
1128 struct sg_page_iter sg_iter;
1129
1130 user_data = u64_to_user_ptr(args->data_ptr);
1131 remain = args->size;
1132
1133 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1134
1135 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1136 /* If we're not in the cpu write domain, set ourself into the gtt
1137 * write domain and manually flush cachelines (if required). This
1138 * optimizes for the case when the gpu will use the data
1139 * right away and we therefore have to clflush anyway. */
1140 needs_clflush_after = cpu_write_needs_clflush(obj);
1141 ret = i915_gem_object_wait_rendering(obj, false);
1142 if (ret)
1143 return ret;
1144 }
1145 /* Same trick applies to invalidate partially written cachelines read
1146 * before writing. */
1147 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1148 needs_clflush_before =
1149 !cpu_cache_is_coherent(dev, obj->cache_level);
1150
1151 ret = i915_gem_object_get_pages(obj);
1152 if (ret)
1153 return ret;
1154
1155 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1156
1157 i915_gem_object_pin_pages(obj);
1158
1159 offset = args->offset;
1160 obj->dirty = 1;
1161
1162 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1163 offset >> PAGE_SHIFT) {
1164 struct page *page = sg_page_iter_page(&sg_iter);
1165 int partial_cacheline_write;
1166
1167 if (remain <= 0)
1168 break;
1169
1170 /* Operation in this page
1171 *
1172 * shmem_page_offset = offset within page in shmem file
1173 * page_length = bytes to copy for this page
1174 */
1175 shmem_page_offset = offset_in_page(offset);
1176
1177 page_length = remain;
1178 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1179 page_length = PAGE_SIZE - shmem_page_offset;
1180
1181 /* If we don't overwrite a cacheline completely we need to be
1182 * careful to have up-to-date data by first clflushing. Don't
1183 * overcomplicate things and flush the entire patch. */
1184 partial_cacheline_write = needs_clflush_before &&
1185 ((shmem_page_offset | page_length)
1186 & (boot_cpu_data.x86_clflush_size - 1));
1187
1188 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1189 (page_to_phys(page) & (1 << 17)) != 0;
1190
1191 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1192 user_data, page_do_bit17_swizzling,
1193 partial_cacheline_write,
1194 needs_clflush_after);
1195 if (ret == 0)
1196 goto next_page;
1197
1198 hit_slowpath = 1;
1199 mutex_unlock(&dev->struct_mutex);
1200 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1201 user_data, page_do_bit17_swizzling,
1202 partial_cacheline_write,
1203 needs_clflush_after);
1204
1205 mutex_lock(&dev->struct_mutex);
1206
1207 if (ret)
1208 goto out;
1209
1210 next_page:
1211 remain -= page_length;
1212 user_data += page_length;
1213 offset += page_length;
1214 }
1215
1216 out:
1217 i915_gem_object_unpin_pages(obj);
1218
1219 if (hit_slowpath) {
1220 /*
1221 * Fixup: Flush cpu caches in case we didn't flush the dirty
1222 * cachelines in-line while writing and the object moved
1223 * out of the cpu write domain while we've dropped the lock.
1224 */
1225 if (!needs_clflush_after &&
1226 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1227 if (i915_gem_clflush_object(obj, obj->pin_display))
1228 needs_clflush_after = true;
1229 }
1230 }
1231
1232 if (needs_clflush_after)
1233 i915_gem_chipset_flush(to_i915(dev));
1234 else
1235 obj->cache_dirty = true;
1236
1237 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1238 return ret;
1239 }
1240
1241 /**
1242 * Writes data to the object referenced by handle.
1243 * @dev: drm device
1244 * @data: ioctl data blob
1245 * @file: drm file
1246 *
1247 * On error, the contents of the buffer that were to be modified are undefined.
1248 */
1249 int
1250 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1251 struct drm_file *file)
1252 {
1253 struct drm_i915_private *dev_priv = to_i915(dev);
1254 struct drm_i915_gem_pwrite *args = data;
1255 struct drm_i915_gem_object *obj;
1256 int ret;
1257
1258 if (args->size == 0)
1259 return 0;
1260
1261 if (!access_ok(VERIFY_READ,
1262 u64_to_user_ptr(args->data_ptr),
1263 args->size))
1264 return -EFAULT;
1265
1266 if (likely(!i915.prefault_disable)) {
1267 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1268 args->size);
1269 if (ret)
1270 return -EFAULT;
1271 }
1272
1273 intel_runtime_pm_get(dev_priv);
1274
1275 ret = i915_mutex_lock_interruptible(dev);
1276 if (ret)
1277 goto put_rpm;
1278
1279 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1280 if (&obj->base == NULL) {
1281 ret = -ENOENT;
1282 goto unlock;
1283 }
1284
1285 /* Bounds check destination. */
1286 if (args->offset > obj->base.size ||
1287 args->size > obj->base.size - args->offset) {
1288 ret = -EINVAL;
1289 goto out;
1290 }
1291
1292 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1293
1294 ret = -EFAULT;
1295 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1296 * it would end up going through the fenced access, and we'll get
1297 * different detiling behavior between reading and writing.
1298 * pread/pwrite currently are reading and writing from the CPU
1299 * perspective, requiring manual detiling by the client.
1300 */
1301 if (!i915_gem_object_has_struct_page(obj) ||
1302 cpu_write_needs_clflush(obj)) {
1303 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1304 /* Note that the gtt paths might fail with non-page-backed user
1305 * pointers (e.g. gtt mappings when moving data between
1306 * textures). Fallback to the shmem path in that case. */
1307 }
1308
1309 if (ret == -EFAULT) {
1310 if (obj->phys_handle)
1311 ret = i915_gem_phys_pwrite(obj, args, file);
1312 else if (i915_gem_object_has_struct_page(obj))
1313 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1314 else
1315 ret = -ENODEV;
1316 }
1317
1318 out:
1319 drm_gem_object_unreference(&obj->base);
1320 unlock:
1321 mutex_unlock(&dev->struct_mutex);
1322 put_rpm:
1323 intel_runtime_pm_put(dev_priv);
1324
1325 return ret;
1326 }
1327
1328 static int
1329 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1330 {
1331 if (__i915_terminally_wedged(reset_counter))
1332 return -EIO;
1333
1334 if (__i915_reset_in_progress(reset_counter)) {
1335 /* Non-interruptible callers can't handle -EAGAIN, hence return
1336 * -EIO unconditionally for these. */
1337 if (!interruptible)
1338 return -EIO;
1339
1340 return -EAGAIN;
1341 }
1342
1343 return 0;
1344 }
1345
1346 static unsigned long local_clock_us(unsigned *cpu)
1347 {
1348 unsigned long t;
1349
1350 /* Cheaply and approximately convert from nanoseconds to microseconds.
1351 * The result and subsequent calculations are also defined in the same
1352 * approximate microseconds units. The principal source of timing
1353 * error here is from the simple truncation.
1354 *
1355 * Note that local_clock() is only defined wrt to the current CPU;
1356 * the comparisons are no longer valid if we switch CPUs. Instead of
1357 * blocking preemption for the entire busywait, we can detect the CPU
1358 * switch and use that as indicator of system load and a reason to
1359 * stop busywaiting, see busywait_stop().
1360 */
1361 *cpu = get_cpu();
1362 t = local_clock() >> 10;
1363 put_cpu();
1364
1365 return t;
1366 }
1367
1368 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1369 {
1370 unsigned this_cpu;
1371
1372 if (time_after(local_clock_us(&this_cpu), timeout))
1373 return true;
1374
1375 return this_cpu != cpu;
1376 }
1377
1378 bool __i915_spin_request(const struct drm_i915_gem_request *req,
1379 int state, unsigned long timeout_us)
1380 {
1381 unsigned cpu;
1382
1383 /* When waiting for high frequency requests, e.g. during synchronous
1384 * rendering split between the CPU and GPU, the finite amount of time
1385 * required to set up the irq and wait upon it limits the response
1386 * rate. By busywaiting on the request completion for a short while we
1387 * can service the high frequency waits as quick as possible. However,
1388 * if it is a slow request, we want to sleep as quickly as possible.
1389 * The tradeoff between waiting and sleeping is roughly the time it
1390 * takes to sleep on a request, on the order of a microsecond.
1391 */
1392
1393 timeout_us += local_clock_us(&cpu);
1394 do {
1395 if (i915_gem_request_completed(req))
1396 return true;
1397
1398 if (signal_pending_state(state, current))
1399 break;
1400
1401 if (busywait_stop(timeout_us, cpu))
1402 break;
1403
1404 cpu_relax_lowlatency();
1405 } while (!need_resched());
1406
1407 return false;
1408 }
1409
1410 /**
1411 * __i915_wait_request - wait until execution of request has finished
1412 * @req: duh!
1413 * @interruptible: do an interruptible wait (normally yes)
1414 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1415 * @rps: RPS client
1416 *
1417 * Note: It is of utmost importance that the passed in seqno and reset_counter
1418 * values have been read by the caller in an smp safe manner. Where read-side
1419 * locks are involved, it is sufficient to read the reset_counter before
1420 * unlocking the lock that protects the seqno. For lockless tricks, the
1421 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1422 * inserted.
1423 *
1424 * Returns 0 if the request was found within the alloted time. Else returns the
1425 * errno with remaining time filled in timeout argument.
1426 */
1427 int __i915_wait_request(struct drm_i915_gem_request *req,
1428 bool interruptible,
1429 s64 *timeout,
1430 struct intel_rps_client *rps)
1431 {
1432 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1433 DEFINE_WAIT(reset);
1434 struct intel_wait wait;
1435 unsigned long timeout_remain;
1436 s64 before = 0; /* Only to silence a compiler warning. */
1437 int ret = 0;
1438
1439 might_sleep();
1440
1441 if (list_empty(&req->list))
1442 return 0;
1443
1444 if (i915_gem_request_completed(req))
1445 return 0;
1446
1447 timeout_remain = MAX_SCHEDULE_TIMEOUT;
1448 if (timeout) {
1449 if (WARN_ON(*timeout < 0))
1450 return -EINVAL;
1451
1452 if (*timeout == 0)
1453 return -ETIME;
1454
1455 timeout_remain = nsecs_to_jiffies_timeout(*timeout);
1456
1457 /*
1458 * Record current time in case interrupted by signal, or wedged.
1459 */
1460 before = ktime_get_raw_ns();
1461 }
1462
1463 trace_i915_gem_request_wait_begin(req);
1464
1465 /* This client is about to stall waiting for the GPU. In many cases
1466 * this is undesirable and limits the throughput of the system, as
1467 * many clients cannot continue processing user input/output whilst
1468 * blocked. RPS autotuning may take tens of milliseconds to respond
1469 * to the GPU load and thus incurs additional latency for the client.
1470 * We can circumvent that by promoting the GPU frequency to maximum
1471 * before we wait. This makes the GPU throttle up much more quickly
1472 * (good for benchmarks and user experience, e.g. window animations),
1473 * but at a cost of spending more power processing the workload
1474 * (bad for battery). Not all clients even want their results
1475 * immediately and for them we should just let the GPU select its own
1476 * frequency to maximise efficiency. To prevent a single client from
1477 * forcing the clocks too high for the whole system, we only allow
1478 * each client to waitboost once in a busy period.
1479 */
1480 if (INTEL_INFO(req->i915)->gen >= 6)
1481 gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
1482
1483 /* Optimistic spin for the next ~jiffie before touching IRQs */
1484 if (i915_spin_request(req, state, 5))
1485 goto complete;
1486
1487 set_current_state(state);
1488 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1489
1490 intel_wait_init(&wait, req->seqno);
1491 if (intel_engine_add_wait(req->engine, &wait))
1492 /* In order to check that we haven't missed the interrupt
1493 * as we enabled it, we need to kick ourselves to do a
1494 * coherent check on the seqno before we sleep.
1495 */
1496 goto wakeup;
1497
1498 for (;;) {
1499 if (signal_pending_state(state, current)) {
1500 ret = -ERESTARTSYS;
1501 break;
1502 }
1503
1504 /* Ensure that even if the GPU hangs, we get woken up.
1505 *
1506 * However, note that if no one is waiting, we never notice
1507 * a gpu hang. Eventually, we will have to wait for a resource
1508 * held by the GPU and so trigger a hangcheck. In the most
1509 * pathological case, this will be upon memory starvation!
1510 */
1511 i915_queue_hangcheck(req->i915);
1512
1513 timeout_remain = io_schedule_timeout(timeout_remain);
1514 if (timeout_remain == 0) {
1515 ret = -ETIME;
1516 break;
1517 }
1518
1519 if (intel_wait_complete(&wait))
1520 break;
1521
1522 set_current_state(state);
1523
1524 wakeup:
1525 /* Carefully check if the request is complete, giving time
1526 * for the seqno to be visible following the interrupt.
1527 * We also have to check in case we are kicked by the GPU
1528 * reset in order to drop the struct_mutex.
1529 */
1530 if (__i915_request_irq_complete(req))
1531 break;
1532
1533 /* Only spin if we know the GPU is processing this request */
1534 if (i915_spin_request(req, state, 2))
1535 break;
1536 }
1537 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1538
1539 intel_engine_remove_wait(req->engine, &wait);
1540 __set_current_state(TASK_RUNNING);
1541 complete:
1542 trace_i915_gem_request_wait_end(req);
1543
1544 if (timeout) {
1545 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1546
1547 *timeout = tres < 0 ? 0 : tres;
1548
1549 /*
1550 * Apparently ktime isn't accurate enough and occasionally has a
1551 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1552 * things up to make the test happy. We allow up to 1 jiffy.
1553 *
1554 * This is a regrssion from the timespec->ktime conversion.
1555 */
1556 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1557 *timeout = 0;
1558 }
1559
1560 if (rps && req->seqno == req->engine->last_submitted_seqno) {
1561 /* The GPU is now idle and this client has stalled.
1562 * Since no other client has submitted a request in the
1563 * meantime, assume that this client is the only one
1564 * supplying work to the GPU but is unable to keep that
1565 * work supplied because it is waiting. Since the GPU is
1566 * then never kept fully busy, RPS autoclocking will
1567 * keep the clocks relatively low, causing further delays.
1568 * Compensate by giving the synchronous client credit for
1569 * a waitboost next time.
1570 */
1571 spin_lock(&req->i915->rps.client_lock);
1572 list_del_init(&rps->link);
1573 spin_unlock(&req->i915->rps.client_lock);
1574 }
1575
1576 return ret;
1577 }
1578
1579 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1580 struct drm_file *file)
1581 {
1582 struct drm_i915_file_private *file_priv;
1583
1584 WARN_ON(!req || !file || req->file_priv);
1585
1586 if (!req || !file)
1587 return -EINVAL;
1588
1589 if (req->file_priv)
1590 return -EINVAL;
1591
1592 file_priv = file->driver_priv;
1593
1594 spin_lock(&file_priv->mm.lock);
1595 req->file_priv = file_priv;
1596 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1597 spin_unlock(&file_priv->mm.lock);
1598
1599 req->pid = get_pid(task_pid(current));
1600
1601 return 0;
1602 }
1603
1604 static inline void
1605 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1606 {
1607 struct drm_i915_file_private *file_priv = request->file_priv;
1608
1609 if (!file_priv)
1610 return;
1611
1612 spin_lock(&file_priv->mm.lock);
1613 list_del(&request->client_list);
1614 request->file_priv = NULL;
1615 spin_unlock(&file_priv->mm.lock);
1616
1617 put_pid(request->pid);
1618 request->pid = NULL;
1619 }
1620
1621 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1622 {
1623 trace_i915_gem_request_retire(request);
1624
1625 /* We know the GPU must have read the request to have
1626 * sent us the seqno + interrupt, so use the position
1627 * of tail of the request to update the last known position
1628 * of the GPU head.
1629 *
1630 * Note this requires that we are always called in request
1631 * completion order.
1632 */
1633 request->ringbuf->last_retired_head = request->postfix;
1634
1635 list_del_init(&request->list);
1636 i915_gem_request_remove_from_client(request);
1637
1638 if (request->previous_context) {
1639 if (i915.enable_execlists)
1640 intel_lr_context_unpin(request->previous_context,
1641 request->engine);
1642 }
1643
1644 i915_gem_context_unreference(request->ctx);
1645 i915_gem_request_unreference(request);
1646 }
1647
1648 static void
1649 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1650 {
1651 struct intel_engine_cs *engine = req->engine;
1652 struct drm_i915_gem_request *tmp;
1653
1654 lockdep_assert_held(&engine->i915->drm.struct_mutex);
1655
1656 if (list_empty(&req->list))
1657 return;
1658
1659 do {
1660 tmp = list_first_entry(&engine->request_list,
1661 typeof(*tmp), list);
1662
1663 i915_gem_request_retire(tmp);
1664 } while (tmp != req);
1665
1666 WARN_ON(i915_verify_lists(engine->dev));
1667 }
1668
1669 /**
1670 * Waits for a request to be signaled, and cleans up the
1671 * request and object lists appropriately for that event.
