]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
229a317602608b33ca35fc583d087f2a8cd7bb1b
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 /**
35 * DOC: Global GTT views
36 *
37 * Background and previous state
38 *
39 * Historically objects could exists (be bound) in global GTT space only as
40 * singular instances with a view representing all of the object's backing pages
41 * in a linear fashion. This view will be called a normal view.
42 *
43 * To support multiple views of the same object, where the number of mapped
44 * pages is not equal to the backing store, or where the layout of the pages
45 * is not linear, concept of a GGTT view was added.
46 *
47 * One example of an alternative view is a stereo display driven by a single
48 * image. In this case we would have a framebuffer looking like this
49 * (2x2 pages):
50 *
51 * 12
52 * 34
53 *
54 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55 * rendering. In contrast, fed to the display engine would be an alternative
56 * view which could look something like this:
57 *
58 * 1212
59 * 3434
60 *
61 * In this example both the size and layout of pages in the alternative view is
62 * different from the normal view.
63 *
64 * Implementation and usage
65 *
66 * GGTT views are implemented using VMAs and are distinguished via enum
67 * i915_ggtt_view_type and struct i915_ggtt_view.
68 *
69 * A new flavour of core GEM functions which work with GGTT bound objects were
70 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71 * renaming in large amounts of code. They take the struct i915_ggtt_view
72 * parameter encapsulating all metadata required to implement a view.
73 *
74 * As a helper for callers which are only interested in the normal view,
75 * globally const i915_ggtt_view_normal singleton instance exists. All old core
76 * GEM API functions, the ones not taking the view parameter, are operating on,
77 * or with the normal GGTT view.
78 *
79 * Code wanting to add or use a new GGTT view needs to:
80 *
81 * 1. Add a new enum with a suitable name.
82 * 2. Extend the metadata in the i915_ggtt_view structure if required.
83 * 3. Add support to i915_get_vma_pages().
84 *
85 * New views are required to build a scatter-gather table from within the
86 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87 * exists for the lifetime of an VMA.
88 *
89 * Core API is designed to have copy semantics which means that passed in
90 * struct i915_ggtt_view does not need to be persistent (left around after
91 * calling the core API functions).
92 *
93 */
94
95 static int
96 i915_get_ggtt_vma_pages(struct i915_vma *vma);
97
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100 .type = I915_GGTT_VIEW_ROTATED
101 };
102
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105 bool has_aliasing_ppgtt;
106 bool has_full_ppgtt;
107
108 has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109 has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110
111 if (intel_vgpu_active(dev))
112 has_full_ppgtt = false; /* emulation is too hard */
113
114 /*
115 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116 * execlists, the sole mechanism available to submit work.
117 */
118 if (INTEL_INFO(dev)->gen < 9 &&
119 (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120 return 0;
121
122 if (enable_ppgtt == 1)
123 return 1;
124
125 if (enable_ppgtt == 2 && has_full_ppgtt)
126 return 2;
127
128 #ifdef CONFIG_INTEL_IOMMU
129 /* Disable ppgtt on SNB if VT-d is on. */
130 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131 DRM_INFO("Disabling PPGTT because VT-d is on\n");
132 return 0;
133 }
134 #endif
135
136 /* Early VLV doesn't have this */
137 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138 dev->pdev->revision < 0xb) {
139 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140 return 0;
141 }
142
143 if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144 return 2;
145 else
146 return has_aliasing_ppgtt ? 1 : 0;
147 }
148
149 static int ppgtt_bind_vma(struct i915_vma *vma,
150 enum i915_cache_level cache_level,
151 u32 unused)
152 {
153 u32 pte_flags = 0;
154
155 /* Currently applicable only to VLV */
156 if (vma->obj->gt_ro)
157 pte_flags |= PTE_READ_ONLY;
158
159 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
160 cache_level, pte_flags);
161
162 return 0;
163 }
164
165 static void ppgtt_unbind_vma(struct i915_vma *vma)
166 {
167 vma->vm->clear_range(vma->vm,
168 vma->node.start,
169 vma->obj->base.size,
170 true);
171 }
172
173 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
174 enum i915_cache_level level,
175 bool valid)
176 {
177 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
178 pte |= addr;
179
180 switch (level) {
181 case I915_CACHE_NONE:
182 pte |= PPAT_UNCACHED_INDEX;
183 break;
184 case I915_CACHE_WT:
185 pte |= PPAT_DISPLAY_ELLC_INDEX;
186 break;
187 default:
188 pte |= PPAT_CACHED_INDEX;
189 break;
190 }
191
192 return pte;
193 }
194
195 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
196 const enum i915_cache_level level)
197 {
198 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
199 pde |= addr;
200 if (level != I915_CACHE_NONE)
201 pde |= PPAT_CACHED_PDE_INDEX;
202 else
203 pde |= PPAT_UNCACHED_INDEX;
204 return pde;
205 }
206
207 #define gen8_pdpe_encode gen8_pde_encode
208 #define gen8_pml4e_encode gen8_pde_encode
209
210 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
211 enum i915_cache_level level,
212 bool valid, u32 unused)
213 {
214 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
215 pte |= GEN6_PTE_ADDR_ENCODE(addr);
216
217 switch (level) {
218 case I915_CACHE_L3_LLC:
219 case I915_CACHE_LLC:
220 pte |= GEN6_PTE_CACHE_LLC;
221 break;
222 case I915_CACHE_NONE:
223 pte |= GEN6_PTE_UNCACHED;
224 break;
225 default:
226 MISSING_CASE(level);
227 }
228
229 return pte;
230 }
231
232 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
233 enum i915_cache_level level,
234 bool valid, u32 unused)
235 {
236 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
237 pte |= GEN6_PTE_ADDR_ENCODE(addr);
238
239 switch (level) {
240 case I915_CACHE_L3_LLC:
241 pte |= GEN7_PTE_CACHE_L3_LLC;
242 break;
243 case I915_CACHE_LLC:
244 pte |= GEN6_PTE_CACHE_LLC;
245 break;
246 case I915_CACHE_NONE:
247 pte |= GEN6_PTE_UNCACHED;
248 break;
249 default:
250 MISSING_CASE(level);
251 }
252
253 return pte;
254 }
255
256 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
257 enum i915_cache_level level,
258 bool valid, u32 flags)
259 {
260 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
261 pte |= GEN6_PTE_ADDR_ENCODE(addr);
262
263 if (!(flags & PTE_READ_ONLY))
264 pte |= BYT_PTE_WRITEABLE;
265
266 if (level != I915_CACHE_NONE)
267 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
268
269 return pte;
270 }
271
272 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
273 enum i915_cache_level level,
274 bool valid, u32 unused)
275 {
276 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
277 pte |= HSW_PTE_ADDR_ENCODE(addr);
278
279 if (level != I915_CACHE_NONE)
280 pte |= HSW_WB_LLC_AGE3;
281
282 return pte;
283 }
284
285 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
286 enum i915_cache_level level,
287 bool valid, u32 unused)
288 {
289 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
290 pte |= HSW_PTE_ADDR_ENCODE(addr);
291
292 switch (level) {
293 case I915_CACHE_NONE:
294 break;
295 case I915_CACHE_WT:
296 pte |= HSW_WT_ELLC_LLC_AGE3;
297 break;
298 default:
299 pte |= HSW_WB_ELLC_LLC_AGE3;
300 break;
301 }
302
303 return pte;
304 }
305
306 static int __setup_page_dma(struct drm_device *dev,
307 struct i915_page_dma *p, gfp_t flags)
308 {
309 struct device *device = &dev->pdev->dev;
310
311 p->page = alloc_page(flags);
312 if (!p->page)
313 return -ENOMEM;
314
315 p->daddr = dma_map_page(device,
316 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
317
318 if (dma_mapping_error(device, p->daddr)) {
319 __free_page(p->page);
320 return -EINVAL;
321 }
322
323 return 0;
324 }
325
326 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
327 {
328 return __setup_page_dma(dev, p, GFP_KERNEL);
329 }
330
331 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
332 {
333 if (WARN_ON(!p->page))
334 return;
335
336 dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
337 __free_page(p->page);
338 memset(p, 0, sizeof(*p));
339 }
340
341 static void *kmap_page_dma(struct i915_page_dma *p)
342 {
343 return kmap_atomic(p->page);
344 }
345
346 /* We use the flushing unmap only with ppgtt structures:
347 * page directories, page tables and scratch pages.
348 */
349 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
350 {
351 /* There are only few exceptions for gen >=6. chv and bxt.
352 * And we are not sure about the latter so play safe for now.
353 */
354 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
355 drm_clflush_virt_range(vaddr, PAGE_SIZE);
356
357 kunmap_atomic(vaddr);
358 }
359
360 #define kmap_px(px) kmap_page_dma(px_base(px))
361 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
362
363 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
364 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
365 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
366 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
367
368 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
369 const uint64_t val)
370 {
371 int i;
372 uint64_t * const vaddr = kmap_page_dma(p);
373
374 for (i = 0; i < 512; i++)
375 vaddr[i] = val;
376
377 kunmap_page_dma(dev, vaddr);
378 }
379
380 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
381 const uint32_t val32)
382 {
383 uint64_t v = val32;
384
385 v = v << 32 | val32;
386
387 fill_page_dma(dev, p, v);
388 }
389
390 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
391 {
392 struct i915_page_scratch *sp;
393 int ret;
394
395 sp = kzalloc(sizeof(*sp), GFP_KERNEL);
396 if (sp == NULL)
397 return ERR_PTR(-ENOMEM);
398
399 ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
400 if (ret) {
401 kfree(sp);
402 return ERR_PTR(ret);
403 }
404
405 set_pages_uc(px_page(sp), 1);
406
407 return sp;
408 }
409
410 static void free_scratch_page(struct drm_device *dev,
411 struct i915_page_scratch *sp)
412 {
413 set_pages_wb(px_page(sp), 1);
414
415 cleanup_px(dev, sp);
416 kfree(sp);
417 }
418
419 static struct i915_page_table *alloc_pt(struct drm_device *dev)
420 {
421 struct i915_page_table *pt;
422 const size_t count = INTEL_INFO(dev)->gen >= 8 ?
