]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Unify active context tracking between legacy/execlists/guc
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/stop_machine.h>
42 #include <linux/swap.h>
43 #include <linux/pci.h>
44 #include <linux/dma-buf.h>
45
46 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
59 return false;
60
61 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
62 return true;
63
64 return obj->pin_display;
65 }
66
67 static int
68 insert_mappable_node(struct i915_ggtt *ggtt,
69 struct drm_mm_node *node, u32 size)
70 {
71 memset(node, 0, sizeof(*node));
72 return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
73 size, 0,
74 I915_COLOR_UNEVICTABLE,
75 0, ggtt->mappable_end,
76 DRM_MM_SEARCH_DEFAULT,
77 DRM_MM_CREATE_DEFAULT);
78 }
79
80 static void
81 remove_mappable_node(struct drm_mm_node *node)
82 {
83 drm_mm_remove_node(node);
84 }
85
86 /* some bookkeeping */
87 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
88 u64 size)
89 {
90 spin_lock(&dev_priv->mm.object_stat_lock);
91 dev_priv->mm.object_count++;
92 dev_priv->mm.object_memory += size;
93 spin_unlock(&dev_priv->mm.object_stat_lock);
94 }
95
96 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
97 u64 size)
98 {
99 spin_lock(&dev_priv->mm.object_stat_lock);
100 dev_priv->mm.object_count--;
101 dev_priv->mm.object_memory -= size;
102 spin_unlock(&dev_priv->mm.object_stat_lock);
103 }
104
105 static int
106 i915_gem_wait_for_error(struct i915_gpu_error *error)
107 {
108 int ret;
109
110 might_sleep();
111
112 if (!i915_reset_in_progress(error))
113 return 0;
114
115 /*
116 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
117 * userspace. If it takes that long something really bad is going on and
118 * we should simply try to bail out and fail as gracefully as possible.
119 */
120 ret = wait_event_interruptible_timeout(error->reset_queue,
121 !i915_reset_in_progress(error),
122 I915_RESET_TIMEOUT);
123 if (ret == 0) {
124 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
125 return -EIO;
126 } else if (ret < 0) {
127 return ret;
128 } else {
129 return 0;
130 }
131 }
132
133 int i915_mutex_lock_interruptible(struct drm_device *dev)
134 {
135 struct drm_i915_private *dev_priv = to_i915(dev);
136 int ret;
137
138 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
139 if (ret)
140 return ret;
141
142 ret = mutex_lock_interruptible(&dev->struct_mutex);
143 if (ret)
144 return ret;
145
146 return 0;
147 }
148
149 int
150 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
151 struct drm_file *file)
152 {
153 struct drm_i915_private *dev_priv = to_i915(dev);
154 struct i915_ggtt *ggtt = &dev_priv->ggtt;
155 struct drm_i915_gem_get_aperture *args = data;
156 struct i915_vma *vma;
157 size_t pinned;
158
159 pinned = 0;
160 mutex_lock(&dev->struct_mutex);
161 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
162 if (i915_vma_is_pinned(vma))
163 pinned += vma->node.size;
164 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
165 if (i915_vma_is_pinned(vma))
166 pinned += vma->node.size;
167 mutex_unlock(&dev->struct_mutex);
168
169 args->aper_size = ggtt->base.total;
170 args->aper_available_size = args->aper_size - pinned;
171
172 return 0;
173 }
174
175 static struct sg_table *
176 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
177 {
178 struct address_space *mapping = obj->base.filp->f_mapping;
179 drm_dma_handle_t *phys;
180 struct sg_table *st;
181 struct scatterlist *sg;
182 char *vaddr;
183 int i;
184
185 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
186 return ERR_PTR(-EINVAL);
187
188 /* Always aligning to the object size, allows a single allocation
189 * to handle all possible callers, and given typical object sizes,
190 * the alignment of the buddy allocation will naturally match.
191 */
192 phys = drm_pci_alloc(obj->base.dev,
193 obj->base.size,
194 roundup_pow_of_two(obj->base.size));
195 if (!phys)
196 return ERR_PTR(-ENOMEM);
197
198 vaddr = phys->vaddr;
199 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
200 struct page *page;
201 char *src;
202
203 page = shmem_read_mapping_page(mapping, i);
204 if (IS_ERR(page)) {
205 st = ERR_CAST(page);
206 goto err_phys;
207 }
208
209 src = kmap_atomic(page);
210 memcpy(vaddr, src, PAGE_SIZE);
211 drm_clflush_virt_range(vaddr, PAGE_SIZE);
212 kunmap_atomic(src);
213
214 put_page(page);
215 vaddr += PAGE_SIZE;
216 }
217
218 i915_gem_chipset_flush(to_i915(obj->base.dev));
219
220 st = kmalloc(sizeof(*st), GFP_KERNEL);
221 if (!st) {
222 st = ERR_PTR(-ENOMEM);
223 goto err_phys;
224 }
225
226 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
227 kfree(st);
228 st = ERR_PTR(-ENOMEM);
229 goto err_phys;
230 }
231
232 sg = st->sgl;
233 sg->offset = 0;
234 sg->length = obj->base.size;
235
236 sg_dma_address(sg) = phys->busaddr;
237 sg_dma_len(sg) = obj->base.size;
238
239 obj->phys_handle = phys;
240 return st;
241
242 err_phys:
243 drm_pci_free(obj->base.dev, phys);
244 return st;
245 }
246
247 static void
248 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
249 struct sg_table *pages)
250 {
251 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
252
253 if (obj->mm.madv == I915_MADV_DONTNEED)
254 obj->mm.dirty = false;
255
256 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
257 !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
258 drm_clflush_sg(pages);
259
260 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
261 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
262 }
263
264 static void
265 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
266 struct sg_table *pages)
267 {
268 __i915_gem_object_release_shmem(obj, pages);
269
270 if (obj->mm.dirty) {
271 struct address_space *mapping = obj->base.filp->f_mapping;
272 char *vaddr = obj->phys_handle->vaddr;
273 int i;
274
275 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
276 struct page *page;
277 char *dst;
278
279 page = shmem_read_mapping_page(mapping, i);
280 if (IS_ERR(page))
281 continue;
282
283 dst = kmap_atomic(page);
284 drm_clflush_virt_range(vaddr, PAGE_SIZE);
285 memcpy(dst, vaddr, PAGE_SIZE);
286 kunmap_atomic(dst);
287
288 set_page_dirty(page);
289 if (obj->mm.madv == I915_MADV_WILLNEED)
290 mark_page_accessed(page);
291 put_page(page);
292 vaddr += PAGE_SIZE;
293 }
294 obj->mm.dirty = false;
295 }
296
297 sg_free_table(pages);
298 kfree(pages);
299
300 drm_pci_free(obj->base.dev, obj->phys_handle);
301 }
302
303 static void
304 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
305 {
306 i915_gem_object_unpin_pages(obj);
307 }
308
309 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
310 .get_pages = i915_gem_object_get_pages_phys,
311 .put_pages = i915_gem_object_put_pages_phys,
312 .release = i915_gem_object_release_phys,
313 };
314
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317 struct i915_vma *vma;
318 LIST_HEAD(still_in_list);
319 int ret;
320
321 lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323 /* Closed vma are removed from the obj->vma_list - but they may
324 * still have an active binding on the object. To remove those we
325 * must wait for all rendering to complete to the object (as unbinding
326 * must anyway), and retire the requests.
327 */
328 ret = i915_gem_object_wait(obj,
329 I915_WAIT_INTERRUPTIBLE |
330 I915_WAIT_LOCKED |
331 I915_WAIT_ALL,
332 MAX_SCHEDULE_TIMEOUT,
333 NULL);
334 if (ret)
335 return ret;
336
337 i915_gem_retire_requests(to_i915(obj->base.dev));
338
339 while ((vma = list_first_entry_or_null(&obj->vma_list,
340 struct i915_vma,
341 obj_link))) {
342 list_move_tail(&vma->obj_link, &still_in_list);
343 ret = i915_vma_unbind(vma);
344 if (ret)
345 break;
346 }
347 list_splice(&still_in_list, &obj->vma_list);
348
349 return ret;
350 }
351
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354 unsigned int flags,
355 long timeout,
356 struct intel_rps_client *rps)
357 {
358 struct drm_i915_gem_request *rq;
359
360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 return timeout;
364
365 if (!dma_fence_is_i915(fence))
366 return dma_fence_wait_timeout(fence,
367 flags & I915_WAIT_INTERRUPTIBLE,
368 timeout);
369
370 rq = to_request(fence);
371 if (i915_gem_request_completed(rq))
372 goto out;
373
374 /* This client is about to stall waiting for the GPU. In many cases
375 * this is undesirable and limits the throughput of the system, as
376 * many clients cannot continue processing user input/output whilst
377 * blocked. RPS autotuning may take tens of milliseconds to respond
378 * to the GPU load and thus incurs additional latency for the client.
379 * We can circumvent that by promoting the GPU frequency to maximum
380 * before we wait. This makes the GPU throttle up much more quickly
381 * (good for benchmarks and user experience, e.g. window animations),
382 * but at a cost of spending more power processing the workload
383 * (bad for battery). Not all clients even want their results
384 * immediately and for them we should just let the GPU select its own
385 * frequency to maximise efficiency. To prevent a single client from
386 * forcing the clocks too high for the whole system, we only allow
387 * each client to waitboost once in a busy period.
388 */
389 if (rps) {
390 if (INTEL_GEN(rq->i915) >= 6)
391 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
392 else
393 rps = NULL;
394 }
395
396 timeout = i915_wait_request(rq, flags, timeout);
397
398 out:
399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 i915_gem_request_retire_upto(rq);
401
402 if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
403 /* The GPU is now idle and this client has stalled.
404 * Since no other client has submitted a request in the
405 * meantime, assume that this client is the only one
406 * supplying work to the GPU but is unable to keep that
407 * work supplied because it is waiting. Since the GPU is
408 * then never kept fully busy, RPS autoclocking will
409 * keep the clocks relatively low, causing further delays.
410 * Compensate by giving the synchronous client credit for
411 * a waitboost next time.
412 */
413 spin_lock(&rq->i915->rps.client_lock);
414 list_del_init(&rps->link);
415 spin_unlock(&rq->i915->rps.client_lock);
416 }
417
418 return timeout;
419 }
420
421 static long
422 i915_gem_object_wait_reservation(struct reservation_object *resv,
423 unsigned int flags,
424 long timeout,
425 struct intel_rps_client *rps)
426 {
427 struct dma_fence *excl;
428
429 if (flags & I915_WAIT_ALL) {
430 struct dma_fence **shared;
431 unsigned int count, i;
432 int ret;
433
434 ret = reservation_object_get_fences_rcu(resv,
435 &excl, &count, &shared);
436 if (ret)
437 return ret;
438
439 for (i = 0; i < count; i++) {
440 timeout = i915_gem_object_wait_fence(shared[i],
441 flags, timeout,
442 rps);
443 if (timeout <= 0)
444 break;
445
446 dma_fence_put(shared[i]);
447 }
448
449 for (; i < count; i++)
450 dma_fence_put(shared[i]);
451 kfree(shared);
452 } else {
453 excl = reservation_object_get_excl_rcu(resv);
454 }
455
456 if (excl && timeout > 0)
457 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
458
459 dma_fence_put(excl);
460
461 return timeout;
462 }
463
464 static void __fence_set_priority(struct dma_fence *fence, int prio)
465 {
466 struct drm_i915_gem_request *rq;
467 struct intel_engine_cs *engine;
468
469 if (!dma_fence_is_i915(fence))
470 return;
471
472 rq = to_request(fence);
473 engine = rq->engine;
474 if (!engine->schedule)
475 return;
476
477 engine->schedule(rq, prio);
478 }
479
480 static void fence_set_priority(struct dma_fence *fence, int prio)
481 {
482 /* Recurse once into a fence-array */
483 if (dma_fence_is_array(fence)) {
484 struct dma_fence_array *array = to_dma_fence_array(fence);
485 int i;
486
487 for (i = 0; i < array->num_fences; i++)
488 __fence_set_priority(array->fences[i], prio);
489 } else {
490 __fence_set_priority(fence, prio);
491 }
492 }
493
494 int
495 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
496 unsigned int flags,
497 int prio)
498 {
499 struct dma_fence *excl;
500
501 if (flags & I915_WAIT_ALL) {
502 struct dma_fence **shared;
503 unsigned int count, i;
504 int ret;
505
506 ret = reservation_object_get_fences_rcu(obj->resv,
507 &excl, &count, &shared);
508 if (ret)
509 return ret;
510
511 for (i = 0; i < count; i++) {
512 fence_set_priority(shared[i], prio);
513 dma_fence_put(shared[i]);
514 }
515
516 kfree(shared);
517 } else {
518 excl = reservation_object_get_excl_rcu(obj->resv);
519 }
520
521 if (excl) {
522 fence_set_priority(excl, prio);
523 dma_fence_put(excl);
524 }
525 return 0;
526 }
527
528 /**
529 * Waits for rendering to the object to be completed
530 * @obj: i915 gem object
531 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
532 * @timeout: how long to wait
533 * @rps: client (user process) to charge for any waitboosting
534 */
535 int
536 i915_gem_object_wait(struct drm_i915_gem_object *obj,
537 unsigned int flags,
538 long timeout,
539 struct intel_rps_client *rps)
540 {
541 might_sleep();
542 #if IS_ENABLED(CONFIG_LOCKDEP)
543 GEM_BUG_ON(debug_locks &&
544 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
545 !!(flags & I915_WAIT_LOCKED));
546 #endif
547 GEM_BUG_ON(timeout < 0);
548
549 timeout = i915_gem_object_wait_reservation(obj->resv,
550 flags, timeout,
551 rps);
552 return timeout < 0 ? timeout : 0;
553 }
554
555 static struct intel_rps_client *to_rps_client(struct drm_file *file)
556 {
557 struct drm_i915_file_private *fpriv = file->driver_priv;
558
559 return &fpriv->rps;
560 }
561
562 int
563 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
564 int align)
565 {
566 int ret;
567
568 if (align > obj->base.size)
569 return -EINVAL;
570
571 if (obj->ops == &i915_gem_phys_ops)
572 return 0;
573
574 if (obj->mm.madv != I915_MADV_WILLNEED)
575 return -EFAULT;
576
577 if (obj->base.filp == NULL)
578 return -EINVAL;
579
580 ret = i915_gem_object_unbind(obj);
581 if (ret)
582 return ret;
583
584 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
585 if (obj->mm.pages)
586 return -EBUSY;
587
588 obj->ops = &i915_gem_phys_ops;
589
590 return i915_gem_object_pin_pages(obj);
591 }
592
593 static int
594 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
595 struct drm_i915_gem_pwrite *args,
596 struct drm_file *file)
597 {
598 struct drm_device *dev = obj->base.dev;
599 void *vaddr = obj->phys_handle->vaddr + args->offset;
600 char __user *user_data = u64_to_user_ptr(args->data_ptr);
601 int ret;
602
603 /* We manually control the domain here and pretend that it
604 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
605 */
606 lockdep_assert_held(&obj->base.dev->struct_mutex);
607 ret = i915_gem_object_wait(obj,
608 I915_WAIT_INTERRUPTIBLE |
609 I915_WAIT_LOCKED |
610 I915_WAIT_ALL,
611 MAX_SCHEDULE_TIMEOUT,
612 to_rps_client(file));
613 if (ret)
614 return ret;
615
616 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
617 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
618 unsigned long unwritten;
619
620 /* The physical object once assigned is fixed for the lifetime
621 * of the obj, so we can safely drop the lock and continue
622 * to access vaddr.
623 */
624 mutex_unlock(&dev->struct_mutex);
625 unwritten = copy_from_user(vaddr, user_data, args->size);
626 mutex_lock(&dev->struct_mutex);
627 if (unwritten) {
628 ret = -EFAULT;
629 goto out;
630 }
631 }
632
633 drm_clflush_virt_range(vaddr, args->size);
634 i915_gem_chipset_flush(to_i915(dev));
635
636 out:
637 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
638 return ret;
639 }
640
641 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
642 {
643 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
644 }
645
646 void i915_gem_object_free(struct drm_i915_gem_object *obj)
647 {
648 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
649 kmem_cache_free(dev_priv->objects, obj);
650 }
651
652 static int
653 i915_gem_create(struct drm_file *file,
654 struct drm_i915_private *dev_priv,
655 uint64_t size,
656 uint32_t *handle_p)
657 {
658 struct drm_i915_gem_object *obj;
659 int ret;
660 u32 handle;
661
662 size = roundup(size, PAGE_SIZE);
663 if (size == 0)
664 return -EINVAL;
665
666 /* Allocate the new object */
667 obj = i915_gem_object_create(dev_priv, size);
668 if (IS_ERR(obj))
669 return PTR_ERR(obj);
670
671 ret = drm_gem_handle_create(file, &obj->base, &handle);
672 /* drop reference from allocate - handle holds it now */
673 i915_gem_object_put(obj);
674 if (ret)
675 return ret;
676
677 *handle_p = handle;
678 return 0;
679 }
680
681 int
682 i915_gem_dumb_create(struct drm_file *file,
683 struct drm_device *dev,
684 struct drm_mode_create_dumb *args)
685 {
686 /* have to work out size/pitch and return them */
687 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
688 args->size = args->pitch * args->height;
689 return i915_gem_create(file, to_i915(dev),
690 args->size, &args->handle);
691 }
692
693 /**
694 * Creates a new mm object and returns a handle to it.
