]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge tag 'topic/drm-misc-2016-09-25' of git://anongit.freedesktop.org/drm-intel...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_dmabuf.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51
52 static bool is_mmio_work(struct intel_flip_work *work)
53 {
54 return work->mmio_work.func;
55 }
56
57 /* Primary plane formats for gen <= 3 */
58 static const uint32_t i8xx_primary_formats[] = {
59 DRM_FORMAT_C8,
60 DRM_FORMAT_RGB565,
61 DRM_FORMAT_XRGB1555,
62 DRM_FORMAT_XRGB8888,
63 };
64
65 /* Primary plane formats for gen >= 4 */
66 static const uint32_t i965_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_XRGB2101010,
72 DRM_FORMAT_XBGR2101010,
73 };
74
75 static const uint32_t skl_primary_formats[] = {
76 DRM_FORMAT_C8,
77 DRM_FORMAT_RGB565,
78 DRM_FORMAT_XRGB8888,
79 DRM_FORMAT_XBGR8888,
80 DRM_FORMAT_ARGB8888,
81 DRM_FORMAT_ABGR8888,
82 DRM_FORMAT_XRGB2101010,
83 DRM_FORMAT_XBGR2101010,
84 DRM_FORMAT_YUYV,
85 DRM_FORMAT_YVYU,
86 DRM_FORMAT_UYVY,
87 DRM_FORMAT_VYUY,
88 };
89
90 /* Cursor formats */
91 static const uint32_t intel_cursor_formats[] = {
92 DRM_FORMAT_ARGB8888,
93 };
94
95 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
96 struct intel_crtc_state *pipe_config);
97 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
98 struct intel_crtc_state *pipe_config);
99
100 static int intel_framebuffer_init(struct drm_device *dev,
101 struct intel_framebuffer *ifb,
102 struct drm_mode_fb_cmd2 *mode_cmd,
103 struct drm_i915_gem_object *obj);
104 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
106 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
107 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
108 struct intel_link_m_n *m_n,
109 struct intel_link_m_n *m2_n2);
110 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipeconf(struct drm_crtc *crtc);
112 static void haswell_set_pipemisc(struct drm_crtc *crtc);
113 static void vlv_prepare_pll(struct intel_crtc *crtc,
114 const struct intel_crtc_state *pipe_config);
115 static void chv_prepare_pll(struct intel_crtc *crtc,
116 const struct intel_crtc_state *pipe_config);
117 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
119 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
120 struct intel_crtc_state *crtc_state);
121 static void skylake_pfit_enable(struct intel_crtc *crtc);
122 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
123 static void ironlake_pfit_enable(struct intel_crtc *crtc);
124 static void intel_modeset_setup_hw_state(struct drm_device *dev);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
127 static int bxt_calc_cdclk(int max_pixclk);
128
129 struct intel_limit {
130 struct {
131 int min, max;
132 } dot, vco, n, m, m1, m2, p, p1;
133
134 struct {
135 int dot_limit;
136 int p2_slow, p2_fast;
137 } p2;
138 };
139
140 /* returns HPLL frequency in kHz */
141 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142 {
143 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144
145 /* Obtain SKU information */
146 mutex_lock(&dev_priv->sb_lock);
147 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148 CCK_FUSE_HPLL_FREQ_MASK;
149 mutex_unlock(&dev_priv->sb_lock);
150
151 return vco_freq[hpll_freq] * 1000;
152 }
153
154 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155 const char *name, u32 reg, int ref_freq)
156 {
157 u32 val;
158 int divider;
159
160 mutex_lock(&dev_priv->sb_lock);
161 val = vlv_cck_read(dev_priv, reg);
162 mutex_unlock(&dev_priv->sb_lock);
163
164 divider = val & CCK_FREQUENCY_VALUES;
165
166 WARN((val & CCK_FREQUENCY_STATUS) !=
167 (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 "%s change in progress\n", name);
169
170 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171 }
172
173 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174 const char *name, u32 reg)
175 {
176 if (dev_priv->hpll_freq == 0)
177 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178
179 return vlv_get_cck_clock(dev_priv, name, reg,
180 dev_priv->hpll_freq);
181 }
182
183 static int
184 intel_pch_rawclk(struct drm_i915_private *dev_priv)
185 {
186 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187 }
188
189 static int
190 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191 {
192 /* RAWCLK_FREQ_VLV register updated from power well code */
193 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194 CCK_DISPLAY_REF_CLOCK_CONTROL);
195 }
196
197 static int
198 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
199 {
200 uint32_t clkcfg;
201
202 /* hrawclock is 1/4 the FSB frequency */
203 clkcfg = I915_READ(CLKCFG);
204 switch (clkcfg & CLKCFG_FSB_MASK) {
205 case CLKCFG_FSB_400:
206 return 100000;
207 case CLKCFG_FSB_533:
208 return 133333;
209 case CLKCFG_FSB_667:
210 return 166667;
211 case CLKCFG_FSB_800:
212 return 200000;
213 case CLKCFG_FSB_1067:
214 return 266667;
215 case CLKCFG_FSB_1333:
216 return 333333;
217 /* these two are just a guess; one of them might be right */
218 case CLKCFG_FSB_1600:
219 case CLKCFG_FSB_1600_ALT:
220 return 400000;
221 default:
222 return 133333;
223 }
224 }
225
226 void intel_update_rawclk(struct drm_i915_private *dev_priv)
227 {
228 if (HAS_PCH_SPLIT(dev_priv))
229 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234 else
235 return; /* no rawclk on other platforms, or no need to know it */
236
237 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238 }
239
240 static void intel_update_czclk(struct drm_i915_private *dev_priv)
241 {
242 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
243 return;
244
245 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246 CCK_CZ_CLOCK_CONTROL);
247
248 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249 }
250
251 static inline u32 /* units of 100MHz */
252 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253 const struct intel_crtc_state *pipe_config)
254 {
255 if (HAS_DDI(dev_priv))
256 return pipe_config->port_clock; /* SPLL */
257 else if (IS_GEN5(dev_priv))
258 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
259 else
260 return 270000;
261 }
262
263 static const struct intel_limit intel_limits_i8xx_dac = {
264 .dot = { .min = 25000, .max = 350000 },
265 .vco = { .min = 908000, .max = 1512000 },
266 .n = { .min = 2, .max = 16 },
267 .m = { .min = 96, .max = 140 },
268 .m1 = { .min = 18, .max = 26 },
269 .m2 = { .min = 6, .max = 16 },
270 .p = { .min = 4, .max = 128 },
271 .p1 = { .min = 2, .max = 33 },
272 .p2 = { .dot_limit = 165000,
273 .p2_slow = 4, .p2_fast = 2 },
274 };
275
276 static const struct intel_limit intel_limits_i8xx_dvo = {
277 .dot = { .min = 25000, .max = 350000 },
278 .vco = { .min = 908000, .max = 1512000 },
279 .n = { .min = 2, .max = 16 },
280 .m = { .min = 96, .max = 140 },
281 .m1 = { .min = 18, .max = 26 },
282 .m2 = { .min = 6, .max = 16 },
283 .p = { .min = 4, .max = 128 },
284 .p1 = { .min = 2, .max = 33 },
285 .p2 = { .dot_limit = 165000,
286 .p2_slow = 4, .p2_fast = 4 },
287 };
288
289 static const struct intel_limit intel_limits_i8xx_lvds = {
290 .dot = { .min = 25000, .max = 350000 },
291 .vco = { .min = 908000, .max = 1512000 },
292 .n = { .min = 2, .max = 16 },
293 .m = { .min = 96, .max = 140 },
294 .m1 = { .min = 18, .max = 26 },
295 .m2 = { .min = 6, .max = 16 },
296 .p = { .min = 4, .max = 128 },
297 .p1 = { .min = 1, .max = 6 },
298 .p2 = { .dot_limit = 165000,
299 .p2_slow = 14, .p2_fast = 7 },
300 };
301
302 static const struct intel_limit intel_limits_i9xx_sdvo = {
303 .dot = { .min = 20000, .max = 400000 },
304 .vco = { .min = 1400000, .max = 2800000 },
305 .n = { .min = 1, .max = 6 },
306 .m = { .min = 70, .max = 120 },
307 .m1 = { .min = 8, .max = 18 },
308 .m2 = { .min = 3, .max = 7 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 200000,
312 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const struct intel_limit intel_limits_i9xx_lvds = {
316 .dot = { .min = 20000, .max = 400000 },
317 .vco = { .min = 1400000, .max = 2800000 },
318 .n = { .min = 1, .max = 6 },
319 .m = { .min = 70, .max = 120 },
320 .m1 = { .min = 8, .max = 18 },
321 .m2 = { .min = 3, .max = 7 },
322 .p = { .min = 7, .max = 98 },
323 .p1 = { .min = 1, .max = 8 },
324 .p2 = { .dot_limit = 112000,
325 .p2_slow = 14, .p2_fast = 7 },
326 };
327
328
329 static const struct intel_limit intel_limits_g4x_sdvo = {
330 .dot = { .min = 25000, .max = 270000 },
331 .vco = { .min = 1750000, .max = 3500000},
332 .n = { .min = 1, .max = 4 },
333 .m = { .min = 104, .max = 138 },
334 .m1 = { .min = 17, .max = 23 },
335 .m2 = { .min = 5, .max = 11 },
336 .p = { .min = 10, .max = 30 },
337 .p1 = { .min = 1, .max = 3},
338 .p2 = { .dot_limit = 270000,
339 .p2_slow = 10,
340 .p2_fast = 10
341 },
342 };
343
344 static const struct intel_limit intel_limits_g4x_hdmi = {
345 .dot = { .min = 22000, .max = 400000 },
346 .vco = { .min = 1750000, .max = 3500000},
347 .n = { .min = 1, .max = 4 },
348 .m = { .min = 104, .max = 138 },
349 .m1 = { .min = 16, .max = 23 },
350 .m2 = { .min = 5, .max = 11 },
351 .p = { .min = 5, .max = 80 },
352 .p1 = { .min = 1, .max = 8},
353 .p2 = { .dot_limit = 165000,
354 .p2_slow = 10, .p2_fast = 5 },
355 };
356
357 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
358 .dot = { .min = 20000, .max = 115000 },
359 .vco = { .min = 1750000, .max = 3500000 },
360 .n = { .min = 1, .max = 3 },
361 .m = { .min = 104, .max = 138 },
362 .m1 = { .min = 17, .max = 23 },
363 .m2 = { .min = 5, .max = 11 },
364 .p = { .min = 28, .max = 112 },
365 .p1 = { .min = 2, .max = 8 },
366 .p2 = { .dot_limit = 0,
367 .p2_slow = 14, .p2_fast = 14
368 },
369 };
370
371 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
372 .dot = { .min = 80000, .max = 224000 },
373 .vco = { .min = 1750000, .max = 3500000 },
374 .n = { .min = 1, .max = 3 },
375 .m = { .min = 104, .max = 138 },
376 .m1 = { .min = 17, .max = 23 },
377 .m2 = { .min = 5, .max = 11 },
378 .p = { .min = 14, .max = 42 },
379 .p1 = { .min = 2, .max = 6 },
380 .p2 = { .dot_limit = 0,
381 .p2_slow = 7, .p2_fast = 7
382 },
383 };
384
385 static const struct intel_limit intel_limits_pineview_sdvo = {
386 .dot = { .min = 20000, .max = 400000},
387 .vco = { .min = 1700000, .max = 3500000 },
388 /* Pineview's Ncounter is a ring counter */
389 .n = { .min = 3, .max = 6 },
390 .m = { .min = 2, .max = 256 },
391 /* Pineview only has one combined m divider, which we treat as m2. */
392 .m1 = { .min = 0, .max = 0 },
393 .m2 = { .min = 0, .max = 254 },
394 .p = { .min = 5, .max = 80 },
395 .p1 = { .min = 1, .max = 8 },
396 .p2 = { .dot_limit = 200000,
397 .p2_slow = 10, .p2_fast = 5 },
398 };
399
400 static const struct intel_limit intel_limits_pineview_lvds = {
401 .dot = { .min = 20000, .max = 400000 },
402 .vco = { .min = 1700000, .max = 3500000 },
403 .n = { .min = 3, .max = 6 },
404 .m = { .min = 2, .max = 256 },
405 .m1 = { .min = 0, .max = 0 },
406 .m2 = { .min = 0, .max = 254 },
407 .p = { .min = 7, .max = 112 },
408 .p1 = { .min = 1, .max = 8 },
409 .p2 = { .dot_limit = 112000,
410 .p2_slow = 14, .p2_fast = 14 },
411 };
412
413 /* Ironlake / Sandybridge
414 *
415 * We calculate clock using (register_value + 2) for N/M1/M2, so here
416 * the range value for them is (actual_value - 2).
417 */
418 static const struct intel_limit intel_limits_ironlake_dac = {
419 .dot = { .min = 25000, .max = 350000 },
420 .vco = { .min = 1760000, .max = 3510000 },
421 .n = { .min = 1, .max = 5 },
422 .m = { .min = 79, .max = 127 },
423 .m1 = { .min = 12, .max = 22 },
424 .m2 = { .min = 5, .max = 9 },
425 .p = { .min = 5, .max = 80 },
426 .p1 = { .min = 1, .max = 8 },
427 .p2 = { .dot_limit = 225000,
428 .p2_slow = 10, .p2_fast = 5 },
429 };
430
431 static const struct intel_limit intel_limits_ironlake_single_lvds = {
432 .dot = { .min = 25000, .max = 350000 },
433 .vco = { .min = 1760000, .max = 3510000 },
434 .n = { .min = 1, .max = 3 },
435 .m = { .min = 79, .max = 118 },
436 .m1 = { .min = 12, .max = 22 },
437 .m2 = { .min = 5, .max = 9 },
438 .p = { .min = 28, .max = 112 },
439 .p1 = { .min = 2, .max = 8 },
440 .p2 = { .dot_limit = 225000,
441 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
445 .dot = { .min = 25000, .max = 350000 },
446 .vco = { .min = 1760000, .max = 3510000 },
447 .n = { .min = 1, .max = 3 },
448 .m = { .min = 79, .max = 127 },
449 .m1 = { .min = 12, .max = 22 },
450 .m2 = { .min = 5, .max = 9 },
451 .p = { .min = 14, .max = 56 },
452 .p1 = { .min = 2, .max = 8 },
453 .p2 = { .dot_limit = 225000,
454 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 /* LVDS 100mhz refclk limits. */
458 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
459 .dot = { .min = 25000, .max = 350000 },
460 .vco = { .min = 1760000, .max = 3510000 },
461 .n = { .min = 1, .max = 2 },
462 .m = { .min = 79, .max = 126 },
463 .m1 = { .min = 12, .max = 22 },
464 .m2 = { .min = 5, .max = 9 },
465 .p = { .min = 28, .max = 112 },
466 .p1 = { .min = 2, .max = 8 },
467 .p2 = { .dot_limit = 225000,
468 .p2_slow = 14, .p2_fast = 14 },
469 };
470
471 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
472 .dot = { .min = 25000, .max = 350000 },
473 .vco = { .min = 1760000, .max = 3510000 },
474 .n = { .min = 1, .max = 3 },
475 .m = { .min = 79, .max = 126 },
476 .m1 = { .min = 12, .max = 22 },
477 .m2 = { .min = 5, .max = 9 },
478 .p = { .min = 14, .max = 42 },
479 .p1 = { .min = 2, .max = 6 },
480 .p2 = { .dot_limit = 225000,
481 .p2_slow = 7, .p2_fast = 7 },
482 };
483
484 static const struct intel_limit intel_limits_vlv = {
485 /*
486 * These are the data rate limits (measured in fast clocks)
487 * since those are the strictest limits we have. The fast
488 * clock and actual rate limits are more relaxed, so checking
489 * them would make no difference.
490 */
491 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
492 .vco = { .min = 4000000, .max = 6000000 },
493 .n = { .min = 1, .max = 7 },
494 .m1 = { .min = 2, .max = 3 },
495 .m2 = { .min = 11, .max = 156 },
496 .p1 = { .min = 2, .max = 3 },
497 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
498 };
499
500 static const struct intel_limit intel_limits_chv = {
501 /*
502 * These are the data rate limits (measured in fast clocks)
503 * since those are the strictest limits we have. The fast
504 * clock and actual rate limits are more relaxed, so checking
505 * them would make no difference.
506 */
507 .dot = { .min = 25000 * 5, .max = 540000 * 5},
508 .vco = { .min = 4800000, .max = 6480000 },
509 .n = { .min = 1, .max = 1 },
510 .m1 = { .min = 2, .max = 2 },
511 .m2 = { .min = 24 << 22, .max = 175 << 22 },
512 .p1 = { .min = 2, .max = 4 },
513 .p2 = { .p2_slow = 1, .p2_fast = 14 },
514 };
515
516 static const struct intel_limit intel_limits_bxt = {
517 /* FIXME: find real dot limits */
518 .dot = { .min = 0, .max = INT_MAX },
519 .vco = { .min = 4800000, .max = 6700000 },
520 .n = { .min = 1, .max = 1 },
521 .m1 = { .min = 2, .max = 2 },
522 /* FIXME: find real m2 limits */
523 .m2 = { .min = 2 << 22, .max = 255 << 22 },
524 .p1 = { .min = 2, .max = 4 },
525 .p2 = { .p2_slow = 1, .p2_fast = 20 },
526 };
527
528 static bool
529 needs_modeset(struct drm_crtc_state *state)
530 {
531 return drm_atomic_crtc_needs_modeset(state);
532 }
533
534 /*
535 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538 * The helpers' return value is the rate of the clock that is fed to the
539 * display engine's pipe which can be the above fast dot clock rate or a
540 * divided-down version of it.
541 */
542 /* m1 is reserved as 0 in Pineview, n is a ring counter */
543 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
544 {
545 clock->m = clock->m2 + 2;
546 clock->p = clock->p1 * clock->p2;
547 if (WARN_ON(clock->n == 0 || clock->p == 0))
548 return 0;
549 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
551
552 return clock->dot;
553 }
554
555 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556 {
557 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558 }
559
560 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
561 {
562 clock->m = i9xx_dpll_compute_m(clock);
563 clock->p = clock->p1 * clock->p2;
564 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
565 return 0;
566 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568
569 return clock->dot;
570 }
571
572 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
573 {
574 clock->m = clock->m1 * clock->m2;
575 clock->p = clock->p1 * clock->p2;
576 if (WARN_ON(clock->n == 0 || clock->p == 0))
577 return 0;
578 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
580
581 return clock->dot / 5;
582 }
583
584 int chv_calc_dpll_params(int refclk, struct dpll *clock)
585 {
586 clock->m = clock->m1 * clock->m2;
587 clock->p = clock->p1 * clock->p2;
588 if (WARN_ON(clock->n == 0 || clock->p == 0))
589 return 0;
590 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591 clock->n << 22);
592 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593
594 return clock->dot / 5;
595 }
596
597 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
598 /**
599 * Returns whether the given set of divisors are valid for a given refclk with
600 * the given connectors.
601 */
602
603 static bool intel_PLL_is_valid(struct drm_device *dev,
604 const struct intel_limit *limit,
605 const struct dpll *clock)
606 {
607 if (clock->n < limit->n.min || limit->n.max < clock->n)
608 INTELPllInvalid("n out of range\n");
609 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
610 INTELPllInvalid("p1 out of range\n");
611 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
612 INTELPllInvalid("m2 out of range\n");
613 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
614 INTELPllInvalid("m1 out of range\n");
615
616 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
617 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
618 if (clock->m1 <= clock->m2)
619 INTELPllInvalid("m1 <= m2\n");
620
621 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
622 if (clock->p < limit->p.min || limit->p.max < clock->p)
623 INTELPllInvalid("p out of range\n");
624 if (clock->m < limit->m.min || limit->m.max < clock->m)
625 INTELPllInvalid("m out of range\n");
626 }
627
628 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
629 INTELPllInvalid("vco out of range\n");
630 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
631 * connector, etc., rather than just a single range.
632 */
633 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
634 INTELPllInvalid("dot out of range\n");
635
636 return true;
637 }
638
639 static int
640 i9xx_select_p2_div(const struct intel_limit *limit,
641 const struct intel_crtc_state *crtc_state,
642 int target)
643 {
644 struct drm_device *dev = crtc_state->base.crtc->dev;
645
646 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
647 /*
648 * For LVDS just rely on its current settings for dual-channel.
649 * We haven't figured out how to reliably set up different
650 * single/dual channel state, if we even can.
651 */
652 if (intel_is_dual_link_lvds(dev))
653 return limit->p2.p2_fast;
654 else
655 return limit->p2.p2_slow;
656 } else {
657 if (target < limit->p2.dot_limit)
658 return limit->p2.p2_slow;
659 else
660 return limit->p2.p2_fast;
661 }
662 }
663
664 /*
665 * Returns a set of divisors for the desired target clock with the given
666 * refclk, or FALSE. The returned values represent the clock equation:
667 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
668 *
669 * Target and reference clocks are specified in kHz.
670 *
671 * If match_clock is provided, then best_clock P divider must match the P
672 * divider from @match_clock used for LVDS downclocking.
673 */
674 static bool
675 i9xx_find_best_dpll(const struct intel_limit *limit,
676 struct intel_crtc_state *crtc_state,
677 int target, int refclk, struct dpll *match_clock,
678 struct dpll *best_clock)
679 {
680 struct drm_device *dev = crtc_state->base.crtc->dev;
681 struct dpll clock;
682 int err = target;
683
684 memset(best_clock, 0, sizeof(*best_clock));
685
686 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
687
688 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
689 clock.m1++) {
690 for (clock.m2 = limit->m2.min;
691 clock.m2 <= limit->m2.max; clock.m2++) {
692 if (clock.m2 >= clock.m1)
693 break;
694 for (clock.n = limit->n.min;
695 clock.n <= limit->n.max; clock.n++) {
696 for (clock.p1 = limit->p1.min;
697 clock.p1 <= limit->p1.max; clock.p1++) {
698 int this_err;
699
700 i9xx_calc_dpll_params(refclk, &clock);
701 if (!intel_PLL_is_valid(dev, limit,
702 &clock))
703 continue;
704 if (match_clock &&
705 clock.p != match_clock->p)
706 continue;
707
708 this_err = abs(clock.dot - target);
709 if (this_err < err) {
710 *best_clock = clock;
711 err = this_err;
712 }
713 }
714 }
715 }
716 }
717
718 return (err != target);
719 }
720
721 /*
722 * Returns a set of divisors for the desired target clock with the given
723 * refclk, or FALSE. The returned values represent the clock equation:
724 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
725 *
726 * Target and reference clocks are specified in kHz.
727 *
728 * If match_clock is provided, then best_clock P divider must match the P
729 * divider from @match_clock used for LVDS downclocking.
730 */
731 static bool
732 pnv_find_best_dpll(const struct intel_limit *limit,
733 struct intel_crtc_state *crtc_state,
734 int target, int refclk, struct dpll *match_clock,
735 struct dpll *best_clock)
736 {
737 struct drm_device *dev = crtc_state->base.crtc->dev;
738 struct dpll clock;
739 int err = target;
740
741 memset(best_clock, 0, sizeof(*best_clock));
742
743 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
744
745 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
746 clock.m1++) {
747 for (clock.m2 = limit->m2.min;
748 clock.m2 <= limit->m2.max; clock.m2++) {
749 for (clock.n = limit->n.min;
750 clock.n <= limit->n.max; clock.n++) {
751 for (clock.p1 = limit->p1.min;
752 clock.p1 <= limit->p1.max; clock.p1++) {
753 int this_err;
754
755 pnv_calc_dpll_params(refclk, &clock);
756 if (!intel_PLL_is_valid(dev, limit,
757 &clock))
758 continue;
759 if (match_clock &&
760 clock.p != match_clock->p)
761 continue;
762
763 this_err = abs(clock.dot - target);
764 if (this_err < err) {
765 *best_clock = clock;
766 err = this_err;
767 }
768 }
769 }
770 }
771 }
772
773 return (err != target);
774 }
775
776 /*
777 * Returns a set of divisors for the desired target clock with the given
778 * refclk, or FALSE. The returned values represent the clock equation:
779 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
780 *
781 * Target and reference clocks are specified in kHz.
782 *
783 * If match_clock is provided, then best_clock P divider must match the P
784 * divider from @match_clock used for LVDS downclocking.
785 */
786 static bool
787 g4x_find_best_dpll(const struct intel_limit *limit,
788 struct intel_crtc_state *crtc_state,
789 int target, int refclk, struct dpll *match_clock,
790 struct dpll *best_clock)
791 {
792 struct drm_device *dev = crtc_state->base.crtc->dev;
793 struct dpll clock;
794 int max_n;
795 bool found = false;
796 /* approximately equals target * 0.00585 */
797 int err_most = (target >> 8) + (target >> 9);
798
799 memset(best_clock, 0, sizeof(*best_clock));
800
801 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
802
803 max_n = limit->n.max;
804 /* based on hardware requirement, prefer smaller n to precision */
805 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
806 /* based on hardware requirement, prefere larger m1,m2 */
807 for (clock.m1 = limit->m1.max;
808 clock.m1 >= limit->m1.min; clock.m1--) {
809 for (clock.m2 = limit->m2.max;
810 clock.m2 >= limit->m2.min; clock.m2--) {
811 for (clock.p1 = limit->p1.max;
812 clock.p1 >= limit->p1.min; clock.p1--) {
813 int this_err;
814
815 i9xx_calc_dpll_params(refclk, &clock);
816 if (!intel_PLL_is_valid(dev, limit,
817 &clock))
818 continue;
819
820 this_err = abs(clock.dot - target);
821 if (this_err < err_most) {
822 *best_clock = clock;
823 err_most = this_err;
824 max_n = clock.n;
825 found = true;
826 }
827 }
828 }
829 }
830 }
831 return found;
832 }
833
834 /*
835 * Check if the calculated PLL configuration is more optimal compared to the
836 * best configuration and error found so far. Return the calculated error.
837 */
838 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
839 const struct dpll *calculated_clock,
840 const struct dpll *best_clock,
841 unsigned int best_error_ppm,
842 unsigned int *error_ppm)
843 {
844 /*
845 * For CHV ignore the error and consider only the P value.
846 * Prefer a bigger P value based on HW requirements.
847 */
848 if (IS_CHERRYVIEW(dev)) {
849 *error_ppm = 0;
850
851 return calculated_clock->p > best_clock->p;
852 }
853
854 if (WARN_ON_ONCE(!target_freq))
855 return false;
856
857 *error_ppm = div_u64(1000000ULL *
858 abs(target_freq - calculated_clock->dot),
859 target_freq);
860 /*
861 * Prefer a better P value over a better (smaller) error if the error
862 * is small. Ensure this preference for future configurations too by
863 * setting the error to 0.
864 */
865 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
866 *error_ppm = 0;
867
868 return true;
869 }
870
871 return *error_ppm + 10 < best_error_ppm;
872 }
873
874 /*
875 * Returns a set of divisors for the desired target clock with the given
876 * refclk, or FALSE. The returned values represent the clock equation:
877 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
878 */
879 static bool
880 vlv_find_best_dpll(const struct intel_limit *limit,
881 struct intel_crtc_state *crtc_state,
882 int target, int refclk, struct dpll *match_clock,
883 struct dpll *best_clock)
884 {
885 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
886 struct drm_device *dev = crtc->base.dev;
887 struct dpll clock;
888 unsigned int bestppm = 1000000;
889 /* min update 19.2 MHz */
890 int max_n = min(limit->n.max, refclk / 19200);
891 bool found = false;
892
893 target *= 5; /* fast clock */
894
895 memset(best_clock, 0, sizeof(*best_clock));
896
897 /* based on hardware requirement, prefer smaller n to precision */
898 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
899 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
900 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
901 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
902 clock.p = clock.p1 * clock.p2;
903 /* based on hardware requirement, prefer bigger m1,m2 values */
904 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
905 unsigned int ppm;
906
907 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
908 refclk * clock.m1);
909
910 vlv_calc_dpll_params(refclk, &clock);
911
912 if (!intel_PLL_is_valid(dev, limit,
913 &clock))
914 continue;
915
916 if (!vlv_PLL_is_optimal(dev, target,
917 &clock,
918 best_clock,
919 bestppm, &ppm))
920 continue;
921
922 *best_clock = clock;
923 bestppm = ppm;
924 found = true;
925 }
926 }
927 }
928 }
929
930 return found;
931 }
932
933 /*
934 * Returns a set of divisors for the desired target clock with the given
935 * refclk, or FALSE. The returned values represent the clock equation:
936 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
937 */
938 static bool
939 chv_find_best_dpll(const struct intel_limit *limit,
940 struct intel_crtc_state *crtc_state,
941 int target, int refclk, struct dpll *match_clock,
942 struct dpll *best_clock)
943 {
944 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
945 struct drm_device *dev = crtc->base.dev;
946 unsigned int best_error_ppm;
947 struct dpll clock;
948 uint64_t m2;
949 int found = false;
950
951 memset(best_clock, 0, sizeof(*best_clock));
952 best_error_ppm = 1000000;
953
954 /*
955 * Based on hardware doc, the n always set to 1, and m1 always
956 * set to 2. If requires to support 200Mhz refclk, we need to
957 * revisit this because n may not 1 anymore.
958 */
959 clock.n = 1, clock.m1 = 2;
960 target *= 5; /* fast clock */
961
962 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
963 for (clock.p2 = limit->p2.p2_fast;
964 clock.p2 >= limit->p2.p2_slow;
965 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
966 unsigned int error_ppm;
967
968 clock.p = clock.p1 * clock.p2;
969
970 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
971 clock.n) << 22, refclk * clock.m1);
972
973 if (m2 > INT_MAX/clock.m1)
974 continue;
975
976 clock.m2 = m2;
977
978 chv_calc_dpll_params(refclk, &clock);
979
980 if (!intel_PLL_is_valid(dev, limit, &clock))
981 continue;
982
983 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
984 best_error_ppm, &error_ppm))
985 continue;
986
987 *best_clock = clock;
988 best_error_ppm = error_ppm;
989 found = true;
990 }
991 }
992
993 return found;
994 }
995
996 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
997 struct dpll *best_clock)
998 {
999 int refclk = 100000;
1000 const struct intel_limit *limit = &intel_limits_bxt;
1001
1002 return chv_find_best_dpll(limit, crtc_state,
1003 target_clock, refclk, NULL, best_clock);
1004 }
1005
1006 bool intel_crtc_active(struct drm_crtc *crtc)
1007 {
1008 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1009
1010 /* Be paranoid as we can arrive here with only partial
1011 * state retrieved from the hardware during setup.
1012 *
1013 * We can ditch the adjusted_mode.crtc_clock check as soon
1014 * as Haswell has gained clock readout/fastboot support.
1015 *
1016 * We can ditch the crtc->primary->fb check as soon as we can
1017 * properly reconstruct framebuffers.
1018 *
1019 * FIXME: The intel_crtc->active here should be switched to
1020 * crtc->state->active once we have proper CRTC states wired up
1021 * for atomic.
1022 */
1023 return intel_crtc->active && crtc->primary->state->fb &&
1024 intel_crtc->config->base.adjusted_mode.crtc_clock;
1025 }
1026
1027 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1028 enum pipe pipe)
1029 {
1030 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1032
1033 return intel_crtc->config->cpu_transcoder;
1034 }
1035
1036 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1037 {
1038 struct drm_i915_private *dev_priv = to_i915(dev);
1039 i915_reg_t reg = PIPEDSL(pipe);
1040 u32 line1, line2;
1041 u32 line_mask;
1042
1043 if (IS_GEN2(dev))
1044 line_mask = DSL_LINEMASK_GEN2;
1045 else
1046 line_mask = DSL_LINEMASK_GEN3;
1047
1048 line1 = I915_READ(reg) & line_mask;
1049 msleep(5);
1050 line2 = I915_READ(reg) & line_mask;
1051
1052 return line1 == line2;
1053 }
1054
1055 /*
1056 * intel_wait_for_pipe_off - wait for pipe to turn off
1057 * @crtc: crtc whose pipe to wait for
1058 *
1059 * After disabling a pipe, we can't wait for vblank in the usual way,
1060 * spinning on the vblank interrupt status bit, since we won't actually
1061 * see an interrupt when the pipe is disabled.
1062 *
1063 * On Gen4 and above:
1064 * wait for the pipe register state bit to turn off
1065 *
1066 * Otherwise:
1067 * wait for the display line value to settle (it usually
1068 * ends up stopping at the start of the next frame).
