]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
Linux v4.13-rc1
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33
34 #include <asm/set_memory.h>
35
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
46
47 /**
48 * DOC: Global GTT views
49 *
50 * Background and previous state
51 *
52 * Historically objects could exists (be bound) in global GTT space only as
53 * singular instances with a view representing all of the object's backing pages
54 * in a linear fashion. This view will be called a normal view.
55 *
56 * To support multiple views of the same object, where the number of mapped
57 * pages is not equal to the backing store, or where the layout of the pages
58 * is not linear, concept of a GGTT view was added.
59 *
60 * One example of an alternative view is a stereo display driven by a single
61 * image. In this case we would have a framebuffer looking like this
62 * (2x2 pages):
63 *
64 * 12
65 * 34
66 *
67 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68 * rendering. In contrast, fed to the display engine would be an alternative
69 * view which could look something like this:
70 *
71 * 1212
72 * 3434
73 *
74 * In this example both the size and layout of pages in the alternative view is
75 * different from the normal view.
76 *
77 * Implementation and usage
78 *
79 * GGTT views are implemented using VMAs and are distinguished via enum
80 * i915_ggtt_view_type and struct i915_ggtt_view.
81 *
82 * A new flavour of core GEM functions which work with GGTT bound objects were
83 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84 * renaming in large amounts of code. They take the struct i915_ggtt_view
85 * parameter encapsulating all metadata required to implement a view.
86 *
87 * As a helper for callers which are only interested in the normal view,
88 * globally const i915_ggtt_view_normal singleton instance exists. All old core
89 * GEM API functions, the ones not taking the view parameter, are operating on,
90 * or with the normal GGTT view.
91 *
92 * Code wanting to add or use a new GGTT view needs to:
93 *
94 * 1. Add a new enum with a suitable name.
95 * 2. Extend the metadata in the i915_ggtt_view structure if required.
96 * 3. Add support to i915_get_vma_pages().
97 *
98 * New views are required to build a scatter-gather table from within the
99 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100 * exists for the lifetime of an VMA.
101 *
102 * Core API is designed to have copy semantics which means that passed in
103 * struct i915_ggtt_view does not need to be persistent (left around after
104 * calling the core API functions).
105 *
106 */
107
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 /* Note that as an uncached mmio write, this should flush the
114 * WCB of the writes into the GGTT before it triggers the invalidate.
115 */
116 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
117 }
118
119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
120 {
121 gen6_ggtt_invalidate(dev_priv);
122 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
123 }
124
125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
126 {
127 intel_gtt_chipset_flush();
128 }
129
130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
131 {
132 i915->ggtt.invalidate(i915);
133 }
134
135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
136 int enable_ppgtt)
137 {
138 bool has_aliasing_ppgtt;
139 bool has_full_ppgtt;
140 bool has_full_48bit_ppgtt;
141
142 has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt;
143 has_full_ppgtt = dev_priv->info.has_full_ppgtt;
144 has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
145
146 if (intel_vgpu_active(dev_priv)) {
147 /* emulation is too hard */
148 has_full_ppgtt = false;
149 has_full_48bit_ppgtt = false;
150 }
151
152 if (!has_aliasing_ppgtt)
153 return 0;
154
155 /*
156 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
157 * execlists, the sole mechanism available to submit work.
158 */
159 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
160 return 0;
161
162 if (enable_ppgtt == 1)
163 return 1;
164
165 if (enable_ppgtt == 2 && has_full_ppgtt)
166 return 2;
167
168 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
169 return 3;
170
171 /* Disable ppgtt on SNB if VT-d is on. */
172 if (IS_GEN6(dev_priv) && intel_vtd_active()) {
173 DRM_INFO("Disabling PPGTT because VT-d is on\n");
174 return 0;
175 }
176
177 /* Early VLV doesn't have this */
178 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
179 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
180 return 0;
181 }
182
183 if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
184 return has_full_48bit_ppgtt ? 3 : 2;
185 else
186 return has_aliasing_ppgtt ? 1 : 0;
187 }
188
189 static int ppgtt_bind_vma(struct i915_vma *vma,
190 enum i915_cache_level cache_level,
191 u32 unused)
192 {
193 u32 pte_flags;
194 int ret;
195
196 if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
197 ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
198 vma->size);
199 if (ret)
200 return ret;
201 }
202
203 vma->pages = vma->obj->mm.pages;
204
205 /* Currently applicable only to VLV */
206 pte_flags = 0;
207 if (vma->obj->gt_ro)
208 pte_flags |= PTE_READ_ONLY;
209
210 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
211 cache_level, pte_flags);
212
213 return 0;
214 }
215
216 static void ppgtt_unbind_vma(struct i915_vma *vma)
217 {
218 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
219 }
220
221 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
222 enum i915_cache_level level)
223 {
224 gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
225 pte |= addr;
226
227 switch (level) {
228 case I915_CACHE_NONE:
229 pte |= PPAT_UNCACHED_INDEX;
230 break;
231 case I915_CACHE_WT:
232 pte |= PPAT_DISPLAY_ELLC_INDEX;
233 break;
234 default:
235 pte |= PPAT_CACHED_INDEX;
236 break;
237 }
238
239 return pte;
240 }
241
242 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
243 const enum i915_cache_level level)
244 {
245 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
246 pde |= addr;
247 if (level != I915_CACHE_NONE)
248 pde |= PPAT_CACHED_PDE_INDEX;
249 else
250 pde |= PPAT_UNCACHED_INDEX;
251 return pde;
252 }
253
254 #define gen8_pdpe_encode gen8_pde_encode
255 #define gen8_pml4e_encode gen8_pde_encode
256
257 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
258 enum i915_cache_level level,
259 u32 unused)
260 {
261 gen6_pte_t pte = GEN6_PTE_VALID;
262 pte |= GEN6_PTE_ADDR_ENCODE(addr);
263
264 switch (level) {
265 case I915_CACHE_L3_LLC:
266 case I915_CACHE_LLC:
267 pte |= GEN6_PTE_CACHE_LLC;
268 break;
269 case I915_CACHE_NONE:
270 pte |= GEN6_PTE_UNCACHED;
271 break;
272 default:
273 MISSING_CASE(level);
274 }
275
276 return pte;
277 }
278
279 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
280 enum i915_cache_level level,
281 u32 unused)
282 {
283 gen6_pte_t pte = GEN6_PTE_VALID;
284 pte |= GEN6_PTE_ADDR_ENCODE(addr);
285
286 switch (level) {
287 case I915_CACHE_L3_LLC:
288 pte |= GEN7_PTE_CACHE_L3_LLC;
289 break;
290 case I915_CACHE_LLC:
291 pte |= GEN6_PTE_CACHE_LLC;
292 break;
293 case I915_CACHE_NONE:
294 pte |= GEN6_PTE_UNCACHED;
295 break;
296 default:
297 MISSING_CASE(level);
298 }
299
300 return pte;
301 }
302
303 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
304 enum i915_cache_level level,
305 u32 flags)
306 {
307 gen6_pte_t pte = GEN6_PTE_VALID;
308 pte |= GEN6_PTE_ADDR_ENCODE(addr);
309
310 if (!(flags & PTE_READ_ONLY))
311 pte |= BYT_PTE_WRITEABLE;
312
313 if (level != I915_CACHE_NONE)
314 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
315
316 return pte;
317 }
318
319 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
320 enum i915_cache_level level,
321 u32 unused)
322 {
323 gen6_pte_t pte = GEN6_PTE_VALID;
324 pte |= HSW_PTE_ADDR_ENCODE(addr);
325
326 if (level != I915_CACHE_NONE)
327 pte |= HSW_WB_LLC_AGE3;
328
329 return pte;
330 }
331
332 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
333 enum i915_cache_level level,
334 u32 unused)
335 {
336 gen6_pte_t pte = GEN6_PTE_VALID;
337 pte |= HSW_PTE_ADDR_ENCODE(addr);
338
339 switch (level) {
340 case I915_CACHE_NONE:
341 break;
342 case I915_CACHE_WT:
343 pte |= HSW_WT_ELLC_LLC_AGE3;
344 break;
345 default:
346 pte |= HSW_WB_ELLC_LLC_AGE3;
347 break;
348 }
349
350 return pte;
351 }
352
353 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
354 {
355 struct page *page;
356
357 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
358 i915_gem_shrink_all(vm->i915);
359
360 if (vm->free_pages.nr)
361 return vm->free_pages.pages[--vm->free_pages.nr];
362
363 page = alloc_page(gfp);
364 if (!page)
365 return NULL;
366
367 if (vm->pt_kmap_wc)
368 set_pages_array_wc(&page, 1);
369
370 return page;
371 }
372
373 static void vm_free_pages_release(struct i915_address_space *vm)
374 {
375 GEM_BUG_ON(!pagevec_count(&vm->free_pages));
376
377 if (vm->pt_kmap_wc)
378 set_pages_array_wb(vm->free_pages.pages,
379 pagevec_count(&vm->free_pages));
380
381 __pagevec_release(&vm->free_pages);
382 }
383
384 static void vm_free_page(struct i915_address_space *vm, struct page *page)
385 {
386 if (!pagevec_add(&vm->free_pages, page))
387 vm_free_pages_release(vm);
388 }
389
390 static int __setup_page_dma(struct i915_address_space *vm,
391 struct i915_page_dma *p,
392 gfp_t gfp)
393 {
394 p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
395 if (unlikely(!p->page))
396 return -ENOMEM;
397
398 p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
399 PCI_DMA_BIDIRECTIONAL);
400 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
401 vm_free_page(vm, p->page);
402 return -ENOMEM;
403 }
404
405 return 0;
406 }
407
408 static int setup_page_dma(struct i915_address_space *vm,
409 struct i915_page_dma *p)
410 {
411 return __setup_page_dma(vm, p, I915_GFP_DMA);
412 }
413
414 static void cleanup_page_dma(struct i915_address_space *vm,
415 struct i915_page_dma *p)
416 {
417 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
418 vm_free_page(vm, p->page);
419 }
420
421 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
422
423 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
424 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
425 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
426 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
427
428 static void fill_page_dma(struct i915_address_space *vm,
429 struct i915_page_dma *p,
430 const u64 val)
431 {
432 u64 * const vaddr = kmap_atomic(p->page);
433 int i;
434
435 for (i = 0; i < 512; i++)
436 vaddr[i] = val;
437
438 kunmap_atomic(vaddr);
439 }
440
441 static void fill_page_dma_32(struct i915_address_space *vm,
442 struct i915_page_dma *p,
443 const u32 v)
444 {
445 fill_page_dma(vm, p, (u64)v << 32 | v);
446 }
447
448 static int
449 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
450 {
451 return __setup_page_dma(vm, &vm->scratch_page, gfp | __GFP_ZERO);
452 }
453
454 static void cleanup_scratch_page(struct i915_address_space *vm)
455 {
456 cleanup_page_dma(vm, &vm->scratch_page);
457 }
458
459 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
460 {
461 struct i915_page_table *pt;
462
463 pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
464 if (unlikely(!pt))
465 return ERR_PTR(-ENOMEM);
466
467 if (unlikely(setup_px(vm, pt))) {
468 kfree(pt);
469 return ERR_PTR(-ENOMEM);
470 }
471
472 pt->used_ptes = 0;
473 return pt;
474 }
475
476 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
477 {
478 cleanup_px(vm, pt);
479 kfree(pt);
480 }
481
482 static void gen8_initialize_pt(struct i915_address_space *vm,
483 struct i915_page_table *pt)
484 {
485 fill_px(vm, pt,
486 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
487 }
488
489 static void gen6_initialize_pt(struct i915_address_space *vm,
490 struct i915_page_table *pt)
491 {
492 fill32_px(vm, pt,
493 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
494 }
495
496 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
497 {
498 struct i915_page_directory *pd;
499
500 pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
501 if (unlikely(!pd))
502 return ERR_PTR(-ENOMEM);
503
504 if (unlikely(setup_px(vm, pd))) {
505 kfree(pd);
506 return ERR_PTR(-ENOMEM);
507 }
508
509 pd->used_pdes = 0;
510 return pd;
511 }
512
513 static void free_pd(struct i915_address_space *vm,
514 struct i915_page_directory *pd)
515 {
516 cleanup_px(vm, pd);
517 kfree(pd);
518 }
519
520 static void gen8_initialize_pd(struct i915_address_space *vm,
521 struct i915_page_directory *pd)
522 {
523 unsigned int i;
524
525 fill_px(vm, pd,
526 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
527 for (i = 0; i < I915_PDES; i++)
528 pd->page_table[i] = vm->scratch_pt;
529 }
530
531 static int __pdp_init(struct i915_address_space *vm,
532 struct i915_page_directory_pointer *pdp)
533 {
534 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
535 unsigned int i;
536
537 pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
538 GFP_KERNEL | __GFP_NOWARN);
539 if (unlikely(!pdp->page_directory))
540 return -ENOMEM;
541
542 for (i = 0; i < pdpes; i++)
543 pdp->page_directory[i] = vm->scratch_pd;
544
545 return 0;
546 }
547
548 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
549 {
550 kfree(pdp->page_directory);
551 pdp->page_directory = NULL;
552 }
553
554 static inline bool use_4lvl(const struct i915_address_space *vm)
555 {
556 return i915_vm_is_48bit(vm);
557 }
558
559 static struct i915_page_directory_pointer *
560 alloc_pdp(struct i915_address_space *vm)
561 {
562 struct i915_page_directory_pointer *pdp;
563 int ret = -ENOMEM;
564
565 WARN_ON(!use_4lvl(vm));
566
567 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
568 if (!pdp)
569 return ERR_PTR(-ENOMEM);
570
571 ret = __pdp_init(vm, pdp);
572 if (ret)
573 goto fail_bitmap;
574
575 ret = setup_px(vm, pdp);
576 if (ret)
577 goto fail_page_m;
578
579 return pdp;
580
581 fail_page_m:
582 __pdp_fini(pdp);
583 fail_bitmap:
584 kfree(pdp);
585
586 return ERR_PTR(ret);
587 }
588
589 static void free_pdp(struct i915_address_space *vm,
590 struct i915_page_directory_pointer *pdp)
591 {
592 __pdp_fini(pdp);
593
594 if (!use_4lvl(vm))
595 return;
596
597 cleanup_px(vm, pdp);
598 kfree(pdp);
599 }
600
601 static void gen8_initialize_pdp(struct i915_address_space *vm,
602 struct i915_page_directory_pointer *pdp)
603 {
604 gen8_ppgtt_pdpe_t scratch_pdpe;
605
606 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
607
608 fill_px(vm, pdp, scratch_pdpe);
609 }
610
611 static void gen8_initialize_pml4(struct i915_address_space *vm,
612 struct i915_pml4 *pml4)
613 {
614 unsigned int i;
615
616 fill_px(vm, pml4,
617 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
618 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++)
619 pml4->pdps[i] = vm->scratch_pdp;
620 }
621
622 /* Broadwell Page Directory Pointer Descriptors */
623 static int gen8_write_pdp(struct drm_i915_gem_request *req,
624 unsigned entry,
625 dma_addr_t addr)
626 {
627 struct intel_engine_cs *engine = req->engine;
628 u32 *cs;
629
630 BUG_ON(entry >= 4);
631
632 cs = intel_ring_begin(req, 6);
633 if (IS_ERR(cs))
634 return PTR_ERR(cs);
635
636 *cs++ = MI_LOAD_REGISTER_IMM(1);
637 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
638 *cs++ = upper_32_bits(addr);
639 *cs++ = MI_LOAD_REGISTER_IMM(1);
640 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
641 *cs++ = lower_32_bits(addr);
642 intel_ring_advance(req, cs);
643
644 return 0;
645 }
646
647 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
648 struct drm_i915_gem_request *req)
649 {
650 int i, ret;
651
652 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
653 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
654
655 ret = gen8_write_pdp(req, i, pd_daddr);
656 if (ret)
657 return ret;
658 }
659
660 return 0;
661 }
662
663 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
664 struct drm_i915_gem_request *req)
665 {
666 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
667 }
668
669 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
670 * the page table structures, we mark them dirty so that
671 * context switching/execlist queuing code takes extra steps
672 * to ensure that tlbs are flushed.