695 * @dev: drm device pointer
696 * @data: ioctl data blob
697 * @file: drm file pointer
698 */
699 int
700 i915_gem_create_ioctl(struct drm_device *dev, void *data,
701 struct drm_file *file)
702 {
703 struct drm_i915_private *dev_priv = to_i915(dev);
704 struct drm_i915_gem_create *args = data;
705
706 i915_gem_flush_free_objects(dev_priv);
707
708 return i915_gem_create(file, dev_priv,
709 args->size, &args->handle);
710 }
711
712 static inline int
713 __copy_to_user_swizzled(char __user *cpu_vaddr,
714 const char *gpu_vaddr, int gpu_offset,
715 int length)
716 {
717 int ret, cpu_offset = 0;
718
719 while (length > 0) {
720 int cacheline_end = ALIGN(gpu_offset + 1, 64);
721 int this_length = min(cacheline_end - gpu_offset, length);
722 int swizzled_gpu_offset = gpu_offset ^ 64;
723
724 ret = __copy_to_user(cpu_vaddr + cpu_offset,
725 gpu_vaddr + swizzled_gpu_offset,
726 this_length);
727 if (ret)
728 return ret + length;
729
730 cpu_offset += this_length;
731 gpu_offset += this_length;
732 length -= this_length;
733 }
734
735 return 0;
736 }
737
738 static inline int
739 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
740 const char __user *cpu_vaddr,
741 int length)
742 {
743 int ret, cpu_offset = 0;
744
745 while (length > 0) {
746 int cacheline_end = ALIGN(gpu_offset + 1, 64);
747 int this_length = min(cacheline_end - gpu_offset, length);
748 int swizzled_gpu_offset = gpu_offset ^ 64;
749
750 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
751 cpu_vaddr + cpu_offset,
752 this_length);
753 if (ret)
754 return ret + length;
755
756 cpu_offset += this_length;
757 gpu_offset += this_length;
758 length -= this_length;
759 }
760
761 return 0;
762 }
763
764 /*
765 * Pins the specified object's pages and synchronizes the object with
766 * GPU accesses. Sets needs_clflush to non-zero if the caller should
767 * flush the object from the CPU cache.
768 */
769 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
770 unsigned int *needs_clflush)
771 {
772 int ret;
773
774 lockdep_assert_held(&obj->base.dev->struct_mutex);
775
776 *needs_clflush = 0;
777 if (!i915_gem_object_has_struct_page(obj))
778 return -ENODEV;
779
780 ret = i915_gem_object_wait(obj,
781 I915_WAIT_INTERRUPTIBLE |
782 I915_WAIT_LOCKED,
783 MAX_SCHEDULE_TIMEOUT,
784 NULL);
785 if (ret)
786 return ret;
787
788 ret = i915_gem_object_pin_pages(obj);
789 if (ret)
790 return ret;
791
792 i915_gem_object_flush_gtt_write_domain(obj);
793
794 /* If we're not in the cpu read domain, set ourself into the gtt
795 * read domain and manually flush cachelines (if required). This
796 * optimizes for the case when the gpu will dirty the data
797 * anyway again before the next pread happens.
798 */
799 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
800 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
801 obj->cache_level);
802
803 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804 ret = i915_gem_object_set_to_cpu_domain(obj, false);
805 if (ret)
806 goto err_unpin;
807
808 *needs_clflush = 0;
809 }
810
811 /* return with the pages pinned */
812 return 0;
813
814 err_unpin:
815 i915_gem_object_unpin_pages(obj);
816 return ret;
817 }
818
819 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
820 unsigned int *needs_clflush)
821 {
822 int ret;
823
824 lockdep_assert_held(&obj->base.dev->struct_mutex);
825
826 *needs_clflush = 0;
827 if (!i915_gem_object_has_struct_page(obj))
828 return -ENODEV;
829
830 ret = i915_gem_object_wait(obj,
831 I915_WAIT_INTERRUPTIBLE |
832 I915_WAIT_LOCKED |
833 I915_WAIT_ALL,
834 MAX_SCHEDULE_TIMEOUT,
835 NULL);
836 if (ret)
837 return ret;
838
839 ret = i915_gem_object_pin_pages(obj);
840 if (ret)
841 return ret;
842
843 i915_gem_object_flush_gtt_write_domain(obj);
844
845 /* If we're not in the cpu write domain, set ourself into the
846 * gtt write domain and manually flush cachelines (as required).
847 * This optimizes for the case when the gpu will use the data
848 * right away and we therefore have to clflush anyway.
849 */
850 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
851 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
852
853 /* Same trick applies to invalidate partially written cachelines read
854 * before writing.
855 */
856 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
857 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
858 obj->cache_level);
859
860 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
861 ret = i915_gem_object_set_to_cpu_domain(obj, true);
862 if (ret)
863 goto err_unpin;
864
865 *needs_clflush = 0;
866 }
867
868 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
869 obj->cache_dirty = true;
870
871 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
872 obj->mm.dirty = true;
873 /* return with the pages pinned */
874 return 0;
875
876 err_unpin:
877 i915_gem_object_unpin_pages(obj);
878 return ret;
879 }
880
881 static void
882 shmem_clflush_swizzled_range(char *addr, unsigned long length,
883 bool swizzled)
884 {
885 if (unlikely(swizzled)) {
886 unsigned long start = (unsigned long) addr;
887 unsigned long end = (unsigned long) addr + length;
888
889 /* For swizzling simply ensure that we always flush both
890 * channels. Lame, but simple and it works. Swizzled
891 * pwrite/pread is far from a hotpath - current userspace
892 * doesn't use it at all. */
893 start = round_down(start, 128);
894 end = round_up(end, 128);
895
896 drm_clflush_virt_range((void *)start, end - start);
897 } else {
898 drm_clflush_virt_range(addr, length);
899 }
900
901 }
902
903 /* Only difference to the fast-path function is that this can handle bit17
904 * and uses non-atomic copy and kmap functions. */
905 static int
906 shmem_pread_slow(struct page *page, int offset, int length,
907 char __user *user_data,
908 bool page_do_bit17_swizzling, bool needs_clflush)
909 {
910 char *vaddr;
911 int ret;
912
913 vaddr = kmap(page);
914 if (needs_clflush)
915 shmem_clflush_swizzled_range(vaddr + offset, length,
916 page_do_bit17_swizzling);
917
918 if (page_do_bit17_swizzling)
919 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
920 else
921 ret = __copy_to_user(user_data, vaddr + offset, length);
922 kunmap(page);
923
924 return ret ? - EFAULT : 0;
925 }
926
927 static int
928 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
929 bool page_do_bit17_swizzling, bool needs_clflush)
930 {
931 int ret;
932
933 ret = -ENODEV;
934 if (!page_do_bit17_swizzling) {
935 char *vaddr = kmap_atomic(page);
936
937 if (needs_clflush)
938 drm_clflush_virt_range(vaddr + offset, length);
939 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
940 kunmap_atomic(vaddr);
941 }
942 if (ret == 0)
943 return 0;
944
945 return shmem_pread_slow(page, offset, length, user_data,
946 page_do_bit17_swizzling, needs_clflush);
947 }
948
949 static int
950 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
951 struct drm_i915_gem_pread *args)
952 {
953 char __user *user_data;
954 u64 remain;
955 unsigned int obj_do_bit17_swizzling;
956 unsigned int needs_clflush;
957 unsigned int idx, offset;
958 int ret;
959
960 obj_do_bit17_swizzling = 0;
961 if (i915_gem_object_needs_bit17_swizzle(obj))
962 obj_do_bit17_swizzling = BIT(17);
963
964 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
965 if (ret)
966 return ret;
967
968 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
969 mutex_unlock(&obj->base.dev->struct_mutex);
970 if (ret)
971 return ret;
972
973 remain = args->size;
974 user_data = u64_to_user_ptr(args->data_ptr);
975 offset = offset_in_page(args->offset);
976 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
977 struct page *page = i915_gem_object_get_page(obj, idx);
978 int length;
979
980 length = remain;
981 if (offset + length > PAGE_SIZE)
982 length = PAGE_SIZE - offset;
983
984 ret = shmem_pread(page, offset, length, user_data,
985 page_to_phys(page) & obj_do_bit17_swizzling,
986 needs_clflush);
987 if (ret)
988 break;
989
990 remain -= length;
991 user_data += length;
992 offset = 0;
993 }
994
995 i915_gem_obj_finish_shmem_access(obj);
996 return ret;
997 }
998
999 static inline bool
1000 gtt_user_read(struct io_mapping *mapping,
1001 loff_t base, int offset,
1002 char __user *user_data, int length)
1003 {
1004 void *vaddr;
1005 unsigned long unwritten;
1006
1007 /* We can use the cpu mem copy function because this is X86. */
1008 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1009 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1010 io_mapping_unmap_atomic(vaddr);
1011 if (unwritten) {
1012 vaddr = (void __force *)
1013 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1014 unwritten = copy_to_user(user_data, vaddr + offset, length);
1015 io_mapping_unmap(vaddr);
1016 }
1017 return unwritten;
1018 }
1019
1020 static int
1021 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1022 const struct drm_i915_gem_pread *args)
1023 {
1024 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1025 struct i915_ggtt *ggtt = &i915->ggtt;
1026 struct drm_mm_node node;
1027 struct i915_vma *vma;
1028 void __user *user_data;
1029 u64 remain, offset;
1030 int ret;
1031
1032 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1033 if (ret)
1034 return ret;
1035
1036 intel_runtime_pm_get(i915);
1037 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1038 PIN_MAPPABLE | PIN_NONBLOCK);
1039 if (!IS_ERR(vma)) {
1040 node.start = i915_ggtt_offset(vma);
1041 node.allocated = false;
1042 ret = i915_vma_put_fence(vma);
1043 if (ret) {
1044 i915_vma_unpin(vma);
1045 vma = ERR_PTR(ret);
1046 }
1047 }
1048 if (IS_ERR(vma)) {
1049 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1050 if (ret)
1051 goto out_unlock;
1052 GEM_BUG_ON(!node.allocated);
1053 }
1054
1055 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1056 if (ret)
1057 goto out_unpin;
1058
1059 mutex_unlock(&i915->drm.struct_mutex);
1060
1061 user_data = u64_to_user_ptr(args->data_ptr);
1062 remain = args->size;
1063 offset = args->offset;
1064
1065 while (remain > 0) {
1066 /* Operation in this page
1067 *
1068 * page_base = page offset within aperture
1069 * page_offset = offset within page
1070 * page_length = bytes to copy for this page
1071 */
1072 u32 page_base = node.start;
1073 unsigned page_offset = offset_in_page(offset);
1074 unsigned page_length = PAGE_SIZE - page_offset;
1075 page_length = remain < page_length ? remain : page_length;
1076 if (node.allocated) {
1077 wmb();
1078 ggtt->base.insert_page(&ggtt->base,
1079 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1080 node.start, I915_CACHE_NONE, 0);
1081 wmb();
1082 } else {
1083 page_base += offset & PAGE_MASK;
1084 }
1085
1086 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1087 user_data, page_length)) {
1088 ret = -EFAULT;
1089 break;
1090 }
1091
1092 remain -= page_length;
1093 user_data += page_length;
1094 offset += page_length;
1095 }
1096
1097 mutex_lock(&i915->drm.struct_mutex);
1098 out_unpin:
1099 if (node.allocated) {
1100 wmb();
1101 ggtt->base.clear_range(&ggtt->base,
1102 node.start, node.size);
1103 remove_mappable_node(&node);
1104 } else {
1105 i915_vma_unpin(vma);
1106 }
1107 out_unlock:
1108 intel_runtime_pm_put(i915);
1109 mutex_unlock(&i915->drm.struct_mutex);
1110
1111 return ret;
1112 }
1113
1114 /**
1115 * Reads data from the object referenced by handle.
1116 * @dev: drm device pointer
1117 * @data: ioctl data blob
1118 * @file: drm file pointer
1119 *
1120 * On error, the contents of *data are undefined.
1121 */
1122 int
1123 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1124 struct drm_file *file)
1125 {
1126 struct drm_i915_gem_pread *args = data;
1127 struct drm_i915_gem_object *obj;
1128 int ret;
1129
1130 if (args->size == 0)
1131 return 0;
1132
1133 if (!access_ok(VERIFY_WRITE,
1134 u64_to_user_ptr(args->data_ptr),
1135 args->size))
1136 return -EFAULT;
1137
1138 obj = i915_gem_object_lookup(file, args->handle);
1139 if (!obj)
1140 return -ENOENT;
1141
1142 /* Bounds check source. */
1143 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1144 ret = -EINVAL;
1145 goto out;
1146 }
1147
1148 trace_i915_gem_object_pread(obj, args->offset, args->size);
1149
1150 ret = i915_gem_object_wait(obj,
1151 I915_WAIT_INTERRUPTIBLE,
1152 MAX_SCHEDULE_TIMEOUT,
1153 to_rps_client(file));
1154 if (ret)
1155 goto out;
1156
1157 ret = i915_gem_object_pin_pages(obj);
1158 if (ret)
1159 goto out;
1160
1161 ret = i915_gem_shmem_pread(obj, args);
1162 if (ret == -EFAULT || ret == -ENODEV)
1163 ret = i915_gem_gtt_pread(obj, args);
1164
1165 i915_gem_object_unpin_pages(obj);
1166 out:
1167 i915_gem_object_put(obj);
1168 return ret;
1169 }
1170
1171 /* This is the fast write path which cannot handle
1172 * page faults in the source data
1173 */
1174
1175 static inline bool
1176 ggtt_write(struct io_mapping *mapping,
1177 loff_t base, int offset,
1178 char __user *user_data, int length)
1179 {
1180 void *vaddr;
1181 unsigned long unwritten;
1182
1183 /* We can use the cpu mem copy function because this is X86. */
1184 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1185 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1186 user_data, length);
1187 io_mapping_unmap_atomic(vaddr);
1188 if (unwritten) {
1189 vaddr = (void __force *)
1190 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1191 unwritten = copy_from_user(vaddr + offset, user_data, length);
1192 io_mapping_unmap(vaddr);
1193 }
1194
1195 return unwritten;
1196 }
1197
1198 /**
1199 * This is the fast pwrite path, where we copy the data directly from the
1200 * user into the GTT, uncached.
1201 * @obj: i915 GEM object
1202 * @args: pwrite arguments structure
1203 */
1204 static int
1205 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1206 const struct drm_i915_gem_pwrite *args)
1207 {
1208 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1209 struct i915_ggtt *ggtt = &i915->ggtt;
1210 struct drm_mm_node node;
1211 struct i915_vma *vma;
1212 u64 remain, offset;
1213 void __user *user_data;
1214 int ret;
1215
1216 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1217 if (ret)
1218 return ret;
1219
1220 intel_runtime_pm_get(i915);
1221 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1222 PIN_MAPPABLE | PIN_NONBLOCK);
1223 if (!IS_ERR(vma)) {
1224 node.start = i915_ggtt_offset(vma);
1225 node.allocated = false;
1226 ret = i915_vma_put_fence(vma);
1227 if (ret) {
1228 i915_vma_unpin(vma);
1229 vma = ERR_PTR(ret);
1230 }
1231 }
1232 if (IS_ERR(vma)) {
1233 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1234 if (ret)
1235 goto out_unlock;
1236 GEM_BUG_ON(!node.allocated);
1237 }
1238
1239 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1240 if (ret)
1241 goto out_unpin;
1242
1243 mutex_unlock(&i915->drm.struct_mutex);
1244
1245 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1246
1247 user_data = u64_to_user_ptr(args->data_ptr);
1248 offset = args->offset;
1249 remain = args->size;
1250 while (remain) {
1251 /* Operation in this page
1252 *
1253 * page_base = page offset within aperture
1254 * page_offset = offset within page
1255 * page_length = bytes to copy for this page
1256 */
1257 u32 page_base = node.start;
1258 unsigned int page_offset = offset_in_page(offset);
1259 unsigned int page_length = PAGE_SIZE - page_offset;
1260 page_length = remain < page_length ? remain : page_length;
1261 if (node.allocated) {
1262 wmb(); /* flush the write before we modify the GGTT */
1263 ggtt->base.insert_page(&ggtt->base,
1264 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1265 node.start, I915_CACHE_NONE, 0);
1266 wmb(); /* flush modifications to the GGTT (insert_page) */
1267 } else {
1268 page_base += offset & PAGE_MASK;
1269 }
1270 /* If we get a fault while copying data, then (presumably) our
1271 * source page isn't available. Return the error and we'll
1272 * retry in the slow path.
1273 * If the object is non-shmem backed, we retry again with the
1274 * path that handles page fault.
1275 */
1276 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1277 user_data, page_length)) {
1278 ret = -EFAULT;
1279 break;
1280 }
1281
1282 remain -= page_length;
1283 user_data += page_length;
1284 offset += page_length;
1285 }
1286 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1287
1288 mutex_lock(&i915->drm.struct_mutex);
1289 out_unpin:
1290 if (node.allocated) {
1291 wmb();
1292 ggtt->base.clear_range(&ggtt->base,
1293 node.start, node.size);
1294 remove_mappable_node(&node);
1295 } else {
1296 i915_vma_unpin(vma);
1297 }
1298 out_unlock:
1299 intel_runtime_pm_put(i915);
1300 mutex_unlock(&i915->drm.struct_mutex);
1301 return ret;
1302 }
1303
1304 static int
1305 shmem_pwrite_slow(struct page *page, int offset, int length,
1306 char __user *user_data,
1307 bool page_do_bit17_swizzling,
1308 bool needs_clflush_before,
1309 bool needs_clflush_after)
1310 {
1311 char *vaddr;
1312 int ret;
1313
1314 vaddr = kmap(page);
1315 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1316 shmem_clflush_swizzled_range(vaddr + offset, length,
1317 page_do_bit17_swizzling);
1318 if (page_do_bit17_swizzling)
1319 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1320 length);
1321 else
1322 ret = __copy_from_user(vaddr + offset, user_data, length);
1323 if (needs_clflush_after)
1324 shmem_clflush_swizzled_range(vaddr + offset, length,
1325 page_do_bit17_swizzling);
1326 kunmap(page);
1327
1328 return ret ? -EFAULT : 0;
1329 }
1330
1331 /* Per-page copy function for the shmem pwrite fastpath.
1332 * Flushes invalid cachelines before writing to the target if
1333 * needs_clflush_before is set and flushes out any written cachelines after
1334 * writing if needs_clflush is set.