1672 * @req: request to wait on
1673 */
1674 int
1675 i915_wait_request(struct drm_i915_gem_request *req)
1676 {
1677 struct drm_i915_private *dev_priv = req->i915;
1678 bool interruptible;
1679 int ret;
1680
1681 interruptible = dev_priv->mm.interruptible;
1682
1683 BUG_ON(!mutex_is_locked(&dev_priv->drm.struct_mutex));
1684
1685 ret = __i915_wait_request(req, interruptible, NULL, NULL);
1686 if (ret)
1687 return ret;
1688
1689 /* If the GPU hung, we want to keep the requests to find the guilty. */
1690 if (!i915_reset_in_progress(&dev_priv->gpu_error))
1691 __i915_gem_request_retire__upto(req);
1692
1693 return 0;
1694 }
1695
1696 /**
1697 * Ensures that all rendering to the object has completed and the object is
1698 * safe to unbind from the GTT or access from the CPU.
1699 * @obj: i915 gem object
1700 * @readonly: waiting for read access or write
1701 */
1702 int
1703 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1704 bool readonly)
1705 {
1706 int ret, i;
1707
1708 if (!obj->active)
1709 return 0;
1710
1711 if (readonly) {
1712 if (obj->last_write_req != NULL) {
1713 ret = i915_wait_request(obj->last_write_req);
1714 if (ret)
1715 return ret;
1716
1717 i = obj->last_write_req->engine->id;
1718 if (obj->last_read_req[i] == obj->last_write_req)
1719 i915_gem_object_retire__read(obj, i);
1720 else
1721 i915_gem_object_retire__write(obj);
1722 }
1723 } else {
1724 for (i = 0; i < I915_NUM_ENGINES; i++) {
1725 if (obj->last_read_req[i] == NULL)
1726 continue;
1727
1728 ret = i915_wait_request(obj->last_read_req[i]);
1729 if (ret)
1730 return ret;
1731
1732 i915_gem_object_retire__read(obj, i);
1733 }
1734 GEM_BUG_ON(obj->active);
1735 }
1736
1737 return 0;
1738 }
1739
1740 static void
1741 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1742 struct drm_i915_gem_request *req)
1743 {
1744 int ring = req->engine->id;
1745
1746 if (obj->last_read_req[ring] == req)
1747 i915_gem_object_retire__read(obj, ring);
1748 else if (obj->last_write_req == req)
1749 i915_gem_object_retire__write(obj);
1750
1751 if (!i915_reset_in_progress(&req->i915->gpu_error))
1752 __i915_gem_request_retire__upto(req);
1753 }
1754
1755 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1756 * as the object state may change during this call.
1757 */
1758 static __must_check int
1759 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1760 struct intel_rps_client *rps,
1761 bool readonly)
1762 {
1763 struct drm_device *dev = obj->base.dev;
1764 struct drm_i915_private *dev_priv = to_i915(dev);
1765 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1766 int ret, i, n = 0;
1767
1768 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1769 BUG_ON(!dev_priv->mm.interruptible);
1770
1771 if (!obj->active)
1772 return 0;
1773
1774 if (readonly) {
1775 struct drm_i915_gem_request *req;
1776
1777 req = obj->last_write_req;
1778 if (req == NULL)
1779 return 0;
1780
1781 requests[n++] = i915_gem_request_reference(req);
1782 } else {
1783 for (i = 0; i < I915_NUM_ENGINES; i++) {
1784 struct drm_i915_gem_request *req;
1785
1786 req = obj->last_read_req[i];
1787 if (req == NULL)
1788 continue;
1789
1790 requests[n++] = i915_gem_request_reference(req);
1791 }
1792 }
1793
1794 mutex_unlock(&dev->struct_mutex);
1795 ret = 0;
1796 for (i = 0; ret == 0 && i < n; i++)
1797 ret = __i915_wait_request(requests[i], true, NULL, rps);
1798 mutex_lock(&dev->struct_mutex);
1799
1800 for (i = 0; i < n; i++) {
1801 if (ret == 0)
1802 i915_gem_object_retire_request(obj, requests[i]);
1803 i915_gem_request_unreference(requests[i]);
1804 }
1805
1806 return ret;
1807 }
1808
1809 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1810 {
1811 struct drm_i915_file_private *fpriv = file->driver_priv;
1812 return &fpriv->rps;
1813 }
1814
1815 static enum fb_op_origin
1816 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1817 {
1818 return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1819 ORIGIN_GTT : ORIGIN_CPU;
1820 }
1821
1822 /**
1823 * Called when user space prepares to use an object with the CPU, either
1824 * through the mmap ioctl's mapping or a GTT mapping.
1825 * @dev: drm device
1826 * @data: ioctl data blob
1827 * @file: drm file
1828 */
1829 int
1830 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1831 struct drm_file *file)
1832 {
1833 struct drm_i915_gem_set_domain *args = data;
1834 struct drm_i915_gem_object *obj;
1835 uint32_t read_domains = args->read_domains;
1836 uint32_t write_domain = args->write_domain;
1837 int ret;
1838
1839 /* Only handle setting domains to types used by the CPU. */
1840 if (write_domain & I915_GEM_GPU_DOMAINS)
1841 return -EINVAL;
1842
1843 if (read_domains & I915_GEM_GPU_DOMAINS)
1844 return -EINVAL;
1845
1846 /* Having something in the write domain implies it's in the read
1847 * domain, and only that read domain. Enforce that in the request.
1848 */
1849 if (write_domain != 0 && read_domains != write_domain)
1850 return -EINVAL;
1851
1852 ret = i915_mutex_lock_interruptible(dev);
1853 if (ret)
1854 return ret;
1855
1856 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1857 if (&obj->base == NULL) {
1858 ret = -ENOENT;
1859 goto unlock;
1860 }
1861
1862 /* Try to flush the object off the GPU without holding the lock.
1863 * We will repeat the flush holding the lock in the normal manner
1864 * to catch cases where we are gazumped.
1865 */
1866 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1867 to_rps_client(file),
1868 !write_domain);
1869 if (ret)
1870 goto unref;
1871
1872 if (read_domains & I915_GEM_DOMAIN_GTT)
1873 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1874 else
1875 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1876
1877 if (write_domain != 0)
1878 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1879
1880 unref:
1881 drm_gem_object_unreference(&obj->base);
1882 unlock:
1883 mutex_unlock(&dev->struct_mutex);
1884 return ret;
1885 }
1886
1887 /**
1888 * Called when user space has done writes to this buffer
1889 * @dev: drm device
1890 * @data: ioctl data blob
1891 * @file: drm file
1892 */
1893 int
1894 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1895 struct drm_file *file)
1896 {
1897 struct drm_i915_gem_sw_finish *args = data;
1898 struct drm_i915_gem_object *obj;
1899 int ret = 0;
1900
1901 ret = i915_mutex_lock_interruptible(dev);
1902 if (ret)
1903 return ret;
1904
1905 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1906 if (&obj->base == NULL) {
1907 ret = -ENOENT;
1908 goto unlock;
1909 }
1910
1911 /* Pinned buffers may be scanout, so flush the cache */
1912 if (obj->pin_display)
1913 i915_gem_object_flush_cpu_write_domain(obj);
1914
1915 drm_gem_object_unreference(&obj->base);
1916 unlock:
1917 mutex_unlock(&dev->struct_mutex);
1918 return ret;
1919 }
1920
1921 /**
1922 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1923 * it is mapped to.
1924 * @dev: drm device
1925 * @data: ioctl data blob
1926 * @file: drm file
1927 *
1928 * While the mapping holds a reference on the contents of the object, it doesn't
1929 * imply a ref on the object itself.
1930 *
1931 * IMPORTANT:
1932 *
1933 * DRM driver writers who look a this function as an example for how to do GEM
1934 * mmap support, please don't implement mmap support like here. The modern way
1935 * to implement DRM mmap support is with an mmap offset ioctl (like
1936 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1937 * That way debug tooling like valgrind will understand what's going on, hiding
1938 * the mmap call in a driver private ioctl will break that. The i915 driver only
1939 * does cpu mmaps this way because we didn't know better.
1940 */
1941 int
1942 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1943 struct drm_file *file)
1944 {
1945 struct drm_i915_gem_mmap *args = data;
1946 struct drm_gem_object *obj;
1947 unsigned long addr;
1948
1949 if (args->flags & ~(I915_MMAP_WC))
1950 return -EINVAL;
1951
1952 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1953 return -ENODEV;
1954
1955 obj = drm_gem_object_lookup(file, args->handle);
1956 if (obj == NULL)
1957 return -ENOENT;
1958
1959 /* prime objects have no backing filp to GEM mmap
1960 * pages from.
1961 */
1962 if (!obj->filp) {
1963 drm_gem_object_unreference_unlocked(obj);
1964 return -EINVAL;
1965 }
1966
1967 addr = vm_mmap(obj->filp, 0, args->size,
1968 PROT_READ | PROT_WRITE, MAP_SHARED,
1969 args->offset);
1970 if (args->flags & I915_MMAP_WC) {
1971 struct mm_struct *mm = current->mm;
1972 struct vm_area_struct *vma;
1973
1974 if (down_write_killable(&mm->mmap_sem)) {
1975 drm_gem_object_unreference_unlocked(obj);
1976 return -EINTR;
1977 }
1978 vma = find_vma(mm, addr);
1979 if (vma)
1980 vma->vm_page_prot =
1981 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1982 else
1983 addr = -ENOMEM;
1984 up_write(&mm->mmap_sem);
1985
1986 /* This may race, but that's ok, it only gets set */
1987 WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1988 }
1989 drm_gem_object_unreference_unlocked(obj);
1990 if (IS_ERR((void *)addr))
1991 return addr;
1992
1993 args->addr_ptr = (uint64_t) addr;
1994
1995 return 0;
1996 }
1997
1998 /**
1999 * i915_gem_fault - fault a page into the GTT
2000 * @vma: VMA in question
2001 * @vmf: fault info
2002 *
2003 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
2004 * from userspace. The fault handler takes care of binding the object to
2005 * the GTT (if needed), allocating and programming a fence register (again,
2006 * only if needed based on whether the old reg is still valid or the object
2007 * is tiled) and inserting a new PTE into the faulting process.
2008 *
2009 * Note that the faulting process may involve evicting existing objects
2010 * from the GTT and/or fence registers to make room. So performance may
2011 * suffer if the GTT working set is large or there are few fence registers
2012 * left.
2013 */
2014 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2015 {
2016 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2017 struct drm_device *dev = obj->base.dev;
2018 struct drm_i915_private *dev_priv = to_i915(dev);
2019 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2020 struct i915_ggtt_view view = i915_ggtt_view_normal;
2021 pgoff_t page_offset;
2022 unsigned long pfn;
2023 int ret = 0;
2024 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2025
2026 intel_runtime_pm_get(dev_priv);
2027
2028 /* We don't use vmf->pgoff since that has the fake offset */
2029 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2030 PAGE_SHIFT;
2031
2032 ret = i915_mutex_lock_interruptible(dev);
2033 if (ret)
2034 goto out;
2035
2036 trace_i915_gem_object_fault(obj, page_offset, true, write);
2037
2038 /* Try to flush the object off the GPU first without holding the lock.
2039 * Upon reacquiring the lock, we will perform our sanity checks and then
2040 * repeat the flush holding the lock in the normal manner to catch cases
2041 * where we are gazumped.
2042 */
2043 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2044 if (ret)
2045 goto unlock;
2046
2047 /* Access to snoopable pages through the GTT is incoherent. */
2048 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2049 ret = -EFAULT;
2050 goto unlock;
2051 }
2052
2053 /* Use a partial view if the object is bigger than the aperture. */
2054 if (obj->base.size >= ggtt->mappable_end &&
2055 obj->tiling_mode == I915_TILING_NONE) {
2056 static const unsigned int chunk_size = 256; // 1 MiB
2057
2058 memset(&view, 0, sizeof(view));
2059 view.type = I915_GGTT_VIEW_PARTIAL;
2060 view.params.partial.offset = rounddown(page_offset, chunk_size);
2061 view.params.partial.size =
2062 min_t(unsigned int,
2063 chunk_size,
2064 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
2065 view.params.partial.offset);
2066 }
2067
2068 /* Now pin it into the GTT if needed */
2069 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2070 if (ret)
2071 goto unlock;
2072
2073 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2074 if (ret)
2075 goto unpin;
2076
2077 ret = i915_gem_object_get_fence(obj);
2078 if (ret)
2079 goto unpin;
2080
2081 /* Finally, remap it using the new GTT offset */
2082 pfn = ggtt->mappable_base +
2083 i915_gem_obj_ggtt_offset_view(obj, &view);
2084 pfn >>= PAGE_SHIFT;
2085
2086 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
2087 /* Overriding existing pages in partial view does not cause
2088 * us any trouble as TLBs are still valid because the fault
2089 * is due to userspace losing part of the mapping or never
2090 * having accessed it before (at this partials' range).
2091 */
2092 unsigned long base = vma->vm_start +
2093 (view.params.partial.offset << PAGE_SHIFT);
2094 unsigned int i;
2095
2096 for (i = 0; i < view.params.partial.size; i++) {
2097 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2098 if (ret)
2099 break;
2100 }
2101
2102 obj->fault_mappable = true;
2103 } else {
2104 if (!obj->fault_mappable) {
2105 unsigned long size = min_t(unsigned long,
2106 vma->vm_end - vma->vm_start,
2107 obj->base.size);
2108 int i;
2109
2110 for (i = 0; i < size >> PAGE_SHIFT; i++) {
2111 ret = vm_insert_pfn(vma,
2112 (unsigned long)vma->vm_start + i * PAGE_SIZE,
2113 pfn + i);
2114 if (ret)
2115 break;
2116 }
2117
2118 obj->fault_mappable = true;
2119 } else
2120 ret = vm_insert_pfn(vma,
2121 (unsigned long)vmf->virtual_address,
2122 pfn + page_offset);
2123 }
2124 unpin:
2125 i915_gem_object_ggtt_unpin_view(obj, &view);
2126 unlock:
2127 mutex_unlock(&dev->struct_mutex);
2128 out:
2129 switch (ret) {
2130 case -EIO:
2131 /*
2132 * We eat errors when the gpu is terminally wedged to avoid
2133 * userspace unduly crashing (gl has no provisions for mmaps to
2134 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2135 * and so needs to be reported.
2136 */
2137 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2138 ret = VM_FAULT_SIGBUS;
2139 break;
2140 }
2141 case -EAGAIN:
2142 /*
2143 * EAGAIN means the gpu is hung and we'll wait for the error
2144 * handler to reset everything when re-faulting in
2145 * i915_mutex_lock_interruptible.
2146 */
2147 case 0:
2148 case -ERESTARTSYS:
2149 case -EINTR:
2150 case -EBUSY:
2151 /*
2152 * EBUSY is ok: this just means that another thread
2153 * already did the job.
2154 */
2155 ret = VM_FAULT_NOPAGE;
2156 break;
2157 case -ENOMEM:
2158 ret = VM_FAULT_OOM;
2159 break;
2160 case -ENOSPC:
2161 case -EFAULT:
2162 ret = VM_FAULT_SIGBUS;
2163 break;
2164 default:
2165 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2166 ret = VM_FAULT_SIGBUS;
2167 break;
2168 }
2169
2170 intel_runtime_pm_put(dev_priv);
2171 return ret;
2172 }
2173
2174 /**
2175 * i915_gem_release_mmap - remove physical page mappings
2176 * @obj: obj in question
2177 *
2178 * Preserve the reservation of the mmapping with the DRM core code, but
2179 * relinquish ownership of the pages back to the system.
2180 *
2181 * It is vital that we remove the page mapping if we have mapped a tiled
2182 * object through the GTT and then lose the fence register due to
2183 * resource pressure. Similarly if the object has been moved out of the
2184 * aperture, than pages mapped into userspace must be revoked. Removing the
2185 * mapping will then trigger a page fault on the next user access, allowing
2186 * fixup by i915_gem_fault().
2187 */
2188 void
2189 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2190 {
2191 /* Serialisation between user GTT access and our code depends upon
2192 * revoking the CPU's PTE whilst the mutex is held. The next user
2193 * pagefault then has to wait until we release the mutex.
2194 */
2195 lockdep_assert_held(&obj->base.dev->struct_mutex);
2196
2197 if (!obj->fault_mappable)
2198 return;
2199
2200 drm_vma_node_unmap(&obj->base.vma_node,
2201 obj->base.dev->anon_inode->i_mapping);
2202
2203 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2204 * memory transactions from userspace before we return. The TLB
2205 * flushing implied above by changing the PTE above *should* be
2206 * sufficient, an extra barrier here just provides us with a bit
2207 * of paranoid documentation about our requirement to serialise
2208 * memory writes before touching registers / GSM.