673 */
674 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
675 {
676 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
677 }
678
679 /* Removes entries from a single page table, releasing it if it's empty.
680 * Caller can use the return value to update higher-level entries.
681 */
682 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
683 struct i915_page_table *pt,
684 u64 start, u64 length)
685 {
686 unsigned int num_entries = gen8_pte_count(start, length);
687 unsigned int pte = gen8_pte_index(start);
688 unsigned int pte_end = pte + num_entries;
689 const gen8_pte_t scratch_pte =
690 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
691 gen8_pte_t *vaddr;
692
693 GEM_BUG_ON(num_entries > pt->used_ptes);
694
695 pt->used_ptes -= num_entries;
696 if (!pt->used_ptes)
697 return true;
698
699 vaddr = kmap_atomic_px(pt);
700 while (pte < pte_end)
701 vaddr[pte++] = scratch_pte;
702 kunmap_atomic(vaddr);
703
704 return false;
705 }
706
707 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
708 struct i915_page_directory *pd,
709 struct i915_page_table *pt,
710 unsigned int pde)
711 {
712 gen8_pde_t *vaddr;
713
714 pd->page_table[pde] = pt;
715
716 vaddr = kmap_atomic_px(pd);
717 vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
718 kunmap_atomic(vaddr);
719 }
720
721 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
722 struct i915_page_directory *pd,
723 u64 start, u64 length)
724 {
725 struct i915_page_table *pt;
726 u32 pde;
727
728 gen8_for_each_pde(pt, pd, start, length, pde) {
729 GEM_BUG_ON(pt == vm->scratch_pt);
730
731 if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
732 continue;
733
734 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
735 GEM_BUG_ON(!pd->used_pdes);
736 pd->used_pdes--;
737
738 free_pt(vm, pt);
739 }
740
741 return !pd->used_pdes;
742 }
743
744 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
745 struct i915_page_directory_pointer *pdp,
746 struct i915_page_directory *pd,
747 unsigned int pdpe)
748 {
749 gen8_ppgtt_pdpe_t *vaddr;
750
751 pdp->page_directory[pdpe] = pd;
752 if (!use_4lvl(vm))
753 return;
754
755 vaddr = kmap_atomic_px(pdp);
756 vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
757 kunmap_atomic(vaddr);
758 }
759
760 /* Removes entries from a single page dir pointer, releasing it if it's empty.
761 * Caller can use the return value to update higher-level entries
762 */
763 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
764 struct i915_page_directory_pointer *pdp,
765 u64 start, u64 length)
766 {
767 struct i915_page_directory *pd;
768 unsigned int pdpe;
769
770 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
771 GEM_BUG_ON(pd == vm->scratch_pd);
772
773 if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
774 continue;
775
776 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
777 GEM_BUG_ON(!pdp->used_pdpes);
778 pdp->used_pdpes--;
779
780 free_pd(vm, pd);
781 }
782
783 return !pdp->used_pdpes;
784 }
785
786 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
787 u64 start, u64 length)
788 {
789 gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
790 }
791
792 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
793 struct i915_page_directory_pointer *pdp,
794 unsigned int pml4e)
795 {
796 gen8_ppgtt_pml4e_t *vaddr;
797
798 pml4->pdps[pml4e] = pdp;
799
800 vaddr = kmap_atomic_px(pml4);
801 vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
802 kunmap_atomic(vaddr);
803 }
804
805 /* Removes entries from a single pml4.
806 * This is the top-level structure in 4-level page tables used on gen8+.
807 * Empty entries are always scratch pml4e.
808 */
809 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
810 u64 start, u64 length)
811 {
812 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
813 struct i915_pml4 *pml4 = &ppgtt->pml4;
814 struct i915_page_directory_pointer *pdp;
815 unsigned int pml4e;
816
817 GEM_BUG_ON(!use_4lvl(vm));
818
819 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
820 GEM_BUG_ON(pdp == vm->scratch_pdp);
821
822 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
823 continue;
824
825 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
826
827 free_pdp(vm, pdp);
828 }
829 }
830
831 struct sgt_dma {
832 struct scatterlist *sg;
833 dma_addr_t dma, max;
834 };
835
836 struct gen8_insert_pte {
837 u16 pml4e;
838 u16 pdpe;
839 u16 pde;
840 u16 pte;
841 };
842
843 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
844 {
845 return (struct gen8_insert_pte) {
846 gen8_pml4e_index(start),
847 gen8_pdpe_index(start),
848 gen8_pde_index(start),
849 gen8_pte_index(start),
850 };
851 }
852
853 static __always_inline bool
854 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
855 struct i915_page_directory_pointer *pdp,
856 struct sgt_dma *iter,
857 struct gen8_insert_pte *idx,
858 enum i915_cache_level cache_level)
859 {
860 struct i915_page_directory *pd;
861 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
862 gen8_pte_t *vaddr;
863 bool ret;
864
865 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
866 pd = pdp->page_directory[idx->pdpe];
867 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
868 do {
869 vaddr[idx->pte] = pte_encode | iter->dma;
870
871 iter->dma += PAGE_SIZE;
872 if (iter->dma >= iter->max) {
873 iter->sg = __sg_next(iter->sg);
874 if (!iter->sg) {
875 ret = false;
876 break;
877 }
878
879 iter->dma = sg_dma_address(iter->sg);
880 iter->max = iter->dma + iter->sg->length;
881 }
882
883 if (++idx->pte == GEN8_PTES) {
884 idx->pte = 0;
885
886 if (++idx->pde == I915_PDES) {
887 idx->pde = 0;
888
889 /* Limited by sg length for 3lvl */
890 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
891 idx->pdpe = 0;
892 ret = true;
893 break;
894 }
895
896 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
897 pd = pdp->page_directory[idx->pdpe];
898 }
899
900 kunmap_atomic(vaddr);
901 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
902 }
903 } while (1);
904 kunmap_atomic(vaddr);
905
906 return ret;
907 }
908
909 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
910 struct sg_table *pages,
911 u64 start,
912 enum i915_cache_level cache_level,
913 u32 unused)
914 {
915 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
916 struct sgt_dma iter = {
917 .sg = pages->sgl,
918 .dma = sg_dma_address(iter.sg),
919 .max = iter.dma + iter.sg->length,
920 };
921 struct gen8_insert_pte idx = gen8_insert_pte(start);
922
923 gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
924 cache_level);
925 }
926
927 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
928 struct sg_table *pages,
929 u64 start,
930 enum i915_cache_level cache_level,
931 u32 unused)
932 {
933 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
934 struct sgt_dma iter = {
935 .sg = pages->sgl,
936 .dma = sg_dma_address(iter.sg),
937 .max = iter.dma + iter.sg->length,
938 };
939 struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
940 struct gen8_insert_pte idx = gen8_insert_pte(start);
941
942 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], &iter,
943 &idx, cache_level))
944 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
945 }
946
947 static void gen8_free_page_tables(struct i915_address_space *vm,
948 struct i915_page_directory *pd)
949 {
950 int i;
951
952 if (!px_page(pd))
953 return;
954
955 for (i = 0; i < I915_PDES; i++) {
956 if (pd->page_table[i] != vm->scratch_pt)
957 free_pt(vm, pd->page_table[i]);
958 }
959 }
960
961 static int gen8_init_scratch(struct i915_address_space *vm)
962 {
963 int ret;
964
965 ret = setup_scratch_page(vm, I915_GFP_DMA);
966 if (ret)
967 return ret;
968
969 vm->scratch_pt = alloc_pt(vm);
970 if (IS_ERR(vm->scratch_pt)) {
971 ret = PTR_ERR(vm->scratch_pt);
972 goto free_scratch_page;
973 }
974
975 vm->scratch_pd = alloc_pd(vm);
976 if (IS_ERR(vm->scratch_pd)) {
977 ret = PTR_ERR(vm->scratch_pd);
978 goto free_pt;
979 }
980
981 if (use_4lvl(vm)) {
982 vm->scratch_pdp = alloc_pdp(vm);
983 if (IS_ERR(vm->scratch_pdp)) {
984 ret = PTR_ERR(vm->scratch_pdp);
985 goto free_pd;
986 }
987 }
988
989 gen8_initialize_pt(vm, vm->scratch_pt);
990 gen8_initialize_pd(vm, vm->scratch_pd);
991 if (use_4lvl(vm))
992 gen8_initialize_pdp(vm, vm->scratch_pdp);
993
994 return 0;
995
996 free_pd:
997 free_pd(vm, vm->scratch_pd);
998 free_pt:
999 free_pt(vm, vm->scratch_pt);
1000 free_scratch_page:
1001 cleanup_scratch_page(vm);
1002
1003 return ret;
1004 }
1005
1006 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1007 {
1008 struct i915_address_space *vm = &ppgtt->base;
1009 struct drm_i915_private *dev_priv = vm->i915;
1010 enum vgt_g2v_type msg;
1011 int i;
1012
1013 if (use_4lvl(vm)) {
1014 const u64 daddr = px_dma(&ppgtt->pml4);
1015
1016 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1017 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1018
1019 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1020 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1021 } else {
1022 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1023 const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1024
1025 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1026 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1027 }
1028
1029 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1030 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1031 }
1032
1033 I915_WRITE(vgtif_reg(g2v_notify), msg);
1034
1035 return 0;
1036 }
1037
1038 static void gen8_free_scratch(struct i915_address_space *vm)
1039 {
1040 if (use_4lvl(vm))
1041 free_pdp(vm, vm->scratch_pdp);
1042 free_pd(vm, vm->scratch_pd);
1043 free_pt(vm, vm->scratch_pt);
1044 cleanup_scratch_page(vm);
1045 }
1046
1047 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1048 struct i915_page_directory_pointer *pdp)
1049 {
1050 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1051 int i;
1052
1053 for (i = 0; i < pdpes; i++) {
1054 if (pdp->page_directory[i] == vm->scratch_pd)
1055 continue;
1056
1057 gen8_free_page_tables(vm, pdp->page_directory[i]);
1058 free_pd(vm, pdp->page_directory[i]);
1059 }
1060
1061 free_pdp(vm, pdp);
1062 }
1063
1064 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1065 {
1066 int i;
1067
1068 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1069 if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1070 continue;
1071
1072 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1073 }
1074
1075 cleanup_px(&ppgtt->base, &ppgtt->pml4);
1076 }
1077
1078 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1079 {
1080 struct drm_i915_private *dev_priv = vm->i915;
1081 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1082
1083 if (intel_vgpu_active(dev_priv))
1084 gen8_ppgtt_notify_vgt(ppgtt, false);
1085
1086 if (use_4lvl(vm))
1087 gen8_ppgtt_cleanup_4lvl(ppgtt);
1088 else
1089 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1090
1091 gen8_free_scratch(vm);
1092 }
1093
1094 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1095 struct i915_page_directory *pd,
1096 u64 start, u64 length)
1097 {
1098 struct i915_page_table *pt;
1099 u64 from = start;
1100 unsigned int pde;
1101
1102 gen8_for_each_pde(pt, pd, start, length, pde) {
1103 if (pt == vm->scratch_pt) {
1104 pt = alloc_pt(vm);
1105 if (IS_ERR(pt))
1106 goto unwind;
1107
1108 gen8_initialize_pt(vm, pt);
1109
1110 gen8_ppgtt_set_pde(vm, pd, pt, pde);
1111 pd->used_pdes++;
1112 GEM_BUG_ON(pd->used_pdes > I915_PDES);
1113 }
1114
1115 pt->used_ptes += gen8_pte_count(start, length);
1116 }
1117 return 0;
1118
1119 unwind:
1120 gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1121 return -ENOMEM;
1122 }
1123
1124 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1125 struct i915_page_directory_pointer *pdp,
1126 u64 start, u64 length)
1127 {
1128 struct i915_page_directory *pd;
1129 u64 from = start;
1130 unsigned int pdpe;
1131 int ret;
1132
1133 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1134 if (pd == vm->scratch_pd) {
1135 pd = alloc_pd(vm);
1136 if (IS_ERR(pd))
1137 goto unwind;
1138
1139 gen8_initialize_pd(vm, pd);
1140 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1141 pdp->used_pdpes++;
1142 GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1143
1144 mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1145 }
1146
1147 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1148 if (unlikely(ret))
1149 goto unwind_pd;
1150 }
1151
1152 return 0;
1153
1154 unwind_pd:
1155 if (!pd->used_pdes) {
1156 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1157 GEM_BUG_ON(!pdp->used_pdpes);
1158 pdp->used_pdpes--;
1159 free_pd(vm, pd);
1160 }
1161 unwind:
1162 gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1163 return -ENOMEM;
1164 }
1165
1166 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1167 u64 start, u64 length)
1168 {
1169 return gen8_ppgtt_alloc_pdp(vm,
1170 &i915_vm_to_ppgtt(vm)->pdp, start, length);
1171 }
1172