1335 */
1336 static int
1337 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1338 bool page_do_bit17_swizzling,
1339 bool needs_clflush_before,
1340 bool needs_clflush_after)
1341 {
1342 int ret;
1343
1344 ret = -ENODEV;
1345 if (!page_do_bit17_swizzling) {
1346 char *vaddr = kmap_atomic(page);
1347
1348 if (needs_clflush_before)
1349 drm_clflush_virt_range(vaddr + offset, len);
1350 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1351 if (needs_clflush_after)
1352 drm_clflush_virt_range(vaddr + offset, len);
1353
1354 kunmap_atomic(vaddr);
1355 }
1356 if (ret == 0)
1357 return ret;
1358
1359 return shmem_pwrite_slow(page, offset, len, user_data,
1360 page_do_bit17_swizzling,
1361 needs_clflush_before,
1362 needs_clflush_after);
1363 }
1364
1365 static int
1366 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1367 const struct drm_i915_gem_pwrite *args)
1368 {
1369 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1370 void __user *user_data;
1371 u64 remain;
1372 unsigned int obj_do_bit17_swizzling;
1373 unsigned int partial_cacheline_write;
1374 unsigned int needs_clflush;
1375 unsigned int offset, idx;
1376 int ret;
1377
1378 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1379 if (ret)
1380 return ret;
1381
1382 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1383 mutex_unlock(&i915->drm.struct_mutex);
1384 if (ret)
1385 return ret;
1386
1387 obj_do_bit17_swizzling = 0;
1388 if (i915_gem_object_needs_bit17_swizzle(obj))
1389 obj_do_bit17_swizzling = BIT(17);
1390
1391 /* If we don't overwrite a cacheline completely we need to be
1392 * careful to have up-to-date data by first clflushing. Don't
1393 * overcomplicate things and flush the entire patch.
1394 */
1395 partial_cacheline_write = 0;
1396 if (needs_clflush & CLFLUSH_BEFORE)
1397 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1398
1399 user_data = u64_to_user_ptr(args->data_ptr);
1400 remain = args->size;
1401 offset = offset_in_page(args->offset);
1402 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1403 struct page *page = i915_gem_object_get_page(obj, idx);
1404 int length;
1405
1406 length = remain;
1407 if (offset + length > PAGE_SIZE)
1408 length = PAGE_SIZE - offset;
1409
1410 ret = shmem_pwrite(page, offset, length, user_data,
1411 page_to_phys(page) & obj_do_bit17_swizzling,
1412 (offset | length) & partial_cacheline_write,
1413 needs_clflush & CLFLUSH_AFTER);
1414 if (ret)
1415 break;
1416
1417 remain -= length;
1418 user_data += length;
1419 offset = 0;
1420 }
1421
1422 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1423 i915_gem_obj_finish_shmem_access(obj);
1424 return ret;
1425 }
1426
1427 /**
1428 * Writes data to the object referenced by handle.
1429 * @dev: drm device
1430 * @data: ioctl data blob
1431 * @file: drm file
1432 *
1433 * On error, the contents of the buffer that were to be modified are undefined.
1434 */
1435 int
1436 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1437 struct drm_file *file)
1438 {
1439 struct drm_i915_gem_pwrite *args = data;
1440 struct drm_i915_gem_object *obj;
1441 int ret;
1442
1443 if (args->size == 0)
1444 return 0;
1445
1446 if (!access_ok(VERIFY_READ,
1447 u64_to_user_ptr(args->data_ptr),
1448 args->size))
1449 return -EFAULT;
1450
1451 obj = i915_gem_object_lookup(file, args->handle);
1452 if (!obj)
1453 return -ENOENT;
1454
1455 /* Bounds check destination. */
1456 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1457 ret = -EINVAL;
1458 goto err;
1459 }
1460
1461 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1462
1463 ret = i915_gem_object_wait(obj,
1464 I915_WAIT_INTERRUPTIBLE |
1465 I915_WAIT_ALL,
1466 MAX_SCHEDULE_TIMEOUT,
1467 to_rps_client(file));
1468 if (ret)
1469 goto err;
1470
1471 ret = i915_gem_object_pin_pages(obj);
1472 if (ret)
1473 goto err;
1474
1475 ret = -EFAULT;
1476 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1477 * it would end up going through the fenced access, and we'll get
1478 * different detiling behavior between reading and writing.
1479 * pread/pwrite currently are reading and writing from the CPU
1480 * perspective, requiring manual detiling by the client.
1481 */
1482 if (!i915_gem_object_has_struct_page(obj) ||
1483 cpu_write_needs_clflush(obj))
1484 /* Note that the gtt paths might fail with non-page-backed user
1485 * pointers (e.g. gtt mappings when moving data between
1486 * textures). Fallback to the shmem path in that case.
1487 */
1488 ret = i915_gem_gtt_pwrite_fast(obj, args);
1489
1490 if (ret == -EFAULT || ret == -ENOSPC) {
1491 if (obj->phys_handle)
1492 ret = i915_gem_phys_pwrite(obj, args, file);
1493 else
1494 ret = i915_gem_shmem_pwrite(obj, args);
1495 }
1496
1497 i915_gem_object_unpin_pages(obj);
1498 err:
1499 i915_gem_object_put(obj);
1500 return ret;
1501 }
1502
1503 static inline enum fb_op_origin
1504 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1505 {
1506 return (domain == I915_GEM_DOMAIN_GTT ?
1507 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1508 }
1509
1510 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1511 {
1512 struct drm_i915_private *i915;
1513 struct list_head *list;
1514 struct i915_vma *vma;
1515
1516 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1517 if (!i915_vma_is_ggtt(vma))
1518 continue;
1519
1520 if (i915_vma_is_active(vma))
1521 continue;
1522
1523 if (!drm_mm_node_allocated(&vma->node))
1524 continue;
1525
1526 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1527 }
1528
1529 i915 = to_i915(obj->base.dev);
1530 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1531 list_move_tail(&obj->global_link, list);
1532 }
1533
1534 /**
1535 * Called when user space prepares to use an object with the CPU, either
1536 * through the mmap ioctl's mapping or a GTT mapping.
1537 * @dev: drm device
1538 * @data: ioctl data blob
1539 * @file: drm file
1540 */
1541 int
1542 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1543 struct drm_file *file)
1544 {
1545 struct drm_i915_gem_set_domain *args = data;
1546 struct drm_i915_gem_object *obj;
1547 uint32_t read_domains = args->read_domains;
1548 uint32_t write_domain = args->write_domain;
1549 int err;
1550
1551 /* Only handle setting domains to types used by the CPU. */
1552 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1553 return -EINVAL;
1554
1555 /* Having something in the write domain implies it's in the read
1556 * domain, and only that read domain. Enforce that in the request.
1557 */
1558 if (write_domain != 0 && read_domains != write_domain)
1559 return -EINVAL;
1560
1561 obj = i915_gem_object_lookup(file, args->handle);
1562 if (!obj)
1563 return -ENOENT;
1564
1565 /* Try to flush the object off the GPU without holding the lock.
1566 * We will repeat the flush holding the lock in the normal manner
1567 * to catch cases where we are gazumped.
1568 */
1569 err = i915_gem_object_wait(obj,
1570 I915_WAIT_INTERRUPTIBLE |
1571 (write_domain ? I915_WAIT_ALL : 0),
1572 MAX_SCHEDULE_TIMEOUT,
1573 to_rps_client(file));
1574 if (err)
1575 goto out;
1576
1577 /* Flush and acquire obj->pages so that we are coherent through
1578 * direct access in memory with previous cached writes through
1579 * shmemfs and that our cache domain tracking remains valid.
1580 * For example, if the obj->filp was moved to swap without us
1581 * being notified and releasing the pages, we would mistakenly
1582 * continue to assume that the obj remained out of the CPU cached
1583 * domain.
1584 */
1585 err = i915_gem_object_pin_pages(obj);
1586 if (err)
1587 goto out;
1588
1589 err = i915_mutex_lock_interruptible(dev);
1590 if (err)
1591 goto out_unpin;
1592
1593 if (read_domains & I915_GEM_DOMAIN_GTT)
1594 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1595 else
1596 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1597
1598 /* And bump the LRU for this access */
1599 i915_gem_object_bump_inactive_ggtt(obj);
1600
1601 mutex_unlock(&dev->struct_mutex);
1602
1603 if (write_domain != 0)
1604 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1605
1606 out_unpin:
1607 i915_gem_object_unpin_pages(obj);
1608 out:
1609 i915_gem_object_put(obj);
1610 return err;
1611 }
1612
1613 /**
1614 * Called when user space has done writes to this buffer
1615 * @dev: drm device
1616 * @data: ioctl data blob
1617 * @file: drm file
1618 */
1619 int
1620 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1621 struct drm_file *file)
1622 {
1623 struct drm_i915_gem_sw_finish *args = data;
1624 struct drm_i915_gem_object *obj;
1625 int err = 0;
1626
1627 obj = i915_gem_object_lookup(file, args->handle);
1628 if (!obj)
1629 return -ENOENT;
1630
1631 /* Pinned buffers may be scanout, so flush the cache */
1632 if (READ_ONCE(obj->pin_display)) {
1633 err = i915_mutex_lock_interruptible(dev);
1634 if (!err) {
1635 i915_gem_object_flush_cpu_write_domain(obj);
1636 mutex_unlock(&dev->struct_mutex);
1637 }
1638 }
1639
1640 i915_gem_object_put(obj);
1641 return err;
1642 }
1643
1644 /**
1645 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1646 * it is mapped to.
1647 * @dev: drm device
1648 * @data: ioctl data blob
1649 * @file: drm file
1650 *
1651 * While the mapping holds a reference on the contents of the object, it doesn't
1652 * imply a ref on the object itself.
1653 *
1654 * IMPORTANT:
1655 *
1656 * DRM driver writers who look a this function as an example for how to do GEM
1657 * mmap support, please don't implement mmap support like here. The modern way
1658 * to implement DRM mmap support is with an mmap offset ioctl (like
1659 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1660 * That way debug tooling like valgrind will understand what's going on, hiding
1661 * the mmap call in a driver private ioctl will break that. The i915 driver only
1662 * does cpu mmaps this way because we didn't know better.
1663 */
1664 int
1665 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1666 struct drm_file *file)
1667 {
1668 struct drm_i915_gem_mmap *args = data;
1669 struct drm_i915_gem_object *obj;
1670 unsigned long addr;
1671
1672 if (args->flags & ~(I915_MMAP_WC))
1673 return -EINVAL;
1674
1675 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1676 return -ENODEV;
1677
1678 obj = i915_gem_object_lookup(file, args->handle);
1679 if (!obj)
1680 return -ENOENT;
1681
1682 /* prime objects have no backing filp to GEM mmap
1683 * pages from.
1684 */
1685 if (!obj->base.filp) {
1686 i915_gem_object_put(obj);
1687 return -EINVAL;
1688 }
1689
1690 addr = vm_mmap(obj->base.filp, 0, args->size,
1691 PROT_READ | PROT_WRITE, MAP_SHARED,
1692 args->offset);
1693 if (args->flags & I915_MMAP_WC) {
1694 struct mm_struct *mm = current->mm;
1695 struct vm_area_struct *vma;
1696
1697 if (down_write_killable(&mm->mmap_sem)) {
1698 i915_gem_object_put(obj);
1699 return -EINTR;
1700 }
1701 vma = find_vma(mm, addr);
1702 if (vma)
1703 vma->vm_page_prot =
1704 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1705 else
1706 addr = -ENOMEM;
1707 up_write(&mm->mmap_sem);
1708
1709 /* This may race, but that's ok, it only gets set */
1710 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1711 }
1712 i915_gem_object_put(obj);
1713 if (IS_ERR((void *)addr))
1714 return addr;
1715
1716 args->addr_ptr = (uint64_t) addr;
1717
1718 return 0;
1719 }
1720
1721 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1722 {
1723 u64 size;
1724
1725 size = i915_gem_object_get_stride(obj);
1726 size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1727
1728 return size >> PAGE_SHIFT;
1729 }
1730
1731 /**
1732 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1733 *
1734 * A history of the GTT mmap interface:
1735 *
1736 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1737 * aligned and suitable for fencing, and still fit into the available
1738 * mappable space left by the pinned display objects. A classic problem
1739 * we called the page-fault-of-doom where we would ping-pong between
1740 * two objects that could not fit inside the GTT and so the memcpy
1741 * would page one object in at the expense of the other between every
1742 * single byte.
1743 *
1744 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1745 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1746 * object is too large for the available space (or simply too large
1747 * for the mappable aperture!), a view is created instead and faulted
1748 * into userspace. (This view is aligned and sized appropriately for
1749 * fenced access.)
1750 *
1751 * Restrictions:
1752 *
1753 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1754 * hangs on some architectures, corruption on others. An attempt to service
1755 * a GTT page fault from a snoopable object will generate a SIGBUS.
1756 *
1757 * * the object must be able to fit into RAM (physical memory, though no
1758 * limited to the mappable aperture).
1759 *
1760 *
1761 * Caveats:
1762 *
1763 * * a new GTT page fault will synchronize rendering from the GPU and flush
1764 * all data to system memory. Subsequent access will not be synchronized.
1765 *
1766 * * all mappings are revoked on runtime device suspend.
1767 *
1768 * * there are only 8, 16 or 32 fence registers to share between all users
1769 * (older machines require fence register for display and blitter access
1770 * as well). Contention of the fence registers will cause the previous users
1771 * to be unmapped and any new access will generate new page faults.
1772 *
1773 * * running out of memory while servicing a fault may generate a SIGBUS,
1774 * rather than the expected SIGSEGV.
1775 */
1776 int i915_gem_mmap_gtt_version(void)
1777 {
1778 return 1;
1779 }
1780
1781 /**
1782 * i915_gem_fault - fault a page into the GTT
1783 * @area: CPU VMA in question
1784 * @vmf: fault info
1785 *
1786 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1787 * from userspace. The fault handler takes care of binding the object to
1788 * the GTT (if needed), allocating and programming a fence register (again,
1789 * only if needed based on whether the old reg is still valid or the object
1790 * is tiled) and inserting a new PTE into the faulting process.
1791 *
1792 * Note that the faulting process may involve evicting existing objects
1793 * from the GTT and/or fence registers to make room. So performance may
1794 * suffer if the GTT working set is large or there are few fence registers
1795 * left.
1796 *
1797 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1798 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1799 */
1800 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1801 {
1802 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1803 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1804 struct drm_device *dev = obj->base.dev;
1805 struct drm_i915_private *dev_priv = to_i915(dev);
1806 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1807 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1808 struct i915_vma *vma;
1809 pgoff_t page_offset;
1810 unsigned int flags;
1811 int ret;
1812
1813 /* We don't use vmf->pgoff since that has the fake offset */
1814 page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1815 PAGE_SHIFT;
1816
1817 trace_i915_gem_object_fault(obj, page_offset, true, write);
1818
1819 /* Try to flush the object off the GPU first without holding the lock.
1820 * Upon acquiring the lock, we will perform our sanity checks and then
1821 * repeat the flush holding the lock in the normal manner to catch cases
1822 * where we are gazumped.
1823 */
1824 ret = i915_gem_object_wait(obj,
1825 I915_WAIT_INTERRUPTIBLE,
1826 MAX_SCHEDULE_TIMEOUT,
1827 NULL);
1828 if (ret)
1829 goto err;
1830
1831 ret = i915_gem_object_pin_pages(obj);
1832 if (ret)
1833 goto err;
1834
1835 intel_runtime_pm_get(dev_priv);
1836
1837 ret = i915_mutex_lock_interruptible(dev);
1838 if (ret)
1839 goto err_rpm;
1840
1841 /* Access to snoopable pages through the GTT is incoherent. */
1842 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1843 ret = -EFAULT;
1844 goto err_unlock;
1845 }
1846
1847 /* If the object is smaller than a couple of partial vma, it is
1848 * not worth only creating a single partial vma - we may as well
1849 * clear enough space for the full object.
1850 */
1851 flags = PIN_MAPPABLE;
1852 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1853 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1854
1855 /* Now pin it into the GTT as needed */
1856 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1857 if (IS_ERR(vma)) {
1858 struct i915_ggtt_view view;
1859 unsigned int chunk_size;
1860
1861 /* Use a partial view if it is bigger than available space */
1862 chunk_size = MIN_CHUNK_PAGES;
1863 if (i915_gem_object_is_tiled(obj))
1864 chunk_size = roundup(chunk_size, tile_row_pages(obj));
1865
1866 memset(&view, 0, sizeof(view));
1867 view.type = I915_GGTT_VIEW_PARTIAL;
1868 view.params.partial.offset = rounddown(page_offset, chunk_size);
1869 view.params.partial.size =
1870 min_t(unsigned int, chunk_size,
1871 vma_pages(area) - view.params.partial.offset);
1872
1873 /* If the partial covers the entire object, just create a
1874 * normal VMA.
1875 */
1876 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1877 view.type = I915_GGTT_VIEW_NORMAL;
1878
1879 /* Userspace is now writing through an untracked VMA, abandon
1880 * all hope that the hardware is able to track future writes.
1881 */
1882 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1883
1884 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1885 }
1886 if (IS_ERR(vma)) {
1887 ret = PTR_ERR(vma);
1888 goto err_unlock;
1889 }
1890
1891 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1892 if (ret)
1893 goto err_unpin;
1894
1895 ret = i915_vma_get_fence(vma);
1896 if (ret)
1897 goto err_unpin;
1898
1899 /* Mark as being mmapped into userspace for later revocation */
1900 assert_rpm_wakelock_held(dev_priv);
1901 if (list_empty(&obj->userfault_link))
1902 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1903
1904 /* Finally, remap it using the new GTT offset */
1905 ret = remap_io_mapping(area,
1906 area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1907 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1908 min_t(u64, vma->size, area->vm_end - area->vm_start),
1909 &ggtt->mappable);
1910
1911 err_unpin:
1912 __i915_vma_unpin(vma);
1913 err_unlock:
1914 mutex_unlock(&dev->struct_mutex);
1915 err_rpm:
1916 intel_runtime_pm_put(dev_priv);
1917 i915_gem_object_unpin_pages(obj);
1918 err:
1919 switch (ret) {
1920 case -EIO:
1921 /*
1922 * We eat errors when the gpu is terminally wedged to avoid
1923 * userspace unduly crashing (gl has no provisions for mmaps to
1924 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1925 * and so needs to be reported.
1926 */
1927 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1928 ret = VM_FAULT_SIGBUS;
1929 break;
1930 }
1931 case -EAGAIN:
1932 /*
1933 * EAGAIN means the gpu is hung and we'll wait for the error
1934 * handler to reset everything when re-faulting in
1935 * i915_mutex_lock_interruptible.
1936 */
1937 case 0:
1938 case -ERESTARTSYS:
1939 case -EINTR:
1940 case -EBUSY:
1941 /*
1942 * EBUSY is ok: this just means that another thread
1943 * already did the job.