423 GEN8_PTES : GEN6_PTES;
424 int ret = -ENOMEM;
425
426 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
427 if (!pt)
428 return ERR_PTR(-ENOMEM);
429
430 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
431 GFP_KERNEL);
432
433 if (!pt->used_ptes)
434 goto fail_bitmap;
435
436 ret = setup_px(dev, pt);
437 if (ret)
438 goto fail_page_m;
439
440 return pt;
441
442 fail_page_m:
443 kfree(pt->used_ptes);
444 fail_bitmap:
445 kfree(pt);
446
447 return ERR_PTR(ret);
448 }
449
450 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
451 {
452 cleanup_px(dev, pt);
453 kfree(pt->used_ptes);
454 kfree(pt);
455 }
456
457 static void gen8_initialize_pt(struct i915_address_space *vm,
458 struct i915_page_table *pt)
459 {
460 gen8_pte_t scratch_pte;
461
462 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
463 I915_CACHE_LLC, true);
464
465 fill_px(vm->dev, pt, scratch_pte);
466 }
467
468 static void gen6_initialize_pt(struct i915_address_space *vm,
469 struct i915_page_table *pt)
470 {
471 gen6_pte_t scratch_pte;
472
473 WARN_ON(px_dma(vm->scratch_page) == 0);
474
475 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
476 I915_CACHE_LLC, true, 0);
477
478 fill32_px(vm->dev, pt, scratch_pte);
479 }
480
481 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
482 {
483 struct i915_page_directory *pd;
484 int ret = -ENOMEM;
485
486 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
487 if (!pd)
488 return ERR_PTR(-ENOMEM);
489
490 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
491 sizeof(*pd->used_pdes), GFP_KERNEL);
492 if (!pd->used_pdes)
493 goto fail_bitmap;
494
495 ret = setup_px(dev, pd);
496 if (ret)
497 goto fail_page_m;
498
499 return pd;
500
501 fail_page_m:
502 kfree(pd->used_pdes);
503 fail_bitmap:
504 kfree(pd);
505
506 return ERR_PTR(ret);
507 }
508
509 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
510 {
511 if (px_page(pd)) {
512 cleanup_px(dev, pd);
513 kfree(pd->used_pdes);
514 kfree(pd);
515 }
516 }
517
518 static void gen8_initialize_pd(struct i915_address_space *vm,
519 struct i915_page_directory *pd)
520 {
521 gen8_pde_t scratch_pde;
522
523 scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
524
525 fill_px(vm->dev, pd, scratch_pde);
526 }
527
528 static int __pdp_init(struct drm_device *dev,
529 struct i915_page_directory_pointer *pdp)
530 {
531 size_t pdpes = I915_PDPES_PER_PDP(dev);
532
533 pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
534 sizeof(unsigned long),
535 GFP_KERNEL);
536 if (!pdp->used_pdpes)
537 return -ENOMEM;
538
539 pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
540 GFP_KERNEL);
541 if (!pdp->page_directory) {
542 kfree(pdp->used_pdpes);
543 /* the PDP might be the statically allocated top level. Keep it
544 * as clean as possible */
545 pdp->used_pdpes = NULL;
546 return -ENOMEM;
547 }
548
549 return 0;
550 }
551
552 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
553 {
554 kfree(pdp->used_pdpes);
555 kfree(pdp->page_directory);
556 pdp->page_directory = NULL;
557 }
558
559 static struct
560 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
561 {
562 struct i915_page_directory_pointer *pdp;
563 int ret = -ENOMEM;
564
565 WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
566
567 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
568 if (!pdp)
569 return ERR_PTR(-ENOMEM);
570
571 ret = __pdp_init(dev, pdp);
572 if (ret)
573 goto fail_bitmap;
574
575 ret = setup_px(dev, pdp);
576 if (ret)
577 goto fail_page_m;
578
579 return pdp;
580
581 fail_page_m:
582 __pdp_fini(pdp);
583 fail_bitmap:
584 kfree(pdp);
585
586 return ERR_PTR(ret);
587 }
588
589 static void free_pdp(struct drm_device *dev,
590 struct i915_page_directory_pointer *pdp)
591 {
592 __pdp_fini(pdp);
593 if (USES_FULL_48BIT_PPGTT(dev)) {
594 cleanup_px(dev, pdp);
595 kfree(pdp);
596 }
597 }
598
599 static void
600 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
601 struct i915_page_directory_pointer *pdp,
602 struct i915_page_directory *pd,
603 int index)
604 {
605 gen8_ppgtt_pdpe_t *page_directorypo;
606
607 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
608 return;
609
610 page_directorypo = kmap_px(pdp);
611 page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
612 kunmap_px(ppgtt, page_directorypo);
613 }
614
615 static void
616 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
617 struct i915_pml4 *pml4,
618 struct i915_page_directory_pointer *pdp,
619 int index)
620 {
621 gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
622
623 WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
624 pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
625 kunmap_px(ppgtt, pagemap);
626 }
627
628 /* Broadwell Page Directory Pointer Descriptors */
629 static int gen8_write_pdp(struct drm_i915_gem_request *req,
630 unsigned entry,
631 dma_addr_t addr)
632 {
633 struct intel_engine_cs *ring = req->ring;
634 int ret;
635
636 BUG_ON(entry >= 4);
637
638 ret = intel_ring_begin(req, 6);
639 if (ret)
640 return ret;
641
642 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
643 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
644 intel_ring_emit(ring, upper_32_bits(addr));
645 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
646 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
647 intel_ring_emit(ring, lower_32_bits(addr));
648 intel_ring_advance(ring);
649
650 return 0;
651 }
652
653 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
654 struct drm_i915_gem_request *req)
655 {
656 int i, ret;
657
658 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
659 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
660
661 ret = gen8_write_pdp(req, i, pd_daddr);
662 if (ret)
663 return ret;
664 }
665
666 return 0;
667 }
668
669 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
670 struct i915_page_directory_pointer *pdp,
671 uint64_t start,
672 uint64_t length,
673 gen8_pte_t scratch_pte)
674 {
675 struct i915_hw_ppgtt *ppgtt =
676 container_of(vm, struct i915_hw_ppgtt, base);
677 gen8_pte_t *pt_vaddr;
678 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
679 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
680 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
681 unsigned num_entries = length >> PAGE_SHIFT;
682 unsigned last_pte, i;
683
684 if (WARN_ON(!pdp))
685 return;
686
687 while (num_entries) {
688 struct i915_page_directory *pd;
689 struct i915_page_table *pt;
690
691 if (WARN_ON(!pdp->page_directory[pdpe]))
692 break;
693
694 pd = pdp->page_directory[pdpe];
695
696 if (WARN_ON(!pd->page_table[pde]))
697 break;
698
699 pt = pd->page_table[pde];
700
701 if (WARN_ON(!px_page(pt)))
702 break;
703
704 last_pte = pte + num_entries;
705 if (last_pte > GEN8_PTES)
706 last_pte = GEN8_PTES;
707
708 pt_vaddr = kmap_px(pt);
709
710 for (i = pte; i < last_pte; i++) {
711 pt_vaddr[i] = scratch_pte;
712 num_entries--;
713 }
714
715 kunmap_px(ppgtt, pt);
716
717 pte = 0;
718 if (++pde == I915_PDES) {
719 pdpe++;
720 pde = 0;
721 }
722 }
723 }
724
725 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
726 uint64_t start,
727 uint64_t length,
728 bool use_scratch)
729 {
730 struct i915_hw_ppgtt *ppgtt =
731 container_of(vm, struct i915_hw_ppgtt, base);
732 struct i915_page_directory_pointer *pdp = &ppgtt->pdp; /* FIXME: 48b */
733
734 gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
735 I915_CACHE_LLC, use_scratch);
736
737 gen8_ppgtt_clear_pte_range(vm, pdp, start, length, scratch_pte);
738 }
739
740 static void
741 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
742 struct i915_page_directory_pointer *pdp,
743 struct sg_table *pages,
744 uint64_t start,
745 enum i915_cache_level cache_level)
746 {
747 struct i915_hw_ppgtt *ppgtt =
748 container_of(vm, struct i915_hw_ppgtt, base);
749 gen8_pte_t *pt_vaddr;
750 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
751 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
752 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
753 struct sg_page_iter sg_iter;
754
755 pt_vaddr = NULL;
756
757 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
758 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
759 break;
760
761 if (pt_vaddr == NULL) {
762 struct i915_page_directory *pd = pdp->page_directory[pdpe];
763 struct i915_page_table *pt = pd->page_table[pde];
764 pt_vaddr = kmap_px(pt);
765 }
766
767 pt_vaddr[pte] =
768 gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
769 cache_level, true);
770 if (++pte == GEN8_PTES) {
771 kunmap_px(ppgtt, pt_vaddr);
772 pt_vaddr = NULL;
773 if (++pde == I915_PDES) {
774 pdpe++;
775 pde = 0;
776 }
777 pte = 0;
778 }
779 }
780
781 if (pt_vaddr)
782 kunmap_px(ppgtt, pt_vaddr);
783 }
784
785 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
786 struct sg_table *pages,
787 uint64_t start,
788 enum i915_cache_level cache_level,
789 u32 unused)
790 {
791 struct i915_hw_ppgtt *ppgtt =
792 container_of(vm, struct i915_hw_ppgtt, base);
793 struct i915_page_directory_pointer *pdp = &ppgtt->pdp; /* FIXME: 48b */
794
795 gen8_ppgtt_insert_pte_entries(vm, pdp, pages, start, cache_level);
796 }
797
798 static void gen8_free_page_tables(struct drm_device *dev,
799 struct i915_page_directory *pd)
800 {
801 int i;
802
803 if (!px_page(pd))
804 return;
805
806 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
807 if (WARN_ON(!pd->page_table[i]))
808 continue;
809
810 free_pt(dev, pd->page_table[i]);
811 pd->page_table[i] = NULL;
812 }
813 }
814
815 static int gen8_init_scratch(struct i915_address_space *vm)
816 {
817 struct drm_device *dev = vm->dev;
818
819 vm->scratch_page = alloc_scratch_page(dev);
820 if (IS_ERR(vm->scratch_page))
821 return PTR_ERR(vm->scratch_page);
822
823 vm->scratch_pt = alloc_pt(dev);
824 if (IS_ERR(vm->scratch_pt)) {
825 free_scratch_page(dev, vm->scratch_page);
826 return PTR_ERR(vm->scratch_pt);
827 }
828
829 vm->scratch_pd = alloc_pd(dev);
830 if (IS_ERR(vm->scratch_pd)) {
831 free_pt(dev, vm->scratch_pt);
832 free_scratch_page(dev, vm->scratch_page);
833 return PTR_ERR(vm->scratch_pd);
834 }
835
836 gen8_initialize_pt(vm, vm->scratch_pt);
837 gen8_initialize_pd(vm, vm->scratch_pd);
838
839 return 0;
840 }
841
842 static void gen8_free_scratch(struct i915_address_space *vm)
843 {
844 struct drm_device *dev = vm->dev;
845
846 free_pd(dev, vm->scratch_pd);
847 free_pt(dev, vm->scratch_pt);
848 free_scratch_page(dev, vm->scratch_page);
849 }
850
851 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
852 struct i915_page_directory_pointer *pdp)
853 {
854 int i;
855
856 for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
857 if (WARN_ON(!pdp->page_directory[i]))
858 continue;
859
860 gen8_free_page_tables(dev, pdp->page_directory[i]);
861 free_pd(dev, pdp->page_directory[i]);
862 }
863
864 free_pdp(dev, pdp);
865 }
866
867 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
868 {
869 int i;
870
871 for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
872 if (WARN_ON(!ppgtt->pml4.pdps[i]))
873 continue;
874
875 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
876 }
877
878 cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
879 }
880
881 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
882 {
883 struct i915_hw_ppgtt *ppgtt =
884 container_of(vm, struct i915_hw_ppgtt, base);
885
886 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
887 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
888 else
889 gen8_ppgtt_cleanup_4lvl(ppgtt);
890
891 gen8_free_scratch(vm);
892 }
893
894 /**
895 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
896 * @vm: Master vm structure.
897 * @pd: Page directory for this address range.
898 * @start: Starting virtual address to begin allocations.
899 * @length: Size of the allocations.
900 * @new_pts: Bitmap set by function with new allocations. Likely used by the
901 * caller to free on error.
902 *
903 * Allocate the required number of page tables. Extremely similar to
904 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
905 * the page directory boundary (instead of the page directory pointer). That
906 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
907 * possible, and likely that the caller will need to use multiple calls of this
908 * function to achieve the appropriate allocation.
909 *
910 * Return: 0 if success; negative error code otherwise.