1069 *
1070 */
1071 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1072 {
1073 struct drm_device *dev = crtc->base.dev;
1074 struct drm_i915_private *dev_priv = to_i915(dev);
1075 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1076 enum pipe pipe = crtc->pipe;
1077
1078 if (INTEL_INFO(dev)->gen >= 4) {
1079 i915_reg_t reg = PIPECONF(cpu_transcoder);
1080
1081 /* Wait for the Pipe State to go off */
1082 if (intel_wait_for_register(dev_priv,
1083 reg, I965_PIPECONF_ACTIVE, 0,
1084 100))
1085 WARN(1, "pipe_off wait timed out\n");
1086 } else {
1087 /* Wait for the display line to settle */
1088 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1089 WARN(1, "pipe_off wait timed out\n");
1090 }
1091 }
1092
1093 /* Only for pre-ILK configs */
1094 void assert_pll(struct drm_i915_private *dev_priv,
1095 enum pipe pipe, bool state)
1096 {
1097 u32 val;
1098 bool cur_state;
1099
1100 val = I915_READ(DPLL(pipe));
1101 cur_state = !!(val & DPLL_VCO_ENABLE);
1102 I915_STATE_WARN(cur_state != state,
1103 "PLL state assertion failure (expected %s, current %s)\n",
1104 onoff(state), onoff(cur_state));
1105 }
1106
1107 /* XXX: the dsi pll is shared between MIPI DSI ports */
1108 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1109 {
1110 u32 val;
1111 bool cur_state;
1112
1113 mutex_lock(&dev_priv->sb_lock);
1114 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1115 mutex_unlock(&dev_priv->sb_lock);
1116
1117 cur_state = val & DSI_PLL_VCO_EN;
1118 I915_STATE_WARN(cur_state != state,
1119 "DSI PLL state assertion failure (expected %s, current %s)\n",
1120 onoff(state), onoff(cur_state));
1121 }
1122
1123 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1124 enum pipe pipe, bool state)
1125 {
1126 bool cur_state;
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
1129
1130 if (HAS_DDI(dev_priv)) {
1131 /* DDI does not have a specific FDI_TX register */
1132 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1133 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1134 } else {
1135 u32 val = I915_READ(FDI_TX_CTL(pipe));
1136 cur_state = !!(val & FDI_TX_ENABLE);
1137 }
1138 I915_STATE_WARN(cur_state != state,
1139 "FDI TX state assertion failure (expected %s, current %s)\n",
1140 onoff(state), onoff(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 enum pipe pipe, bool state)
1147 {
1148 u32 val;
1149 bool cur_state;
1150
1151 val = I915_READ(FDI_RX_CTL(pipe));
1152 cur_state = !!(val & FDI_RX_ENABLE);
1153 I915_STATE_WARN(cur_state != state,
1154 "FDI RX state assertion failure (expected %s, current %s)\n",
1155 onoff(state), onoff(cur_state));
1156 }
1157 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1159
1160 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1161 enum pipe pipe)
1162 {
1163 u32 val;
1164
1165 /* ILK FDI PLL is always enabled */
1166 if (IS_GEN5(dev_priv))
1167 return;
1168
1169 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170 if (HAS_DDI(dev_priv))
1171 return;
1172
1173 val = I915_READ(FDI_TX_CTL(pipe));
1174 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
1179 {
1180 u32 val;
1181 bool cur_state;
1182
1183 val = I915_READ(FDI_RX_CTL(pipe));
1184 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1185 I915_STATE_WARN(cur_state != state,
1186 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1187 onoff(state), onoff(cur_state));
1188 }
1189
1190 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1191 enum pipe pipe)
1192 {
1193 struct drm_device *dev = &dev_priv->drm;
1194 i915_reg_t pp_reg;
1195 u32 val;
1196 enum pipe panel_pipe = PIPE_A;
1197 bool locked = true;
1198
1199 if (WARN_ON(HAS_DDI(dev)))
1200 return;
1201
1202 if (HAS_PCH_SPLIT(dev)) {
1203 u32 port_sel;
1204
1205 pp_reg = PP_CONTROL(0);
1206 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1207
1208 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1209 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1210 panel_pipe = PIPE_B;
1211 /* XXX: else fix for eDP */
1212 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1213 /* presumably write lock depends on pipe, not port select */
1214 pp_reg = PP_CONTROL(pipe);
1215 panel_pipe = pipe;
1216 } else {
1217 pp_reg = PP_CONTROL(0);
1218 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1219 panel_pipe = PIPE_B;
1220 }
1221
1222 val = I915_READ(pp_reg);
1223 if (!(val & PANEL_POWER_ON) ||
1224 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1225 locked = false;
1226
1227 I915_STATE_WARN(panel_pipe == pipe && locked,
1228 "panel assertion failure, pipe %c regs locked\n",
1229 pipe_name(pipe));
1230 }
1231
1232 static void assert_cursor(struct drm_i915_private *dev_priv,
1233 enum pipe pipe, bool state)
1234 {
1235 struct drm_device *dev = &dev_priv->drm;
1236 bool cur_state;
1237
1238 if (IS_845G(dev) || IS_I865G(dev))
1239 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1240 else
1241 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1242
1243 I915_STATE_WARN(cur_state != state,
1244 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1245 pipe_name(pipe), onoff(state), onoff(cur_state));
1246 }
1247 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1248 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1249
1250 void assert_pipe(struct drm_i915_private *dev_priv,
1251 enum pipe pipe, bool state)
1252 {
1253 bool cur_state;
1254 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1255 pipe);
1256 enum intel_display_power_domain power_domain;
1257
1258 /* if we need the pipe quirk it must be always on */
1259 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1260 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1261 state = true;
1262
1263 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1264 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1265 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1266 cur_state = !!(val & PIPECONF_ENABLE);
1267
1268 intel_display_power_put(dev_priv, power_domain);
1269 } else {
1270 cur_state = false;
1271 }
1272
1273 I915_STATE_WARN(cur_state != state,
1274 "pipe %c assertion failure (expected %s, current %s)\n",
1275 pipe_name(pipe), onoff(state), onoff(cur_state));
1276 }
1277
1278 static void assert_plane(struct drm_i915_private *dev_priv,
1279 enum plane plane, bool state)
1280 {
1281 u32 val;
1282 bool cur_state;
1283
1284 val = I915_READ(DSPCNTR(plane));
1285 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1286 I915_STATE_WARN(cur_state != state,
1287 "plane %c assertion failure (expected %s, current %s)\n",
1288 plane_name(plane), onoff(state), onoff(cur_state));
1289 }
1290
1291 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1292 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1293
1294 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1295 enum pipe pipe)
1296 {
1297 struct drm_device *dev = &dev_priv->drm;
1298 int i;
1299
1300 /* Primary planes are fixed to pipes on gen4+ */
1301 if (INTEL_INFO(dev)->gen >= 4) {
1302 u32 val = I915_READ(DSPCNTR(pipe));
1303 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1304 "plane %c assertion failure, should be disabled but not\n",
1305 plane_name(pipe));
1306 return;
1307 }
1308
1309 /* Need to check both planes against the pipe */
1310 for_each_pipe(dev_priv, i) {
1311 u32 val = I915_READ(DSPCNTR(i));
1312 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1313 DISPPLANE_SEL_PIPE_SHIFT;
1314 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1315 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1316 plane_name(i), pipe_name(pipe));
1317 }
1318 }
1319
1320 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1321 enum pipe pipe)
1322 {
1323 struct drm_device *dev = &dev_priv->drm;
1324 int sprite;
1325
1326 if (INTEL_INFO(dev)->gen >= 9) {
1327 for_each_sprite(dev_priv, pipe, sprite) {
1328 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1329 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1330 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1331 sprite, pipe_name(pipe));
1332 }
1333 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1334 for_each_sprite(dev_priv, pipe, sprite) {
1335 u32 val = I915_READ(SPCNTR(pipe, sprite));
1336 I915_STATE_WARN(val & SP_ENABLE,
1337 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1338 sprite_name(pipe, sprite), pipe_name(pipe));
1339 }
1340 } else if (INTEL_INFO(dev)->gen >= 7) {
1341 u32 val = I915_READ(SPRCTL(pipe));
1342 I915_STATE_WARN(val & SPRITE_ENABLE,
1343 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344 plane_name(pipe), pipe_name(pipe));
1345 } else if (INTEL_INFO(dev)->gen >= 5) {
1346 u32 val = I915_READ(DVSCNTR(pipe));
1347 I915_STATE_WARN(val & DVS_ENABLE,
1348 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1349 plane_name(pipe), pipe_name(pipe));
1350 }
1351 }
1352
1353 static void assert_vblank_disabled(struct drm_crtc *crtc)
1354 {
1355 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1356 drm_crtc_vblank_put(crtc);
1357 }
1358
1359 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1360 enum pipe pipe)
1361 {
1362 u32 val;
1363 bool enabled;
1364
1365 val = I915_READ(PCH_TRANSCONF(pipe));
1366 enabled = !!(val & TRANS_ENABLE);
1367 I915_STATE_WARN(enabled,
1368 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1369 pipe_name(pipe));
1370 }
1371
1372 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1373 enum pipe pipe, u32 port_sel, u32 val)
1374 {
1375 if ((val & DP_PORT_EN) == 0)
1376 return false;
1377
1378 if (HAS_PCH_CPT(dev_priv)) {
1379 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1380 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1381 return false;
1382 } else if (IS_CHERRYVIEW(dev_priv)) {
1383 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1384 return false;
1385 } else {
1386 if ((val & DP_PIPE_MASK) != (pipe << 30))
1387 return false;
1388 }
1389 return true;
1390 }
1391
1392 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1393 enum pipe pipe, u32 val)
1394 {
1395 if ((val & SDVO_ENABLE) == 0)
1396 return false;
1397
1398 if (HAS_PCH_CPT(dev_priv)) {
1399 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1400 return false;
1401 } else if (IS_CHERRYVIEW(dev_priv)) {
1402 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1403 return false;
1404 } else {
1405 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1406 return false;
1407 }
1408 return true;
1409 }
1410
1411 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1412 enum pipe pipe, u32 val)
1413 {
1414 if ((val & LVDS_PORT_EN) == 0)
1415 return false;
1416
1417 if (HAS_PCH_CPT(dev_priv)) {
1418 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1419 return false;
1420 } else {
1421 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1422 return false;
1423 }
1424 return true;
1425 }
1426
1427 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1428 enum pipe pipe, u32 val)
1429 {
1430 if ((val & ADPA_DAC_ENABLE) == 0)
1431 return false;
1432 if (HAS_PCH_CPT(dev_priv)) {
1433 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1434 return false;
1435 } else {
1436 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1437 return false;
1438 }
1439 return true;
1440 }
1441
1442 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1443 enum pipe pipe, i915_reg_t reg,
1444 u32 port_sel)
1445 {
1446 u32 val = I915_READ(reg);
1447 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1448 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1449 i915_mmio_reg_offset(reg), pipe_name(pipe));
1450
1451 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1452 && (val & DP_PIPEB_SELECT),
1453 "IBX PCH dp port still using transcoder B\n");
1454 }
1455
1456 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1457 enum pipe pipe, i915_reg_t reg)
1458 {
1459 u32 val = I915_READ(reg);
1460 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1461 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1462 i915_mmio_reg_offset(reg), pipe_name(pipe));
1463
1464 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1465 && (val & SDVO_PIPE_B_SELECT),
1466 "IBX PCH hdmi port still using transcoder B\n");
1467 }
1468
1469 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1470 enum pipe pipe)
1471 {
1472 u32 val;
1473
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1475 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1476 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1477
1478 val = I915_READ(PCH_ADPA);
1479 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1480 "PCH VGA enabled on transcoder %c, should be disabled\n",
1481 pipe_name(pipe));
1482
1483 val = I915_READ(PCH_LVDS);
1484 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1485 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1486 pipe_name(pipe));
1487
1488 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1489 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1490 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1491 }
1492
1493 static void _vlv_enable_pll(struct intel_crtc *crtc,
1494 const struct intel_crtc_state *pipe_config)
1495 {
1496 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1497 enum pipe pipe = crtc->pipe;
1498
1499 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1500 POSTING_READ(DPLL(pipe));
1501 udelay(150);
1502
1503 if (intel_wait_for_register(dev_priv,
1504 DPLL(pipe),
1505 DPLL_LOCK_VLV,
1506 DPLL_LOCK_VLV,
1507 1))
1508 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1509 }
1510
1511 static void vlv_enable_pll(struct intel_crtc *crtc,
1512 const struct intel_crtc_state *pipe_config)
1513 {
1514 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1515 enum pipe pipe = crtc->pipe;
1516
1517 assert_pipe_disabled(dev_priv, pipe);
1518
1519 /* PLL is protected by panel, make sure we can write it */
1520 assert_panel_unlocked(dev_priv, pipe);
1521
1522 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1523 _vlv_enable_pll(crtc, pipe_config);
1524
1525 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1526 POSTING_READ(DPLL_MD(pipe));
1527 }
1528
1529
1530 static void _chv_enable_pll(struct intel_crtc *crtc,
1531 const struct intel_crtc_state *pipe_config)
1532 {
1533 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1534 enum pipe pipe = crtc->pipe;
1535 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1536 u32 tmp;
1537
1538 mutex_lock(&dev_priv->sb_lock);
1539
1540 /* Enable back the 10bit clock to display controller */
1541 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1542 tmp |= DPIO_DCLKP_EN;
1543 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1544
1545 mutex_unlock(&dev_priv->sb_lock);
1546
1547 /*
1548 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1549 */
1550 udelay(1);
1551
1552 /* Enable PLL */
1553 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1554
1555 /* Check PLL is locked */
1556 if (intel_wait_for_register(dev_priv,
1557 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1558 1))
1559 DRM_ERROR("PLL %d failed to lock\n", pipe);
1560 }
1561
1562 static void chv_enable_pll(struct intel_crtc *crtc,
1563 const struct intel_crtc_state *pipe_config)
1564 {
1565 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1566 enum pipe pipe = crtc->pipe;
1567
1568 assert_pipe_disabled(dev_priv, pipe);
1569
1570 /* PLL is protected by panel, make sure we can write it */
1571 assert_panel_unlocked(dev_priv, pipe);
1572
1573 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1574 _chv_enable_pll(crtc, pipe_config);
1575
1576 if (pipe != PIPE_A) {
1577 /*
1578 * WaPixelRepeatModeFixForC0:chv
1579 *
1580 * DPLLCMD is AWOL. Use chicken bits to propagate
1581 * the value from DPLLBMD to either pipe B or C.
1582 */
1583 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1584 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1585 I915_WRITE(CBR4_VLV, 0);
1586 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1587
1588 /*
1589 * DPLLB VGA mode also seems to cause problems.
1590 * We should always have it disabled.
1591 */
1592 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1593 } else {
1594 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1595 POSTING_READ(DPLL_MD(pipe));
1596 }
1597 }
1598
1599 static int intel_num_dvo_pipes(struct drm_device *dev)
1600 {
1601 struct intel_crtc *crtc;
1602 int count = 0;
1603
1604 for_each_intel_crtc(dev, crtc) {
1605 count += crtc->base.state->active &&
1606 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1607 }
1608
1609 return count;
1610 }
1611
1612 static void i9xx_enable_pll(struct intel_crtc *crtc)
1613 {
1614 struct drm_device *dev = crtc->base.dev;
1615 struct drm_i915_private *dev_priv = to_i915(dev);
1616 i915_reg_t reg = DPLL(crtc->pipe);
1617 u32 dpll = crtc->config->dpll_hw_state.dpll;
1618
1619 assert_pipe_disabled(dev_priv, crtc->pipe);
1620
1621 /* PLL is protected by panel, make sure we can write it */
1622 if (IS_MOBILE(dev) && !IS_I830(dev))
1623 assert_panel_unlocked(dev_priv, crtc->pipe);
1624
1625 /* Enable DVO 2x clock on both PLLs if necessary */
1626 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1627 /*
1628 * It appears to be important that we don't enable this
1629 * for the current pipe before otherwise configuring the
1630 * PLL. No idea how this should be handled if multiple
1631 * DVO outputs are enabled simultaneosly.
1632 */
1633 dpll |= DPLL_DVO_2X_MODE;
1634 I915_WRITE(DPLL(!crtc->pipe),
1635 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1636 }
1637
1638 /*
1639 * Apparently we need to have VGA mode enabled prior to changing
1640 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1641 * dividers, even though the register value does change.
1642 */
1643 I915_WRITE(reg, 0);
1644
1645 I915_WRITE(reg, dpll);
1646
1647 /* Wait for the clocks to stabilize. */
1648 POSTING_READ(reg);
1649 udelay(150);
1650
1651 if (INTEL_INFO(dev)->gen >= 4) {
1652 I915_WRITE(DPLL_MD(crtc->pipe),
1653 crtc->config->dpll_hw_state.dpll_md);
1654 } else {
1655 /* The pixel multiplier can only be updated once the
1656 * DPLL is enabled and the clocks are stable.
1657 *
1658 * So write it again.
1659 */
1660 I915_WRITE(reg, dpll);
1661 }
1662
1663 /* We do this three times for luck */
1664 I915_WRITE(reg, dpll);
1665 POSTING_READ(reg);
1666 udelay(150); /* wait for warmup */
1667 I915_WRITE(reg, dpll);
1668 POSTING_READ(reg);
1669 udelay(150); /* wait for warmup */
1670 I915_WRITE(reg, dpll);
1671 POSTING_READ(reg);
1672 udelay(150); /* wait for warmup */
1673 }
1674
1675 /**
1676 * i9xx_disable_pll - disable a PLL
1677 * @dev_priv: i915 private structure
1678 * @pipe: pipe PLL to disable
1679 *
1680 * Disable the PLL for @pipe, making sure the pipe is off first.
1681 *
1682 * Note! This is for pre-ILK only.
1683 */
1684 static void i9xx_disable_pll(struct intel_crtc *crtc)
1685 {
1686 struct drm_device *dev = crtc->base.dev;
1687 struct drm_i915_private *dev_priv = to_i915(dev);
1688 enum pipe pipe = crtc->pipe;
1689
1690 /* Disable DVO 2x clock on both PLLs if necessary */
1691 if (IS_I830(dev) &&
1692 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1693 !intel_num_dvo_pipes(dev)) {
1694 I915_WRITE(DPLL(PIPE_B),
1695 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1696 I915_WRITE(DPLL(PIPE_A),
1697 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1698 }
1699
1700 /* Don't disable pipe or pipe PLLs if needed */
1701 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1702 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1703 return;
1704
1705 /* Make sure the pipe isn't still relying on us */
1706 assert_pipe_disabled(dev_priv, pipe);
1707
1708 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1709 POSTING_READ(DPLL(pipe));
1710 }
1711
1712 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1713 {
1714 u32 val;
1715
1716 /* Make sure the pipe isn't still relying on us */
1717 assert_pipe_disabled(dev_priv, pipe);
1718
1719 val = DPLL_INTEGRATED_REF_CLK_VLV |
1720 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1721 if (pipe != PIPE_A)
1722 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1723
1724 I915_WRITE(DPLL(pipe), val);
1725 POSTING_READ(DPLL(pipe));
1726 }
1727
1728 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1729 {
1730 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1731 u32 val;
1732
1733 /* Make sure the pipe isn't still relying on us */
1734 assert_pipe_disabled(dev_priv, pipe);
1735
1736 val = DPLL_SSC_REF_CLK_CHV |
1737 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1738 if (pipe != PIPE_A)
1739 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1740
1741 I915_WRITE(DPLL(pipe), val);
1742 POSTING_READ(DPLL(pipe));
1743
1744 mutex_lock(&dev_priv->sb_lock);
1745
1746 /* Disable 10bit clock to display controller */
1747 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1748 val &= ~DPIO_DCLKP_EN;
1749 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1750
1751 mutex_unlock(&dev_priv->sb_lock);
1752 }
1753
1754 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1755 struct intel_digital_port *dport,
1756 unsigned int expected_mask)
1757 {
1758 u32 port_mask;
1759 i915_reg_t dpll_reg;
1760
1761 switch (dport->port) {
1762 case PORT_B:
1763 port_mask = DPLL_PORTB_READY_MASK;
1764 dpll_reg = DPLL(0);
1765 break;
1766 case PORT_C:
1767 port_mask = DPLL_PORTC_READY_MASK;
1768 dpll_reg = DPLL(0);
1769 expected_mask <<= 4;
1770 break;
1771 case PORT_D:
1772 port_mask = DPLL_PORTD_READY_MASK;
1773 dpll_reg = DPIO_PHY_STATUS;
1774 break;
1775 default:
1776 BUG();
1777 }
1778
1779 if (intel_wait_for_register(dev_priv,
1780 dpll_reg, port_mask, expected_mask,
1781 1000))
1782 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1783 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1784 }
1785
1786 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1787 enum pipe pipe)
1788 {
1789 struct drm_device *dev = &dev_priv->drm;
1790 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1791 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1792 i915_reg_t reg;
1793 uint32_t val, pipeconf_val;
1794
1795 /* Make sure PCH DPLL is enabled */
1796 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1797
1798 /* FDI must be feeding us bits for PCH ports */
1799 assert_fdi_tx_enabled(dev_priv, pipe);
1800 assert_fdi_rx_enabled(dev_priv, pipe);
1801
1802 if (HAS_PCH_CPT(dev)) {
1803 /* Workaround: Set the timing override bit before enabling the
1804 * pch transcoder. */
1805 reg = TRANS_CHICKEN2(pipe);
1806 val = I915_READ(reg);
1807 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1808 I915_WRITE(reg, val);
1809 }
1810
1811 reg = PCH_TRANSCONF(pipe);
1812 val = I915_READ(reg);
1813 pipeconf_val = I915_READ(PIPECONF(pipe));
1814
1815 if (HAS_PCH_IBX(dev_priv)) {
1816 /*
1817 * Make the BPC in transcoder be consistent with
1818 * that in pipeconf reg. For HDMI we must use 8bpc
1819 * here for both 8bpc and 12bpc.
1820 */
1821 val &= ~PIPECONF_BPC_MASK;
1822 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1823 val |= PIPECONF_8BPC;
1824 else
1825 val |= pipeconf_val & PIPECONF_BPC_MASK;
1826 }
1827
1828 val &= ~TRANS_INTERLACE_MASK;
1829 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1830 if (HAS_PCH_IBX(dev_priv) &&
1831 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1832 val |= TRANS_LEGACY_INTERLACED_ILK;
1833 else
1834 val |= TRANS_INTERLACED;
1835 else
1836 val |= TRANS_PROGRESSIVE;
1837
1838 I915_WRITE(reg, val | TRANS_ENABLE);
1839 if (intel_wait_for_register(dev_priv,
1840 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1841 100))
1842 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1843 }
1844
1845 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1846 enum transcoder cpu_transcoder)
1847 {
1848 u32 val, pipeconf_val;
1849
1850 /* FDI must be feeding us bits for PCH ports */
1851 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1852 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1853
1854 /* Workaround: set timing override bit. */
1855 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1856 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1857 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1858
1859 val = TRANS_ENABLE;
1860 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1861
1862 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1863 PIPECONF_INTERLACED_ILK)
1864 val |= TRANS_INTERLACED;
1865 else
1866 val |= TRANS_PROGRESSIVE;
1867
1868 I915_WRITE(LPT_TRANSCONF, val);
1869 if (intel_wait_for_register(dev_priv,
1870 LPT_TRANSCONF,
1871 TRANS_STATE_ENABLE,
1872 TRANS_STATE_ENABLE,
1873 100))
1874 DRM_ERROR("Failed to enable PCH transcoder\n");
1875 }
1876
1877 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1878 enum pipe pipe)
1879 {
1880 struct drm_device *dev = &dev_priv->drm;
1881 i915_reg_t reg;
1882 uint32_t val;
1883
1884 /* FDI relies on the transcoder */
1885 assert_fdi_tx_disabled(dev_priv, pipe);
1886 assert_fdi_rx_disabled(dev_priv, pipe);
1887
1888 /* Ports must be off as well */
1889 assert_pch_ports_disabled(dev_priv, pipe);
1890
1891 reg = PCH_TRANSCONF(pipe);
1892 val = I915_READ(reg);
1893 val &= ~TRANS_ENABLE;
1894 I915_WRITE(reg, val);
1895 /* wait for PCH transcoder off, transcoder state */
1896 if (intel_wait_for_register(dev_priv,
1897 reg, TRANS_STATE_ENABLE, 0,
1898 50))
1899 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1900
1901 if (HAS_PCH_CPT(dev)) {
1902 /* Workaround: Clear the timing override chicken bit again. */
1903 reg = TRANS_CHICKEN2(pipe);
1904 val = I915_READ(reg);
1905 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1906 I915_WRITE(reg, val);
1907 }
1908 }
1909
1910 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1911 {
1912 u32 val;
1913
1914 val = I915_READ(LPT_TRANSCONF);
1915 val &= ~TRANS_ENABLE;
1916 I915_WRITE(LPT_TRANSCONF, val);
1917 /* wait for PCH transcoder off, transcoder state */
1918 if (intel_wait_for_register(dev_priv,
1919 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1920 50))
1921 DRM_ERROR("Failed to disable PCH transcoder\n");
1922
1923 /* Workaround: clear timing override bit. */
1924 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1925 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1926 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1927 }
1928
1929 /**
1930 * intel_enable_pipe - enable a pipe, asserting requirements
1931 * @crtc: crtc responsible for the pipe
1932 *
1933 * Enable @crtc's pipe, making sure that various hardware specific requirements
1934 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1935 */
1936 static void intel_enable_pipe(struct intel_crtc *crtc)
1937 {
1938 struct drm_device *dev = crtc->base.dev;
1939 struct drm_i915_private *dev_priv = to_i915(dev);
1940 enum pipe pipe = crtc->pipe;
1941 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1942 enum pipe pch_transcoder;
1943 i915_reg_t reg;
1944 u32 val;
1945
1946 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1947
1948 assert_planes_disabled(dev_priv, pipe);
1949 assert_cursor_disabled(dev_priv, pipe);
1950 assert_sprites_disabled(dev_priv, pipe);
1951
1952 if (HAS_PCH_LPT(dev_priv))
1953 pch_transcoder = TRANSCODER_A;
1954 else
1955 pch_transcoder = pipe;
1956
1957 /*
1958 * A pipe without a PLL won't actually be able to drive bits from
1959 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1960 * need the check.
1961 */
1962 if (HAS_GMCH_DISPLAY(dev_priv)) {
1963 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1964 assert_dsi_pll_enabled(dev_priv);
1965 else
1966 assert_pll_enabled(dev_priv, pipe);
1967 } else {
1968 if (crtc->config->has_pch_encoder) {
1969 /* if driving the PCH, we need FDI enabled */
1970 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1971 assert_fdi_tx_pll_enabled(dev_priv,
1972 (enum pipe) cpu_transcoder);
1973 }
1974 /* FIXME: assert CPU port conditions for SNB+ */
1975 }
1976
1977 reg = PIPECONF(cpu_transcoder);
1978 val = I915_READ(reg);
1979 if (val & PIPECONF_ENABLE) {
1980 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1981 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1982 return;
1983 }
1984
1985 I915_WRITE(reg, val | PIPECONF_ENABLE);
1986 POSTING_READ(reg);
1987
1988 /*
1989 * Until the pipe starts DSL will read as 0, which would cause
1990 * an apparent vblank timestamp jump, which messes up also the
1991 * frame count when it's derived from the timestamps. So let's
1992 * wait for the pipe to start properly before we call
1993 * drm_crtc_vblank_on()
1994 */
1995 if (dev->max_vblank_count == 0 &&
1996 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1997 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1998 }
1999
2000 /**
2001 * intel_disable_pipe - disable a pipe, asserting requirements
2002 * @crtc: crtc whose pipes is to be disabled
2003 *
2004 * Disable the pipe of @crtc, making sure that various hardware
2005 * specific requirements are met, if applicable, e.g. plane
2006 * disabled, panel fitter off, etc.
2007 *
2008 * Will wait until the pipe has shut down before returning.
2009 */
2010 static void intel_disable_pipe(struct intel_crtc *crtc)
2011 {
2012 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2013 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2014 enum pipe pipe = crtc->pipe;
2015 i915_reg_t reg;
2016 u32 val;
2017
2018 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2019
2020 /*
2021 * Make sure planes won't keep trying to pump pixels to us,
2022 * or we might hang the display.
2023 */
2024 assert_planes_disabled(dev_priv, pipe);
2025 assert_cursor_disabled(dev_priv, pipe);
2026 assert_sprites_disabled(dev_priv, pipe);
2027
2028 reg = PIPECONF(cpu_transcoder);
2029 val = I915_READ(reg);
2030 if ((val & PIPECONF_ENABLE) == 0)
2031 return;
2032
2033 /*
2034 * Double wide has implications for planes
2035 * so best keep it disabled when not needed.
2036 */
2037 if (crtc->config->double_wide)
2038 val &= ~PIPECONF_DOUBLE_WIDE;
2039
2040 /* Don't disable pipe or pipe PLLs if needed */
2041 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2042 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2043 val &= ~PIPECONF_ENABLE;
2044
2045 I915_WRITE(reg, val);
2046 if ((val & PIPECONF_ENABLE) == 0)
2047 intel_wait_for_pipe_off(crtc);
2048 }
2049
2050 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2051 {
2052 return IS_GEN2(dev_priv) ? 2048 : 4096;
2053 }
2054
2055 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2056 uint64_t fb_modifier, unsigned int cpp)
2057 {
2058 switch (fb_modifier) {
2059 case DRM_FORMAT_MOD_NONE:
2060 return cpp;
2061 case I915_FORMAT_MOD_X_TILED:
2062 if (IS_GEN2(dev_priv))
2063 return 128;
2064 else
2065 return 512;
2066 case I915_FORMAT_MOD_Y_TILED:
2067 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2068 return 128;
2069 else
2070 return 512;
2071 case I915_FORMAT_MOD_Yf_TILED:
2072 switch (cpp) {
2073 case 1:
2074 return 64;
2075 case 2:
2076 case 4:
2077 return 128;
2078 case 8:
2079 case 16:
2080 return 256;
2081 default:
2082 MISSING_CASE(cpp);
2083 return cpp;
2084 }
2085 break;
2086 default:
2087 MISSING_CASE(fb_modifier);
2088 return cpp;
2089 }
2090 }
2091
2092 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2093 uint64_t fb_modifier, unsigned int cpp)
2094 {
2095 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2096 return 1;
2097 else
2098 return intel_tile_size(dev_priv) /
2099 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2100 }
2101
2102 /* Return the tile dimensions in pixel units */
2103 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2104 unsigned int *tile_width,
2105 unsigned int *tile_height,
2106 uint64_t fb_modifier,
2107 unsigned int cpp)
2108 {
2109 unsigned int tile_width_bytes =
2110 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2111
2112 *tile_width = tile_width_bytes / cpp;
2113 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2114 }
2115
2116 unsigned int
2117 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2118 uint32_t pixel_format, uint64_t fb_modifier)
2119 {
2120 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2121 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2122
2123 return ALIGN(height, tile_height);
2124 }
2125
2126 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2127 {
2128 unsigned int size = 0;
2129 int i;
2130
2131 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2132 size += rot_info->plane[i].width * rot_info->plane[i].height;
2133
2134 return size;
2135 }
2136
2137 static void
2138 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2139 const struct drm_framebuffer *fb,
2140 unsigned int rotation)
2141 {
2142 if (intel_rotation_90_or_270(rotation)) {
2143 *view = i915_ggtt_view_rotated;
2144 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2145 } else {
2146 *view = i915_ggtt_view_normal;
2147 }
2148 }
2149
2150 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2151 {
2152 if (INTEL_INFO(dev_priv)->gen >= 9)
2153 return 256 * 1024;
2154 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2155 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2156 return 128 * 1024;
2157 else if (INTEL_INFO(dev_priv)->gen >= 4)
2158 return 4 * 1024;
2159 else
2160 return 0;
2161 }
2162
2163 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2164 uint64_t fb_modifier)
2165 {
2166 switch (fb_modifier) {
2167 case DRM_FORMAT_MOD_NONE:
2168 return intel_linear_alignment(dev_priv);
2169 case I915_FORMAT_MOD_X_TILED:
2170 if (INTEL_INFO(dev_priv)->gen >= 9)
2171 return 256 * 1024;
2172 return 0;
2173 case I915_FORMAT_MOD_Y_TILED:
2174 case I915_FORMAT_MOD_Yf_TILED:
2175 return 1 * 1024 * 1024;
2176 default:
2177 MISSING_CASE(fb_modifier);
2178 return 0;
2179 }
2180 }
2181
2182 struct i915_vma *
2183 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2184 {
2185 struct drm_device *dev = fb->dev;
2186 struct drm_i915_private *dev_priv = to_i915(dev);
2187 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2188 struct i915_ggtt_view view;
2189 struct i915_vma *vma;
2190 u32 alignment;
2191
2192 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2193
2194 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2195
2196 intel_fill_fb_ggtt_view(&view, fb, rotation);
2197
2198 /* Note that the w/a also requires 64 PTE of padding following the
2199 * bo. We currently fill all unused PTE with the shadow page and so
2200 * we should always have valid PTE following the scanout preventing
2201 * the VT-d warning.
2202 */
2203 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2204 alignment = 256 * 1024;
2205
2206 /*
2207 * Global gtt pte registers are special registers which actually forward
2208 * writes to a chunk of system memory. Which means that there is no risk
2209 * that the register values disappear as soon as we call
2210 * intel_runtime_pm_put(), so it is correct to wrap only the
2211 * pin/unpin/fence and not more.
2212 */
2213 intel_runtime_pm_get(dev_priv);
2214
2215 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2216 if (IS_ERR(vma))
2217 goto err;
2218
2219 if (i915_vma_is_map_and_fenceable(vma)) {
2220 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2221 * fence, whereas 965+ only requires a fence if using
2222 * framebuffer compression. For simplicity, we always, when
2223 * possible, install a fence as the cost is not that onerous.
2224 *
2225 * If we fail to fence the tiled scanout, then either the
2226 * modeset will reject the change (which is highly unlikely as
2227 * the affected systems, all but one, do not have unmappable
2228 * space) or we will not be able to enable full powersaving
2229 * techniques (also likely not to apply due to various limits
2230 * FBC and the like impose on the size of the buffer, which
2231 * presumably we violated anyway with this unmappable buffer).
2232 * Anyway, it is presumably better to stumble onwards with
2233 * something and try to run the system in a "less than optimal"
2234 * mode that matches the user configuration.
2235 */
2236 if (i915_vma_get_fence(vma) == 0)
2237 i915_vma_pin_fence(vma);
2238 }
2239
2240 err:
2241 intel_runtime_pm_put(dev_priv);
2242 return vma;
2243 }
2244
2245 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2246 {
2247 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2248 struct i915_ggtt_view view;
2249 struct i915_vma *vma;
2250
2251 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2252
2253 intel_fill_fb_ggtt_view(&view, fb, rotation);
2254 vma = i915_gem_object_to_ggtt(obj, &view);
2255
2256 i915_vma_unpin_fence(vma);
2257 i915_gem_object_unpin_from_display_plane(vma);
2258 }
2259
2260 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2261 unsigned int rotation)
2262 {
2263 if (intel_rotation_90_or_270(rotation))
2264 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2265 else
2266 return fb->pitches[plane];
2267 }
2268
2269 /*
2270 * Convert the x/y offsets into a linear offset.
2271 * Only valid with 0/180 degree rotation, which is fine since linear
2272 * offset is only used with linear buffers on pre-hsw and tiled buffers
2273 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2274 */
2275 u32 intel_fb_xy_to_linear(int x, int y,
2276 const struct intel_plane_state *state,
2277 int plane)
2278 {
2279 const struct drm_framebuffer *fb = state->base.fb;
2280 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2281 unsigned int pitch = fb->pitches[plane];
2282
2283 return y * pitch + x * cpp;
2284 }
2285
2286 /*
2287 * Add the x/y offsets derived from fb->offsets[] to the user
2288 * specified plane src x/y offsets. The resulting x/y offsets
2289 * specify the start of scanout from the beginning of the gtt mapping.
2290 */
2291 void intel_add_fb_offsets(int *x, int *y,
2292 const struct intel_plane_state *state,
2293 int plane)
2294
2295 {
2296 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2297 unsigned int rotation = state->base.rotation;
2298
2299 if (intel_rotation_90_or_270(rotation)) {
2300 *x += intel_fb->rotated[plane].x;
2301 *y += intel_fb->rotated[plane].y;
2302 } else {
2303 *x += intel_fb->normal[plane].x;
2304 *y += intel_fb->normal[plane].y;
2305 }
2306 }
2307
2308 /*
2309 * Input tile dimensions and pitch must already be
2310 * rotated to match x and y, and in pixel units.
2311 */
2312 static u32 _intel_adjust_tile_offset(int *x, int *y,
2313 unsigned int tile_width,
2314 unsigned int tile_height,
2315 unsigned int tile_size,
2316 unsigned int pitch_tiles,
2317 u32 old_offset,
2318 u32 new_offset)
2319 {
2320 unsigned int pitch_pixels = pitch_tiles * tile_width;
2321 unsigned int tiles;
2322
2323 WARN_ON(old_offset & (tile_size - 1));
2324 WARN_ON(new_offset & (tile_size - 1));
2325 WARN_ON(new_offset > old_offset);
2326
2327 tiles = (old_offset - new_offset) / tile_size;
2328
2329 *y += tiles / pitch_tiles * tile_height;
2330 *x += tiles % pitch_tiles * tile_width;
2331
2332 /* minimize x in case it got needlessly big */
2333 *y += *x / pitch_pixels * tile_height;
2334 *x %= pitch_pixels;
2335
2336 return new_offset;
2337 }
2338
2339 /*
2340 * Adjust the tile offset by moving the difference into
2341 * the x/y offsets.