2209 */
2210 wmb();
2211
2212 obj->fault_mappable = false;
2213 }
2214
2215 void
2216 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2217 {
2218 struct drm_i915_gem_object *obj;
2219
2220 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2221 i915_gem_release_mmap(obj);
2222 }
2223
2224 uint32_t
2225 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2226 {
2227 uint32_t gtt_size;
2228
2229 if (INTEL_INFO(dev)->gen >= 4 ||
2230 tiling_mode == I915_TILING_NONE)
2231 return size;
2232
2233 /* Previous chips need a power-of-two fence region when tiling */
2234 if (IS_GEN3(dev))
2235 gtt_size = 1024*1024;
2236 else
2237 gtt_size = 512*1024;
2238
2239 while (gtt_size < size)
2240 gtt_size <<= 1;
2241
2242 return gtt_size;
2243 }
2244
2245 /**
2246 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2247 * @dev: drm device
2248 * @size: object size
2249 * @tiling_mode: tiling mode
2250 * @fenced: is fenced alignemned required or not
2251 *
2252 * Return the required GTT alignment for an object, taking into account
2253 * potential fence register mapping.
2254 */
2255 uint32_t
2256 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2257 int tiling_mode, bool fenced)
2258 {
2259 /*
2260 * Minimum alignment is 4k (GTT page size), but might be greater
2261 * if a fence register is needed for the object.
2262 */
2263 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2264 tiling_mode == I915_TILING_NONE)
2265 return 4096;
2266
2267 /*
2268 * Previous chips need to be aligned to the size of the smallest
2269 * fence register that can contain the object.
2270 */
2271 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2272 }
2273
2274 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2275 {
2276 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2277 int ret;
2278
2279 dev_priv->mm.shrinker_no_lock_stealing = true;
2280
2281 ret = drm_gem_create_mmap_offset(&obj->base);
2282 if (ret != -ENOSPC)
2283 goto out;
2284
2285 /* Badly fragmented mmap space? The only way we can recover
2286 * space is by destroying unwanted objects. We can't randomly release
2287 * mmap_offsets as userspace expects them to be persistent for the
2288 * lifetime of the objects. The closest we can is to release the
2289 * offsets on purgeable objects by truncating it and marking it purged,
2290 * which prevents userspace from ever using that object again.
2291 */
2292 i915_gem_shrink(dev_priv,
2293 obj->base.size >> PAGE_SHIFT,
2294 I915_SHRINK_BOUND |
2295 I915_SHRINK_UNBOUND |
2296 I915_SHRINK_PURGEABLE);
2297 ret = drm_gem_create_mmap_offset(&obj->base);
2298 if (ret != -ENOSPC)
2299 goto out;
2300
2301 i915_gem_shrink_all(dev_priv);
2302 ret = drm_gem_create_mmap_offset(&obj->base);
2303 out:
2304 dev_priv->mm.shrinker_no_lock_stealing = false;
2305
2306 return ret;
2307 }
2308
2309 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2310 {
2311 drm_gem_free_mmap_offset(&obj->base);
2312 }
2313
2314 int
2315 i915_gem_mmap_gtt(struct drm_file *file,
2316 struct drm_device *dev,
2317 uint32_t handle,
2318 uint64_t *offset)
2319 {
2320 struct drm_i915_gem_object *obj;
2321 int ret;
2322
2323 ret = i915_mutex_lock_interruptible(dev);
2324 if (ret)
2325 return ret;
2326
2327 obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2328 if (&obj->base == NULL) {
2329 ret = -ENOENT;
2330 goto unlock;
2331 }
2332
2333 if (obj->madv != I915_MADV_WILLNEED) {
2334 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2335 ret = -EFAULT;
2336 goto out;
2337 }
2338
2339 ret = i915_gem_object_create_mmap_offset(obj);
2340 if (ret)
2341 goto out;
2342
2343 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2344
2345 out:
2346 drm_gem_object_unreference(&obj->base);
2347 unlock:
2348 mutex_unlock(&dev->struct_mutex);
2349 return ret;
2350 }
2351
2352 /**
2353 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2354 * @dev: DRM device
2355 * @data: GTT mapping ioctl data
2356 * @file: GEM object info
2357 *
2358 * Simply returns the fake offset to userspace so it can mmap it.
2359 * The mmap call will end up in drm_gem_mmap(), which will set things
2360 * up so we can get faults in the handler above.
2361 *
2362 * The fault handler will take care of binding the object into the GTT
2363 * (since it may have been evicted to make room for something), allocating
2364 * a fence register, and mapping the appropriate aperture address into
2365 * userspace.
2366 */
2367 int
2368 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2369 struct drm_file *file)
2370 {
2371 struct drm_i915_gem_mmap_gtt *args = data;
2372
2373 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2374 }
2375
2376 /* Immediately discard the backing storage */
2377 static void
2378 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2379 {
2380 i915_gem_object_free_mmap_offset(obj);
2381
2382 if (obj->base.filp == NULL)
2383 return;
2384
2385 /* Our goal here is to return as much of the memory as
2386 * is possible back to the system as we are called from OOM.
2387 * To do this we must instruct the shmfs to drop all of its
2388 * backing pages, *now*.
2389 */
2390 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2391 obj->madv = __I915_MADV_PURGED;
2392 }
2393
2394 /* Try to discard unwanted pages */
2395 static void
2396 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2397 {
2398 struct address_space *mapping;
2399
2400 switch (obj->madv) {
2401 case I915_MADV_DONTNEED:
2402 i915_gem_object_truncate(obj);
2403 case __I915_MADV_PURGED:
2404 return;
2405 }
2406
2407 if (obj->base.filp == NULL)
2408 return;
2409
2410 mapping = file_inode(obj->base.filp)->i_mapping,
2411 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2412 }
2413
2414 static void
2415 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2416 {
2417 struct sgt_iter sgt_iter;
2418 struct page *page;
2419 int ret;
2420
2421 BUG_ON(obj->madv == __I915_MADV_PURGED);
2422
2423 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2424 if (WARN_ON(ret)) {
2425 /* In the event of a disaster, abandon all caches and
2426 * hope for the best.
2427 */
2428 i915_gem_clflush_object(obj, true);
2429 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2430 }
2431
2432 i915_gem_gtt_finish_object(obj);
2433
2434 if (i915_gem_object_needs_bit17_swizzle(obj))
2435 i915_gem_object_save_bit_17_swizzle(obj);
2436
2437 if (obj->madv == I915_MADV_DONTNEED)
2438 obj->dirty = 0;
2439
2440 for_each_sgt_page(page, sgt_iter, obj->pages) {
2441 if (obj->dirty)
2442 set_page_dirty(page);
2443
2444 if (obj->madv == I915_MADV_WILLNEED)
2445 mark_page_accessed(page);
2446
2447 put_page(page);
2448 }
2449 obj->dirty = 0;
2450
2451 sg_free_table(obj->pages);
2452 kfree(obj->pages);
2453 }
2454
2455 int
2456 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2457 {
2458 const struct drm_i915_gem_object_ops *ops = obj->ops;
2459
2460 if (obj->pages == NULL)
2461 return 0;
2462
2463 if (obj->pages_pin_count)
2464 return -EBUSY;
2465
2466 BUG_ON(i915_gem_obj_bound_any(obj));
2467
2468 /* ->put_pages might need to allocate memory for the bit17 swizzle
2469 * array, hence protect them from being reaped by removing them from gtt
2470 * lists early. */
2471 list_del(&obj->global_list);
2472
2473 if (obj->mapping) {
2474 if (is_vmalloc_addr(obj->mapping))
2475 vunmap(obj->mapping);
2476 else
2477 kunmap(kmap_to_page(obj->mapping));
2478 obj->mapping = NULL;
2479 }
2480
2481 ops->put_pages(obj);
2482 obj->pages = NULL;
2483
2484 i915_gem_object_invalidate(obj);
2485
2486 return 0;
2487 }
2488
2489 static int
2490 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2491 {
2492 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2493 int page_count, i;
2494 struct address_space *mapping;
2495 struct sg_table *st;
2496 struct scatterlist *sg;
2497 struct sgt_iter sgt_iter;
2498 struct page *page;
2499 unsigned long last_pfn = 0; /* suppress gcc warning */
2500 int ret;
2501 gfp_t gfp;
2502
2503 /* Assert that the object is not currently in any GPU domain. As it
2504 * wasn't in the GTT, there shouldn't be any way it could have been in
2505 * a GPU cache
2506 */
2507 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2508 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2509
2510 st = kmalloc(sizeof(*st), GFP_KERNEL);
2511 if (st == NULL)
2512 return -ENOMEM;
2513
2514 page_count = obj->base.size / PAGE_SIZE;
2515 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2516 kfree(st);
2517 return -ENOMEM;
2518 }
2519
2520 /* Get the list of pages out of our struct file. They'll be pinned
2521 * at this point until we release them.
2522 *
2523 * Fail silently without starting the shrinker
2524 */
2525 mapping = file_inode(obj->base.filp)->i_mapping;
2526 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2527 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2528 sg = st->sgl;
2529 st->nents = 0;
2530 for (i = 0; i < page_count; i++) {
2531 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2532 if (IS_ERR(page)) {
2533 i915_gem_shrink(dev_priv,
2534 page_count,
2535 I915_SHRINK_BOUND |
2536 I915_SHRINK_UNBOUND |
2537 I915_SHRINK_PURGEABLE);
2538 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2539 }
2540 if (IS_ERR(page)) {
2541 /* We've tried hard to allocate the memory by reaping
2542 * our own buffer, now let the real VM do its job and
2543 * go down in flames if truly OOM.
2544 */
2545 i915_gem_shrink_all(dev_priv);
2546 page = shmem_read_mapping_page(mapping, i);
2547 if (IS_ERR(page)) {
2548 ret = PTR_ERR(page);
2549 goto err_pages;
2550 }
2551 }
2552 #ifdef CONFIG_SWIOTLB
2553 if (swiotlb_nr_tbl()) {
2554 st->nents++;
2555 sg_set_page(sg, page, PAGE_SIZE, 0);
2556 sg = sg_next(sg);
2557 continue;
2558 }
2559 #endif
2560 if (!i || page_to_pfn(page) != last_pfn + 1) {
2561 if (i)
2562 sg = sg_next(sg);
2563 st->nents++;
2564 sg_set_page(sg, page, PAGE_SIZE, 0);
2565 } else {
2566 sg->length += PAGE_SIZE;
2567 }
2568 last_pfn = page_to_pfn(page);
2569
2570 /* Check that the i965g/gm workaround works. */
2571 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2572 }
2573 #ifdef CONFIG_SWIOTLB
2574 if (!swiotlb_nr_tbl())
2575 #endif
2576 sg_mark_end(sg);
2577 obj->pages = st;
2578
2579 ret = i915_gem_gtt_prepare_object(obj);
2580 if (ret)
2581 goto err_pages;
2582
2583 if (i915_gem_object_needs_bit17_swizzle(obj))
2584 i915_gem_object_do_bit_17_swizzle(obj);
2585
2586 if (obj->tiling_mode != I915_TILING_NONE &&
2587 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2588 i915_gem_object_pin_pages(obj);
2589
2590 return 0;
2591
2592 err_pages:
2593 sg_mark_end(sg);
2594 for_each_sgt_page(page, sgt_iter, st)
2595 put_page(page);
2596 sg_free_table(st);
2597 kfree(st);
2598
2599 /* shmemfs first checks if there is enough memory to allocate the page
2600 * and reports ENOSPC should there be insufficient, along with the usual
2601 * ENOMEM for a genuine allocation failure.
2602 *
2603 * We use ENOSPC in our driver to mean that we have run out of aperture
2604 * space and so want to translate the error from shmemfs back to our
2605 * usual understanding of ENOMEM.
2606 */
2607 if (ret == -ENOSPC)
2608 ret = -ENOMEM;
2609
2610 return ret;
2611 }
2612
2613 /* Ensure that the associated pages are gathered from the backing storage
2614 * and pinned into our object. i915_gem_object_get_pages() may be called
2615 * multiple times before they are released by a single call to
2616 * i915_gem_object_put_pages() - once the pages are no longer referenced
2617 * either as a result of memory pressure (reaping pages under the shrinker)
2618 * or as the object is itself released.
2619 */
2620 int
2621 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2622 {
2623 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2624 const struct drm_i915_gem_object_ops *ops = obj->ops;
2625 int ret;
2626
2627 if (obj->pages)
2628 return 0;
2629
2630 if (obj->madv != I915_MADV_WILLNEED) {
2631 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2632 return -EFAULT;
2633 }
2634
2635 BUG_ON(obj->pages_pin_count);
2636
2637 ret = ops->get_pages(obj);
2638 if (ret)
2639 return ret;
2640
2641 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2642
2643 obj->get_page.sg = obj->pages->sgl;
2644 obj->get_page.last = 0;
2645
2646 return 0;
2647 }
2648
2649 /* The 'mapping' part of i915_gem_object_pin_map() below */
2650 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2651 {
2652 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2653 struct sg_table *sgt = obj->pages;
2654 struct sgt_iter sgt_iter;
2655 struct page *page;
2656 struct page *stack_pages[32];
2657 struct page **pages = stack_pages;
2658 unsigned long i = 0;
2659 void *addr;
2660
2661 /* A single page can always be kmapped */
2662 if (n_pages == 1)
2663 return kmap(sg_page(sgt->sgl));
2664
2665 if (n_pages > ARRAY_SIZE(stack_pages)) {
2666 /* Too big for stack -- allocate temporary array instead */
2667 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2668 if (!pages)
2669 return NULL;
2670 }
2671
2672 for_each_sgt_page(page, sgt_iter, sgt)
2673 pages[i++] = page;
2674
2675 /* Check that we have the expected number of pages */
2676 GEM_BUG_ON(i != n_pages);
2677
2678 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2679
2680 if (pages != stack_pages)
2681 drm_free_large(pages);
2682
2683 return addr;
2684 }
2685
2686 /* get, pin, and map the pages of the object into kernel space */
2687 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2688 {
2689 int ret;
2690
2691 lockdep_assert_held(&obj->base.dev->struct_mutex);
2692
2693 ret = i915_gem_object_get_pages(obj);
2694 if (ret)
2695 return ERR_PTR(ret);
2696
2697 i915_gem_object_pin_pages(obj);
2698
2699 if (!obj->mapping) {
2700 obj->mapping = i915_gem_object_map(obj);
2701 if (!obj->mapping) {
2702 i915_gem_object_unpin_pages(obj);
2703 return ERR_PTR(-ENOMEM);
2704 }
2705 }
2706
2707 return obj->mapping;
2708 }
2709
2710 void i915_vma_move_to_active(struct i915_vma *vma,
2711 struct drm_i915_gem_request *req)
2712 {
2713 struct drm_i915_gem_object *obj = vma->obj;
2714 struct intel_engine_cs *engine;
2715
2716 engine = i915_gem_request_get_engine(req);
2717
2718 /* Add a reference if we're newly entering the active list. */
2719 if (obj->active == 0)
2720 drm_gem_object_reference(&obj->base);
2721 obj->active |= intel_engine_flag(engine);
2722
2723 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2724 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2725
2726 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2727 }
2728
2729 static void
2730 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2731 {
2732 GEM_BUG_ON(obj->last_write_req == NULL);
2733 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2734
2735 i915_gem_request_assign(&obj->last_write_req, NULL);
2736 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2737 }
2738
2739 static void
2740 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2741 {
2742 struct i915_vma *vma;
2743
2744 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2745 GEM_BUG_ON(!(obj->active & (1 << ring)));
2746
2747 list_del_init(&obj->engine_list[ring]);
2748 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2749
2750 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2751 i915_gem_object_retire__write(obj);
2752
2753 obj->active &= ~(1 << ring);
2754 if (obj->active)
2755 return;
2756
2757 /* Bump our place on the bound list to keep it roughly in LRU order
2758 * so that we don't steal from recently used but inactive objects
2759 * (unless we are forced to ofc!)