1944 */
1945 ret = VM_FAULT_NOPAGE;
1946 break;
1947 case -ENOMEM:
1948 ret = VM_FAULT_OOM;
1949 break;
1950 case -ENOSPC:
1951 case -EFAULT:
1952 ret = VM_FAULT_SIGBUS;
1953 break;
1954 default:
1955 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1956 ret = VM_FAULT_SIGBUS;
1957 break;
1958 }
1959 return ret;
1960 }
1961
1962 /**
1963 * i915_gem_release_mmap - remove physical page mappings
1964 * @obj: obj in question
1965 *
1966 * Preserve the reservation of the mmapping with the DRM core code, but
1967 * relinquish ownership of the pages back to the system.
1968 *
1969 * It is vital that we remove the page mapping if we have mapped a tiled
1970 * object through the GTT and then lose the fence register due to
1971 * resource pressure. Similarly if the object has been moved out of the
1972 * aperture, than pages mapped into userspace must be revoked. Removing the
1973 * mapping will then trigger a page fault on the next user access, allowing
1974 * fixup by i915_gem_fault().
1975 */
1976 void
1977 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1978 {
1979 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1980
1981 /* Serialisation between user GTT access and our code depends upon
1982 * revoking the CPU's PTE whilst the mutex is held. The next user
1983 * pagefault then has to wait until we release the mutex.
1984 *
1985 * Note that RPM complicates somewhat by adding an additional
1986 * requirement that operations to the GGTT be made holding the RPM
1987 * wakeref.
1988 */
1989 lockdep_assert_held(&i915->drm.struct_mutex);
1990 intel_runtime_pm_get(i915);
1991
1992 if (list_empty(&obj->userfault_link))
1993 goto out;
1994
1995 list_del_init(&obj->userfault_link);
1996 drm_vma_node_unmap(&obj->base.vma_node,
1997 obj->base.dev->anon_inode->i_mapping);
1998
1999 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2000 * memory transactions from userspace before we return. The TLB
2001 * flushing implied above by changing the PTE above *should* be
2002 * sufficient, an extra barrier here just provides us with a bit
2003 * of paranoid documentation about our requirement to serialise
2004 * memory writes before touching registers / GSM.
2005 */
2006 wmb();
2007
2008 out:
2009 intel_runtime_pm_put(i915);
2010 }
2011
2012 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2013 {
2014 struct drm_i915_gem_object *obj, *on;
2015 int i;
2016
2017 /*
2018 * Only called during RPM suspend. All users of the userfault_list
2019 * must be holding an RPM wakeref to ensure that this can not
2020 * run concurrently with themselves (and use the struct_mutex for
2021 * protection between themselves).
2022 */
2023
2024 list_for_each_entry_safe(obj, on,
2025 &dev_priv->mm.userfault_list, userfault_link) {
2026 list_del_init(&obj->userfault_link);
2027 drm_vma_node_unmap(&obj->base.vma_node,
2028 obj->base.dev->anon_inode->i_mapping);
2029 }
2030
2031 /* The fence will be lost when the device powers down. If any were
2032 * in use by hardware (i.e. they are pinned), we should not be powering
2033 * down! All other fences will be reacquired by the user upon waking.
2034 */
2035 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2036 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2037
2038 if (WARN_ON(reg->pin_count))
2039 continue;
2040
2041 if (!reg->vma)
2042 continue;
2043
2044 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2045 reg->dirty = true;
2046 }
2047 }
2048
2049 /**
2050 * i915_gem_get_ggtt_size - return required global GTT size for an object
2051 * @dev_priv: i915 device
2052 * @size: object size
2053 * @tiling_mode: tiling mode
2054 *
2055 * Return the required global GTT size for an object, taking into account
2056 * potential fence register mapping.
2057 */
2058 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2059 u64 size, int tiling_mode)
2060 {
2061 u64 ggtt_size;
2062
2063 GEM_BUG_ON(size == 0);
2064
2065 if (INTEL_GEN(dev_priv) >= 4 ||
2066 tiling_mode == I915_TILING_NONE)
2067 return size;
2068
2069 /* Previous chips need a power-of-two fence region when tiling */
2070 if (IS_GEN3(dev_priv))
2071 ggtt_size = 1024*1024;
2072 else
2073 ggtt_size = 512*1024;
2074
2075 while (ggtt_size < size)
2076 ggtt_size <<= 1;
2077
2078 return ggtt_size;
2079 }
2080
2081 /**
2082 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2083 * @dev_priv: i915 device
2084 * @size: object size
2085 * @tiling_mode: tiling mode
2086 * @fenced: is fenced alignment required or not
2087 *
2088 * Return the required global GTT alignment for an object, taking into account
2089 * potential fence register mapping.
2090 */
2091 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2092 int tiling_mode, bool fenced)
2093 {
2094 GEM_BUG_ON(size == 0);
2095
2096 /*
2097 * Minimum alignment is 4k (GTT page size), but might be greater
2098 * if a fence register is needed for the object.
2099 */
2100 if (INTEL_GEN(dev_priv) >= 4 ||
2101 (!fenced && (IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))) ||
2102 tiling_mode == I915_TILING_NONE)
2103 return 4096;
2104
2105 /*
2106 * Previous chips need to be aligned to the size of the smallest
2107 * fence register that can contain the object.
2108 */
2109 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2110 }
2111
2112 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2113 {
2114 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2115 int err;
2116
2117 err = drm_gem_create_mmap_offset(&obj->base);
2118 if (!err)
2119 return 0;
2120
2121 /* We can idle the GPU locklessly to flush stale objects, but in order
2122 * to claim that space for ourselves, we need to take the big
2123 * struct_mutex to free the requests+objects and allocate our slot.
2124 */
2125 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2126 if (err)
2127 return err;
2128
2129 err = i915_mutex_lock_interruptible(&dev_priv->drm);
2130 if (!err) {
2131 i915_gem_retire_requests(dev_priv);
2132 err = drm_gem_create_mmap_offset(&obj->base);
2133 mutex_unlock(&dev_priv->drm.struct_mutex);
2134 }
2135
2136 return err;
2137 }
2138
2139 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2140 {
2141 drm_gem_free_mmap_offset(&obj->base);
2142 }
2143
2144 int
2145 i915_gem_mmap_gtt(struct drm_file *file,
2146 struct drm_device *dev,
2147 uint32_t handle,
2148 uint64_t *offset)
2149 {
2150 struct drm_i915_gem_object *obj;
2151 int ret;
2152
2153 obj = i915_gem_object_lookup(file, handle);
2154 if (!obj)
2155 return -ENOENT;
2156
2157 ret = i915_gem_object_create_mmap_offset(obj);
2158 if (ret == 0)
2159 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2160
2161 i915_gem_object_put(obj);
2162 return ret;
2163 }
2164
2165 /**
2166 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2167 * @dev: DRM device
2168 * @data: GTT mapping ioctl data
2169 * @file: GEM object info
2170 *
2171 * Simply returns the fake offset to userspace so it can mmap it.
2172 * The mmap call will end up in drm_gem_mmap(), which will set things
2173 * up so we can get faults in the handler above.
2174 *
2175 * The fault handler will take care of binding the object into the GTT
2176 * (since it may have been evicted to make room for something), allocating
2177 * a fence register, and mapping the appropriate aperture address into
2178 * userspace.
2179 */
2180 int
2181 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2182 struct drm_file *file)
2183 {
2184 struct drm_i915_gem_mmap_gtt *args = data;
2185
2186 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2187 }
2188
2189 /* Immediately discard the backing storage */
2190 static void
2191 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2192 {
2193 i915_gem_object_free_mmap_offset(obj);
2194
2195 if (obj->base.filp == NULL)
2196 return;
2197
2198 /* Our goal here is to return as much of the memory as
2199 * is possible back to the system as we are called from OOM.
2200 * To do this we must instruct the shmfs to drop all of its
2201 * backing pages, *now*.
2202 */
2203 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2204 obj->mm.madv = __I915_MADV_PURGED;
2205 }
2206
2207 /* Try to discard unwanted pages */
2208 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2209 {
2210 struct address_space *mapping;
2211
2212 lockdep_assert_held(&obj->mm.lock);
2213 GEM_BUG_ON(obj->mm.pages);
2214
2215 switch (obj->mm.madv) {
2216 case I915_MADV_DONTNEED:
2217 i915_gem_object_truncate(obj);
2218 case __I915_MADV_PURGED:
2219 return;
2220 }
2221
2222 if (obj->base.filp == NULL)
2223 return;
2224
2225 mapping = obj->base.filp->f_mapping,
2226 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2227 }
2228
2229 static void
2230 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2231 struct sg_table *pages)
2232 {
2233 struct sgt_iter sgt_iter;
2234 struct page *page;
2235
2236 __i915_gem_object_release_shmem(obj, pages);
2237
2238 i915_gem_gtt_finish_pages(obj, pages);
2239
2240 if (i915_gem_object_needs_bit17_swizzle(obj))
2241 i915_gem_object_save_bit_17_swizzle(obj, pages);
2242
2243 for_each_sgt_page(page, sgt_iter, pages) {
2244 if (obj->mm.dirty)
2245 set_page_dirty(page);
2246
2247 if (obj->mm.madv == I915_MADV_WILLNEED)
2248 mark_page_accessed(page);
2249
2250 put_page(page);
2251 }
2252 obj->mm.dirty = false;
2253
2254 sg_free_table(pages);
2255 kfree(pages);
2256 }
2257
2258 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2259 {
2260 struct radix_tree_iter iter;
2261 void **slot;
2262
2263 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2264 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2265 }
2266
2267 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2268 enum i915_mm_subclass subclass)
2269 {
2270 struct sg_table *pages;
2271
2272 if (i915_gem_object_has_pinned_pages(obj))
2273 return;
2274
2275 GEM_BUG_ON(obj->bind_count);
2276 if (!READ_ONCE(obj->mm.pages))
2277 return;
2278
2279 /* May be called by shrinker from within get_pages() (on another bo) */
2280 mutex_lock_nested(&obj->mm.lock, subclass);
2281 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2282 goto unlock;
2283
2284 /* ->put_pages might need to allocate memory for the bit17 swizzle
2285 * array, hence protect them from being reaped by removing them from gtt
2286 * lists early. */
2287 pages = fetch_and_zero(&obj->mm.pages);
2288 GEM_BUG_ON(!pages);
2289
2290 if (obj->mm.mapping) {
2291 void *ptr;
2292
2293 ptr = ptr_mask_bits(obj->mm.mapping);
2294 if (is_vmalloc_addr(ptr))
2295 vunmap(ptr);
2296 else
2297 kunmap(kmap_to_page(ptr));
2298
2299 obj->mm.mapping = NULL;
2300 }
2301
2302 __i915_gem_object_reset_page_iter(obj);
2303
2304 obj->ops->put_pages(obj, pages);
2305 unlock:
2306 mutex_unlock(&obj->mm.lock);
2307 }
2308
2309 static unsigned int swiotlb_max_size(void)
2310 {
2311 #if IS_ENABLED(CONFIG_SWIOTLB)
2312 return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2313 #else
2314 return 0;
2315 #endif
2316 }
2317
2318 static void i915_sg_trim(struct sg_table *orig_st)
2319 {
2320 struct sg_table new_st;
2321 struct scatterlist *sg, *new_sg;
2322 unsigned int i;
2323
2324 if (orig_st->nents == orig_st->orig_nents)
2325 return;
2326
2327 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL))
2328 return;
2329
2330 new_sg = new_st.sgl;
2331 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2332 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2333 /* called before being DMA mapped, no need to copy sg->dma_* */
2334 new_sg = sg_next(new_sg);
2335 }
2336
2337 sg_free_table(orig_st);
2338
2339 *orig_st = new_st;
2340 }
2341
2342 static struct sg_table *
2343 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2344 {
2345 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2346 int page_count, i;
2347 struct address_space *mapping;
2348 struct sg_table *st;
2349 struct scatterlist *sg;
2350 struct sgt_iter sgt_iter;
2351 struct page *page;
2352 unsigned long last_pfn = 0; /* suppress gcc warning */
2353 unsigned int max_segment;
2354 int ret;
2355 gfp_t gfp;
2356
2357 /* Assert that the object is not currently in any GPU domain. As it
2358 * wasn't in the GTT, there shouldn't be any way it could have been in
2359 * a GPU cache
2360 */
2361 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2362 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2363
2364 max_segment = swiotlb_max_size();
2365 if (!max_segment)
2366 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2367
2368 st = kmalloc(sizeof(*st), GFP_KERNEL);
2369 if (st == NULL)
2370 return ERR_PTR(-ENOMEM);
2371
2372 page_count = obj->base.size / PAGE_SIZE;
2373 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2374 kfree(st);
2375 return ERR_PTR(-ENOMEM);
2376 }
2377
2378 /* Get the list of pages out of our struct file. They'll be pinned
2379 * at this point until we release them.
2380 *
2381 * Fail silently without starting the shrinker
2382 */
2383 mapping = obj->base.filp->f_mapping;
2384 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2385 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2386 sg = st->sgl;
2387 st->nents = 0;
2388 for (i = 0; i < page_count; i++) {
2389 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2390 if (IS_ERR(page)) {
2391 i915_gem_shrink(dev_priv,
2392 page_count,
2393 I915_SHRINK_BOUND |
2394 I915_SHRINK_UNBOUND |
2395 I915_SHRINK_PURGEABLE);
2396 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2397 }
2398 if (IS_ERR(page)) {
2399 /* We've tried hard to allocate the memory by reaping
2400 * our own buffer, now let the real VM do its job and
2401 * go down in flames if truly OOM.
2402 */
2403 page = shmem_read_mapping_page(mapping, i);
2404 if (IS_ERR(page)) {
2405 ret = PTR_ERR(page);
2406 goto err_sg;
2407 }
2408 }
2409 if (!i ||
2410 sg->length >= max_segment ||
2411 page_to_pfn(page) != last_pfn + 1) {
2412 if (i)
2413 sg = sg_next(sg);
2414 st->nents++;
2415 sg_set_page(sg, page, PAGE_SIZE, 0);
2416 } else {
2417 sg->length += PAGE_SIZE;
2418 }
2419 last_pfn = page_to_pfn(page);
2420
2421 /* Check that the i965g/gm workaround works. */
2422 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2423 }
2424 if (sg) /* loop terminated early; short sg table */
2425 sg_mark_end(sg);
2426
2427 /* Trim unused sg entries to avoid wasting memory. */
2428 i915_sg_trim(st);
2429
2430 ret = i915_gem_gtt_prepare_pages(obj, st);
2431 if (ret)
2432 goto err_pages;
2433
2434 if (i915_gem_object_needs_bit17_swizzle(obj))
2435 i915_gem_object_do_bit_17_swizzle(obj, st);
2436
2437 return st;
2438
2439 err_sg:
2440 sg_mark_end(sg);
2441 err_pages:
2442 for_each_sgt_page(page, sgt_iter, st)
2443 put_page(page);
2444 sg_free_table(st);
2445 kfree(st);
2446
2447 /* shmemfs first checks if there is enough memory to allocate the page
2448 * and reports ENOSPC should there be insufficient, along with the usual
2449 * ENOMEM for a genuine allocation failure.
2450 *
2451 * We use ENOSPC in our driver to mean that we have run out of aperture
2452 * space and so want to translate the error from shmemfs back to our
2453 * usual understanding of ENOMEM.
2454 */
2455 if (ret == -ENOSPC)
2456 ret = -ENOMEM;
2457
2458 return ERR_PTR(ret);
2459 }
2460
2461 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2462 struct sg_table *pages)
2463 {
2464 lockdep_assert_held(&obj->mm.lock);
2465
2466 obj->mm.get_page.sg_pos = pages->sgl;
2467 obj->mm.get_page.sg_idx = 0;
2468
2469 obj->mm.pages = pages;
2470
2471 if (i915_gem_object_is_tiled(obj) &&
2472 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2473 GEM_BUG_ON(obj->mm.quirked);
2474 __i915_gem_object_pin_pages(obj);
2475 obj->mm.quirked = true;
2476 }
2477 }
2478
2479 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2480 {
2481 struct sg_table *pages;
2482
2483 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2484
2485 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2486 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2487 return -EFAULT;
2488 }
2489
2490 pages = obj->ops->get_pages(obj);
2491 if (unlikely(IS_ERR(pages)))
2492 return PTR_ERR(pages);
2493
2494 __i915_gem_object_set_pages(obj, pages);
2495 return 0;
2496 }
2497
2498 /* Ensure that the associated pages are gathered from the backing storage
2499 * and pinned into our object. i915_gem_object_pin_pages() may be called
2500 * multiple times before they are released by a single call to
2501 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2502 * either as a result of memory pressure (reaping pages under the shrinker)
2503 * or as the object is itself released.