2342 */
2343 static u32 intel_adjust_tile_offset(int *x, int *y,
2344 const struct intel_plane_state *state, int plane,
2345 u32 old_offset, u32 new_offset)
2346 {
2347 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2348 const struct drm_framebuffer *fb = state->base.fb;
2349 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2350 unsigned int rotation = state->base.rotation;
2351 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2352
2353 WARN_ON(new_offset > old_offset);
2354
2355 if (fb->modifier[plane] != DRM_FORMAT_MOD_NONE) {
2356 unsigned int tile_size, tile_width, tile_height;
2357 unsigned int pitch_tiles;
2358
2359 tile_size = intel_tile_size(dev_priv);
2360 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2361 fb->modifier[plane], cpp);
2362
2363 if (intel_rotation_90_or_270(rotation)) {
2364 pitch_tiles = pitch / tile_height;
2365 swap(tile_width, tile_height);
2366 } else {
2367 pitch_tiles = pitch / (tile_width * cpp);
2368 }
2369
2370 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2371 tile_size, pitch_tiles,
2372 old_offset, new_offset);
2373 } else {
2374 old_offset += *y * pitch + *x * cpp;
2375
2376 *y = (old_offset - new_offset) / pitch;
2377 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2378 }
2379
2380 return new_offset;
2381 }
2382
2383 /*
2384 * Computes the linear offset to the base tile and adjusts
2385 * x, y. bytes per pixel is assumed to be a power-of-two.
2386 *
2387 * In the 90/270 rotated case, x and y are assumed
2388 * to be already rotated to match the rotated GTT view, and
2389 * pitch is the tile_height aligned framebuffer height.
2390 *
2391 * This function is used when computing the derived information
2392 * under intel_framebuffer, so using any of that information
2393 * here is not allowed. Anything under drm_framebuffer can be
2394 * used. This is why the user has to pass in the pitch since it
2395 * is specified in the rotated orientation.
2396 */
2397 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2398 int *x, int *y,
2399 const struct drm_framebuffer *fb, int plane,
2400 unsigned int pitch,
2401 unsigned int rotation,
2402 u32 alignment)
2403 {
2404 uint64_t fb_modifier = fb->modifier[plane];
2405 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2406 u32 offset, offset_aligned;
2407
2408 if (alignment)
2409 alignment--;
2410
2411 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2412 unsigned int tile_size, tile_width, tile_height;
2413 unsigned int tile_rows, tiles, pitch_tiles;
2414
2415 tile_size = intel_tile_size(dev_priv);
2416 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2417 fb_modifier, cpp);
2418
2419 if (intel_rotation_90_or_270(rotation)) {
2420 pitch_tiles = pitch / tile_height;
2421 swap(tile_width, tile_height);
2422 } else {
2423 pitch_tiles = pitch / (tile_width * cpp);
2424 }
2425
2426 tile_rows = *y / tile_height;
2427 *y %= tile_height;
2428
2429 tiles = *x / tile_width;
2430 *x %= tile_width;
2431
2432 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2433 offset_aligned = offset & ~alignment;
2434
2435 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2436 tile_size, pitch_tiles,
2437 offset, offset_aligned);
2438 } else {
2439 offset = *y * pitch + *x * cpp;
2440 offset_aligned = offset & ~alignment;
2441
2442 *y = (offset & alignment) / pitch;
2443 *x = ((offset & alignment) - *y * pitch) / cpp;
2444 }
2445
2446 return offset_aligned;
2447 }
2448
2449 u32 intel_compute_tile_offset(int *x, int *y,
2450 const struct intel_plane_state *state,
2451 int plane)
2452 {
2453 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2454 const struct drm_framebuffer *fb = state->base.fb;
2455 unsigned int rotation = state->base.rotation;
2456 int pitch = intel_fb_pitch(fb, plane, rotation);
2457 u32 alignment;
2458
2459 /* AUX_DIST needs only 4K alignment */
2460 if (fb->pixel_format == DRM_FORMAT_NV12 && plane == 1)
2461 alignment = 4096;
2462 else
2463 alignment = intel_surf_alignment(dev_priv, fb->modifier[plane]);
2464
2465 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2466 rotation, alignment);
2467 }
2468
2469 /* Convert the fb->offset[] linear offset into x/y offsets */
2470 static void intel_fb_offset_to_xy(int *x, int *y,
2471 const struct drm_framebuffer *fb, int plane)
2472 {
2473 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2474 unsigned int pitch = fb->pitches[plane];
2475 u32 linear_offset = fb->offsets[plane];
2476
2477 *y = linear_offset / pitch;
2478 *x = linear_offset % pitch / cpp;
2479 }
2480
2481 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2482 {
2483 switch (fb_modifier) {
2484 case I915_FORMAT_MOD_X_TILED:
2485 return I915_TILING_X;
2486 case I915_FORMAT_MOD_Y_TILED:
2487 return I915_TILING_Y;
2488 default:
2489 return I915_TILING_NONE;
2490 }
2491 }
2492
2493 static int
2494 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2495 struct drm_framebuffer *fb)
2496 {
2497 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2498 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2499 u32 gtt_offset_rotated = 0;
2500 unsigned int max_size = 0;
2501 uint32_t format = fb->pixel_format;
2502 int i, num_planes = drm_format_num_planes(format);
2503 unsigned int tile_size = intel_tile_size(dev_priv);
2504
2505 for (i = 0; i < num_planes; i++) {
2506 unsigned int width, height;
2507 unsigned int cpp, size;
2508 u32 offset;
2509 int x, y;
2510
2511 cpp = drm_format_plane_cpp(format, i);
2512 width = drm_format_plane_width(fb->width, format, i);
2513 height = drm_format_plane_height(fb->height, format, i);
2514
2515 intel_fb_offset_to_xy(&x, &y, fb, i);
2516
2517 /*
2518 * The fence (if used) is aligned to the start of the object
2519 * so having the framebuffer wrap around across the edge of the
2520 * fenced region doesn't really work. We have no API to configure
2521 * the fence start offset within the object (nor could we probably
2522 * on gen2/3). So it's just easier if we just require that the
2523 * fb layout agrees with the fence layout. We already check that the
2524 * fb stride matches the fence stride elsewhere.
2525 */
2526 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2527 (x + width) * cpp > fb->pitches[i]) {
2528 DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2529 i, fb->offsets[i]);
2530 return -EINVAL;
2531 }
2532
2533 /*
2534 * First pixel of the framebuffer from
2535 * the start of the normal gtt mapping.
2536 */
2537 intel_fb->normal[i].x = x;
2538 intel_fb->normal[i].y = y;
2539
2540 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2541 fb, 0, fb->pitches[i],
2542 DRM_ROTATE_0, tile_size);
2543 offset /= tile_size;
2544
2545 if (fb->modifier[i] != DRM_FORMAT_MOD_NONE) {
2546 unsigned int tile_width, tile_height;
2547 unsigned int pitch_tiles;
2548 struct drm_rect r;
2549
2550 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2551 fb->modifier[i], cpp);
2552
2553 rot_info->plane[i].offset = offset;
2554 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2555 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2556 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2557
2558 intel_fb->rotated[i].pitch =
2559 rot_info->plane[i].height * tile_height;
2560
2561 /* how many tiles does this plane need */
2562 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2563 /*
2564 * If the plane isn't horizontally tile aligned,
2565 * we need one more tile.
2566 */
2567 if (x != 0)
2568 size++;
2569
2570 /* rotate the x/y offsets to match the GTT view */
2571 r.x1 = x;
2572 r.y1 = y;
2573 r.x2 = x + width;
2574 r.y2 = y + height;
2575 drm_rect_rotate(&r,
2576 rot_info->plane[i].width * tile_width,
2577 rot_info->plane[i].height * tile_height,
2578 DRM_ROTATE_270);
2579 x = r.x1;
2580 y = r.y1;
2581
2582 /* rotate the tile dimensions to match the GTT view */
2583 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2584 swap(tile_width, tile_height);
2585
2586 /*
2587 * We only keep the x/y offsets, so push all of the
2588 * gtt offset into the x/y offsets.
2589 */
2590 _intel_adjust_tile_offset(&x, &y, tile_size,
2591 tile_width, tile_height, pitch_tiles,
2592 gtt_offset_rotated * tile_size, 0);
2593
2594 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2595
2596 /*
2597 * First pixel of the framebuffer from
2598 * the start of the rotated gtt mapping.
2599 */
2600 intel_fb->rotated[i].x = x;
2601 intel_fb->rotated[i].y = y;
2602 } else {
2603 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2604 x * cpp, tile_size);
2605 }
2606
2607 /* how many tiles in total needed in the bo */
2608 max_size = max(max_size, offset + size);
2609 }
2610
2611 if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2612 DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2613 max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2614 return -EINVAL;
2615 }
2616
2617 return 0;
2618 }
2619
2620 static int i9xx_format_to_fourcc(int format)
2621 {
2622 switch (format) {
2623 case DISPPLANE_8BPP:
2624 return DRM_FORMAT_C8;
2625 case DISPPLANE_BGRX555:
2626 return DRM_FORMAT_XRGB1555;
2627 case DISPPLANE_BGRX565:
2628 return DRM_FORMAT_RGB565;
2629 default:
2630 case DISPPLANE_BGRX888:
2631 return DRM_FORMAT_XRGB8888;
2632 case DISPPLANE_RGBX888:
2633 return DRM_FORMAT_XBGR8888;
2634 case DISPPLANE_BGRX101010:
2635 return DRM_FORMAT_XRGB2101010;
2636 case DISPPLANE_RGBX101010:
2637 return DRM_FORMAT_XBGR2101010;
2638 }
2639 }
2640
2641 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2642 {
2643 switch (format) {
2644 case PLANE_CTL_FORMAT_RGB_565:
2645 return DRM_FORMAT_RGB565;
2646 default:
2647 case PLANE_CTL_FORMAT_XRGB_8888:
2648 if (rgb_order) {
2649 if (alpha)
2650 return DRM_FORMAT_ABGR8888;
2651 else
2652 return DRM_FORMAT_XBGR8888;
2653 } else {
2654 if (alpha)
2655 return DRM_FORMAT_ARGB8888;
2656 else
2657 return DRM_FORMAT_XRGB8888;
2658 }
2659 case PLANE_CTL_FORMAT_XRGB_2101010:
2660 if (rgb_order)
2661 return DRM_FORMAT_XBGR2101010;
2662 else
2663 return DRM_FORMAT_XRGB2101010;
2664 }
2665 }
2666
2667 static bool
2668 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2669 struct intel_initial_plane_config *plane_config)
2670 {
2671 struct drm_device *dev = crtc->base.dev;
2672 struct drm_i915_private *dev_priv = to_i915(dev);
2673 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2674 struct drm_i915_gem_object *obj = NULL;
2675 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2676 struct drm_framebuffer *fb = &plane_config->fb->base;
2677 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2678 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2679 PAGE_SIZE);
2680
2681 size_aligned -= base_aligned;
2682
2683 if (plane_config->size == 0)
2684 return false;
2685
2686 /* If the FB is too big, just don't use it since fbdev is not very
2687 * important and we should probably use that space with FBC or other
2688 * features. */
2689 if (size_aligned * 2 > ggtt->stolen_usable_size)
2690 return false;
2691
2692 mutex_lock(&dev->struct_mutex);
2693
2694 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2695 base_aligned,
2696 base_aligned,
2697 size_aligned);
2698 if (!obj) {
2699 mutex_unlock(&dev->struct_mutex);
2700 return false;
2701 }
2702
2703 if (plane_config->tiling == I915_TILING_X)
2704 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2705
2706 mode_cmd.pixel_format = fb->pixel_format;
2707 mode_cmd.width = fb->width;
2708 mode_cmd.height = fb->height;
2709 mode_cmd.pitches[0] = fb->pitches[0];
2710 mode_cmd.modifier[0] = fb->modifier[0];
2711 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2712
2713 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2714 &mode_cmd, obj)) {
2715 DRM_DEBUG_KMS("intel fb init failed\n");
2716 goto out_unref_obj;
2717 }
2718
2719 mutex_unlock(&dev->struct_mutex);
2720
2721 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2722 return true;
2723
2724 out_unref_obj:
2725 i915_gem_object_put(obj);
2726 mutex_unlock(&dev->struct_mutex);
2727 return false;
2728 }
2729
2730 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2731 static void
2732 update_state_fb(struct drm_plane *plane)
2733 {
2734 if (plane->fb == plane->state->fb)
2735 return;
2736
2737 if (plane->state->fb)
2738 drm_framebuffer_unreference(plane->state->fb);
2739 plane->state->fb = plane->fb;
2740 if (plane->state->fb)
2741 drm_framebuffer_reference(plane->state->fb);
2742 }
2743
2744 static void
2745 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2746 struct intel_initial_plane_config *plane_config)
2747 {
2748 struct drm_device *dev = intel_crtc->base.dev;
2749 struct drm_i915_private *dev_priv = to_i915(dev);
2750 struct drm_crtc *c;
2751 struct intel_crtc *i;
2752 struct drm_i915_gem_object *obj;
2753 struct drm_plane *primary = intel_crtc->base.primary;
2754 struct drm_plane_state *plane_state = primary->state;
2755 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2756 struct intel_plane *intel_plane = to_intel_plane(primary);
2757 struct intel_plane_state *intel_state =
2758 to_intel_plane_state(plane_state);
2759 struct drm_framebuffer *fb;
2760
2761 if (!plane_config->fb)
2762 return;
2763
2764 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2765 fb = &plane_config->fb->base;
2766 goto valid_fb;
2767 }
2768
2769 kfree(plane_config->fb);
2770
2771 /*
2772 * Failed to alloc the obj, check to see if we should share
2773 * an fb with another CRTC instead
2774 */
2775 for_each_crtc(dev, c) {
2776 i = to_intel_crtc(c);
2777
2778 if (c == &intel_crtc->base)
2779 continue;
2780
2781 if (!i->active)
2782 continue;
2783
2784 fb = c->primary->fb;
2785 if (!fb)
2786 continue;
2787
2788 obj = intel_fb_obj(fb);
2789 if (i915_gem_object_ggtt_offset(obj, NULL) == plane_config->base) {
2790 drm_framebuffer_reference(fb);
2791 goto valid_fb;
2792 }
2793 }
2794
2795 /*
2796 * We've failed to reconstruct the BIOS FB. Current display state
2797 * indicates that the primary plane is visible, but has a NULL FB,
2798 * which will lead to problems later if we don't fix it up. The
2799 * simplest solution is to just disable the primary plane now and
2800 * pretend the BIOS never had it enabled.
2801 */
2802 to_intel_plane_state(plane_state)->base.visible = false;
2803 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2804 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2805 intel_plane->disable_plane(primary, &intel_crtc->base);
2806
2807 return;
2808
2809 valid_fb:
2810 plane_state->src_x = 0;
2811 plane_state->src_y = 0;
2812 plane_state->src_w = fb->width << 16;
2813 plane_state->src_h = fb->height << 16;
2814
2815 plane_state->crtc_x = 0;
2816 plane_state->crtc_y = 0;
2817 plane_state->crtc_w = fb->width;
2818 plane_state->crtc_h = fb->height;
2819
2820 intel_state->base.src.x1 = plane_state->src_x;
2821 intel_state->base.src.y1 = plane_state->src_y;
2822 intel_state->base.src.x2 = plane_state->src_x + plane_state->src_w;
2823 intel_state->base.src.y2 = plane_state->src_y + plane_state->src_h;
2824 intel_state->base.dst.x1 = plane_state->crtc_x;
2825 intel_state->base.dst.y1 = plane_state->crtc_y;
2826 intel_state->base.dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2827 intel_state->base.dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2828
2829 obj = intel_fb_obj(fb);
2830 if (i915_gem_object_is_tiled(obj))
2831 dev_priv->preserve_bios_swizzle = true;
2832
2833 drm_framebuffer_reference(fb);
2834 primary->fb = primary->state->fb = fb;
2835 primary->crtc = primary->state->crtc = &intel_crtc->base;
2836 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2837 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2838 &obj->frontbuffer_bits);
2839 }
2840
2841 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2842 unsigned int rotation)
2843 {
2844 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2845
2846 switch (fb->modifier[plane]) {
2847 case DRM_FORMAT_MOD_NONE:
2848 case I915_FORMAT_MOD_X_TILED:
2849 switch (cpp) {
2850 case 8:
2851 return 4096;
2852 case 4:
2853 case 2:
2854 case 1:
2855 return 8192;
2856 default:
2857 MISSING_CASE(cpp);
2858 break;
2859 }
2860 break;
2861 case I915_FORMAT_MOD_Y_TILED:
2862 case I915_FORMAT_MOD_Yf_TILED:
2863 switch (cpp) {
2864 case 8:
2865 return 2048;
2866 case 4:
2867 return 4096;
2868 case 2:
2869 case 1:
2870 return 8192;
2871 default:
2872 MISSING_CASE(cpp);
2873 break;
2874 }
2875 break;
2876 default:
2877 MISSING_CASE(fb->modifier[plane]);
2878 }
2879
2880 return 2048;
2881 }
2882
2883 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2884 {
2885 const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2886 const struct drm_framebuffer *fb = plane_state->base.fb;
2887 unsigned int rotation = plane_state->base.rotation;
2888 int x = plane_state->base.src.x1 >> 16;
2889 int y = plane_state->base.src.y1 >> 16;
2890 int w = drm_rect_width(&plane_state->base.src) >> 16;
2891 int h = drm_rect_height(&plane_state->base.src) >> 16;
2892 int max_width = skl_max_plane_width(fb, 0, rotation);
2893 int max_height = 4096;
2894 u32 alignment, offset, aux_offset = plane_state->aux.offset;
2895
2896 if (w > max_width || h > max_height) {
2897 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2898 w, h, max_width, max_height);
2899 return -EINVAL;
2900 }
2901
2902 intel_add_fb_offsets(&x, &y, plane_state, 0);
2903 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2904
2905 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2906
2907 /*
2908 * AUX surface offset is specified as the distance from the
2909 * main surface offset, and it must be non-negative. Make
2910 * sure that is what we will get.
2911 */
2912 if (offset > aux_offset)
2913 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2914 offset, aux_offset & ~(alignment - 1));
2915
2916 /*
2917 * When using an X-tiled surface, the plane blows up
2918 * if the x offset + width exceed the stride.
2919 *
2920 * TODO: linear and Y-tiled seem fine, Yf untested,
2921 */
2922 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED) {
2923 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2924
2925 while ((x + w) * cpp > fb->pitches[0]) {
2926 if (offset == 0) {
2927 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2928 return -EINVAL;
2929 }
2930
2931 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2932 offset, offset - alignment);
2933 }
2934 }
2935
2936 plane_state->main.offset = offset;
2937 plane_state->main.x = x;
2938 plane_state->main.y = y;
2939
2940 return 0;
2941 }
2942
2943 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2944 {
2945 const struct drm_framebuffer *fb = plane_state->base.fb;
2946 unsigned int rotation = plane_state->base.rotation;
2947 int max_width = skl_max_plane_width(fb, 1, rotation);
2948 int max_height = 4096;
2949 int x = plane_state->base.src.x1 >> 17;
2950 int y = plane_state->base.src.y1 >> 17;
2951 int w = drm_rect_width(&plane_state->base.src) >> 17;
2952 int h = drm_rect_height(&plane_state->base.src) >> 17;
2953 u32 offset;
2954
2955 intel_add_fb_offsets(&x, &y, plane_state, 1);
2956 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2957
2958 /* FIXME not quite sure how/if these apply to the chroma plane */
2959 if (w > max_width || h > max_height) {
2960 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2961 w, h, max_width, max_height);
2962 return -EINVAL;
2963 }
2964
2965 plane_state->aux.offset = offset;
2966 plane_state->aux.x = x;
2967 plane_state->aux.y = y;
2968
2969 return 0;
2970 }
2971
2972 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2973 {
2974 const struct drm_framebuffer *fb = plane_state->base.fb;
2975 unsigned int rotation = plane_state->base.rotation;
2976 int ret;
2977
2978 /* Rotate src coordinates to match rotated GTT view */
2979 if (intel_rotation_90_or_270(rotation))
2980 drm_rect_rotate(&plane_state->base.src,
2981 fb->width, fb->height, DRM_ROTATE_270);
2982
2983 /*
2984 * Handle the AUX surface first since
2985 * the main surface setup depends on it.
2986 */
2987 if (fb->pixel_format == DRM_FORMAT_NV12) {
2988 ret = skl_check_nv12_aux_surface(plane_state);
2989 if (ret)
2990 return ret;
2991 } else {
2992 plane_state->aux.offset = ~0xfff;
2993 plane_state->aux.x = 0;
2994 plane_state->aux.y = 0;
2995 }
2996
2997 ret = skl_check_main_surface(plane_state);
2998 if (ret)
2999 return ret;
3000
3001 return 0;
3002 }
3003
3004 static void i9xx_update_primary_plane(struct drm_plane *primary,
3005 const struct intel_crtc_state *crtc_state,
3006 const struct intel_plane_state *plane_state)
3007 {
3008 struct drm_device *dev = primary->dev;
3009 struct drm_i915_private *dev_priv = to_i915(dev);
3010 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3011 struct drm_framebuffer *fb = plane_state->base.fb;
3012 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3013 int plane = intel_crtc->plane;
3014 u32 linear_offset;
3015 u32 dspcntr;
3016 i915_reg_t reg = DSPCNTR(plane);
3017 unsigned int rotation = plane_state->base.rotation;
3018 int x = plane_state->base.src.x1 >> 16;
3019 int y = plane_state->base.src.y1 >> 16;
3020
3021 dspcntr = DISPPLANE_GAMMA_ENABLE;
3022
3023 dspcntr |= DISPLAY_PLANE_ENABLE;
3024
3025 if (INTEL_INFO(dev)->gen < 4) {
3026 if (intel_crtc->pipe == PIPE_B)
3027 dspcntr |= DISPPLANE_SEL_PIPE_B;
3028
3029 /* pipesrc and dspsize control the size that is scaled from,
3030 * which should always be the user's requested size.
3031 */
3032 I915_WRITE(DSPSIZE(plane),
3033 ((crtc_state->pipe_src_h - 1) << 16) |
3034 (crtc_state->pipe_src_w - 1));
3035 I915_WRITE(DSPPOS(plane), 0);
3036 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
3037 I915_WRITE(PRIMSIZE(plane),
3038 ((crtc_state->pipe_src_h - 1) << 16) |
3039 (crtc_state->pipe_src_w - 1));
3040 I915_WRITE(PRIMPOS(plane), 0);
3041 I915_WRITE(PRIMCNSTALPHA(plane), 0);
3042 }
3043
3044 switch (fb->pixel_format) {
3045 case DRM_FORMAT_C8:
3046 dspcntr |= DISPPLANE_8BPP;
3047 break;
3048 case DRM_FORMAT_XRGB1555:
3049 dspcntr |= DISPPLANE_BGRX555;
3050 break;
3051 case DRM_FORMAT_RGB565:
3052 dspcntr |= DISPPLANE_BGRX565;
3053 break;
3054 case DRM_FORMAT_XRGB8888:
3055 dspcntr |= DISPPLANE_BGRX888;
3056 break;
3057 case DRM_FORMAT_XBGR8888:
3058 dspcntr |= DISPPLANE_RGBX888;
3059 break;
3060 case DRM_FORMAT_XRGB2101010:
3061 dspcntr |= DISPPLANE_BGRX101010;
3062 break;
3063 case DRM_FORMAT_XBGR2101010:
3064 dspcntr |= DISPPLANE_RGBX101010;
3065 break;
3066 default:
3067 BUG();
3068 }
3069
3070 if (INTEL_GEN(dev_priv) >= 4 &&
3071 fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3072 dspcntr |= DISPPLANE_TILED;
3073
3074 if (IS_G4X(dev))
3075 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3076
3077 intel_add_fb_offsets(&x, &y, plane_state, 0);
3078
3079 if (INTEL_INFO(dev)->gen >= 4)
3080 intel_crtc->dspaddr_offset =
3081 intel_compute_tile_offset(&x, &y, plane_state, 0);
3082
3083 if (rotation == DRM_ROTATE_180) {
3084 dspcntr |= DISPPLANE_ROTATE_180;
3085
3086 x += (crtc_state->pipe_src_w - 1);
3087 y += (crtc_state->pipe_src_h - 1);
3088 }
3089
3090 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3091
3092 if (INTEL_INFO(dev)->gen < 4)
3093 intel_crtc->dspaddr_offset = linear_offset;
3094
3095 intel_crtc->adjusted_x = x;
3096 intel_crtc->adjusted_y = y;
3097
3098 I915_WRITE(reg, dspcntr);
3099
3100 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3101 if (INTEL_INFO(dev)->gen >= 4) {
3102 I915_WRITE(DSPSURF(plane),
3103 intel_fb_gtt_offset(fb, rotation) +
3104 intel_crtc->dspaddr_offset);
3105 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3106 I915_WRITE(DSPLINOFF(plane), linear_offset);
3107 } else
3108 I915_WRITE(DSPADDR(plane), i915_gem_object_ggtt_offset(obj, NULL) + linear_offset);
3109 POSTING_READ(reg);
3110 }
3111
3112 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3113 struct drm_crtc *crtc)
3114 {
3115 struct drm_device *dev = crtc->dev;
3116 struct drm_i915_private *dev_priv = to_i915(dev);
3117 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3118 int plane = intel_crtc->plane;
3119
3120 I915_WRITE(DSPCNTR(plane), 0);
3121 if (INTEL_INFO(dev_priv)->gen >= 4)
3122 I915_WRITE(DSPSURF(plane), 0);
3123 else
3124 I915_WRITE(DSPADDR(plane), 0);
3125 POSTING_READ(DSPCNTR(plane));
3126 }
3127
3128 static void ironlake_update_primary_plane(struct drm_plane *primary,
3129 const struct intel_crtc_state *crtc_state,
3130 const struct intel_plane_state *plane_state)
3131 {
3132 struct drm_device *dev = primary->dev;
3133 struct drm_i915_private *dev_priv = to_i915(dev);
3134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3135 struct drm_framebuffer *fb = plane_state->base.fb;
3136 int plane = intel_crtc->plane;
3137 u32 linear_offset;
3138 u32 dspcntr;
3139 i915_reg_t reg = DSPCNTR(plane);
3140 unsigned int rotation = plane_state->base.rotation;
3141 int x = plane_state->base.src.x1 >> 16;
3142 int y = plane_state->base.src.y1 >> 16;
3143
3144 dspcntr = DISPPLANE_GAMMA_ENABLE;
3145 dspcntr |= DISPLAY_PLANE_ENABLE;
3146
3147 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3148 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3149
3150 switch (fb->pixel_format) {
3151 case DRM_FORMAT_C8:
3152 dspcntr |= DISPPLANE_8BPP;
3153 break;
3154 case DRM_FORMAT_RGB565:
3155 dspcntr |= DISPPLANE_BGRX565;
3156 break;
3157 case DRM_FORMAT_XRGB8888:
3158 dspcntr |= DISPPLANE_BGRX888;
3159 break;
3160 case DRM_FORMAT_XBGR8888:
3161 dspcntr |= DISPPLANE_RGBX888;
3162 break;
3163 case DRM_FORMAT_XRGB2101010:
3164 dspcntr |= DISPPLANE_BGRX101010;
3165 break;
3166 case DRM_FORMAT_XBGR2101010:
3167 dspcntr |= DISPPLANE_RGBX101010;
3168 break;
3169 default:
3170 BUG();
3171 }
3172
3173 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3174 dspcntr |= DISPPLANE_TILED;
3175
3176 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
3177 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3178
3179 intel_add_fb_offsets(&x, &y, plane_state, 0);
3180
3181 intel_crtc->dspaddr_offset =
3182 intel_compute_tile_offset(&x, &y, plane_state, 0);
3183
3184 if (rotation == DRM_ROTATE_180) {
3185 dspcntr |= DISPPLANE_ROTATE_180;
3186
3187 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
3188 x += (crtc_state->pipe_src_w - 1);
3189 y += (crtc_state->pipe_src_h - 1);
3190 }
3191 }
3192
3193 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3194
3195 intel_crtc->adjusted_x = x;
3196 intel_crtc->adjusted_y = y;
3197
3198 I915_WRITE(reg, dspcntr);
3199
3200 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3201 I915_WRITE(DSPSURF(plane),
3202 intel_fb_gtt_offset(fb, rotation) +
3203 intel_crtc->dspaddr_offset);
3204 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3205 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3206 } else {
3207 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3208 I915_WRITE(DSPLINOFF(plane), linear_offset);
3209 }
3210 POSTING_READ(reg);
3211 }
3212
3213 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3214 uint64_t fb_modifier, uint32_t pixel_format)
3215 {
3216 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
3217 return 64;
3218 } else {
3219 int cpp = drm_format_plane_cpp(pixel_format, 0);
3220
3221 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
3222 }
3223 }
3224
3225 u32 intel_fb_gtt_offset(struct drm_framebuffer *fb,
3226 unsigned int rotation)
3227 {
3228 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3229 struct i915_ggtt_view view;
3230 struct i915_vma *vma;
3231
3232 intel_fill_fb_ggtt_view(&view, fb, rotation);
3233
3234 vma = i915_gem_object_to_ggtt(obj, &view);
3235 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
3236 view.type))
3237 return -1;
3238
3239 return i915_ggtt_offset(vma);
3240 }
3241
3242 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3243 {
3244 struct drm_device *dev = intel_crtc->base.dev;
3245 struct drm_i915_private *dev_priv = to_i915(dev);
3246
3247 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3248 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3249 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3250 }
3251
3252 /*
3253 * This function detaches (aka. unbinds) unused scalers in hardware
3254 */
3255 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3256 {
3257 struct intel_crtc_scaler_state *scaler_state;
3258 int i;
3259
3260 scaler_state = &intel_crtc->config->scaler_state;
3261
3262 /* loop through and disable scalers that aren't in use */
3263 for (i = 0; i < intel_crtc->num_scalers; i++) {
3264 if (!scaler_state->scalers[i].in_use)
3265 skl_detach_scaler(intel_crtc, i);
3266 }
3267 }
3268
3269 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3270 unsigned int rotation)
3271 {
3272 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3273 u32 stride = intel_fb_pitch(fb, plane, rotation);
3274
3275 /*
3276 * The stride is either expressed as a multiple of 64 bytes chunks for
3277 * linear buffers or in number of tiles for tiled buffers.
3278 */
3279 if (intel_rotation_90_or_270(rotation)) {
3280 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
3281
3282 stride /= intel_tile_height(dev_priv, fb->modifier[0], cpp);
3283 } else {
3284 stride /= intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3285 fb->pixel_format);
3286 }
3287
3288 return stride;
3289 }
3290
3291 u32 skl_plane_ctl_format(uint32_t pixel_format)
3292 {
3293 switch (pixel_format) {
3294 case DRM_FORMAT_C8:
3295 return PLANE_CTL_FORMAT_INDEXED;
3296 case DRM_FORMAT_RGB565:
3297 return PLANE_CTL_FORMAT_RGB_565;
3298 case DRM_FORMAT_XBGR8888:
3299 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3300 case DRM_FORMAT_XRGB8888:
3301 return PLANE_CTL_FORMAT_XRGB_8888;
3302 /*
3303 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3304 * to be already pre-multiplied. We need to add a knob (or a different
3305 * DRM_FORMAT) for user-space to configure that.
3306 */
3307 case DRM_FORMAT_ABGR8888:
3308 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3309 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3310 case DRM_FORMAT_ARGB8888:
3311 return PLANE_CTL_FORMAT_XRGB_8888 |
3312 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3313 case DRM_FORMAT_XRGB2101010:
3314 return PLANE_CTL_FORMAT_XRGB_2101010;
3315 case DRM_FORMAT_XBGR2101010:
3316 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3317 case DRM_FORMAT_YUYV:
3318 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3319 case DRM_FORMAT_YVYU:
3320 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3321 case DRM_FORMAT_UYVY:
3322 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3323 case DRM_FORMAT_VYUY:
3324 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3325 default:
3326 MISSING_CASE(pixel_format);
3327 }
3328
3329 return 0;
3330 }
3331
3332 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3333 {
3334 switch (fb_modifier) {
3335 case DRM_FORMAT_MOD_NONE:
3336 break;
3337 case I915_FORMAT_MOD_X_TILED:
3338 return PLANE_CTL_TILED_X;
3339 case I915_FORMAT_MOD_Y_TILED:
3340 return PLANE_CTL_TILED_Y;
3341 case I915_FORMAT_MOD_Yf_TILED:
3342 return PLANE_CTL_TILED_YF;
3343 default:
3344 MISSING_CASE(fb_modifier);
3345 }
3346
3347 return 0;
3348 }
3349
3350 u32 skl_plane_ctl_rotation(unsigned int rotation)
3351 {
3352 switch (rotation) {
3353 case DRM_ROTATE_0:
3354 break;
3355 /*
3356 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3357 * while i915 HW rotation is clockwise, thats why this swapping.
3358 */
3359 case DRM_ROTATE_90:
3360 return PLANE_CTL_ROTATE_270;
3361 case DRM_ROTATE_180:
3362 return PLANE_CTL_ROTATE_180;
3363 case DRM_ROTATE_270:
3364 return PLANE_CTL_ROTATE_90;
3365 default:
3366 MISSING_CASE(rotation);
3367 }
3368
3369 return 0;
3370 }
3371
3372 static void skylake_update_primary_plane(struct drm_plane *plane,
3373 const struct intel_crtc_state *crtc_state,
3374 const struct intel_plane_state *plane_state)
3375 {
3376 struct drm_device *dev = plane->dev;
3377 struct drm_i915_private *dev_priv = to_i915(dev);
3378 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3379 struct drm_framebuffer *fb = plane_state->base.fb;
3380 const struct skl_wm_values *wm = &dev_priv->wm.skl_results;
3381 int pipe = intel_crtc->pipe;
3382 u32 plane_ctl;
3383 unsigned int rotation = plane_state->base.rotation;
3384 u32 stride = skl_plane_stride(fb, 0, rotation);
3385 u32 surf_addr = plane_state->main.offset;
3386 int scaler_id = plane_state->scaler_id;
3387 int src_x = plane_state->main.x;
3388 int src_y = plane_state->main.y;
3389 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3390 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3391 int dst_x = plane_state->base.dst.x1;
3392 int dst_y = plane_state->base.dst.y1;
3393 int dst_w = drm_rect_width(&plane_state->base.dst);
3394 int dst_h = drm_rect_height(&plane_state->base.dst);
3395
3396 plane_ctl = PLANE_CTL_ENABLE |
3397 PLANE_CTL_PIPE_GAMMA_ENABLE |
3398 PLANE_CTL_PIPE_CSC_ENABLE;
3399
3400 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3401 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3402 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3403 plane_ctl |= skl_plane_ctl_rotation(rotation);
3404
3405 /* Sizes are 0 based */
3406 src_w--;
3407 src_h--;
3408 dst_w--;
3409 dst_h--;
3410
3411 intel_crtc->adjusted_x = src_x;
3412 intel_crtc->adjusted_y = src_y;
3413
3414 if (wm->dirty_pipes & drm_crtc_mask(&intel_crtc->base))
3415 skl_write_plane_wm(intel_crtc, wm, 0);
3416
3417 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3418 I915_WRITE(PLANE_OFFSET(pipe, 0), (src_y << 16) | src_x);
3419 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3420 I915_WRITE(PLANE_SIZE(pipe, 0), (src_h << 16) | src_w);
3421
3422 if (scaler_id >= 0) {
3423 uint32_t ps_ctrl = 0;
3424
3425 WARN_ON(!dst_w || !dst_h);
3426 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3427 crtc_state->scaler_state.scalers[scaler_id].mode;
3428 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3429 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3430 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3431 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3432 I915_WRITE(PLANE_POS(pipe, 0), 0);
3433 } else {
3434 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3435 }
3436
3437 I915_WRITE(PLANE_SURF(pipe, 0),
3438 intel_fb_gtt_offset(fb, rotation) + surf_addr);
3439
3440 POSTING_READ(PLANE_SURF(pipe, 0));
3441 }
3442
3443 static void skylake_disable_primary_plane(struct drm_plane *primary,
3444 struct drm_crtc *crtc)
3445 {
3446 struct drm_device *dev = crtc->dev;
3447 struct drm_i915_private *dev_priv = to_i915(dev);
3448 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3449 int pipe = intel_crtc->pipe;
3450
3451 /*
3452 * We only populate skl_results on watermark updates, and if the
3453 * plane's visiblity isn't actually changing neither is its watermarks.