2760 */
2761 list_move_tail(&obj->global_list,
2762 &to_i915(obj->base.dev)->mm.bound_list);
2763
2764 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2765 if (!list_empty(&vma->vm_link))
2766 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2767 }
2768
2769 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2770 drm_gem_object_unreference(&obj->base);
2771 }
2772
2773 static int
2774 i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2775 {
2776 struct intel_engine_cs *engine;
2777 int ret;
2778
2779 /* Carefully retire all requests without writing to the rings */
2780 for_each_engine(engine, dev_priv) {
2781 ret = intel_engine_idle(engine);
2782 if (ret)
2783 return ret;
2784 }
2785 i915_gem_retire_requests(dev_priv);
2786
2787 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
2788 if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
2789 while (intel_kick_waiters(dev_priv) ||
2790 intel_kick_signalers(dev_priv))
2791 yield();
2792 }
2793
2794 /* Finally reset hw state */
2795 for_each_engine(engine, dev_priv)
2796 intel_ring_init_seqno(engine, seqno);
2797
2798 return 0;
2799 }
2800
2801 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2802 {
2803 struct drm_i915_private *dev_priv = to_i915(dev);
2804 int ret;
2805
2806 if (seqno == 0)
2807 return -EINVAL;
2808
2809 /* HWS page needs to be set less than what we
2810 * will inject to ring
2811 */
2812 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2813 if (ret)
2814 return ret;
2815
2816 /* Carefully set the last_seqno value so that wrap
2817 * detection still works
2818 */
2819 dev_priv->next_seqno = seqno;
2820 dev_priv->last_seqno = seqno - 1;
2821 if (dev_priv->last_seqno == 0)
2822 dev_priv->last_seqno--;
2823
2824 return 0;
2825 }
2826
2827 int
2828 i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2829 {
2830 /* reserve 0 for non-seqno */
2831 if (dev_priv->next_seqno == 0) {
2832 int ret = i915_gem_init_seqno(dev_priv, 0);
2833 if (ret)
2834 return ret;
2835
2836 dev_priv->next_seqno = 1;
2837 }
2838
2839 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2840 return 0;
2841 }
2842
2843 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
2844 {
2845 struct drm_i915_private *dev_priv = engine->i915;
2846
2847 dev_priv->gt.active_engines |= intel_engine_flag(engine);
2848 if (dev_priv->gt.awake)
2849 return;
2850
2851 intel_runtime_pm_get_noresume(dev_priv);
2852 dev_priv->gt.awake = true;
2853
2854 i915_update_gfx_val(dev_priv);
2855 if (INTEL_GEN(dev_priv) >= 6)
2856 gen6_rps_busy(dev_priv);
2857
2858 queue_delayed_work(dev_priv->wq,
2859 &dev_priv->gt.retire_work,
2860 round_jiffies_up_relative(HZ));
2861 }
2862
2863 /*
2864 * NB: This function is not allowed to fail. Doing so would mean the the
2865 * request is not being tracked for completion but the work itself is
2866 * going to happen on the hardware. This would be a Bad Thing(tm).
2867 */
2868 void __i915_add_request(struct drm_i915_gem_request *request,
2869 struct drm_i915_gem_object *obj,
2870 bool flush_caches)
2871 {
2872 struct intel_engine_cs *engine;
2873 struct intel_ringbuffer *ringbuf;
2874 u32 request_start;
2875 u32 reserved_tail;
2876 int ret;
2877
2878 if (WARN_ON(request == NULL))
2879 return;
2880
2881 engine = request->engine;
2882 ringbuf = request->ringbuf;
2883
2884 /*
2885 * To ensure that this call will not fail, space for its emissions
2886 * should already have been reserved in the ring buffer. Let the ring
2887 * know that it is time to use that space up.
2888 */
2889 request_start = intel_ring_get_tail(ringbuf);
2890 reserved_tail = request->reserved_space;
2891 request->reserved_space = 0;
2892
2893 /*
2894 * Emit any outstanding flushes - execbuf can fail to emit the flush
2895 * after having emitted the batchbuffer command. Hence we need to fix
2896 * things up similar to emitting the lazy request. The difference here
2897 * is that the flush _must_ happen before the next request, no matter
2898 * what.
2899 */
2900 if (flush_caches) {
2901 if (i915.enable_execlists)
2902 ret = logical_ring_flush_all_caches(request);
2903 else
2904 ret = intel_ring_flush_all_caches(request);
2905 /* Not allowed to fail! */
2906 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2907 }
2908
2909 trace_i915_gem_request_add(request);
2910
2911 request->head = request_start;
2912
2913 /* Whilst this request exists, batch_obj will be on the
2914 * active_list, and so will hold the active reference. Only when this
2915 * request is retired will the the batch_obj be moved onto the
2916 * inactive_list and lose its active reference. Hence we do not need
2917 * to explicitly hold another reference here.
2918 */
2919 request->batch_obj = obj;
2920
2921 /* Seal the request and mark it as pending execution. Note that
2922 * we may inspect this state, without holding any locks, during
2923 * hangcheck. Hence we apply the barrier to ensure that we do not
2924 * see a more recent value in the hws than we are tracking.
2925 */
2926 request->emitted_jiffies = jiffies;
2927 request->previous_seqno = engine->last_submitted_seqno;
2928 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2929 list_add_tail(&request->list, &engine->request_list);
2930
2931 /* Record the position of the start of the request so that
2932 * should we detect the updated seqno part-way through the
2933 * GPU processing the request, we never over-estimate the
2934 * position of the head.
2935 */
2936 request->postfix = intel_ring_get_tail(ringbuf);
2937
2938 if (i915.enable_execlists)
2939 ret = engine->emit_request(request);
2940 else {
2941 ret = engine->add_request(request);
2942
2943 request->tail = intel_ring_get_tail(ringbuf);
2944 }
2945 /* Not allowed to fail! */
2946 WARN(ret, "emit|add_request failed: %d!\n", ret);
2947 /* Sanity check that the reserved size was large enough. */
2948 ret = intel_ring_get_tail(ringbuf) - request_start;
2949 if (ret < 0)
2950 ret += ringbuf->size;
2951 WARN_ONCE(ret > reserved_tail,
2952 "Not enough space reserved (%d bytes) "
2953 "for adding the request (%d bytes)\n",
2954 reserved_tail, ret);
2955
2956 i915_gem_mark_busy(engine);
2957 }
2958
2959 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2960 {
2961 unsigned long elapsed;
2962
2963 if (ctx->hang_stats.banned)
2964 return true;
2965
2966 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2967 if (ctx->hang_stats.ban_period_seconds &&
2968 elapsed <= ctx->hang_stats.ban_period_seconds) {
2969 DRM_DEBUG("context hanging too fast, banning!\n");
2970 return true;
2971 }
2972
2973 return false;
2974 }
2975
2976 static void i915_set_reset_status(struct i915_gem_context *ctx,
2977 const bool guilty)
2978 {
2979 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2980
2981 if (guilty) {
2982 hs->banned = i915_context_is_banned(ctx);
2983 hs->batch_active++;
2984 hs->guilty_ts = get_seconds();
2985 } else {
2986 hs->batch_pending++;
2987 }
2988 }
2989
2990 void i915_gem_request_free(struct kref *req_ref)
2991 {
2992 struct drm_i915_gem_request *req = container_of(req_ref,
2993 typeof(*req), ref);
2994 kmem_cache_free(req->i915->requests, req);
2995 }
2996
2997 static inline int
2998 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2999 struct i915_gem_context *ctx,
3000 struct drm_i915_gem_request **req_out)
3001 {
3002 struct drm_i915_private *dev_priv = engine->i915;
3003 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
3004 struct drm_i915_gem_request *req;
3005 int ret;
3006
3007 if (!req_out)
3008 return -EINVAL;
3009
3010 *req_out = NULL;
3011
3012 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
3013 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
3014 * and restart.
3015 */
3016 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
3017 if (ret)
3018 return ret;
3019
3020 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
3021 if (req == NULL)
3022 return -ENOMEM;
3023
3024 ret = i915_gem_get_seqno(engine->i915, &req->seqno);
3025 if (ret)
3026 goto err;
3027
3028 kref_init(&req->ref);
3029 req->i915 = dev_priv;
3030 req->engine = engine;
3031 req->ctx = ctx;
3032 i915_gem_context_reference(req->ctx);
3033
3034 /*
3035 * Reserve space in the ring buffer for all the commands required to
3036 * eventually emit this request. This is to guarantee that the
3037 * i915_add_request() call can't fail. Note that the reserve may need
3038 * to be redone if the request is not actually submitted straight
3039 * away, e.g. because a GPU scheduler has deferred it.
3040 */
3041 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3042
3043 if (i915.enable_execlists)
3044 ret = intel_logical_ring_alloc_request_extras(req);
3045 else
3046 ret = intel_ring_alloc_request_extras(req);
3047 if (ret)
3048 goto err_ctx;
3049
3050 *req_out = req;
3051 return 0;
3052
3053 err_ctx:
3054 i915_gem_context_unreference(ctx);
3055 err:
3056 kmem_cache_free(dev_priv->requests, req);
3057 return ret;
3058 }
3059
3060 /**
3061 * i915_gem_request_alloc - allocate a request structure
3062 *
3063 * @engine: engine that we wish to issue the request on.
3064 * @ctx: context that the request will be associated with.
3065 * This can be NULL if the request is not directly related to
3066 * any specific user context, in which case this function will
3067 * choose an appropriate context to use.
3068 *
3069 * Returns a pointer to the allocated request if successful,
3070 * or an error code if not.
3071 */
3072 struct drm_i915_gem_request *
3073 i915_gem_request_alloc(struct intel_engine_cs *engine,
3074 struct i915_gem_context *ctx)
3075 {
3076 struct drm_i915_gem_request *req;
3077 int err;
3078
3079 if (ctx == NULL)
3080 ctx = engine->i915->kernel_context;
3081 err = __i915_gem_request_alloc(engine, ctx, &req);
3082 return err ? ERR_PTR(err) : req;
3083 }
3084
3085 struct drm_i915_gem_request *
3086 i915_gem_find_active_request(struct intel_engine_cs *engine)
3087 {
3088 struct drm_i915_gem_request *request;
3089
3090 /* We are called by the error capture and reset at a random
3091 * point in time. In particular, note that neither is crucially
3092 * ordered with an interrupt. After a hang, the GPU is dead and we
3093 * assume that no more writes can happen (we waited long enough for
3094 * all writes that were in transaction to be flushed) - adding an
3095 * extra delay for a recent interrupt is pointless. Hence, we do
3096 * not need an engine->irq_seqno_barrier() before the seqno reads.
3097 */
3098 list_for_each_entry(request, &engine->request_list, list) {
3099 if (i915_gem_request_completed(request))
3100 continue;
3101
3102 return request;
3103 }
3104
3105 return NULL;
3106 }
3107
3108 static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
3109 {
3110 struct drm_i915_gem_request *request;
3111 bool ring_hung;
3112
3113 request = i915_gem_find_active_request(engine);
3114 if (request == NULL)
3115 return;
3116
3117 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3118
3119 i915_set_reset_status(request->ctx, ring_hung);
3120 list_for_each_entry_continue(request, &engine->request_list, list)
3121 i915_set_reset_status(request->ctx, false);
3122 }
3123
3124 static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
3125 {
3126 struct intel_ringbuffer *buffer;
3127
3128 while (!list_empty(&engine->active_list)) {
3129 struct drm_i915_gem_object *obj;
3130
3131 obj = list_first_entry(&engine->active_list,
3132 struct drm_i915_gem_object,
3133 engine_list[engine->id]);
3134
3135 i915_gem_object_retire__read(obj, engine->id);
3136 }
3137
3138 /*
3139 * Clear the execlists queue up before freeing the requests, as those
3140 * are the ones that keep the context and ringbuffer backing objects
3141 * pinned in place.
3142 */
3143
3144 if (i915.enable_execlists) {
3145 /* Ensure irq handler finishes or is cancelled. */
3146 tasklet_kill(&engine->irq_tasklet);
3147
3148 intel_execlists_cancel_requests(engine);
3149 }
3150
3151 /*
3152 * We must free the requests after all the corresponding objects have
3153 * been moved off active lists. Which is the same order as the normal
3154 * retire_requests function does. This is important if object hold
3155 * implicit references on things like e.g. ppgtt address spaces through
3156 * the request.
3157 */
3158 while (!list_empty(&engine->request_list)) {
3159 struct drm_i915_gem_request *request;
3160
3161 request = list_first_entry(&engine->request_list,
3162 struct drm_i915_gem_request,
3163 list);
3164
3165 i915_gem_request_retire(request);
3166 }
3167
3168 /* Having flushed all requests from all queues, we know that all
3169 * ringbuffers must now be empty. However, since we do not reclaim
3170 * all space when retiring the request (to prevent HEADs colliding
3171 * with rapid ringbuffer wraparound) the amount of available space
3172 * upon reset is less than when we start. Do one more pass over
3173 * all the ringbuffers to reset last_retired_head.
3174 */
3175 list_for_each_entry(buffer, &engine->buffers, link) {
3176 buffer->last_retired_head = buffer->tail;
3177 intel_ring_update_space(buffer);
3178 }
3179
3180 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3181 }
3182
3183 void i915_gem_reset(struct drm_device *dev)
3184 {
3185 struct drm_i915_private *dev_priv = to_i915(dev);
3186 struct intel_engine_cs *engine;
3187
3188 /*
3189 * Before we free the objects from the requests, we need to inspect
3190 * them for finding the guilty party. As the requests only borrow
3191 * their reference to the objects, the inspection must be done first.
3192 */
3193 for_each_engine(engine, dev_priv)
3194 i915_gem_reset_engine_status(engine);
3195
3196 for_each_engine(engine, dev_priv)
3197 i915_gem_reset_engine_cleanup(engine);
3198
3199 i915_gem_context_reset(dev);
3200
3201 i915_gem_restore_fences(dev);
3202
3203 WARN_ON(i915_verify_lists(dev));
3204 }
3205
3206 /**
3207 * This function clears the request list as sequence numbers are passed.
3208 * @engine: engine to retire requests on
3209 */
3210 void
3211 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3212 {
3213 WARN_ON(i915_verify_lists(engine->dev));
3214
3215 /* Retire requests first as we use it above for the early return.
3216 * If we retire requests last, we may use a later seqno and so clear
3217 * the requests lists without clearing the active list, leading to
3218 * confusion.
3219 */
3220 while (!list_empty(&engine->request_list)) {
3221 struct drm_i915_gem_request *request;
3222
3223 request = list_first_entry(&engine->request_list,
3224 struct drm_i915_gem_request,
3225 list);
3226
3227 if (!i915_gem_request_completed(request))
3228 break;
3229
3230 i915_gem_request_retire(request);
3231 }
3232
3233 /* Move any buffers on the active list that are no longer referenced
3234 * by the ringbuffer to the flushing/inactive lists as appropriate,
3235 * before we free the context associated with the requests.
3236 */
3237 while (!list_empty(&engine->active_list)) {
3238 struct drm_i915_gem_object *obj;
3239
3240 obj = list_first_entry(&engine->active_list,
3241 struct drm_i915_gem_object,
3242 engine_list[engine->id]);
3243
3244 if (!list_empty(&obj->last_read_req[engine->id]->list))
3245 break;
3246
3247 i915_gem_object_retire__read(obj, engine->id);
3248 }
3249
3250 WARN_ON(i915_verify_lists(engine->dev));
3251 }
3252
3253 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3254 {
3255 struct intel_engine_cs *engine;
3256
3257 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3258
3259 if (dev_priv->gt.active_engines == 0)
3260 return;
3261
3262 GEM_BUG_ON(!dev_priv->gt.awake);
3263
3264 for_each_engine(engine, dev_priv) {
3265 i915_gem_retire_requests_ring(engine);
3266 if (list_empty(&engine->request_list))
3267 dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
3268 }
3269
3270 if (dev_priv->gt.active_engines == 0)
3271 queue_delayed_work(dev_priv->wq,
3272 &dev_priv->gt.idle_work,
3273 msecs_to_jiffies(100));
3274 }
3275
3276 static void
3277 i915_gem_retire_work_handler(struct work_struct *work)
3278 {
3279 struct drm_i915_private *dev_priv =
3280 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3281 struct drm_device *dev = &dev_priv->drm;
3282
3283 /* Come back later if the device is busy... */
3284 if (mutex_trylock(&dev->struct_mutex)) {
3285 i915_gem_retire_requests(dev_priv);
3286 mutex_unlock(&dev->struct_mutex);
3287 }
3288
3289 /* Keep the retire handler running until we are finally idle.
3290 * We do not need to do this test under locking as in the worst-case
3291 * we queue the retire worker once too often.