2504 */
2505 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2506 {
2507 int err;
2508
2509 err = mutex_lock_interruptible(&obj->mm.lock);
2510 if (err)
2511 return err;
2512
2513 if (unlikely(!obj->mm.pages)) {
2514 err = ____i915_gem_object_get_pages(obj);
2515 if (err)
2516 goto unlock;
2517
2518 smp_mb__before_atomic();
2519 }
2520 atomic_inc(&obj->mm.pages_pin_count);
2521
2522 unlock:
2523 mutex_unlock(&obj->mm.lock);
2524 return err;
2525 }
2526
2527 /* The 'mapping' part of i915_gem_object_pin_map() below */
2528 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2529 enum i915_map_type type)
2530 {
2531 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2532 struct sg_table *sgt = obj->mm.pages;
2533 struct sgt_iter sgt_iter;
2534 struct page *page;
2535 struct page *stack_pages[32];
2536 struct page **pages = stack_pages;
2537 unsigned long i = 0;
2538 pgprot_t pgprot;
2539 void *addr;
2540
2541 /* A single page can always be kmapped */
2542 if (n_pages == 1 && type == I915_MAP_WB)
2543 return kmap(sg_page(sgt->sgl));
2544
2545 if (n_pages > ARRAY_SIZE(stack_pages)) {
2546 /* Too big for stack -- allocate temporary array instead */
2547 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2548 if (!pages)
2549 return NULL;
2550 }
2551
2552 for_each_sgt_page(page, sgt_iter, sgt)
2553 pages[i++] = page;
2554
2555 /* Check that we have the expected number of pages */
2556 GEM_BUG_ON(i != n_pages);
2557
2558 switch (type) {
2559 case I915_MAP_WB:
2560 pgprot = PAGE_KERNEL;
2561 break;
2562 case I915_MAP_WC:
2563 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2564 break;
2565 }
2566 addr = vmap(pages, n_pages, 0, pgprot);
2567
2568 if (pages != stack_pages)
2569 drm_free_large(pages);
2570
2571 return addr;
2572 }
2573
2574 /* get, pin, and map the pages of the object into kernel space */
2575 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2576 enum i915_map_type type)
2577 {
2578 enum i915_map_type has_type;
2579 bool pinned;
2580 void *ptr;
2581 int ret;
2582
2583 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2584
2585 ret = mutex_lock_interruptible(&obj->mm.lock);
2586 if (ret)
2587 return ERR_PTR(ret);
2588
2589 pinned = true;
2590 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2591 if (unlikely(!obj->mm.pages)) {
2592 ret = ____i915_gem_object_get_pages(obj);
2593 if (ret)
2594 goto err_unlock;
2595
2596 smp_mb__before_atomic();
2597 }
2598 atomic_inc(&obj->mm.pages_pin_count);
2599 pinned = false;
2600 }
2601 GEM_BUG_ON(!obj->mm.pages);
2602
2603 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2604 if (ptr && has_type != type) {
2605 if (pinned) {
2606 ret = -EBUSY;
2607 goto err_unpin;
2608 }
2609
2610 if (is_vmalloc_addr(ptr))
2611 vunmap(ptr);
2612 else
2613 kunmap(kmap_to_page(ptr));
2614
2615 ptr = obj->mm.mapping = NULL;
2616 }
2617
2618 if (!ptr) {
2619 ptr = i915_gem_object_map(obj, type);
2620 if (!ptr) {
2621 ret = -ENOMEM;
2622 goto err_unpin;
2623 }
2624
2625 obj->mm.mapping = ptr_pack_bits(ptr, type);
2626 }
2627
2628 out_unlock:
2629 mutex_unlock(&obj->mm.lock);
2630 return ptr;
2631
2632 err_unpin:
2633 atomic_dec(&obj->mm.pages_pin_count);
2634 err_unlock:
2635 ptr = ERR_PTR(ret);
2636 goto out_unlock;
2637 }
2638
2639 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2640 {
2641 if (ctx->banned)
2642 return true;
2643
2644 if (!ctx->bannable)
2645 return false;
2646
2647 if (ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD) {
2648 DRM_DEBUG("context hanging too often, banning!\n");
2649 return true;
2650 }
2651
2652 return false;
2653 }
2654
2655 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2656 {
2657 ctx->ban_score += CONTEXT_SCORE_GUILTY;
2658
2659 ctx->banned = i915_context_is_banned(ctx);
2660 ctx->guilty_count++;
2661
2662 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2663 ctx->name, ctx->ban_score,
2664 yesno(ctx->banned));
2665
2666 if (!ctx->banned || IS_ERR_OR_NULL(ctx->file_priv))
2667 return;
2668
2669 ctx->file_priv->context_bans++;
2670 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2671 ctx->name, ctx->file_priv->context_bans);
2672 }
2673
2674 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2675 {
2676 ctx->active_count++;
2677 }
2678
2679 struct drm_i915_gem_request *
2680 i915_gem_find_active_request(struct intel_engine_cs *engine)
2681 {
2682 struct drm_i915_gem_request *request;
2683
2684 /* We are called by the error capture and reset at a random
2685 * point in time. In particular, note that neither is crucially
2686 * ordered with an interrupt. After a hang, the GPU is dead and we
2687 * assume that no more writes can happen (we waited long enough for
2688 * all writes that were in transaction to be flushed) - adding an
2689 * extra delay for a recent interrupt is pointless. Hence, we do
2690 * not need an engine->irq_seqno_barrier() before the seqno reads.
2691 */
2692 list_for_each_entry(request, &engine->timeline->requests, link) {
2693 if (__i915_gem_request_completed(request))
2694 continue;
2695
2696 return request;
2697 }
2698
2699 return NULL;
2700 }
2701
2702 static void reset_request(struct drm_i915_gem_request *request)
2703 {
2704 void *vaddr = request->ring->vaddr;
2705 u32 head;
2706
2707 /* As this request likely depends on state from the lost
2708 * context, clear out all the user operations leaving the
2709 * breadcrumb at the end (so we get the fence notifications).
2710 */
2711 head = request->head;
2712 if (request->postfix < head) {
2713 memset(vaddr + head, 0, request->ring->size - head);
2714 head = 0;
2715 }
2716 memset(vaddr + head, 0, request->postfix - head);
2717 }
2718
2719 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2720 {
2721 struct drm_i915_gem_request *request;
2722 struct i915_gem_context *incomplete_ctx;
2723 struct intel_timeline *timeline;
2724 bool ring_hung;
2725
2726 if (engine->irq_seqno_barrier)
2727 engine->irq_seqno_barrier(engine);
2728
2729 request = i915_gem_find_active_request(engine);
2730 if (!request)
2731 return;
2732
2733 ring_hung = engine->hangcheck.stalled;
2734 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2735 DRM_DEBUG_DRIVER("%s pardoned, was guilty? %s\n",
2736 engine->name,
2737 yesno(ring_hung));
2738 ring_hung = false;
2739 }
2740
2741 if (ring_hung)
2742 i915_gem_context_mark_guilty(request->ctx);
2743 else
2744 i915_gem_context_mark_innocent(request->ctx);
2745
2746 if (!ring_hung)
2747 return;
2748
2749 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2750 engine->name, request->global_seqno);
2751
2752 /* Setup the CS to resume from the breadcrumb of the hung request */
2753 engine->reset_hw(engine, request);
2754
2755 /* Users of the default context do not rely on logical state
2756 * preserved between batches. They have to emit full state on
2757 * every batch and so it is safe to execute queued requests following
2758 * the hang.
2759 *
2760 * Other contexts preserve state, now corrupt. We want to skip all
2761 * queued requests that reference the corrupt context.
2762 */
2763 incomplete_ctx = request->ctx;
2764 if (i915_gem_context_is_default(incomplete_ctx))
2765 return;
2766
2767 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2768 if (request->ctx == incomplete_ctx)
2769 reset_request(request);
2770
2771 timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2772 list_for_each_entry(request, &timeline->requests, link)
2773 reset_request(request);
2774 }
2775
2776 void i915_gem_reset(struct drm_i915_private *dev_priv)
2777 {
2778 struct intel_engine_cs *engine;
2779 enum intel_engine_id id;
2780
2781 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2782
2783 i915_gem_retire_requests(dev_priv);
2784
2785 for_each_engine(engine, dev_priv, id)
2786 i915_gem_reset_engine(engine);
2787
2788 i915_gem_restore_fences(dev_priv);
2789
2790 if (dev_priv->gt.awake) {
2791 intel_sanitize_gt_powersave(dev_priv);
2792 intel_enable_gt_powersave(dev_priv);
2793 if (INTEL_GEN(dev_priv) >= 6)
2794 gen6_rps_busy(dev_priv);
2795 }
2796 }
2797
2798 static void nop_submit_request(struct drm_i915_gem_request *request)
2799 {
2800 i915_gem_request_submit(request);
2801 intel_engine_init_global_seqno(request->engine, request->global_seqno);
2802 }
2803
2804 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2805 {
2806 /* We need to be sure that no thread is running the old callback as
2807 * we install the nop handler (otherwise we would submit a request
2808 * to hardware that will never complete). In order to prevent this
2809 * race, we wait until the machine is idle before making the swap
2810 * (using stop_machine()).
2811 */
2812 engine->submit_request = nop_submit_request;
2813
2814 /* Mark all pending requests as complete so that any concurrent
2815 * (lockless) lookup doesn't try and wait upon the request as we
2816 * reset it.
2817 */
2818 intel_engine_init_global_seqno(engine,
2819 intel_engine_last_submit(engine));
2820
2821 /*
2822 * Clear the execlists queue up before freeing the requests, as those
2823 * are the ones that keep the context and ringbuffer backing objects
2824 * pinned in place.
2825 */
2826
2827 if (i915.enable_execlists) {
2828 unsigned long flags;
2829
2830 spin_lock_irqsave(&engine->timeline->lock, flags);
2831
2832 i915_gem_request_put(engine->execlist_port[0].request);
2833 i915_gem_request_put(engine->execlist_port[1].request);
2834 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2835 engine->execlist_queue = RB_ROOT;
2836 engine->execlist_first = NULL;
2837
2838 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2839 }
2840 }
2841
2842 static int __i915_gem_set_wedged_BKL(void *data)
2843 {
2844 struct drm_i915_private *i915 = data;
2845 struct intel_engine_cs *engine;
2846 enum intel_engine_id id;
2847
2848 for_each_engine(engine, i915, id)
2849 i915_gem_cleanup_engine(engine);
2850
2851 return 0;
2852 }
2853
2854 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2855 {
2856 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2857 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2858
2859 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2860
2861 i915_gem_context_lost(dev_priv);
2862 i915_gem_retire_requests(dev_priv);
2863
2864 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2865 }
2866
2867 static void
2868 i915_gem_retire_work_handler(struct work_struct *work)
2869 {
2870 struct drm_i915_private *dev_priv =
2871 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2872 struct drm_device *dev = &dev_priv->drm;
2873
2874 /* Come back later if the device is busy... */
2875 if (mutex_trylock(&dev->struct_mutex)) {
2876 i915_gem_retire_requests(dev_priv);
2877 mutex_unlock(&dev->struct_mutex);
2878 }
2879
2880 /* Keep the retire handler running until we are finally idle.
2881 * We do not need to do this test under locking as in the worst-case
2882 * we queue the retire worker once too often.
2883 */
2884 if (READ_ONCE(dev_priv->gt.awake)) {
2885 i915_queue_hangcheck(dev_priv);
2886 queue_delayed_work(dev_priv->wq,
2887 &dev_priv->gt.retire_work,
2888 round_jiffies_up_relative(HZ));
2889 }
2890 }
2891
2892 static void
2893 i915_gem_idle_work_handler(struct work_struct *work)
2894 {
2895 struct drm_i915_private *dev_priv =
2896 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2897 struct drm_device *dev = &dev_priv->drm;
2898 struct intel_engine_cs *engine;
2899 enum intel_engine_id id;
2900 bool rearm_hangcheck;
2901
2902 if (!READ_ONCE(dev_priv->gt.awake))
2903 return;
2904
2905 /*
2906 * Wait for last execlists context complete, but bail out in case a
2907 * new request is submitted.
2908 */
2909 wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2910 intel_execlists_idle(dev_priv), 10);
2911
2912 if (READ_ONCE(dev_priv->gt.active_requests))
2913 return;
2914
2915 rearm_hangcheck =
2916 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2917
2918 if (!mutex_trylock(&dev->struct_mutex)) {
2919 /* Currently busy, come back later */
2920 mod_delayed_work(dev_priv->wq,
2921 &dev_priv->gt.idle_work,
2922 msecs_to_jiffies(50));
2923 goto out_rearm;
2924 }
2925
2926 /*
2927 * New request retired after this work handler started, extend active
2928 * period until next instance of the work.
2929 */
2930 if (work_pending(work))
2931 goto out_unlock;
2932
2933 if (dev_priv->gt.active_requests)
2934 goto out_unlock;
2935
2936 if (wait_for(intel_execlists_idle(dev_priv), 10))
2937 DRM_ERROR("Timeout waiting for engines to idle\n");
2938
2939 for_each_engine(engine, dev_priv, id)
2940 i915_gem_batch_pool_fini(&engine->batch_pool);
2941
2942 GEM_BUG_ON(!dev_priv->gt.awake);
2943 dev_priv->gt.awake = false;
2944 rearm_hangcheck = false;
2945
2946 if (INTEL_GEN(dev_priv) >= 6)
2947 gen6_rps_idle(dev_priv);
2948 intel_runtime_pm_put(dev_priv);
2949 out_unlock:
2950 mutex_unlock(&dev->struct_mutex);
2951
2952 out_rearm:
2953 if (rearm_hangcheck) {
2954 GEM_BUG_ON(!dev_priv->gt.awake);
2955 i915_queue_hangcheck(dev_priv);
2956 }
2957 }
2958
2959 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2960 {
2961 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2962 struct drm_i915_file_private *fpriv = file->driver_priv;
2963 struct i915_vma *vma, *vn;
2964
2965 mutex_lock(&obj->base.dev->struct_mutex);
2966 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2967 if (vma->vm->file == fpriv)
2968 i915_vma_close(vma);
2969
2970 if (i915_gem_object_is_active(obj) &&
2971 !i915_gem_object_has_active_reference(obj)) {
2972 i915_gem_object_set_active_reference(obj);
2973 i915_gem_object_get(obj);
2974 }
2975 mutex_unlock(&obj->base.dev->struct_mutex);
2976 }
2977
2978 static unsigned long to_wait_timeout(s64 timeout_ns)
2979 {
2980 if (timeout_ns < 0)
2981 return MAX_SCHEDULE_TIMEOUT;
2982
2983 if (timeout_ns == 0)
2984 return 0;
2985
2986 return nsecs_to_jiffies_timeout(timeout_ns);
2987 }
2988
2989 /**
2990 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2991 * @dev: drm device pointer
2992 * @data: ioctl data blob
2993 * @file: drm file pointer
2994 *
2995 * Returns 0 if successful, else an error is returned with the remaining time in
2996 * the timeout parameter.
2997 * -ETIME: object is still busy after timeout
2998 * -ERESTARTSYS: signal interrupted the wait
2999 * -ENONENT: object doesn't exist
3000 * Also possible, but rare:
3001 * -EAGAIN: GPU wedged
3002 * -ENOMEM: damn
3003 * -ENODEV: Internal IRQ fail
3004 * -E?: The add request failed
3005 *
3006 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3007 * non-zero timeout parameter the wait ioctl will wait for the given number of
3008 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3009 * without holding struct_mutex the object may become re-busied before this
3010 * function completes. A similar but shorter * race condition exists in the busy
3011 * ioctl
3012 */
3013 int
3014 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3015 {
3016 struct drm_i915_gem_wait *args = data;
3017 struct drm_i915_gem_object *obj;
3018 ktime_t start;
3019 long ret;
3020
3021 if (args->flags != 0)
3022 return -EINVAL;
3023
3024 obj = i915_gem_object_lookup(file, args->bo_handle);
3025 if (!obj)
3026 return -ENOENT;
3027
3028 start = ktime_get();
3029
3030 ret = i915_gem_object_wait(obj,
3031 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3032 to_wait_timeout(args->timeout_ns),
3033 to_rps_client(file));
3034
3035 if (args->timeout_ns > 0) {
3036 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3037 if (args->timeout_ns < 0)
3038 args->timeout_ns = 0;
3039 }
3040
3041 i915_gem_object_put(obj);
3042 return ret;
3043 }
3044
3045 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3046 {
3047 int ret, i;
3048
3049 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3050 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3051 if (ret)
3052 return ret;
3053 }
3054
3055 return 0;
3056 }
3057
3058 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3059 {
3060 int ret;
3061
3062 if (flags & I915_WAIT_LOCKED) {
3063 struct i915_gem_timeline *tl;
3064
3065 lockdep_assert_held(&i915->drm.struct_mutex);
3066
3067 list_for_each_entry(tl, &i915->gt.timelines, link) {
3068 ret = wait_for_timeline(tl, flags);
3069 if (ret)
3070 return ret;
3071 }
3072 } else {
3073 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3074 if (ret)
3075 return ret;
3076 }
3077
3078 return 0;
3079 }
3080
3081 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3082 bool force)
3083 {
3084 /* If we don't have a page list set up, then we're not pinned
3085 * to GPU, and we can ignore the cache flush because it'll happen
3086 * again at bind time.
3087 */
3088 if (!obj->mm.pages)
3089 return;
3090
3091 /*
3092 * Stolen memory is always coherent with the GPU as it is explicitly
3093 * marked as wc by the system, or the system is cache-coherent.
3094 */
3095 if (obj->stolen || obj->phys_handle)
3096 return;
3097
3098 /* If the GPU is snooping the contents of the CPU cache,
3099 * we do not need to manually clear the CPU cache lines. However,
3100 * the caches are only snooped when the render cache is
3101 * flushed/invalidated. As we always have to emit invalidations
3102 * and flushes when moving into and out of the RENDER domain, correct
3103 * snooping behaviour occurs naturally as the result of our domain
3104 * tracking.
3105 */
3106 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3107 obj->cache_dirty = true;
3108 return;
3109 }
3110
3111 trace_i915_gem_object_clflush(obj);
3112 drm_clflush_sg(obj->mm.pages);
3113 obj->cache_dirty = false;
3114 }
3115
3116 /** Flushes the GTT write domain for the object if it's dirty. */
3117 static void
3118 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3119 {
3120 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3121
3122 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3123 return;
3124
3125 /* No actual flushing is required for the GTT write domain. Writes
3126 * to it "immediately" go to main memory as far as we know, so there's
3127 * no chipset flush. It also doesn't land in render cache.
3128 *
3129 * However, we do have to enforce the order so that all writes through
3130 * the GTT land before any writes to the device, such as updates to
3131 * the GATT itself.
3132 *
3133 * We also have to wait a bit for the writes to land from the GTT.
3134 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3135 * timing. This issue has only been observed when switching quickly
3136 * between GTT writes and CPU reads from inside the kernel on recent hw,
3137 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3138 * system agents we cannot reproduce this behaviour).
3139 */
3140 wmb();
3141 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3142 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3143
3144 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3145
3146 obj->base.write_domain = 0;
3147 trace_i915_gem_object_change_domain(obj,
3148 obj->base.read_domains,
3149 I915_GEM_DOMAIN_GTT);
3150 }
3151
3152 /** Flushes the CPU write domain for the object if it's dirty. */
3153 static void
3154 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3155 {
3156 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3157 return;
3158
3159 i915_gem_clflush_object(obj, obj->pin_display);
3160 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3161
3162 obj->base.write_domain = 0;
3163 trace_i915_gem_object_change_domain(obj,
3164 obj->base.read_domains,
3165 I915_GEM_DOMAIN_CPU);
3166 }
3167
3168 /**
3169 * Moves a single object to the GTT read, and possibly write domain.
3170 * @obj: object to act on
3171 * @write: ask for write access or read only
3172 *
3173 * This function returns when the move is complete, including waiting on
3174 * flushes to occur.