1173 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1174 u64 start, u64 length)
1175 {
1176 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1177 struct i915_pml4 *pml4 = &ppgtt->pml4;
1178 struct i915_page_directory_pointer *pdp;
1179 u64 from = start;
1180 u32 pml4e;
1181 int ret;
1182
1183 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1184 if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1185 pdp = alloc_pdp(vm);
1186 if (IS_ERR(pdp))
1187 goto unwind;
1188
1189 gen8_initialize_pdp(vm, pdp);
1190 gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1191 }
1192
1193 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1194 if (unlikely(ret))
1195 goto unwind_pdp;
1196 }
1197
1198 return 0;
1199
1200 unwind_pdp:
1201 if (!pdp->used_pdpes) {
1202 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1203 free_pdp(vm, pdp);
1204 }
1205 unwind:
1206 gen8_ppgtt_clear_4lvl(vm, from, start - from);
1207 return -ENOMEM;
1208 }
1209
1210 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1211 struct i915_page_directory_pointer *pdp,
1212 u64 start, u64 length,
1213 gen8_pte_t scratch_pte,
1214 struct seq_file *m)
1215 {
1216 struct i915_address_space *vm = &ppgtt->base;
1217 struct i915_page_directory *pd;
1218 u32 pdpe;
1219
1220 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1221 struct i915_page_table *pt;
1222 u64 pd_len = length;
1223 u64 pd_start = start;
1224 u32 pde;
1225
1226 if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1227 continue;
1228
1229 seq_printf(m, "\tPDPE #%d\n", pdpe);
1230 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1231 u32 pte;
1232 gen8_pte_t *pt_vaddr;
1233
1234 if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1235 continue;
1236
1237 pt_vaddr = kmap_atomic_px(pt);
1238 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1239 u64 va = (pdpe << GEN8_PDPE_SHIFT |
1240 pde << GEN8_PDE_SHIFT |
1241 pte << GEN8_PTE_SHIFT);
1242 int i;
1243 bool found = false;
1244
1245 for (i = 0; i < 4; i++)
1246 if (pt_vaddr[pte + i] != scratch_pte)
1247 found = true;
1248 if (!found)
1249 continue;
1250
1251 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1252 for (i = 0; i < 4; i++) {
1253 if (pt_vaddr[pte + i] != scratch_pte)
1254 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1255 else
1256 seq_puts(m, " SCRATCH ");
1257 }
1258 seq_puts(m, "\n");
1259 }
1260 kunmap_atomic(pt_vaddr);
1261 }
1262 }
1263 }
1264
1265 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1266 {
1267 struct i915_address_space *vm = &ppgtt->base;
1268 const gen8_pte_t scratch_pte =
1269 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1270 u64 start = 0, length = ppgtt->base.total;
1271
1272 if (use_4lvl(vm)) {
1273 u64 pml4e;
1274 struct i915_pml4 *pml4 = &ppgtt->pml4;
1275 struct i915_page_directory_pointer *pdp;
1276
1277 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1278 if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1279 continue;
1280
1281 seq_printf(m, " PML4E #%llu\n", pml4e);
1282 gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1283 }
1284 } else {
1285 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1286 }
1287 }
1288
1289 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1290 {
1291 struct i915_address_space *vm = &ppgtt->base;
1292 struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1293 struct i915_page_directory *pd;
1294 u64 start = 0, length = ppgtt->base.total;
1295 u64 from = start;
1296 unsigned int pdpe;
1297
1298 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1299 pd = alloc_pd(vm);
1300 if (IS_ERR(pd))
1301 goto unwind;
1302
1303 gen8_initialize_pd(vm, pd);
1304 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1305 pdp->used_pdpes++;
1306 }
1307
1308 pdp->used_pdpes++; /* never remove */
1309 return 0;
1310
1311 unwind:
1312 start -= from;
1313 gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1314 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1315 free_pd(vm, pd);
1316 }
1317 pdp->used_pdpes = 0;
1318 return -ENOMEM;
1319 }
1320
1321 /*
1322 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1323 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1324 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1325 * space.
1326 *
1327 */
1328 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1329 {
1330 struct i915_address_space *vm = &ppgtt->base;
1331 struct drm_i915_private *dev_priv = vm->i915;
1332 int ret;
1333
1334 ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1335 1ULL << 48 :
1336 1ULL << 32;
1337
1338 ret = gen8_init_scratch(&ppgtt->base);
1339 if (ret) {
1340 ppgtt->base.total = 0;
1341 return ret;
1342 }
1343
1344 /* There are only few exceptions for gen >=6. chv and bxt.
1345 * And we are not sure about the latter so play safe for now.
1346 */
1347 if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1348 ppgtt->base.pt_kmap_wc = true;
1349
1350 if (use_4lvl(vm)) {
1351 ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1352 if (ret)
1353 goto free_scratch;
1354
1355 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1356
1357 ppgtt->switch_mm = gen8_mm_switch_4lvl;
1358 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1359 ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1360 ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1361 } else {
1362 ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1363 if (ret)
1364 goto free_scratch;
1365
1366 if (intel_vgpu_active(dev_priv)) {
1367 ret = gen8_preallocate_top_level_pdp(ppgtt);
1368 if (ret) {
1369 __pdp_fini(&ppgtt->pdp);
1370 goto free_scratch;
1371 }
1372 }
1373
1374 ppgtt->switch_mm = gen8_mm_switch_3lvl;
1375 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1376 ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1377 ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1378 }
1379
1380 if (intel_vgpu_active(dev_priv))
1381 gen8_ppgtt_notify_vgt(ppgtt, true);
1382
1383 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1384 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1385 ppgtt->base.bind_vma = ppgtt_bind_vma;
1386 ppgtt->debug_dump = gen8_dump_ppgtt;
1387
1388 return 0;
1389
1390 free_scratch:
1391 gen8_free_scratch(&ppgtt->base);
1392 return ret;
1393 }
1394
1395 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1396 {
1397 struct i915_address_space *vm = &ppgtt->base;
1398 struct i915_page_table *unused;
1399 gen6_pte_t scratch_pte;
1400 u32 pd_entry, pte, pde;
1401 u32 start = 0, length = ppgtt->base.total;
1402
1403 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1404 I915_CACHE_LLC, 0);
1405
1406 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1407 u32 expected;
1408 gen6_pte_t *pt_vaddr;
1409 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1410 pd_entry = readl(ppgtt->pd_addr + pde);
1411 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1412
1413 if (pd_entry != expected)
1414 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1415 pde,
1416 pd_entry,
1417 expected);
1418 seq_printf(m, "\tPDE: %x\n", pd_entry);
1419
1420 pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1421
1422 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1423 unsigned long va =
1424 (pde * PAGE_SIZE * GEN6_PTES) +
1425 (pte * PAGE_SIZE);
1426 int i;
1427 bool found = false;
1428 for (i = 0; i < 4; i++)
1429 if (pt_vaddr[pte + i] != scratch_pte)
1430 found = true;
1431 if (!found)
1432 continue;
1433
1434 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1435 for (i = 0; i < 4; i++) {
1436 if (pt_vaddr[pte + i] != scratch_pte)
1437 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1438 else
1439 seq_puts(m, " SCRATCH ");
1440 }
1441 seq_puts(m, "\n");
1442 }
1443 kunmap_atomic(pt_vaddr);
1444 }
1445 }
1446
1447 /* Write pde (index) from the page directory @pd to the page table @pt */
1448 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1449 const unsigned int pde,
1450 const struct i915_page_table *pt)
1451 {
1452 /* Caller needs to make sure the write completes if necessary */
1453 writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1454 ppgtt->pd_addr + pde);
1455 }
1456
1457 /* Write all the page tables found in the ppgtt structure to incrementing page
1458 * directories. */
1459 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1460 u32 start, u32 length)
1461 {
1462 struct i915_page_table *pt;
1463 unsigned int pde;
1464
1465 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1466 gen6_write_pde(ppgtt, pde, pt);
1467
1468 mark_tlbs_dirty(ppgtt);
1469 wmb();
1470 }
1471
1472 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1473 {
1474 GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1475 return ppgtt->pd.base.ggtt_offset << 10;
1476 }
1477
1478 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1479 struct drm_i915_gem_request *req)
1480 {
1481 struct intel_engine_cs *engine = req->engine;
1482 u32 *cs;
1483
1484 /* NB: TLBs must be flushed and invalidated before a switch */
1485 cs = intel_ring_begin(req, 6);
1486 if (IS_ERR(cs))
1487 return PTR_ERR(cs);
1488
1489 *cs++ = MI_LOAD_REGISTER_IMM(2);
1490 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1491 *cs++ = PP_DIR_DCLV_2G;
1492 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1493 *cs++ = get_pd_offset(ppgtt);
1494 *cs++ = MI_NOOP;
1495 intel_ring_advance(req, cs);
1496
1497 return 0;
1498 }
1499
1500 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1501 struct drm_i915_gem_request *req)
1502 {
1503 struct intel_engine_cs *engine = req->engine;
1504 u32 *cs;
1505
1506 /* NB: TLBs must be flushed and invalidated before a switch */
1507 cs = intel_ring_begin(req, 6);
1508 if (IS_ERR(cs))
1509 return PTR_ERR(cs);
1510
1511 *cs++ = MI_LOAD_REGISTER_IMM(2);
1512 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1513 *cs++ = PP_DIR_DCLV_2G;
1514 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1515 *cs++ = get_pd_offset(ppgtt);
1516 *cs++ = MI_NOOP;
1517 intel_ring_advance(req, cs);
1518
1519 return 0;
1520 }
1521
1522 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1523 struct drm_i915_gem_request *req)
1524 {
1525 struct intel_engine_cs *engine = req->engine;
1526 struct drm_i915_private *dev_priv = req->i915;
1527
1528 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1529 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1530 return 0;
1531 }
1532
1533 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1534 {
1535 struct intel_engine_cs *engine;
1536 enum intel_engine_id id;
1537
1538 for_each_engine(engine, dev_priv, id) {
1539 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1540 GEN8_GFX_PPGTT_48B : 0;
1541 I915_WRITE(RING_MODE_GEN7(engine),
1542 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1543 }
1544 }
1545
1546 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1547 {
1548 struct intel_engine_cs *engine;
1549 u32 ecochk, ecobits;
1550 enum intel_engine_id id;
1551
1552 ecobits = I915_READ(GAC_ECO_BITS);
1553 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1554
1555 ecochk = I915_READ(GAM_ECOCHK);
1556 if (IS_HASWELL(dev_priv)) {
1557 ecochk |= ECOCHK_PPGTT_WB_HSW;
1558 } else {
1559 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1560 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1561 }
1562 I915_WRITE(GAM_ECOCHK, ecochk);
1563
1564 for_each_engine(engine, dev_priv, id) {
1565 /* GFX_MODE is per-ring on gen7+ */
1566 I915_WRITE(RING_MODE_GEN7(engine),
1567 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1568 }
1569 }
1570
1571 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1572 {
1573 u32 ecochk, gab_ctl, ecobits;
1574
1575 ecobits = I915_READ(GAC_ECO_BITS);
1576 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1577 ECOBITS_PPGTT_CACHE64B);
1578
1579 gab_ctl = I915_READ(GAB_CTL);
1580 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1581
1582 ecochk = I915_READ(GAM_ECOCHK);
1583 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1584
1585 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1586 }
1587
1588 /* PPGTT support for Sandybdrige/Gen6 and later */
1589 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1590 u64 start, u64 length)
1591 {
1592 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1593 unsigned int first_entry = start >> PAGE_SHIFT;
1594 unsigned int pde = first_entry / GEN6_PTES;
1595 unsigned int pte = first_entry % GEN6_PTES;
1596 unsigned int num_entries = length >> PAGE_SHIFT;
1597 gen6_pte_t scratch_pte =
1598 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1599
1600 while (num_entries) {
1601 struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1602 unsigned int end = min(pte + num_entries, GEN6_PTES);
1603 gen6_pte_t *vaddr;
1604
1605 num_entries -= end - pte;
1606
1607 /* Note that the hw doesn't support removing PDE on the fly
1608 * (they are cached inside the context with no means to
1609 * invalidate the cache), so we can only reset the PTE
1610 * entries back to scratch.