3454 */
3455 if (!crtc->primary->state->visible)
3456 skl_write_plane_wm(intel_crtc, &dev_priv->wm.skl_results, 0);
3457
3458 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3459 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3460 POSTING_READ(PLANE_SURF(pipe, 0));
3461 }
3462
3463 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3464 static int
3465 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3466 int x, int y, enum mode_set_atomic state)
3467 {
3468 /* Support for kgdboc is disabled, this needs a major rework. */
3469 DRM_ERROR("legacy panic handler not supported any more.\n");
3470
3471 return -ENODEV;
3472 }
3473
3474 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3475 {
3476 struct intel_crtc *crtc;
3477
3478 for_each_intel_crtc(&dev_priv->drm, crtc)
3479 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3480 }
3481
3482 static void intel_update_primary_planes(struct drm_device *dev)
3483 {
3484 struct drm_crtc *crtc;
3485
3486 for_each_crtc(dev, crtc) {
3487 struct intel_plane *plane = to_intel_plane(crtc->primary);
3488 struct intel_plane_state *plane_state =
3489 to_intel_plane_state(plane->base.state);
3490
3491 if (plane_state->base.visible)
3492 plane->update_plane(&plane->base,
3493 to_intel_crtc_state(crtc->state),
3494 plane_state);
3495 }
3496 }
3497
3498 static int
3499 __intel_display_resume(struct drm_device *dev,
3500 struct drm_atomic_state *state)
3501 {
3502 struct drm_crtc_state *crtc_state;
3503 struct drm_crtc *crtc;
3504 int i, ret;
3505
3506 intel_modeset_setup_hw_state(dev);
3507 i915_redisable_vga(dev);
3508
3509 if (!state)
3510 return 0;
3511
3512 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3513 /*
3514 * Force recalculation even if we restore
3515 * current state. With fast modeset this may not result
3516 * in a modeset when the state is compatible.
3517 */
3518 crtc_state->mode_changed = true;
3519 }
3520
3521 /* ignore any reset values/BIOS leftovers in the WM registers */
3522 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3523
3524 ret = drm_atomic_commit(state);
3525
3526 WARN_ON(ret == -EDEADLK);
3527 return ret;
3528 }
3529
3530 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3531 {
3532 return intel_has_gpu_reset(dev_priv) &&
3533 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3534 }
3535
3536 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3537 {
3538 struct drm_device *dev = &dev_priv->drm;
3539 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3540 struct drm_atomic_state *state;
3541 int ret;
3542
3543 /*
3544 * Need mode_config.mutex so that we don't
3545 * trample ongoing ->detect() and whatnot.
3546 */
3547 mutex_lock(&dev->mode_config.mutex);
3548 drm_modeset_acquire_init(ctx, 0);
3549 while (1) {
3550 ret = drm_modeset_lock_all_ctx(dev, ctx);
3551 if (ret != -EDEADLK)
3552 break;
3553
3554 drm_modeset_backoff(ctx);
3555 }
3556
3557 /* reset doesn't touch the display, but flips might get nuked anyway, */
3558 if (!i915.force_reset_modeset_test &&
3559 !gpu_reset_clobbers_display(dev_priv))
3560 return;
3561
3562 /*
3563 * Disabling the crtcs gracefully seems nicer. Also the
3564 * g33 docs say we should at least disable all the planes.
3565 */
3566 state = drm_atomic_helper_duplicate_state(dev, ctx);
3567 if (IS_ERR(state)) {
3568 ret = PTR_ERR(state);
3569 state = NULL;
3570 DRM_ERROR("Duplicating state failed with %i\n", ret);
3571 goto err;
3572 }
3573
3574 ret = drm_atomic_helper_disable_all(dev, ctx);
3575 if (ret) {
3576 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3577 goto err;
3578 }
3579
3580 dev_priv->modeset_restore_state = state;
3581 state->acquire_ctx = ctx;
3582 return;
3583
3584 err:
3585 drm_atomic_state_free(state);
3586 }
3587
3588 void intel_finish_reset(struct drm_i915_private *dev_priv)
3589 {
3590 struct drm_device *dev = &dev_priv->drm;
3591 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3592 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3593 int ret;
3594
3595 /*
3596 * Flips in the rings will be nuked by the reset,
3597 * so complete all pending flips so that user space
3598 * will get its events and not get stuck.
3599 */
3600 intel_complete_page_flips(dev_priv);
3601
3602 dev_priv->modeset_restore_state = NULL;
3603
3604 /* reset doesn't touch the display */
3605 if (!gpu_reset_clobbers_display(dev_priv)) {
3606 if (!state) {
3607 /*
3608 * Flips in the rings have been nuked by the reset,
3609 * so update the base address of all primary
3610 * planes to the the last fb to make sure we're
3611 * showing the correct fb after a reset.
3612 *
3613 * FIXME: Atomic will make this obsolete since we won't schedule
3614 * CS-based flips (which might get lost in gpu resets) any more.
3615 */
3616 intel_update_primary_planes(dev);
3617 } else {
3618 ret = __intel_display_resume(dev, state);
3619 if (ret)
3620 DRM_ERROR("Restoring old state failed with %i\n", ret);
3621 }
3622 } else {
3623 /*
3624 * The display has been reset as well,
3625 * so need a full re-initialization.
3626 */
3627 intel_runtime_pm_disable_interrupts(dev_priv);
3628 intel_runtime_pm_enable_interrupts(dev_priv);
3629
3630 intel_modeset_init_hw(dev);
3631
3632 spin_lock_irq(&dev_priv->irq_lock);
3633 if (dev_priv->display.hpd_irq_setup)
3634 dev_priv->display.hpd_irq_setup(dev_priv);
3635 spin_unlock_irq(&dev_priv->irq_lock);
3636
3637 ret = __intel_display_resume(dev, state);
3638 if (ret)
3639 DRM_ERROR("Restoring old state failed with %i\n", ret);
3640
3641 intel_hpd_init(dev_priv);
3642 }
3643
3644 drm_modeset_drop_locks(ctx);
3645 drm_modeset_acquire_fini(ctx);
3646 mutex_unlock(&dev->mode_config.mutex);
3647 }
3648
3649 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3650 {
3651 struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3652
3653 if (i915_reset_in_progress(error))
3654 return true;
3655
3656 if (crtc->reset_count != i915_reset_count(error))
3657 return true;
3658
3659 return false;
3660 }
3661
3662 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3663 {
3664 struct drm_device *dev = crtc->dev;
3665 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3666 bool pending;
3667
3668 if (abort_flip_on_reset(intel_crtc))
3669 return false;
3670
3671 spin_lock_irq(&dev->event_lock);
3672 pending = to_intel_crtc(crtc)->flip_work != NULL;
3673 spin_unlock_irq(&dev->event_lock);
3674
3675 return pending;
3676 }
3677
3678 static void intel_update_pipe_config(struct intel_crtc *crtc,
3679 struct intel_crtc_state *old_crtc_state)
3680 {
3681 struct drm_device *dev = crtc->base.dev;
3682 struct drm_i915_private *dev_priv = to_i915(dev);
3683 struct intel_crtc_state *pipe_config =
3684 to_intel_crtc_state(crtc->base.state);
3685
3686 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3687 crtc->base.mode = crtc->base.state->mode;
3688
3689 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3690 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3691 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3692
3693 /*
3694 * Update pipe size and adjust fitter if needed: the reason for this is
3695 * that in compute_mode_changes we check the native mode (not the pfit
3696 * mode) to see if we can flip rather than do a full mode set. In the
3697 * fastboot case, we'll flip, but if we don't update the pipesrc and
3698 * pfit state, we'll end up with a big fb scanned out into the wrong
3699 * sized surface.
3700 */
3701
3702 I915_WRITE(PIPESRC(crtc->pipe),
3703 ((pipe_config->pipe_src_w - 1) << 16) |
3704 (pipe_config->pipe_src_h - 1));
3705
3706 /* on skylake this is done by detaching scalers */
3707 if (INTEL_INFO(dev)->gen >= 9) {
3708 skl_detach_scalers(crtc);
3709
3710 if (pipe_config->pch_pfit.enabled)
3711 skylake_pfit_enable(crtc);
3712 } else if (HAS_PCH_SPLIT(dev)) {
3713 if (pipe_config->pch_pfit.enabled)
3714 ironlake_pfit_enable(crtc);
3715 else if (old_crtc_state->pch_pfit.enabled)
3716 ironlake_pfit_disable(crtc, true);
3717 }
3718 }
3719
3720 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3721 {
3722 struct drm_device *dev = crtc->dev;
3723 struct drm_i915_private *dev_priv = to_i915(dev);
3724 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3725 int pipe = intel_crtc->pipe;
3726 i915_reg_t reg;
3727 u32 temp;
3728
3729 /* enable normal train */
3730 reg = FDI_TX_CTL(pipe);
3731 temp = I915_READ(reg);
3732 if (IS_IVYBRIDGE(dev)) {
3733 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3734 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3735 } else {
3736 temp &= ~FDI_LINK_TRAIN_NONE;
3737 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3738 }
3739 I915_WRITE(reg, temp);
3740
3741 reg = FDI_RX_CTL(pipe);
3742 temp = I915_READ(reg);
3743 if (HAS_PCH_CPT(dev)) {
3744 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3745 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3746 } else {
3747 temp &= ~FDI_LINK_TRAIN_NONE;
3748 temp |= FDI_LINK_TRAIN_NONE;
3749 }
3750 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3751
3752 /* wait one idle pattern time */
3753 POSTING_READ(reg);
3754 udelay(1000);
3755
3756 /* IVB wants error correction enabled */
3757 if (IS_IVYBRIDGE(dev))
3758 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3759 FDI_FE_ERRC_ENABLE);
3760 }
3761
3762 /* The FDI link training functions for ILK/Ibexpeak. */
3763 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3764 {
3765 struct drm_device *dev = crtc->dev;
3766 struct drm_i915_private *dev_priv = to_i915(dev);
3767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3768 int pipe = intel_crtc->pipe;
3769 i915_reg_t reg;
3770 u32 temp, tries;
3771
3772 /* FDI needs bits from pipe first */
3773 assert_pipe_enabled(dev_priv, pipe);
3774
3775 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3776 for train result */
3777 reg = FDI_RX_IMR(pipe);
3778 temp = I915_READ(reg);
3779 temp &= ~FDI_RX_SYMBOL_LOCK;
3780 temp &= ~FDI_RX_BIT_LOCK;
3781 I915_WRITE(reg, temp);
3782 I915_READ(reg);
3783 udelay(150);
3784
3785 /* enable CPU FDI TX and PCH FDI RX */
3786 reg = FDI_TX_CTL(pipe);
3787 temp = I915_READ(reg);
3788 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3789 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3790 temp &= ~FDI_LINK_TRAIN_NONE;
3791 temp |= FDI_LINK_TRAIN_PATTERN_1;
3792 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3793
3794 reg = FDI_RX_CTL(pipe);
3795 temp = I915_READ(reg);
3796 temp &= ~FDI_LINK_TRAIN_NONE;
3797 temp |= FDI_LINK_TRAIN_PATTERN_1;
3798 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3799
3800 POSTING_READ(reg);
3801 udelay(150);
3802
3803 /* Ironlake workaround, enable clock pointer after FDI enable*/
3804 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3805 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3806 FDI_RX_PHASE_SYNC_POINTER_EN);
3807
3808 reg = FDI_RX_IIR(pipe);
3809 for (tries = 0; tries < 5; tries++) {
3810 temp = I915_READ(reg);
3811 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3812
3813 if ((temp & FDI_RX_BIT_LOCK)) {
3814 DRM_DEBUG_KMS("FDI train 1 done.\n");
3815 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3816 break;
3817 }
3818 }
3819 if (tries == 5)
3820 DRM_ERROR("FDI train 1 fail!\n");
3821
3822 /* Train 2 */
3823 reg = FDI_TX_CTL(pipe);
3824 temp = I915_READ(reg);
3825 temp &= ~FDI_LINK_TRAIN_NONE;
3826 temp |= FDI_LINK_TRAIN_PATTERN_2;
3827 I915_WRITE(reg, temp);
3828
3829 reg = FDI_RX_CTL(pipe);
3830 temp = I915_READ(reg);
3831 temp &= ~FDI_LINK_TRAIN_NONE;
3832 temp |= FDI_LINK_TRAIN_PATTERN_2;
3833 I915_WRITE(reg, temp);
3834
3835 POSTING_READ(reg);
3836 udelay(150);
3837
3838 reg = FDI_RX_IIR(pipe);
3839 for (tries = 0; tries < 5; tries++) {
3840 temp = I915_READ(reg);
3841 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3842
3843 if (temp & FDI_RX_SYMBOL_LOCK) {
3844 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3845 DRM_DEBUG_KMS("FDI train 2 done.\n");
3846 break;
3847 }
3848 }
3849 if (tries == 5)
3850 DRM_ERROR("FDI train 2 fail!\n");
3851
3852 DRM_DEBUG_KMS("FDI train done\n");
3853
3854 }
3855
3856 static const int snb_b_fdi_train_param[] = {
3857 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3858 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3859 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3860 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3861 };
3862
3863 /* The FDI link training functions for SNB/Cougarpoint. */
3864 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3865 {
3866 struct drm_device *dev = crtc->dev;
3867 struct drm_i915_private *dev_priv = to_i915(dev);
3868 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3869 int pipe = intel_crtc->pipe;
3870 i915_reg_t reg;
3871 u32 temp, i, retry;
3872
3873 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3874 for train result */
3875 reg = FDI_RX_IMR(pipe);
3876 temp = I915_READ(reg);
3877 temp &= ~FDI_RX_SYMBOL_LOCK;
3878 temp &= ~FDI_RX_BIT_LOCK;
3879 I915_WRITE(reg, temp);
3880
3881 POSTING_READ(reg);
3882 udelay(150);
3883
3884 /* enable CPU FDI TX and PCH FDI RX */
3885 reg = FDI_TX_CTL(pipe);
3886 temp = I915_READ(reg);
3887 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3888 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3889 temp &= ~FDI_LINK_TRAIN_NONE;
3890 temp |= FDI_LINK_TRAIN_PATTERN_1;
3891 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3892 /* SNB-B */
3893 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3894 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3895
3896 I915_WRITE(FDI_RX_MISC(pipe),
3897 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3898
3899 reg = FDI_RX_CTL(pipe);
3900 temp = I915_READ(reg);
3901 if (HAS_PCH_CPT(dev)) {
3902 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3903 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3904 } else {
3905 temp &= ~FDI_LINK_TRAIN_NONE;
3906 temp |= FDI_LINK_TRAIN_PATTERN_1;
3907 }
3908 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3909
3910 POSTING_READ(reg);
3911 udelay(150);
3912
3913 for (i = 0; i < 4; i++) {
3914 reg = FDI_TX_CTL(pipe);
3915 temp = I915_READ(reg);
3916 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3917 temp |= snb_b_fdi_train_param[i];
3918 I915_WRITE(reg, temp);
3919
3920 POSTING_READ(reg);
3921 udelay(500);
3922
3923 for (retry = 0; retry < 5; retry++) {
3924 reg = FDI_RX_IIR(pipe);
3925 temp = I915_READ(reg);
3926 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3927 if (temp & FDI_RX_BIT_LOCK) {
3928 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3929 DRM_DEBUG_KMS("FDI train 1 done.\n");
3930 break;
3931 }
3932 udelay(50);
3933 }
3934 if (retry < 5)
3935 break;
3936 }
3937 if (i == 4)
3938 DRM_ERROR("FDI train 1 fail!\n");
3939
3940 /* Train 2 */
3941 reg = FDI_TX_CTL(pipe);
3942 temp = I915_READ(reg);
3943 temp &= ~FDI_LINK_TRAIN_NONE;
3944 temp |= FDI_LINK_TRAIN_PATTERN_2;
3945 if (IS_GEN6(dev)) {
3946 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3947 /* SNB-B */
3948 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3949 }
3950 I915_WRITE(reg, temp);
3951
3952 reg = FDI_RX_CTL(pipe);
3953 temp = I915_READ(reg);
3954 if (HAS_PCH_CPT(dev)) {
3955 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3956 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3957 } else {
3958 temp &= ~FDI_LINK_TRAIN_NONE;
3959 temp |= FDI_LINK_TRAIN_PATTERN_2;
3960 }
3961 I915_WRITE(reg, temp);
3962
3963 POSTING_READ(reg);
3964 udelay(150);
3965
3966 for (i = 0; i < 4; i++) {
3967 reg = FDI_TX_CTL(pipe);
3968 temp = I915_READ(reg);
3969 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3970 temp |= snb_b_fdi_train_param[i];
3971 I915_WRITE(reg, temp);
3972
3973 POSTING_READ(reg);
3974 udelay(500);
3975
3976 for (retry = 0; retry < 5; retry++) {
3977 reg = FDI_RX_IIR(pipe);
3978 temp = I915_READ(reg);
3979 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3980 if (temp & FDI_RX_SYMBOL_LOCK) {
3981 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3982 DRM_DEBUG_KMS("FDI train 2 done.\n");
3983 break;
3984 }
3985 udelay(50);
3986 }
3987 if (retry < 5)
3988 break;
3989 }
3990 if (i == 4)
3991 DRM_ERROR("FDI train 2 fail!\n");
3992
3993 DRM_DEBUG_KMS("FDI train done.\n");
3994 }
3995
3996 /* Manual link training for Ivy Bridge A0 parts */
3997 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3998 {
3999 struct drm_device *dev = crtc->dev;
4000 struct drm_i915_private *dev_priv = to_i915(dev);
4001 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4002 int pipe = intel_crtc->pipe;
4003 i915_reg_t reg;
4004 u32 temp, i, j;
4005
4006 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4007 for train result */
4008 reg = FDI_RX_IMR(pipe);
4009 temp = I915_READ(reg);
4010 temp &= ~FDI_RX_SYMBOL_LOCK;
4011 temp &= ~FDI_RX_BIT_LOCK;
4012 I915_WRITE(reg, temp);
4013
4014 POSTING_READ(reg);
4015 udelay(150);
4016
4017 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4018 I915_READ(FDI_RX_IIR(pipe)));
4019
4020 /* Try each vswing and preemphasis setting twice before moving on */
4021 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4022 /* disable first in case we need to retry */
4023 reg = FDI_TX_CTL(pipe);
4024 temp = I915_READ(reg);
4025 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4026 temp &= ~FDI_TX_ENABLE;
4027 I915_WRITE(reg, temp);
4028
4029 reg = FDI_RX_CTL(pipe);
4030 temp = I915_READ(reg);
4031 temp &= ~FDI_LINK_TRAIN_AUTO;
4032 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4033 temp &= ~FDI_RX_ENABLE;
4034 I915_WRITE(reg, temp);
4035
4036 /* enable CPU FDI TX and PCH FDI RX */
4037 reg = FDI_TX_CTL(pipe);
4038 temp = I915_READ(reg);
4039 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4040 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4041 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4042 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4043 temp |= snb_b_fdi_train_param[j/2];
4044 temp |= FDI_COMPOSITE_SYNC;
4045 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4046
4047 I915_WRITE(FDI_RX_MISC(pipe),
4048 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4049
4050 reg = FDI_RX_CTL(pipe);
4051 temp = I915_READ(reg);
4052 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4053 temp |= FDI_COMPOSITE_SYNC;
4054 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4055
4056 POSTING_READ(reg);
4057 udelay(1); /* should be 0.5us */
4058
4059 for (i = 0; i < 4; i++) {
4060 reg = FDI_RX_IIR(pipe);
4061 temp = I915_READ(reg);
4062 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4063
4064 if (temp & FDI_RX_BIT_LOCK ||
4065 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4066 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4067 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4068 i);
4069 break;
4070 }
4071 udelay(1); /* should be 0.5us */
4072 }
4073 if (i == 4) {
4074 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4075 continue;
4076 }
4077
4078 /* Train 2 */
4079 reg = FDI_TX_CTL(pipe);
4080 temp = I915_READ(reg);
4081 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4082 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4083 I915_WRITE(reg, temp);
4084
4085 reg = FDI_RX_CTL(pipe);
4086 temp = I915_READ(reg);
4087 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4088 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4089 I915_WRITE(reg, temp);
4090
4091 POSTING_READ(reg);
4092 udelay(2); /* should be 1.5us */
4093
4094 for (i = 0; i < 4; i++) {
4095 reg = FDI_RX_IIR(pipe);
4096 temp = I915_READ(reg);
4097 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4098
4099 if (temp & FDI_RX_SYMBOL_LOCK ||
4100 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4101 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4102 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4103 i);
4104 goto train_done;
4105 }
4106 udelay(2); /* should be 1.5us */
4107 }
4108 if (i == 4)
4109 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4110 }
4111
4112 train_done:
4113 DRM_DEBUG_KMS("FDI train done.\n");
4114 }
4115
4116 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4117 {
4118 struct drm_device *dev = intel_crtc->base.dev;
4119 struct drm_i915_private *dev_priv = to_i915(dev);
4120 int pipe = intel_crtc->pipe;
4121 i915_reg_t reg;
4122 u32 temp;
4123
4124 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4125 reg = FDI_RX_CTL(pipe);
4126 temp = I915_READ(reg);
4127 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4128 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4129 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4130 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4131
4132 POSTING_READ(reg);
4133 udelay(200);
4134
4135 /* Switch from Rawclk to PCDclk */
4136 temp = I915_READ(reg);
4137 I915_WRITE(reg, temp | FDI_PCDCLK);
4138
4139 POSTING_READ(reg);
4140 udelay(200);
4141
4142 /* Enable CPU FDI TX PLL, always on for Ironlake */
4143 reg = FDI_TX_CTL(pipe);
4144 temp = I915_READ(reg);
4145 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4146 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4147
4148 POSTING_READ(reg);
4149 udelay(100);
4150 }
4151 }
4152
4153 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4154 {
4155 struct drm_device *dev = intel_crtc->base.dev;
4156 struct drm_i915_private *dev_priv = to_i915(dev);
4157 int pipe = intel_crtc->pipe;
4158 i915_reg_t reg;
4159 u32 temp;
4160
4161 /* Switch from PCDclk to Rawclk */
4162 reg = FDI_RX_CTL(pipe);
4163 temp = I915_READ(reg);
4164 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4165
4166 /* Disable CPU FDI TX PLL */
4167 reg = FDI_TX_CTL(pipe);
4168 temp = I915_READ(reg);
4169 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4170
4171 POSTING_READ(reg);
4172 udelay(100);
4173
4174 reg = FDI_RX_CTL(pipe);
4175 temp = I915_READ(reg);
4176 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4177
4178 /* Wait for the clocks to turn off. */
4179 POSTING_READ(reg);
4180 udelay(100);
4181 }
4182
4183 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4184 {
4185 struct drm_device *dev = crtc->dev;
4186 struct drm_i915_private *dev_priv = to_i915(dev);
4187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4188 int pipe = intel_crtc->pipe;
4189 i915_reg_t reg;
4190 u32 temp;
4191
4192 /* disable CPU FDI tx and PCH FDI rx */
4193 reg = FDI_TX_CTL(pipe);
4194 temp = I915_READ(reg);
4195 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4196 POSTING_READ(reg);
4197
4198 reg = FDI_RX_CTL(pipe);
4199 temp = I915_READ(reg);
4200 temp &= ~(0x7 << 16);
4201 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4202 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4203
4204 POSTING_READ(reg);
4205 udelay(100);
4206
4207 /* Ironlake workaround, disable clock pointer after downing FDI */
4208 if (HAS_PCH_IBX(dev))
4209 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4210
4211 /* still set train pattern 1 */
4212 reg = FDI_TX_CTL(pipe);
4213 temp = I915_READ(reg);
4214 temp &= ~FDI_LINK_TRAIN_NONE;
4215 temp |= FDI_LINK_TRAIN_PATTERN_1;
4216 I915_WRITE(reg, temp);
4217
4218 reg = FDI_RX_CTL(pipe);
4219 temp = I915_READ(reg);
4220 if (HAS_PCH_CPT(dev)) {
4221 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4222 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4223 } else {
4224 temp &= ~FDI_LINK_TRAIN_NONE;
4225 temp |= FDI_LINK_TRAIN_PATTERN_1;
4226 }
4227 /* BPC in FDI rx is consistent with that in PIPECONF */
4228 temp &= ~(0x07 << 16);
4229 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4230 I915_WRITE(reg, temp);
4231
4232 POSTING_READ(reg);
4233 udelay(100);
4234 }
4235
4236 bool intel_has_pending_fb_unpin(struct drm_device *dev)
4237 {
4238 struct intel_crtc *crtc;
4239
4240 /* Note that we don't need to be called with mode_config.lock here
4241 * as our list of CRTC objects is static for the lifetime of the
4242 * device and so cannot disappear as we iterate. Similarly, we can
4243 * happily treat the predicates as racy, atomic checks as userspace
4244 * cannot claim and pin a new fb without at least acquring the
4245 * struct_mutex and so serialising with us.
4246 */
4247 for_each_intel_crtc(dev, crtc) {
4248 if (atomic_read(&crtc->unpin_work_count) == 0)
4249 continue;
4250
4251 if (crtc->flip_work)
4252 intel_wait_for_vblank(dev, crtc->pipe);
4253
4254 return true;
4255 }
4256
4257 return false;
4258 }
4259
4260 static void page_flip_completed(struct intel_crtc *intel_crtc)
4261 {
4262 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4263 struct intel_flip_work *work = intel_crtc->flip_work;
4264
4265 intel_crtc->flip_work = NULL;
4266
4267 if (work->event)
4268 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4269
4270 drm_crtc_vblank_put(&intel_crtc->base);
4271
4272 wake_up_all(&dev_priv->pending_flip_queue);
4273 queue_work(dev_priv->wq, &work->unpin_work);
4274
4275 trace_i915_flip_complete(intel_crtc->plane,
4276 work->pending_flip_obj);
4277 }
4278
4279 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4280 {
4281 struct drm_device *dev = crtc->dev;
4282 struct drm_i915_private *dev_priv = to_i915(dev);
4283 long ret;
4284
4285 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4286
4287 ret = wait_event_interruptible_timeout(
4288 dev_priv->pending_flip_queue,
4289 !intel_crtc_has_pending_flip(crtc),
4290 60*HZ);
4291
4292 if (ret < 0)
4293 return ret;
4294
4295 if (ret == 0) {
4296 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4297 struct intel_flip_work *work;
4298
4299 spin_lock_irq(&dev->event_lock);
4300 work = intel_crtc->flip_work;
4301 if (work && !is_mmio_work(work)) {
4302 WARN_ONCE(1, "Removing stuck page flip\n");
4303 page_flip_completed(intel_crtc);
4304 }
4305 spin_unlock_irq(&dev->event_lock);
4306 }
4307
4308 return 0;
4309 }
4310
4311 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4312 {
4313 u32 temp;
4314
4315 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4316
4317 mutex_lock(&dev_priv->sb_lock);
4318
4319 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4320 temp |= SBI_SSCCTL_DISABLE;
4321 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4322
4323 mutex_unlock(&dev_priv->sb_lock);
4324 }
4325
4326 /* Program iCLKIP clock to the desired frequency */
4327 static void lpt_program_iclkip(struct drm_crtc *crtc)
4328 {
4329 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4330 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
4331 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4332 u32 temp;
4333
4334 lpt_disable_iclkip(dev_priv);
4335
4336 /* The iCLK virtual clock root frequency is in MHz,
4337 * but the adjusted_mode->crtc_clock in in KHz. To get the
4338 * divisors, it is necessary to divide one by another, so we
4339 * convert the virtual clock precision to KHz here for higher
4340 * precision.
4341 */
4342 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4343 u32 iclk_virtual_root_freq = 172800 * 1000;
4344 u32 iclk_pi_range = 64;
4345 u32 desired_divisor;
4346
4347 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4348 clock << auxdiv);
4349 divsel = (desired_divisor / iclk_pi_range) - 2;
4350 phaseinc = desired_divisor % iclk_pi_range;
4351
4352 /*
4353 * Near 20MHz is a corner case which is
4354 * out of range for the 7-bit divisor
4355 */
4356 if (divsel <= 0x7f)
4357 break;
4358 }
4359
4360 /* This should not happen with any sane values */
4361 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4362 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4363 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4364 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4365
4366 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4367 clock,
4368 auxdiv,
4369 divsel,
4370 phasedir,
4371 phaseinc);
4372
4373 mutex_lock(&dev_priv->sb_lock);
4374
4375 /* Program SSCDIVINTPHASE6 */
4376 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4377 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4378 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4379 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4380 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4381 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4382 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4383 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4384
4385 /* Program SSCAUXDIV */
4386 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4387 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4388 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4389 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4390
4391 /* Enable modulator and associated divider */
4392 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4393 temp &= ~SBI_SSCCTL_DISABLE;
4394 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4395
4396 mutex_unlock(&dev_priv->sb_lock);
4397
4398 /* Wait for initialization time */
4399 udelay(24);
4400
4401 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4402 }
4403
4404 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4405 {
4406 u32 divsel, phaseinc, auxdiv;
4407 u32 iclk_virtual_root_freq = 172800 * 1000;
4408 u32 iclk_pi_range = 64;
4409 u32 desired_divisor;
4410 u32 temp;
4411
4412 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4413 return 0;
4414
4415 mutex_lock(&dev_priv->sb_lock);
4416
4417 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4418 if (temp & SBI_SSCCTL_DISABLE) {
4419 mutex_unlock(&dev_priv->sb_lock);
4420 return 0;
4421 }
4422
4423 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4424 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4425 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4426 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4427 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4428
4429 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4430 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4431 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4432
4433 mutex_unlock(&dev_priv->sb_lock);
4434
4435 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4436
4437 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4438 desired_divisor << auxdiv);
4439 }
4440
4441 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4442 enum pipe pch_transcoder)
4443 {
4444 struct drm_device *dev = crtc->base.dev;
4445 struct drm_i915_private *dev_priv = to_i915(dev);
4446 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4447
4448 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4449 I915_READ(HTOTAL(cpu_transcoder)));
4450 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4451 I915_READ(HBLANK(cpu_transcoder)));
4452 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4453 I915_READ(HSYNC(cpu_transcoder)));
4454
4455 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4456 I915_READ(VTOTAL(cpu_transcoder)));
4457 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4458 I915_READ(VBLANK(cpu_transcoder)));
4459 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4460 I915_READ(VSYNC(cpu_transcoder)));
4461 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4462 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4463 }
4464
4465 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4466 {
4467 struct drm_i915_private *dev_priv = to_i915(dev);
4468 uint32_t temp;
4469
4470 temp = I915_READ(SOUTH_CHICKEN1);
4471 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4472 return;
4473
4474 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4475 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4476
4477 temp &= ~FDI_BC_BIFURCATION_SELECT;
4478 if (enable)
4479 temp |= FDI_BC_BIFURCATION_SELECT;
4480
4481 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4482 I915_WRITE(SOUTH_CHICKEN1, temp);
4483 POSTING_READ(SOUTH_CHICKEN1);
4484 }
4485
4486 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4487 {
4488 struct drm_device *dev = intel_crtc->base.dev;
4489
4490 switch (intel_crtc->pipe) {
4491 case PIPE_A:
4492 break;
4493 case PIPE_B:
4494 if (intel_crtc->config->fdi_lanes > 2)
4495 cpt_set_fdi_bc_bifurcation(dev, false);
4496 else
4497 cpt_set_fdi_bc_bifurcation(dev, true);
4498
4499 break;
4500 case PIPE_C:
4501 cpt_set_fdi_bc_bifurcation(dev, true);
4502
4503 break;
4504 default:
4505 BUG();
4506 }
4507 }
4508
4509 /* Return which DP Port should be selected for Transcoder DP control */
4510 static enum port
4511 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4512 {
4513 struct drm_device *dev = crtc->dev;
4514 struct intel_encoder *encoder;
4515
4516 for_each_encoder_on_crtc(dev, crtc, encoder) {
4517 if (encoder->type == INTEL_OUTPUT_DP ||
4518 encoder->type == INTEL_OUTPUT_EDP)
4519 return enc_to_dig_port(&encoder->base)->port;
4520 }
4521
4522 return -1;
4523 }
4524
4525 /*
4526 * Enable PCH resources required for PCH ports:
4527 * - PCH PLLs
4528 * - FDI training & RX/TX
4529 * - update transcoder timings
4530 * - DP transcoding bits
4531 * - transcoder
4532 */
4533 static void ironlake_pch_enable(struct drm_crtc *crtc)
4534 {
4535 struct drm_device *dev = crtc->dev;
4536 struct drm_i915_private *dev_priv = to_i915(dev);
4537 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4538 int pipe = intel_crtc->pipe;
4539 u32 temp;
4540
4541 assert_pch_transcoder_disabled(dev_priv, pipe);
4542
4543 if (IS_IVYBRIDGE(dev))
4544 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4545
4546 /* Write the TU size bits before fdi link training, so that error
4547 * detection works. */
4548 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4549 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4550
4551 /* For PCH output, training FDI link */
4552 dev_priv->display.fdi_link_train(crtc);
4553
4554 /* We need to program the right clock selection before writing the pixel
4555 * mutliplier into the DPLL. */
4556 if (HAS_PCH_CPT(dev)) {
4557 u32 sel;
4558
4559 temp = I915_READ(PCH_DPLL_SEL);
4560 temp |= TRANS_DPLL_ENABLE(pipe);
4561 sel = TRANS_DPLLB_SEL(pipe);
4562 if (intel_crtc->config->shared_dpll ==
4563 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4564 temp |= sel;
4565 else
4566 temp &= ~sel;
4567 I915_WRITE(PCH_DPLL_SEL, temp);
4568 }
4569
4570 /* XXX: pch pll's can be enabled any time before we enable the PCH
4571 * transcoder, and we actually should do this to not upset any PCH
4572 * transcoder that already use the clock when we share it.