3175 */
3176 int
3177 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3178 {
3179 uint32_t old_write_domain, old_read_domains;
3180 int ret;
3181
3182 lockdep_assert_held(&obj->base.dev->struct_mutex);
3183
3184 ret = i915_gem_object_wait(obj,
3185 I915_WAIT_INTERRUPTIBLE |
3186 I915_WAIT_LOCKED |
3187 (write ? I915_WAIT_ALL : 0),
3188 MAX_SCHEDULE_TIMEOUT,
3189 NULL);
3190 if (ret)
3191 return ret;
3192
3193 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3194 return 0;
3195
3196 /* Flush and acquire obj->pages so that we are coherent through
3197 * direct access in memory with previous cached writes through
3198 * shmemfs and that our cache domain tracking remains valid.
3199 * For example, if the obj->filp was moved to swap without us
3200 * being notified and releasing the pages, we would mistakenly
3201 * continue to assume that the obj remained out of the CPU cached
3202 * domain.
3203 */
3204 ret = i915_gem_object_pin_pages(obj);
3205 if (ret)
3206 return ret;
3207
3208 i915_gem_object_flush_cpu_write_domain(obj);
3209
3210 /* Serialise direct access to this object with the barriers for
3211 * coherent writes from the GPU, by effectively invalidating the
3212 * GTT domain upon first access.
3213 */
3214 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3215 mb();
3216
3217 old_write_domain = obj->base.write_domain;
3218 old_read_domains = obj->base.read_domains;
3219
3220 /* It should now be out of any other write domains, and we can update
3221 * the domain values for our changes.
3222 */
3223 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3224 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3225 if (write) {
3226 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3227 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3228 obj->mm.dirty = true;
3229 }
3230
3231 trace_i915_gem_object_change_domain(obj,
3232 old_read_domains,
3233 old_write_domain);
3234
3235 i915_gem_object_unpin_pages(obj);
3236 return 0;
3237 }
3238
3239 /**
3240 * Changes the cache-level of an object across all VMA.
3241 * @obj: object to act on
3242 * @cache_level: new cache level to set for the object
3243 *
3244 * After this function returns, the object will be in the new cache-level
3245 * across all GTT and the contents of the backing storage will be coherent,
3246 * with respect to the new cache-level. In order to keep the backing storage
3247 * coherent for all users, we only allow a single cache level to be set
3248 * globally on the object and prevent it from being changed whilst the
3249 * hardware is reading from the object. That is if the object is currently
3250 * on the scanout it will be set to uncached (or equivalent display
3251 * cache coherency) and all non-MOCS GPU access will also be uncached so
3252 * that all direct access to the scanout remains coherent.
3253 */
3254 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3255 enum i915_cache_level cache_level)
3256 {
3257 struct i915_vma *vma;
3258 int ret;
3259
3260 lockdep_assert_held(&obj->base.dev->struct_mutex);
3261
3262 if (obj->cache_level == cache_level)
3263 return 0;
3264
3265 /* Inspect the list of currently bound VMA and unbind any that would
3266 * be invalid given the new cache-level. This is principally to
3267 * catch the issue of the CS prefetch crossing page boundaries and
3268 * reading an invalid PTE on older architectures.
3269 */
3270 restart:
3271 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3272 if (!drm_mm_node_allocated(&vma->node))
3273 continue;
3274
3275 if (i915_vma_is_pinned(vma)) {
3276 DRM_DEBUG("can not change the cache level of pinned objects\n");
3277 return -EBUSY;
3278 }
3279
3280 if (i915_gem_valid_gtt_space(vma, cache_level))
3281 continue;
3282
3283 ret = i915_vma_unbind(vma);
3284 if (ret)
3285 return ret;
3286
3287 /* As unbinding may affect other elements in the
3288 * obj->vma_list (due to side-effects from retiring
3289 * an active vma), play safe and restart the iterator.
3290 */
3291 goto restart;
3292 }
3293
3294 /* We can reuse the existing drm_mm nodes but need to change the
3295 * cache-level on the PTE. We could simply unbind them all and
3296 * rebind with the correct cache-level on next use. However since
3297 * we already have a valid slot, dma mapping, pages etc, we may as
3298 * rewrite the PTE in the belief that doing so tramples upon less
3299 * state and so involves less work.
3300 */
3301 if (obj->bind_count) {
3302 /* Before we change the PTE, the GPU must not be accessing it.
3303 * If we wait upon the object, we know that all the bound
3304 * VMA are no longer active.
3305 */
3306 ret = i915_gem_object_wait(obj,
3307 I915_WAIT_INTERRUPTIBLE |
3308 I915_WAIT_LOCKED |
3309 I915_WAIT_ALL,
3310 MAX_SCHEDULE_TIMEOUT,
3311 NULL);
3312 if (ret)
3313 return ret;
3314
3315 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3316 cache_level != I915_CACHE_NONE) {
3317 /* Access to snoopable pages through the GTT is
3318 * incoherent and on some machines causes a hard
3319 * lockup. Relinquish the CPU mmaping to force
3320 * userspace to refault in the pages and we can
3321 * then double check if the GTT mapping is still
3322 * valid for that pointer access.
3323 */
3324 i915_gem_release_mmap(obj);
3325
3326 /* As we no longer need a fence for GTT access,
3327 * we can relinquish it now (and so prevent having
3328 * to steal a fence from someone else on the next
3329 * fence request). Note GPU activity would have
3330 * dropped the fence as all snoopable access is
3331 * supposed to be linear.
3332 */
3333 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3334 ret = i915_vma_put_fence(vma);
3335 if (ret)
3336 return ret;
3337 }
3338 } else {
3339 /* We either have incoherent backing store and
3340 * so no GTT access or the architecture is fully
3341 * coherent. In such cases, existing GTT mmaps
3342 * ignore the cache bit in the PTE and we can
3343 * rewrite it without confusing the GPU or having
3344 * to force userspace to fault back in its mmaps.
3345 */
3346 }
3347
3348 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3349 if (!drm_mm_node_allocated(&vma->node))
3350 continue;
3351
3352 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3353 if (ret)
3354 return ret;
3355 }
3356 }
3357
3358 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3359 cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3360 obj->cache_dirty = true;
3361
3362 list_for_each_entry(vma, &obj->vma_list, obj_link)
3363 vma->node.color = cache_level;
3364 obj->cache_level = cache_level;
3365
3366 return 0;
3367 }
3368
3369 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3370 struct drm_file *file)
3371 {
3372 struct drm_i915_gem_caching *args = data;
3373 struct drm_i915_gem_object *obj;
3374 int err = 0;
3375
3376 rcu_read_lock();
3377 obj = i915_gem_object_lookup_rcu(file, args->handle);
3378 if (!obj) {
3379 err = -ENOENT;
3380 goto out;
3381 }
3382
3383 switch (obj->cache_level) {
3384 case I915_CACHE_LLC:
3385 case I915_CACHE_L3_LLC:
3386 args->caching = I915_CACHING_CACHED;
3387 break;
3388
3389 case I915_CACHE_WT:
3390 args->caching = I915_CACHING_DISPLAY;
3391 break;
3392
3393 default:
3394 args->caching = I915_CACHING_NONE;
3395 break;
3396 }
3397 out:
3398 rcu_read_unlock();
3399 return err;
3400 }
3401
3402 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3403 struct drm_file *file)
3404 {
3405 struct drm_i915_private *i915 = to_i915(dev);
3406 struct drm_i915_gem_caching *args = data;
3407 struct drm_i915_gem_object *obj;
3408 enum i915_cache_level level;
3409 int ret;
3410
3411 switch (args->caching) {
3412 case I915_CACHING_NONE:
3413 level = I915_CACHE_NONE;
3414 break;
3415 case I915_CACHING_CACHED:
3416 /*
3417 * Due to a HW issue on BXT A stepping, GPU stores via a
3418 * snooped mapping may leave stale data in a corresponding CPU
3419 * cacheline, whereas normally such cachelines would get
3420 * invalidated.
3421 */
3422 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3423 return -ENODEV;
3424
3425 level = I915_CACHE_LLC;
3426 break;
3427 case I915_CACHING_DISPLAY:
3428 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3429 break;
3430 default:
3431 return -EINVAL;
3432 }
3433
3434 ret = i915_mutex_lock_interruptible(dev);
3435 if (ret)
3436 return ret;
3437
3438 obj = i915_gem_object_lookup(file, args->handle);
3439 if (!obj) {
3440 ret = -ENOENT;
3441 goto unlock;
3442 }
3443
3444 ret = i915_gem_object_set_cache_level(obj, level);
3445 i915_gem_object_put(obj);
3446 unlock:
3447 mutex_unlock(&dev->struct_mutex);
3448 return ret;
3449 }
3450
3451 /*
3452 * Prepare buffer for display plane (scanout, cursors, etc).
3453 * Can be called from an uninterruptible phase (modesetting) and allows
3454 * any flushes to be pipelined (for pageflips).
3455 */
3456 struct i915_vma *
3457 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3458 u32 alignment,
3459 const struct i915_ggtt_view *view)
3460 {
3461 struct i915_vma *vma;
3462 u32 old_read_domains, old_write_domain;
3463 int ret;
3464
3465 lockdep_assert_held(&obj->base.dev->struct_mutex);
3466
3467 /* Mark the pin_display early so that we account for the
3468 * display coherency whilst setting up the cache domains.
3469 */
3470 obj->pin_display++;
3471
3472 /* The display engine is not coherent with the LLC cache on gen6. As
3473 * a result, we make sure that the pinning that is about to occur is
3474 * done with uncached PTEs. This is lowest common denominator for all
3475 * chipsets.
3476 *
3477 * However for gen6+, we could do better by using the GFDT bit instead
3478 * of uncaching, which would allow us to flush all the LLC-cached data
3479 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3480 */
3481 ret = i915_gem_object_set_cache_level(obj,
3482 HAS_WT(to_i915(obj->base.dev)) ?
3483 I915_CACHE_WT : I915_CACHE_NONE);
3484 if (ret) {
3485 vma = ERR_PTR(ret);
3486 goto err_unpin_display;
3487 }
3488
3489 /* As the user may map the buffer once pinned in the display plane
3490 * (e.g. libkms for the bootup splash), we have to ensure that we
3491 * always use map_and_fenceable for all scanout buffers. However,
3492 * it may simply be too big to fit into mappable, in which case
3493 * put it anyway and hope that userspace can cope (but always first
3494 * try to preserve the existing ABI).
3495 */
3496 vma = ERR_PTR(-ENOSPC);
3497 if (view->type == I915_GGTT_VIEW_NORMAL)
3498 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3499 PIN_MAPPABLE | PIN_NONBLOCK);
3500 if (IS_ERR(vma)) {
3501 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3502 unsigned int flags;
3503
3504 /* Valleyview is definitely limited to scanning out the first
3505 * 512MiB. Lets presume this behaviour was inherited from the
3506 * g4x display engine and that all earlier gen are similarly
3507 * limited. Testing suggests that it is a little more
3508 * complicated than this. For example, Cherryview appears quite
3509 * happy to scanout from anywhere within its global aperture.
3510 */
3511 flags = 0;
3512 if (HAS_GMCH_DISPLAY(i915))
3513 flags = PIN_MAPPABLE;
3514 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3515 }
3516 if (IS_ERR(vma))
3517 goto err_unpin_display;
3518
3519 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3520
3521 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3522 if (obj->cache_dirty) {
3523 i915_gem_clflush_object(obj, true);
3524 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3525 }
3526
3527 old_write_domain = obj->base.write_domain;
3528 old_read_domains = obj->base.read_domains;
3529
3530 /* It should now be out of any other write domains, and we can update
3531 * the domain values for our changes.
3532 */
3533 obj->base.write_domain = 0;
3534 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3535
3536 trace_i915_gem_object_change_domain(obj,
3537 old_read_domains,
3538 old_write_domain);
3539
3540 return vma;
3541
3542 err_unpin_display:
3543 obj->pin_display--;
3544 return vma;
3545 }
3546
3547 void
3548 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3549 {
3550 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3551
3552 if (WARN_ON(vma->obj->pin_display == 0))
3553 return;
3554
3555 if (--vma->obj->pin_display == 0)
3556 vma->display_alignment = 0;
3557
3558 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3559 if (!i915_vma_is_active(vma))
3560 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3561
3562 i915_vma_unpin(vma);
3563 }
3564
3565 /**
3566 * Moves a single object to the CPU read, and possibly write domain.
3567 * @obj: object to act on
3568 * @write: requesting write or read-only access
3569 *
3570 * This function returns when the move is complete, including waiting on
3571 * flushes to occur.
3572 */
3573 int
3574 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3575 {
3576 uint32_t old_write_domain, old_read_domains;
3577 int ret;
3578
3579 lockdep_assert_held(&obj->base.dev->struct_mutex);
3580
3581 ret = i915_gem_object_wait(obj,
3582 I915_WAIT_INTERRUPTIBLE |
3583 I915_WAIT_LOCKED |
3584 (write ? I915_WAIT_ALL : 0),
3585 MAX_SCHEDULE_TIMEOUT,
3586 NULL);
3587 if (ret)
3588 return ret;
3589
3590 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3591 return 0;
3592
3593 i915_gem_object_flush_gtt_write_domain(obj);
3594
3595 old_write_domain = obj->base.write_domain;
3596 old_read_domains = obj->base.read_domains;
3597
3598 /* Flush the CPU cache if it's still invalid. */
3599 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3600 i915_gem_clflush_object(obj, false);
3601
3602 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3603 }
3604
3605 /* It should now be out of any other write domains, and we can update
3606 * the domain values for our changes.
3607 */
3608 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3609
3610 /* If we're writing through the CPU, then the GPU read domains will
3611 * need to be invalidated at next use.
3612 */
3613 if (write) {
3614 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3615 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3616 }
3617
3618 trace_i915_gem_object_change_domain(obj,
3619 old_read_domains,
3620 old_write_domain);
3621
3622 return 0;
3623 }
3624
3625 /* Throttle our rendering by waiting until the ring has completed our requests
3626 * emitted over 20 msec ago.
3627 *
3628 * Note that if we were to use the current jiffies each time around the loop,
3629 * we wouldn't escape the function with any frames outstanding if the time to
3630 * render a frame was over 20ms.
3631 *
3632 * This should get us reasonable parallelism between CPU and GPU but also
3633 * relatively low latency when blocking on a particular request to finish.
3634 */
3635 static int
3636 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3637 {
3638 struct drm_i915_private *dev_priv = to_i915(dev);
3639 struct drm_i915_file_private *file_priv = file->driver_priv;
3640 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3641 struct drm_i915_gem_request *request, *target = NULL;
3642 long ret;
3643
3644 /* ABI: return -EIO if already wedged */
3645 if (i915_terminally_wedged(&dev_priv->gpu_error))
3646 return -EIO;
3647
3648 spin_lock(&file_priv->mm.lock);
3649 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3650 if (time_after_eq(request->emitted_jiffies, recent_enough))
3651 break;
3652
3653 /*
3654 * Note that the request might not have been submitted yet.
3655 * In which case emitted_jiffies will be zero.
3656 */
3657 if (!request->emitted_jiffies)
3658 continue;
3659
3660 target = request;
3661 }
3662 if (target)
3663 i915_gem_request_get(target);
3664 spin_unlock(&file_priv->mm.lock);
3665
3666 if (target == NULL)
3667 return 0;
3668
3669 ret = i915_wait_request(target,
3670 I915_WAIT_INTERRUPTIBLE,
3671 MAX_SCHEDULE_TIMEOUT);
3672 i915_gem_request_put(target);
3673
3674 return ret < 0 ? ret : 0;
3675 }
3676
3677 struct i915_vma *
3678 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3679 const struct i915_ggtt_view *view,
3680 u64 size,
3681 u64 alignment,
3682 u64 flags)
3683 {
3684 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3685 struct i915_address_space *vm = &dev_priv->ggtt.base;
3686 struct i915_vma *vma;
3687 int ret;
3688
3689 lockdep_assert_held(&obj->base.dev->struct_mutex);
3690
3691 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3692 if (IS_ERR(vma))
3693 return vma;
3694
3695 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3696 if (flags & PIN_NONBLOCK &&
3697 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3698 return ERR_PTR(-ENOSPC);
3699
3700 if (flags & PIN_MAPPABLE) {
3701 u32 fence_size;
3702
3703 fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3704 i915_gem_object_get_tiling(obj));
3705 /* If the required space is larger than the available
3706 * aperture, we will not able to find a slot for the
3707 * object and unbinding the object now will be in
3708 * vain. Worse, doing so may cause us to ping-pong
3709 * the object in and out of the Global GTT and
3710 * waste a lot of cycles under the mutex.
3711 */
3712 if (fence_size > dev_priv->ggtt.mappable_end)
3713 return ERR_PTR(-E2BIG);
3714
3715 /* If NONBLOCK is set the caller is optimistically
3716 * trying to cache the full object within the mappable
3717 * aperture, and *must* have a fallback in place for
3718 * situations where we cannot bind the object. We
3719 * can be a little more lax here and use the fallback
3720 * more often to avoid costly migrations of ourselves
3721 * and other objects within the aperture.
3722 *
3723 * Half-the-aperture is used as a simple heuristic.
3724 * More interesting would to do search for a free
3725 * block prior to making the commitment to unbind.
3726 * That caters for the self-harm case, and with a
3727 * little more heuristics (e.g. NOFAULT, NOEVICT)
3728 * we could try to minimise harm to others.
3729 */
3730 if (flags & PIN_NONBLOCK &&
3731 fence_size > dev_priv->ggtt.mappable_end / 2)
3732 return ERR_PTR(-ENOSPC);
3733 }
3734
3735 WARN(i915_vma_is_pinned(vma),
3736 "bo is already pinned in ggtt with incorrect alignment:"
3737 " offset=%08x, req.alignment=%llx,"
3738 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3739 i915_ggtt_offset(vma), alignment,
3740 !!(flags & PIN_MAPPABLE),
3741 i915_vma_is_map_and_fenceable(vma));
3742 ret = i915_vma_unbind(vma);
3743 if (ret)
3744 return ERR_PTR(ret);
3745 }
3746
3747 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3748 if (ret)
3749 return ERR_PTR(ret);
3750
3751 return vma;
3752 }
3753
3754 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3755 {
3756 /* Note that we could alias engines in the execbuf API, but
3757 * that would be very unwise as it prevents userspace from
3758 * fine control over engine selection. Ahem.