1611 */
1612
1613 vaddr = kmap_atomic_px(pt);
1614 do {
1615 vaddr[pte++] = scratch_pte;
1616 } while (pte < end);
1617 kunmap_atomic(vaddr);
1618
1619 pte = 0;
1620 }
1621 }
1622
1623 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1624 struct sg_table *pages,
1625 u64 start,
1626 enum i915_cache_level cache_level,
1627 u32 flags)
1628 {
1629 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1630 unsigned first_entry = start >> PAGE_SHIFT;
1631 unsigned act_pt = first_entry / GEN6_PTES;
1632 unsigned act_pte = first_entry % GEN6_PTES;
1633 const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1634 struct sgt_dma iter;
1635 gen6_pte_t *vaddr;
1636
1637 vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1638 iter.sg = pages->sgl;
1639 iter.dma = sg_dma_address(iter.sg);
1640 iter.max = iter.dma + iter.sg->length;
1641 do {
1642 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1643
1644 iter.dma += PAGE_SIZE;
1645 if (iter.dma == iter.max) {
1646 iter.sg = __sg_next(iter.sg);
1647 if (!iter.sg)
1648 break;
1649
1650 iter.dma = sg_dma_address(iter.sg);
1651 iter.max = iter.dma + iter.sg->length;
1652 }
1653
1654 if (++act_pte == GEN6_PTES) {
1655 kunmap_atomic(vaddr);
1656 vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1657 act_pte = 0;
1658 }
1659 } while (1);
1660 kunmap_atomic(vaddr);
1661 }
1662
1663 static int gen6_alloc_va_range(struct i915_address_space *vm,
1664 u64 start, u64 length)
1665 {
1666 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1667 struct i915_page_table *pt;
1668 u64 from = start;
1669 unsigned int pde;
1670 bool flush = false;
1671
1672 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1673 if (pt == vm->scratch_pt) {
1674 pt = alloc_pt(vm);
1675 if (IS_ERR(pt))
1676 goto unwind_out;
1677
1678 gen6_initialize_pt(vm, pt);
1679 ppgtt->pd.page_table[pde] = pt;
1680 gen6_write_pde(ppgtt, pde, pt);
1681 flush = true;
1682 }
1683 }
1684
1685 if (flush) {
1686 mark_tlbs_dirty(ppgtt);
1687 wmb();
1688 }
1689
1690 return 0;
1691
1692 unwind_out:
1693 gen6_ppgtt_clear_range(vm, from, start);
1694 return -ENOMEM;
1695 }
1696
1697 static int gen6_init_scratch(struct i915_address_space *vm)
1698 {
1699 int ret;
1700
1701 ret = setup_scratch_page(vm, I915_GFP_DMA);
1702 if (ret)
1703 return ret;
1704
1705 vm->scratch_pt = alloc_pt(vm);
1706 if (IS_ERR(vm->scratch_pt)) {
1707 cleanup_scratch_page(vm);
1708 return PTR_ERR(vm->scratch_pt);
1709 }
1710
1711 gen6_initialize_pt(vm, vm->scratch_pt);
1712
1713 return 0;
1714 }
1715
1716 static void gen6_free_scratch(struct i915_address_space *vm)
1717 {
1718 free_pt(vm, vm->scratch_pt);
1719 cleanup_scratch_page(vm);
1720 }
1721
1722 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1723 {
1724 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1725 struct i915_page_directory *pd = &ppgtt->pd;
1726 struct i915_page_table *pt;
1727 u32 pde;
1728
1729 drm_mm_remove_node(&ppgtt->node);
1730
1731 gen6_for_all_pdes(pt, pd, pde)
1732 if (pt != vm->scratch_pt)
1733 free_pt(vm, pt);
1734
1735 gen6_free_scratch(vm);
1736 }
1737
1738 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1739 {
1740 struct i915_address_space *vm = &ppgtt->base;
1741 struct drm_i915_private *dev_priv = ppgtt->base.i915;
1742 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1743 int ret;
1744
1745 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1746 * allocator works in address space sizes, so it's multiplied by page
1747 * size. We allocate at the top of the GTT to avoid fragmentation.
1748 */
1749 BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1750
1751 ret = gen6_init_scratch(vm);
1752 if (ret)
1753 return ret;
1754
1755 ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
1756 GEN6_PD_SIZE, GEN6_PD_ALIGN,
1757 I915_COLOR_UNEVICTABLE,
1758 0, ggtt->base.total,
1759 PIN_HIGH);
1760 if (ret)
1761 goto err_out;
1762
1763 if (ppgtt->node.start < ggtt->mappable_end)
1764 DRM_DEBUG("Forced to use aperture for PDEs\n");
1765
1766 ppgtt->pd.base.ggtt_offset =
1767 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1768
1769 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
1770 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1771
1772 return 0;
1773
1774 err_out:
1775 gen6_free_scratch(vm);
1776 return ret;
1777 }
1778
1779 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1780 {
1781 return gen6_ppgtt_allocate_page_directories(ppgtt);
1782 }
1783
1784 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1785 u64 start, u64 length)
1786 {
1787 struct i915_page_table *unused;
1788 u32 pde;
1789
1790 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
1791 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
1792 }
1793
1794 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1795 {
1796 struct drm_i915_private *dev_priv = ppgtt->base.i915;
1797 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1798 int ret;
1799
1800 ppgtt->base.pte_encode = ggtt->base.pte_encode;
1801 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
1802 ppgtt->switch_mm = gen6_mm_switch;
1803 else if (IS_HASWELL(dev_priv))
1804 ppgtt->switch_mm = hsw_mm_switch;
1805 else if (IS_GEN7(dev_priv))
1806 ppgtt->switch_mm = gen7_mm_switch;
1807 else
1808 BUG();
1809
1810 ret = gen6_ppgtt_alloc(ppgtt);
1811 if (ret)
1812 return ret;
1813
1814 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1815
1816 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1817 gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
1818
1819 ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
1820 if (ret) {
1821 gen6_ppgtt_cleanup(&ppgtt->base);
1822 return ret;
1823 }
1824
1825 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1826 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1827 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1828 ppgtt->base.bind_vma = ppgtt_bind_vma;
1829 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1830 ppgtt->debug_dump = gen6_dump_ppgtt;
1831
1832 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1833 ppgtt->node.size >> 20,
1834 ppgtt->node.start / PAGE_SIZE);
1835
1836 DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
1837 ppgtt->pd.base.ggtt_offset << 10);
1838
1839 return 0;
1840 }
1841
1842 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
1843 struct drm_i915_private *dev_priv)
1844 {
1845 ppgtt->base.i915 = dev_priv;
1846 ppgtt->base.dma = &dev_priv->drm.pdev->dev;
1847
1848 if (INTEL_INFO(dev_priv)->gen < 8)
1849 return gen6_ppgtt_init(ppgtt);
1850 else
1851 return gen8_ppgtt_init(ppgtt);
1852 }
1853
1854 static void i915_address_space_init(struct i915_address_space *vm,
1855 struct drm_i915_private *dev_priv,
1856 const char *name)
1857 {
1858 i915_gem_timeline_init(dev_priv, &vm->timeline, name);
1859
1860 drm_mm_init(&vm->mm, 0, vm->total);
1861 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
1862
1863 INIT_LIST_HEAD(&vm->active_list);
1864 INIT_LIST_HEAD(&vm->inactive_list);
1865 INIT_LIST_HEAD(&vm->unbound_list);
1866
1867 list_add_tail(&vm->global_link, &dev_priv->vm_list);
1868 pagevec_init(&vm->free_pages, false);
1869 }
1870
1871 static void i915_address_space_fini(struct i915_address_space *vm)
1872 {
1873 if (pagevec_count(&vm->free_pages))
1874 vm_free_pages_release(vm);
1875
1876 i915_gem_timeline_fini(&vm->timeline);
1877 drm_mm_takedown(&vm->mm);
1878 list_del(&vm->global_link);
1879 }
1880
1881 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
1882 {
1883 /* This function is for gtt related workarounds. This function is
1884 * called on driver load and after a GPU reset, so you can place
1885 * workarounds here even if they get overwritten by GPU reset.