3292 */
3293 if (READ_ONCE(dev_priv->gt.awake))
3294 queue_delayed_work(dev_priv->wq,
3295 &dev_priv->gt.retire_work,
3296 round_jiffies_up_relative(HZ));
3297 }
3298
3299 static void
3300 i915_gem_idle_work_handler(struct work_struct *work)
3301 {
3302 struct drm_i915_private *dev_priv =
3303 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3304 struct drm_device *dev = &dev_priv->drm;
3305 struct intel_engine_cs *engine;
3306 unsigned int stuck_engines;
3307 bool rearm_hangcheck;
3308
3309 if (!READ_ONCE(dev_priv->gt.awake))
3310 return;
3311
3312 if (READ_ONCE(dev_priv->gt.active_engines))
3313 return;
3314
3315 rearm_hangcheck =
3316 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3317
3318 if (!mutex_trylock(&dev->struct_mutex)) {
3319 /* Currently busy, come back later */
3320 mod_delayed_work(dev_priv->wq,
3321 &dev_priv->gt.idle_work,
3322 msecs_to_jiffies(50));
3323 goto out_rearm;
3324 }
3325
3326 if (dev_priv->gt.active_engines)
3327 goto out_unlock;
3328
3329 for_each_engine(engine, dev_priv)
3330 i915_gem_batch_pool_fini(&engine->batch_pool);
3331
3332 GEM_BUG_ON(!dev_priv->gt.awake);
3333 dev_priv->gt.awake = false;
3334 rearm_hangcheck = false;
3335
3336 stuck_engines = intel_kick_waiters(dev_priv);
3337 if (unlikely(stuck_engines)) {
3338 DRM_DEBUG_DRIVER("kicked stuck waiters...missed irq\n");
3339 dev_priv->gpu_error.missed_irq_rings |= stuck_engines;
3340 }
3341
3342 if (INTEL_GEN(dev_priv) >= 6)
3343 gen6_rps_idle(dev_priv);
3344 intel_runtime_pm_put(dev_priv);
3345 out_unlock:
3346 mutex_unlock(&dev->struct_mutex);
3347
3348 out_rearm:
3349 if (rearm_hangcheck) {
3350 GEM_BUG_ON(!dev_priv->gt.awake);
3351 i915_queue_hangcheck(dev_priv);
3352 }
3353 }
3354
3355 /**
3356 * Ensures that an object will eventually get non-busy by flushing any required
3357 * write domains, emitting any outstanding lazy request and retiring and
3358 * completed requests.
3359 * @obj: object to flush
3360 */
3361 static int
3362 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3363 {
3364 int i;
3365
3366 if (!obj->active)
3367 return 0;
3368
3369 for (i = 0; i < I915_NUM_ENGINES; i++) {
3370 struct drm_i915_gem_request *req;
3371
3372 req = obj->last_read_req[i];
3373 if (req == NULL)
3374 continue;
3375
3376 if (i915_gem_request_completed(req))
3377 i915_gem_object_retire__read(obj, i);
3378 }
3379
3380 return 0;
3381 }
3382
3383 /**
3384 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3385 * @dev: drm device pointer
3386 * @data: ioctl data blob
3387 * @file: drm file pointer
3388 *
3389 * Returns 0 if successful, else an error is returned with the remaining time in
3390 * the timeout parameter.
3391 * -ETIME: object is still busy after timeout
3392 * -ERESTARTSYS: signal interrupted the wait
3393 * -ENONENT: object doesn't exist
3394 * Also possible, but rare:
3395 * -EAGAIN: GPU wedged
3396 * -ENOMEM: damn
3397 * -ENODEV: Internal IRQ fail
3398 * -E?: The add request failed
3399 *
3400 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3401 * non-zero timeout parameter the wait ioctl will wait for the given number of
3402 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3403 * without holding struct_mutex the object may become re-busied before this
3404 * function completes. A similar but shorter * race condition exists in the busy
3405 * ioctl
3406 */
3407 int
3408 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3409 {
3410 struct drm_i915_gem_wait *args = data;
3411 struct drm_i915_gem_object *obj;
3412 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3413 int i, n = 0;
3414 int ret;
3415
3416 if (args->flags != 0)
3417 return -EINVAL;
3418
3419 ret = i915_mutex_lock_interruptible(dev);
3420 if (ret)
3421 return ret;
3422
3423 obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3424 if (&obj->base == NULL) {
3425 mutex_unlock(&dev->struct_mutex);
3426 return -ENOENT;
3427 }
3428
3429 /* Need to make sure the object gets inactive eventually. */
3430 ret = i915_gem_object_flush_active(obj);
3431 if (ret)
3432 goto out;
3433
3434 if (!obj->active)
3435 goto out;
3436
3437 /* Do this after OLR check to make sure we make forward progress polling
3438 * on this IOCTL with a timeout == 0 (like busy ioctl)
3439 */
3440 if (args->timeout_ns == 0) {
3441 ret = -ETIME;
3442 goto out;
3443 }
3444
3445 drm_gem_object_unreference(&obj->base);
3446
3447 for (i = 0; i < I915_NUM_ENGINES; i++) {
3448 if (obj->last_read_req[i] == NULL)
3449 continue;
3450
3451 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3452 }
3453
3454 mutex_unlock(&dev->struct_mutex);
3455
3456 for (i = 0; i < n; i++) {
3457 if (ret == 0)
3458 ret = __i915_wait_request(req[i], true,
3459 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3460 to_rps_client(file));
3461 i915_gem_request_unreference(req[i]);
3462 }
3463 return ret;
3464
3465 out:
3466 drm_gem_object_unreference(&obj->base);
3467 mutex_unlock(&dev->struct_mutex);
3468 return ret;
3469 }
3470
3471 static int
3472 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3473 struct intel_engine_cs *to,
3474 struct drm_i915_gem_request *from_req,
3475 struct drm_i915_gem_request **to_req)
3476 {
3477 struct intel_engine_cs *from;
3478 int ret;
3479
3480 from = i915_gem_request_get_engine(from_req);
3481 if (to == from)
3482 return 0;
3483
3484 if (i915_gem_request_completed(from_req))
3485 return 0;
3486
3487 if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3488 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3489 ret = __i915_wait_request(from_req,
3490 i915->mm.interruptible,
3491 NULL,
3492 &i915->rps.semaphores);
3493 if (ret)
3494 return ret;
3495
3496 i915_gem_object_retire_request(obj, from_req);
3497 } else {
3498 int idx = intel_ring_sync_index(from, to);
3499 u32 seqno = i915_gem_request_get_seqno(from_req);
3500
3501 WARN_ON(!to_req);
3502
3503 if (seqno <= from->semaphore.sync_seqno[idx])
3504 return 0;
3505
3506 if (*to_req == NULL) {
3507 struct drm_i915_gem_request *req;
3508
3509 req = i915_gem_request_alloc(to, NULL);
3510 if (IS_ERR(req))
3511 return PTR_ERR(req);
3512
3513 *to_req = req;
3514 }
3515
3516 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3517 ret = to->semaphore.sync_to(*to_req, from, seqno);
3518 if (ret)
3519 return ret;
3520
3521 /* We use last_read_req because sync_to()
3522 * might have just caused seqno wrap under
3523 * the radar.
3524 */
3525 from->semaphore.sync_seqno[idx] =
3526 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3527 }
3528
3529 return 0;
3530 }
3531
3532 /**
3533 * i915_gem_object_sync - sync an object to a ring.
3534 *
3535 * @obj: object which may be in use on another ring.
3536 * @to: ring we wish to use the object on. May be NULL.
3537 * @to_req: request we wish to use the object for. See below.
3538 * This will be allocated and returned if a request is
3539 * required but not passed in.
3540 *
3541 * This code is meant to abstract object synchronization with the GPU.
3542 * Calling with NULL implies synchronizing the object with the CPU
3543 * rather than a particular GPU ring. Conceptually we serialise writes
3544 * between engines inside the GPU. We only allow one engine to write
3545 * into a buffer at any time, but multiple readers. To ensure each has
3546 * a coherent view of memory, we must:
3547 *
3548 * - If there is an outstanding write request to the object, the new
3549 * request must wait for it to complete (either CPU or in hw, requests
3550 * on the same ring will be naturally ordered).
3551 *
3552 * - If we are a write request (pending_write_domain is set), the new
3553 * request must wait for outstanding read requests to complete.
3554 *
3555 * For CPU synchronisation (NULL to) no request is required. For syncing with
3556 * rings to_req must be non-NULL. However, a request does not have to be
3557 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3558 * request will be allocated automatically and returned through *to_req. Note
3559 * that it is not guaranteed that commands will be emitted (because the system
3560 * might already be idle). Hence there is no need to create a request that
3561 * might never have any work submitted. Note further that if a request is
3562 * returned in *to_req, it is the responsibility of the caller to submit
3563 * that request (after potentially adding more work to it).
3564 *
3565 * Returns 0 if successful, else propagates up the lower layer error.
3566 */
3567 int
3568 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3569 struct intel_engine_cs *to,
3570 struct drm_i915_gem_request **to_req)
3571 {
3572 const bool readonly = obj->base.pending_write_domain == 0;
3573 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3574 int ret, i, n;
3575
3576 if (!obj->active)
3577 return 0;
3578
3579 if (to == NULL)
3580 return i915_gem_object_wait_rendering(obj, readonly);
3581
3582 n = 0;
3583 if (readonly) {
3584 if (obj->last_write_req)
3585 req[n++] = obj->last_write_req;
3586 } else {
3587 for (i = 0; i < I915_NUM_ENGINES; i++)
3588 if (obj->last_read_req[i])
3589 req[n++] = obj->last_read_req[i];
3590 }
3591 for (i = 0; i < n; i++) {
3592 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3593 if (ret)
3594 return ret;
3595 }
3596
3597 return 0;
3598 }
3599
3600 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3601 {
3602 u32 old_write_domain, old_read_domains;
3603
3604 /* Force a pagefault for domain tracking on next user access */
3605 i915_gem_release_mmap(obj);
3606
3607 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3608 return;
3609
3610 old_read_domains = obj->base.read_domains;
3611 old_write_domain = obj->base.write_domain;
3612
3613 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3614 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3615
3616 trace_i915_gem_object_change_domain(obj,
3617 old_read_domains,
3618 old_write_domain);
3619 }
3620
3621 static void __i915_vma_iounmap(struct i915_vma *vma)
3622 {
3623 GEM_BUG_ON(vma->pin_count);
3624
3625 if (vma->iomap == NULL)
3626 return;
3627
3628 io_mapping_unmap(vma->iomap);
3629 vma->iomap = NULL;
3630 }
3631
3632 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3633 {
3634 struct drm_i915_gem_object *obj = vma->obj;
3635 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3636 int ret;
3637
3638 if (list_empty(&vma->obj_link))
3639 return 0;
3640
3641 if (!drm_mm_node_allocated(&vma->node)) {
3642 i915_gem_vma_destroy(vma);
3643 return 0;
3644 }
3645
3646 if (vma->pin_count)
3647 return -EBUSY;
3648
3649 BUG_ON(obj->pages == NULL);
3650
3651 if (wait) {
3652 ret = i915_gem_object_wait_rendering(obj, false);
3653 if (ret)
3654 return ret;
3655 }
3656
3657 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3658 i915_gem_object_finish_gtt(obj);
3659
3660 /* release the fence reg _after_ flushing */
3661 ret = i915_gem_object_put_fence(obj);
3662 if (ret)
3663 return ret;
3664
3665 __i915_vma_iounmap(vma);
3666 }
3667
3668 trace_i915_vma_unbind(vma);
3669
3670 vma->vm->unbind_vma(vma);
3671 vma->bound = 0;
3672
3673 list_del_init(&vma->vm_link);
3674 if (vma->is_ggtt) {
3675 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3676 obj->map_and_fenceable = false;
3677 } else if (vma->ggtt_view.pages) {
3678 sg_free_table(vma->ggtt_view.pages);
3679 kfree(vma->ggtt_view.pages);
3680 }
3681 vma->ggtt_view.pages = NULL;
3682 }
3683
3684 drm_mm_remove_node(&vma->node);
3685 i915_gem_vma_destroy(vma);
3686
3687 /* Since the unbound list is global, only move to that list if
3688 * no more VMAs exist. */
3689 if (list_empty(&obj->vma_list))
3690 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3691
3692 /* And finally now the object is completely decoupled from this vma,
3693 * we can drop its hold on the backing storage and allow it to be
3694 * reaped by the shrinker.
3695 */
3696 i915_gem_object_unpin_pages(obj);
3697
3698 return 0;
3699 }
3700
3701 int i915_vma_unbind(struct i915_vma *vma)
3702 {
3703 return __i915_vma_unbind(vma, true);
3704 }
3705
3706 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3707 {
3708 return __i915_vma_unbind(vma, false);
3709 }
3710
3711 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3712 {
3713 struct intel_engine_cs *engine;
3714 int ret;
3715
3716 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3717
3718 for_each_engine(engine, dev_priv) {
3719 if (engine->last_context == NULL)
3720 continue;
3721
3722 ret = intel_engine_idle(engine);
3723 if (ret)
3724 return ret;
3725 }
3726
3727 WARN_ON(i915_verify_lists(dev));
3728 return 0;
3729 }
3730
3731 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3732 unsigned long cache_level)
3733 {
3734 struct drm_mm_node *gtt_space = &vma->node;
3735 struct drm_mm_node *other;
3736
3737 /*
3738 * On some machines we have to be careful when putting differing types
3739 * of snoopable memory together to avoid the prefetcher crossing memory
3740 * domains and dying. During vm initialisation, we decide whether or not
3741 * these constraints apply and set the drm_mm.color_adjust
3742 * appropriately.
3743 */
3744 if (vma->vm->mm.color_adjust == NULL)
3745 return true;
3746
3747 if (!drm_mm_node_allocated(gtt_space))
3748 return true;
3749
3750 if (list_empty(&gtt_space->node_list))
3751 return true;
3752
3753 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3754 if (other->allocated && !other->hole_follows && other->color != cache_level)
3755 return false;
3756
3757 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3758 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3759 return false;
3760
3761 return true;
3762 }
3763
3764 /**
3765 * Finds free space in the GTT aperture and binds the object or a view of it
3766 * there.
3767 * @obj: object to bind
3768 * @vm: address space to bind into
3769 * @ggtt_view: global gtt view if applicable
3770 * @alignment: requested alignment
3771 * @flags: mask of PIN_* flags to use
3772 */
3773 static struct i915_vma *
3774 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3775 struct i915_address_space *vm,
3776 const struct i915_ggtt_view *ggtt_view,
3777 unsigned alignment,
3778 uint64_t flags)
3779 {
3780 struct drm_device *dev = obj->base.dev;
3781 struct drm_i915_private *dev_priv = to_i915(dev);
3782 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3783 u32 fence_alignment, unfenced_alignment;
3784 u32 search_flag, alloc_flag;
3785 u64 start, end;
3786 u64 size, fence_size;
3787 struct i915_vma *vma;
3788 int ret;
3789
3790 if (i915_is_ggtt(vm)) {
3791 u32 view_size;
3792
3793 if (WARN_ON(!ggtt_view))
3794 return ERR_PTR(-EINVAL);
3795
3796 view_size = i915_ggtt_view_size(obj, ggtt_view);
3797
3798 fence_size = i915_gem_get_gtt_size(dev,
3799 view_size,
3800 obj->tiling_mode);
3801 fence_alignment = i915_gem_get_gtt_alignment(dev,
3802 view_size,
3803 obj->tiling_mode,
3804 true);
3805 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3806 view_size,
3807 obj->tiling_mode,
3808 false);
3809 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3810 } else {
3811 fence_size = i915_gem_get_gtt_size(dev,
3812 obj->base.size,
3813 obj->tiling_mode);
3814 fence_alignment = i915_gem_get_gtt_alignment(dev,
3815 obj->base.size,
3816 obj->tiling_mode,
3817 true);
3818 unfenced_alignment =
3819 i915_gem_get_gtt_alignment(dev,
3820 obj->base.size,
3821 obj->tiling_mode,
3822 false);
3823 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3824 }
3825
3826 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3827 end = vm->total;
3828 if (flags & PIN_MAPPABLE)
3829 end = min_t(u64, end, ggtt->mappable_end);
3830 if (flags & PIN_ZONE_4G)
3831 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3832
3833 if (alignment == 0)
3834 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3835 unfenced_alignment;
3836 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3837 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3838 ggtt_view ? ggtt_view->type : 0,
3839 alignment);
3840 return ERR_PTR(-EINVAL);
3841 }
3842
3843 /* If binding the object/GGTT view requires more space than the entire
3844 * aperture has, reject it early before evicting everything in a vain
3845 * attempt to find space.