3759 *
3760 * This should be something like EXEC_MAX_ENGINE instead of
3761 * I915_NUM_ENGINES.
3762 */
3763 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3764 return 0x10000 << id;
3765 }
3766
3767 static __always_inline unsigned int __busy_write_id(unsigned int id)
3768 {
3769 /* The uABI guarantees an active writer is also amongst the read
3770 * engines. This would be true if we accessed the activity tracking
3771 * under the lock, but as we perform the lookup of the object and
3772 * its activity locklessly we can not guarantee that the last_write
3773 * being active implies that we have set the same engine flag from
3774 * last_read - hence we always set both read and write busy for
3775 * last_write.
3776 */
3777 return id | __busy_read_flag(id);
3778 }
3779
3780 static __always_inline unsigned int
3781 __busy_set_if_active(const struct dma_fence *fence,
3782 unsigned int (*flag)(unsigned int id))
3783 {
3784 struct drm_i915_gem_request *rq;
3785
3786 /* We have to check the current hw status of the fence as the uABI
3787 * guarantees forward progress. We could rely on the idle worker
3788 * to eventually flush us, but to minimise latency just ask the
3789 * hardware.
3790 *
3791 * Note we only report on the status of native fences.
3792 */
3793 if (!dma_fence_is_i915(fence))
3794 return 0;
3795
3796 /* opencode to_request() in order to avoid const warnings */
3797 rq = container_of(fence, struct drm_i915_gem_request, fence);
3798 if (i915_gem_request_completed(rq))
3799 return 0;
3800
3801 return flag(rq->engine->exec_id);
3802 }
3803
3804 static __always_inline unsigned int
3805 busy_check_reader(const struct dma_fence *fence)
3806 {
3807 return __busy_set_if_active(fence, __busy_read_flag);
3808 }
3809
3810 static __always_inline unsigned int
3811 busy_check_writer(const struct dma_fence *fence)
3812 {
3813 if (!fence)
3814 return 0;
3815
3816 return __busy_set_if_active(fence, __busy_write_id);
3817 }
3818
3819 int
3820 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3821 struct drm_file *file)
3822 {
3823 struct drm_i915_gem_busy *args = data;
3824 struct drm_i915_gem_object *obj;
3825 struct reservation_object_list *list;
3826 unsigned int seq;
3827 int err;
3828
3829 err = -ENOENT;
3830 rcu_read_lock();
3831 obj = i915_gem_object_lookup_rcu(file, args->handle);
3832 if (!obj)
3833 goto out;
3834
3835 /* A discrepancy here is that we do not report the status of
3836 * non-i915 fences, i.e. even though we may report the object as idle,
3837 * a call to set-domain may still stall waiting for foreign rendering.
3838 * This also means that wait-ioctl may report an object as busy,
3839 * where busy-ioctl considers it idle.
3840 *
3841 * We trade the ability to warn of foreign fences to report on which
3842 * i915 engines are active for the object.
3843 *
3844 * Alternatively, we can trade that extra information on read/write
3845 * activity with
3846 * args->busy =
3847 * !reservation_object_test_signaled_rcu(obj->resv, true);
3848 * to report the overall busyness. This is what the wait-ioctl does.
3849 *
3850 */
3851 retry:
3852 seq = raw_read_seqcount(&obj->resv->seq);
3853
3854 /* Translate the exclusive fence to the READ *and* WRITE engine */
3855 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3856
3857 /* Translate shared fences to READ set of engines */
3858 list = rcu_dereference(obj->resv->fence);
3859 if (list) {
3860 unsigned int shared_count = list->shared_count, i;
3861
3862 for (i = 0; i < shared_count; ++i) {
3863 struct dma_fence *fence =
3864 rcu_dereference(list->shared[i]);
3865
3866 args->busy |= busy_check_reader(fence);
3867 }
3868 }
3869
3870 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3871 goto retry;
3872
3873 err = 0;
3874 out:
3875 rcu_read_unlock();
3876 return err;
3877 }
3878
3879 int
3880 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3881 struct drm_file *file_priv)
3882 {
3883 return i915_gem_ring_throttle(dev, file_priv);
3884 }
3885
3886 int
3887 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3888 struct drm_file *file_priv)
3889 {
3890 struct drm_i915_private *dev_priv = to_i915(dev);
3891 struct drm_i915_gem_madvise *args = data;
3892 struct drm_i915_gem_object *obj;
3893 int err;
3894
3895 switch (args->madv) {
3896 case I915_MADV_DONTNEED:
3897 case I915_MADV_WILLNEED:
3898 break;
3899 default:
3900 return -EINVAL;
3901 }
3902
3903 obj = i915_gem_object_lookup(file_priv, args->handle);
3904 if (!obj)
3905 return -ENOENT;
3906
3907 err = mutex_lock_interruptible(&obj->mm.lock);
3908 if (err)
3909 goto out;
3910
3911 if (obj->mm.pages &&
3912 i915_gem_object_is_tiled(obj) &&
3913 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3914 if (obj->mm.madv == I915_MADV_WILLNEED) {
3915 GEM_BUG_ON(!obj->mm.quirked);
3916 __i915_gem_object_unpin_pages(obj);
3917 obj->mm.quirked = false;
3918 }
3919 if (args->madv == I915_MADV_WILLNEED) {
3920 GEM_BUG_ON(obj->mm.quirked);
3921 __i915_gem_object_pin_pages(obj);
3922 obj->mm.quirked = true;
3923 }
3924 }
3925
3926 if (obj->mm.madv != __I915_MADV_PURGED)
3927 obj->mm.madv = args->madv;
3928
3929 /* if the object is no longer attached, discard its backing storage */
3930 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3931 i915_gem_object_truncate(obj);
3932
3933 args->retained = obj->mm.madv != __I915_MADV_PURGED;
3934 mutex_unlock(&obj->mm.lock);
3935
3936 out:
3937 i915_gem_object_put(obj);
3938 return err;
3939 }
3940
3941 static void
3942 frontbuffer_retire(struct i915_gem_active *active,
3943 struct drm_i915_gem_request *request)
3944 {
3945 struct drm_i915_gem_object *obj =
3946 container_of(active, typeof(*obj), frontbuffer_write);
3947
3948 intel_fb_obj_flush(obj, true, ORIGIN_CS);
3949 }
3950
3951 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3952 const struct drm_i915_gem_object_ops *ops)
3953 {
3954 mutex_init(&obj->mm.lock);
3955
3956 INIT_LIST_HEAD(&obj->global_link);
3957 INIT_LIST_HEAD(&obj->userfault_link);
3958 INIT_LIST_HEAD(&obj->obj_exec_link);
3959 INIT_LIST_HEAD(&obj->vma_list);
3960 INIT_LIST_HEAD(&obj->batch_pool_link);
3961
3962 obj->ops = ops;
3963
3964 reservation_object_init(&obj->__builtin_resv);
3965 obj->resv = &obj->__builtin_resv;
3966
3967 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3968 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3969
3970 obj->mm.madv = I915_MADV_WILLNEED;
3971 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3972 mutex_init(&obj->mm.get_page.lock);
3973
3974 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3975 }
3976
3977 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3978 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3979 I915_GEM_OBJECT_IS_SHRINKABLE,
3980 .get_pages = i915_gem_object_get_pages_gtt,
3981 .put_pages = i915_gem_object_put_pages_gtt,
3982 };
3983
3984 /* Note we don't consider signbits :| */
3985 #define overflows_type(x, T) \
3986 (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
3987
3988 struct drm_i915_gem_object *
3989 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
3990 {
3991 struct drm_i915_gem_object *obj;
3992 struct address_space *mapping;
3993 gfp_t mask;
3994 int ret;
3995
3996 /* There is a prevalence of the assumption that we fit the object's
3997 * page count inside a 32bit _signed_ variable. Let's document this and
3998 * catch if we ever need to fix it. In the meantime, if you do spot
3999 * such a local variable, please consider fixing!
4000 */
4001 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4002 return ERR_PTR(-E2BIG);
4003
4004 if (overflows_type(size, obj->base.size))
4005 return ERR_PTR(-E2BIG);
4006
4007 obj = i915_gem_object_alloc(dev_priv);
4008 if (obj == NULL)
4009 return ERR_PTR(-ENOMEM);
4010
4011 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4012 if (ret)
4013 goto fail;
4014
4015 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4016 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4017 /* 965gm cannot relocate objects above 4GiB. */
4018 mask &= ~__GFP_HIGHMEM;
4019 mask |= __GFP_DMA32;
4020 }
4021
4022 mapping = obj->base.filp->f_mapping;
4023 mapping_set_gfp_mask(mapping, mask);
4024
4025 i915_gem_object_init(obj, &i915_gem_object_ops);
4026
4027 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4028 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4029
4030 if (HAS_LLC(dev_priv)) {
4031 /* On some devices, we can have the GPU use the LLC (the CPU
4032 * cache) for about a 10% performance improvement
4033 * compared to uncached. Graphics requests other than
4034 * display scanout are coherent with the CPU in
4035 * accessing this cache. This means in this mode we
4036 * don't need to clflush on the CPU side, and on the
4037 * GPU side we only need to flush internal caches to
4038 * get data visible to the CPU.
4039 *
4040 * However, we maintain the display planes as UC, and so
4041 * need to rebind when first used as such.
4042 */
4043 obj->cache_level = I915_CACHE_LLC;
4044 } else
4045 obj->cache_level = I915_CACHE_NONE;
4046
4047 trace_i915_gem_object_create(obj);
4048
4049 return obj;
4050
4051 fail:
4052 i915_gem_object_free(obj);
4053 return ERR_PTR(ret);
4054 }
4055
4056 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4057 {
4058 /* If we are the last user of the backing storage (be it shmemfs
4059 * pages or stolen etc), we know that the pages are going to be
4060 * immediately released. In this case, we can then skip copying
4061 * back the contents from the GPU.
4062 */
4063
4064 if (obj->mm.madv != I915_MADV_WILLNEED)
4065 return false;
4066
4067 if (obj->base.filp == NULL)
4068 return true;
4069
4070 /* At first glance, this looks racy, but then again so would be
4071 * userspace racing mmap against close. However, the first external
4072 * reference to the filp can only be obtained through the
4073 * i915_gem_mmap_ioctl() which safeguards us against the user
4074 * acquiring such a reference whilst we are in the middle of
4075 * freeing the object.
4076 */
4077 return atomic_long_read(&obj->base.filp->f_count) == 1;
4078 }
4079
4080 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4081 struct llist_node *freed)
4082 {
4083 struct drm_i915_gem_object *obj, *on;
4084
4085 mutex_lock(&i915->drm.struct_mutex);
4086 intel_runtime_pm_get(i915);
4087 llist_for_each_entry(obj, freed, freed) {
4088 struct i915_vma *vma, *vn;
4089
4090 trace_i915_gem_object_destroy(obj);
4091
4092 GEM_BUG_ON(i915_gem_object_is_active(obj));
4093 list_for_each_entry_safe(vma, vn,
4094 &obj->vma_list, obj_link) {
4095 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4096 GEM_BUG_ON(i915_vma_is_active(vma));
4097 vma->flags &= ~I915_VMA_PIN_MASK;
4098 i915_vma_close(vma);
4099 }
4100 GEM_BUG_ON(!list_empty(&obj->vma_list));
4101 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4102
4103 list_del(&obj->global_link);
4104 }
4105 intel_runtime_pm_put(i915);
4106 mutex_unlock(&i915->drm.struct_mutex);
4107
4108 llist_for_each_entry_safe(obj, on, freed, freed) {
4109 GEM_BUG_ON(obj->bind_count);
4110 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4111
4112 if (obj->ops->release)
4113 obj->ops->release(obj);
4114
4115 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4116 atomic_set(&obj->mm.pages_pin_count, 0);
4117 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4118 GEM_BUG_ON(obj->mm.pages);
4119
4120 if (obj->base.import_attach)
4121 drm_prime_gem_destroy(&obj->base, NULL);
4122
4123 reservation_object_fini(&obj->__builtin_resv);
4124 drm_gem_object_release(&obj->base);
4125 i915_gem_info_remove_obj(i915, obj->base.size);
4126
4127 kfree(obj->bit_17);
4128 i915_gem_object_free(obj);
4129 }
4130 }
4131
4132 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4133 {
4134 struct llist_node *freed;
4135
4136 freed = llist_del_all(&i915->mm.free_list);
4137 if (unlikely(freed))
4138 __i915_gem_free_objects(i915, freed);
4139 }
4140
4141 static void __i915_gem_free_work(struct work_struct *work)
4142 {
4143 struct drm_i915_private *i915 =
4144 container_of(work, struct drm_i915_private, mm.free_work);
4145 struct llist_node *freed;
4146
4147 /* All file-owned VMA should have been released by this point through
4148 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4149 * However, the object may also be bound into the global GTT (e.g.
4150 * older GPUs without per-process support, or for direct access through
4151 * the GTT either for the user or for scanout). Those VMA still need to
4152 * unbound now.
4153 */
4154
4155 while ((freed = llist_del_all(&i915->mm.free_list)))
4156 __i915_gem_free_objects(i915, freed);
4157 }
4158
4159 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4160 {
4161 struct drm_i915_gem_object *obj =
4162 container_of(head, typeof(*obj), rcu);
4163 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4164
4165 /* We can't simply use call_rcu() from i915_gem_free_object()
4166 * as we need to block whilst unbinding, and the call_rcu
4167 * task may be called from softirq context. So we take a
4168 * detour through a worker.
4169 */
4170 if (llist_add(&obj->freed, &i915->mm.free_list))
4171 schedule_work(&i915->mm.free_work);
4172 }
4173
4174 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4175 {
4176 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4177
4178 if (obj->mm.quirked)
4179 __i915_gem_object_unpin_pages(obj);
4180
4181 if (discard_backing_storage(obj))
4182 obj->mm.madv = I915_MADV_DONTNEED;
4183
4184 /* Before we free the object, make sure any pure RCU-only
4185 * read-side critical sections are complete, e.g.
4186 * i915_gem_busy_ioctl(). For the corresponding synchronized
4187 * lookup see i915_gem_object_lookup_rcu().
4188 */
4189 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4190 }
4191
4192 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4193 {
4194 lockdep_assert_held(&obj->base.dev->struct_mutex);
4195
4196 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4197 if (i915_gem_object_is_active(obj))
4198 i915_gem_object_set_active_reference(obj);
4199 else
4200 i915_gem_object_put(obj);
4201 }
4202
4203 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4204 {
4205 struct intel_engine_cs *engine;
4206 enum intel_engine_id id;
4207
4208 for_each_engine(engine, dev_priv, id)
4209 GEM_BUG_ON(engine->last_retired_context != dev_priv->kernel_context);
4210 }
4211
4212 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4213 {
4214 struct drm_device *dev = &dev_priv->drm;
4215 int ret;
4216
4217 intel_suspend_gt_powersave(dev_priv);
4218
4219 mutex_lock(&dev->struct_mutex);
4220
4221 /* We have to flush all the executing contexts to main memory so
4222 * that they can saved in the hibernation image. To ensure the last
4223 * context image is coherent, we have to switch away from it. That
4224 * leaves the dev_priv->kernel_context still active when
4225 * we actually suspend, and its image in memory may not match the GPU
4226 * state. Fortunately, the kernel_context is disposable and we do
4227 * not rely on its state.
4228 */
4229 ret = i915_gem_switch_to_kernel_context(dev_priv);
4230 if (ret)
4231 goto err;
4232
4233 ret = i915_gem_wait_for_idle(dev_priv,
4234 I915_WAIT_INTERRUPTIBLE |
4235 I915_WAIT_LOCKED);
4236 if (ret)
4237 goto err;
4238
4239 i915_gem_retire_requests(dev_priv);
4240 GEM_BUG_ON(dev_priv->gt.active_requests);
4241
4242 assert_kernel_context_is_current(dev_priv);
4243 i915_gem_context_lost(dev_priv);
4244 mutex_unlock(&dev->struct_mutex);
4245
4246 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4247 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4248 flush_delayed_work(&dev_priv->gt.idle_work);
4249 flush_work(&dev_priv->mm.free_work);
4250
4251 /* Assert that we sucessfully flushed all the work and
4252 * reset the GPU back to its idle, low power state.
4253 */
4254 WARN_ON(dev_priv->gt.awake);
4255 WARN_ON(!intel_execlists_idle(dev_priv));
4256
4257 /*
4258 * Neither the BIOS, ourselves or any other kernel
4259 * expects the system to be in execlists mode on startup,
4260 * so we need to reset the GPU back to legacy mode. And the only
4261 * known way to disable logical contexts is through a GPU reset.
4262 *
4263 * So in order to leave the system in a known default configuration,
4264 * always reset the GPU upon unload and suspend. Afterwards we then
4265 * clean up the GEM state tracking, flushing off the requests and
4266 * leaving the system in a known idle state.
4267 *
4268 * Note that is of the upmost importance that the GPU is idle and
4269 * all stray writes are flushed *before* we dismantle the backing
4270 * storage for the pinned objects.
4271 *
4272 * However, since we are uncertain that resetting the GPU on older
4273 * machines is a good idea, we don't - just in case it leaves the
4274 * machine in an unusable condition.
4275 */
4276 if (HAS_HW_CONTEXTS(dev_priv)) {
4277 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4278 WARN_ON(reset && reset != -ENODEV);
4279 }
4280
4281 return 0;
4282
4283 err:
4284 mutex_unlock(&dev->struct_mutex);
4285 return ret;
4286 }
4287
4288 void i915_gem_resume(struct drm_i915_private *dev_priv)
4289 {
4290 struct drm_device *dev = &dev_priv->drm;
4291
4292 WARN_ON(dev_priv->gt.awake);
4293
4294 mutex_lock(&dev->struct_mutex);
4295 i915_gem_restore_gtt_mappings(dev_priv);
4296
4297 /* As we didn't flush the kernel context before suspend, we cannot
4298 * guarantee that the context image is complete. So let's just reset
4299 * it and start again.