911 */
912 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
913 struct i915_page_directory *pd,
914 uint64_t start,
915 uint64_t length,
916 unsigned long *new_pts)
917 {
918 struct drm_device *dev = vm->dev;
919 struct i915_page_table *pt;
920 uint64_t temp;
921 uint32_t pde;
922
923 gen8_for_each_pde(pt, pd, start, length, temp, pde) {
924 /* Don't reallocate page tables */
925 if (test_bit(pde, pd->used_pdes)) {
926 /* Scratch is never allocated this way */
927 WARN_ON(pt == vm->scratch_pt);
928 continue;
929 }
930
931 pt = alloc_pt(dev);
932 if (IS_ERR(pt))
933 goto unwind_out;
934
935 gen8_initialize_pt(vm, pt);
936 pd->page_table[pde] = pt;
937 __set_bit(pde, new_pts);
938 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
939 }
940
941 return 0;
942
943 unwind_out:
944 for_each_set_bit(pde, new_pts, I915_PDES)
945 free_pt(dev, pd->page_table[pde]);
946
947 return -ENOMEM;
948 }
949
950 /**
951 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
952 * @vm: Master vm structure.
953 * @pdp: Page directory pointer for this address range.
954 * @start: Starting virtual address to begin allocations.
955 * @length: Size of the allocations.
956 * @new_pds: Bitmap set by function with new allocations. Likely used by the
957 * caller to free on error.
958 *
959 * Allocate the required number of page directories starting at the pde index of
960 * @start, and ending at the pde index @start + @length. This function will skip
961 * over already allocated page directories within the range, and only allocate
962 * new ones, setting the appropriate pointer within the pdp as well as the
963 * correct position in the bitmap @new_pds.
964 *
965 * The function will only allocate the pages within the range for a give page
966 * directory pointer. In other words, if @start + @length straddles a virtually
967 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
968 * required by the caller, This is not currently possible, and the BUG in the
969 * code will prevent it.
970 *
971 * Return: 0 if success; negative error code otherwise.
972 */
973 static int
974 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
975 struct i915_page_directory_pointer *pdp,
976 uint64_t start,
977 uint64_t length,
978 unsigned long *new_pds)
979 {
980 struct drm_device *dev = vm->dev;
981 struct i915_page_directory *pd;
982 uint64_t temp;
983 uint32_t pdpe;
984 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
985
986 WARN_ON(!bitmap_empty(new_pds, pdpes));
987
988 gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
989 if (test_bit(pdpe, pdp->used_pdpes))
990 continue;
991
992 pd = alloc_pd(dev);
993 if (IS_ERR(pd))
994 goto unwind_out;
995
996 gen8_initialize_pd(vm, pd);
997 pdp->page_directory[pdpe] = pd;
998 __set_bit(pdpe, new_pds);
999 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1000 }
1001
1002 return 0;
1003
1004 unwind_out:
1005 for_each_set_bit(pdpe, new_pds, pdpes)
1006 free_pd(dev, pdp->page_directory[pdpe]);
1007
1008 return -ENOMEM;
1009 }
1010
1011 /**
1012 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1013 * @vm: Master vm structure.
1014 * @pml4: Page map level 4 for this address range.
1015 * @start: Starting virtual address to begin allocations.
1016 * @length: Size of the allocations.
1017 * @new_pdps: Bitmap set by function with new allocations. Likely used by the
1018 * caller to free on error.
1019 *
1020 * Allocate the required number of page directory pointers. Extremely similar to
1021 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1022 * The main difference is here we are limited by the pml4 boundary (instead of
1023 * the page directory pointer).
1024 *
1025 * Return: 0 if success; negative error code otherwise.
1026 */
1027 static int
1028 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1029 struct i915_pml4 *pml4,
1030 uint64_t start,
1031 uint64_t length,
1032 unsigned long *new_pdps)
1033 {
1034 struct drm_device *dev = vm->dev;
1035 struct i915_page_directory_pointer *pdp;
1036 uint64_t temp;
1037 uint32_t pml4e;
1038
1039 WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1040
1041 gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1042 if (!test_bit(pml4e, pml4->used_pml4es)) {
1043 pdp = alloc_pdp(dev);
1044 if (IS_ERR(pdp))
1045 goto unwind_out;
1046
1047 pml4->pdps[pml4e] = pdp;
1048 __set_bit(pml4e, new_pdps);
1049 trace_i915_page_directory_pointer_entry_alloc(vm,
1050 pml4e,
1051 start,
1052 GEN8_PML4E_SHIFT);
1053 }
1054 }
1055
1056 return 0;
1057
1058 unwind_out:
1059 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1060 free_pdp(dev, pml4->pdps[pml4e]);
1061
1062 return -ENOMEM;
1063 }
1064
1065 static void
1066 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts,
1067 uint32_t pdpes)
1068 {
1069 int i;
1070
1071 for (i = 0; i < pdpes; i++)
1072 kfree(new_pts[i]);
1073 kfree(new_pts);
1074 kfree(new_pds);
1075 }
1076
1077 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1078 * of these are based on the number of PDPEs in the system.
1079 */
1080 static
1081 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1082 unsigned long ***new_pts,
1083 uint32_t pdpes)
1084 {
1085 int i;
1086 unsigned long *pds;
1087 unsigned long **pts;
1088
1089 pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_KERNEL);
1090 if (!pds)
1091 return -ENOMEM;
1092
1093 pts = kcalloc(pdpes, sizeof(unsigned long *), GFP_KERNEL);
1094 if (!pts) {
1095 kfree(pds);
1096 return -ENOMEM;
1097 }
1098
1099 for (i = 0; i < pdpes; i++) {
1100 pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES),
1101 sizeof(unsigned long), GFP_KERNEL);
1102 if (!pts[i])
1103 goto err_out;
1104 }
1105
1106 *new_pds = pds;
1107 *new_pts = pts;
1108
1109 return 0;
1110
1111 err_out:
1112 free_gen8_temp_bitmaps(pds, pts, pdpes);
1113 return -ENOMEM;
1114 }
1115
1116 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1117 * the page table structures, we mark them dirty so that
1118 * context switching/execlist queuing code takes extra steps
1119 * to ensure that tlbs are flushed.
1120 */
1121 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1122 {
1123 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1124 }
1125
1126 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1127 struct i915_page_directory_pointer *pdp,
1128 uint64_t start,
1129 uint64_t length)
1130 {
1131 struct i915_hw_ppgtt *ppgtt =
1132 container_of(vm, struct i915_hw_ppgtt, base);
1133 unsigned long *new_page_dirs, **new_page_tables;
1134 struct drm_device *dev = vm->dev;
1135 struct i915_page_directory *pd;
1136 const uint64_t orig_start = start;
1137 const uint64_t orig_length = length;
1138 uint64_t temp;
1139 uint32_t pdpe;
1140 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1141 int ret;
1142
1143 /* Wrap is never okay since we can only represent 48b, and we don't
1144 * actually use the other side of the canonical address space.
1145 */
1146 if (WARN_ON(start + length < start))
1147 return -ENODEV;
1148
1149 if (WARN_ON(start + length > vm->total))
1150 return -ENODEV;
1151
1152 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1153 if (ret)
1154 return ret;
1155
1156 /* Do the allocations first so we can easily bail out */
1157 ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1158 new_page_dirs);
1159 if (ret) {
1160 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables, pdpes);
1161 return ret;
1162 }
1163
1164 /* For every page directory referenced, allocate page tables */
1165 gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1166 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1167 new_page_tables[pdpe]);
1168 if (ret)
1169 goto err_out;
1170 }
1171
1172 start = orig_start;
1173 length = orig_length;
1174
1175 /* Allocations have completed successfully, so set the bitmaps, and do
1176 * the mappings. */
1177 gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1178 gen8_pde_t *const page_directory = kmap_px(pd);
1179 struct i915_page_table *pt;
1180 uint64_t pd_len = length;
1181 uint64_t pd_start = start;
1182 uint32_t pde;
1183
1184 /* Every pd should be allocated, we just did that above. */
1185 WARN_ON(!pd);
1186
1187 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
1188 /* Same reasoning as pd */
1189 WARN_ON(!pt);
1190 WARN_ON(!pd_len);
1191 WARN_ON(!gen8_pte_count(pd_start, pd_len));
1192
1193 /* Set our used ptes within the page table */
1194 bitmap_set(pt->used_ptes,
1195 gen8_pte_index(pd_start),
1196 gen8_pte_count(pd_start, pd_len));
1197
1198 /* Our pde is now pointing to the pagetable, pt */
1199 __set_bit(pde, pd->used_pdes);
1200
1201 /* Map the PDE to the page table */
1202 page_directory[pde] = gen8_pde_encode(px_dma(pt),
1203 I915_CACHE_LLC);
1204 trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1205 gen8_pte_index(start),
1206 gen8_pte_count(start, length),
1207 GEN8_PTES);
1208
1209 /* NB: We haven't yet mapped ptes to pages. At this
1210 * point we're still relying on insert_entries() */
1211 }
1212
1213 kunmap_px(ppgtt, page_directory);
1214 __set_bit(pdpe, pdp->used_pdpes);
1215 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1216 }
1217
1218 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables, pdpes);
1219 mark_tlbs_dirty(ppgtt);
1220 return 0;
1221
1222 err_out:
1223 while (pdpe--) {
1224 for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES)
1225 free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1226 }
1227
1228 for_each_set_bit(pdpe, new_page_dirs, pdpes)
1229 free_pd(dev, pdp->page_directory[pdpe]);
1230
1231 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables, pdpes);
1232 mark_tlbs_dirty(ppgtt);
1233 return ret;
1234 }
1235
1236 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1237 struct i915_pml4 *pml4,
1238 uint64_t start,
1239 uint64_t length)
1240 {
1241 DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1242 struct i915_hw_ppgtt *ppgtt =
1243 container_of(vm, struct i915_hw_ppgtt, base);
1244 struct i915_page_directory_pointer *pdp;
1245 uint64_t temp, pml4e;
1246 int ret = 0;
1247
1248 /* Do the pml4 allocations first, so we don't need to track the newly
1249 * allocated tables below the pdp */
1250 bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1251
1252 /* The pagedirectory and pagetable allocations are done in the shared 3
1253 * and 4 level code. Just allocate the pdps.
1254 */
1255 ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1256 new_pdps);
1257 if (ret)
1258 return ret;
1259
1260 WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1261 "The allocation has spanned more than 512GB. "
1262 "It is highly likely this is incorrect.");
1263
1264 gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1265 WARN_ON(!pdp);
1266
1267 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1268 if (ret)
1269 goto err_out;
1270
1271 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1272 }
1273
1274 bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1275 GEN8_PML4ES_PER_PML4);
1276
1277 return 0;
1278
1279 err_out:
1280 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1281 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1282
1283 return ret;
1284 }
1285
1286 static int gen8_alloc_va_range(struct i915_address_space *vm,
1287 uint64_t start, uint64_t length)
1288 {
1289 struct i915_hw_ppgtt *ppgtt =
1290 container_of(vm, struct i915_hw_ppgtt, base);
1291
1292 if (USES_FULL_48BIT_PPGTT(vm->dev))
1293 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1294 else
1295 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1296 }
1297
1298 /*
1299 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1300 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1301 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1302 * space.
1303 *
1304 */
1305 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1306 {
1307 int ret;
1308
1309 ret = gen8_init_scratch(&ppgtt->base);
1310 if (ret)
1311 return ret;
1312
1313 ppgtt->base.start = 0;
1314 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1315 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1316 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1317 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1318 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1319 ppgtt->base.bind_vma = ppgtt_bind_vma;
1320
1321 ppgtt->switch_mm = gen8_mm_switch;
1322
1323 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1324 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1325 if (ret)
1326 goto free_scratch;
1327
1328 ppgtt->base.total = 1ULL << 48;
1329 } else {
1330 ret = __pdp_init(false, &ppgtt->pdp);
1331 if (ret)
1332 goto free_scratch;
1333
1334 ppgtt->base.total = 1ULL << 32;
1335 if (IS_ENABLED(CONFIG_X86_32))
1336 /* While we have a proliferation of size_t variables
1337 * we cannot represent the full ppgtt size on 32bit,
1338 * so limit it to the same size as the GGTT (currently
1339 * 2GiB).