3846 */
3847 if (size > end) {
3848 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3849 ggtt_view ? ggtt_view->type : 0,
3850 size,
3851 flags & PIN_MAPPABLE ? "mappable" : "total",
3852 end);
3853 return ERR_PTR(-E2BIG);
3854 }
3855
3856 ret = i915_gem_object_get_pages(obj);
3857 if (ret)
3858 return ERR_PTR(ret);
3859
3860 i915_gem_object_pin_pages(obj);
3861
3862 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3863 i915_gem_obj_lookup_or_create_vma(obj, vm);
3864
3865 if (IS_ERR(vma))
3866 goto err_unpin;
3867
3868 if (flags & PIN_OFFSET_FIXED) {
3869 uint64_t offset = flags & PIN_OFFSET_MASK;
3870
3871 if (offset & (alignment - 1) || offset + size > end) {
3872 ret = -EINVAL;
3873 goto err_free_vma;
3874 }
3875 vma->node.start = offset;
3876 vma->node.size = size;
3877 vma->node.color = obj->cache_level;
3878 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3879 if (ret) {
3880 ret = i915_gem_evict_for_vma(vma);
3881 if (ret == 0)
3882 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3883 }
3884 if (ret)
3885 goto err_free_vma;
3886 } else {
3887 if (flags & PIN_HIGH) {
3888 search_flag = DRM_MM_SEARCH_BELOW;
3889 alloc_flag = DRM_MM_CREATE_TOP;
3890 } else {
3891 search_flag = DRM_MM_SEARCH_DEFAULT;
3892 alloc_flag = DRM_MM_CREATE_DEFAULT;
3893 }
3894
3895 search_free:
3896 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3897 size, alignment,
3898 obj->cache_level,
3899 start, end,
3900 search_flag,
3901 alloc_flag);
3902 if (ret) {
3903 ret = i915_gem_evict_something(dev, vm, size, alignment,
3904 obj->cache_level,
3905 start, end,
3906 flags);
3907 if (ret == 0)
3908 goto search_free;
3909
3910 goto err_free_vma;
3911 }
3912 }
3913 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3914 ret = -EINVAL;
3915 goto err_remove_node;
3916 }
3917
3918 trace_i915_vma_bind(vma, flags);
3919 ret = i915_vma_bind(vma, obj->cache_level, flags);
3920 if (ret)
3921 goto err_remove_node;
3922
3923 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3924 list_add_tail(&vma->vm_link, &vm->inactive_list);
3925
3926 return vma;
3927
3928 err_remove_node:
3929 drm_mm_remove_node(&vma->node);
3930 err_free_vma:
3931 i915_gem_vma_destroy(vma);
3932 vma = ERR_PTR(ret);
3933 err_unpin:
3934 i915_gem_object_unpin_pages(obj);
3935 return vma;
3936 }
3937
3938 bool
3939 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3940 bool force)
3941 {
3942 /* If we don't have a page list set up, then we're not pinned
3943 * to GPU, and we can ignore the cache flush because it'll happen
3944 * again at bind time.
3945 */
3946 if (obj->pages == NULL)
3947 return false;
3948
3949 /*
3950 * Stolen memory is always coherent with the GPU as it is explicitly
3951 * marked as wc by the system, or the system is cache-coherent.
3952 */
3953 if (obj->stolen || obj->phys_handle)
3954 return false;
3955
3956 /* If the GPU is snooping the contents of the CPU cache,
3957 * we do not need to manually clear the CPU cache lines. However,
3958 * the caches are only snooped when the render cache is
3959 * flushed/invalidated. As we always have to emit invalidations
3960 * and flushes when moving into and out of the RENDER domain, correct
3961 * snooping behaviour occurs naturally as the result of our domain
3962 * tracking.
3963 */
3964 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3965 obj->cache_dirty = true;
3966 return false;
3967 }
3968
3969 trace_i915_gem_object_clflush(obj);
3970 drm_clflush_sg(obj->pages);
3971 obj->cache_dirty = false;
3972
3973 return true;
3974 }
3975
3976 /** Flushes the GTT write domain for the object if it's dirty. */
3977 static void
3978 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3979 {
3980 uint32_t old_write_domain;
3981
3982 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3983 return;
3984
3985 /* No actual flushing is required for the GTT write domain. Writes
3986 * to it immediately go to main memory as far as we know, so there's
3987 * no chipset flush. It also doesn't land in render cache.
3988 *
3989 * However, we do have to enforce the order so that all writes through
3990 * the GTT land before any writes to the device, such as updates to
3991 * the GATT itself.
3992 */
3993 wmb();
3994
3995 old_write_domain = obj->base.write_domain;
3996 obj->base.write_domain = 0;
3997
3998 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3999
4000 trace_i915_gem_object_change_domain(obj,
4001 obj->base.read_domains,
4002 old_write_domain);
4003 }
4004
4005 /** Flushes the CPU write domain for the object if it's dirty. */
4006 static void
4007 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
4008 {
4009 uint32_t old_write_domain;
4010
4011 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4012 return;
4013
4014 if (i915_gem_clflush_object(obj, obj->pin_display))
4015 i915_gem_chipset_flush(to_i915(obj->base.dev));
4016
4017 old_write_domain = obj->base.write_domain;
4018 obj->base.write_domain = 0;
4019
4020 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
4021
4022 trace_i915_gem_object_change_domain(obj,
4023 obj->base.read_domains,
4024 old_write_domain);
4025 }
4026
4027 /**
4028 * Moves a single object to the GTT read, and possibly write domain.
4029 * @obj: object to act on
4030 * @write: ask for write access or read only
4031 *
4032 * This function returns when the move is complete, including waiting on
4033 * flushes to occur.
4034 */
4035 int
4036 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4037 {
4038 struct drm_device *dev = obj->base.dev;
4039 struct drm_i915_private *dev_priv = to_i915(dev);
4040 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4041 uint32_t old_write_domain, old_read_domains;
4042 struct i915_vma *vma;
4043 int ret;
4044
4045 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4046 return 0;
4047
4048 ret = i915_gem_object_wait_rendering(obj, !write);
4049 if (ret)
4050 return ret;
4051
4052 /* Flush and acquire obj->pages so that we are coherent through
4053 * direct access in memory with previous cached writes through
4054 * shmemfs and that our cache domain tracking remains valid.
4055 * For example, if the obj->filp was moved to swap without us
4056 * being notified and releasing the pages, we would mistakenly
4057 * continue to assume that the obj remained out of the CPU cached
4058 * domain.
4059 */
4060 ret = i915_gem_object_get_pages(obj);
4061 if (ret)
4062 return ret;
4063
4064 i915_gem_object_flush_cpu_write_domain(obj);
4065
4066 /* Serialise direct access to this object with the barriers for
4067 * coherent writes from the GPU, by effectively invalidating the
4068 * GTT domain upon first access.
4069 */
4070 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4071 mb();
4072
4073 old_write_domain = obj->base.write_domain;
4074 old_read_domains = obj->base.read_domains;
4075
4076 /* It should now be out of any other write domains, and we can update
4077 * the domain values for our changes.
4078 */
4079 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4080 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4081 if (write) {
4082 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4083 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4084 obj->dirty = 1;
4085 }
4086
4087 trace_i915_gem_object_change_domain(obj,
4088 old_read_domains,
4089 old_write_domain);
4090
4091 /* And bump the LRU for this access */
4092 vma = i915_gem_obj_to_ggtt(obj);
4093 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4094 list_move_tail(&vma->vm_link,
4095 &ggtt->base.inactive_list);
4096
4097 return 0;
4098 }
4099
4100 /**
4101 * Changes the cache-level of an object across all VMA.
4102 * @obj: object to act on
4103 * @cache_level: new cache level to set for the object
4104 *
4105 * After this function returns, the object will be in the new cache-level
4106 * across all GTT and the contents of the backing storage will be coherent,
4107 * with respect to the new cache-level. In order to keep the backing storage
4108 * coherent for all users, we only allow a single cache level to be set
4109 * globally on the object and prevent it from being changed whilst the
4110 * hardware is reading from the object. That is if the object is currently
4111 * on the scanout it will be set to uncached (or equivalent display
4112 * cache coherency) and all non-MOCS GPU access will also be uncached so
4113 * that all direct access to the scanout remains coherent.
4114 */
4115 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4116 enum i915_cache_level cache_level)
4117 {
4118 struct drm_device *dev = obj->base.dev;
4119 struct i915_vma *vma, *next;
4120 bool bound = false;
4121 int ret = 0;
4122
4123 if (obj->cache_level == cache_level)
4124 goto out;
4125
4126 /* Inspect the list of currently bound VMA and unbind any that would
4127 * be invalid given the new cache-level. This is principally to
4128 * catch the issue of the CS prefetch crossing page boundaries and
4129 * reading an invalid PTE on older architectures.
4130 */
4131 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4132 if (!drm_mm_node_allocated(&vma->node))
4133 continue;
4134
4135 if (vma->pin_count) {
4136 DRM_DEBUG("can not change the cache level of pinned objects\n");
4137 return -EBUSY;
4138 }
4139
4140 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4141 ret = i915_vma_unbind(vma);
4142 if (ret)
4143 return ret;
4144 } else
4145 bound = true;
4146 }
4147
4148 /* We can reuse the existing drm_mm nodes but need to change the
4149 * cache-level on the PTE. We could simply unbind them all and
4150 * rebind with the correct cache-level on next use. However since
4151 * we already have a valid slot, dma mapping, pages etc, we may as
4152 * rewrite the PTE in the belief that doing so tramples upon less
4153 * state and so involves less work.
4154 */
4155 if (bound) {
4156 /* Before we change the PTE, the GPU must not be accessing it.
4157 * If we wait upon the object, we know that all the bound
4158 * VMA are no longer active.
4159 */
4160 ret = i915_gem_object_wait_rendering(obj, false);
4161 if (ret)
4162 return ret;
4163
4164 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4165 /* Access to snoopable pages through the GTT is
4166 * incoherent and on some machines causes a hard
4167 * lockup. Relinquish the CPU mmaping to force
4168 * userspace to refault in the pages and we can
4169 * then double check if the GTT mapping is still
4170 * valid for that pointer access.
4171 */
4172 i915_gem_release_mmap(obj);
4173
4174 /* As we no longer need a fence for GTT access,
4175 * we can relinquish it now (and so prevent having
4176 * to steal a fence from someone else on the next
4177 * fence request). Note GPU activity would have
4178 * dropped the fence as all snoopable access is
4179 * supposed to be linear.
4180 */
4181 ret = i915_gem_object_put_fence(obj);
4182 if (ret)
4183 return ret;
4184 } else {
4185 /* We either have incoherent backing store and
4186 * so no GTT access or the architecture is fully
4187 * coherent. In such cases, existing GTT mmaps
4188 * ignore the cache bit in the PTE and we can
4189 * rewrite it without confusing the GPU or having
4190 * to force userspace to fault back in its mmaps.
4191 */
4192 }
4193
4194 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4195 if (!drm_mm_node_allocated(&vma->node))
4196 continue;
4197
4198 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4199 if (ret)
4200 return ret;
4201 }
4202 }
4203
4204 list_for_each_entry(vma, &obj->vma_list, obj_link)
4205 vma->node.color = cache_level;
4206 obj->cache_level = cache_level;
4207
4208 out:
4209 /* Flush the dirty CPU caches to the backing storage so that the
4210 * object is now coherent at its new cache level (with respect
4211 * to the access domain).
4212 */
4213 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4214 if (i915_gem_clflush_object(obj, true))
4215 i915_gem_chipset_flush(to_i915(obj->base.dev));
4216 }
4217
4218 return 0;
4219 }
4220
4221 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4222 struct drm_file *file)
4223 {
4224 struct drm_i915_gem_caching *args = data;
4225 struct drm_i915_gem_object *obj;
4226
4227 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4228 if (&obj->base == NULL)
4229 return -ENOENT;
4230
4231 switch (obj->cache_level) {
4232 case I915_CACHE_LLC:
4233 case I915_CACHE_L3_LLC:
4234 args->caching = I915_CACHING_CACHED;
4235 break;
4236
4237 case I915_CACHE_WT:
4238 args->caching = I915_CACHING_DISPLAY;
4239 break;
4240
4241 default:
4242 args->caching = I915_CACHING_NONE;
4243 break;
4244 }
4245
4246 drm_gem_object_unreference_unlocked(&obj->base);
4247 return 0;
4248 }
4249
4250 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4251 struct drm_file *file)
4252 {
4253 struct drm_i915_private *dev_priv = to_i915(dev);
4254 struct drm_i915_gem_caching *args = data;
4255 struct drm_i915_gem_object *obj;
4256 enum i915_cache_level level;
4257 int ret;
4258
4259 switch (args->caching) {
4260 case I915_CACHING_NONE:
4261 level = I915_CACHE_NONE;
4262 break;
4263 case I915_CACHING_CACHED:
4264 /*
4265 * Due to a HW issue on BXT A stepping, GPU stores via a
4266 * snooped mapping may leave stale data in a corresponding CPU
4267 * cacheline, whereas normally such cachelines would get
4268 * invalidated.
4269 */
4270 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4271 return -ENODEV;
4272
4273 level = I915_CACHE_LLC;
4274 break;
4275 case I915_CACHING_DISPLAY:
4276 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4277 break;
4278 default:
4279 return -EINVAL;
4280 }
4281
4282 intel_runtime_pm_get(dev_priv);
4283
4284 ret = i915_mutex_lock_interruptible(dev);
4285 if (ret)
4286 goto rpm_put;
4287
4288 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4289 if (&obj->base == NULL) {
4290 ret = -ENOENT;
4291 goto unlock;
4292 }
4293
4294 ret = i915_gem_object_set_cache_level(obj, level);
4295
4296 drm_gem_object_unreference(&obj->base);
4297 unlock:
4298 mutex_unlock(&dev->struct_mutex);
4299 rpm_put:
4300 intel_runtime_pm_put(dev_priv);
4301
4302 return ret;
4303 }
4304
4305 /*
4306 * Prepare buffer for display plane (scanout, cursors, etc).
4307 * Can be called from an uninterruptible phase (modesetting) and allows
4308 * any flushes to be pipelined (for pageflips).
4309 */
4310 int
4311 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4312 u32 alignment,
4313 const struct i915_ggtt_view *view)
4314 {
4315 u32 old_read_domains, old_write_domain;
4316 int ret;
4317
4318 /* Mark the pin_display early so that we account for the
4319 * display coherency whilst setting up the cache domains.
4320 */
4321 obj->pin_display++;
4322
4323 /* The display engine is not coherent with the LLC cache on gen6. As
4324 * a result, we make sure that the pinning that is about to occur is
4325 * done with uncached PTEs. This is lowest common denominator for all
4326 * chipsets.
4327 *
4328 * However for gen6+, we could do better by using the GFDT bit instead
4329 * of uncaching, which would allow us to flush all the LLC-cached data
4330 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4331 */
4332 ret = i915_gem_object_set_cache_level(obj,
4333 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4334 if (ret)
4335 goto err_unpin_display;
4336
4337 /* As the user may map the buffer once pinned in the display plane
4338 * (e.g. libkms for the bootup splash), we have to ensure that we
4339 * always use map_and_fenceable for all scanout buffers.
4340 */
4341 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4342 view->type == I915_GGTT_VIEW_NORMAL ?
4343 PIN_MAPPABLE : 0);
4344 if (ret)
4345 goto err_unpin_display;
4346
4347 i915_gem_object_flush_cpu_write_domain(obj);
4348
4349 old_write_domain = obj->base.write_domain;
4350 old_read_domains = obj->base.read_domains;
4351
4352 /* It should now be out of any other write domains, and we can update
4353 * the domain values for our changes.
4354 */
4355 obj->base.write_domain = 0;
4356 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4357
4358 trace_i915_gem_object_change_domain(obj,
4359 old_read_domains,
4360 old_write_domain);
4361
4362 return 0;
4363
4364 err_unpin_display:
4365 obj->pin_display--;
4366 return ret;
4367 }
4368
4369 void
4370 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4371 const struct i915_ggtt_view *view)
4372 {
4373 if (WARN_ON(obj->pin_display == 0))
4374 return;
4375
4376 i915_gem_object_ggtt_unpin_view(obj, view);
4377
4378 obj->pin_display--;
4379 }
4380
4381 /**
4382 * Moves a single object to the CPU read, and possibly write domain.
4383 * @obj: object to act on
4384 * @write: requesting write or read-only access
4385 *
4386 * This function returns when the move is complete, including waiting on
4387 * flushes to occur.
4388 */
4389 int
4390 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4391 {
4392 uint32_t old_write_domain, old_read_domains;
4393 int ret;
4394
4395 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4396 return 0;
4397
4398 ret = i915_gem_object_wait_rendering(obj, !write);
4399 if (ret)
4400 return ret;
4401
4402 i915_gem_object_flush_gtt_write_domain(obj);
4403
4404 old_write_domain = obj->base.write_domain;
4405 old_read_domains = obj->base.read_domains;
4406
4407 /* Flush the CPU cache if it's still invalid. */
4408 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4409 i915_gem_clflush_object(obj, false);
4410
4411 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4412 }
4413
4414 /* It should now be out of any other write domains, and we can update
4415 * the domain values for our changes.
4416 */
4417 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4418
4419 /* If we're writing through the CPU, then the GPU read domains will
4420 * need to be invalidated at next use.
4421 */
4422 if (write) {
4423 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4424 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4425 }
4426
4427 trace_i915_gem_object_change_domain(obj,
4428 old_read_domains,
4429 old_write_domain);
4430
4431 return 0;
4432 }
4433
4434 /* Throttle our rendering by waiting until the ring has completed our requests
4435 * emitted over 20 msec ago.