1886 */
1887 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl */
1888 if (IS_BROADWELL(dev_priv))
1889 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
1890 else if (IS_CHERRYVIEW(dev_priv))
1891 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
1892 else if (IS_GEN9_BC(dev_priv))
1893 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
1894 else if (IS_GEN9_LP(dev_priv))
1895 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
1896 }
1897
1898 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
1899 {
1900 gtt_write_workarounds(dev_priv);
1901
1902 /* In the case of execlists, PPGTT is enabled by the context descriptor
1903 * and the PDPs are contained within the context itself. We don't
1904 * need to do anything here. */
1905 if (i915.enable_execlists)
1906 return 0;
1907
1908 if (!USES_PPGTT(dev_priv))
1909 return 0;
1910
1911 if (IS_GEN6(dev_priv))
1912 gen6_ppgtt_enable(dev_priv);
1913 else if (IS_GEN7(dev_priv))
1914 gen7_ppgtt_enable(dev_priv);
1915 else if (INTEL_GEN(dev_priv) >= 8)
1916 gen8_ppgtt_enable(dev_priv);
1917 else
1918 MISSING_CASE(INTEL_GEN(dev_priv));
1919
1920 return 0;
1921 }
1922
1923 struct i915_hw_ppgtt *
1924 i915_ppgtt_create(struct drm_i915_private *dev_priv,
1925 struct drm_i915_file_private *fpriv,
1926 const char *name)
1927 {
1928 struct i915_hw_ppgtt *ppgtt;
1929 int ret;
1930
1931 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1932 if (!ppgtt)
1933 return ERR_PTR(-ENOMEM);
1934
1935 ret = __hw_ppgtt_init(ppgtt, dev_priv);
1936 if (ret) {
1937 kfree(ppgtt);
1938 return ERR_PTR(ret);
1939 }
1940
1941 kref_init(&ppgtt->ref);
1942 i915_address_space_init(&ppgtt->base, dev_priv, name);
1943 ppgtt->base.file = fpriv;
1944
1945 trace_i915_ppgtt_create(&ppgtt->base);
1946
1947 return ppgtt;
1948 }
1949
1950 void i915_ppgtt_close(struct i915_address_space *vm)
1951 {
1952 struct list_head *phases[] = {
1953 &vm->active_list,
1954 &vm->inactive_list,
1955 &vm->unbound_list,
1956 NULL,
1957 }, **phase;
1958
1959 GEM_BUG_ON(vm->closed);
1960 vm->closed = true;
1961
1962 for (phase = phases; *phase; phase++) {
1963 struct i915_vma *vma, *vn;
1964
1965 list_for_each_entry_safe(vma, vn, *phase, vm_link)
1966 if (!i915_vma_is_closed(vma))
1967 i915_vma_close(vma);
1968 }
1969 }
1970
1971 void i915_ppgtt_release(struct kref *kref)
1972 {
1973 struct i915_hw_ppgtt *ppgtt =
1974 container_of(kref, struct i915_hw_ppgtt, ref);
1975
1976 trace_i915_ppgtt_release(&ppgtt->base);
1977
1978 /* vmas should already be unbound and destroyed */
1979 WARN_ON(!list_empty(&ppgtt->base.active_list));
1980 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1981 WARN_ON(!list_empty(&ppgtt->base.unbound_list));
1982
1983 ppgtt->base.cleanup(&ppgtt->base);
1984 i915_address_space_fini(&ppgtt->base);
1985 kfree(ppgtt);
1986 }
1987
1988 /* Certain Gen5 chipsets require require idling the GPU before
1989 * unmapping anything from the GTT when VT-d is enabled.
1990 */
1991 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
1992 {
1993 /* Query intel_iommu to see if we need the workaround. Presumably that
1994 * was loaded first.
1995 */
1996 return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
1997 }
1998
1999 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2000 {
2001 struct intel_engine_cs *engine;
2002 enum intel_engine_id id;
2003
2004 if (INTEL_INFO(dev_priv)->gen < 6)
2005 return;
2006
2007 for_each_engine(engine, dev_priv, id) {
2008 u32 fault_reg;
2009 fault_reg = I915_READ(RING_FAULT_REG(engine));
2010 if (fault_reg & RING_FAULT_VALID) {
2011 DRM_DEBUG_DRIVER("Unexpected fault\n"
2012 "\tAddr: 0x%08lx\n"
2013 "\tAddress space: %s\n"
2014 "\tSource ID: %d\n"
2015 "\tType: %d\n",
2016 fault_reg & PAGE_MASK,
2017 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2018 RING_FAULT_SRCID(fault_reg),
2019 RING_FAULT_FAULT_TYPE(fault_reg));
2020 I915_WRITE(RING_FAULT_REG(engine),
2021 fault_reg & ~RING_FAULT_VALID);
2022 }
2023 }
2024
2025 /* Engine specific init may not have been done till this point. */
2026 if (dev_priv->engine[RCS])
2027 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2028 }
2029
2030 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2031 {
2032 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2033
2034 /* Don't bother messing with faults pre GEN6 as we have little
2035 * documentation supporting that it's a good idea.
2036 */
2037 if (INTEL_GEN(dev_priv) < 6)
2038 return;
2039
2040 i915_check_and_clear_faults(dev_priv);
2041
2042 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2043
2044 i915_ggtt_invalidate(dev_priv);
2045 }
2046
2047 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2048 struct sg_table *pages)
2049 {
2050 do {
2051 if (dma_map_sg(&obj->base.dev->pdev->dev,
2052 pages->sgl, pages->nents,
2053 PCI_DMA_BIDIRECTIONAL))
2054 return 0;
2055
2056 /* If the DMA remap fails, one cause can be that we have
2057 * too many objects pinned in a small remapping table,
2058 * such as swiotlb. Incrementally purge all other objects and
2059 * try again - if there are no more pages to remove from
2060 * the DMA remapper, i915_gem_shrink will return 0.
2061 */
2062 GEM_BUG_ON(obj->mm.pages == pages);
2063 } while (i915_gem_shrink(to_i915(obj->base.dev),
2064 obj->base.size >> PAGE_SHIFT,
2065 I915_SHRINK_BOUND |
2066 I915_SHRINK_UNBOUND |
2067 I915_SHRINK_ACTIVE));
2068
2069 return -ENOSPC;
2070 }
2071
2072 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2073 {
2074 writeq(pte, addr);
2075 }
2076
2077 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2078 dma_addr_t addr,
2079 u64 offset,
2080 enum i915_cache_level level,
2081 u32 unused)
2082 {
2083 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2084 gen8_pte_t __iomem *pte =
2085 (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2086
2087 gen8_set_pte(pte, gen8_pte_encode(addr, level));
2088
2089 ggtt->invalidate(vm->i915);
2090 }
2091
2092 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2093 struct sg_table *st,
2094 u64 start,
2095 enum i915_cache_level level,
2096 u32 unused)
2097 {
2098 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2099 struct sgt_iter sgt_iter;
2100 gen8_pte_t __iomem *gtt_entries;
2101 const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2102 dma_addr_t addr;
2103
2104 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2105 gtt_entries += start >> PAGE_SHIFT;
2106 for_each_sgt_dma(addr, sgt_iter, st)
2107 gen8_set_pte(gtt_entries++, pte_encode | addr);
2108
2109 wmb();
2110
2111 /* This next bit makes the above posting read even more important. We
2112 * want to flush the TLBs only after we're certain all the PTE updates
2113 * have finished.
2114 */
2115 ggtt->invalidate(vm->i915);
2116 }
2117
2118 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2119 dma_addr_t addr,
2120 u64 offset,
2121 enum i915_cache_level level,
2122 u32 flags)
2123 {
2124 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2125 gen6_pte_t __iomem *pte =
2126 (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2127
2128 iowrite32(vm->pte_encode(addr, level, flags), pte);
2129
2130 ggtt->invalidate(vm->i915);
2131 }
2132
2133 /*
2134 * Binds an object into the global gtt with the specified cache level. The object
2135 * will be accessible to the GPU via commands whose operands reference offsets
2136 * within the global GTT as well as accessible by the GPU through the GMADR
2137 * mapped BAR (dev_priv->mm.gtt->gtt).
2138 */
2139 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2140 struct sg_table *st,
2141 u64 start,
2142 enum i915_cache_level level,
2143 u32 flags)
2144 {
2145 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2146 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2147 unsigned int i = start >> PAGE_SHIFT;
2148 struct sgt_iter iter;
2149 dma_addr_t addr;
2150 for_each_sgt_dma(addr, iter, st)
2151 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2152 wmb();
2153
2154 /* This next bit makes the above posting read even more important. We
2155 * want to flush the TLBs only after we're certain all the PTE updates
2156 * have finished.
2157 */
2158 ggtt->invalidate(vm->i915);
2159 }
2160
2161 static void nop_clear_range(struct i915_address_space *vm,
2162 u64 start, u64 length)
2163 {
2164 }
2165
2166 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2167 u64 start, u64 length)
2168 {
2169 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2170 unsigned first_entry = start >> PAGE_SHIFT;
2171 unsigned num_entries = length >> PAGE_SHIFT;
2172 const gen8_pte_t scratch_pte =
2173 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2174 gen8_pte_t __iomem *gtt_base =
2175 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2176 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2177 int i;
2178
2179 if (WARN(num_entries > max_entries,
2180 "First entry = %d; Num entries = %d (max=%d)\n",
2181 first_entry, num_entries, max_entries))
2182 num_entries = max_entries;
2183
2184 for (i = 0; i < num_entries; i++)
2185 gen8_set_pte(&gtt_base[i], scratch_pte);
2186 }
2187
2188 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2189 {
2190 struct drm_i915_private *dev_priv = vm->i915;
2191
2192 /*
2193 * Make sure the internal GAM fifo has been cleared of all GTT
2194 * writes before exiting stop_machine(). This guarantees that
2195 * any aperture accesses waiting to start in another process
2196 * cannot back up behind the GTT writes causing a hang.
2197 * The register can be any arbitrary GAM register.
2198 */
2199 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2200 }
2201
2202 struct insert_page {
2203 struct i915_address_space *vm;
2204 dma_addr_t addr;
2205 u64 offset;
2206 enum i915_cache_level level;
2207 };
2208
2209 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2210 {
2211 struct insert_page *arg = _arg;
2212
2213 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2214 bxt_vtd_ggtt_wa(arg->vm);
2215
2216 return 0;
2217 }
2218
2219 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2220 dma_addr_t addr,
2221 u64 offset,
2222 enum i915_cache_level level,
2223 u32 unused)
2224 {
2225 struct insert_page arg = { vm, addr, offset, level };
2226
2227 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2228 }
2229
2230 struct insert_entries {
2231 struct i915_address_space *vm;
2232 struct sg_table *st;
2233 u64 start;
2234 enum i915_cache_level level;
2235 };
2236
2237 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2238 {
2239 struct insert_entries *arg = _arg;
2240
2241 gen8_ggtt_insert_entries(arg->vm, arg->st, arg->start, arg->level, 0);
2242 bxt_vtd_ggtt_wa(arg->vm);
2243
2244 return 0;
2245 }
2246
2247 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2248 struct sg_table *st,
2249 u64 start,
2250 enum i915_cache_level level,
2251 u32 unused)
2252 {
2253 struct insert_entries arg = { vm, st, start, level };
2254
2255 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2256 }
2257
2258 struct clear_range {
2259 struct i915_address_space *vm;
2260 u64 start;
2261 u64 length;
2262 };
2263
2264 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2265 {
2266 struct clear_range *arg = _arg;
2267
2268 gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2269 bxt_vtd_ggtt_wa(arg->vm);
2270
2271 return 0;
2272 }
2273
2274 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2275 u64 start,
2276 u64 length)
2277 {
2278 struct clear_range arg = { vm, start, length };
2279
2280 stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2281 }
2282
2283 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2284 u64 start, u64 length)
2285 {
2286 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2287 unsigned first_entry = start >> PAGE_SHIFT;
2288 unsigned num_entries = length >> PAGE_SHIFT;
2289 gen6_pte_t scratch_pte, __iomem *gtt_base =
2290 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2291 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2292 int i;
2293
2294 if (WARN(num_entries > max_entries,
2295 "First entry = %d; Num entries = %d (max=%d)\n",
2296 first_entry, num_entries, max_entries))
2297 num_entries = max_entries;
2298
2299 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2300 I915_CACHE_LLC, 0);
2301
2302 for (i = 0; i < num_entries; i++)
2303 iowrite32(scratch_pte, &gtt_base[i]);
2304 }
2305
2306 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2307 dma_addr_t addr,
2308 u64 offset,
2309 enum i915_cache_level cache_level,
2310 u32 unused)
2311 {
2312 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2313 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2314
2315 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2316 }
2317
2318 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2319 struct sg_table *pages,
2320 u64 start,
2321 enum i915_cache_level cache_level,
2322 u32 unused)
2323 {
2324 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2325 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2326
2327 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2328 }
2329
2330 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2331 u64 start, u64 length)
2332 {
2333 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2334 }
2335
2336 static int ggtt_bind_vma(struct i915_vma *vma,
2337 enum i915_cache_level cache_level,
2338 u32 flags)
2339 {
2340 struct drm_i915_private *i915 = vma->vm->i915;
2341 struct drm_i915_gem_object *obj = vma->obj;
2342 u32 pte_flags;
2343
2344 if (unlikely(!vma->pages)) {
2345 int ret = i915_get_ggtt_vma_pages(vma);
2346 if (ret)
2347 return ret;
2348 }
2349
2350 /* Currently applicable only to VLV */
2351 pte_flags = 0;
2352 if (obj->gt_ro)
2353 pte_flags |= PTE_READ_ONLY;
2354
2355 intel_runtime_pm_get(i915);
2356 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2357 cache_level, pte_flags);
2358 intel_runtime_pm_put(i915);
2359
2360 /*
2361 * Without aliasing PPGTT there's no difference between
2362 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2363 * upgrade to both bound if we bind either to avoid double-binding.