1340 */
1341 ppgtt->base.total = to_i915(ppgtt->base.dev)->gtt.base.total;
1342
1343 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1344 0, 0,
1345 GEN8_PML4E_SHIFT);
1346 }
1347
1348 return 0;
1349
1350 free_scratch:
1351 gen8_free_scratch(&ppgtt->base);
1352 return ret;
1353 }
1354
1355 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1356 {
1357 struct i915_address_space *vm = &ppgtt->base;
1358 struct i915_page_table *unused;
1359 gen6_pte_t scratch_pte;
1360 uint32_t pd_entry;
1361 uint32_t pte, pde, temp;
1362 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1363
1364 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1365 I915_CACHE_LLC, true, 0);
1366
1367 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1368 u32 expected;
1369 gen6_pte_t *pt_vaddr;
1370 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1371 pd_entry = readl(ppgtt->pd_addr + pde);
1372 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1373
1374 if (pd_entry != expected)
1375 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1376 pde,
1377 pd_entry,
1378 expected);
1379 seq_printf(m, "\tPDE: %x\n", pd_entry);
1380
1381 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1382
1383 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1384 unsigned long va =
1385 (pde * PAGE_SIZE * GEN6_PTES) +
1386 (pte * PAGE_SIZE);
1387 int i;
1388 bool found = false;
1389 for (i = 0; i < 4; i++)
1390 if (pt_vaddr[pte + i] != scratch_pte)
1391 found = true;
1392 if (!found)
1393 continue;
1394
1395 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1396 for (i = 0; i < 4; i++) {
1397 if (pt_vaddr[pte + i] != scratch_pte)
1398 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1399 else
1400 seq_puts(m, " SCRATCH ");
1401 }
1402 seq_puts(m, "\n");
1403 }
1404 kunmap_px(ppgtt, pt_vaddr);
1405 }
1406 }
1407
1408 /* Write pde (index) from the page directory @pd to the page table @pt */
1409 static void gen6_write_pde(struct i915_page_directory *pd,
1410 const int pde, struct i915_page_table *pt)
1411 {
1412 /* Caller needs to make sure the write completes if necessary */
1413 struct i915_hw_ppgtt *ppgtt =
1414 container_of(pd, struct i915_hw_ppgtt, pd);
1415 u32 pd_entry;
1416
1417 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1418 pd_entry |= GEN6_PDE_VALID;
1419
1420 writel(pd_entry, ppgtt->pd_addr + pde);
1421 }
1422
1423 /* Write all the page tables found in the ppgtt structure to incrementing page
1424 * directories. */
1425 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1426 struct i915_page_directory *pd,
1427 uint32_t start, uint32_t length)
1428 {
1429 struct i915_page_table *pt;
1430 uint32_t pde, temp;
1431
1432 gen6_for_each_pde(pt, pd, start, length, temp, pde)
1433 gen6_write_pde(pd, pde, pt);
1434
1435 /* Make sure write is complete before other code can use this page
1436 * table. Also require for WC mapped PTEs */
1437 readl(dev_priv->gtt.gsm);
1438 }
1439
1440 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1441 {
1442 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1443
1444 return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1445 }
1446
1447 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1448 struct drm_i915_gem_request *req)
1449 {
1450 struct intel_engine_cs *ring = req->ring;
1451 int ret;
1452
1453 /* NB: TLBs must be flushed and invalidated before a switch */
1454 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1455 if (ret)
1456 return ret;
1457
1458 ret = intel_ring_begin(req, 6);
1459 if (ret)
1460 return ret;
1461
1462 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1463 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1464 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1465 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1466 intel_ring_emit(ring, get_pd_offset(ppgtt));
1467 intel_ring_emit(ring, MI_NOOP);
1468 intel_ring_advance(ring);
1469
1470 return 0;
1471 }
1472
1473 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1474 struct drm_i915_gem_request *req)
1475 {
1476 struct intel_engine_cs *ring = req->ring;
1477 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1478
1479 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1480 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1481 return 0;
1482 }
1483
1484 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1485 struct drm_i915_gem_request *req)
1486 {
1487 struct intel_engine_cs *ring = req->ring;
1488 int ret;
1489
1490 /* NB: TLBs must be flushed and invalidated before a switch */
1491 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1492 if (ret)
1493 return ret;
1494
1495 ret = intel_ring_begin(req, 6);
1496 if (ret)
1497 return ret;
1498
1499 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1500 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1501 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1502 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1503 intel_ring_emit(ring, get_pd_offset(ppgtt));
1504 intel_ring_emit(ring, MI_NOOP);
1505 intel_ring_advance(ring);
1506
1507 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1508 if (ring->id != RCS) {
1509 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1510 if (ret)
1511 return ret;
1512 }
1513
1514 return 0;
1515 }
1516
1517 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1518 struct drm_i915_gem_request *req)
1519 {
1520 struct intel_engine_cs *ring = req->ring;
1521 struct drm_device *dev = ppgtt->base.dev;
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523
1524
1525 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1526 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1527
1528 POSTING_READ(RING_PP_DIR_DCLV(ring));
1529
1530 return 0;
1531 }
1532
1533 static void gen8_ppgtt_enable(struct drm_device *dev)
1534 {
1535 struct drm_i915_private *dev_priv = dev->dev_private;
1536 struct intel_engine_cs *ring;
1537 int j;
1538
1539 for_each_ring(ring, dev_priv, j) {
1540 I915_WRITE(RING_MODE_GEN7(ring),
1541 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1542 }
1543 }
1544
1545 static void gen7_ppgtt_enable(struct drm_device *dev)
1546 {
1547 struct drm_i915_private *dev_priv = dev->dev_private;
1548 struct intel_engine_cs *ring;
1549 uint32_t ecochk, ecobits;
1550 int i;
1551
1552 ecobits = I915_READ(GAC_ECO_BITS);
1553 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1554
1555 ecochk = I915_READ(GAM_ECOCHK);
1556 if (IS_HASWELL(dev)) {
1557 ecochk |= ECOCHK_PPGTT_WB_HSW;
1558 } else {
1559 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1560 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1561 }
1562 I915_WRITE(GAM_ECOCHK, ecochk);
1563
1564 for_each_ring(ring, dev_priv, i) {
1565 /* GFX_MODE is per-ring on gen7+ */
1566 I915_WRITE(RING_MODE_GEN7(ring),
1567 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1568 }
1569 }
1570
1571 static void gen6_ppgtt_enable(struct drm_device *dev)
1572 {
1573 struct drm_i915_private *dev_priv = dev->dev_private;
1574 uint32_t ecochk, gab_ctl, ecobits;
1575
1576 ecobits = I915_READ(GAC_ECO_BITS);
1577 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1578 ECOBITS_PPGTT_CACHE64B);
1579
1580 gab_ctl = I915_READ(GAB_CTL);
1581 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1582
1583 ecochk = I915_READ(GAM_ECOCHK);
1584 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1585
1586 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1587 }
1588
1589 /* PPGTT support for Sandybdrige/Gen6 and later */
1590 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1591 uint64_t start,
1592 uint64_t length,
1593 bool use_scratch)
1594 {
1595 struct i915_hw_ppgtt *ppgtt =
1596 container_of(vm, struct i915_hw_ppgtt, base);
1597 gen6_pte_t *pt_vaddr, scratch_pte;
1598 unsigned first_entry = start >> PAGE_SHIFT;
1599 unsigned num_entries = length >> PAGE_SHIFT;
1600 unsigned act_pt = first_entry / GEN6_PTES;
1601 unsigned first_pte = first_entry % GEN6_PTES;
1602 unsigned last_pte, i;
1603
1604 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1605 I915_CACHE_LLC, true, 0);
1606
1607 while (num_entries) {
1608 last_pte = first_pte + num_entries;
1609 if (last_pte > GEN6_PTES)
1610 last_pte = GEN6_PTES;
1611
1612 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1613
1614 for (i = first_pte; i < last_pte; i++)
1615 pt_vaddr[i] = scratch_pte;
1616
1617 kunmap_px(ppgtt, pt_vaddr);
1618
1619 num_entries -= last_pte - first_pte;
1620 first_pte = 0;
1621 act_pt++;
1622 }
1623 }
1624
1625 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1626 struct sg_table *pages,
1627 uint64_t start,
1628 enum i915_cache_level cache_level, u32 flags)
1629 {
1630 struct i915_hw_ppgtt *ppgtt =
1631 container_of(vm, struct i915_hw_ppgtt, base);
1632 gen6_pte_t *pt_vaddr;
1633 unsigned first_entry = start >> PAGE_SHIFT;
1634 unsigned act_pt = first_entry / GEN6_PTES;
1635 unsigned act_pte = first_entry % GEN6_PTES;
1636 struct sg_page_iter sg_iter;
1637
1638 pt_vaddr = NULL;
1639 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1640 if (pt_vaddr == NULL)
1641 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1642
1643 pt_vaddr[act_pte] =
1644 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1645 cache_level, true, flags);
1646
1647 if (++act_pte == GEN6_PTES) {
1648 kunmap_px(ppgtt, pt_vaddr);
1649 pt_vaddr = NULL;
1650 act_pt++;
1651 act_pte = 0;
1652 }
1653 }
1654 if (pt_vaddr)
1655 kunmap_px(ppgtt, pt_vaddr);
1656 }
1657
1658 static int gen6_alloc_va_range(struct i915_address_space *vm,
1659 uint64_t start_in, uint64_t length_in)
1660 {
1661 DECLARE_BITMAP(new_page_tables, I915_PDES);
1662 struct drm_device *dev = vm->dev;
1663 struct drm_i915_private *dev_priv = dev->dev_private;
1664 struct i915_hw_ppgtt *ppgtt =
1665 container_of(vm, struct i915_hw_ppgtt, base);
1666 struct i915_page_table *pt;
1667 uint32_t start, length, start_save, length_save;
1668 uint32_t pde, temp;
1669 int ret;
1670
1671 if (WARN_ON(start_in + length_in > ppgtt->base.total))
1672 return -ENODEV;
1673
1674 start = start_save = start_in;
1675 length = length_save = length_in;
1676
1677 bitmap_zero(new_page_tables, I915_PDES);
1678
1679 /* The allocation is done in two stages so that we can bail out with
1680 * minimal amount of pain. The first stage finds new page tables that
1681 * need allocation. The second stage marks use ptes within the page
1682 * tables.