4300 */
4301 dev_priv->gt.resume(dev_priv);
4302
4303 mutex_unlock(&dev->struct_mutex);
4304 }
4305
4306 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4307 {
4308 if (INTEL_GEN(dev_priv) < 5 ||
4309 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4310 return;
4311
4312 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4313 DISP_TILE_SURFACE_SWIZZLING);
4314
4315 if (IS_GEN5(dev_priv))
4316 return;
4317
4318 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4319 if (IS_GEN6(dev_priv))
4320 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4321 else if (IS_GEN7(dev_priv))
4322 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4323 else if (IS_GEN8(dev_priv))
4324 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4325 else
4326 BUG();
4327 }
4328
4329 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4330 {
4331 I915_WRITE(RING_CTL(base), 0);
4332 I915_WRITE(RING_HEAD(base), 0);
4333 I915_WRITE(RING_TAIL(base), 0);
4334 I915_WRITE(RING_START(base), 0);
4335 }
4336
4337 static void init_unused_rings(struct drm_i915_private *dev_priv)
4338 {
4339 if (IS_I830(dev_priv)) {
4340 init_unused_ring(dev_priv, PRB1_BASE);
4341 init_unused_ring(dev_priv, SRB0_BASE);
4342 init_unused_ring(dev_priv, SRB1_BASE);
4343 init_unused_ring(dev_priv, SRB2_BASE);
4344 init_unused_ring(dev_priv, SRB3_BASE);
4345 } else if (IS_GEN2(dev_priv)) {
4346 init_unused_ring(dev_priv, SRB0_BASE);
4347 init_unused_ring(dev_priv, SRB1_BASE);
4348 } else if (IS_GEN3(dev_priv)) {
4349 init_unused_ring(dev_priv, PRB1_BASE);
4350 init_unused_ring(dev_priv, PRB2_BASE);
4351 }
4352 }
4353
4354 int
4355 i915_gem_init_hw(struct drm_i915_private *dev_priv)
4356 {
4357 struct intel_engine_cs *engine;
4358 enum intel_engine_id id;
4359 int ret;
4360
4361 dev_priv->gt.last_init_time = ktime_get();
4362
4363 /* Double layer security blanket, see i915_gem_init() */
4364 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4365
4366 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4367 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4368
4369 if (IS_HASWELL(dev_priv))
4370 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4371 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4372
4373 if (HAS_PCH_NOP(dev_priv)) {
4374 if (IS_IVYBRIDGE(dev_priv)) {
4375 u32 temp = I915_READ(GEN7_MSG_CTL);
4376 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4377 I915_WRITE(GEN7_MSG_CTL, temp);
4378 } else if (INTEL_GEN(dev_priv) >= 7) {
4379 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4380 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4381 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4382 }
4383 }
4384
4385 i915_gem_init_swizzling(dev_priv);
4386
4387 /*
4388 * At least 830 can leave some of the unused rings
4389 * "active" (ie. head != tail) after resume which
4390 * will prevent c3 entry. Makes sure all unused rings
4391 * are totally idle.
4392 */
4393 init_unused_rings(dev_priv);
4394
4395 BUG_ON(!dev_priv->kernel_context);
4396
4397 ret = i915_ppgtt_init_hw(dev_priv);
4398 if (ret) {
4399 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4400 goto out;
4401 }
4402
4403 /* Need to do basic initialisation of all rings first: */
4404 for_each_engine(engine, dev_priv, id) {
4405 ret = engine->init_hw(engine);
4406 if (ret)
4407 goto out;
4408 }
4409
4410 intel_mocs_init_l3cc_table(dev_priv);
4411
4412 /* We can't enable contexts until all firmware is loaded */
4413 ret = intel_guc_setup(dev_priv);
4414 if (ret)
4415 goto out;
4416
4417 out:
4418 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4419 return ret;
4420 }
4421
4422 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4423 {
4424 if (INTEL_INFO(dev_priv)->gen < 6)
4425 return false;
4426
4427 /* TODO: make semaphores and Execlists play nicely together */
4428 if (i915.enable_execlists)
4429 return false;
4430
4431 if (value >= 0)
4432 return value;
4433
4434 #ifdef CONFIG_INTEL_IOMMU
4435 /* Enable semaphores on SNB when IO remapping is off */
4436 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4437 return false;
4438 #endif
4439
4440 return true;
4441 }
4442
4443 int i915_gem_init(struct drm_i915_private *dev_priv)
4444 {
4445 int ret;
4446
4447 mutex_lock(&dev_priv->drm.struct_mutex);
4448
4449 if (!i915.enable_execlists) {
4450 dev_priv->gt.resume = intel_legacy_submission_resume;
4451 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4452 } else {
4453 dev_priv->gt.resume = intel_lr_context_resume;
4454 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4455 }
4456
4457 /* This is just a security blanket to placate dragons.
4458 * On some systems, we very sporadically observe that the first TLBs
4459 * used by the CS may be stale, despite us poking the TLB reset. If
4460 * we hold the forcewake during initialisation these problems
4461 * just magically go away.
4462 */
4463 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4464
4465 i915_gem_init_userptr(dev_priv);
4466
4467 ret = i915_gem_init_ggtt(dev_priv);
4468 if (ret)
4469 goto out_unlock;
4470
4471 ret = i915_gem_context_init(dev_priv);
4472 if (ret)
4473 goto out_unlock;
4474
4475 ret = intel_engines_init(dev_priv);
4476 if (ret)
4477 goto out_unlock;
4478
4479 ret = i915_gem_init_hw(dev_priv);
4480 if (ret == -EIO) {
4481 /* Allow engine initialisation to fail by marking the GPU as
4482 * wedged. But we only want to do this where the GPU is angry,
4483 * for all other failure, such as an allocation failure, bail.
4484 */
4485 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4486 i915_gem_set_wedged(dev_priv);
4487 ret = 0;
4488 }
4489
4490 out_unlock:
4491 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4492 mutex_unlock(&dev_priv->drm.struct_mutex);
4493
4494 return ret;
4495 }
4496
4497 void
4498 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4499 {
4500 struct intel_engine_cs *engine;
4501 enum intel_engine_id id;
4502
4503 for_each_engine(engine, dev_priv, id)
4504 dev_priv->gt.cleanup_engine(engine);
4505 }
4506
4507 void
4508 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4509 {
4510 int i;
4511
4512 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4513 !IS_CHERRYVIEW(dev_priv))
4514 dev_priv->num_fence_regs = 32;
4515 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4516 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4517 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4518 dev_priv->num_fence_regs = 16;
4519 else
4520 dev_priv->num_fence_regs = 8;
4521
4522 if (intel_vgpu_active(dev_priv))
4523 dev_priv->num_fence_regs =
4524 I915_READ(vgtif_reg(avail_rs.fence_num));
4525
4526 /* Initialize fence registers to zero */
4527 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4528 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4529
4530 fence->i915 = dev_priv;
4531 fence->id = i;
4532 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4533 }
4534 i915_gem_restore_fences(dev_priv);
4535
4536 i915_gem_detect_bit_6_swizzle(dev_priv);
4537 }
4538
4539 int
4540 i915_gem_load_init(struct drm_i915_private *dev_priv)
4541 {
4542 int err = -ENOMEM;
4543
4544 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4545 if (!dev_priv->objects)
4546 goto err_out;
4547
4548 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4549 if (!dev_priv->vmas)
4550 goto err_objects;
4551
4552 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4553 SLAB_HWCACHE_ALIGN |
4554 SLAB_RECLAIM_ACCOUNT |
4555 SLAB_DESTROY_BY_RCU);
4556 if (!dev_priv->requests)
4557 goto err_vmas;
4558
4559 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4560 SLAB_HWCACHE_ALIGN |
4561 SLAB_RECLAIM_ACCOUNT);
4562 if (!dev_priv->dependencies)
4563 goto err_requests;
4564
4565 mutex_lock(&dev_priv->drm.struct_mutex);
4566 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4567 err = i915_gem_timeline_init__global(dev_priv);
4568 mutex_unlock(&dev_priv->drm.struct_mutex);
4569 if (err)
4570 goto err_dependencies;
4571
4572 INIT_LIST_HEAD(&dev_priv->context_list);
4573 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4574 init_llist_head(&dev_priv->mm.free_list);
4575 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4576 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4577 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4578 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4579 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4580 i915_gem_retire_work_handler);
4581 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4582 i915_gem_idle_work_handler);
4583 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4584 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4585
4586 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4587
4588 init_waitqueue_head(&dev_priv->pending_flip_queue);
4589
4590 dev_priv->mm.interruptible = true;
4591
4592 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4593
4594 spin_lock_init(&dev_priv->fb_tracking.lock);
4595
4596 return 0;
4597
4598 err_dependencies:
4599 kmem_cache_destroy(dev_priv->dependencies);
4600 err_requests:
4601 kmem_cache_destroy(dev_priv->requests);
4602 err_vmas:
4603 kmem_cache_destroy(dev_priv->vmas);
4604 err_objects:
4605 kmem_cache_destroy(dev_priv->objects);
4606 err_out:
4607 return err;
4608 }
4609
4610 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4611 {
4612 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4613
4614 mutex_lock(&dev_priv->drm.struct_mutex);
4615 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4616 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4617 mutex_unlock(&dev_priv->drm.struct_mutex);
4618
4619 kmem_cache_destroy(dev_priv->dependencies);
4620 kmem_cache_destroy(dev_priv->requests);
4621 kmem_cache_destroy(dev_priv->vmas);
4622 kmem_cache_destroy(dev_priv->objects);
4623
4624 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4625 rcu_barrier();
4626 }
4627
4628 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4629 {
4630 intel_runtime_pm_get(dev_priv);
4631
4632 mutex_lock(&dev_priv->drm.struct_mutex);
4633 i915_gem_shrink_all(dev_priv);
4634 mutex_unlock(&dev_priv->drm.struct_mutex);
4635
4636 intel_runtime_pm_put(dev_priv);
4637
4638 return 0;
4639 }
4640
4641 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4642 {
4643 struct drm_i915_gem_object *obj;
4644 struct list_head *phases[] = {
4645 &dev_priv->mm.unbound_list,
4646 &dev_priv->mm.bound_list,
4647 NULL
4648 }, **p;
4649
4650 /* Called just before we write the hibernation image.
4651 *
4652 * We need to update the domain tracking to reflect that the CPU
4653 * will be accessing all the pages to create and restore from the
4654 * hibernation, and so upon restoration those pages will be in the
4655 * CPU domain.
4656 *
4657 * To make sure the hibernation image contains the latest state,
4658 * we update that state just before writing out the image.
4659 *
4660 * To try and reduce the hibernation image, we manually shrink
4661 * the objects as well.
4662 */
4663
4664 mutex_lock(&dev_priv->drm.struct_mutex);
4665 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4666
4667 for (p = phases; *p; p++) {
4668 list_for_each_entry(obj, *p, global_link) {
4669 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4670 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4671 }
4672 }
4673 mutex_unlock(&dev_priv->drm.struct_mutex);
4674
4675 return 0;
4676 }
4677
4678 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4679 {
4680 struct drm_i915_file_private *file_priv = file->driver_priv;
4681 struct drm_i915_gem_request *request;
4682
4683 /* Clean up our request list when the client is going away, so that
4684 * later retire_requests won't dereference our soon-to-be-gone
4685 * file_priv.
4686 */
4687 spin_lock(&file_priv->mm.lock);
4688 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4689 request->file_priv = NULL;
4690 spin_unlock(&file_priv->mm.lock);
4691
4692 if (!list_empty(&file_priv->rps.link)) {
4693 spin_lock(&to_i915(dev)->rps.client_lock);
4694 list_del(&file_priv->rps.link);
4695 spin_unlock(&to_i915(dev)->rps.client_lock);
4696 }
4697 }
4698
4699 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4700 {
4701 struct drm_i915_file_private *file_priv;
4702 int ret;
4703
4704 DRM_DEBUG("\n");
4705
4706 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4707 if (!file_priv)
4708 return -ENOMEM;
4709
4710 file->driver_priv = file_priv;
4711 file_priv->dev_priv = to_i915(dev);
4712 file_priv->file = file;
4713 INIT_LIST_HEAD(&file_priv->rps.link);
4714
4715 spin_lock_init(&file_priv->mm.lock);
4716 INIT_LIST_HEAD(&file_priv->mm.request_list);
4717
4718 file_priv->bsd_engine = -1;
4719
4720 ret = i915_gem_context_open(dev, file);
4721 if (ret)
4722 kfree(file_priv);
4723
4724 return ret;
4725 }
4726
4727 /**
4728 * i915_gem_track_fb - update frontbuffer tracking
4729 * @old: current GEM buffer for the frontbuffer slots
4730 * @new: new GEM buffer for the frontbuffer slots
4731 * @frontbuffer_bits: bitmask of frontbuffer slots
4732 *
4733 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4734 * from @old and setting them in @new. Both @old and @new can be NULL.
4735 */
4736 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4737 struct drm_i915_gem_object *new,
4738 unsigned frontbuffer_bits)
4739 {
4740 /* Control of individual bits within the mask are guarded by
4741 * the owning plane->mutex, i.e. we can never see concurrent
4742 * manipulation of individual bits. But since the bitfield as a whole
4743 * is updated using RMW, we need to use atomics in order to update
4744 * the bits.
4745 */
4746 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4747 sizeof(atomic_t) * BITS_PER_BYTE);
4748
4749 if (old) {
4750 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4751 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4752 }
4753
4754 if (new) {
4755 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4756 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4757 }
4758 }
4759
4760 /* Allocate a new GEM object and fill it with the supplied data */
4761 struct drm_i915_gem_object *
4762 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4763 const void *data, size_t size)
4764 {
4765 struct drm_i915_gem_object *obj;
4766 struct sg_table *sg;
4767 size_t bytes;
4768 int ret;
4769
4770 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4771 if (IS_ERR(obj))
4772 return obj;
4773
4774 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4775 if (ret)
4776 goto fail;
4777
4778 ret = i915_gem_object_pin_pages(obj);
4779 if (ret)
4780 goto fail;
4781
4782 sg = obj->mm.pages;
4783 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4784 obj->mm.dirty = true; /* Backing store is now out of date */
4785 i915_gem_object_unpin_pages(obj);
4786
4787 if (WARN_ON(bytes != size)) {
4788 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4789 ret = -EFAULT;
4790 goto fail;
4791 }
4792
4793 return obj;
4794
4795 fail:
4796 i915_gem_object_put(obj);
4797 return ERR_PTR(ret);
4798 }
4799
4800 struct scatterlist *
4801 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4802 unsigned int n,
4803 unsigned int *offset)
4804 {
4805 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4806 struct scatterlist *sg;
4807 unsigned int idx, count;
4808
4809 might_sleep();
4810 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4811 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4812
4813 /* As we iterate forward through the sg, we record each entry in a
4814 * radixtree for quick repeated (backwards) lookups. If we have seen
4815 * this index previously, we will have an entry for it.
4816 *
4817 * Initial lookup is O(N), but this is amortized to O(1) for
4818 * sequential page access (where each new request is consecutive
4819 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4820 * i.e. O(1) with a large constant!
4821 */
4822 if (n < READ_ONCE(iter->sg_idx))
4823 goto lookup;
4824
4825 mutex_lock(&iter->lock);
4826
4827 /* We prefer to reuse the last sg so that repeated lookup of this
4828 * (or the subsequent) sg are fast - comparing against the last
4829 * sg is faster than going through the radixtree.
4830 */
4831
4832 sg = iter->sg_pos;
4833 idx = iter->sg_idx;
4834 count = __sg_page_count(sg);
4835
4836 while (idx + count <= n) {
4837 unsigned long exception, i;
4838 int ret;
4839
4840 /* If we cannot allocate and insert this entry, or the
4841 * individual pages from this range, cancel updating the
4842 * sg_idx so that on this lookup we are forced to linearly
4843 * scan onwards, but on future lookups we will try the
4844 * insertion again (in which case we need to be careful of
4845 * the error return reporting that we have already inserted
4846 * this index).
4847 */
4848 ret = radix_tree_insert(&iter->radix, idx, sg);
4849 if (ret && ret != -EEXIST)
4850 goto scan;
4851
4852 exception =
4853 RADIX_TREE_EXCEPTIONAL_ENTRY |
4854 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4855 for (i = 1; i < count; i++) {
4856 ret = radix_tree_insert(&iter->radix, idx + i,
4857 (void *)exception);
4858 if (ret && ret != -EEXIST)
4859 goto scan;
4860 }
4861
4862 idx += count;
4863 sg = ____sg_next(sg);
4864 count = __sg_page_count(sg);
4865 }
4866
4867 scan:
4868 iter->sg_pos = sg;
4869 iter->sg_idx = idx;
4870
4871 mutex_unlock(&iter->lock);
4872
4873 if (unlikely(n < idx)) /* insertion completed by another thread */
4874 goto lookup;
4875
4876 /* In case we failed to insert the entry into the radixtree, we need
4877 * to look beyond the current sg.
4878 */
4879 while (idx + count <= n) {
4880 idx += count;
4881 sg = ____sg_next(sg);
4882 count = __sg_page_count(sg);
4883 }
4884
4885 *offset = n - idx;
4886 return sg;
4887
4888 lookup:
4889 rcu_read_lock();
4890
4891 sg = radix_tree_lookup(&iter->radix, n);
4892 GEM_BUG_ON(!sg);
4893
4894 /* If this index is in the middle of multi-page sg entry,
4895 * the radixtree will contain an exceptional entry that points
4896 * to the start of that range. We will return the pointer to
4897 * the base page and the offset of this page within the
4898 * sg entry's range.
4899 */
4900 *offset = 0;
4901 if (unlikely(radix_tree_exception(sg))) {
4902 unsigned long base =
4903 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4904
4905 sg = radix_tree_lookup(&iter->radix, base);
4906 GEM_BUG_ON(!sg);
4907
4908 *offset = n - base;
4909 }
4910
4911 rcu_read_unlock();
4912
4913 return sg;
4914 }
4915
4916 struct page *
4917 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4918 {
4919 struct scatterlist *sg;
4920 unsigned int offset;
4921
4922 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4923
4924 sg = i915_gem_object_get_sg(obj, n, &offset);
4925 return nth_page(sg_page(sg), offset);
4926 }
4927
4928 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4929 struct page *
4930 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4931 unsigned int n)
4932 {
4933 struct page *page;
4934
4935 page = i915_gem_object_get_page(obj, n);
4936 if (!obj->mm.dirty)
4937 set_page_dirty(page);
4938
4939 return page;
4940 }
4941
4942 dma_addr_t
4943 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4944 unsigned long n)
4945 {
4946 struct scatterlist *sg;
4947 unsigned int offset;
4948
4949 sg = i915_gem_object_get_sg(obj, n, &offset);
4950 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4951 }