2364 */
2365 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2366
2367 return 0;
2368 }
2369
2370 static void ggtt_unbind_vma(struct i915_vma *vma)
2371 {
2372 struct drm_i915_private *i915 = vma->vm->i915;
2373
2374 intel_runtime_pm_get(i915);
2375 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2376 intel_runtime_pm_put(i915);
2377 }
2378
2379 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2380 enum i915_cache_level cache_level,
2381 u32 flags)
2382 {
2383 struct drm_i915_private *i915 = vma->vm->i915;
2384 u32 pte_flags;
2385 int ret;
2386
2387 if (unlikely(!vma->pages)) {
2388 ret = i915_get_ggtt_vma_pages(vma);
2389 if (ret)
2390 return ret;
2391 }
2392
2393 /* Currently applicable only to VLV */
2394 pte_flags = 0;
2395 if (vma->obj->gt_ro)
2396 pte_flags |= PTE_READ_ONLY;
2397
2398 if (flags & I915_VMA_LOCAL_BIND) {
2399 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2400
2401 if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2402 appgtt->base.allocate_va_range) {
2403 ret = appgtt->base.allocate_va_range(&appgtt->base,
2404 vma->node.start,
2405 vma->size);
2406 if (ret)
2407 goto err_pages;
2408 }
2409
2410 appgtt->base.insert_entries(&appgtt->base,
2411 vma->pages, vma->node.start,
2412 cache_level, pte_flags);
2413 }
2414
2415 if (flags & I915_VMA_GLOBAL_BIND) {
2416 intel_runtime_pm_get(i915);
2417 vma->vm->insert_entries(vma->vm,
2418 vma->pages, vma->node.start,
2419 cache_level, pte_flags);
2420 intel_runtime_pm_put(i915);
2421 }
2422
2423 return 0;
2424
2425 err_pages:
2426 if (!(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND))) {
2427 if (vma->pages != vma->obj->mm.pages) {
2428 GEM_BUG_ON(!vma->pages);
2429 sg_free_table(vma->pages);
2430 kfree(vma->pages);
2431 }
2432 vma->pages = NULL;
2433 }
2434 return ret;
2435 }
2436
2437 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2438 {
2439 struct drm_i915_private *i915 = vma->vm->i915;
2440
2441 if (vma->flags & I915_VMA_GLOBAL_BIND) {
2442 intel_runtime_pm_get(i915);
2443 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2444 intel_runtime_pm_put(i915);
2445 }
2446
2447 if (vma->flags & I915_VMA_LOCAL_BIND) {
2448 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2449
2450 vm->clear_range(vm, vma->node.start, vma->size);
2451 }
2452 }
2453
2454 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2455 struct sg_table *pages)
2456 {
2457 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2458 struct device *kdev = &dev_priv->drm.pdev->dev;
2459 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2460
2461 if (unlikely(ggtt->do_idle_maps)) {
2462 if (i915_gem_wait_for_idle(dev_priv, 0)) {
2463 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2464 /* Wait a bit, in hopes it avoids the hang */
2465 udelay(10);
2466 }
2467 }
2468
2469 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2470 }
2471
2472 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2473 unsigned long color,
2474 u64 *start,
2475 u64 *end)
2476 {
2477 if (node->allocated && node->color != color)
2478 *start += I915_GTT_PAGE_SIZE;
2479
2480 /* Also leave a space between the unallocated reserved node after the
2481 * GTT and any objects within the GTT, i.e. we use the color adjustment
2482 * to insert a guard page to prevent prefetches crossing over the
2483 * GTT boundary.
2484 */
2485 node = list_next_entry(node, node_list);
2486 if (node->color != color)
2487 *end -= I915_GTT_PAGE_SIZE;
2488 }
2489
2490 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2491 {
2492 struct i915_ggtt *ggtt = &i915->ggtt;
2493 struct i915_hw_ppgtt *ppgtt;
2494 int err;
2495
2496 ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2497 if (IS_ERR(ppgtt))
2498 return PTR_ERR(ppgtt);
2499
2500 if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2501 err = -ENODEV;
2502 goto err_ppgtt;
2503 }
2504
2505 if (ppgtt->base.allocate_va_range) {
2506 /* Note we only pre-allocate as far as the end of the global
2507 * GTT. On 48b / 4-level page-tables, the difference is very,
2508 * very significant! We have to preallocate as GVT/vgpu does
2509 * not like the page directory disappearing.
2510 */
2511 err = ppgtt->base.allocate_va_range(&ppgtt->base,
2512 0, ggtt->base.total);
2513 if (err)
2514 goto err_ppgtt;
2515 }
2516
2517 i915->mm.aliasing_ppgtt = ppgtt;
2518
2519 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2520 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2521
2522 WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2523 ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2524
2525 return 0;
2526
2527 err_ppgtt:
2528 i915_ppgtt_put(ppgtt);
2529 return err;
2530 }
2531
2532 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2533 {
2534 struct i915_ggtt *ggtt = &i915->ggtt;
2535 struct i915_hw_ppgtt *ppgtt;
2536
2537 ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2538 if (!ppgtt)
2539 return;
2540
2541 i915_ppgtt_put(ppgtt);
2542
2543 ggtt->base.bind_vma = ggtt_bind_vma;
2544 ggtt->base.unbind_vma = ggtt_unbind_vma;
2545 }
2546
2547 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2548 {
2549 /* Let GEM Manage all of the aperture.
2550 *
2551 * However, leave one page at the end still bound to the scratch page.
2552 * There are a number of places where the hardware apparently prefetches
2553 * past the end of the object, and we've seen multiple hangs with the
2554 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2555 * aperture. One page should be enough to keep any prefetching inside
2556 * of the aperture.
2557 */
2558 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2559 unsigned long hole_start, hole_end;
2560 struct drm_mm_node *entry;
2561 int ret;
2562
2563 ret = intel_vgt_balloon(dev_priv);
2564 if (ret)
2565 return ret;
2566
2567 /* Reserve a mappable slot for our lockless error capture */
2568 ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2569 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2570 0, ggtt->mappable_end,
2571 DRM_MM_INSERT_LOW);
2572 if (ret)
2573 return ret;
2574
2575 /* Clear any non-preallocated blocks */
2576 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2577 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2578 hole_start, hole_end);
2579 ggtt->base.clear_range(&ggtt->base, hole_start,
2580 hole_end - hole_start);
2581 }
2582
2583 /* And finally clear the reserved guard page */
2584 ggtt->base.clear_range(&ggtt->base,
2585 ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2586
2587 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2588 ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2589 if (ret)
2590 goto err;
2591 }
2592
2593 return 0;
2594
2595 err:
2596 drm_mm_remove_node(&ggtt->error_capture);
2597 return ret;
2598 }
2599
2600 /**
2601 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2602 * @dev_priv: i915 device
2603 */
2604 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2605 {
2606 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2607 struct i915_vma *vma, *vn;
2608
2609 ggtt->base.closed = true;
2610
2611 mutex_lock(&dev_priv->drm.struct_mutex);
2612 WARN_ON(!list_empty(&ggtt->base.active_list));
2613 list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2614 WARN_ON(i915_vma_unbind(vma));
2615 mutex_unlock(&dev_priv->drm.struct_mutex);
2616
2617 i915_gem_cleanup_stolen(&dev_priv->drm);
2618
2619 mutex_lock(&dev_priv->drm.struct_mutex);
2620 i915_gem_fini_aliasing_ppgtt(dev_priv);
2621
2622 if (drm_mm_node_allocated(&ggtt->error_capture))
2623 drm_mm_remove_node(&ggtt->error_capture);
2624
2625 if (drm_mm_initialized(&ggtt->base.mm)) {
2626 intel_vgt_deballoon(dev_priv);
2627 i915_address_space_fini(&ggtt->base);
2628 }
2629
2630 ggtt->base.cleanup(&ggtt->base);
2631 mutex_unlock(&dev_priv->drm.struct_mutex);
2632
2633 arch_phys_wc_del(ggtt->mtrr);
2634 io_mapping_fini(&ggtt->mappable);
2635 }
2636
2637 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2638 {
2639 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2640 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2641 return snb_gmch_ctl << 20;
2642 }
2643
2644 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2645 {
2646 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2647 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2648 if (bdw_gmch_ctl)
2649 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2650
2651 #ifdef CONFIG_X86_32
2652 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2653 if (bdw_gmch_ctl > 4)
2654 bdw_gmch_ctl = 4;
2655 #endif
2656
2657 return bdw_gmch_ctl << 20;
2658 }
2659
2660 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2661 {
2662 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2663 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2664
2665 if (gmch_ctrl)
2666 return 1 << (20 + gmch_ctrl);
2667
2668 return 0;
2669 }
2670
2671 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2672 {
2673 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2674 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2675 return (size_t)snb_gmch_ctl << 25; /* 32 MB units */
2676 }
2677
2678 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2679 {
2680 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2681 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2682 return (size_t)bdw_gmch_ctl << 25; /* 32 MB units */
2683 }
2684
2685 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2686 {
2687 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2688 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2689
2690 /*
2691 * 0x0 to 0x10: 32MB increments starting at 0MB
2692 * 0x11 to 0x16: 4MB increments starting at 8MB
2693 * 0x17 to 0x1d: 4MB increments start at 36MB
2694 */
2695 if (gmch_ctrl < 0x11)
2696 return (size_t)gmch_ctrl << 25;
2697 else if (gmch_ctrl < 0x17)
2698 return (size_t)(gmch_ctrl - 0x11 + 2) << 22;
2699 else
2700 return (size_t)(gmch_ctrl - 0x17 + 9) << 22;
2701 }
2702
2703 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2704 {
2705 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2706 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2707
2708 if (gen9_gmch_ctl < 0xf0)
2709 return (size_t)gen9_gmch_ctl << 25; /* 32 MB units */
2710 else
2711 /* 4MB increments starting at 0xf0 for 4MB */
2712 return (size_t)(gen9_gmch_ctl - 0xf0 + 1) << 22;
2713 }
2714
2715 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2716 {
2717 struct drm_i915_private *dev_priv = ggtt->base.i915;
2718 struct pci_dev *pdev = dev_priv->drm.pdev;
2719 phys_addr_t phys_addr;
2720 int ret;
2721
2722 /* For Modern GENs the PTEs and register space are split in the BAR */
2723 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2724
2725 /*
2726 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2727 * dropped. For WC mappings in general we have 64 byte burst writes
2728 * when the WC buffer is flushed, so we can't use it, but have to
2729 * resort to an uncached mapping. The WC issue is easily caught by the
2730 * readback check when writing GTT PTE entries.
2731 */
2732 if (IS_GEN9_LP(dev_priv))
2733 ggtt->gsm = ioremap_nocache(phys_addr, size);
2734 else
2735 ggtt->gsm = ioremap_wc(phys_addr, size);
2736 if (!ggtt->gsm) {
2737 DRM_ERROR("Failed to map the ggtt page table\n");
2738 return -ENOMEM;
2739 }
2740
2741 ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
2742 if (ret) {
2743 DRM_ERROR("Scratch setup failed\n");
2744 /* iounmap will also get called at remove, but meh */
2745 iounmap(ggtt->gsm);
2746 return ret;
2747 }
2748
2749 return 0;
2750 }
2751
2752 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2753 * bits. When using advanced contexts each context stores its own PAT, but
2754 * writing this data shouldn't be harmful even in those cases. */
2755 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2756 {
2757 u64 pat;
2758
2759 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2760 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2761 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2762 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2763 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2764 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2765 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2766 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2767
2768 if (!USES_PPGTT(dev_priv))
2769 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2770 * so RTL will always use the value corresponding to
2771 * pat_sel = 000".
2772 * So let's disable cache for GGTT to avoid screen corruptions.
2773 * MOCS still can be used though.
2774 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2775 * before this patch, i.e. the same uncached + snooping access
2776 * like on gen6/7 seems to be in effect.
2777 * - So this just fixes blitter/render access. Again it looks
2778 * like it's not just uncached access, but uncached + snooping.