4573 *
4574 * Note that enable_shared_dpll tries to do the right thing, but
4575 * get_shared_dpll unconditionally resets the pll - we need that to have
4576 * the right LVDS enable sequence. */
4577 intel_enable_shared_dpll(intel_crtc);
4578
4579 /* set transcoder timing, panel must allow it */
4580 assert_panel_unlocked(dev_priv, pipe);
4581 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4582
4583 intel_fdi_normal_train(crtc);
4584
4585 /* For PCH DP, enable TRANS_DP_CTL */
4586 if (HAS_PCH_CPT(dev) && intel_crtc_has_dp_encoder(intel_crtc->config)) {
4587 const struct drm_display_mode *adjusted_mode =
4588 &intel_crtc->config->base.adjusted_mode;
4589 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4590 i915_reg_t reg = TRANS_DP_CTL(pipe);
4591 temp = I915_READ(reg);
4592 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4593 TRANS_DP_SYNC_MASK |
4594 TRANS_DP_BPC_MASK);
4595 temp |= TRANS_DP_OUTPUT_ENABLE;
4596 temp |= bpc << 9; /* same format but at 11:9 */
4597
4598 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4599 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4600 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4601 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4602
4603 switch (intel_trans_dp_port_sel(crtc)) {
4604 case PORT_B:
4605 temp |= TRANS_DP_PORT_SEL_B;
4606 break;
4607 case PORT_C:
4608 temp |= TRANS_DP_PORT_SEL_C;
4609 break;
4610 case PORT_D:
4611 temp |= TRANS_DP_PORT_SEL_D;
4612 break;
4613 default:
4614 BUG();
4615 }
4616
4617 I915_WRITE(reg, temp);
4618 }
4619
4620 ironlake_enable_pch_transcoder(dev_priv, pipe);
4621 }
4622
4623 static void lpt_pch_enable(struct drm_crtc *crtc)
4624 {
4625 struct drm_device *dev = crtc->dev;
4626 struct drm_i915_private *dev_priv = to_i915(dev);
4627 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4628 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4629
4630 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4631
4632 lpt_program_iclkip(crtc);
4633
4634 /* Set transcoder timing. */
4635 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4636
4637 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4638 }
4639
4640 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4641 {
4642 struct drm_i915_private *dev_priv = to_i915(dev);
4643 i915_reg_t dslreg = PIPEDSL(pipe);
4644 u32 temp;
4645
4646 temp = I915_READ(dslreg);
4647 udelay(500);
4648 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4649 if (wait_for(I915_READ(dslreg) != temp, 5))
4650 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4651 }
4652 }
4653
4654 static int
4655 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4656 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4657 int src_w, int src_h, int dst_w, int dst_h)
4658 {
4659 struct intel_crtc_scaler_state *scaler_state =
4660 &crtc_state->scaler_state;
4661 struct intel_crtc *intel_crtc =
4662 to_intel_crtc(crtc_state->base.crtc);
4663 int need_scaling;
4664
4665 need_scaling = intel_rotation_90_or_270(rotation) ?
4666 (src_h != dst_w || src_w != dst_h):
4667 (src_w != dst_w || src_h != dst_h);
4668
4669 /*
4670 * if plane is being disabled or scaler is no more required or force detach
4671 * - free scaler binded to this plane/crtc
4672 * - in order to do this, update crtc->scaler_usage
4673 *
4674 * Here scaler state in crtc_state is set free so that
4675 * scaler can be assigned to other user. Actual register
4676 * update to free the scaler is done in plane/panel-fit programming.
4677 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4678 */
4679 if (force_detach || !need_scaling) {
4680 if (*scaler_id >= 0) {
4681 scaler_state->scaler_users &= ~(1 << scaler_user);
4682 scaler_state->scalers[*scaler_id].in_use = 0;
4683
4684 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4685 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4686 intel_crtc->pipe, scaler_user, *scaler_id,
4687 scaler_state->scaler_users);
4688 *scaler_id = -1;
4689 }
4690 return 0;
4691 }
4692
4693 /* range checks */
4694 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4695 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4696
4697 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4698 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4699 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4700 "size is out of scaler range\n",
4701 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4702 return -EINVAL;
4703 }
4704
4705 /* mark this plane as a scaler user in crtc_state */
4706 scaler_state->scaler_users |= (1 << scaler_user);
4707 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4708 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4709 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4710 scaler_state->scaler_users);
4711
4712 return 0;
4713 }
4714
4715 /**
4716 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4717 *
4718 * @state: crtc's scaler state
4719 *
4720 * Return
4721 * 0 - scaler_usage updated successfully
4722 * error - requested scaling cannot be supported or other error condition
4723 */
4724 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4725 {
4726 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4727 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4728
4729 DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4730 intel_crtc->base.base.id, intel_crtc->base.name,
4731 intel_crtc->pipe, SKL_CRTC_INDEX);
4732
4733 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4734 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4735 state->pipe_src_w, state->pipe_src_h,
4736 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4737 }
4738
4739 /**
4740 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4741 *
4742 * @state: crtc's scaler state
4743 * @plane_state: atomic plane state to update
4744 *
4745 * Return
4746 * 0 - scaler_usage updated successfully
4747 * error - requested scaling cannot be supported or other error condition
4748 */
4749 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4750 struct intel_plane_state *plane_state)
4751 {
4752
4753 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4754 struct intel_plane *intel_plane =
4755 to_intel_plane(plane_state->base.plane);
4756 struct drm_framebuffer *fb = plane_state->base.fb;
4757 int ret;
4758
4759 bool force_detach = !fb || !plane_state->base.visible;
4760
4761 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4762 intel_plane->base.base.id, intel_plane->base.name,
4763 intel_crtc->pipe, drm_plane_index(&intel_plane->base));
4764
4765 ret = skl_update_scaler(crtc_state, force_detach,
4766 drm_plane_index(&intel_plane->base),
4767 &plane_state->scaler_id,
4768 plane_state->base.rotation,
4769 drm_rect_width(&plane_state->base.src) >> 16,
4770 drm_rect_height(&plane_state->base.src) >> 16,
4771 drm_rect_width(&plane_state->base.dst),
4772 drm_rect_height(&plane_state->base.dst));
4773
4774 if (ret || plane_state->scaler_id < 0)
4775 return ret;
4776
4777 /* check colorkey */
4778 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4779 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4780 intel_plane->base.base.id,
4781 intel_plane->base.name);
4782 return -EINVAL;
4783 }
4784
4785 /* Check src format */
4786 switch (fb->pixel_format) {
4787 case DRM_FORMAT_RGB565:
4788 case DRM_FORMAT_XBGR8888:
4789 case DRM_FORMAT_XRGB8888:
4790 case DRM_FORMAT_ABGR8888:
4791 case DRM_FORMAT_ARGB8888:
4792 case DRM_FORMAT_XRGB2101010:
4793 case DRM_FORMAT_XBGR2101010:
4794 case DRM_FORMAT_YUYV:
4795 case DRM_FORMAT_YVYU:
4796 case DRM_FORMAT_UYVY:
4797 case DRM_FORMAT_VYUY:
4798 break;
4799 default:
4800 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4801 intel_plane->base.base.id, intel_plane->base.name,
4802 fb->base.id, fb->pixel_format);
4803 return -EINVAL;
4804 }
4805
4806 return 0;
4807 }
4808
4809 static void skylake_scaler_disable(struct intel_crtc *crtc)
4810 {
4811 int i;
4812
4813 for (i = 0; i < crtc->num_scalers; i++)
4814 skl_detach_scaler(crtc, i);
4815 }
4816
4817 static void skylake_pfit_enable(struct intel_crtc *crtc)
4818 {
4819 struct drm_device *dev = crtc->base.dev;
4820 struct drm_i915_private *dev_priv = to_i915(dev);
4821 int pipe = crtc->pipe;
4822 struct intel_crtc_scaler_state *scaler_state =
4823 &crtc->config->scaler_state;
4824
4825 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4826
4827 if (crtc->config->pch_pfit.enabled) {
4828 int id;
4829
4830 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4831 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4832 return;
4833 }
4834
4835 id = scaler_state->scaler_id;
4836 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4837 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4838 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4839 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4840
4841 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4842 }
4843 }
4844
4845 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4846 {
4847 struct drm_device *dev = crtc->base.dev;
4848 struct drm_i915_private *dev_priv = to_i915(dev);
4849 int pipe = crtc->pipe;
4850
4851 if (crtc->config->pch_pfit.enabled) {
4852 /* Force use of hard-coded filter coefficients
4853 * as some pre-programmed values are broken,
4854 * e.g. x201.
4855 */
4856 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4857 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4858 PF_PIPE_SEL_IVB(pipe));
4859 else
4860 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4861 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4862 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4863 }
4864 }
4865
4866 void hsw_enable_ips(struct intel_crtc *crtc)
4867 {
4868 struct drm_device *dev = crtc->base.dev;
4869 struct drm_i915_private *dev_priv = to_i915(dev);
4870
4871 if (!crtc->config->ips_enabled)
4872 return;
4873
4874 /*
4875 * We can only enable IPS after we enable a plane and wait for a vblank
4876 * This function is called from post_plane_update, which is run after
4877 * a vblank wait.
4878 */
4879
4880 assert_plane_enabled(dev_priv, crtc->plane);
4881 if (IS_BROADWELL(dev)) {
4882 mutex_lock(&dev_priv->rps.hw_lock);
4883 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4884 mutex_unlock(&dev_priv->rps.hw_lock);
4885 /* Quoting Art Runyan: "its not safe to expect any particular
4886 * value in IPS_CTL bit 31 after enabling IPS through the
4887 * mailbox." Moreover, the mailbox may return a bogus state,
4888 * so we need to just enable it and continue on.
4889 */
4890 } else {
4891 I915_WRITE(IPS_CTL, IPS_ENABLE);
4892 /* The bit only becomes 1 in the next vblank, so this wait here
4893 * is essentially intel_wait_for_vblank. If we don't have this
4894 * and don't wait for vblanks until the end of crtc_enable, then
4895 * the HW state readout code will complain that the expected
4896 * IPS_CTL value is not the one we read. */
4897 if (intel_wait_for_register(dev_priv,
4898 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4899 50))
4900 DRM_ERROR("Timed out waiting for IPS enable\n");
4901 }
4902 }
4903
4904 void hsw_disable_ips(struct intel_crtc *crtc)
4905 {
4906 struct drm_device *dev = crtc->base.dev;
4907 struct drm_i915_private *dev_priv = to_i915(dev);
4908
4909 if (!crtc->config->ips_enabled)
4910 return;
4911
4912 assert_plane_enabled(dev_priv, crtc->plane);
4913 if (IS_BROADWELL(dev)) {
4914 mutex_lock(&dev_priv->rps.hw_lock);
4915 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4916 mutex_unlock(&dev_priv->rps.hw_lock);
4917 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4918 if (intel_wait_for_register(dev_priv,
4919 IPS_CTL, IPS_ENABLE, 0,
4920 42))
4921 DRM_ERROR("Timed out waiting for IPS disable\n");
4922 } else {
4923 I915_WRITE(IPS_CTL, 0);
4924 POSTING_READ(IPS_CTL);
4925 }
4926
4927 /* We need to wait for a vblank before we can disable the plane. */
4928 intel_wait_for_vblank(dev, crtc->pipe);
4929 }
4930
4931 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4932 {
4933 if (intel_crtc->overlay) {
4934 struct drm_device *dev = intel_crtc->base.dev;
4935 struct drm_i915_private *dev_priv = to_i915(dev);
4936
4937 mutex_lock(&dev->struct_mutex);
4938 dev_priv->mm.interruptible = false;
4939 (void) intel_overlay_switch_off(intel_crtc->overlay);
4940 dev_priv->mm.interruptible = true;
4941 mutex_unlock(&dev->struct_mutex);
4942 }
4943
4944 /* Let userspace switch the overlay on again. In most cases userspace
4945 * has to recompute where to put it anyway.
4946 */
4947 }
4948
4949 /**
4950 * intel_post_enable_primary - Perform operations after enabling primary plane
4951 * @crtc: the CRTC whose primary plane was just enabled
4952 *
4953 * Performs potentially sleeping operations that must be done after the primary
4954 * plane is enabled, such as updating FBC and IPS. Note that this may be
4955 * called due to an explicit primary plane update, or due to an implicit
4956 * re-enable that is caused when a sprite plane is updated to no longer
4957 * completely hide the primary plane.
4958 */
4959 static void
4960 intel_post_enable_primary(struct drm_crtc *crtc)
4961 {
4962 struct drm_device *dev = crtc->dev;
4963 struct drm_i915_private *dev_priv = to_i915(dev);
4964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4965 int pipe = intel_crtc->pipe;
4966
4967 /*
4968 * FIXME IPS should be fine as long as one plane is
4969 * enabled, but in practice it seems to have problems
4970 * when going from primary only to sprite only and vice
4971 * versa.
4972 */
4973 hsw_enable_ips(intel_crtc);
4974
4975 /*
4976 * Gen2 reports pipe underruns whenever all planes are disabled.
4977 * So don't enable underrun reporting before at least some planes
4978 * are enabled.
4979 * FIXME: Need to fix the logic to work when we turn off all planes
4980 * but leave the pipe running.
4981 */
4982 if (IS_GEN2(dev))
4983 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4984
4985 /* Underruns don't always raise interrupts, so check manually. */
4986 intel_check_cpu_fifo_underruns(dev_priv);
4987 intel_check_pch_fifo_underruns(dev_priv);
4988 }
4989
4990 /* FIXME move all this to pre_plane_update() with proper state tracking */
4991 static void
4992 intel_pre_disable_primary(struct drm_crtc *crtc)
4993 {
4994 struct drm_device *dev = crtc->dev;
4995 struct drm_i915_private *dev_priv = to_i915(dev);
4996 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4997 int pipe = intel_crtc->pipe;
4998
4999 /*
5000 * Gen2 reports pipe underruns whenever all planes are disabled.
5001 * So diasble underrun reporting before all the planes get disabled.
5002 * FIXME: Need to fix the logic to work when we turn off all planes
5003 * but leave the pipe running.
5004 */
5005 if (IS_GEN2(dev))
5006 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5007
5008 /*
5009 * FIXME IPS should be fine as long as one plane is
5010 * enabled, but in practice it seems to have problems
5011 * when going from primary only to sprite only and vice
5012 * versa.
5013 */
5014 hsw_disable_ips(intel_crtc);
5015 }
5016
5017 /* FIXME get rid of this and use pre_plane_update */
5018 static void
5019 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5020 {
5021 struct drm_device *dev = crtc->dev;
5022 struct drm_i915_private *dev_priv = to_i915(dev);
5023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5024 int pipe = intel_crtc->pipe;
5025
5026 intel_pre_disable_primary(crtc);
5027
5028 /*
5029 * Vblank time updates from the shadow to live plane control register
5030 * are blocked if the memory self-refresh mode is active at that
5031 * moment. So to make sure the plane gets truly disabled, disable
5032 * first the self-refresh mode. The self-refresh enable bit in turn
5033 * will be checked/applied by the HW only at the next frame start
5034 * event which is after the vblank start event, so we need to have a
5035 * wait-for-vblank between disabling the plane and the pipe.
5036 */
5037 if (HAS_GMCH_DISPLAY(dev)) {
5038 intel_set_memory_cxsr(dev_priv, false);
5039 dev_priv->wm.vlv.cxsr = false;
5040 intel_wait_for_vblank(dev, pipe);
5041 }
5042 }
5043
5044 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5045 {
5046 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5047 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5048 struct intel_crtc_state *pipe_config =
5049 to_intel_crtc_state(crtc->base.state);
5050 struct drm_plane *primary = crtc->base.primary;
5051 struct drm_plane_state *old_pri_state =
5052 drm_atomic_get_existing_plane_state(old_state, primary);
5053
5054 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5055
5056 crtc->wm.cxsr_allowed = true;
5057
5058 if (pipe_config->update_wm_post && pipe_config->base.active)
5059 intel_update_watermarks(&crtc->base);
5060
5061 if (old_pri_state) {
5062 struct intel_plane_state *primary_state =
5063 to_intel_plane_state(primary->state);
5064 struct intel_plane_state *old_primary_state =
5065 to_intel_plane_state(old_pri_state);
5066
5067 intel_fbc_post_update(crtc);
5068
5069 if (primary_state->base.visible &&
5070 (needs_modeset(&pipe_config->base) ||
5071 !old_primary_state->base.visible))
5072 intel_post_enable_primary(&crtc->base);
5073 }
5074 }
5075
5076 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
5077 {
5078 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5079 struct drm_device *dev = crtc->base.dev;
5080 struct drm_i915_private *dev_priv = to_i915(dev);
5081 struct intel_crtc_state *pipe_config =
5082 to_intel_crtc_state(crtc->base.state);
5083 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5084 struct drm_plane *primary = crtc->base.primary;
5085 struct drm_plane_state *old_pri_state =
5086 drm_atomic_get_existing_plane_state(old_state, primary);
5087 bool modeset = needs_modeset(&pipe_config->base);
5088
5089 if (old_pri_state) {
5090 struct intel_plane_state *primary_state =
5091 to_intel_plane_state(primary->state);
5092 struct intel_plane_state *old_primary_state =
5093 to_intel_plane_state(old_pri_state);
5094
5095 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5096
5097 if (old_primary_state->base.visible &&
5098 (modeset || !primary_state->base.visible))
5099 intel_pre_disable_primary(&crtc->base);
5100 }
5101
5102 if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
5103 crtc->wm.cxsr_allowed = false;
5104
5105 /*
5106 * Vblank time updates from the shadow to live plane control register
5107 * are blocked if the memory self-refresh mode is active at that
5108 * moment. So to make sure the plane gets truly disabled, disable
5109 * first the self-refresh mode. The self-refresh enable bit in turn
5110 * will be checked/applied by the HW only at the next frame start
5111 * event which is after the vblank start event, so we need to have a
5112 * wait-for-vblank between disabling the plane and the pipe.
5113 */
5114 if (old_crtc_state->base.active) {
5115 intel_set_memory_cxsr(dev_priv, false);
5116 dev_priv->wm.vlv.cxsr = false;
5117 intel_wait_for_vblank(dev, crtc->pipe);
5118 }
5119 }
5120
5121 /*
5122 * IVB workaround: must disable low power watermarks for at least
5123 * one frame before enabling scaling. LP watermarks can be re-enabled
5124 * when scaling is disabled.
5125 *
5126 * WaCxSRDisabledForSpriteScaling:ivb
5127 */
5128 if (pipe_config->disable_lp_wm) {
5129 ilk_disable_lp_wm(dev);
5130 intel_wait_for_vblank(dev, crtc->pipe);
5131 }
5132
5133 /*
5134 * If we're doing a modeset, we're done. No need to do any pre-vblank
5135 * watermark programming here.
5136 */
5137 if (needs_modeset(&pipe_config->base))
5138 return;
5139
5140 /*
5141 * For platforms that support atomic watermarks, program the
5142 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5143 * will be the intermediate values that are safe for both pre- and
5144 * post- vblank; when vblank happens, the 'active' values will be set
5145 * to the final 'target' values and we'll do this again to get the
5146 * optimal watermarks. For gen9+ platforms, the values we program here
5147 * will be the final target values which will get automatically latched
5148 * at vblank time; no further programming will be necessary.
5149 *
5150 * If a platform hasn't been transitioned to atomic watermarks yet,
5151 * we'll continue to update watermarks the old way, if flags tell
5152 * us to.
5153 */
5154 if (dev_priv->display.initial_watermarks != NULL)
5155 dev_priv->display.initial_watermarks(pipe_config);
5156 else if (pipe_config->update_wm_pre)
5157 intel_update_watermarks(&crtc->base);
5158 }
5159
5160 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5161 {
5162 struct drm_device *dev = crtc->dev;
5163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5164 struct drm_plane *p;
5165 int pipe = intel_crtc->pipe;
5166
5167 intel_crtc_dpms_overlay_disable(intel_crtc);
5168
5169 drm_for_each_plane_mask(p, dev, plane_mask)
5170 to_intel_plane(p)->disable_plane(p, crtc);
5171
5172 /*
5173 * FIXME: Once we grow proper nuclear flip support out of this we need
5174 * to compute the mask of flip planes precisely. For the time being
5175 * consider this a flip to a NULL plane.
5176 */
5177 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5178 }
5179
5180 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5181 struct intel_crtc_state *crtc_state,
5182 struct drm_atomic_state *old_state)
5183 {
5184 struct drm_connector_state *old_conn_state;
5185 struct drm_connector *conn;
5186 int i;
5187
5188 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5189 struct drm_connector_state *conn_state = conn->state;
5190 struct intel_encoder *encoder =
5191 to_intel_encoder(conn_state->best_encoder);
5192
5193 if (conn_state->crtc != crtc)
5194 continue;
5195
5196 if (encoder->pre_pll_enable)
5197 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5198 }
5199 }
5200
5201 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5202 struct intel_crtc_state *crtc_state,
5203 struct drm_atomic_state *old_state)
5204 {
5205 struct drm_connector_state *old_conn_state;
5206 struct drm_connector *conn;
5207 int i;
5208
5209 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5210 struct drm_connector_state *conn_state = conn->state;
5211 struct intel_encoder *encoder =
5212 to_intel_encoder(conn_state->best_encoder);
5213
5214 if (conn_state->crtc != crtc)
5215 continue;
5216
5217 if (encoder->pre_enable)
5218 encoder->pre_enable(encoder, crtc_state, conn_state);
5219 }
5220 }
5221
5222 static void intel_encoders_enable(struct drm_crtc *crtc,
5223 struct intel_crtc_state *crtc_state,
5224 struct drm_atomic_state *old_state)
5225 {
5226 struct drm_connector_state *old_conn_state;
5227 struct drm_connector *conn;
5228 int i;
5229
5230 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5231 struct drm_connector_state *conn_state = conn->state;
5232 struct intel_encoder *encoder =
5233 to_intel_encoder(conn_state->best_encoder);
5234
5235 if (conn_state->crtc != crtc)
5236 continue;
5237
5238 encoder->enable(encoder, crtc_state, conn_state);
5239 intel_opregion_notify_encoder(encoder, true);
5240 }
5241 }
5242
5243 static void intel_encoders_disable(struct drm_crtc *crtc,
5244 struct intel_crtc_state *old_crtc_state,
5245 struct drm_atomic_state *old_state)
5246 {
5247 struct drm_connector_state *old_conn_state;
5248 struct drm_connector *conn;
5249 int i;
5250
5251 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5252 struct intel_encoder *encoder =
5253 to_intel_encoder(old_conn_state->best_encoder);
5254
5255 if (old_conn_state->crtc != crtc)
5256 continue;
5257
5258 intel_opregion_notify_encoder(encoder, false);
5259 encoder->disable(encoder, old_crtc_state, old_conn_state);
5260 }
5261 }
5262
5263 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5264 struct intel_crtc_state *old_crtc_state,
5265 struct drm_atomic_state *old_state)
5266 {
5267 struct drm_connector_state *old_conn_state;
5268 struct drm_connector *conn;
5269 int i;
5270
5271 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5272 struct intel_encoder *encoder =
5273 to_intel_encoder(old_conn_state->best_encoder);
5274
5275 if (old_conn_state->crtc != crtc)
5276 continue;
5277
5278 if (encoder->post_disable)
5279 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5280 }
5281 }
5282
5283 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5284 struct intel_crtc_state *old_crtc_state,
5285 struct drm_atomic_state *old_state)
5286 {
5287 struct drm_connector_state *old_conn_state;
5288 struct drm_connector *conn;
5289 int i;
5290
5291 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5292 struct intel_encoder *encoder =
5293 to_intel_encoder(old_conn_state->best_encoder);
5294
5295 if (old_conn_state->crtc != crtc)
5296 continue;
5297
5298 if (encoder->post_pll_disable)
5299 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5300 }
5301 }
5302
5303 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5304 struct drm_atomic_state *old_state)
5305 {
5306 struct drm_crtc *crtc = pipe_config->base.crtc;
5307 struct drm_device *dev = crtc->dev;
5308 struct drm_i915_private *dev_priv = to_i915(dev);
5309 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5310 int pipe = intel_crtc->pipe;
5311
5312 if (WARN_ON(intel_crtc->active))
5313 return;
5314
5315 /*
5316 * Sometimes spurious CPU pipe underruns happen during FDI
5317 * training, at least with VGA+HDMI cloning. Suppress them.
5318 *
5319 * On ILK we get an occasional spurious CPU pipe underruns
5320 * between eDP port A enable and vdd enable. Also PCH port
5321 * enable seems to result in the occasional CPU pipe underrun.
5322 *
5323 * Spurious PCH underruns also occur during PCH enabling.
5324 */
5325 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5326 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5327 if (intel_crtc->config->has_pch_encoder)
5328 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5329
5330 if (intel_crtc->config->has_pch_encoder)
5331 intel_prepare_shared_dpll(intel_crtc);
5332
5333 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5334 intel_dp_set_m_n(intel_crtc, M1_N1);
5335
5336 intel_set_pipe_timings(intel_crtc);
5337 intel_set_pipe_src_size(intel_crtc);
5338
5339 if (intel_crtc->config->has_pch_encoder) {
5340 intel_cpu_transcoder_set_m_n(intel_crtc,
5341 &intel_crtc->config->fdi_m_n, NULL);
5342 }
5343
5344 ironlake_set_pipeconf(crtc);
5345
5346 intel_crtc->active = true;
5347
5348 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5349
5350 if (intel_crtc->config->has_pch_encoder) {
5351 /* Note: FDI PLL enabling _must_ be done before we enable the
5352 * cpu pipes, hence this is separate from all the other fdi/pch
5353 * enabling. */
5354 ironlake_fdi_pll_enable(intel_crtc);
5355 } else {
5356 assert_fdi_tx_disabled(dev_priv, pipe);
5357 assert_fdi_rx_disabled(dev_priv, pipe);
5358 }
5359
5360 ironlake_pfit_enable(intel_crtc);
5361
5362 /*
5363 * On ILK+ LUT must be loaded before the pipe is running but with
5364 * clocks enabled
5365 */
5366 intel_color_load_luts(&pipe_config->base);
5367
5368 if (dev_priv->display.initial_watermarks != NULL)
5369 dev_priv->display.initial_watermarks(intel_crtc->config);
5370 intel_enable_pipe(intel_crtc);
5371
5372 if (intel_crtc->config->has_pch_encoder)
5373 ironlake_pch_enable(crtc);
5374
5375 assert_vblank_disabled(crtc);
5376 drm_crtc_vblank_on(crtc);
5377
5378 intel_encoders_enable(crtc, pipe_config, old_state);
5379
5380 if (HAS_PCH_CPT(dev))
5381 cpt_verify_modeset(dev, intel_crtc->pipe);
5382
5383 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5384 if (intel_crtc->config->has_pch_encoder)
5385 intel_wait_for_vblank(dev, pipe);
5386 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5387 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5388 }
5389
5390 /* IPS only exists on ULT machines and is tied to pipe A. */
5391 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5392 {
5393 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
5394 }
5395
5396 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5397 struct drm_atomic_state *old_state)
5398 {
5399 struct drm_crtc *crtc = pipe_config->base.crtc;
5400 struct drm_device *dev = crtc->dev;
5401 struct drm_i915_private *dev_priv = to_i915(dev);
5402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5403 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5404 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5405
5406 if (WARN_ON(intel_crtc->active))
5407 return;
5408
5409 if (intel_crtc->config->has_pch_encoder)
5410 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5411 false);
5412
5413 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5414
5415 if (intel_crtc->config->shared_dpll)
5416 intel_enable_shared_dpll(intel_crtc);
5417
5418 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5419 intel_dp_set_m_n(intel_crtc, M1_N1);
5420
5421 if (!transcoder_is_dsi(cpu_transcoder))
5422 intel_set_pipe_timings(intel_crtc);
5423
5424 intel_set_pipe_src_size(intel_crtc);
5425
5426 if (cpu_transcoder != TRANSCODER_EDP &&
5427 !transcoder_is_dsi(cpu_transcoder)) {
5428 I915_WRITE(PIPE_MULT(cpu_transcoder),
5429 intel_crtc->config->pixel_multiplier - 1);
5430 }
5431
5432 if (intel_crtc->config->has_pch_encoder) {
5433 intel_cpu_transcoder_set_m_n(intel_crtc,
5434 &intel_crtc->config->fdi_m_n, NULL);
5435 }
5436
5437 if (!transcoder_is_dsi(cpu_transcoder))
5438 haswell_set_pipeconf(crtc);
5439
5440 haswell_set_pipemisc(crtc);
5441
5442 intel_color_set_csc(&pipe_config->base);
5443
5444 intel_crtc->active = true;
5445
5446 if (intel_crtc->config->has_pch_encoder)
5447 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5448 else
5449 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5450
5451 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5452
5453 if (intel_crtc->config->has_pch_encoder)
5454 dev_priv->display.fdi_link_train(crtc);
5455
5456 if (!transcoder_is_dsi(cpu_transcoder))
5457 intel_ddi_enable_pipe_clock(intel_crtc);
5458
5459 if (INTEL_INFO(dev)->gen >= 9)
5460 skylake_pfit_enable(intel_crtc);
5461 else
5462 ironlake_pfit_enable(intel_crtc);
5463
5464 /*
5465 * On ILK+ LUT must be loaded before the pipe is running but with
5466 * clocks enabled
5467 */
5468 intel_color_load_luts(&pipe_config->base);
5469
5470 intel_ddi_set_pipe_settings(crtc);
5471 if (!transcoder_is_dsi(cpu_transcoder))
5472 intel_ddi_enable_transcoder_func(crtc);
5473
5474 if (dev_priv->display.initial_watermarks != NULL)
5475 dev_priv->display.initial_watermarks(pipe_config);
5476 else
5477 intel_update_watermarks(crtc);
5478
5479 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5480 if (!transcoder_is_dsi(cpu_transcoder))
5481 intel_enable_pipe(intel_crtc);
5482
5483 if (intel_crtc->config->has_pch_encoder)
5484 lpt_pch_enable(crtc);
5485
5486 if (intel_crtc->config->dp_encoder_is_mst)
5487 intel_ddi_set_vc_payload_alloc(crtc, true);
5488
5489 assert_vblank_disabled(crtc);
5490 drm_crtc_vblank_on(crtc);
5491
5492 intel_encoders_enable(crtc, pipe_config, old_state);
5493
5494 if (intel_crtc->config->has_pch_encoder) {
5495 intel_wait_for_vblank(dev, pipe);
5496 intel_wait_for_vblank(dev, pipe);
5497 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5498 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5499 true);
5500 }
5501
5502 /* If we change the relative order between pipe/planes enabling, we need
5503 * to change the workaround. */
5504 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5505 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5506 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5507 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5508 }
5509 }
5510
5511 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5512 {
5513 struct drm_device *dev = crtc->base.dev;
5514 struct drm_i915_private *dev_priv = to_i915(dev);
5515 int pipe = crtc->pipe;
5516
5517 /* To avoid upsetting the power well on haswell only disable the pfit if
5518 * it's in use. The hw state code will make sure we get this right. */
5519 if (force || crtc->config->pch_pfit.enabled) {
5520 I915_WRITE(PF_CTL(pipe), 0);
5521 I915_WRITE(PF_WIN_POS(pipe), 0);
5522 I915_WRITE(PF_WIN_SZ(pipe), 0);
5523 }
5524 }
5525
5526 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5527 struct drm_atomic_state *old_state)
5528 {
5529 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5530 struct drm_device *dev = crtc->dev;
5531 struct drm_i915_private *dev_priv = to_i915(dev);
5532 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5533 int pipe = intel_crtc->pipe;
5534
5535 /*
5536 * Sometimes spurious CPU pipe underruns happen when the
5537 * pipe is already disabled, but FDI RX/TX is still enabled.
5538 * Happens at least with VGA+HDMI cloning. Suppress them.
5539 */
5540 if (intel_crtc->config->has_pch_encoder) {
5541 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5542 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5543 }
5544
5545 intel_encoders_disable(crtc, old_crtc_state, old_state);
5546
5547 drm_crtc_vblank_off(crtc);
5548 assert_vblank_disabled(crtc);
5549
5550 intel_disable_pipe(intel_crtc);
5551
5552 ironlake_pfit_disable(intel_crtc, false);
5553
5554 if (intel_crtc->config->has_pch_encoder)
5555 ironlake_fdi_disable(crtc);
5556
5557 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5558
5559 if (intel_crtc->config->has_pch_encoder) {
5560 ironlake_disable_pch_transcoder(dev_priv, pipe);
5561
5562 if (HAS_PCH_CPT(dev)) {
5563 i915_reg_t reg;
5564 u32 temp;
5565
5566 /* disable TRANS_DP_CTL */
5567 reg = TRANS_DP_CTL(pipe);
5568 temp = I915_READ(reg);
5569 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5570 TRANS_DP_PORT_SEL_MASK);
5571 temp |= TRANS_DP_PORT_SEL_NONE;
5572 I915_WRITE(reg, temp);
5573
5574 /* disable DPLL_SEL */
5575 temp = I915_READ(PCH_DPLL_SEL);
5576 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5577 I915_WRITE(PCH_DPLL_SEL, temp);
5578 }
5579
5580 ironlake_fdi_pll_disable(intel_crtc);
5581 }
5582
5583 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5584 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5585 }
5586
5587 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5588 struct drm_atomic_state *old_state)
5589 {
5590 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5591 struct drm_device *dev = crtc->dev;
5592 struct drm_i915_private *dev_priv = to_i915(dev);
5593 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5594 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5595
5596 if (intel_crtc->config->has_pch_encoder)
5597 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5598 false);
5599
5600 intel_encoders_disable(crtc, old_crtc_state, old_state);
5601
5602 drm_crtc_vblank_off(crtc);
5603 assert_vblank_disabled(crtc);
5604
5605 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5606 if (!transcoder_is_dsi(cpu_transcoder))
5607 intel_disable_pipe(intel_crtc);
5608
5609 if (intel_crtc->config->dp_encoder_is_mst)
5610 intel_ddi_set_vc_payload_alloc(crtc, false);
5611
5612 if (!transcoder_is_dsi(cpu_transcoder))
5613 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5614
5615 if (INTEL_INFO(dev)->gen >= 9)
5616 skylake_scaler_disable(intel_crtc);
5617 else
5618 ironlake_pfit_disable(intel_crtc, false);
5619
5620 if (!transcoder_is_dsi(cpu_transcoder))
5621 intel_ddi_disable_pipe_clock(intel_crtc);
5622
5623 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5624
5625 if (old_crtc_state->has_pch_encoder)
5626 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5627 true);
5628 }
5629
5630 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5631 {
5632 struct drm_device *dev = crtc->base.dev;
5633 struct drm_i915_private *dev_priv = to_i915(dev);
5634 struct intel_crtc_state *pipe_config = crtc->config;
5635
5636 if (!pipe_config->gmch_pfit.control)
5637 return;
5638
5639 /*
5640 * The panel fitter should only be adjusted whilst the pipe is disabled,
5641 * according to register description and PRM.