1683 */
1684 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1685 if (pt != vm->scratch_pt) {
1686 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1687 continue;
1688 }
1689
1690 /* We've already allocated a page table */
1691 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1692
1693 pt = alloc_pt(dev);
1694 if (IS_ERR(pt)) {
1695 ret = PTR_ERR(pt);
1696 goto unwind_out;
1697 }
1698
1699 gen6_initialize_pt(vm, pt);
1700
1701 ppgtt->pd.page_table[pde] = pt;
1702 __set_bit(pde, new_page_tables);
1703 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1704 }
1705
1706 start = start_save;
1707 length = length_save;
1708
1709 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1710 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1711
1712 bitmap_zero(tmp_bitmap, GEN6_PTES);
1713 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1714 gen6_pte_count(start, length));
1715
1716 if (__test_and_clear_bit(pde, new_page_tables))
1717 gen6_write_pde(&ppgtt->pd, pde, pt);
1718
1719 trace_i915_page_table_entry_map(vm, pde, pt,
1720 gen6_pte_index(start),
1721 gen6_pte_count(start, length),
1722 GEN6_PTES);
1723 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1724 GEN6_PTES);
1725 }
1726
1727 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1728
1729 /* Make sure write is complete before other code can use this page
1730 * table. Also require for WC mapped PTEs */
1731 readl(dev_priv->gtt.gsm);
1732
1733 mark_tlbs_dirty(ppgtt);
1734 return 0;
1735
1736 unwind_out:
1737 for_each_set_bit(pde, new_page_tables, I915_PDES) {
1738 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1739
1740 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1741 free_pt(vm->dev, pt);
1742 }
1743
1744 mark_tlbs_dirty(ppgtt);
1745 return ret;
1746 }
1747
1748 static int gen6_init_scratch(struct i915_address_space *vm)
1749 {
1750 struct drm_device *dev = vm->dev;
1751
1752 vm->scratch_page = alloc_scratch_page(dev);
1753 if (IS_ERR(vm->scratch_page))
1754 return PTR_ERR(vm->scratch_page);
1755
1756 vm->scratch_pt = alloc_pt(dev);
1757 if (IS_ERR(vm->scratch_pt)) {
1758 free_scratch_page(dev, vm->scratch_page);
1759 return PTR_ERR(vm->scratch_pt);
1760 }
1761
1762 gen6_initialize_pt(vm, vm->scratch_pt);
1763
1764 return 0;
1765 }
1766
1767 static void gen6_free_scratch(struct i915_address_space *vm)
1768 {
1769 struct drm_device *dev = vm->dev;
1770
1771 free_pt(dev, vm->scratch_pt);
1772 free_scratch_page(dev, vm->scratch_page);
1773 }
1774
1775 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1776 {
1777 struct i915_hw_ppgtt *ppgtt =
1778 container_of(vm, struct i915_hw_ppgtt, base);
1779 struct i915_page_table *pt;
1780 uint32_t pde;
1781
1782 drm_mm_remove_node(&ppgtt->node);
1783
1784 gen6_for_all_pdes(pt, ppgtt, pde) {
1785 if (pt != vm->scratch_pt)
1786 free_pt(ppgtt->base.dev, pt);
1787 }
1788
1789 gen6_free_scratch(vm);
1790 }
1791
1792 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1793 {
1794 struct i915_address_space *vm = &ppgtt->base;
1795 struct drm_device *dev = ppgtt->base.dev;
1796 struct drm_i915_private *dev_priv = dev->dev_private;
1797 bool retried = false;
1798 int ret;
1799
1800 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1801 * allocator works in address space sizes, so it's multiplied by page
1802 * size. We allocate at the top of the GTT to avoid fragmentation.
1803 */
1804 BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1805
1806 ret = gen6_init_scratch(vm);
1807 if (ret)
1808 return ret;
1809
1810 alloc:
1811 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1812 &ppgtt->node, GEN6_PD_SIZE,
1813 GEN6_PD_ALIGN, 0,
1814 0, dev_priv->gtt.base.total,
1815 DRM_MM_TOPDOWN);
1816 if (ret == -ENOSPC && !retried) {
1817 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1818 GEN6_PD_SIZE, GEN6_PD_ALIGN,
1819 I915_CACHE_NONE,
1820 0, dev_priv->gtt.base.total,
1821 0);
1822 if (ret)
1823 goto err_out;
1824
1825 retried = true;
1826 goto alloc;
1827 }
1828
1829 if (ret)
1830 goto err_out;
1831
1832
1833 if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1834 DRM_DEBUG("Forced to use aperture for PDEs\n");
1835
1836 return 0;
1837
1838 err_out:
1839 gen6_free_scratch(vm);
1840 return ret;
1841 }
1842
1843 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1844 {
1845 return gen6_ppgtt_allocate_page_directories(ppgtt);
1846 }
1847
1848 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1849 uint64_t start, uint64_t length)
1850 {
1851 struct i915_page_table *unused;
1852 uint32_t pde, temp;
1853
1854 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1855 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
1856 }
1857
1858 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1859 {
1860 struct drm_device *dev = ppgtt->base.dev;
1861 struct drm_i915_private *dev_priv = dev->dev_private;
1862 int ret;
1863
1864 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1865 if (IS_GEN6(dev)) {
1866 ppgtt->switch_mm = gen6_mm_switch;
1867 } else if (IS_HASWELL(dev)) {
1868 ppgtt->switch_mm = hsw_mm_switch;
1869 } else if (IS_GEN7(dev)) {
1870 ppgtt->switch_mm = gen7_mm_switch;
1871 } else
1872 BUG();
1873
1874 if (intel_vgpu_active(dev))
1875 ppgtt->switch_mm = vgpu_mm_switch;
1876
1877 ret = gen6_ppgtt_alloc(ppgtt);
1878 if (ret)
1879 return ret;
1880
1881 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1882 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1883 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1884 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1885 ppgtt->base.bind_vma = ppgtt_bind_vma;
1886 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1887 ppgtt->base.start = 0;
1888 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1889 ppgtt->debug_dump = gen6_dump_ppgtt;
1890
1891 ppgtt->pd.base.ggtt_offset =
1892 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1893
1894 ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1895 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1896
1897 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1898
1899 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1900
1901 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1902 ppgtt->node.size >> 20,
1903 ppgtt->node.start / PAGE_SIZE);
1904
1905 DRM_DEBUG("Adding PPGTT at offset %x\n",
1906 ppgtt->pd.base.ggtt_offset << 10);
1907
1908 return 0;
1909 }
1910
1911 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1912 {
1913 ppgtt->base.dev = dev;
1914
1915 if (INTEL_INFO(dev)->gen < 8)
1916 return gen6_ppgtt_init(ppgtt);
1917 else
1918 return gen8_ppgtt_init(ppgtt);
1919 }
1920
1921 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1922 {
1923 struct drm_i915_private *dev_priv = dev->dev_private;
1924 int ret = 0;
1925
1926 ret = __hw_ppgtt_init(dev, ppgtt);
1927 if (ret == 0) {
1928 kref_init(&ppgtt->ref);
1929 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1930 ppgtt->base.total);
1931 i915_init_vm(dev_priv, &ppgtt->base);
1932 }
1933
1934 return ret;
1935 }
1936
1937 int i915_ppgtt_init_hw(struct drm_device *dev)
1938 {
1939 /* In the case of execlists, PPGTT is enabled by the context descriptor
1940 * and the PDPs are contained within the context itself. We don't
1941 * need to do anything here. */
1942 if (i915.enable_execlists)
1943 return 0;
1944
1945 if (!USES_PPGTT(dev))
1946 return 0;
1947
1948 if (IS_GEN6(dev))
1949 gen6_ppgtt_enable(dev);
1950 else if (IS_GEN7(dev))
1951 gen7_ppgtt_enable(dev);
1952 else if (INTEL_INFO(dev)->gen >= 8)
1953 gen8_ppgtt_enable(dev);
1954 else
1955 MISSING_CASE(INTEL_INFO(dev)->gen);
1956
1957 return 0;
1958 }
1959
1960 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
1961 {
1962 struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
1963 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1964
1965 if (i915.enable_execlists)
1966 return 0;
1967
1968 if (!ppgtt)
1969 return 0;
1970
1971 return ppgtt->switch_mm(ppgtt, req);
1972 }
1973
1974 struct i915_hw_ppgtt *
1975 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1976 {
1977 struct i915_hw_ppgtt *ppgtt;
1978 int ret;
1979
1980 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1981 if (!ppgtt)
1982 return ERR_PTR(-ENOMEM);
1983
1984 ret = i915_ppgtt_init(dev, ppgtt);
1985 if (ret) {
1986 kfree(ppgtt);
1987 return ERR_PTR(ret);
1988 }
1989
1990 ppgtt->file_priv = fpriv;
1991
1992 trace_i915_ppgtt_create(&ppgtt->base);
1993
1994 return ppgtt;
1995 }
1996
1997 void i915_ppgtt_release(struct kref *kref)
1998 {
1999 struct i915_hw_ppgtt *ppgtt =
2000 container_of(kref, struct i915_hw_ppgtt, ref);
2001
2002 trace_i915_ppgtt_release(&ppgtt->base);
2003
2004 /* vmas should already be unbound */
2005 WARN_ON(!list_empty(&ppgtt->base.active_list));
2006 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2007
2008 list_del(&ppgtt->base.global_link);
2009 drm_mm_takedown(&ppgtt->base.mm);
2010
2011 ppgtt->base.cleanup(&ppgtt->base);
2012 kfree(ppgtt);
2013 }
2014
2015 extern int intel_iommu_gfx_mapped;
2016 /* Certain Gen5 chipsets require require idling the GPU before
2017 * unmapping anything from the GTT when VT-d is enabled.
2018 */
2019 static bool needs_idle_maps(struct drm_device *dev)
2020 {
2021 #ifdef CONFIG_INTEL_IOMMU
2022 /* Query intel_iommu to see if we need the workaround. Presumably that
2023 * was loaded first.
2024 */
2025 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2026 return true;
2027 #endif
2028 return false;
2029 }
2030
2031 static bool do_idling(struct drm_i915_private *dev_priv)
2032 {
2033 bool ret = dev_priv->mm.interruptible;
2034
2035 if (unlikely(dev_priv->gtt.do_idle_maps)) {
2036 dev_priv->mm.interruptible = false;
2037 if (i915_gpu_idle(dev_priv->dev)) {
2038 DRM_ERROR("Couldn't idle GPU\n");
2039 /* Wait a bit, in hopes it avoids the hang */
2040 udelay(10);
2041 }
2042 }
2043
2044 return ret;
2045 }
2046
2047 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2048 {
2049 if (unlikely(dev_priv->gtt.do_idle_maps))
2050 dev_priv->mm.interruptible = interruptible;
2051 }
2052
2053 void i915_check_and_clear_faults(struct drm_device *dev)
2054 {
2055 struct drm_i915_private *dev_priv = dev->dev_private;
2056 struct intel_engine_cs *ring;
2057 int i;
2058
2059 if (INTEL_INFO(dev)->gen < 6)
2060 return;
2061
2062 for_each_ring(ring, dev_priv, i) {
2063 u32 fault_reg;
2064 fault_reg = I915_READ(RING_FAULT_REG(ring));
2065 if (fault_reg & RING_FAULT_VALID) {
2066 DRM_DEBUG_DRIVER("Unexpected fault\n"
2067 "\tAddr: 0x%08lx\n"
2068 "\tAddress space: %s\n"
2069 "\tSource ID: %d\n"
2070 "\tType: %d\n",
2071 fault_reg & PAGE_MASK,
2072 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2073 RING_FAULT_SRCID(fault_reg),
2074 RING_FAULT_FAULT_TYPE(fault_reg));
2075 I915_WRITE(RING_FAULT_REG(ring),
2076 fault_reg & ~RING_FAULT_VALID);
2077 }
2078 }
2079 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
2080 }
2081
2082 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2083 {
2084 if (INTEL_INFO(dev_priv->dev)->gen < 6) {
2085 intel_gtt_chipset_flush();
2086 } else {
2087 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2088 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2089 }
2090 }
2091
2092 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2093 {
2094 struct drm_i915_private *dev_priv = dev->dev_private;
2095
2096 /* Don't bother messing with faults pre GEN6 as we have little
2097 * documentation supporting that it's a good idea.