2779 * So we can still hold onto all our assumptions wrt cpu
2780 * clflushing on LLC machines.
2781 */
2782 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2783
2784 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2785 * write would work. */
2786 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2787 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2788 }
2789
2790 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2791 {
2792 u64 pat;
2793
2794 /*
2795 * Map WB on BDW to snooped on CHV.
2796 *
2797 * Only the snoop bit has meaning for CHV, the rest is
2798 * ignored.
2799 *
2800 * The hardware will never snoop for certain types of accesses:
2801 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2802 * - PPGTT page tables
2803 * - some other special cycles
2804 *
2805 * As with BDW, we also need to consider the following for GT accesses:
2806 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2807 * so RTL will always use the value corresponding to
2808 * pat_sel = 000".
2809 * Which means we must set the snoop bit in PAT entry 0
2810 * in order to keep the global status page working.
2811 */
2812 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2813 GEN8_PPAT(1, 0) |
2814 GEN8_PPAT(2, 0) |
2815 GEN8_PPAT(3, 0) |
2816 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2817 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2818 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2819 GEN8_PPAT(7, CHV_PPAT_SNOOP);
2820
2821 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2822 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2823 }
2824
2825 static void gen6_gmch_remove(struct i915_address_space *vm)
2826 {
2827 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2828
2829 iounmap(ggtt->gsm);
2830 cleanup_scratch_page(vm);
2831 }
2832
2833 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
2834 {
2835 struct drm_i915_private *dev_priv = ggtt->base.i915;
2836 struct pci_dev *pdev = dev_priv->drm.pdev;
2837 unsigned int size;
2838 u16 snb_gmch_ctl;
2839 int err;
2840
2841 /* TODO: We're not aware of mappable constraints on gen8 yet */
2842 ggtt->mappable_base = pci_resource_start(pdev, 2);
2843 ggtt->mappable_end = pci_resource_len(pdev, 2);
2844
2845 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
2846 if (!err)
2847 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
2848 if (err)
2849 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2850
2851 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2852
2853 if (INTEL_GEN(dev_priv) >= 9) {
2854 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
2855 size = gen8_get_total_gtt_size(snb_gmch_ctl);
2856 } else if (IS_CHERRYVIEW(dev_priv)) {
2857 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
2858 size = chv_get_total_gtt_size(snb_gmch_ctl);
2859 } else {
2860 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
2861 size = gen8_get_total_gtt_size(snb_gmch_ctl);
2862 }
2863
2864 ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2865
2866 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
2867 chv_setup_private_ppat(dev_priv);
2868 else
2869 bdw_setup_private_ppat(dev_priv);
2870
2871 ggtt->base.cleanup = gen6_gmch_remove;
2872 ggtt->base.bind_vma = ggtt_bind_vma;
2873 ggtt->base.unbind_vma = ggtt_unbind_vma;
2874 ggtt->base.insert_page = gen8_ggtt_insert_page;
2875 ggtt->base.clear_range = nop_clear_range;
2876 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
2877 ggtt->base.clear_range = gen8_ggtt_clear_range;
2878
2879 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
2880
2881 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
2882 if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
2883 ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
2884 ggtt->base.insert_page = bxt_vtd_ggtt_insert_page__BKL;
2885 if (ggtt->base.clear_range != nop_clear_range)
2886 ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
2887 }
2888
2889 ggtt->invalidate = gen6_ggtt_invalidate;
2890
2891 return ggtt_probe_common(ggtt, size);
2892 }
2893
2894 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
2895 {
2896 struct drm_i915_private *dev_priv = ggtt->base.i915;
2897 struct pci_dev *pdev = dev_priv->drm.pdev;
2898 unsigned int size;
2899 u16 snb_gmch_ctl;
2900 int err;
2901
2902 ggtt->mappable_base = pci_resource_start(pdev, 2);
2903 ggtt->mappable_end = pci_resource_len(pdev, 2);
2904
2905 /* 64/512MB is the current min/max we actually know of, but this is just
2906 * a coarse sanity check.
2907 */
2908 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
2909 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
2910 return -ENXIO;
2911 }
2912
2913 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2914 if (!err)
2915 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
2916 if (err)
2917 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2918 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2919
2920 ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
2921
2922 size = gen6_get_total_gtt_size(snb_gmch_ctl);
2923 ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2924
2925 ggtt->base.clear_range = gen6_ggtt_clear_range;
2926 ggtt->base.insert_page = gen6_ggtt_insert_page;
2927 ggtt->base.insert_entries = gen6_ggtt_insert_entries;
2928 ggtt->base.bind_vma = ggtt_bind_vma;
2929 ggtt->base.unbind_vma = ggtt_unbind_vma;
2930 ggtt->base.cleanup = gen6_gmch_remove;
2931
2932 ggtt->invalidate = gen6_ggtt_invalidate;
2933
2934 if (HAS_EDRAM(dev_priv))
2935 ggtt->base.pte_encode = iris_pte_encode;
2936 else if (IS_HASWELL(dev_priv))
2937 ggtt->base.pte_encode = hsw_pte_encode;
2938 else if (IS_VALLEYVIEW(dev_priv))
2939 ggtt->base.pte_encode = byt_pte_encode;
2940 else if (INTEL_GEN(dev_priv) >= 7)
2941 ggtt->base.pte_encode = ivb_pte_encode;
2942 else
2943 ggtt->base.pte_encode = snb_pte_encode;
2944
2945 return ggtt_probe_common(ggtt, size);
2946 }
2947
2948 static void i915_gmch_remove(struct i915_address_space *vm)
2949 {
2950 intel_gmch_remove();
2951 }
2952
2953 static int i915_gmch_probe(struct i915_ggtt *ggtt)
2954 {
2955 struct drm_i915_private *dev_priv = ggtt->base.i915;
2956 int ret;
2957
2958 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
2959 if (!ret) {
2960 DRM_ERROR("failed to set up gmch\n");
2961 return -EIO;
2962 }
2963
2964 intel_gtt_get(&ggtt->base.total,
2965 &ggtt->stolen_size,
2966 &ggtt->mappable_base,
2967 &ggtt->mappable_end);
2968
2969 ggtt->do_idle_maps = needs_idle_maps(dev_priv);
2970 ggtt->base.insert_page = i915_ggtt_insert_page;
2971 ggtt->base.insert_entries = i915_ggtt_insert_entries;
2972 ggtt->base.clear_range = i915_ggtt_clear_range;
2973 ggtt->base.bind_vma = ggtt_bind_vma;
2974 ggtt->base.unbind_vma = ggtt_unbind_vma;
2975 ggtt->base.cleanup = i915_gmch_remove;
2976
2977 ggtt->invalidate = gmch_ggtt_invalidate;
2978
2979 if (unlikely(ggtt->do_idle_maps))
2980 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2981
2982 return 0;
2983 }
2984
2985 /**
2986 * i915_ggtt_probe_hw - Probe GGTT hardware location
2987 * @dev_priv: i915 device
2988 */
2989 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
2990 {
2991 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2992 int ret;
2993
2994 ggtt->base.i915 = dev_priv;
2995 ggtt->base.dma = &dev_priv->drm.pdev->dev;
2996
2997 if (INTEL_GEN(dev_priv) <= 5)
2998 ret = i915_gmch_probe(ggtt);
2999 else if (INTEL_GEN(dev_priv) < 8)
3000 ret = gen6_gmch_probe(ggtt);
3001 else
3002 ret = gen8_gmch_probe(ggtt);
3003 if (ret)
3004 return ret;
3005
3006 /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3007 * This is easier than doing range restriction on the fly, as we
3008 * currently don't have any bits spare to pass in this upper
3009 * restriction!
3010 */
3011 if (HAS_GUC(dev_priv) && i915.enable_guc_loading) {
3012 ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3013 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3014 }
3015
3016 if ((ggtt->base.total - 1) >> 32) {
3017 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3018 " of address space! Found %lldM!\n",
3019 ggtt->base.total >> 20);
3020 ggtt->base.total = 1ULL << 32;
3021 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3022 }
3023
3024 if (ggtt->mappable_end > ggtt->base.total) {
3025 DRM_ERROR("mappable aperture extends past end of GGTT,"
3026 " aperture=%llx, total=%llx\n",
3027 ggtt->mappable_end, ggtt->base.total);
3028 ggtt->mappable_end = ggtt->base.total;
3029 }
3030
3031 /* GMADR is the PCI mmio aperture into the global GTT. */
3032 DRM_INFO("Memory usable by graphics device = %lluM\n",
3033 ggtt->base.total >> 20);
3034 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3035 DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20);
3036 if (intel_vtd_active())
3037 DRM_INFO("VT-d active for gfx access\n");
3038
3039 return 0;
3040 }
3041
3042 /**
3043 * i915_ggtt_init_hw - Initialize GGTT hardware
3044 * @dev_priv: i915 device
3045 */
3046 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3047 {
3048 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3049 int ret;
3050
3051 INIT_LIST_HEAD(&dev_priv->vm_list);
3052
3053 /* Note that we use page colouring to enforce a guard page at the
3054 * end of the address space. This is required as the CS may prefetch
3055 * beyond the end of the batch buffer, across the page boundary,
3056 * and beyond the end of the GTT if we do not provide a guard.
3057 */
3058 mutex_lock(&dev_priv->drm.struct_mutex);
3059 i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3060 if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3061 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3062 mutex_unlock(&dev_priv->drm.struct_mutex);
3063
3064 if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3065 dev_priv->ggtt.mappable_base,
3066 dev_priv->ggtt.mappable_end)) {
3067 ret = -EIO;
3068 goto out_gtt_cleanup;
3069 }
3070
3071 ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3072
3073 /*
3074 * Initialise stolen early so that we may reserve preallocated
3075 * objects for the BIOS to KMS transition.
3076 */
3077 ret = i915_gem_init_stolen(dev_priv);
3078 if (ret)
3079 goto out_gtt_cleanup;
3080
3081 return 0;
3082
3083 out_gtt_cleanup:
3084 ggtt->base.cleanup(&ggtt->base);
3085 return ret;
3086 }
3087
3088 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3089 {
3090 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3091 return -EIO;
3092
3093 return 0;
3094 }
3095
3096 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3097 {
3098 GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3099
3100 i915->ggtt.invalidate = guc_ggtt_invalidate;
3101 }
3102
3103 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3104 {
3105 /* We should only be called after i915_ggtt_enable_guc() */
3106 GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3107
3108 i915->ggtt.invalidate = gen6_ggtt_invalidate;
3109 }
3110
3111 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3112 {
3113 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3114 struct drm_i915_gem_object *obj, *on;
3115
3116 i915_check_and_clear_faults(dev_priv);
3117
3118 /* First fill our portion of the GTT with scratch pages */
3119 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3120
3121 ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3122
3123 /* clflush objects bound into the GGTT and rebind them. */
3124 list_for_each_entry_safe(obj, on,
3125 &dev_priv->mm.bound_list, global_link) {
3126 bool ggtt_bound = false;
3127 struct i915_vma *vma;
3128
3129 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3130 if (vma->vm != &ggtt->base)
3131 continue;
3132
3133 if (!i915_vma_unbind(vma))
3134 continue;
3135
3136 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3137 PIN_UPDATE));
3138 ggtt_bound = true;
3139 }
3140
3141 if (ggtt_bound)
3142 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3143 }
3144
3145 ggtt->base.closed = false;
3146
3147 if (INTEL_GEN(dev_priv) >= 8) {
3148 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3149 chv_setup_private_ppat(dev_priv);
3150 else
3151 bdw_setup_private_ppat(dev_priv);
3152
3153 return;
3154 }
3155
3156 if (USES_PPGTT(dev_priv)) {
3157 struct i915_address_space *vm;
3158
3159 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3160 struct i915_hw_ppgtt *ppgtt;
3161
3162 if (i915_is_ggtt(vm))
3163 ppgtt = dev_priv->mm.aliasing_ppgtt;
3164 else
3165 ppgtt = i915_vm_to_ppgtt(vm);
3166
3167 gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3168 }
3169 }
3170
3171 i915_ggtt_invalidate(dev_priv);
3172 }
3173
3174 static struct scatterlist *
3175 rotate_pages(const dma_addr_t *in, unsigned int offset,
3176 unsigned int width, unsigned int height,
3177 unsigned int stride,
3178 struct sg_table *st, struct scatterlist *sg)
3179 {
3180 unsigned int column, row;
3181 unsigned int src_idx;
3182
3183 for (column = 0; column < width; column++) {
3184 src_idx = stride * (height - 1) + column;
3185 for (row = 0; row < height; row++) {
3186 st->nents++;
3187 /* We don't need the pages, but need to initialize
3188 * the entries so the sg list can be happily traversed.