5642 */
5643 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5644 assert_pipe_disabled(dev_priv, crtc->pipe);
5645
5646 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5647 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5648
5649 /* Border color in case we don't scale up to the full screen. Black by
5650 * default, change to something else for debugging. */
5651 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5652 }
5653
5654 static enum intel_display_power_domain port_to_power_domain(enum port port)
5655 {
5656 switch (port) {
5657 case PORT_A:
5658 return POWER_DOMAIN_PORT_DDI_A_LANES;
5659 case PORT_B:
5660 return POWER_DOMAIN_PORT_DDI_B_LANES;
5661 case PORT_C:
5662 return POWER_DOMAIN_PORT_DDI_C_LANES;
5663 case PORT_D:
5664 return POWER_DOMAIN_PORT_DDI_D_LANES;
5665 case PORT_E:
5666 return POWER_DOMAIN_PORT_DDI_E_LANES;
5667 default:
5668 MISSING_CASE(port);
5669 return POWER_DOMAIN_PORT_OTHER;
5670 }
5671 }
5672
5673 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5674 {
5675 switch (port) {
5676 case PORT_A:
5677 return POWER_DOMAIN_AUX_A;
5678 case PORT_B:
5679 return POWER_DOMAIN_AUX_B;
5680 case PORT_C:
5681 return POWER_DOMAIN_AUX_C;
5682 case PORT_D:
5683 return POWER_DOMAIN_AUX_D;
5684 case PORT_E:
5685 /* FIXME: Check VBT for actual wiring of PORT E */
5686 return POWER_DOMAIN_AUX_D;
5687 default:
5688 MISSING_CASE(port);
5689 return POWER_DOMAIN_AUX_A;
5690 }
5691 }
5692
5693 enum intel_display_power_domain
5694 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5695 {
5696 struct drm_device *dev = intel_encoder->base.dev;
5697 struct intel_digital_port *intel_dig_port;
5698
5699 switch (intel_encoder->type) {
5700 case INTEL_OUTPUT_UNKNOWN:
5701 /* Only DDI platforms should ever use this output type */
5702 WARN_ON_ONCE(!HAS_DDI(dev));
5703 case INTEL_OUTPUT_DP:
5704 case INTEL_OUTPUT_HDMI:
5705 case INTEL_OUTPUT_EDP:
5706 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5707 return port_to_power_domain(intel_dig_port->port);
5708 case INTEL_OUTPUT_DP_MST:
5709 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5710 return port_to_power_domain(intel_dig_port->port);
5711 case INTEL_OUTPUT_ANALOG:
5712 return POWER_DOMAIN_PORT_CRT;
5713 case INTEL_OUTPUT_DSI:
5714 return POWER_DOMAIN_PORT_DSI;
5715 default:
5716 return POWER_DOMAIN_PORT_OTHER;
5717 }
5718 }
5719
5720 enum intel_display_power_domain
5721 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5722 {
5723 struct drm_device *dev = intel_encoder->base.dev;
5724 struct intel_digital_port *intel_dig_port;
5725
5726 switch (intel_encoder->type) {
5727 case INTEL_OUTPUT_UNKNOWN:
5728 case INTEL_OUTPUT_HDMI:
5729 /*
5730 * Only DDI platforms should ever use these output types.
5731 * We can get here after the HDMI detect code has already set
5732 * the type of the shared encoder. Since we can't be sure
5733 * what's the status of the given connectors, play safe and
5734 * run the DP detection too.
5735 */
5736 WARN_ON_ONCE(!HAS_DDI(dev));
5737 case INTEL_OUTPUT_DP:
5738 case INTEL_OUTPUT_EDP:
5739 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5740 return port_to_aux_power_domain(intel_dig_port->port);
5741 case INTEL_OUTPUT_DP_MST:
5742 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5743 return port_to_aux_power_domain(intel_dig_port->port);
5744 default:
5745 MISSING_CASE(intel_encoder->type);
5746 return POWER_DOMAIN_AUX_A;
5747 }
5748 }
5749
5750 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5751 struct intel_crtc_state *crtc_state)
5752 {
5753 struct drm_device *dev = crtc->dev;
5754 struct drm_encoder *encoder;
5755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5756 enum pipe pipe = intel_crtc->pipe;
5757 unsigned long mask;
5758 enum transcoder transcoder = crtc_state->cpu_transcoder;
5759
5760 if (!crtc_state->base.active)
5761 return 0;
5762
5763 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5764 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5765 if (crtc_state->pch_pfit.enabled ||
5766 crtc_state->pch_pfit.force_thru)
5767 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5768
5769 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5770 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5771
5772 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5773 }
5774
5775 if (crtc_state->shared_dpll)
5776 mask |= BIT(POWER_DOMAIN_PLLS);
5777
5778 return mask;
5779 }
5780
5781 static unsigned long
5782 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5783 struct intel_crtc_state *crtc_state)
5784 {
5785 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5786 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5787 enum intel_display_power_domain domain;
5788 unsigned long domains, new_domains, old_domains;
5789
5790 old_domains = intel_crtc->enabled_power_domains;
5791 intel_crtc->enabled_power_domains = new_domains =
5792 get_crtc_power_domains(crtc, crtc_state);
5793
5794 domains = new_domains & ~old_domains;
5795
5796 for_each_power_domain(domain, domains)
5797 intel_display_power_get(dev_priv, domain);
5798
5799 return old_domains & ~new_domains;
5800 }
5801
5802 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5803 unsigned long domains)
5804 {
5805 enum intel_display_power_domain domain;
5806
5807 for_each_power_domain(domain, domains)
5808 intel_display_power_put(dev_priv, domain);
5809 }
5810
5811 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5812 {
5813 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5814
5815 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5816 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5817 return max_cdclk_freq;
5818 else if (IS_CHERRYVIEW(dev_priv))
5819 return max_cdclk_freq*95/100;
5820 else if (INTEL_INFO(dev_priv)->gen < 4)
5821 return 2*max_cdclk_freq*90/100;
5822 else
5823 return max_cdclk_freq*90/100;
5824 }
5825
5826 static int skl_calc_cdclk(int max_pixclk, int vco);
5827
5828 static void intel_update_max_cdclk(struct drm_device *dev)
5829 {
5830 struct drm_i915_private *dev_priv = to_i915(dev);
5831
5832 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5833 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5834 int max_cdclk, vco;
5835
5836 vco = dev_priv->skl_preferred_vco_freq;
5837 WARN_ON(vco != 8100000 && vco != 8640000);
5838
5839 /*
5840 * Use the lower (vco 8640) cdclk values as a
5841 * first guess. skl_calc_cdclk() will correct it
5842 * if the preferred vco is 8100 instead.
5843 */
5844 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5845 max_cdclk = 617143;
5846 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5847 max_cdclk = 540000;
5848 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5849 max_cdclk = 432000;
5850 else
5851 max_cdclk = 308571;
5852
5853 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5854 } else if (IS_BROXTON(dev)) {
5855 dev_priv->max_cdclk_freq = 624000;
5856 } else if (IS_BROADWELL(dev)) {
5857 /*
5858 * FIXME with extra cooling we can allow
5859 * 540 MHz for ULX and 675 Mhz for ULT.
5860 * How can we know if extra cooling is
5861 * available? PCI ID, VTB, something else?
5862 */
5863 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5864 dev_priv->max_cdclk_freq = 450000;
5865 else if (IS_BDW_ULX(dev))
5866 dev_priv->max_cdclk_freq = 450000;
5867 else if (IS_BDW_ULT(dev))
5868 dev_priv->max_cdclk_freq = 540000;
5869 else
5870 dev_priv->max_cdclk_freq = 675000;
5871 } else if (IS_CHERRYVIEW(dev)) {
5872 dev_priv->max_cdclk_freq = 320000;
5873 } else if (IS_VALLEYVIEW(dev)) {
5874 dev_priv->max_cdclk_freq = 400000;
5875 } else {
5876 /* otherwise assume cdclk is fixed */
5877 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5878 }
5879
5880 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5881
5882 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5883 dev_priv->max_cdclk_freq);
5884
5885 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5886 dev_priv->max_dotclk_freq);
5887 }
5888
5889 static void intel_update_cdclk(struct drm_device *dev)
5890 {
5891 struct drm_i915_private *dev_priv = to_i915(dev);
5892
5893 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5894
5895 if (INTEL_GEN(dev_priv) >= 9)
5896 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5897 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5898 dev_priv->cdclk_pll.ref);
5899 else
5900 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5901 dev_priv->cdclk_freq);
5902
5903 /*
5904 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5905 * Programmng [sic] note: bit[9:2] should be programmed to the number
5906 * of cdclk that generates 4MHz reference clock freq which is used to
5907 * generate GMBus clock. This will vary with the cdclk freq.
5908 */
5909 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5910 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5911 }
5912
5913 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5914 static int skl_cdclk_decimal(int cdclk)
5915 {
5916 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5917 }
5918
5919 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5920 {
5921 int ratio;
5922
5923 if (cdclk == dev_priv->cdclk_pll.ref)
5924 return 0;
5925
5926 switch (cdclk) {
5927 default:
5928 MISSING_CASE(cdclk);
5929 case 144000:
5930 case 288000:
5931 case 384000:
5932 case 576000:
5933 ratio = 60;
5934 break;
5935 case 624000:
5936 ratio = 65;
5937 break;
5938 }
5939
5940 return dev_priv->cdclk_pll.ref * ratio;
5941 }
5942
5943 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5944 {
5945 I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5946
5947 /* Timeout 200us */
5948 if (intel_wait_for_register(dev_priv,
5949 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5950 1))
5951 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5952
5953 dev_priv->cdclk_pll.vco = 0;
5954 }
5955
5956 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5957 {
5958 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5959 u32 val;
5960
5961 val = I915_READ(BXT_DE_PLL_CTL);
5962 val &= ~BXT_DE_PLL_RATIO_MASK;
5963 val |= BXT_DE_PLL_RATIO(ratio);
5964 I915_WRITE(BXT_DE_PLL_CTL, val);
5965
5966 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5967
5968 /* Timeout 200us */
5969 if (intel_wait_for_register(dev_priv,
5970 BXT_DE_PLL_ENABLE,
5971 BXT_DE_PLL_LOCK,
5972 BXT_DE_PLL_LOCK,
5973 1))
5974 DRM_ERROR("timeout waiting for DE PLL lock\n");
5975
5976 dev_priv->cdclk_pll.vco = vco;
5977 }
5978
5979 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5980 {
5981 u32 val, divider;
5982 int vco, ret;
5983
5984 vco = bxt_de_pll_vco(dev_priv, cdclk);
5985
5986 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5987
5988 /* cdclk = vco / 2 / div{1,1.5,2,4} */
5989 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5990 case 8:
5991 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5992 break;
5993 case 4:
5994 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5995 break;
5996 case 3:
5997 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5998 break;
5999 case 2:
6000 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6001 break;
6002 default:
6003 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
6004 WARN_ON(vco != 0);
6005
6006 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6007 break;
6008 }
6009
6010 /* Inform power controller of upcoming frequency change */
6011 mutex_lock(&dev_priv->rps.hw_lock);
6012 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6013 0x80000000);
6014 mutex_unlock(&dev_priv->rps.hw_lock);
6015
6016 if (ret) {
6017 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
6018 ret, cdclk);
6019 return;
6020 }
6021
6022 if (dev_priv->cdclk_pll.vco != 0 &&
6023 dev_priv->cdclk_pll.vco != vco)
6024 bxt_de_pll_disable(dev_priv);
6025
6026 if (dev_priv->cdclk_pll.vco != vco)
6027 bxt_de_pll_enable(dev_priv, vco);
6028
6029 val = divider | skl_cdclk_decimal(cdclk);
6030 /*
6031 * FIXME if only the cd2x divider needs changing, it could be done
6032 * without shutting off the pipe (if only one pipe is active).
6033 */
6034 val |= BXT_CDCLK_CD2X_PIPE_NONE;
6035 /*
6036 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6037 * enable otherwise.
6038 */
6039 if (cdclk >= 500000)
6040 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6041 I915_WRITE(CDCLK_CTL, val);
6042
6043 mutex_lock(&dev_priv->rps.hw_lock);
6044 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6045 DIV_ROUND_UP(cdclk, 25000));
6046 mutex_unlock(&dev_priv->rps.hw_lock);
6047
6048 if (ret) {
6049 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
6050 ret, cdclk);
6051 return;
6052 }
6053
6054 intel_update_cdclk(&dev_priv->drm);
6055 }
6056
6057 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
6058 {
6059 u32 cdctl, expected;
6060
6061 intel_update_cdclk(&dev_priv->drm);
6062
6063 if (dev_priv->cdclk_pll.vco == 0 ||
6064 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6065 goto sanitize;
6066
6067 /* DPLL okay; verify the cdclock
6068 *
6069 * Some BIOS versions leave an incorrect decimal frequency value and
6070 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6071 * so sanitize this register.
6072 */
6073 cdctl = I915_READ(CDCLK_CTL);
6074 /*
6075 * Let's ignore the pipe field, since BIOS could have configured the
6076 * dividers both synching to an active pipe, or asynchronously
6077 * (PIPE_NONE).
6078 */
6079 cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
6080
6081 expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
6082 skl_cdclk_decimal(dev_priv->cdclk_freq);
6083 /*
6084 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6085 * enable otherwise.
6086 */
6087 if (dev_priv->cdclk_freq >= 500000)
6088 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6089
6090 if (cdctl == expected)
6091 /* All well; nothing to sanitize */
6092 return;
6093
6094 sanitize:
6095 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6096
6097 /* force cdclk programming */
6098 dev_priv->cdclk_freq = 0;
6099
6100 /* force full PLL disable + enable */
6101 dev_priv->cdclk_pll.vco = -1;
6102 }
6103
6104 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
6105 {
6106 bxt_sanitize_cdclk(dev_priv);
6107
6108 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
6109 return;
6110
6111 /*
6112 * FIXME:
6113 * - The initial CDCLK needs to be read from VBT.
6114 * Need to make this change after VBT has changes for BXT.
6115 */
6116 bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
6117 }
6118
6119 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
6120 {
6121 bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
6122 }
6123
6124 static int skl_calc_cdclk(int max_pixclk, int vco)
6125 {
6126 if (vco == 8640000) {
6127 if (max_pixclk > 540000)
6128 return 617143;
6129 else if (max_pixclk > 432000)
6130 return 540000;
6131 else if (max_pixclk > 308571)
6132 return 432000;
6133 else
6134 return 308571;
6135 } else {
6136 if (max_pixclk > 540000)
6137 return 675000;
6138 else if (max_pixclk > 450000)
6139 return 540000;
6140 else if (max_pixclk > 337500)
6141 return 450000;
6142 else
6143 return 337500;
6144 }
6145 }
6146
6147 static void
6148 skl_dpll0_update(struct drm_i915_private *dev_priv)
6149 {
6150 u32 val;
6151
6152 dev_priv->cdclk_pll.ref = 24000;
6153 dev_priv->cdclk_pll.vco = 0;
6154
6155 val = I915_READ(LCPLL1_CTL);
6156 if ((val & LCPLL_PLL_ENABLE) == 0)
6157 return;
6158
6159 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6160 return;
6161
6162 val = I915_READ(DPLL_CTRL1);
6163
6164 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6165 DPLL_CTRL1_SSC(SKL_DPLL0) |
6166 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6167 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6168 return;
6169
6170 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6171 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6172 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6173 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6174 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
6175 dev_priv->cdclk_pll.vco = 8100000;
6176 break;
6177 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6178 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
6179 dev_priv->cdclk_pll.vco = 8640000;
6180 break;
6181 default:
6182 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6183 break;
6184 }
6185 }
6186
6187 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6188 {
6189 bool changed = dev_priv->skl_preferred_vco_freq != vco;
6190
6191 dev_priv->skl_preferred_vco_freq = vco;
6192
6193 if (changed)
6194 intel_update_max_cdclk(&dev_priv->drm);
6195 }
6196
6197 static void
6198 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
6199 {
6200 int min_cdclk = skl_calc_cdclk(0, vco);
6201 u32 val;
6202
6203 WARN_ON(vco != 8100000 && vco != 8640000);
6204
6205 /* select the minimum CDCLK before enabling DPLL 0 */
6206 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
6207 I915_WRITE(CDCLK_CTL, val);
6208 POSTING_READ(CDCLK_CTL);
6209
6210 /*
6211 * We always enable DPLL0 with the lowest link rate possible, but still
6212 * taking into account the VCO required to operate the eDP panel at the
6213 * desired frequency. The usual DP link rates operate with a VCO of
6214 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6215 * The modeset code is responsible for the selection of the exact link
6216 * rate later on, with the constraint of choosing a frequency that
6217 * works with vco.
6218 */
6219 val = I915_READ(DPLL_CTRL1);
6220
6221 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6222 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6223 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
6224 if (vco == 8640000)
6225 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6226 SKL_DPLL0);
6227 else
6228 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6229 SKL_DPLL0);
6230
6231 I915_WRITE(DPLL_CTRL1, val);
6232 POSTING_READ(DPLL_CTRL1);
6233
6234 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6235
6236 if (intel_wait_for_register(dev_priv,
6237 LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6238 5))
6239 DRM_ERROR("DPLL0 not locked\n");
6240
6241 dev_priv->cdclk_pll.vco = vco;
6242
6243 /* We'll want to keep using the current vco from now on. */
6244 skl_set_preferred_cdclk_vco(dev_priv, vco);
6245 }
6246
6247 static void
6248 skl_dpll0_disable(struct drm_i915_private *dev_priv)
6249 {
6250 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
6251 if (intel_wait_for_register(dev_priv,
6252 LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6253 1))
6254 DRM_ERROR("Couldn't disable DPLL0\n");
6255
6256 dev_priv->cdclk_pll.vco = 0;
6257 }
6258
6259 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
6260 {
6261 int ret;
6262 u32 val;
6263
6264 /* inform PCU we want to change CDCLK */
6265 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
6266 mutex_lock(&dev_priv->rps.hw_lock);
6267 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
6268 mutex_unlock(&dev_priv->rps.hw_lock);
6269
6270 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
6271 }
6272
6273 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
6274 {
6275 return _wait_for(skl_cdclk_pcu_ready(dev_priv), 3000, 10) == 0;
6276 }
6277
6278 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
6279 {
6280 struct drm_device *dev = &dev_priv->drm;
6281 u32 freq_select, pcu_ack;
6282
6283 WARN_ON((cdclk == 24000) != (vco == 0));
6284
6285 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6286
6287 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
6288 DRM_ERROR("failed to inform PCU about cdclk change\n");
6289 return;
6290 }
6291
6292 /* set CDCLK_CTL */
6293 switch (cdclk) {
6294 case 450000:
6295 case 432000:
6296 freq_select = CDCLK_FREQ_450_432;
6297 pcu_ack = 1;
6298 break;
6299 case 540000:
6300 freq_select = CDCLK_FREQ_540;
6301 pcu_ack = 2;
6302 break;
6303 case 308571:
6304 case 337500:
6305 default:
6306 freq_select = CDCLK_FREQ_337_308;
6307 pcu_ack = 0;
6308 break;
6309 case 617143:
6310 case 675000:
6311 freq_select = CDCLK_FREQ_675_617;
6312 pcu_ack = 3;
6313 break;
6314 }
6315
6316 if (dev_priv->cdclk_pll.vco != 0 &&
6317 dev_priv->cdclk_pll.vco != vco)
6318 skl_dpll0_disable(dev_priv);
6319
6320 if (dev_priv->cdclk_pll.vco != vco)
6321 skl_dpll0_enable(dev_priv, vco);
6322
6323 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
6324 POSTING_READ(CDCLK_CTL);
6325
6326 /* inform PCU of the change */
6327 mutex_lock(&dev_priv->rps.hw_lock);
6328 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6329 mutex_unlock(&dev_priv->rps.hw_lock);
6330
6331 intel_update_cdclk(dev);
6332 }
6333
6334 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6335
6336 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6337 {
6338 skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
6339 }
6340
6341 void skl_init_cdclk(struct drm_i915_private *dev_priv)
6342 {
6343 int cdclk, vco;
6344
6345 skl_sanitize_cdclk(dev_priv);
6346
6347 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
6348 /*
6349 * Use the current vco as our initial
6350 * guess as to what the preferred vco is.
6351 */
6352 if (dev_priv->skl_preferred_vco_freq == 0)
6353 skl_set_preferred_cdclk_vco(dev_priv,
6354 dev_priv->cdclk_pll.vco);
6355 return;
6356 }
6357
6358 vco = dev_priv->skl_preferred_vco_freq;
6359 if (vco == 0)
6360 vco = 8100000;
6361 cdclk = skl_calc_cdclk(0, vco);
6362
6363 skl_set_cdclk(dev_priv, cdclk, vco);
6364 }
6365
6366 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
6367 {
6368 uint32_t cdctl, expected;
6369
6370 /*
6371 * check if the pre-os intialized the display
6372 * There is SWF18 scratchpad register defined which is set by the
6373 * pre-os which can be used by the OS drivers to check the status
6374 */
6375 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6376 goto sanitize;
6377
6378 intel_update_cdclk(&dev_priv->drm);
6379 /* Is PLL enabled and locked ? */
6380 if (dev_priv->cdclk_pll.vco == 0 ||
6381 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6382 goto sanitize;
6383
6384 /* DPLL okay; verify the cdclock
6385 *
6386 * Noticed in some instances that the freq selection is correct but
6387 * decimal part is programmed wrong from BIOS where pre-os does not
6388 * enable display. Verify the same as well.
6389 */
6390 cdctl = I915_READ(CDCLK_CTL);
6391 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6392 skl_cdclk_decimal(dev_priv->cdclk_freq);
6393 if (cdctl == expected)
6394 /* All well; nothing to sanitize */
6395 return;
6396
6397 sanitize:
6398 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6399
6400 /* force cdclk programming */
6401 dev_priv->cdclk_freq = 0;
6402 /* force full PLL disable + enable */
6403 dev_priv->cdclk_pll.vco = -1;
6404 }
6405
6406 /* Adjust CDclk dividers to allow high res or save power if possible */
6407 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6408 {
6409 struct drm_i915_private *dev_priv = to_i915(dev);
6410 u32 val, cmd;
6411
6412 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6413 != dev_priv->cdclk_freq);
6414
6415 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
6416 cmd = 2;
6417 else if (cdclk == 266667)
6418 cmd = 1;
6419 else
6420 cmd = 0;
6421
6422 mutex_lock(&dev_priv->rps.hw_lock);
6423 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6424 val &= ~DSPFREQGUAR_MASK;
6425 val |= (cmd << DSPFREQGUAR_SHIFT);
6426 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6427 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6428 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6429 50)) {
6430 DRM_ERROR("timed out waiting for CDclk change\n");
6431 }
6432 mutex_unlock(&dev_priv->rps.hw_lock);
6433
6434 mutex_lock(&dev_priv->sb_lock);
6435
6436 if (cdclk == 400000) {
6437 u32 divider;
6438
6439 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6440
6441 /* adjust cdclk divider */
6442 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6443 val &= ~CCK_FREQUENCY_VALUES;
6444 val |= divider;
6445 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
6446
6447 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6448 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
6449 50))
6450 DRM_ERROR("timed out waiting for CDclk change\n");
6451 }
6452
6453 /* adjust self-refresh exit latency value */
6454 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6455 val &= ~0x7f;
6456
6457 /*
6458 * For high bandwidth configs, we set a higher latency in the bunit
6459 * so that the core display fetch happens in time to avoid underruns.
6460 */
6461 if (cdclk == 400000)
6462 val |= 4500 / 250; /* 4.5 usec */
6463 else
6464 val |= 3000 / 250; /* 3.0 usec */
6465 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
6466
6467 mutex_unlock(&dev_priv->sb_lock);
6468
6469 intel_update_cdclk(dev);
6470 }
6471
6472 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6473 {
6474 struct drm_i915_private *dev_priv = to_i915(dev);
6475 u32 val, cmd;
6476
6477 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6478 != dev_priv->cdclk_freq);
6479
6480 switch (cdclk) {
6481 case 333333:
6482 case 320000:
6483 case 266667:
6484 case 200000:
6485 break;
6486 default:
6487 MISSING_CASE(cdclk);
6488 return;
6489 }
6490
6491 /*
6492 * Specs are full of misinformation, but testing on actual
6493 * hardware has shown that we just need to write the desired
6494 * CCK divider into the Punit register.
6495 */
6496 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6497
6498 mutex_lock(&dev_priv->rps.hw_lock);
6499 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6500 val &= ~DSPFREQGUAR_MASK_CHV;
6501 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6502 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6503 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6504 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6505 50)) {
6506 DRM_ERROR("timed out waiting for CDclk change\n");
6507 }
6508 mutex_unlock(&dev_priv->rps.hw_lock);
6509
6510 intel_update_cdclk(dev);
6511 }
6512
6513 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6514 int max_pixclk)
6515 {
6516 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6517 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6518
6519 /*
6520 * Really only a few cases to deal with, as only 4 CDclks are supported:
6521 * 200MHz
6522 * 267MHz
6523 * 320/333MHz (depends on HPLL freq)
6524 * 400MHz (VLV only)
6525 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6526 * of the lower bin and adjust if needed.
6527 *
6528 * We seem to get an unstable or solid color picture at 200MHz.
6529 * Not sure what's wrong. For now use 200MHz only when all pipes
6530 * are off.
6531 */
6532 if (!IS_CHERRYVIEW(dev_priv) &&
6533 max_pixclk > freq_320*limit/100)
6534 return 400000;
6535 else if (max_pixclk > 266667*limit/100)
6536 return freq_320;
6537 else if (max_pixclk > 0)
6538 return 266667;
6539 else
6540 return 200000;
6541 }
6542
6543 static int bxt_calc_cdclk(int max_pixclk)
6544 {
6545 if (max_pixclk > 576000)
6546 return 624000;
6547 else if (max_pixclk > 384000)
6548 return 576000;
6549 else if (max_pixclk > 288000)
6550 return 384000;
6551 else if (max_pixclk > 144000)
6552 return 288000;
6553 else
6554 return 144000;
6555 }
6556
6557 /* Compute the max pixel clock for new configuration. */
6558 static int intel_mode_max_pixclk(struct drm_device *dev,
6559 struct drm_atomic_state *state)
6560 {
6561 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6562 struct drm_i915_private *dev_priv = to_i915(dev);
6563 struct drm_crtc *crtc;
6564 struct drm_crtc_state *crtc_state;
6565 unsigned max_pixclk = 0, i;
6566 enum pipe pipe;
6567
6568 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6569 sizeof(intel_state->min_pixclk));
6570
6571 for_each_crtc_in_state(state, crtc, crtc_state, i) {
6572 int pixclk = 0;
6573
6574 if (crtc_state->enable)
6575 pixclk = crtc_state->adjusted_mode.crtc_clock;
6576
6577 intel_state->min_pixclk[i] = pixclk;
6578 }
6579
6580 for_each_pipe(dev_priv, pipe)
6581 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6582
6583 return max_pixclk;
6584 }
6585
6586 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6587 {
6588 struct drm_device *dev = state->dev;
6589 struct drm_i915_private *dev_priv = to_i915(dev);
6590 int max_pixclk = intel_mode_max_pixclk(dev, state);
6591 struct intel_atomic_state *intel_state =
6592 to_intel_atomic_state(state);
6593
6594 intel_state->cdclk = intel_state->dev_cdclk =
6595 valleyview_calc_cdclk(dev_priv, max_pixclk);
6596
6597 if (!intel_state->active_crtcs)
6598 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6599
6600 return 0;
6601 }
6602
6603 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6604 {
6605 int max_pixclk = ilk_max_pixel_rate(state);
6606 struct intel_atomic_state *intel_state =
6607 to_intel_atomic_state(state);
6608
6609 intel_state->cdclk = intel_state->dev_cdclk =
6610 bxt_calc_cdclk(max_pixclk);
6611
6612 if (!intel_state->active_crtcs)
6613 intel_state->dev_cdclk = bxt_calc_cdclk(0);
6614
6615 return 0;
6616 }
6617
6618 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6619 {
6620 unsigned int credits, default_credits;
6621
6622 if (IS_CHERRYVIEW(dev_priv))
6623 default_credits = PFI_CREDIT(12);
6624 else
6625 default_credits = PFI_CREDIT(8);
6626
6627 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6628 /* CHV suggested value is 31 or 63 */
6629 if (IS_CHERRYVIEW(dev_priv))
6630 credits = PFI_CREDIT_63;
6631 else
6632 credits = PFI_CREDIT(15);
6633 } else {
6634 credits = default_credits;
6635 }
6636
6637 /*
6638 * WA - write default credits before re-programming
6639 * FIXME: should we also set the resend bit here?
6640 */
6641 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6642 default_credits);
6643
6644 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6645 credits | PFI_CREDIT_RESEND);
6646
6647 /*
6648 * FIXME is this guaranteed to clear
6649 * immediately or should we poll for it?
6650 */
6651 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6652 }
6653
6654 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6655 {
6656 struct drm_device *dev = old_state->dev;
6657 struct drm_i915_private *dev_priv = to_i915(dev);
6658 struct intel_atomic_state *old_intel_state =
6659 to_intel_atomic_state(old_state);
6660 unsigned req_cdclk = old_intel_state->dev_cdclk;
6661
6662 /*
6663 * FIXME: We can end up here with all power domains off, yet
6664 * with a CDCLK frequency other than the minimum. To account
6665 * for this take the PIPE-A power domain, which covers the HW
6666 * blocks needed for the following programming. This can be
6667 * removed once it's guaranteed that we get here either with
6668 * the minimum CDCLK set, or the required power domains
6669 * enabled.
6670 */
6671 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6672
6673 if (IS_CHERRYVIEW(dev))
6674 cherryview_set_cdclk(dev, req_cdclk);
6675 else
6676 valleyview_set_cdclk(dev, req_cdclk);
6677
6678 vlv_program_pfi_credits(dev_priv);
6679
6680 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6681 }
6682
6683 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6684 struct drm_atomic_state *old_state)
6685 {
6686 struct drm_crtc *crtc = pipe_config->base.crtc;
6687 struct drm_device *dev = crtc->dev;
6688 struct drm_i915_private *dev_priv = to_i915(dev);
6689 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6690 int pipe = intel_crtc->pipe;
6691
6692 if (WARN_ON(intel_crtc->active))
6693 return;
6694
6695 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6696 intel_dp_set_m_n(intel_crtc, M1_N1);
6697
6698 intel_set_pipe_timings(intel_crtc);
6699 intel_set_pipe_src_size(intel_crtc);
6700
6701 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6702 struct drm_i915_private *dev_priv = to_i915(dev);
6703
6704 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6705 I915_WRITE(CHV_CANVAS(pipe), 0);
6706 }
6707
6708 i9xx_set_pipeconf(intel_crtc);
6709
6710 intel_crtc->active = true;
6711
6712 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6713
6714 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
6715
6716 if (IS_CHERRYVIEW(dev)) {
6717 chv_prepare_pll(intel_crtc, intel_crtc->config);
6718 chv_enable_pll(intel_crtc, intel_crtc->config);
6719 } else {
6720 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6721 vlv_enable_pll(intel_crtc, intel_crtc->config);
6722 }
6723
6724 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6725
6726 i9xx_pfit_enable(intel_crtc);
6727
6728 intel_color_load_luts(&pipe_config->base);
6729
6730 intel_update_watermarks(crtc);
6731 intel_enable_pipe(intel_crtc);
6732
6733 assert_vblank_disabled(crtc);
6734 drm_crtc_vblank_on(crtc);
6735
6736 intel_encoders_enable(crtc, pipe_config, old_state);
6737 }
6738
6739 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6740 {
6741 struct drm_device *dev = crtc->base.dev;
6742 struct drm_i915_private *dev_priv = to_i915(dev);
6743
6744 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6745 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6746 }
6747
6748 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6749 struct drm_atomic_state *old_state)
6750 {
6751 struct drm_crtc *crtc = pipe_config->base.crtc;
6752 struct drm_device *dev = crtc->dev;
6753 struct drm_i915_private *dev_priv = to_i915(dev);
6754 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6755 enum pipe pipe = intel_crtc->pipe;
6756
6757 if (WARN_ON(intel_crtc->active))
6758 return;
6759
6760 i9xx_set_pll_dividers(intel_crtc);
6761
6762 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6763 intel_dp_set_m_n(intel_crtc, M1_N1);
6764
6765 intel_set_pipe_timings(intel_crtc);
6766 intel_set_pipe_src_size(intel_crtc);
6767
6768 i9xx_set_pipeconf(intel_crtc);
6769
6770 intel_crtc->active = true;
6771
6772 if (!IS_GEN2(dev))
6773 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6774
6775 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6776
6777 i9xx_enable_pll(intel_crtc);
6778
6779 i9xx_pfit_enable(intel_crtc);
6780
6781 intel_color_load_luts(&pipe_config->base);
6782
6783 intel_update_watermarks(crtc);
6784 intel_enable_pipe(intel_crtc);
6785
6786 assert_vblank_disabled(crtc);
6787 drm_crtc_vblank_on(crtc);
6788
6789 intel_encoders_enable(crtc, pipe_config, old_state);
6790 }
6791
6792 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6793 {
6794 struct drm_device *dev = crtc->base.dev;
6795 struct drm_i915_private *dev_priv = to_i915(dev);
6796
6797 if (!crtc->config->gmch_pfit.control)
6798 return;
6799
6800 assert_pipe_disabled(dev_priv, crtc->pipe);
6801
6802 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6803 I915_READ(PFIT_CONTROL));
6804 I915_WRITE(PFIT_CONTROL, 0);
6805 }
6806
6807 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6808 struct drm_atomic_state *old_state)
6809 {
6810 struct drm_crtc *crtc = old_crtc_state->base.crtc;
6811 struct drm_device *dev = crtc->dev;
6812 struct drm_i915_private *dev_priv = to_i915(dev);
6813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6814 int pipe = intel_crtc->pipe;
6815
6816 /*
6817 * On gen2 planes are double buffered but the pipe isn't, so we must
6818 * wait for planes to fully turn off before disabling the pipe.
6819 */
6820 if (IS_GEN2(dev))
6821 intel_wait_for_vblank(dev, pipe);
6822
6823 intel_encoders_disable(crtc, old_crtc_state, old_state);
6824
6825 drm_crtc_vblank_off(crtc);
6826 assert_vblank_disabled(crtc);
6827
6828 intel_disable_pipe(intel_crtc);
6829
6830 i9xx_pfit_disable(intel_crtc);
6831
6832 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6833
6834 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6835 if (IS_CHERRYVIEW(dev))
6836 chv_disable_pll(dev_priv, pipe);
6837 else if (IS_VALLEYVIEW(dev))
6838 vlv_disable_pll(dev_priv, pipe);
6839 else
6840 i9xx_disable_pll(intel_crtc);
6841 }
6842
6843 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
6844
6845 if (!IS_GEN2(dev))
6846 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6847 }
6848
6849 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6850 {
6851 struct intel_encoder *encoder;
6852 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6853 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6854 enum intel_display_power_domain domain;
6855 unsigned long domains;
6856 struct drm_atomic_state *state;
6857 struct intel_crtc_state *crtc_state;
6858 int ret;
6859
6860 if (!intel_crtc->active)
6861 return;
6862
6863 if (to_intel_plane_state(crtc->primary->state)->base.visible) {
6864 WARN_ON(intel_crtc->flip_work);
6865
6866 intel_pre_disable_primary_noatomic(crtc);
6867
6868 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6869 to_intel_plane_state(crtc->primary->state)->base.visible = false;
6870 }
6871
6872 state = drm_atomic_state_alloc(crtc->dev);
6873 state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
6874
6875 /* Everything's already locked, -EDEADLK can't happen. */
6876 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6877 ret = drm_atomic_add_affected_connectors(state, crtc);
6878
6879 WARN_ON(IS_ERR(crtc_state) || ret);
6880
6881 dev_priv->display.crtc_disable(crtc_state, state);
6882
6883 drm_atomic_state_free(state);
6884
6885 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6886 crtc->base.id, crtc->name);
6887
6888 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6889 crtc->state->active = false;
6890 intel_crtc->active = false;
6891 crtc->enabled = false;
6892 crtc->state->connector_mask = 0;
6893 crtc->state->encoder_mask = 0;
6894
6895 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6896 encoder->base.crtc = NULL;
6897
6898 intel_fbc_disable(intel_crtc);
6899 intel_update_watermarks(crtc);
6900 intel_disable_shared_dpll(intel_crtc);
6901
6902 domains = intel_crtc->enabled_power_domains;
6903 for_each_power_domain(domain, domains)
6904 intel_display_power_put(dev_priv, domain);
6905 intel_crtc->enabled_power_domains = 0;
6906
6907 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6908 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6909 }
6910
6911 /*
6912 * turn all crtc's off, but do not adjust state
6913 * This has to be paired with a call to intel_modeset_setup_hw_state.