2098 */
2099 if (INTEL_INFO(dev)->gen < 6)
2100 return;
2101
2102 i915_check_and_clear_faults(dev);
2103
2104 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2105 dev_priv->gtt.base.start,
2106 dev_priv->gtt.base.total,
2107 true);
2108
2109 i915_ggtt_flush(dev_priv);
2110 }
2111
2112 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2113 {
2114 if (!dma_map_sg(&obj->base.dev->pdev->dev,
2115 obj->pages->sgl, obj->pages->nents,
2116 PCI_DMA_BIDIRECTIONAL))
2117 return -ENOSPC;
2118
2119 return 0;
2120 }
2121
2122 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2123 {
2124 #ifdef writeq
2125 writeq(pte, addr);
2126 #else
2127 iowrite32((u32)pte, addr);
2128 iowrite32(pte >> 32, addr + 4);
2129 #endif
2130 }
2131
2132 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2133 struct sg_table *st,
2134 uint64_t start,
2135 enum i915_cache_level level, u32 unused)
2136 {
2137 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2138 unsigned first_entry = start >> PAGE_SHIFT;
2139 gen8_pte_t __iomem *gtt_entries =
2140 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2141 int i = 0;
2142 struct sg_page_iter sg_iter;
2143 dma_addr_t addr = 0; /* shut up gcc */
2144
2145 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2146 addr = sg_dma_address(sg_iter.sg) +
2147 (sg_iter.sg_pgoffset << PAGE_SHIFT);
2148 gen8_set_pte(&gtt_entries[i],
2149 gen8_pte_encode(addr, level, true));
2150 i++;
2151 }
2152
2153 /*
2154 * XXX: This serves as a posting read to make sure that the PTE has
2155 * actually been updated. There is some concern that even though
2156 * registers and PTEs are within the same BAR that they are potentially
2157 * of NUMA access patterns. Therefore, even with the way we assume
2158 * hardware should work, we must keep this posting read for paranoia.
2159 */
2160 if (i != 0)
2161 WARN_ON(readq(&gtt_entries[i-1])
2162 != gen8_pte_encode(addr, level, true));
2163
2164 /* This next bit makes the above posting read even more important. We
2165 * want to flush the TLBs only after we're certain all the PTE updates
2166 * have finished.
2167 */
2168 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2169 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2170 }
2171
2172 /*
2173 * Binds an object into the global gtt with the specified cache level. The object
2174 * will be accessible to the GPU via commands whose operands reference offsets
2175 * within the global GTT as well as accessible by the GPU through the GMADR
2176 * mapped BAR (dev_priv->mm.gtt->gtt).
2177 */
2178 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2179 struct sg_table *st,
2180 uint64_t start,
2181 enum i915_cache_level level, u32 flags)
2182 {
2183 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2184 unsigned first_entry = start >> PAGE_SHIFT;
2185 gen6_pte_t __iomem *gtt_entries =
2186 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2187 int i = 0;
2188 struct sg_page_iter sg_iter;
2189 dma_addr_t addr = 0;
2190
2191 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2192 addr = sg_page_iter_dma_address(&sg_iter);
2193 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2194 i++;
2195 }
2196
2197 /* XXX: This serves as a posting read to make sure that the PTE has
2198 * actually been updated. There is some concern that even though
2199 * registers and PTEs are within the same BAR that they are potentially
2200 * of NUMA access patterns. Therefore, even with the way we assume
2201 * hardware should work, we must keep this posting read for paranoia.
2202 */
2203 if (i != 0) {
2204 unsigned long gtt = readl(&gtt_entries[i-1]);
2205 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2206 }
2207
2208 /* This next bit makes the above posting read even more important. We
2209 * want to flush the TLBs only after we're certain all the PTE updates
2210 * have finished.
2211 */
2212 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2213 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2214 }
2215
2216 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2217 uint64_t start,
2218 uint64_t length,
2219 bool use_scratch)
2220 {
2221 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2222 unsigned first_entry = start >> PAGE_SHIFT;
2223 unsigned num_entries = length >> PAGE_SHIFT;
2224 gen8_pte_t scratch_pte, __iomem *gtt_base =
2225 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2226 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2227 int i;
2228
2229 if (WARN(num_entries > max_entries,
2230 "First entry = %d; Num entries = %d (max=%d)\n",
2231 first_entry, num_entries, max_entries))
2232 num_entries = max_entries;
2233
2234 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2235 I915_CACHE_LLC,
2236 use_scratch);
2237 for (i = 0; i < num_entries; i++)
2238 gen8_set_pte(&gtt_base[i], scratch_pte);
2239 readl(gtt_base);
2240 }
2241
2242 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2243 uint64_t start,
2244 uint64_t length,
2245 bool use_scratch)
2246 {
2247 struct drm_i915_private *dev_priv = vm->dev->dev_private;
2248 unsigned first_entry = start >> PAGE_SHIFT;
2249 unsigned num_entries = length >> PAGE_SHIFT;
2250 gen6_pte_t scratch_pte, __iomem *gtt_base =
2251 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2252 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2253 int i;
2254
2255 if (WARN(num_entries > max_entries,
2256 "First entry = %d; Num entries = %d (max=%d)\n",
2257 first_entry, num_entries, max_entries))
2258 num_entries = max_entries;
2259
2260 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2261 I915_CACHE_LLC, use_scratch, 0);
2262
2263 for (i = 0; i < num_entries; i++)
2264 iowrite32(scratch_pte, &gtt_base[i]);
2265 readl(gtt_base);
2266 }
2267
2268 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2269 struct sg_table *pages,
2270 uint64_t start,
2271 enum i915_cache_level cache_level, u32 unused)
2272 {
2273 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2274 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2275
2276 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2277
2278 }
2279
2280 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2281 uint64_t start,
2282 uint64_t length,
2283 bool unused)
2284 {
2285 unsigned first_entry = start >> PAGE_SHIFT;
2286 unsigned num_entries = length >> PAGE_SHIFT;
2287 intel_gtt_clear_range(first_entry, num_entries);
2288 }
2289
2290 static int ggtt_bind_vma(struct i915_vma *vma,
2291 enum i915_cache_level cache_level,
2292 u32 flags)
2293 {
2294 struct drm_device *dev = vma->vm->dev;
2295 struct drm_i915_private *dev_priv = dev->dev_private;
2296 struct drm_i915_gem_object *obj = vma->obj;
2297 struct sg_table *pages = obj->pages;
2298 u32 pte_flags = 0;
2299 int ret;
2300
2301 ret = i915_get_ggtt_vma_pages(vma);
2302 if (ret)
2303 return ret;
2304 pages = vma->ggtt_view.pages;
2305
2306 /* Currently applicable only to VLV */
2307 if (obj->gt_ro)
2308 pte_flags |= PTE_READ_ONLY;
2309
2310
2311 if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
2312 vma->vm->insert_entries(vma->vm, pages,
2313 vma->node.start,
2314 cache_level, pte_flags);
2315
2316 /* Note the inconsistency here is due to absence of the
2317 * aliasing ppgtt on gen4 and earlier. Though we always
2318 * request PIN_USER for execbuffer (translated to LOCAL_BIND),
2319 * without the appgtt, we cannot honour that request and so
2320 * must substitute it with a global binding. Since we do this
2321 * behind the upper layers back, we need to explicitly set
2322 * the bound flag ourselves.
2323 */
2324 vma->bound |= GLOBAL_BIND;
2325
2326 }
2327
2328 if (dev_priv->mm.aliasing_ppgtt && flags & LOCAL_BIND) {
2329 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2330 appgtt->base.insert_entries(&appgtt->base, pages,
2331 vma->node.start,
2332 cache_level, pte_flags);
2333 }
2334
2335 return 0;
2336 }
2337
2338 static void ggtt_unbind_vma(struct i915_vma *vma)
2339 {
2340 struct drm_device *dev = vma->vm->dev;
2341 struct drm_i915_private *dev_priv = dev->dev_private;
2342 struct drm_i915_gem_object *obj = vma->obj;
2343 const uint64_t size = min_t(uint64_t,
2344 obj->base.size,
2345 vma->node.size);
2346
2347 if (vma->bound & GLOBAL_BIND) {
2348 vma->vm->clear_range(vma->vm,
2349 vma->node.start,
2350 size,
2351 true);
2352 }
2353
2354 if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2355 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2356
2357 appgtt->base.clear_range(&appgtt->base,
2358 vma->node.start,
2359 size,
2360 true);
2361 }
2362 }
2363
2364 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2365 {
2366 struct drm_device *dev = obj->base.dev;
2367 struct drm_i915_private *dev_priv = dev->dev_private;
2368 bool interruptible;
2369
2370 interruptible = do_idling(dev_priv);
2371
2372 dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2373 PCI_DMA_BIDIRECTIONAL);
2374
2375 undo_idling(dev_priv, interruptible);
2376 }
2377
2378 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2379 unsigned long color,
2380 u64 *start,
2381 u64 *end)
2382 {
2383 if (node->color != color)
2384 *start += 4096;
2385
2386 if (!list_empty(&node->node_list)) {
2387 node = list_entry(node->node_list.next,
2388 struct drm_mm_node,
2389 node_list);
2390 if (node->allocated && node->color != color)
2391 *end -= 4096;
2392 }
2393 }
2394
2395 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2396 unsigned long start,
2397 unsigned long mappable_end,
2398 unsigned long end)
2399 {
2400 /* Let GEM Manage all of the aperture.
2401 *
2402 * However, leave one page at the end still bound to the scratch page.
2403 * There are a number of places where the hardware apparently prefetches
2404 * past the end of the object, and we've seen multiple hangs with the
2405 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2406 * aperture. One page should be enough to keep any prefetching inside
2407 * of the aperture.