4436 *
4437 * Note that if we were to use the current jiffies each time around the loop,
4438 * we wouldn't escape the function with any frames outstanding if the time to
4439 * render a frame was over 20ms.
4440 *
4441 * This should get us reasonable parallelism between CPU and GPU but also
4442 * relatively low latency when blocking on a particular request to finish.
4443 */
4444 static int
4445 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4446 {
4447 struct drm_i915_private *dev_priv = to_i915(dev);
4448 struct drm_i915_file_private *file_priv = file->driver_priv;
4449 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4450 struct drm_i915_gem_request *request, *target = NULL;
4451 int ret;
4452
4453 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4454 if (ret)
4455 return ret;
4456
4457 /* ABI: return -EIO if already wedged */
4458 if (i915_terminally_wedged(&dev_priv->gpu_error))
4459 return -EIO;
4460
4461 spin_lock(&file_priv->mm.lock);
4462 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4463 if (time_after_eq(request->emitted_jiffies, recent_enough))
4464 break;
4465
4466 /*
4467 * Note that the request might not have been submitted yet.
4468 * In which case emitted_jiffies will be zero.
4469 */
4470 if (!request->emitted_jiffies)
4471 continue;
4472
4473 target = request;
4474 }
4475 if (target)
4476 i915_gem_request_reference(target);
4477 spin_unlock(&file_priv->mm.lock);
4478
4479 if (target == NULL)
4480 return 0;
4481
4482 ret = __i915_wait_request(target, true, NULL, NULL);
4483 i915_gem_request_unreference(target);
4484
4485 return ret;
4486 }
4487
4488 static bool
4489 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4490 {
4491 struct drm_i915_gem_object *obj = vma->obj;
4492
4493 if (alignment &&
4494 vma->node.start & (alignment - 1))
4495 return true;
4496
4497 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4498 return true;
4499
4500 if (flags & PIN_OFFSET_BIAS &&
4501 vma->node.start < (flags & PIN_OFFSET_MASK))
4502 return true;
4503
4504 if (flags & PIN_OFFSET_FIXED &&
4505 vma->node.start != (flags & PIN_OFFSET_MASK))
4506 return true;
4507
4508 return false;
4509 }
4510
4511 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4512 {
4513 struct drm_i915_gem_object *obj = vma->obj;
4514 bool mappable, fenceable;
4515 u32 fence_size, fence_alignment;
4516
4517 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4518 obj->base.size,
4519 obj->tiling_mode);
4520 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4521 obj->base.size,
4522 obj->tiling_mode,
4523 true);
4524
4525 fenceable = (vma->node.size == fence_size &&
4526 (vma->node.start & (fence_alignment - 1)) == 0);
4527
4528 mappable = (vma->node.start + fence_size <=
4529 to_i915(obj->base.dev)->ggtt.mappable_end);
4530
4531 obj->map_and_fenceable = mappable && fenceable;
4532 }
4533
4534 static int
4535 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4536 struct i915_address_space *vm,
4537 const struct i915_ggtt_view *ggtt_view,
4538 uint32_t alignment,
4539 uint64_t flags)
4540 {
4541 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4542 struct i915_vma *vma;
4543 unsigned bound;
4544 int ret;
4545
4546 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4547 return -ENODEV;
4548
4549 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4550 return -EINVAL;
4551
4552 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4553 return -EINVAL;
4554
4555 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4556 return -EINVAL;
4557
4558 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4559 i915_gem_obj_to_vma(obj, vm);
4560
4561 if (vma) {
4562 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4563 return -EBUSY;
4564
4565 if (i915_vma_misplaced(vma, alignment, flags)) {
4566 WARN(vma->pin_count,
4567 "bo is already pinned in %s with incorrect alignment:"
4568 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4569 " obj->map_and_fenceable=%d\n",
4570 ggtt_view ? "ggtt" : "ppgtt",
4571 upper_32_bits(vma->node.start),
4572 lower_32_bits(vma->node.start),
4573 alignment,
4574 !!(flags & PIN_MAPPABLE),
4575 obj->map_and_fenceable);
4576 ret = i915_vma_unbind(vma);
4577 if (ret)
4578 return ret;
4579
4580 vma = NULL;
4581 }
4582 }
4583
4584 bound = vma ? vma->bound : 0;
4585 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4586 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4587 flags);
4588 if (IS_ERR(vma))
4589 return PTR_ERR(vma);
4590 } else {
4591 ret = i915_vma_bind(vma, obj->cache_level, flags);
4592 if (ret)
4593 return ret;
4594 }
4595
4596 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4597 (bound ^ vma->bound) & GLOBAL_BIND) {
4598 __i915_vma_set_map_and_fenceable(vma);
4599 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4600 }
4601
4602 vma->pin_count++;
4603 return 0;
4604 }
4605
4606 int
4607 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4608 struct i915_address_space *vm,
4609 uint32_t alignment,
4610 uint64_t flags)
4611 {
4612 return i915_gem_object_do_pin(obj, vm,
4613 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4614 alignment, flags);
4615 }
4616
4617 int
4618 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4619 const struct i915_ggtt_view *view,
4620 uint32_t alignment,
4621 uint64_t flags)
4622 {
4623 struct drm_device *dev = obj->base.dev;
4624 struct drm_i915_private *dev_priv = to_i915(dev);
4625 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4626
4627 BUG_ON(!view);
4628
4629 return i915_gem_object_do_pin(obj, &ggtt->base, view,
4630 alignment, flags | PIN_GLOBAL);
4631 }
4632
4633 void
4634 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4635 const struct i915_ggtt_view *view)
4636 {
4637 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4638
4639 WARN_ON(vma->pin_count == 0);
4640 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4641
4642 --vma->pin_count;
4643 }
4644
4645 int
4646 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4647 struct drm_file *file)
4648 {
4649 struct drm_i915_gem_busy *args = data;
4650 struct drm_i915_gem_object *obj;
4651 int ret;
4652
4653 ret = i915_mutex_lock_interruptible(dev);
4654 if (ret)
4655 return ret;
4656
4657 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4658 if (&obj->base == NULL) {
4659 ret = -ENOENT;
4660 goto unlock;
4661 }
4662
4663 /* Count all active objects as busy, even if they are currently not used
4664 * by the gpu. Users of this interface expect objects to eventually
4665 * become non-busy without any further actions, therefore emit any
4666 * necessary flushes here.
4667 */
4668 ret = i915_gem_object_flush_active(obj);
4669 if (ret)
4670 goto unref;
4671
4672 args->busy = 0;
4673 if (obj->active) {
4674 int i;
4675
4676 for (i = 0; i < I915_NUM_ENGINES; i++) {
4677 struct drm_i915_gem_request *req;
4678
4679 req = obj->last_read_req[i];
4680 if (req)
4681 args->busy |= 1 << (16 + req->engine->exec_id);
4682 }
4683 if (obj->last_write_req)
4684 args->busy |= obj->last_write_req->engine->exec_id;
4685 }
4686
4687 unref:
4688 drm_gem_object_unreference(&obj->base);
4689 unlock:
4690 mutex_unlock(&dev->struct_mutex);
4691 return ret;
4692 }
4693
4694 int
4695 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4696 struct drm_file *file_priv)
4697 {
4698 return i915_gem_ring_throttle(dev, file_priv);
4699 }
4700
4701 int
4702 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4703 struct drm_file *file_priv)
4704 {
4705 struct drm_i915_private *dev_priv = to_i915(dev);
4706 struct drm_i915_gem_madvise *args = data;
4707 struct drm_i915_gem_object *obj;
4708 int ret;
4709
4710 switch (args->madv) {
4711 case I915_MADV_DONTNEED:
4712 case I915_MADV_WILLNEED:
4713 break;
4714 default:
4715 return -EINVAL;
4716 }
4717
4718 ret = i915_mutex_lock_interruptible(dev);
4719 if (ret)
4720 return ret;
4721
4722 obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4723 if (&obj->base == NULL) {
4724 ret = -ENOENT;
4725 goto unlock;
4726 }
4727
4728 if (i915_gem_obj_is_pinned(obj)) {
4729 ret = -EINVAL;
4730 goto out;
4731 }
4732
4733 if (obj->pages &&
4734 obj->tiling_mode != I915_TILING_NONE &&
4735 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4736 if (obj->madv == I915_MADV_WILLNEED)
4737 i915_gem_object_unpin_pages(obj);
4738 if (args->madv == I915_MADV_WILLNEED)
4739 i915_gem_object_pin_pages(obj);
4740 }
4741
4742 if (obj->madv != __I915_MADV_PURGED)
4743 obj->madv = args->madv;
4744
4745 /* if the object is no longer attached, discard its backing storage */
4746 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4747 i915_gem_object_truncate(obj);
4748
4749 args->retained = obj->madv != __I915_MADV_PURGED;
4750
4751 out:
4752 drm_gem_object_unreference(&obj->base);
4753 unlock:
4754 mutex_unlock(&dev->struct_mutex);
4755 return ret;
4756 }
4757
4758 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4759 const struct drm_i915_gem_object_ops *ops)
4760 {
4761 int i;
4762
4763 INIT_LIST_HEAD(&obj->global_list);
4764 for (i = 0; i < I915_NUM_ENGINES; i++)
4765 INIT_LIST_HEAD(&obj->engine_list[i]);
4766 INIT_LIST_HEAD(&obj->obj_exec_link);
4767 INIT_LIST_HEAD(&obj->vma_list);
4768 INIT_LIST_HEAD(&obj->batch_pool_link);
4769
4770 obj->ops = ops;
4771
4772 obj->fence_reg = I915_FENCE_REG_NONE;
4773 obj->madv = I915_MADV_WILLNEED;
4774
4775 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4776 }
4777
4778 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4779 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4780 .get_pages = i915_gem_object_get_pages_gtt,
4781 .put_pages = i915_gem_object_put_pages_gtt,
4782 };
4783
4784 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4785 size_t size)
4786 {
4787 struct drm_i915_gem_object *obj;
4788 struct address_space *mapping;
4789 gfp_t mask;
4790 int ret;
4791
4792 obj = i915_gem_object_alloc(dev);
4793 if (obj == NULL)
4794 return ERR_PTR(-ENOMEM);
4795
4796 ret = drm_gem_object_init(dev, &obj->base, size);
4797 if (ret)
4798 goto fail;
4799
4800 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4801 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4802 /* 965gm cannot relocate objects above 4GiB. */
4803 mask &= ~__GFP_HIGHMEM;
4804 mask |= __GFP_DMA32;
4805 }
4806
4807 mapping = file_inode(obj->base.filp)->i_mapping;
4808 mapping_set_gfp_mask(mapping, mask);
4809
4810 i915_gem_object_init(obj, &i915_gem_object_ops);
4811
4812 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4813 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4814
4815 if (HAS_LLC(dev)) {
4816 /* On some devices, we can have the GPU use the LLC (the CPU
4817 * cache) for about a 10% performance improvement
4818 * compared to uncached. Graphics requests other than
4819 * display scanout are coherent with the CPU in
4820 * accessing this cache. This means in this mode we
4821 * don't need to clflush on the CPU side, and on the
4822 * GPU side we only need to flush internal caches to
4823 * get data visible to the CPU.
4824 *
4825 * However, we maintain the display planes as UC, and so
4826 * need to rebind when first used as such.
4827 */
4828 obj->cache_level = I915_CACHE_LLC;
4829 } else
4830 obj->cache_level = I915_CACHE_NONE;
4831
4832 trace_i915_gem_object_create(obj);
4833
4834 return obj;
4835
4836 fail:
4837 i915_gem_object_free(obj);
4838
4839 return ERR_PTR(ret);
4840 }
4841
4842 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4843 {
4844 /* If we are the last user of the backing storage (be it shmemfs
4845 * pages or stolen etc), we know that the pages are going to be
4846 * immediately released. In this case, we can then skip copying
4847 * back the contents from the GPU.
4848 */
4849
4850 if (obj->madv != I915_MADV_WILLNEED)
4851 return false;
4852
4853 if (obj->base.filp == NULL)
4854 return true;
4855
4856 /* At first glance, this looks racy, but then again so would be
4857 * userspace racing mmap against close. However, the first external
4858 * reference to the filp can only be obtained through the
4859 * i915_gem_mmap_ioctl() which safeguards us against the user
4860 * acquiring such a reference whilst we are in the middle of
4861 * freeing the object.
4862 */
4863 return atomic_long_read(&obj->base.filp->f_count) == 1;
4864 }
4865
4866 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4867 {
4868 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4869 struct drm_device *dev = obj->base.dev;
4870 struct drm_i915_private *dev_priv = to_i915(dev);
4871 struct i915_vma *vma, *next;
4872
4873 intel_runtime_pm_get(dev_priv);
4874
4875 trace_i915_gem_object_destroy(obj);
4876
4877 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4878 int ret;
4879
4880 vma->pin_count = 0;
4881 ret = i915_vma_unbind(vma);
4882 if (WARN_ON(ret == -ERESTARTSYS)) {
4883 bool was_interruptible;
4884
4885 was_interruptible = dev_priv->mm.interruptible;
4886 dev_priv->mm.interruptible = false;
4887
4888 WARN_ON(i915_vma_unbind(vma));
4889
4890 dev_priv->mm.interruptible = was_interruptible;
4891 }
4892 }
4893
4894 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4895 * before progressing. */
4896 if (obj->stolen)
4897 i915_gem_object_unpin_pages(obj);
4898
4899 WARN_ON(obj->frontbuffer_bits);
4900
4901 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4902 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4903 obj->tiling_mode != I915_TILING_NONE)
4904 i915_gem_object_unpin_pages(obj);
4905
4906 if (WARN_ON(obj->pages_pin_count))
4907 obj->pages_pin_count = 0;
4908 if (discard_backing_storage(obj))
4909 obj->madv = I915_MADV_DONTNEED;
4910 i915_gem_object_put_pages(obj);
4911 i915_gem_object_free_mmap_offset(obj);
4912
4913 BUG_ON(obj->pages);
4914
4915 if (obj->base.import_attach)
4916 drm_prime_gem_destroy(&obj->base, NULL);
4917
4918 if (obj->ops->release)
4919 obj->ops->release(obj);
4920
4921 drm_gem_object_release(&obj->base);
4922 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4923
4924 kfree(obj->bit_17);
4925 i915_gem_object_free(obj);
4926
4927 intel_runtime_pm_put(dev_priv);
4928 }
4929
4930 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4931 struct i915_address_space *vm)
4932 {
4933 struct i915_vma *vma;
4934 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4935 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4936 vma->vm == vm)
4937 return vma;
4938 }
4939 return NULL;
4940 }
4941
4942 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4943 const struct i915_ggtt_view *view)
4944 {
4945 struct i915_vma *vma;
4946
4947 GEM_BUG_ON(!view);
4948
4949 list_for_each_entry(vma, &obj->vma_list, obj_link)
4950 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4951 return vma;
4952 return NULL;
4953 }
4954
4955 void i915_gem_vma_destroy(struct i915_vma *vma)
4956 {
4957 WARN_ON(vma->node.allocated);
4958
4959 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4960 if (!list_empty(&vma->exec_list))
4961 return;
4962
4963 if (!vma->is_ggtt)
4964 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4965
4966 list_del(&vma->obj_link);
4967
4968 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4969 }
4970
4971 static void
4972 i915_gem_stop_engines(struct drm_device *dev)
4973 {
4974 struct drm_i915_private *dev_priv = to_i915(dev);
4975 struct intel_engine_cs *engine;
4976
4977 for_each_engine(engine, dev_priv)
4978 dev_priv->gt.stop_engine(engine);
4979 }
4980
4981 int
4982 i915_gem_suspend(struct drm_device *dev)
4983 {
4984 struct drm_i915_private *dev_priv = to_i915(dev);
4985 int ret = 0;
4986
4987 mutex_lock(&dev->struct_mutex);
4988 ret = i915_gem_wait_for_idle(dev_priv);
4989 if (ret)
4990 goto err;
4991
4992 i915_gem_retire_requests(dev_priv);
4993
4994 i915_gem_stop_engines(dev);
4995 i915_gem_context_lost(dev_priv);
4996 mutex_unlock(&dev->struct_mutex);
4997
4998 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4999 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
5000 flush_delayed_work(&dev_priv->gt.idle_work);
5001
5002 /* Assert that we sucessfully flushed all the work and
5003 * reset the GPU back to its idle, low power state.