3189 * The only thing we need are DMA addresses.
3190 */
3191 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3192 sg_dma_address(sg) = in[offset + src_idx];
3193 sg_dma_len(sg) = PAGE_SIZE;
3194 sg = sg_next(sg);
3195 src_idx -= stride;
3196 }
3197 }
3198
3199 return sg;
3200 }
3201
3202 static noinline struct sg_table *
3203 intel_rotate_pages(struct intel_rotation_info *rot_info,
3204 struct drm_i915_gem_object *obj)
3205 {
3206 const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3207 unsigned int size = intel_rotation_info_size(rot_info);
3208 struct sgt_iter sgt_iter;
3209 dma_addr_t dma_addr;
3210 unsigned long i;
3211 dma_addr_t *page_addr_list;
3212 struct sg_table *st;
3213 struct scatterlist *sg;
3214 int ret = -ENOMEM;
3215
3216 /* Allocate a temporary list of source pages for random access. */
3217 page_addr_list = kvmalloc_array(n_pages,
3218 sizeof(dma_addr_t),
3219 GFP_TEMPORARY);
3220 if (!page_addr_list)
3221 return ERR_PTR(ret);
3222
3223 /* Allocate target SG list. */
3224 st = kmalloc(sizeof(*st), GFP_KERNEL);
3225 if (!st)
3226 goto err_st_alloc;
3227
3228 ret = sg_alloc_table(st, size, GFP_KERNEL);
3229 if (ret)
3230 goto err_sg_alloc;
3231
3232 /* Populate source page list from the object. */
3233 i = 0;
3234 for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3235 page_addr_list[i++] = dma_addr;
3236
3237 GEM_BUG_ON(i != n_pages);
3238 st->nents = 0;
3239 sg = st->sgl;
3240
3241 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3242 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3243 rot_info->plane[i].width, rot_info->plane[i].height,
3244 rot_info->plane[i].stride, st, sg);
3245 }
3246
3247 DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3248 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3249
3250 kvfree(page_addr_list);
3251
3252 return st;
3253
3254 err_sg_alloc:
3255 kfree(st);
3256 err_st_alloc:
3257 kvfree(page_addr_list);
3258
3259 DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3260 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3261
3262 return ERR_PTR(ret);
3263 }
3264
3265 static noinline struct sg_table *
3266 intel_partial_pages(const struct i915_ggtt_view *view,
3267 struct drm_i915_gem_object *obj)
3268 {
3269 struct sg_table *st;
3270 struct scatterlist *sg, *iter;
3271 unsigned int count = view->partial.size;
3272 unsigned int offset;
3273 int ret = -ENOMEM;
3274
3275 st = kmalloc(sizeof(*st), GFP_KERNEL);
3276 if (!st)
3277 goto err_st_alloc;
3278
3279 ret = sg_alloc_table(st, count, GFP_KERNEL);
3280 if (ret)
3281 goto err_sg_alloc;
3282
3283 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3284 GEM_BUG_ON(!iter);
3285
3286 sg = st->sgl;
3287 st->nents = 0;
3288 do {
3289 unsigned int len;
3290
3291 len = min(iter->length - (offset << PAGE_SHIFT),
3292 count << PAGE_SHIFT);
3293 sg_set_page(sg, NULL, len, 0);
3294 sg_dma_address(sg) =
3295 sg_dma_address(iter) + (offset << PAGE_SHIFT);
3296 sg_dma_len(sg) = len;
3297
3298 st->nents++;
3299 count -= len >> PAGE_SHIFT;
3300 if (count == 0) {
3301 sg_mark_end(sg);
3302 return st;
3303 }
3304
3305 sg = __sg_next(sg);
3306 iter = __sg_next(iter);
3307 offset = 0;
3308 } while (1);
3309
3310 err_sg_alloc:
3311 kfree(st);
3312 err_st_alloc:
3313 return ERR_PTR(ret);
3314 }
3315
3316 static int
3317 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3318 {
3319 int ret;
3320
3321 /* The vma->pages are only valid within the lifespan of the borrowed
3322 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3323 * must be the vma->pages. A simple rule is that vma->pages must only
3324 * be accessed when the obj->mm.pages are pinned.
3325 */
3326 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3327
3328 switch (vma->ggtt_view.type) {
3329 case I915_GGTT_VIEW_NORMAL:
3330 vma->pages = vma->obj->mm.pages;
3331 return 0;
3332
3333 case I915_GGTT_VIEW_ROTATED:
3334 vma->pages =
3335 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3336 break;
3337
3338 case I915_GGTT_VIEW_PARTIAL:
3339 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3340 break;
3341
3342 default:
3343 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3344 vma->ggtt_view.type);
3345 return -EINVAL;
3346 }
3347
3348 ret = 0;
3349 if (unlikely(IS_ERR(vma->pages))) {
3350 ret = PTR_ERR(vma->pages);
3351 vma->pages = NULL;
3352 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3353 vma->ggtt_view.type, ret);
3354 }
3355 return ret;
3356 }
3357
3358 /**
3359 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3360 * @vm: the &struct i915_address_space
3361 * @node: the &struct drm_mm_node (typically i915_vma.mode)
3362 * @size: how much space to allocate inside the GTT,
3363 * must be #I915_GTT_PAGE_SIZE aligned
3364 * @offset: where to insert inside the GTT,
3365 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3366 * (@offset + @size) must fit within the address space
3367 * @color: color to apply to node, if this node is not from a VMA,
3368 * color must be #I915_COLOR_UNEVICTABLE
3369 * @flags: control search and eviction behaviour
3370 *
3371 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3372 * the address space (using @size and @color). If the @node does not fit, it
3373 * tries to evict any overlapping nodes from the GTT, including any
3374 * neighbouring nodes if the colors do not match (to ensure guard pages between
3375 * differing domains). See i915_gem_evict_for_node() for the gory details
3376 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3377 * evicting active overlapping objects, and any overlapping node that is pinned
3378 * or marked as unevictable will also result in failure.
3379 *
3380 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3381 * asked to wait for eviction and interrupted.
3382 */
3383 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3384 struct drm_mm_node *node,
3385 u64 size, u64 offset, unsigned long color,
3386 unsigned int flags)
3387 {
3388 int err;
3389
3390 GEM_BUG_ON(!size);
3391 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3392 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3393 GEM_BUG_ON(range_overflows(offset, size, vm->total));
3394 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3395 GEM_BUG_ON(drm_mm_node_allocated(node));
3396
3397 node->size = size;
3398 node->start = offset;
3399 node->color = color;
3400
3401 err = drm_mm_reserve_node(&vm->mm, node);
3402 if (err != -ENOSPC)
3403 return err;
3404
3405 if (flags & PIN_NOEVICT)
3406 return -ENOSPC;
3407
3408 err = i915_gem_evict_for_node(vm, node, flags);
3409 if (err == 0)
3410 err = drm_mm_reserve_node(&vm->mm, node);
3411
3412 return err;
3413 }
3414
3415 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3416 {
3417 u64 range, addr;
3418
3419 GEM_BUG_ON(range_overflows(start, len, end));
3420 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3421
3422 range = round_down(end - len, align) - round_up(start, align);
3423 if (range) {
3424 if (sizeof(unsigned long) == sizeof(u64)) {
3425 addr = get_random_long();
3426 } else {
3427 addr = get_random_int();
3428 if (range > U32_MAX) {
3429 addr <<= 32;
3430 addr |= get_random_int();
3431 }
3432 }
3433 div64_u64_rem(addr, range, &addr);
3434 start += addr;
3435 }
3436
3437 return round_up(start, align);
3438 }
3439
3440 /**
3441 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3442 * @vm: the &struct i915_address_space
3443 * @node: the &struct drm_mm_node (typically i915_vma.node)
3444 * @size: how much space to allocate inside the GTT,
3445 * must be #I915_GTT_PAGE_SIZE aligned
3446 * @alignment: required alignment of starting offset, may be 0 but
3447 * if specified, this must be a power-of-two and at least
3448 * #I915_GTT_MIN_ALIGNMENT
3449 * @color: color to apply to node
3450 * @start: start of any range restriction inside GTT (0 for all),
3451 * must be #I915_GTT_PAGE_SIZE aligned
3452 * @end: end of any range restriction inside GTT (U64_MAX for all),
3453 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3454 * @flags: control search and eviction behaviour
3455 *
3456 * i915_gem_gtt_insert() first searches for an available hole into which
3457 * is can insert the node. The hole address is aligned to @alignment and
3458 * its @size must then fit entirely within the [@start, @end] bounds. The
3459 * nodes on either side of the hole must match @color, or else a guard page
3460 * will be inserted between the two nodes (or the node evicted). If no
3461 * suitable hole is found, first a victim is randomly selected and tested
3462 * for eviction, otherwise then the LRU list of objects within the GTT
3463 * is scanned to find the first set of replacement nodes to create the hole.
3464 * Those old overlapping nodes are evicted from the GTT (and so must be
3465 * rebound before any future use). Any node that is currently pinned cannot
3466 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3467 * active and #PIN_NONBLOCK is specified, that node is also skipped when
3468 * searching for an eviction candidate. See i915_gem_evict_something() for
3469 * the gory details on the eviction algorithm.
3470 *
3471 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3472 * asked to wait for eviction and interrupted.
3473 */
3474 int i915_gem_gtt_insert(struct i915_address_space *vm,
3475 struct drm_mm_node *node,
3476 u64 size, u64 alignment, unsigned long color,
3477 u64 start, u64 end, unsigned int flags)
3478 {
3479 enum drm_mm_insert_mode mode;
3480 u64 offset;
3481 int err;
3482
3483 lockdep_assert_held(&vm->i915->drm.struct_mutex);
3484 GEM_BUG_ON(!size);
3485 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3486 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3487 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3488 GEM_BUG_ON(start >= end);
3489 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3490 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3491 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3492 GEM_BUG_ON(drm_mm_node_allocated(node));
3493
3494 if (unlikely(range_overflows(start, size, end)))
3495 return -ENOSPC;
3496
3497 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3498 return -ENOSPC;
3499
3500 mode = DRM_MM_INSERT_BEST;
3501 if (flags & PIN_HIGH)
3502 mode = DRM_MM_INSERT_HIGH;
3503 if (flags & PIN_MAPPABLE)
3504 mode = DRM_MM_INSERT_LOW;
3505
3506 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3507 * so we know that we always have a minimum alignment of 4096.
3508 * The drm_mm range manager is optimised to return results
3509 * with zero alignment, so where possible use the optimal
3510 * path.
3511 */
3512 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3513 if (alignment <= I915_GTT_MIN_ALIGNMENT)
3514 alignment = 0;
3515
3516 err = drm_mm_insert_node_in_range(&vm->mm, node,
3517 size, alignment, color,
3518 start, end, mode);
3519 if (err != -ENOSPC)
3520 return err;
3521
3522 if (flags & PIN_NOEVICT)
3523 return -ENOSPC;
3524
3525 /* No free space, pick a slot at random.
3526 *
3527 * There is a pathological case here using a GTT shared between
3528 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3529 *
3530 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3531 * (64k objects) (448k objects)
3532 *
3533 * Now imagine that the eviction LRU is ordered top-down (just because
3534 * pathology meets real life), and that we need to evict an object to
3535 * make room inside the aperture. The eviction scan then has to walk
3536 * the 448k list before it finds one within range. And now imagine that
3537 * it has to search for a new hole between every byte inside the memcpy,
3538 * for several simultaneous clients.
3539 *
3540 * On a full-ppgtt system, if we have run out of available space, there
3541 * will be lots and lots of objects in the eviction list! Again,
3542 * searching that LRU list may be slow if we are also applying any
3543 * range restrictions (e.g. restriction to low 4GiB) and so, for
3544 * simplicity and similarilty between different GTT, try the single
3545 * random replacement first.
3546 */
3547 offset = random_offset(start, end,
3548 size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3549 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3550 if (err != -ENOSPC)
3551 return err;
3552
3553 /* Randomly selected placement is pinned, do a search */
3554 err = i915_gem_evict_something(vm, size, alignment, color,
3555 start, end, flags);
3556 if (err)
3557 return err;
3558
3559 return drm_mm_insert_node_in_range(&vm->mm, node,
3560 size, alignment, color,
3561 start, end, DRM_MM_INSERT_EVICT);
3562 }
3563
3564 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3565 #include "selftests/mock_gtt.c"
3566 #include "selftests/i915_gem_gtt.c"
3567 #endif