2408 */
2409 struct drm_i915_private *dev_priv = dev->dev_private;
2410 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2411 struct drm_mm_node *entry;
2412 struct drm_i915_gem_object *obj;
2413 unsigned long hole_start, hole_end;
2414 int ret;
2415
2416 BUG_ON(mappable_end > end);
2417
2418 /* Subtract the guard page ... */
2419 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2420
2421 dev_priv->gtt.base.start = start;
2422 dev_priv->gtt.base.total = end - start;
2423
2424 if (intel_vgpu_active(dev)) {
2425 ret = intel_vgt_balloon(dev);
2426 if (ret)
2427 return ret;
2428 }
2429
2430 if (!HAS_LLC(dev))
2431 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2432
2433 /* Mark any preallocated objects as occupied */
2434 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2435 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2436
2437 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2438 i915_gem_obj_ggtt_offset(obj), obj->base.size);
2439
2440 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2441 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2442 if (ret) {
2443 DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2444 return ret;
2445 }
2446 vma->bound |= GLOBAL_BIND;
2447 }
2448
2449 /* Clear any non-preallocated blocks */
2450 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2451 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2452 hole_start, hole_end);
2453 ggtt_vm->clear_range(ggtt_vm, hole_start,
2454 hole_end - hole_start, true);
2455 }
2456
2457 /* And finally clear the reserved guard page */
2458 ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2459
2460 if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2461 struct i915_hw_ppgtt *ppgtt;
2462
2463 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2464 if (!ppgtt)
2465 return -ENOMEM;
2466
2467 ret = __hw_ppgtt_init(dev, ppgtt);
2468 if (ret) {
2469 ppgtt->base.cleanup(&ppgtt->base);
2470 kfree(ppgtt);
2471 return ret;
2472 }
2473
2474 if (ppgtt->base.allocate_va_range)
2475 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2476 ppgtt->base.total);
2477 if (ret) {
2478 ppgtt->base.cleanup(&ppgtt->base);
2479 kfree(ppgtt);
2480 return ret;
2481 }
2482
2483 ppgtt->base.clear_range(&ppgtt->base,
2484 ppgtt->base.start,
2485 ppgtt->base.total,
2486 true);
2487
2488 dev_priv->mm.aliasing_ppgtt = ppgtt;
2489 }
2490
2491 return 0;
2492 }
2493
2494 void i915_gem_init_global_gtt(struct drm_device *dev)
2495 {
2496 struct drm_i915_private *dev_priv = dev->dev_private;
2497 u64 gtt_size, mappable_size;
2498
2499 gtt_size = dev_priv->gtt.base.total;
2500 mappable_size = dev_priv->gtt.mappable_end;
2501
2502 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2503 }
2504
2505 void i915_global_gtt_cleanup(struct drm_device *dev)
2506 {
2507 struct drm_i915_private *dev_priv = dev->dev_private;
2508 struct i915_address_space *vm = &dev_priv->gtt.base;
2509
2510 if (dev_priv->mm.aliasing_ppgtt) {
2511 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2512
2513 ppgtt->base.cleanup(&ppgtt->base);
2514 }
2515
2516 if (drm_mm_initialized(&vm->mm)) {
2517 if (intel_vgpu_active(dev))
2518 intel_vgt_deballoon();
2519
2520 drm_mm_takedown(&vm->mm);
2521 list_del(&vm->global_link);
2522 }
2523
2524 vm->cleanup(vm);
2525 }
2526
2527 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2528 {
2529 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2530 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2531 return snb_gmch_ctl << 20;
2532 }
2533
2534 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2535 {
2536 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2537 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2538 if (bdw_gmch_ctl)
2539 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2540
2541 #ifdef CONFIG_X86_32
2542 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2543 if (bdw_gmch_ctl > 4)
2544 bdw_gmch_ctl = 4;
2545 #endif
2546
2547 return bdw_gmch_ctl << 20;
2548 }
2549
2550 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2551 {
2552 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2553 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2554
2555 if (gmch_ctrl)
2556 return 1 << (20 + gmch_ctrl);
2557
2558 return 0;
2559 }
2560
2561 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2562 {
2563 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2564 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2565 return snb_gmch_ctl << 25; /* 32 MB units */
2566 }
2567
2568 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2569 {
2570 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2571 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2572 return bdw_gmch_ctl << 25; /* 32 MB units */
2573 }
2574
2575 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2576 {
2577 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2578 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2579
2580 /*
2581 * 0x0 to 0x10: 32MB increments starting at 0MB
2582 * 0x11 to 0x16: 4MB increments starting at 8MB
2583 * 0x17 to 0x1d: 4MB increments start at 36MB
2584 */
2585 if (gmch_ctrl < 0x11)
2586 return gmch_ctrl << 25;
2587 else if (gmch_ctrl < 0x17)
2588 return (gmch_ctrl - 0x11 + 2) << 22;
2589 else
2590 return (gmch_ctrl - 0x17 + 9) << 22;
2591 }
2592
2593 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2594 {
2595 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2596 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2597
2598 if (gen9_gmch_ctl < 0xf0)
2599 return gen9_gmch_ctl << 25; /* 32 MB units */
2600 else
2601 /* 4MB increments starting at 0xf0 for 4MB */
2602 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2603 }
2604
2605 static int ggtt_probe_common(struct drm_device *dev,
2606 size_t gtt_size)
2607 {
2608 struct drm_i915_private *dev_priv = dev->dev_private;
2609 struct i915_page_scratch *scratch_page;
2610 phys_addr_t gtt_phys_addr;
2611
2612 /* For Modern GENs the PTEs and register space are split in the BAR */
2613 gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2614 (pci_resource_len(dev->pdev, 0) / 2);
2615
2616 /*
2617 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2618 * dropped. For WC mappings in general we have 64 byte burst writes
2619 * when the WC buffer is flushed, so we can't use it, but have to
2620 * resort to an uncached mapping. The WC issue is easily caught by the
2621 * readback check when writing GTT PTE entries.
2622 */
2623 if (IS_BROXTON(dev))
2624 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2625 else
2626 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2627 if (!dev_priv->gtt.gsm) {
2628 DRM_ERROR("Failed to map the gtt page table\n");
2629 return -ENOMEM;
2630 }
2631
2632 scratch_page = alloc_scratch_page(dev);
2633 if (IS_ERR(scratch_page)) {
2634 DRM_ERROR("Scratch setup failed\n");
2635 /* iounmap will also get called at remove, but meh */
2636 iounmap(dev_priv->gtt.gsm);
2637 return PTR_ERR(scratch_page);
2638 }
2639
2640 dev_priv->gtt.base.scratch_page = scratch_page;
2641
2642 return 0;
2643 }
2644
2645 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2646 * bits. When using advanced contexts each context stores its own PAT, but
2647 * writing this data shouldn't be harmful even in those cases. */
2648 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2649 {
2650 uint64_t pat;
2651
2652 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2653 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2654 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2655 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2656 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2657 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2658 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2659 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2660
2661 if (!USES_PPGTT(dev_priv->dev))
2662 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2663 * so RTL will always use the value corresponding to
2664 * pat_sel = 000".
2665 * So let's disable cache for GGTT to avoid screen corruptions.
2666 * MOCS still can be used though.
2667 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2668 * before this patch, i.e. the same uncached + snooping access
2669 * like on gen6/7 seems to be in effect.
2670 * - So this just fixes blitter/render access. Again it looks
2671 * like it's not just uncached access, but uncached + snooping.
2672 * So we can still hold onto all our assumptions wrt cpu
2673 * clflushing on LLC machines.
2674 */
2675 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2676
2677 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2678 * write would work. */
2679 I915_WRITE(GEN8_PRIVATE_PAT, pat);
2680 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2681 }
2682
2683 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2684 {
2685 uint64_t pat;
2686
2687 /*
2688 * Map WB on BDW to snooped on CHV.
2689 *
2690 * Only the snoop bit has meaning for CHV, the rest is
2691 * ignored.
2692 *
2693 * The hardware will never snoop for certain types of accesses:
2694 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2695 * - PPGTT page tables
2696 * - some other special cycles
2697 *
2698 * As with BDW, we also need to consider the following for GT accesses:
2699 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2700 * so RTL will always use the value corresponding to
2701 * pat_sel = 000".
2702 * Which means we must set the snoop bit in PAT entry 0
2703 * in order to keep the global status page working.
2704 */
2705 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2706 GEN8_PPAT(1, 0) |
2707 GEN8_PPAT(2, 0) |
2708 GEN8_PPAT(3, 0) |
2709 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2710 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2711 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2712 GEN8_PPAT(7, CHV_PPAT_SNOOP);
2713
2714 I915_WRITE(GEN8_PRIVATE_PAT, pat);
2715 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2716 }
2717
2718 static int gen8_gmch_probe(struct drm_device *dev,
2719 u64 *gtt_total,
2720 size_t *stolen,
2721 phys_addr_t *mappable_base,
2722 u64 *mappable_end)
2723 {
2724 struct drm_i915_private *dev_priv = dev->dev_private;
2725 u64 gtt_size;
2726 u16 snb_gmch_ctl;
2727 int ret;
2728
2729 /* TODO: We're not aware of mappable constraints on gen8 yet */
2730 *mappable_base = pci_resource_start(dev->pdev, 2);
2731 *mappable_end = pci_resource_len(dev->pdev, 2);
2732
2733 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2734 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2735
2736 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2737
2738 if (INTEL_INFO(dev)->gen >= 9) {
2739 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2740 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2741 } else if (IS_CHERRYVIEW(dev)) {
2742 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2743 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2744 } else {
2745 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2746 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2747 }
2748
2749 *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2750
2751 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2752 chv_setup_private_ppat(dev_priv);
2753 else
2754 bdw_setup_private_ppat(dev_priv);
2755
2756 ret = ggtt_probe_common(dev, gtt_size);
2757
2758 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2759 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2760 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2761 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2762
2763 return ret;
2764 }
2765
2766 static int gen6_gmch_probe(struct drm_device *dev,
2767 u64 *gtt_total,
2768 size_t *stolen,
2769 phys_addr_t *mappable_base,
2770 u64 *mappable_end)
2771 {
2772 struct drm_i915_private *dev_priv = dev->dev_private;
2773 unsigned int gtt_size;
2774 u16 snb_gmch_ctl;
2775 int ret;
2776
2777 *mappable_base = pci_resource_start(dev->pdev, 2);
2778 *mappable_end = pci_resource_len(dev->pdev, 2);
2779
2780 /* 64/512MB is the current min/max we actually know of, but this is just
2781 * a coarse sanity check.
2782 */
2783 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2784 DRM_ERROR("Unknown GMADR size (%llx)\n",
2785 dev_priv->gtt.mappable_end);
2786 return -ENXIO;
2787 }
2788
2789 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2790 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2791 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2792
2793 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2794
2795 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2796 *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2797
2798 ret = ggtt_probe_common(dev, gtt_size);
2799
2800 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2801 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2802 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2803 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2804
2805 return ret;
2806 }
2807
2808 static void gen6_gmch_remove(struct i915_address_space *vm)
2809 {
2810
2811 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2812
2813 iounmap(gtt->gsm);
2814 free_scratch_page(vm->dev, vm->scratch_page);
2815 }
2816
2817 static int i915_gmch_probe(struct drm_device *dev,
2818 u64 *gtt_total,
2819 size_t *stolen,
2820 phys_addr_t *mappable_base,
2821 u64 *mappable_end)
2822 {
2823 struct drm_i915_private *dev_priv = dev->dev_private;
2824 int ret;
2825
2826 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2827 if (!ret) {
2828 DRM_ERROR("failed to set up gmch\n");
2829 return -EIO;
2830 }
2831
2832 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2833
2834 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2835 dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
2836 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2837 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2838 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2839
2840 if (unlikely(dev_priv->gtt.do_idle_maps))
2841 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2842
2843 return 0;
2844 }
2845
2846 static void i915_gmch_remove(struct i915_address_space *vm)
2847 {
2848 intel_gmch_remove();
2849 }
2850
2851 int i915_gem_gtt_init(struct drm_device *dev)
2852 {
2853 struct drm_i915_private *dev_priv = dev->dev_private;
2854 struct i915_gtt *gtt = &dev_priv->gtt;
2855 int ret;
2856
2857 if (INTEL_INFO(dev)->gen <= 5) {
2858 gtt->gtt_probe = i915_gmch_probe;
2859 gtt->base.cleanup = i915_gmch_remove;
2860 } else if (INTEL_INFO(dev)->gen < 8) {
2861 gtt->gtt_probe = gen6_gmch_probe;
2862 gtt->base.cleanup = gen6_gmch_remove;
2863 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2864 gtt->base.pte_encode = iris_pte_encode;
2865 else if (IS_HASWELL(dev))
2866 gtt->base.pte_encode = hsw_pte_encode;
2867 else if (IS_VALLEYVIEW(dev))
2868 gtt->base.pte_encode = byt_pte_encode;
2869 else if (INTEL_INFO(dev)->gen >= 7)
2870 gtt->base.pte_encode = ivb_pte_encode;
2871 else
2872 gtt->base.pte_encode = snb_pte_encode;
2873 } else {
2874 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2875 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2876 }
2877
2878 gtt->base.dev = dev;
2879
2880 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2881 &gtt->mappable_base, &gtt->mappable_end);
2882 if (ret)
2883 return ret;
2884
2885 /* GMADR is the PCI mmio aperture into the global GTT. */
2886 DRM_INFO("Memory usable by graphics device = %lluM\n",
2887 gtt->base.total >> 20);
2888 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
2889 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2890 #ifdef CONFIG_INTEL_IOMMU
2891 if (intel_iommu_gfx_mapped)
2892 DRM_INFO("VT-d active for gfx access\n");
2893 #endif
2894 /*
2895 * i915.enable_ppgtt is read-only, so do an early pass to validate the
2896 * user's requested state against the hardware/driver capabilities. We
2897 * do this now so that we can print out any log messages once rather
2898 * than every time we check intel_enable_ppgtt().