5004 */
5005 WARN_ON(dev_priv->gt.awake);
5006
5007 return 0;
5008
5009 err:
5010 mutex_unlock(&dev->struct_mutex);
5011 return ret;
5012 }
5013
5014 void i915_gem_init_swizzling(struct drm_device *dev)
5015 {
5016 struct drm_i915_private *dev_priv = to_i915(dev);
5017
5018 if (INTEL_INFO(dev)->gen < 5 ||
5019 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5020 return;
5021
5022 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5023 DISP_TILE_SURFACE_SWIZZLING);
5024
5025 if (IS_GEN5(dev))
5026 return;
5027
5028 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5029 if (IS_GEN6(dev))
5030 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5031 else if (IS_GEN7(dev))
5032 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5033 else if (IS_GEN8(dev))
5034 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5035 else
5036 BUG();
5037 }
5038
5039 static void init_unused_ring(struct drm_device *dev, u32 base)
5040 {
5041 struct drm_i915_private *dev_priv = to_i915(dev);
5042
5043 I915_WRITE(RING_CTL(base), 0);
5044 I915_WRITE(RING_HEAD(base), 0);
5045 I915_WRITE(RING_TAIL(base), 0);
5046 I915_WRITE(RING_START(base), 0);
5047 }
5048
5049 static void init_unused_rings(struct drm_device *dev)
5050 {
5051 if (IS_I830(dev)) {
5052 init_unused_ring(dev, PRB1_BASE);
5053 init_unused_ring(dev, SRB0_BASE);
5054 init_unused_ring(dev, SRB1_BASE);
5055 init_unused_ring(dev, SRB2_BASE);
5056 init_unused_ring(dev, SRB3_BASE);
5057 } else if (IS_GEN2(dev)) {
5058 init_unused_ring(dev, SRB0_BASE);
5059 init_unused_ring(dev, SRB1_BASE);
5060 } else if (IS_GEN3(dev)) {
5061 init_unused_ring(dev, PRB1_BASE);
5062 init_unused_ring(dev, PRB2_BASE);
5063 }
5064 }
5065
5066 int i915_gem_init_engines(struct drm_device *dev)
5067 {
5068 struct drm_i915_private *dev_priv = to_i915(dev);
5069 int ret;
5070
5071 ret = intel_init_render_ring_buffer(dev);
5072 if (ret)
5073 return ret;
5074
5075 if (HAS_BSD(dev)) {
5076 ret = intel_init_bsd_ring_buffer(dev);
5077 if (ret)
5078 goto cleanup_render_ring;
5079 }
5080
5081 if (HAS_BLT(dev)) {
5082 ret = intel_init_blt_ring_buffer(dev);
5083 if (ret)
5084 goto cleanup_bsd_ring;
5085 }
5086
5087 if (HAS_VEBOX(dev)) {
5088 ret = intel_init_vebox_ring_buffer(dev);
5089 if (ret)
5090 goto cleanup_blt_ring;
5091 }
5092
5093 if (HAS_BSD2(dev)) {
5094 ret = intel_init_bsd2_ring_buffer(dev);
5095 if (ret)
5096 goto cleanup_vebox_ring;
5097 }
5098
5099 return 0;
5100
5101 cleanup_vebox_ring:
5102 intel_cleanup_engine(&dev_priv->engine[VECS]);
5103 cleanup_blt_ring:
5104 intel_cleanup_engine(&dev_priv->engine[BCS]);
5105 cleanup_bsd_ring:
5106 intel_cleanup_engine(&dev_priv->engine[VCS]);
5107 cleanup_render_ring:
5108 intel_cleanup_engine(&dev_priv->engine[RCS]);
5109
5110 return ret;
5111 }
5112
5113 int
5114 i915_gem_init_hw(struct drm_device *dev)
5115 {
5116 struct drm_i915_private *dev_priv = to_i915(dev);
5117 struct intel_engine_cs *engine;
5118 int ret;
5119
5120 /* Double layer security blanket, see i915_gem_init() */
5121 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5122
5123 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5124 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5125
5126 if (IS_HASWELL(dev))
5127 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5128 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5129
5130 if (HAS_PCH_NOP(dev)) {
5131 if (IS_IVYBRIDGE(dev)) {
5132 u32 temp = I915_READ(GEN7_MSG_CTL);
5133 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5134 I915_WRITE(GEN7_MSG_CTL, temp);
5135 } else if (INTEL_INFO(dev)->gen >= 7) {
5136 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5137 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5138 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5139 }
5140 }
5141
5142 i915_gem_init_swizzling(dev);
5143
5144 /*
5145 * At least 830 can leave some of the unused rings
5146 * "active" (ie. head != tail) after resume which
5147 * will prevent c3 entry. Makes sure all unused rings
5148 * are totally idle.
5149 */
5150 init_unused_rings(dev);
5151
5152 BUG_ON(!dev_priv->kernel_context);
5153
5154 ret = i915_ppgtt_init_hw(dev);
5155 if (ret) {
5156 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5157 goto out;
5158 }
5159
5160 /* Need to do basic initialisation of all rings first: */
5161 for_each_engine(engine, dev_priv) {
5162 ret = engine->init_hw(engine);
5163 if (ret)
5164 goto out;
5165 }
5166
5167 intel_mocs_init_l3cc_table(dev);
5168
5169 /* We can't enable contexts until all firmware is loaded */
5170 ret = intel_guc_setup(dev);
5171 if (ret)
5172 goto out;
5173
5174 out:
5175 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5176 return ret;
5177 }
5178
5179 int i915_gem_init(struct drm_device *dev)
5180 {
5181 struct drm_i915_private *dev_priv = to_i915(dev);
5182 int ret;
5183
5184 mutex_lock(&dev->struct_mutex);
5185
5186 if (!i915.enable_execlists) {
5187 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5188 dev_priv->gt.init_engines = i915_gem_init_engines;
5189 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5190 dev_priv->gt.stop_engine = intel_stop_engine;
5191 } else {
5192 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5193 dev_priv->gt.init_engines = intel_logical_rings_init;
5194 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5195 dev_priv->gt.stop_engine = intel_logical_ring_stop;
5196 }
5197
5198 /* This is just a security blanket to placate dragons.
5199 * On some systems, we very sporadically observe that the first TLBs
5200 * used by the CS may be stale, despite us poking the TLB reset. If
5201 * we hold the forcewake during initialisation these problems
5202 * just magically go away.
5203 */
5204 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5205
5206 i915_gem_init_userptr(dev_priv);
5207 i915_gem_init_ggtt(dev);
5208
5209 ret = i915_gem_context_init(dev);
5210 if (ret)
5211 goto out_unlock;
5212
5213 ret = dev_priv->gt.init_engines(dev);
5214 if (ret)
5215 goto out_unlock;
5216
5217 ret = i915_gem_init_hw(dev);
5218 if (ret == -EIO) {
5219 /* Allow ring initialisation to fail by marking the GPU as
5220 * wedged. But we only want to do this where the GPU is angry,
5221 * for all other failure, such as an allocation failure, bail.
5222 */
5223 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5224 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5225 ret = 0;
5226 }
5227
5228 out_unlock:
5229 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5230 mutex_unlock(&dev->struct_mutex);
5231
5232 return ret;
5233 }
5234
5235 void
5236 i915_gem_cleanup_engines(struct drm_device *dev)
5237 {
5238 struct drm_i915_private *dev_priv = to_i915(dev);
5239 struct intel_engine_cs *engine;
5240
5241 for_each_engine(engine, dev_priv)
5242 dev_priv->gt.cleanup_engine(engine);
5243 }
5244
5245 static void
5246 init_engine_lists(struct intel_engine_cs *engine)
5247 {
5248 INIT_LIST_HEAD(&engine->active_list);
5249 INIT_LIST_HEAD(&engine->request_list);
5250 }
5251
5252 void
5253 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5254 {
5255 struct drm_device *dev = &dev_priv->drm;
5256
5257 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5258 !IS_CHERRYVIEW(dev_priv))
5259 dev_priv->num_fence_regs = 32;
5260 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5261 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5262 dev_priv->num_fence_regs = 16;
5263 else
5264 dev_priv->num_fence_regs = 8;
5265
5266 if (intel_vgpu_active(dev_priv))
5267 dev_priv->num_fence_regs =
5268 I915_READ(vgtif_reg(avail_rs.fence_num));
5269
5270 /* Initialize fence registers to zero */
5271 i915_gem_restore_fences(dev);
5272
5273 i915_gem_detect_bit_6_swizzle(dev);
5274 }
5275
5276 void
5277 i915_gem_load_init(struct drm_device *dev)
5278 {
5279 struct drm_i915_private *dev_priv = to_i915(dev);
5280 int i;
5281
5282 dev_priv->objects =
5283 kmem_cache_create("i915_gem_object",
5284 sizeof(struct drm_i915_gem_object), 0,
5285 SLAB_HWCACHE_ALIGN,
5286 NULL);
5287 dev_priv->vmas =
5288 kmem_cache_create("i915_gem_vma",
5289 sizeof(struct i915_vma), 0,
5290 SLAB_HWCACHE_ALIGN,
5291 NULL);
5292 dev_priv->requests =
5293 kmem_cache_create("i915_gem_request",
5294 sizeof(struct drm_i915_gem_request), 0,
5295 SLAB_HWCACHE_ALIGN,
5296 NULL);
5297
5298 INIT_LIST_HEAD(&dev_priv->vm_list);
5299 INIT_LIST_HEAD(&dev_priv->context_list);
5300 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5301 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5302 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5303 for (i = 0; i < I915_NUM_ENGINES; i++)
5304 init_engine_lists(&dev_priv->engine[i]);
5305 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5306 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5307 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5308 i915_gem_retire_work_handler);
5309 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5310 i915_gem_idle_work_handler);
5311 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5312 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5313
5314 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5315
5316 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5317
5318 init_waitqueue_head(&dev_priv->pending_flip_queue);
5319
5320 dev_priv->mm.interruptible = true;
5321
5322 mutex_init(&dev_priv->fb_tracking.lock);
5323 }
5324
5325 void i915_gem_load_cleanup(struct drm_device *dev)
5326 {
5327 struct drm_i915_private *dev_priv = to_i915(dev);
5328
5329 kmem_cache_destroy(dev_priv->requests);
5330 kmem_cache_destroy(dev_priv->vmas);
5331 kmem_cache_destroy(dev_priv->objects);
5332 }
5333
5334 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5335 {
5336 struct drm_i915_gem_object *obj;
5337
5338 /* Called just before we write the hibernation image.
5339 *
5340 * We need to update the domain tracking to reflect that the CPU
5341 * will be accessing all the pages to create and restore from the
5342 * hibernation, and so upon restoration those pages will be in the
5343 * CPU domain.
5344 *
5345 * To make sure the hibernation image contains the latest state,
5346 * we update that state just before writing out the image.
5347 */
5348
5349 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5350 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5351 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5352 }
5353
5354 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5355 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5356 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5357 }
5358
5359 return 0;
5360 }
5361
5362 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5363 {
5364 struct drm_i915_file_private *file_priv = file->driver_priv;
5365
5366 /* Clean up our request list when the client is going away, so that
5367 * later retire_requests won't dereference our soon-to-be-gone
5368 * file_priv.
5369 */
5370 spin_lock(&file_priv->mm.lock);
5371 while (!list_empty(&file_priv->mm.request_list)) {
5372 struct drm_i915_gem_request *request;
5373
5374 request = list_first_entry(&file_priv->mm.request_list,
5375 struct drm_i915_gem_request,
5376 client_list);
5377 list_del(&request->client_list);
5378 request->file_priv = NULL;
5379 }
5380 spin_unlock(&file_priv->mm.lock);
5381
5382 if (!list_empty(&file_priv->rps.link)) {
5383 spin_lock(&to_i915(dev)->rps.client_lock);
5384 list_del(&file_priv->rps.link);
5385 spin_unlock(&to_i915(dev)->rps.client_lock);
5386 }
5387 }
5388
5389 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5390 {
5391 struct drm_i915_file_private *file_priv;
5392 int ret;
5393
5394 DRM_DEBUG_DRIVER("\n");
5395
5396 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5397 if (!file_priv)
5398 return -ENOMEM;
5399
5400 file->driver_priv = file_priv;
5401 file_priv->dev_priv = to_i915(dev);
5402 file_priv->file = file;
5403 INIT_LIST_HEAD(&file_priv->rps.link);
5404
5405 spin_lock_init(&file_priv->mm.lock);
5406 INIT_LIST_HEAD(&file_priv->mm.request_list);
5407
5408 file_priv->bsd_ring = -1;
5409
5410 ret = i915_gem_context_open(dev, file);
5411 if (ret)
5412 kfree(file_priv);
5413
5414 return ret;
5415 }
5416
5417 /**
5418 * i915_gem_track_fb - update frontbuffer tracking
5419 * @old: current GEM buffer for the frontbuffer slots
5420 * @new: new GEM buffer for the frontbuffer slots
5421 * @frontbuffer_bits: bitmask of frontbuffer slots
5422 *
5423 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5424 * from @old and setting them in @new. Both @old and @new can be NULL.
5425 */
5426 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5427 struct drm_i915_gem_object *new,
5428 unsigned frontbuffer_bits)
5429 {
5430 if (old) {
5431 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5432 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5433 old->frontbuffer_bits &= ~frontbuffer_bits;
5434 }
5435
5436 if (new) {
5437 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5438 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5439 new->frontbuffer_bits |= frontbuffer_bits;
5440 }
5441 }
5442
5443 /* All the new VM stuff */
5444 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5445 struct i915_address_space *vm)
5446 {
5447 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5448 struct i915_vma *vma;
5449
5450 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5451
5452 list_for_each_entry(vma, &o->vma_list, obj_link) {
5453 if (vma->is_ggtt &&
5454 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5455 continue;
5456 if (vma->vm == vm)
5457 return vma->node.start;
5458 }
5459
5460 WARN(1, "%s vma for this object not found.\n",
5461 i915_is_ggtt(vm) ? "global" : "ppgtt");
5462 return -1;
5463 }
5464
5465 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5466 const struct i915_ggtt_view *view)
5467 {
5468 struct i915_vma *vma;
5469
5470 list_for_each_entry(vma, &o->vma_list, obj_link)
5471 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5472 return vma->node.start;
5473
5474 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5475 return -1;
5476 }
5477
5478 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5479 struct i915_address_space *vm)
5480 {
5481 struct i915_vma *vma;
5482
5483 list_for_each_entry(vma, &o->vma_list, obj_link) {
5484 if (vma->is_ggtt &&
5485 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5486 continue;
5487 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5488 return true;
5489 }
5490
5491 return false;
5492 }
5493
5494 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5495 const struct i915_ggtt_view *view)
5496 {
5497 struct i915_vma *vma;
5498
5499 list_for_each_entry(vma, &o->vma_list, obj_link)
5500 if (vma->is_ggtt &&
5501 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5502 drm_mm_node_allocated(&vma->node))
5503 return true;
5504
5505 return false;
5506 }
5507
5508 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5509 {
5510 struct i915_vma *vma;
5511
5512 list_for_each_entry(vma, &o->vma_list, obj_link)
5513 if (drm_mm_node_allocated(&vma->node))
5514 return true;
5515
5516 return false;
5517 }
5518
5519 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5520 {
5521 struct i915_vma *vma;
5522
5523 GEM_BUG_ON(list_empty(&o->vma_list));
5524
5525 list_for_each_entry(vma, &o->vma_list, obj_link) {
5526 if (vma->is_ggtt &&
5527 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5528 return vma->node.size;
5529 }
5530
5531 return 0;
5532 }
5533
5534 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5535 {
5536 struct i915_vma *vma;
5537 list_for_each_entry(vma, &obj->vma_list, obj_link)
5538 if (vma->pin_count > 0)
5539 return true;
5540
5541 return false;
5542 }
5543
5544 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5545 struct page *
5546 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5547 {
5548 struct page *page;
5549
5550 /* Only default objects have per-page dirty tracking */
5551 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5552 return NULL;
5553
5554 page = i915_gem_object_get_page(obj, n);
5555 set_page_dirty(page);
5556 return page;
5557 }
5558
5559 /* Allocate a new GEM object and fill it with the supplied data */
5560 struct drm_i915_gem_object *
5561 i915_gem_object_create_from_data(struct drm_device *dev,
5562 const void *data, size_t size)
5563 {
5564 struct drm_i915_gem_object *obj;
5565 struct sg_table *sg;
5566 size_t bytes;
5567 int ret;
5568
5569 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5570 if (IS_ERR(obj))
5571 return obj;
5572
5573 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5574 if (ret)
5575 goto fail;
5576
5577 ret = i915_gem_object_get_pages(obj);
5578 if (ret)
5579 goto fail;
5580
5581 i915_gem_object_pin_pages(obj);
5582 sg = obj->pages;
5583 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5584 obj->dirty = 1; /* Backing store is now out of date */
5585 i915_gem_object_unpin_pages(obj);
5586
5587 if (WARN_ON(bytes != size)) {
5588 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5589 ret = -EFAULT;
5590 goto fail;
5591 }
5592
5593 return obj;
5594
5595 fail:
5596 drm_gem_object_unreference(&obj->base);
5597 return ERR_PTR(ret);
5598 }