6914 */
6915 int intel_display_suspend(struct drm_device *dev)
6916 {
6917 struct drm_i915_private *dev_priv = to_i915(dev);
6918 struct drm_atomic_state *state;
6919 int ret;
6920
6921 state = drm_atomic_helper_suspend(dev);
6922 ret = PTR_ERR_OR_ZERO(state);
6923 if (ret)
6924 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6925 else
6926 dev_priv->modeset_restore_state = state;
6927 return ret;
6928 }
6929
6930 void intel_encoder_destroy(struct drm_encoder *encoder)
6931 {
6932 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6933
6934 drm_encoder_cleanup(encoder);
6935 kfree(intel_encoder);
6936 }
6937
6938 /* Cross check the actual hw state with our own modeset state tracking (and it's
6939 * internal consistency). */
6940 static void intel_connector_verify_state(struct intel_connector *connector)
6941 {
6942 struct drm_crtc *crtc = connector->base.state->crtc;
6943
6944 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6945 connector->base.base.id,
6946 connector->base.name);
6947
6948 if (connector->get_hw_state(connector)) {
6949 struct intel_encoder *encoder = connector->encoder;
6950 struct drm_connector_state *conn_state = connector->base.state;
6951
6952 I915_STATE_WARN(!crtc,
6953 "connector enabled without attached crtc\n");
6954
6955 if (!crtc)
6956 return;
6957
6958 I915_STATE_WARN(!crtc->state->active,
6959 "connector is active, but attached crtc isn't\n");
6960
6961 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6962 return;
6963
6964 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6965 "atomic encoder doesn't match attached encoder\n");
6966
6967 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6968 "attached encoder crtc differs from connector crtc\n");
6969 } else {
6970 I915_STATE_WARN(crtc && crtc->state->active,
6971 "attached crtc is active, but connector isn't\n");
6972 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6973 "best encoder set without crtc!\n");
6974 }
6975 }
6976
6977 int intel_connector_init(struct intel_connector *connector)
6978 {
6979 drm_atomic_helper_connector_reset(&connector->base);
6980
6981 if (!connector->base.state)
6982 return -ENOMEM;
6983
6984 return 0;
6985 }
6986
6987 struct intel_connector *intel_connector_alloc(void)
6988 {
6989 struct intel_connector *connector;
6990
6991 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6992 if (!connector)
6993 return NULL;
6994
6995 if (intel_connector_init(connector) < 0) {
6996 kfree(connector);
6997 return NULL;
6998 }
6999
7000 return connector;
7001 }
7002
7003 /* Simple connector->get_hw_state implementation for encoders that support only
7004 * one connector and no cloning and hence the encoder state determines the state
7005 * of the connector. */
7006 bool intel_connector_get_hw_state(struct intel_connector *connector)
7007 {
7008 enum pipe pipe = 0;
7009 struct intel_encoder *encoder = connector->encoder;
7010
7011 return encoder->get_hw_state(encoder, &pipe);
7012 }
7013
7014 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7015 {
7016 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
7017 return crtc_state->fdi_lanes;
7018
7019 return 0;
7020 }
7021
7022 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7023 struct intel_crtc_state *pipe_config)
7024 {
7025 struct drm_atomic_state *state = pipe_config->base.state;
7026 struct intel_crtc *other_crtc;
7027 struct intel_crtc_state *other_crtc_state;
7028
7029 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7030 pipe_name(pipe), pipe_config->fdi_lanes);
7031 if (pipe_config->fdi_lanes > 4) {
7032 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7033 pipe_name(pipe), pipe_config->fdi_lanes);
7034 return -EINVAL;
7035 }
7036
7037 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7038 if (pipe_config->fdi_lanes > 2) {
7039 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7040 pipe_config->fdi_lanes);
7041 return -EINVAL;
7042 } else {
7043 return 0;
7044 }
7045 }
7046
7047 if (INTEL_INFO(dev)->num_pipes == 2)
7048 return 0;
7049
7050 /* Ivybridge 3 pipe is really complicated */
7051 switch (pipe) {
7052 case PIPE_A:
7053 return 0;
7054 case PIPE_B:
7055 if (pipe_config->fdi_lanes <= 2)
7056 return 0;
7057
7058 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
7059 other_crtc_state =
7060 intel_atomic_get_crtc_state(state, other_crtc);
7061 if (IS_ERR(other_crtc_state))
7062 return PTR_ERR(other_crtc_state);
7063
7064 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7065 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7066 pipe_name(pipe), pipe_config->fdi_lanes);
7067 return -EINVAL;
7068 }
7069 return 0;
7070 case PIPE_C:
7071 if (pipe_config->fdi_lanes > 2) {
7072 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7073 pipe_name(pipe), pipe_config->fdi_lanes);
7074 return -EINVAL;
7075 }
7076
7077 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
7078 other_crtc_state =
7079 intel_atomic_get_crtc_state(state, other_crtc);
7080 if (IS_ERR(other_crtc_state))
7081 return PTR_ERR(other_crtc_state);
7082
7083 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7084 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7085 return -EINVAL;
7086 }
7087 return 0;
7088 default:
7089 BUG();
7090 }
7091 }
7092
7093 #define RETRY 1
7094 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7095 struct intel_crtc_state *pipe_config)
7096 {
7097 struct drm_device *dev = intel_crtc->base.dev;
7098 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7099 int lane, link_bw, fdi_dotclock, ret;
7100 bool needs_recompute = false;
7101
7102 retry:
7103 /* FDI is a binary signal running at ~2.7GHz, encoding
7104 * each output octet as 10 bits. The actual frequency
7105 * is stored as a divider into a 100MHz clock, and the
7106 * mode pixel clock is stored in units of 1KHz.
7107 * Hence the bw of each lane in terms of the mode signal
7108 * is:
7109 */
7110 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7111
7112 fdi_dotclock = adjusted_mode->crtc_clock;
7113
7114 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7115 pipe_config->pipe_bpp);
7116
7117 pipe_config->fdi_lanes = lane;
7118
7119 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7120 link_bw, &pipe_config->fdi_m_n);
7121
7122 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7123 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7124 pipe_config->pipe_bpp -= 2*3;
7125 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7126 pipe_config->pipe_bpp);
7127 needs_recompute = true;
7128 pipe_config->bw_constrained = true;
7129
7130 goto retry;
7131 }
7132
7133 if (needs_recompute)
7134 return RETRY;
7135
7136 return ret;
7137 }
7138
7139 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7140 struct intel_crtc_state *pipe_config)
7141 {
7142 if (pipe_config->pipe_bpp > 24)
7143 return false;
7144
7145 /* HSW can handle pixel rate up to cdclk? */
7146 if (IS_HASWELL(dev_priv))
7147 return true;
7148
7149 /*
7150 * We compare against max which means we must take
7151 * the increased cdclk requirement into account when
7152 * calculating the new cdclk.
7153 *
7154 * Should measure whether using a lower cdclk w/o IPS
7155 */
7156 return ilk_pipe_pixel_rate(pipe_config) <=
7157 dev_priv->max_cdclk_freq * 95 / 100;
7158 }
7159
7160 static void hsw_compute_ips_config(struct intel_crtc *crtc,
7161 struct intel_crtc_state *pipe_config)
7162 {
7163 struct drm_device *dev = crtc->base.dev;
7164 struct drm_i915_private *dev_priv = to_i915(dev);
7165
7166 pipe_config->ips_enabled = i915.enable_ips &&
7167 hsw_crtc_supports_ips(crtc) &&
7168 pipe_config_supports_ips(dev_priv, pipe_config);
7169 }
7170
7171 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7172 {
7173 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7174
7175 /* GDG double wide on either pipe, otherwise pipe A only */
7176 return INTEL_INFO(dev_priv)->gen < 4 &&
7177 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7178 }
7179
7180 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7181 struct intel_crtc_state *pipe_config)
7182 {
7183 struct drm_device *dev = crtc->base.dev;
7184 struct drm_i915_private *dev_priv = to_i915(dev);
7185 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7186 int clock_limit = dev_priv->max_dotclk_freq;
7187
7188 if (INTEL_INFO(dev)->gen < 4) {
7189 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7190
7191 /*
7192 * Enable double wide mode when the dot clock
7193 * is > 90% of the (display) core speed.
7194 */
7195 if (intel_crtc_supports_double_wide(crtc) &&
7196 adjusted_mode->crtc_clock > clock_limit) {
7197 clock_limit = dev_priv->max_dotclk_freq;
7198 pipe_config->double_wide = true;
7199 }
7200 }
7201
7202 if (adjusted_mode->crtc_clock > clock_limit) {
7203 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7204 adjusted_mode->crtc_clock, clock_limit,
7205 yesno(pipe_config->double_wide));
7206 return -EINVAL;
7207 }
7208
7209 /*
7210 * Pipe horizontal size must be even in:
7211 * - DVO ganged mode
7212 * - LVDS dual channel mode
7213 * - Double wide pipe
7214 */
7215 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7216 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7217 pipe_config->pipe_src_w &= ~1;
7218
7219 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7220 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7221 */
7222 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
7223 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7224 return -EINVAL;
7225
7226 if (HAS_IPS(dev))
7227 hsw_compute_ips_config(crtc, pipe_config);
7228
7229 if (pipe_config->has_pch_encoder)
7230 return ironlake_fdi_compute_config(crtc, pipe_config);
7231
7232 return 0;
7233 }
7234
7235 static int skylake_get_display_clock_speed(struct drm_device *dev)
7236 {
7237 struct drm_i915_private *dev_priv = to_i915(dev);
7238 uint32_t cdctl;
7239
7240 skl_dpll0_update(dev_priv);
7241
7242 if (dev_priv->cdclk_pll.vco == 0)
7243 return dev_priv->cdclk_pll.ref;
7244
7245 cdctl = I915_READ(CDCLK_CTL);
7246
7247 if (dev_priv->cdclk_pll.vco == 8640000) {
7248 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7249 case CDCLK_FREQ_450_432:
7250 return 432000;
7251 case CDCLK_FREQ_337_308:
7252 return 308571;
7253 case CDCLK_FREQ_540:
7254 return 540000;
7255 case CDCLK_FREQ_675_617:
7256 return 617143;
7257 default:
7258 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7259 }
7260 } else {
7261 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7262 case CDCLK_FREQ_450_432:
7263 return 450000;
7264 case CDCLK_FREQ_337_308:
7265 return 337500;
7266 case CDCLK_FREQ_540:
7267 return 540000;
7268 case CDCLK_FREQ_675_617:
7269 return 675000;
7270 default:
7271 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7272 }
7273 }
7274
7275 return dev_priv->cdclk_pll.ref;
7276 }
7277
7278 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7279 {
7280 u32 val;
7281
7282 dev_priv->cdclk_pll.ref = 19200;
7283 dev_priv->cdclk_pll.vco = 0;
7284
7285 val = I915_READ(BXT_DE_PLL_ENABLE);
7286 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
7287 return;
7288
7289 if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7290 return;
7291
7292 val = I915_READ(BXT_DE_PLL_CTL);
7293 dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7294 dev_priv->cdclk_pll.ref;
7295 }
7296
7297 static int broxton_get_display_clock_speed(struct drm_device *dev)
7298 {
7299 struct drm_i915_private *dev_priv = to_i915(dev);
7300 u32 divider;
7301 int div, vco;
7302
7303 bxt_de_pll_update(dev_priv);
7304
7305 vco = dev_priv->cdclk_pll.vco;
7306 if (vco == 0)
7307 return dev_priv->cdclk_pll.ref;
7308
7309 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
7310
7311 switch (divider) {
7312 case BXT_CDCLK_CD2X_DIV_SEL_1:
7313 div = 2;
7314 break;
7315 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
7316 div = 3;
7317 break;
7318 case BXT_CDCLK_CD2X_DIV_SEL_2:
7319 div = 4;
7320 break;
7321 case BXT_CDCLK_CD2X_DIV_SEL_4:
7322 div = 8;
7323 break;
7324 default:
7325 MISSING_CASE(divider);
7326 return dev_priv->cdclk_pll.ref;
7327 }
7328
7329 return DIV_ROUND_CLOSEST(vco, div);
7330 }
7331
7332 static int broadwell_get_display_clock_speed(struct drm_device *dev)
7333 {
7334 struct drm_i915_private *dev_priv = to_i915(dev);
7335 uint32_t lcpll = I915_READ(LCPLL_CTL);
7336 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7337
7338 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7339 return 800000;
7340 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7341 return 450000;
7342 else if (freq == LCPLL_CLK_FREQ_450)
7343 return 450000;
7344 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7345 return 540000;
7346 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7347 return 337500;
7348 else
7349 return 675000;
7350 }
7351
7352 static int haswell_get_display_clock_speed(struct drm_device *dev)
7353 {
7354 struct drm_i915_private *dev_priv = to_i915(dev);
7355 uint32_t lcpll = I915_READ(LCPLL_CTL);
7356 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7357
7358 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7359 return 800000;
7360 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7361 return 450000;
7362 else if (freq == LCPLL_CLK_FREQ_450)
7363 return 450000;
7364 else if (IS_HSW_ULT(dev))
7365 return 337500;
7366 else
7367 return 540000;
7368 }
7369
7370 static int valleyview_get_display_clock_speed(struct drm_device *dev)
7371 {
7372 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
7373 CCK_DISPLAY_CLOCK_CONTROL);
7374 }
7375
7376 static int ilk_get_display_clock_speed(struct drm_device *dev)
7377 {
7378 return 450000;
7379 }
7380
7381 static int i945_get_display_clock_speed(struct drm_device *dev)
7382 {
7383 return 400000;
7384 }
7385
7386 static int i915_get_display_clock_speed(struct drm_device *dev)
7387 {
7388 return 333333;
7389 }
7390
7391 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
7392 {
7393 return 200000;
7394 }
7395
7396 static int pnv_get_display_clock_speed(struct drm_device *dev)
7397 {
7398 struct pci_dev *pdev = dev->pdev;
7399 u16 gcfgc = 0;
7400
7401 pci_read_config_word(pdev, GCFGC, &gcfgc);
7402
7403 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7404 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
7405 return 266667;
7406 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
7407 return 333333;
7408 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
7409 return 444444;
7410 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7411 return 200000;
7412 default:
7413 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7414 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
7415 return 133333;
7416 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
7417 return 166667;
7418 }
7419 }
7420
7421 static int i915gm_get_display_clock_speed(struct drm_device *dev)
7422 {
7423 struct pci_dev *pdev = dev->pdev;
7424 u16 gcfgc = 0;
7425
7426 pci_read_config_word(pdev, GCFGC, &gcfgc);
7427
7428 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
7429 return 133333;
7430 else {
7431 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7432 case GC_DISPLAY_CLOCK_333_MHZ:
7433 return 333333;
7434 default:
7435 case GC_DISPLAY_CLOCK_190_200_MHZ:
7436 return 190000;
7437 }
7438 }
7439 }
7440
7441 static int i865_get_display_clock_speed(struct drm_device *dev)
7442 {
7443 return 266667;
7444 }
7445
7446 static int i85x_get_display_clock_speed(struct drm_device *dev)
7447 {
7448 struct pci_dev *pdev = dev->pdev;
7449 u16 hpllcc = 0;
7450
7451 /*
7452 * 852GM/852GMV only supports 133 MHz and the HPLLCC
7453 * encoding is different :(
7454 * FIXME is this the right way to detect 852GM/852GMV?
7455 */
7456 if (pdev->revision == 0x1)
7457 return 133333;
7458
7459 pci_bus_read_config_word(pdev->bus,
7460 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7461
7462 /* Assume that the hardware is in the high speed state. This
7463 * should be the default.
7464 */
7465 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7466 case GC_CLOCK_133_200:
7467 case GC_CLOCK_133_200_2:
7468 case GC_CLOCK_100_200:
7469 return 200000;
7470 case GC_CLOCK_166_250:
7471 return 250000;
7472 case GC_CLOCK_100_133:
7473 return 133333;
7474 case GC_CLOCK_133_266:
7475 case GC_CLOCK_133_266_2:
7476 case GC_CLOCK_166_266:
7477 return 266667;
7478 }
7479
7480 /* Shouldn't happen */
7481 return 0;
7482 }
7483
7484 static int i830_get_display_clock_speed(struct drm_device *dev)
7485 {
7486 return 133333;
7487 }
7488
7489 static unsigned int intel_hpll_vco(struct drm_device *dev)
7490 {
7491 struct drm_i915_private *dev_priv = to_i915(dev);
7492 static const unsigned int blb_vco[8] = {
7493 [0] = 3200000,
7494 [1] = 4000000,
7495 [2] = 5333333,
7496 [3] = 4800000,
7497 [4] = 6400000,
7498 };
7499 static const unsigned int pnv_vco[8] = {
7500 [0] = 3200000,
7501 [1] = 4000000,
7502 [2] = 5333333,
7503 [3] = 4800000,
7504 [4] = 2666667,
7505 };
7506 static const unsigned int cl_vco[8] = {
7507 [0] = 3200000,
7508 [1] = 4000000,
7509 [2] = 5333333,
7510 [3] = 6400000,
7511 [4] = 3333333,
7512 [5] = 3566667,
7513 [6] = 4266667,
7514 };
7515 static const unsigned int elk_vco[8] = {
7516 [0] = 3200000,
7517 [1] = 4000000,
7518 [2] = 5333333,
7519 [3] = 4800000,
7520 };
7521 static const unsigned int ctg_vco[8] = {
7522 [0] = 3200000,
7523 [1] = 4000000,
7524 [2] = 5333333,
7525 [3] = 6400000,
7526 [4] = 2666667,
7527 [5] = 4266667,
7528 };
7529 const unsigned int *vco_table;
7530 unsigned int vco;
7531 uint8_t tmp = 0;
7532
7533 /* FIXME other chipsets? */
7534 if (IS_GM45(dev))
7535 vco_table = ctg_vco;
7536 else if (IS_G4X(dev))
7537 vco_table = elk_vco;
7538 else if (IS_CRESTLINE(dev))
7539 vco_table = cl_vco;
7540 else if (IS_PINEVIEW(dev))
7541 vco_table = pnv_vco;
7542 else if (IS_G33(dev))
7543 vco_table = blb_vco;
7544 else
7545 return 0;
7546
7547 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7548
7549 vco = vco_table[tmp & 0x7];
7550 if (vco == 0)
7551 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7552 else
7553 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7554
7555 return vco;
7556 }
7557
7558 static int gm45_get_display_clock_speed(struct drm_device *dev)
7559 {
7560 struct pci_dev *pdev = dev->pdev;
7561 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7562 uint16_t tmp = 0;
7563
7564 pci_read_config_word(pdev, GCFGC, &tmp);
7565
7566 cdclk_sel = (tmp >> 12) & 0x1;
7567
7568 switch (vco) {
7569 case 2666667:
7570 case 4000000:
7571 case 5333333:
7572 return cdclk_sel ? 333333 : 222222;
7573 case 3200000:
7574 return cdclk_sel ? 320000 : 228571;
7575 default:
7576 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7577 return 222222;
7578 }
7579 }
7580
7581 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7582 {
7583 struct pci_dev *pdev = dev->pdev;
7584 static const uint8_t div_3200[] = { 16, 10, 8 };
7585 static const uint8_t div_4000[] = { 20, 12, 10 };
7586 static const uint8_t div_5333[] = { 24, 16, 14 };
7587 const uint8_t *div_table;
7588 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7589 uint16_t tmp = 0;
7590
7591 pci_read_config_word(pdev, GCFGC, &tmp);
7592
7593 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7594
7595 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7596 goto fail;
7597
7598 switch (vco) {
7599 case 3200000:
7600 div_table = div_3200;
7601 break;
7602 case 4000000:
7603 div_table = div_4000;
7604 break;
7605 case 5333333:
7606 div_table = div_5333;
7607 break;
7608 default:
7609 goto fail;
7610 }
7611
7612 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7613
7614 fail:
7615 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7616 return 200000;
7617 }
7618
7619 static int g33_get_display_clock_speed(struct drm_device *dev)
7620 {
7621 struct pci_dev *pdev = dev->pdev;
7622 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7623 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7624 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7625 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7626 const uint8_t *div_table;
7627 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7628 uint16_t tmp = 0;
7629
7630 pci_read_config_word(pdev, GCFGC, &tmp);
7631
7632 cdclk_sel = (tmp >> 4) & 0x7;
7633
7634 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7635 goto fail;
7636
7637 switch (vco) {
7638 case 3200000:
7639 div_table = div_3200;
7640 break;
7641 case 4000000:
7642 div_table = div_4000;
7643 break;
7644 case 4800000:
7645 div_table = div_4800;
7646 break;
7647 case 5333333:
7648 div_table = div_5333;
7649 break;
7650 default:
7651 goto fail;
7652 }
7653
7654 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7655
7656 fail:
7657 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7658 return 190476;
7659 }
7660
7661 static void
7662 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7663 {
7664 while (*num > DATA_LINK_M_N_MASK ||
7665 *den > DATA_LINK_M_N_MASK) {
7666 *num >>= 1;
7667 *den >>= 1;
7668 }
7669 }
7670
7671 static void compute_m_n(unsigned int m, unsigned int n,
7672 uint32_t *ret_m, uint32_t *ret_n)
7673 {
7674 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7675 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7676 intel_reduce_m_n_ratio(ret_m, ret_n);
7677 }
7678
7679 void
7680 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7681 int pixel_clock, int link_clock,
7682 struct intel_link_m_n *m_n)
7683 {
7684 m_n->tu = 64;
7685
7686 compute_m_n(bits_per_pixel * pixel_clock,
7687 link_clock * nlanes * 8,
7688 &m_n->gmch_m, &m_n->gmch_n);
7689
7690 compute_m_n(pixel_clock, link_clock,
7691 &m_n->link_m, &m_n->link_n);
7692 }
7693
7694 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7695 {
7696 if (i915.panel_use_ssc >= 0)
7697 return i915.panel_use_ssc != 0;
7698 return dev_priv->vbt.lvds_use_ssc
7699 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7700 }
7701
7702 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7703 {
7704 return (1 << dpll->n) << 16 | dpll->m2;
7705 }
7706
7707 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7708 {
7709 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7710 }
7711
7712 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7713 struct intel_crtc_state *crtc_state,
7714 struct dpll *reduced_clock)
7715 {
7716 struct drm_device *dev = crtc->base.dev;
7717 u32 fp, fp2 = 0;
7718
7719 if (IS_PINEVIEW(dev)) {
7720 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7721 if (reduced_clock)
7722 fp2 = pnv_dpll_compute_fp(reduced_clock);
7723 } else {
7724 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7725 if (reduced_clock)
7726 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7727 }
7728
7729 crtc_state->dpll_hw_state.fp0 = fp;
7730
7731 crtc->lowfreq_avail = false;
7732 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7733 reduced_clock) {
7734 crtc_state->dpll_hw_state.fp1 = fp2;
7735 crtc->lowfreq_avail = true;
7736 } else {
7737 crtc_state->dpll_hw_state.fp1 = fp;
7738 }
7739 }
7740
7741 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7742 pipe)
7743 {
7744 u32 reg_val;
7745
7746 /*
7747 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7748 * and set it to a reasonable value instead.
7749 */
7750 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7751 reg_val &= 0xffffff00;
7752 reg_val |= 0x00000030;
7753 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7754
7755 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7756 reg_val &= 0x8cffffff;
7757 reg_val = 0x8c000000;
7758 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7759
7760 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7761 reg_val &= 0xffffff00;
7762 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7763
7764 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7765 reg_val &= 0x00ffffff;
7766 reg_val |= 0xb0000000;
7767 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7768 }
7769
7770 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7771 struct intel_link_m_n *m_n)
7772 {
7773 struct drm_device *dev = crtc->base.dev;
7774 struct drm_i915_private *dev_priv = to_i915(dev);
7775 int pipe = crtc->pipe;
7776
7777 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7778 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7779 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7780 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7781 }
7782
7783 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7784 struct intel_link_m_n *m_n,
7785 struct intel_link_m_n *m2_n2)
7786 {
7787 struct drm_device *dev = crtc->base.dev;
7788 struct drm_i915_private *dev_priv = to_i915(dev);
7789 int pipe = crtc->pipe;
7790 enum transcoder transcoder = crtc->config->cpu_transcoder;
7791
7792 if (INTEL_INFO(dev)->gen >= 5) {
7793 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7794 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7795 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7796 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7797 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7798 * for gen < 8) and if DRRS is supported (to make sure the
7799 * registers are not unnecessarily accessed).
7800 */
7801 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7802 crtc->config->has_drrs) {
7803 I915_WRITE(PIPE_DATA_M2(transcoder),
7804 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7805 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7806 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7807 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7808 }
7809 } else {
7810 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7811 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7812 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7813 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7814 }
7815 }
7816
7817 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7818 {
7819 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7820
7821 if (m_n == M1_N1) {
7822 dp_m_n = &crtc->config->dp_m_n;
7823 dp_m2_n2 = &crtc->config->dp_m2_n2;
7824 } else if (m_n == M2_N2) {
7825
7826 /*
7827 * M2_N2 registers are not supported. Hence m2_n2 divider value
7828 * needs to be programmed into M1_N1.
7829 */
7830 dp_m_n = &crtc->config->dp_m2_n2;
7831 } else {
7832 DRM_ERROR("Unsupported divider value\n");
7833 return;
7834 }
7835
7836 if (crtc->config->has_pch_encoder)
7837 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7838 else
7839 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7840 }
7841
7842 static void vlv_compute_dpll(struct intel_crtc *crtc,
7843 struct intel_crtc_state *pipe_config)
7844 {
7845 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7846 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7847 if (crtc->pipe != PIPE_A)
7848 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7849
7850 /* DPLL not used with DSI, but still need the rest set up */
7851 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7852 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7853 DPLL_EXT_BUFFER_ENABLE_VLV;
7854
7855 pipe_config->dpll_hw_state.dpll_md =
7856 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7857 }
7858
7859 static void chv_compute_dpll(struct intel_crtc *crtc,
7860 struct intel_crtc_state *pipe_config)
7861 {
7862 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7863 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7864 if (crtc->pipe != PIPE_A)
7865 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7866
7867 /* DPLL not used with DSI, but still need the rest set up */
7868 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7869 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7870
7871 pipe_config->dpll_hw_state.dpll_md =
7872 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7873 }
7874
7875 static void vlv_prepare_pll(struct intel_crtc *crtc,
7876 const struct intel_crtc_state *pipe_config)
7877 {
7878 struct drm_device *dev = crtc->base.dev;
7879 struct drm_i915_private *dev_priv = to_i915(dev);
7880 enum pipe pipe = crtc->pipe;
7881 u32 mdiv;
7882 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7883 u32 coreclk, reg_val;
7884
7885 /* Enable Refclk */
7886 I915_WRITE(DPLL(pipe),
7887 pipe_config->dpll_hw_state.dpll &
7888 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7889
7890 /* No need to actually set up the DPLL with DSI */
7891 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7892 return;
7893
7894 mutex_lock(&dev_priv->sb_lock);
7895
7896 bestn = pipe_config->dpll.n;
7897 bestm1 = pipe_config->dpll.m1;
7898 bestm2 = pipe_config->dpll.m2;
7899 bestp1 = pipe_config->dpll.p1;
7900 bestp2 = pipe_config->dpll.p2;
7901
7902 /* See eDP HDMI DPIO driver vbios notes doc */
7903
7904 /* PLL B needs special handling */
7905 if (pipe == PIPE_B)
7906 vlv_pllb_recal_opamp(dev_priv, pipe);
7907
7908 /* Set up Tx target for periodic Rcomp update */
7909 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7910
7911 /* Disable target IRef on PLL */
7912 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7913 reg_val &= 0x00ffffff;
7914 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7915
7916 /* Disable fast lock */
7917 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7918
7919 /* Set idtafcrecal before PLL is enabled */
7920 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7921 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7922 mdiv |= ((bestn << DPIO_N_SHIFT));
7923 mdiv |= (1 << DPIO_K_SHIFT);
7924
7925 /*
7926 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7927 * but we don't support that).
7928 * Note: don't use the DAC post divider as it seems unstable.
7929 */
7930 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7931 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7932
7933 mdiv |= DPIO_ENABLE_CALIBRATION;
7934 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7935
7936 /* Set HBR and RBR LPF coefficients */
7937 if (pipe_config->port_clock == 162000 ||
7938 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7939 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7940 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7941 0x009f0003);
7942 else
7943 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7944 0x00d0000f);
7945
7946 if (intel_crtc_has_dp_encoder(pipe_config)) {
7947 /* Use SSC source */
7948 if (pipe == PIPE_A)
7949 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7950 0x0df40000);
7951 else
7952 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7953 0x0df70000);
7954 } else { /* HDMI or VGA */
7955 /* Use bend source */
7956 if (pipe == PIPE_A)
7957 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7958 0x0df70000);
7959 else
7960 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7961 0x0df40000);
7962 }
7963
7964 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7965 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7966 if (intel_crtc_has_dp_encoder(crtc->config))
7967 coreclk |= 0x01000000;
7968 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7969
7970 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7971 mutex_unlock(&dev_priv->sb_lock);
7972 }
7973
7974 static void chv_prepare_pll(struct intel_crtc *crtc,
7975 const struct intel_crtc_state *pipe_config)
7976 {
7977 struct drm_device *dev = crtc->base.dev;
7978 struct drm_i915_private *dev_priv = to_i915(dev);
7979 enum pipe pipe = crtc->pipe;
7980 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7981 u32 loopfilter, tribuf_calcntr;
7982 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7983 u32 dpio_val;
7984 int vco;
7985
7986 /* Enable Refclk and SSC */
7987 I915_WRITE(DPLL(pipe),
7988 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7989
7990 /* No need to actually set up the DPLL with DSI */
7991 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7992 return;
7993
7994 bestn = pipe_config->dpll.n;
7995 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7996 bestm1 = pipe_config->dpll.m1;
7997 bestm2 = pipe_config->dpll.m2 >> 22;
7998 bestp1 = pipe_config->dpll.p1;
7999 bestp2 = pipe_config->dpll.p2;
8000 vco = pipe_config->dpll.vco;
8001 dpio_val = 0;
8002 loopfilter = 0;
8003
8004 mutex_lock(&dev_priv->sb_lock);
8005
8006 /* p1 and p2 divider */
8007 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8008 5 << DPIO_CHV_S1_DIV_SHIFT |
8009 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8010 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8011 1 << DPIO_CHV_K_DIV_SHIFT);
8012
8013 /* Feedback post-divider - m2 */
8014 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8015
8016 /* Feedback refclk divider - n and m1 */
8017 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8018 DPIO_CHV_M1_DIV_BY_2 |
8019 1 << DPIO_CHV_N_DIV_SHIFT);
8020
8021 /* M2 fraction division */
8022 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8023
8024 /* M2 fraction division enable */
8025 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8026 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8027 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8028 if (bestm2_frac)
8029 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8030 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8031
8032 /* Program digital lock detect threshold */
8033 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8034 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8035 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8036 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8037 if (!bestm2_frac)
8038 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8039 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8040
8041 /* Loop filter */
8042 if (vco == 5400000) {
8043 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8044 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8045 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8046 tribuf_calcntr = 0x9;
8047 } else if (vco <= 6200000) {
8048 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8049 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8050 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8051 tribuf_calcntr = 0x9;
8052 } else if (vco <= 6480000) {
8053 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8054 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8055 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8056 tribuf_calcntr = 0x8;
8057 } else {
8058 /* Not supported. Apply the same limits as in the max case */
8059 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8060 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8061 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8062 tribuf_calcntr = 0;
8063 }
8064 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8065
8066 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8067 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8068 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8069 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8070
8071 /* AFC Recal */
8072 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8073 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8074 DPIO_AFC_RECAL);
8075
8076 mutex_unlock(&dev_priv->sb_lock);
8077 }
8078
8079 /**
8080 * vlv_force_pll_on - forcibly enable just the PLL
8081 * @dev_priv: i915 private structure
8082 * @pipe: pipe PLL to enable
8083 * @dpll: PLL configuration
8084 *
8085 * Enable the PLL for @pipe using the supplied @dpll config. To be used
8086 * in cases where we need the PLL enabled even when @pipe is not going to
8087 * be enabled.
8088 */
8089 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
8090 const struct dpll *dpll)
8091 {
8092 struct intel_crtc *crtc =
8093 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
8094 struct intel_crtc_state *pipe_config;
8095
8096 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8097 if (!pipe_config)
8098 return -ENOMEM;
8099
8100 pipe_config->base.crtc = &crtc->base;
8101 pipe_config->pixel_multiplier = 1;
8102 pipe_config->dpll = *dpll;
8103
8104 if (IS_CHERRYVIEW(dev)) {
8105 chv_compute_dpll(crtc, pipe_config);
8106 chv_prepare_pll(crtc, pipe_config);
8107 chv_enable_pll(crtc, pipe_config);
8108 } else {
8109 vlv_compute_dpll(crtc, pipe_config);
8110 vlv_prepare_pll(crtc, pipe_config);
8111 vlv_enable_pll(crtc, pipe_config);
8112 }
8113
8114 kfree(pipe_config);
8115
8116 return 0;
8117 }
8118
8119 /**
8120 * vlv_force_pll_off - forcibly disable just the PLL
8121 * @dev_priv: i915 private structure
8122 * @pipe: pipe PLL to disable
8123 *
8124 * Disable the PLL for @pipe. To be used in cases where we need
8125 * the PLL enabled even when @pipe is not going to be enabled.