2899 */
2900 i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2901 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2902
2903 return 0;
2904 }
2905
2906 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
2907 {
2908 struct drm_i915_private *dev_priv = dev->dev_private;
2909 struct drm_i915_gem_object *obj;
2910 struct i915_address_space *vm;
2911 struct i915_vma *vma;
2912 bool flush;
2913
2914 i915_check_and_clear_faults(dev);
2915
2916 /* First fill our portion of the GTT with scratch pages */
2917 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2918 dev_priv->gtt.base.start,
2919 dev_priv->gtt.base.total,
2920 true);
2921
2922 /* Cache flush objects bound into GGTT and rebind them. */
2923 vm = &dev_priv->gtt.base;
2924 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2925 flush = false;
2926 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2927 if (vma->vm != vm)
2928 continue;
2929
2930 WARN_ON(i915_vma_bind(vma, obj->cache_level,
2931 PIN_UPDATE));
2932
2933 flush = true;
2934 }
2935
2936 if (flush)
2937 i915_gem_clflush_object(obj, obj->pin_display);
2938 }
2939
2940 if (INTEL_INFO(dev)->gen >= 8) {
2941 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2942 chv_setup_private_ppat(dev_priv);
2943 else
2944 bdw_setup_private_ppat(dev_priv);
2945
2946 return;
2947 }
2948
2949 if (USES_PPGTT(dev)) {
2950 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2951 /* TODO: Perhaps it shouldn't be gen6 specific */
2952
2953 struct i915_hw_ppgtt *ppgtt =
2954 container_of(vm, struct i915_hw_ppgtt,
2955 base);
2956
2957 if (i915_is_ggtt(vm))
2958 ppgtt = dev_priv->mm.aliasing_ppgtt;
2959
2960 gen6_write_page_range(dev_priv, &ppgtt->pd,
2961 0, ppgtt->base.total);
2962 }
2963 }
2964
2965 i915_ggtt_flush(dev_priv);
2966 }
2967
2968 static struct i915_vma *
2969 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2970 struct i915_address_space *vm,
2971 const struct i915_ggtt_view *ggtt_view)
2972 {
2973 struct i915_vma *vma;
2974
2975 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2976 return ERR_PTR(-EINVAL);
2977
2978 vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
2979 if (vma == NULL)
2980 return ERR_PTR(-ENOMEM);
2981
2982 INIT_LIST_HEAD(&vma->vma_link);
2983 INIT_LIST_HEAD(&vma->mm_list);
2984 INIT_LIST_HEAD(&vma->exec_list);
2985 vma->vm = vm;
2986 vma->obj = obj;
2987
2988 if (i915_is_ggtt(vm))
2989 vma->ggtt_view = *ggtt_view;
2990
2991 list_add_tail(&vma->vma_link, &obj->vma_list);
2992 if (!i915_is_ggtt(vm))
2993 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2994
2995 return vma;
2996 }
2997
2998 struct i915_vma *
2999 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3000 struct i915_address_space *vm)
3001 {
3002 struct i915_vma *vma;
3003
3004 vma = i915_gem_obj_to_vma(obj, vm);
3005 if (!vma)
3006 vma = __i915_gem_vma_create(obj, vm,
3007 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3008
3009 return vma;
3010 }
3011
3012 struct i915_vma *
3013 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3014 const struct i915_ggtt_view *view)
3015 {
3016 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
3017 struct i915_vma *vma;
3018
3019 if (WARN_ON(!view))
3020 return ERR_PTR(-EINVAL);
3021
3022 vma = i915_gem_obj_to_ggtt_view(obj, view);
3023
3024 if (IS_ERR(vma))
3025 return vma;
3026
3027 if (!vma)
3028 vma = __i915_gem_vma_create(obj, ggtt, view);
3029
3030 return vma;
3031
3032 }
3033
3034 static void
3035 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
3036 struct sg_table *st)
3037 {
3038 unsigned int column, row;
3039 unsigned int src_idx;
3040 struct scatterlist *sg = st->sgl;
3041
3042 st->nents = 0;
3043
3044 for (column = 0; column < width; column++) {
3045 src_idx = width * (height - 1) + column;
3046 for (row = 0; row < height; row++) {
3047 st->nents++;
3048 /* We don't need the pages, but need to initialize
3049 * the entries so the sg list can be happily traversed.
3050 * The only thing we need are DMA addresses.
3051 */
3052 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3053 sg_dma_address(sg) = in[src_idx];
3054 sg_dma_len(sg) = PAGE_SIZE;
3055 sg = sg_next(sg);
3056 src_idx -= width;
3057 }
3058 }
3059 }
3060
3061 static struct sg_table *
3062 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
3063 struct drm_i915_gem_object *obj)
3064 {
3065 struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
3066 unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
3067 struct sg_page_iter sg_iter;
3068 unsigned long i;
3069 dma_addr_t *page_addr_list;
3070 struct sg_table *st;
3071 int ret = -ENOMEM;
3072
3073 /* Allocate a temporary list of source pages for random access. */
3074 page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3075 sizeof(dma_addr_t));
3076 if (!page_addr_list)
3077 return ERR_PTR(ret);
3078
3079 /* Allocate target SG list. */
3080 st = kmalloc(sizeof(*st), GFP_KERNEL);
3081 if (!st)
3082 goto err_st_alloc;
3083
3084 ret = sg_alloc_table(st, size_pages, GFP_KERNEL);
3085 if (ret)
3086 goto err_sg_alloc;
3087
3088 /* Populate source page list from the object. */
3089 i = 0;
3090 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3091 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3092 i++;
3093 }
3094
3095 /* Rotate the pages. */
3096 rotate_pages(page_addr_list,
3097 rot_info->width_pages, rot_info->height_pages,
3098 st);
3099
3100 DRM_DEBUG_KMS(
3101 "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages).\n",
3102 obj->base.size, rot_info->pitch, rot_info->height,
3103 rot_info->pixel_format, rot_info->width_pages,
3104 rot_info->height_pages, size_pages);
3105
3106 drm_free_large(page_addr_list);
3107
3108 return st;
3109
3110 err_sg_alloc:
3111 kfree(st);
3112 err_st_alloc:
3113 drm_free_large(page_addr_list);
3114
3115 DRM_DEBUG_KMS(
3116 "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages)\n",
3117 obj->base.size, ret, rot_info->pitch, rot_info->height,
3118 rot_info->pixel_format, rot_info->width_pages,
3119 rot_info->height_pages, size_pages);
3120 return ERR_PTR(ret);
3121 }
3122
3123 static struct sg_table *
3124 intel_partial_pages(const struct i915_ggtt_view *view,
3125 struct drm_i915_gem_object *obj)
3126 {
3127 struct sg_table *st;
3128 struct scatterlist *sg;
3129 struct sg_page_iter obj_sg_iter;
3130 int ret = -ENOMEM;
3131
3132 st = kmalloc(sizeof(*st), GFP_KERNEL);
3133 if (!st)
3134 goto err_st_alloc;
3135
3136 ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3137 if (ret)
3138 goto err_sg_alloc;
3139
3140 sg = st->sgl;
3141 st->nents = 0;
3142 for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3143 view->params.partial.offset)
3144 {
3145 if (st->nents >= view->params.partial.size)
3146 break;
3147
3148 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3149 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3150 sg_dma_len(sg) = PAGE_SIZE;
3151
3152 sg = sg_next(sg);
3153 st->nents++;
3154 }
3155
3156 return st;
3157
3158 err_sg_alloc:
3159 kfree(st);
3160 err_st_alloc:
3161 return ERR_PTR(ret);
3162 }
3163
3164 static int
3165 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3166 {
3167 int ret = 0;
3168
3169 if (vma->ggtt_view.pages)
3170 return 0;
3171
3172 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3173 vma->ggtt_view.pages = vma->obj->pages;
3174 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3175 vma->ggtt_view.pages =
3176 intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
3177 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3178 vma->ggtt_view.pages =
3179 intel_partial_pages(&vma->ggtt_view, vma->obj);
3180 else
3181 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3182 vma->ggtt_view.type);
3183
3184 if (!vma->ggtt_view.pages) {
3185 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3186 vma->ggtt_view.type);
3187 ret = -EINVAL;
3188 } else if (IS_ERR(vma->ggtt_view.pages)) {
3189 ret = PTR_ERR(vma->ggtt_view.pages);
3190 vma->ggtt_view.pages = NULL;
3191 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3192 vma->ggtt_view.type, ret);
3193 }
3194
3195 return ret;
3196 }
3197
3198 /**
3199 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3200 * @vma: VMA to map
3201 * @cache_level: mapping cache level
3202 * @flags: flags like global or local mapping
3203 *
3204 * DMA addresses are taken from the scatter-gather table of this object (or of
3205 * this VMA in case of non-default GGTT views) and PTE entries set up.
3206 * Note that DMA addresses are also the only part of the SG table we care about.
3207 */
3208 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3209 u32 flags)
3210 {
3211 int ret;
3212 u32 bind_flags;
3213
3214 if (WARN_ON(flags == 0))
3215 return -EINVAL;
3216
3217 bind_flags = 0;
3218 if (flags & PIN_GLOBAL)
3219 bind_flags |= GLOBAL_BIND;
3220 if (flags & PIN_USER)
3221 bind_flags |= LOCAL_BIND;
3222
3223 if (flags & PIN_UPDATE)
3224 bind_flags |= vma->bound;
3225 else
3226 bind_flags &= ~vma->bound;
3227
3228 if (bind_flags == 0)
3229 return 0;
3230
3231 if (vma->bound == 0 && vma->vm->allocate_va_range) {
3232 trace_i915_va_alloc(vma->vm,
3233 vma->node.start,
3234 vma->node.size,
3235 VM_TO_TRACE_NAME(vma->vm));
3236
3237 /* XXX: i915_vma_pin() will fix this +- hack */
3238 vma->pin_count++;
3239 ret = vma->vm->allocate_va_range(vma->vm,
3240 vma->node.start,
3241 vma->node.size);
3242 vma->pin_count--;
3243 if (ret)
3244 return ret;
3245 }
3246
3247 ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3248 if (ret)
3249 return ret;
3250
3251 vma->bound |= bind_flags;
3252
3253 return 0;
3254 }
3255
3256 /**
3257 * i915_ggtt_view_size - Get the size of a GGTT view.
3258 * @obj: Object the view is of.
3259 * @view: The view in question.
3260 *
3261 * @return The size of the GGTT view in bytes.
3262 */
3263 size_t
3264 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3265 const struct i915_ggtt_view *view)
3266 {
3267 if (view->type == I915_GGTT_VIEW_NORMAL) {
3268 return obj->base.size;
3269 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3270 return view->rotation_info.size;
3271 } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3272 return view->params.partial.size << PAGE_SHIFT;
3273 } else {
3274 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3275 return obj->base.size;
3276 }
3277 }