8126 */
8127 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
8128 {
8129 if (IS_CHERRYVIEW(dev))
8130 chv_disable_pll(to_i915(dev), pipe);
8131 else
8132 vlv_disable_pll(to_i915(dev), pipe);
8133 }
8134
8135 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8136 struct intel_crtc_state *crtc_state,
8137 struct dpll *reduced_clock)
8138 {
8139 struct drm_device *dev = crtc->base.dev;
8140 struct drm_i915_private *dev_priv = to_i915(dev);
8141 u32 dpll;
8142 struct dpll *clock = &crtc_state->dpll;
8143
8144 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8145
8146 dpll = DPLL_VGA_MODE_DIS;
8147
8148 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8149 dpll |= DPLLB_MODE_LVDS;
8150 else
8151 dpll |= DPLLB_MODE_DAC_SERIAL;
8152
8153 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8154 dpll |= (crtc_state->pixel_multiplier - 1)
8155 << SDVO_MULTIPLIER_SHIFT_HIRES;
8156 }
8157
8158 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8159 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8160 dpll |= DPLL_SDVO_HIGH_SPEED;
8161
8162 if (intel_crtc_has_dp_encoder(crtc_state))
8163 dpll |= DPLL_SDVO_HIGH_SPEED;
8164
8165 /* compute bitmask from p1 value */
8166 if (IS_PINEVIEW(dev))
8167 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8168 else {
8169 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8170 if (IS_G4X(dev) && reduced_clock)
8171 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8172 }
8173 switch (clock->p2) {
8174 case 5:
8175 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8176 break;
8177 case 7:
8178 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8179 break;
8180 case 10:
8181 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8182 break;
8183 case 14:
8184 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8185 break;
8186 }
8187 if (INTEL_INFO(dev)->gen >= 4)
8188 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8189
8190 if (crtc_state->sdvo_tv_clock)
8191 dpll |= PLL_REF_INPUT_TVCLKINBC;
8192 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8193 intel_panel_use_ssc(dev_priv))
8194 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8195 else
8196 dpll |= PLL_REF_INPUT_DREFCLK;
8197
8198 dpll |= DPLL_VCO_ENABLE;
8199 crtc_state->dpll_hw_state.dpll = dpll;
8200
8201 if (INTEL_INFO(dev)->gen >= 4) {
8202 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8203 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8204 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8205 }
8206 }
8207
8208 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8209 struct intel_crtc_state *crtc_state,
8210 struct dpll *reduced_clock)
8211 {
8212 struct drm_device *dev = crtc->base.dev;
8213 struct drm_i915_private *dev_priv = to_i915(dev);
8214 u32 dpll;
8215 struct dpll *clock = &crtc_state->dpll;
8216
8217 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8218
8219 dpll = DPLL_VGA_MODE_DIS;
8220
8221 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8222 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8223 } else {
8224 if (clock->p1 == 2)
8225 dpll |= PLL_P1_DIVIDE_BY_TWO;
8226 else
8227 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8228 if (clock->p2 == 4)
8229 dpll |= PLL_P2_DIVIDE_BY_4;
8230 }
8231
8232 if (!IS_I830(dev) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8233 dpll |= DPLL_DVO_2X_MODE;
8234
8235 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8236 intel_panel_use_ssc(dev_priv))
8237 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8238 else
8239 dpll |= PLL_REF_INPUT_DREFCLK;
8240
8241 dpll |= DPLL_VCO_ENABLE;
8242 crtc_state->dpll_hw_state.dpll = dpll;
8243 }
8244
8245 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
8246 {
8247 struct drm_device *dev = intel_crtc->base.dev;
8248 struct drm_i915_private *dev_priv = to_i915(dev);
8249 enum pipe pipe = intel_crtc->pipe;
8250 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8251 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
8252 uint32_t crtc_vtotal, crtc_vblank_end;
8253 int vsyncshift = 0;
8254
8255 /* We need to be careful not to changed the adjusted mode, for otherwise
8256 * the hw state checker will get angry at the mismatch. */
8257 crtc_vtotal = adjusted_mode->crtc_vtotal;
8258 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8259
8260 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8261 /* the chip adds 2 halflines automatically */
8262 crtc_vtotal -= 1;
8263 crtc_vblank_end -= 1;
8264
8265 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8266 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8267 else
8268 vsyncshift = adjusted_mode->crtc_hsync_start -
8269 adjusted_mode->crtc_htotal / 2;
8270 if (vsyncshift < 0)
8271 vsyncshift += adjusted_mode->crtc_htotal;
8272 }
8273
8274 if (INTEL_INFO(dev)->gen > 3)
8275 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8276
8277 I915_WRITE(HTOTAL(cpu_transcoder),
8278 (adjusted_mode->crtc_hdisplay - 1) |
8279 ((adjusted_mode->crtc_htotal - 1) << 16));
8280 I915_WRITE(HBLANK(cpu_transcoder),
8281 (adjusted_mode->crtc_hblank_start - 1) |
8282 ((adjusted_mode->crtc_hblank_end - 1) << 16));
8283 I915_WRITE(HSYNC(cpu_transcoder),
8284 (adjusted_mode->crtc_hsync_start - 1) |
8285 ((adjusted_mode->crtc_hsync_end - 1) << 16));
8286
8287 I915_WRITE(VTOTAL(cpu_transcoder),
8288 (adjusted_mode->crtc_vdisplay - 1) |
8289 ((crtc_vtotal - 1) << 16));
8290 I915_WRITE(VBLANK(cpu_transcoder),
8291 (adjusted_mode->crtc_vblank_start - 1) |
8292 ((crtc_vblank_end - 1) << 16));
8293 I915_WRITE(VSYNC(cpu_transcoder),
8294 (adjusted_mode->crtc_vsync_start - 1) |
8295 ((adjusted_mode->crtc_vsync_end - 1) << 16));
8296
8297 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8298 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8299 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8300 * bits. */
8301 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
8302 (pipe == PIPE_B || pipe == PIPE_C))
8303 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8304
8305 }
8306
8307 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8308 {
8309 struct drm_device *dev = intel_crtc->base.dev;
8310 struct drm_i915_private *dev_priv = to_i915(dev);
8311 enum pipe pipe = intel_crtc->pipe;
8312
8313 /* pipesrc controls the size that is scaled from, which should
8314 * always be the user's requested size.
8315 */
8316 I915_WRITE(PIPESRC(pipe),
8317 ((intel_crtc->config->pipe_src_w - 1) << 16) |
8318 (intel_crtc->config->pipe_src_h - 1));
8319 }
8320
8321 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8322 struct intel_crtc_state *pipe_config)
8323 {
8324 struct drm_device *dev = crtc->base.dev;
8325 struct drm_i915_private *dev_priv = to_i915(dev);
8326 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8327 uint32_t tmp;
8328
8329 tmp = I915_READ(HTOTAL(cpu_transcoder));
8330 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8331 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8332 tmp = I915_READ(HBLANK(cpu_transcoder));
8333 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8334 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
8335 tmp = I915_READ(HSYNC(cpu_transcoder));
8336 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8337 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8338
8339 tmp = I915_READ(VTOTAL(cpu_transcoder));
8340 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8341 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8342 tmp = I915_READ(VBLANK(cpu_transcoder));
8343 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8344 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
8345 tmp = I915_READ(VSYNC(cpu_transcoder));
8346 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8347 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8348
8349 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8350 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8351 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8352 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8353 }
8354 }
8355
8356 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8357 struct intel_crtc_state *pipe_config)
8358 {
8359 struct drm_device *dev = crtc->base.dev;
8360 struct drm_i915_private *dev_priv = to_i915(dev);
8361 u32 tmp;
8362
8363 tmp = I915_READ(PIPESRC(crtc->pipe));
8364 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8365 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8366
8367 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8368 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8369 }
8370
8371 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8372 struct intel_crtc_state *pipe_config)
8373 {
8374 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8375 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8376 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8377 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8378
8379 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8380 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8381 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8382 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8383
8384 mode->flags = pipe_config->base.adjusted_mode.flags;
8385 mode->type = DRM_MODE_TYPE_DRIVER;
8386
8387 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8388 mode->flags |= pipe_config->base.adjusted_mode.flags;
8389
8390 mode->hsync = drm_mode_hsync(mode);
8391 mode->vrefresh = drm_mode_vrefresh(mode);
8392 drm_mode_set_name(mode);
8393 }
8394
8395 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8396 {
8397 struct drm_device *dev = intel_crtc->base.dev;
8398 struct drm_i915_private *dev_priv = to_i915(dev);
8399 uint32_t pipeconf;
8400
8401 pipeconf = 0;
8402
8403 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8404 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8405 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
8406
8407 if (intel_crtc->config->double_wide)
8408 pipeconf |= PIPECONF_DOUBLE_WIDE;
8409
8410 /* only g4x and later have fancy bpc/dither controls */
8411 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8412 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8413 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
8414 pipeconf |= PIPECONF_DITHER_EN |
8415 PIPECONF_DITHER_TYPE_SP;
8416
8417 switch (intel_crtc->config->pipe_bpp) {
8418 case 18:
8419 pipeconf |= PIPECONF_6BPC;
8420 break;
8421 case 24:
8422 pipeconf |= PIPECONF_8BPC;
8423 break;
8424 case 30:
8425 pipeconf |= PIPECONF_10BPC;
8426 break;
8427 default:
8428 /* Case prevented by intel_choose_pipe_bpp_dither. */
8429 BUG();
8430 }
8431 }
8432
8433 if (HAS_PIPE_CXSR(dev)) {
8434 if (intel_crtc->lowfreq_avail) {
8435 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8436 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8437 } else {
8438 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
8439 }
8440 }
8441
8442 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8443 if (INTEL_INFO(dev)->gen < 4 ||
8444 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8445 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8446 else
8447 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8448 } else
8449 pipeconf |= PIPECONF_PROGRESSIVE;
8450
8451 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8452 intel_crtc->config->limited_color_range)
8453 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8454
8455 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8456 POSTING_READ(PIPECONF(intel_crtc->pipe));
8457 }
8458
8459 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8460 struct intel_crtc_state *crtc_state)
8461 {
8462 struct drm_device *dev = crtc->base.dev;
8463 struct drm_i915_private *dev_priv = to_i915(dev);
8464 const struct intel_limit *limit;
8465 int refclk = 48000;
8466
8467 memset(&crtc_state->dpll_hw_state, 0,
8468 sizeof(crtc_state->dpll_hw_state));
8469
8470 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8471 if (intel_panel_use_ssc(dev_priv)) {
8472 refclk = dev_priv->vbt.lvds_ssc_freq;
8473 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8474 }
8475
8476 limit = &intel_limits_i8xx_lvds;
8477 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8478 limit = &intel_limits_i8xx_dvo;
8479 } else {
8480 limit = &intel_limits_i8xx_dac;
8481 }
8482
8483 if (!crtc_state->clock_set &&
8484 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8485 refclk, NULL, &crtc_state->dpll)) {
8486 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8487 return -EINVAL;
8488 }
8489
8490 i8xx_compute_dpll(crtc, crtc_state, NULL);
8491
8492 return 0;
8493 }
8494
8495 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8496 struct intel_crtc_state *crtc_state)
8497 {
8498 struct drm_device *dev = crtc->base.dev;
8499 struct drm_i915_private *dev_priv = to_i915(dev);
8500 const struct intel_limit *limit;
8501 int refclk = 96000;
8502
8503 memset(&crtc_state->dpll_hw_state, 0,
8504 sizeof(crtc_state->dpll_hw_state));
8505
8506 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8507 if (intel_panel_use_ssc(dev_priv)) {
8508 refclk = dev_priv->vbt.lvds_ssc_freq;
8509 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8510 }
8511
8512 if (intel_is_dual_link_lvds(dev))
8513 limit = &intel_limits_g4x_dual_channel_lvds;
8514 else
8515 limit = &intel_limits_g4x_single_channel_lvds;
8516 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8517 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8518 limit = &intel_limits_g4x_hdmi;
8519 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8520 limit = &intel_limits_g4x_sdvo;
8521 } else {
8522 /* The option is for other outputs */
8523 limit = &intel_limits_i9xx_sdvo;
8524 }
8525
8526 if (!crtc_state->clock_set &&
8527 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8528 refclk, NULL, &crtc_state->dpll)) {
8529 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8530 return -EINVAL;
8531 }
8532
8533 i9xx_compute_dpll(crtc, crtc_state, NULL);
8534
8535 return 0;
8536 }
8537
8538 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8539 struct intel_crtc_state *crtc_state)
8540 {
8541 struct drm_device *dev = crtc->base.dev;
8542 struct drm_i915_private *dev_priv = to_i915(dev);
8543 const struct intel_limit *limit;
8544 int refclk = 96000;
8545
8546 memset(&crtc_state->dpll_hw_state, 0,
8547 sizeof(crtc_state->dpll_hw_state));
8548
8549 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8550 if (intel_panel_use_ssc(dev_priv)) {
8551 refclk = dev_priv->vbt.lvds_ssc_freq;
8552 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8553 }
8554
8555 limit = &intel_limits_pineview_lvds;
8556 } else {
8557 limit = &intel_limits_pineview_sdvo;
8558 }
8559
8560 if (!crtc_state->clock_set &&
8561 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8562 refclk, NULL, &crtc_state->dpll)) {
8563 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8564 return -EINVAL;
8565 }
8566
8567 i9xx_compute_dpll(crtc, crtc_state, NULL);
8568
8569 return 0;
8570 }
8571
8572 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8573 struct intel_crtc_state *crtc_state)
8574 {
8575 struct drm_device *dev = crtc->base.dev;
8576 struct drm_i915_private *dev_priv = to_i915(dev);
8577 const struct intel_limit *limit;
8578 int refclk = 96000;
8579
8580 memset(&crtc_state->dpll_hw_state, 0,
8581 sizeof(crtc_state->dpll_hw_state));
8582
8583 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8584 if (intel_panel_use_ssc(dev_priv)) {
8585 refclk = dev_priv->vbt.lvds_ssc_freq;
8586 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8587 }
8588
8589 limit = &intel_limits_i9xx_lvds;
8590 } else {
8591 limit = &intel_limits_i9xx_sdvo;
8592 }
8593
8594 if (!crtc_state->clock_set &&
8595 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8596 refclk, NULL, &crtc_state->dpll)) {
8597 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8598 return -EINVAL;
8599 }
8600
8601 i9xx_compute_dpll(crtc, crtc_state, NULL);
8602
8603 return 0;
8604 }
8605
8606 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8607 struct intel_crtc_state *crtc_state)
8608 {
8609 int refclk = 100000;
8610 const struct intel_limit *limit = &intel_limits_chv;
8611
8612 memset(&crtc_state->dpll_hw_state, 0,
8613 sizeof(crtc_state->dpll_hw_state));
8614
8615 if (!crtc_state->clock_set &&
8616 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8617 refclk, NULL, &crtc_state->dpll)) {
8618 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8619 return -EINVAL;
8620 }
8621
8622 chv_compute_dpll(crtc, crtc_state);
8623
8624 return 0;
8625 }
8626
8627 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8628 struct intel_crtc_state *crtc_state)
8629 {
8630 int refclk = 100000;
8631 const struct intel_limit *limit = &intel_limits_vlv;
8632
8633 memset(&crtc_state->dpll_hw_state, 0,
8634 sizeof(crtc_state->dpll_hw_state));
8635
8636 if (!crtc_state->clock_set &&
8637 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8638 refclk, NULL, &crtc_state->dpll)) {
8639 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8640 return -EINVAL;
8641 }
8642
8643 vlv_compute_dpll(crtc, crtc_state);
8644
8645 return 0;
8646 }
8647
8648 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8649 struct intel_crtc_state *pipe_config)
8650 {
8651 struct drm_device *dev = crtc->base.dev;
8652 struct drm_i915_private *dev_priv = to_i915(dev);
8653 uint32_t tmp;
8654
8655 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8656 return;
8657
8658 tmp = I915_READ(PFIT_CONTROL);
8659 if (!(tmp & PFIT_ENABLE))
8660 return;
8661
8662 /* Check whether the pfit is attached to our pipe. */
8663 if (INTEL_INFO(dev)->gen < 4) {
8664 if (crtc->pipe != PIPE_B)
8665 return;
8666 } else {
8667 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8668 return;
8669 }
8670
8671 pipe_config->gmch_pfit.control = tmp;
8672 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8673 }
8674
8675 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8676 struct intel_crtc_state *pipe_config)
8677 {
8678 struct drm_device *dev = crtc->base.dev;
8679 struct drm_i915_private *dev_priv = to_i915(dev);
8680 int pipe = pipe_config->cpu_transcoder;
8681 struct dpll clock;
8682 u32 mdiv;
8683 int refclk = 100000;
8684
8685 /* In case of DSI, DPLL will not be used */
8686 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8687 return;
8688
8689 mutex_lock(&dev_priv->sb_lock);
8690 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8691 mutex_unlock(&dev_priv->sb_lock);
8692
8693 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8694 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8695 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8696 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8697 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8698
8699 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8700 }
8701
8702 static void
8703 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8704 struct intel_initial_plane_config *plane_config)
8705 {
8706 struct drm_device *dev = crtc->base.dev;
8707 struct drm_i915_private *dev_priv = to_i915(dev);
8708 u32 val, base, offset;
8709 int pipe = crtc->pipe, plane = crtc->plane;
8710 int fourcc, pixel_format;
8711 unsigned int aligned_height;
8712 struct drm_framebuffer *fb;
8713 struct intel_framebuffer *intel_fb;
8714
8715 val = I915_READ(DSPCNTR(plane));
8716 if (!(val & DISPLAY_PLANE_ENABLE))
8717 return;
8718
8719 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8720 if (!intel_fb) {
8721 DRM_DEBUG_KMS("failed to alloc fb\n");
8722 return;
8723 }
8724
8725 fb = &intel_fb->base;
8726
8727 if (INTEL_INFO(dev)->gen >= 4) {
8728 if (val & DISPPLANE_TILED) {
8729 plane_config->tiling = I915_TILING_X;
8730 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8731 }
8732 }
8733
8734 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8735 fourcc = i9xx_format_to_fourcc(pixel_format);
8736 fb->pixel_format = fourcc;
8737 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8738
8739 if (INTEL_INFO(dev)->gen >= 4) {
8740 if (plane_config->tiling)
8741 offset = I915_READ(DSPTILEOFF(plane));
8742 else
8743 offset = I915_READ(DSPLINOFF(plane));
8744 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8745 } else {
8746 base = I915_READ(DSPADDR(plane));
8747 }
8748 plane_config->base = base;
8749
8750 val = I915_READ(PIPESRC(pipe));
8751 fb->width = ((val >> 16) & 0xfff) + 1;
8752 fb->height = ((val >> 0) & 0xfff) + 1;
8753
8754 val = I915_READ(DSPSTRIDE(pipe));
8755 fb->pitches[0] = val & 0xffffffc0;
8756
8757 aligned_height = intel_fb_align_height(dev, fb->height,
8758 fb->pixel_format,
8759 fb->modifier[0]);
8760
8761 plane_config->size = fb->pitches[0] * aligned_height;
8762
8763 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8764 pipe_name(pipe), plane, fb->width, fb->height,
8765 fb->bits_per_pixel, base, fb->pitches[0],
8766 plane_config->size);
8767
8768 plane_config->fb = intel_fb;
8769 }
8770
8771 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8772 struct intel_crtc_state *pipe_config)
8773 {
8774 struct drm_device *dev = crtc->base.dev;
8775 struct drm_i915_private *dev_priv = to_i915(dev);
8776 int pipe = pipe_config->cpu_transcoder;
8777 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8778 struct dpll clock;
8779 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8780 int refclk = 100000;
8781
8782 /* In case of DSI, DPLL will not be used */
8783 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8784 return;
8785
8786 mutex_lock(&dev_priv->sb_lock);
8787 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8788 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8789 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8790 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8791 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8792 mutex_unlock(&dev_priv->sb_lock);
8793
8794 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8795 clock.m2 = (pll_dw0 & 0xff) << 22;
8796 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8797 clock.m2 |= pll_dw2 & 0x3fffff;
8798 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8799 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8800 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8801
8802 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8803 }
8804
8805 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8806 struct intel_crtc_state *pipe_config)
8807 {
8808 struct drm_device *dev = crtc->base.dev;
8809 struct drm_i915_private *dev_priv = to_i915(dev);
8810 enum intel_display_power_domain power_domain;
8811 uint32_t tmp;
8812 bool ret;
8813
8814 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8815 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8816 return false;
8817
8818 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8819 pipe_config->shared_dpll = NULL;
8820
8821 ret = false;
8822
8823 tmp = I915_READ(PIPECONF(crtc->pipe));
8824 if (!(tmp & PIPECONF_ENABLE))
8825 goto out;
8826
8827 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8828 switch (tmp & PIPECONF_BPC_MASK) {
8829 case PIPECONF_6BPC:
8830 pipe_config->pipe_bpp = 18;
8831 break;
8832 case PIPECONF_8BPC:
8833 pipe_config->pipe_bpp = 24;
8834 break;
8835 case PIPECONF_10BPC:
8836 pipe_config->pipe_bpp = 30;
8837 break;
8838 default:
8839 break;
8840 }
8841 }
8842
8843 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8844 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8845 pipe_config->limited_color_range = true;
8846
8847 if (INTEL_INFO(dev)->gen < 4)
8848 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8849
8850 intel_get_pipe_timings(crtc, pipe_config);
8851 intel_get_pipe_src_size(crtc, pipe_config);
8852
8853 i9xx_get_pfit_config(crtc, pipe_config);
8854
8855 if (INTEL_INFO(dev)->gen >= 4) {
8856 /* No way to read it out on pipes B and C */
8857 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8858 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8859 else
8860 tmp = I915_READ(DPLL_MD(crtc->pipe));
8861 pipe_config->pixel_multiplier =
8862 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8863 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8864 pipe_config->dpll_hw_state.dpll_md = tmp;
8865 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8866 tmp = I915_READ(DPLL(crtc->pipe));
8867 pipe_config->pixel_multiplier =
8868 ((tmp & SDVO_MULTIPLIER_MASK)
8869 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8870 } else {
8871 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8872 * port and will be fixed up in the encoder->get_config
8873 * function. */
8874 pipe_config->pixel_multiplier = 1;
8875 }
8876 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8877 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8878 /*
8879 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8880 * on 830. Filter it out here so that we don't
8881 * report errors due to that.
8882 */
8883 if (IS_I830(dev))
8884 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8885
8886 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8887 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8888 } else {
8889 /* Mask out read-only status bits. */
8890 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8891 DPLL_PORTC_READY_MASK |
8892 DPLL_PORTB_READY_MASK);
8893 }
8894
8895 if (IS_CHERRYVIEW(dev))
8896 chv_crtc_clock_get(crtc, pipe_config);
8897 else if (IS_VALLEYVIEW(dev))
8898 vlv_crtc_clock_get(crtc, pipe_config);
8899 else
8900 i9xx_crtc_clock_get(crtc, pipe_config);
8901
8902 /*
8903 * Normally the dotclock is filled in by the encoder .get_config()
8904 * but in case the pipe is enabled w/o any ports we need a sane
8905 * default.
8906 */
8907 pipe_config->base.adjusted_mode.crtc_clock =
8908 pipe_config->port_clock / pipe_config->pixel_multiplier;
8909
8910 ret = true;
8911
8912 out:
8913 intel_display_power_put(dev_priv, power_domain);
8914
8915 return ret;
8916 }
8917
8918 static void ironlake_init_pch_refclk(struct drm_device *dev)
8919 {
8920 struct drm_i915_private *dev_priv = to_i915(dev);
8921 struct intel_encoder *encoder;
8922 int i;
8923 u32 val, final;
8924 bool has_lvds = false;
8925 bool has_cpu_edp = false;
8926 bool has_panel = false;
8927 bool has_ck505 = false;
8928 bool can_ssc = false;
8929 bool using_ssc_source = false;
8930
8931 /* We need to take the global config into account */
8932 for_each_intel_encoder(dev, encoder) {
8933 switch (encoder->type) {
8934 case INTEL_OUTPUT_LVDS:
8935 has_panel = true;
8936 has_lvds = true;
8937 break;
8938 case INTEL_OUTPUT_EDP:
8939 has_panel = true;
8940 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8941 has_cpu_edp = true;
8942 break;
8943 default:
8944 break;
8945 }
8946 }
8947
8948 if (HAS_PCH_IBX(dev)) {
8949 has_ck505 = dev_priv->vbt.display_clock_mode;
8950 can_ssc = has_ck505;
8951 } else {
8952 has_ck505 = false;
8953 can_ssc = true;
8954 }
8955
8956 /* Check if any DPLLs are using the SSC source */
8957 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8958 u32 temp = I915_READ(PCH_DPLL(i));
8959
8960 if (!(temp & DPLL_VCO_ENABLE))
8961 continue;
8962
8963 if ((temp & PLL_REF_INPUT_MASK) ==
8964 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8965 using_ssc_source = true;
8966 break;
8967 }
8968 }
8969
8970 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8971 has_panel, has_lvds, has_ck505, using_ssc_source);
8972
8973 /* Ironlake: try to setup display ref clock before DPLL
8974 * enabling. This is only under driver's control after
8975 * PCH B stepping, previous chipset stepping should be
8976 * ignoring this setting.
8977 */
8978 val = I915_READ(PCH_DREF_CONTROL);
8979
8980 /* As we must carefully and slowly disable/enable each source in turn,
8981 * compute the final state we want first and check if we need to
8982 * make any changes at all.
8983 */
8984 final = val;
8985 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8986 if (has_ck505)
8987 final |= DREF_NONSPREAD_CK505_ENABLE;
8988 else
8989 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8990
8991 final &= ~DREF_SSC_SOURCE_MASK;
8992 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8993 final &= ~DREF_SSC1_ENABLE;
8994
8995 if (has_panel) {
8996 final |= DREF_SSC_SOURCE_ENABLE;
8997
8998 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8999 final |= DREF_SSC1_ENABLE;
9000
9001 if (has_cpu_edp) {
9002 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9003 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9004 else
9005 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9006 } else
9007 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9008 } else if (using_ssc_source) {
9009 final |= DREF_SSC_SOURCE_ENABLE;
9010 final |= DREF_SSC1_ENABLE;
9011 }
9012
9013 if (final == val)
9014 return;
9015
9016 /* Always enable nonspread source */
9017 val &= ~DREF_NONSPREAD_SOURCE_MASK;
9018
9019 if (has_ck505)
9020 val |= DREF_NONSPREAD_CK505_ENABLE;
9021 else
9022 val |= DREF_NONSPREAD_SOURCE_ENABLE;
9023
9024 if (has_panel) {
9025 val &= ~DREF_SSC_SOURCE_MASK;
9026 val |= DREF_SSC_SOURCE_ENABLE;
9027
9028 /* SSC must be turned on before enabling the CPU output */
9029 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9030 DRM_DEBUG_KMS("Using SSC on panel\n");
9031 val |= DREF_SSC1_ENABLE;
9032 } else
9033 val &= ~DREF_SSC1_ENABLE;
9034
9035 /* Get SSC going before enabling the outputs */
9036 I915_WRITE(PCH_DREF_CONTROL, val);
9037 POSTING_READ(PCH_DREF_CONTROL);
9038 udelay(200);
9039
9040 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9041
9042 /* Enable CPU source on CPU attached eDP */
9043 if (has_cpu_edp) {
9044 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9045 DRM_DEBUG_KMS("Using SSC on eDP\n");
9046 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9047 } else
9048 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9049 } else
9050 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9051
9052 I915_WRITE(PCH_DREF_CONTROL, val);
9053 POSTING_READ(PCH_DREF_CONTROL);
9054 udelay(200);
9055 } else {
9056 DRM_DEBUG_KMS("Disabling CPU source output\n");
9057
9058 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9059
9060 /* Turn off CPU output */
9061 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9062
9063 I915_WRITE(PCH_DREF_CONTROL, val);
9064 POSTING_READ(PCH_DREF_CONTROL);
9065 udelay(200);
9066
9067 if (!using_ssc_source) {
9068 DRM_DEBUG_KMS("Disabling SSC source\n");
9069
9070 /* Turn off the SSC source */
9071 val &= ~DREF_SSC_SOURCE_MASK;
9072 val |= DREF_SSC_SOURCE_DISABLE;
9073
9074 /* Turn off SSC1 */
9075 val &= ~DREF_SSC1_ENABLE;
9076
9077 I915_WRITE(PCH_DREF_CONTROL, val);
9078 POSTING_READ(PCH_DREF_CONTROL);
9079 udelay(200);
9080 }
9081 }
9082
9083 BUG_ON(val != final);
9084 }
9085
9086 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9087 {
9088 uint32_t tmp;
9089
9090 tmp = I915_READ(SOUTH_CHICKEN2);
9091 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9092 I915_WRITE(SOUTH_CHICKEN2, tmp);
9093
9094 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9095 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9096 DRM_ERROR("FDI mPHY reset assert timeout\n");
9097
9098 tmp = I915_READ(SOUTH_CHICKEN2);
9099 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9100 I915_WRITE(SOUTH_CHICKEN2, tmp);
9101
9102 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9103 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9104 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9105 }
9106
9107 /* WaMPhyProgramming:hsw */
9108 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9109 {
9110 uint32_t tmp;
9111
9112 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9113 tmp &= ~(0xFF << 24);
9114 tmp |= (0x12 << 24);
9115 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9116
9117 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9118 tmp |= (1 << 11);
9119 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9120
9121 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9122 tmp |= (1 << 11);
9123 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9124
9125 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9126 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9127 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9128
9129 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9130 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9131 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9132
9133 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9134 tmp &= ~(7 << 13);
9135 tmp |= (5 << 13);
9136 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9137
9138 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9139 tmp &= ~(7 << 13);
9140 tmp |= (5 << 13);
9141 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9142
9143 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9144 tmp &= ~0xFF;
9145 tmp |= 0x1C;
9146 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9147
9148 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9149 tmp &= ~0xFF;
9150 tmp |= 0x1C;
9151 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9152
9153 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9154 tmp &= ~(0xFF << 16);
9155 tmp |= (0x1C << 16);
9156 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9157
9158 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9159 tmp &= ~(0xFF << 16);
9160 tmp |= (0x1C << 16);
9161 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9162
9163 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9164 tmp |= (1 << 27);
9165 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9166
9167 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9168 tmp |= (1 << 27);
9169 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9170
9171 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9172 tmp &= ~(0xF << 28);
9173 tmp |= (4 << 28);
9174 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9175
9176 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9177 tmp &= ~(0xF << 28);
9178 tmp |= (4 << 28);
9179 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9180 }
9181
9182 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9183 * Programming" based on the parameters passed:
9184 * - Sequence to enable CLKOUT_DP
9185 * - Sequence to enable CLKOUT_DP without spread
9186 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9187 */
9188 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
9189 bool with_fdi)
9190 {
9191 struct drm_i915_private *dev_priv = to_i915(dev);
9192 uint32_t reg, tmp;
9193
9194 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9195 with_spread = true;
9196 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
9197 with_fdi = false;
9198
9199 mutex_lock(&dev_priv->sb_lock);
9200
9201 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9202 tmp &= ~SBI_SSCCTL_DISABLE;
9203 tmp |= SBI_SSCCTL_PATHALT;
9204 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9205
9206 udelay(24);
9207
9208 if (with_spread) {
9209 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9210 tmp &= ~SBI_SSCCTL_PATHALT;
9211 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9212
9213 if (with_fdi) {
9214 lpt_reset_fdi_mphy(dev_priv);
9215 lpt_program_fdi_mphy(dev_priv);
9216 }
9217 }
9218
9219 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
9220 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9221 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9222 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9223
9224 mutex_unlock(&dev_priv->sb_lock);
9225 }
9226
9227 /* Sequence to disable CLKOUT_DP */
9228 static void lpt_disable_clkout_dp(struct drm_device *dev)
9229 {
9230 struct drm_i915_private *dev_priv = to_i915(dev);
9231 uint32_t reg, tmp;
9232
9233 mutex_lock(&dev_priv->sb_lock);
9234
9235 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
9236 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9237 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9238 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9239
9240 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9241 if (!(tmp & SBI_SSCCTL_DISABLE)) {
9242 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9243 tmp |= SBI_SSCCTL_PATHALT;
9244 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9245 udelay(32);
9246 }
9247 tmp |= SBI_SSCCTL_DISABLE;
9248 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9249 }
9250
9251 mutex_unlock(&dev_priv->sb_lock);
9252 }
9253
9254 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9255
9256 static const uint16_t sscdivintphase[] = {
9257 [BEND_IDX( 50)] = 0x3B23,
9258 [BEND_IDX( 45)] = 0x3B23,
9259 [BEND_IDX( 40)] = 0x3C23,
9260 [BEND_IDX( 35)] = 0x3C23,
9261 [BEND_IDX( 30)] = 0x3D23,
9262 [BEND_IDX( 25)] = 0x3D23,
9263 [BEND_IDX( 20)] = 0x3E23,
9264 [BEND_IDX( 15)] = 0x3E23,
9265 [BEND_IDX( 10)] = 0x3F23,
9266 [BEND_IDX( 5)] = 0x3F23,
9267 [BEND_IDX( 0)] = 0x0025,
9268 [BEND_IDX( -5)] = 0x0025,
9269 [BEND_IDX(-10)] = 0x0125,
9270 [BEND_IDX(-15)] = 0x0125,
9271 [BEND_IDX(-20)] = 0x0225,
9272 [BEND_IDX(-25)] = 0x0225,
9273 [BEND_IDX(-30)] = 0x0325,
9274 [BEND_IDX(-35)] = 0x0325,
9275 [BEND_IDX(-40)] = 0x0425,
9276 [BEND_IDX(-45)] = 0x0425,
9277 [BEND_IDX(-50)] = 0x0525,
9278 };
9279
9280 /*
9281 * Bend CLKOUT_DP
9282 * steps -50 to 50 inclusive, in steps of 5
9283 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9284 * change in clock period = -(steps / 10) * 5.787 ps
9285 */
9286 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9287 {
9288 uint32_t tmp;
9289 int idx = BEND_IDX(steps);
9290
9291 if (WARN_ON(steps % 5 != 0))
9292 return;
9293
9294 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9295 return;
9296
9297 mutex_lock(&dev_priv->sb_lock);
9298
9299 if (steps % 10 != 0)
9300 tmp = 0xAAAAAAAB;
9301 else
9302 tmp = 0x00000000;
9303 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9304
9305 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9306 tmp &= 0xffff0000;
9307 tmp |= sscdivintphase[idx];
9308 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9309
9310 mutex_unlock(&dev_priv->sb_lock);
9311 }
9312
9313 #undef BEND_IDX
9314
9315 static void lpt_init_pch_refclk(struct drm_device *dev)
9316 {
9317 struct intel_encoder *encoder;
9318 bool has_vga = false;
9319
9320 for_each_intel_encoder(dev, encoder) {
9321 switch (encoder->type) {
9322 case INTEL_OUTPUT_ANALOG:
9323 has_vga = true;
9324 break;
9325 default:
9326 break;
9327 }
9328 }
9329
9330 if (has_vga) {
9331 lpt_bend_clkout_dp(to_i915(dev), 0);
9332 lpt_enable_clkout_dp(dev, true, true);
9333 } else {
9334 lpt_disable_clkout_dp(dev);
9335 }
9336 }
9337
9338 /*
9339 * Initialize reference clocks when the driver loads
9340 */
9341 void intel_init_pch_refclk(struct drm_device *dev)
9342 {
9343 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9344 ironlake_init_pch_refclk(dev);
9345 else if (HAS_PCH_LPT(dev))
9346 lpt_init_pch_refclk(dev);
9347 }
9348
9349 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
9350 {
9351 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9353 int pipe = intel_crtc->pipe;
9354 uint32_t val;
9355
9356 val = 0;
9357
9358 switch (intel_crtc->config->pipe_bpp) {
9359 case 18:
9360 val |= PIPECONF_6BPC;
9361 break;
9362 case 24:
9363 val |= PIPECONF_8BPC;
9364 break;
9365 case 30:
9366 val |= PIPECONF_10BPC;
9367 break;
9368 case 36:
9369 val |= PIPECONF_12BPC;
9370 break;
9371 default:
9372 /* Case prevented by intel_choose_pipe_bpp_dither. */
9373 BUG();
9374 }
9375
9376 if (intel_crtc->config->dither)
9377 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9378
9379 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9380 val |= PIPECONF_INTERLACED_ILK;
9381 else
9382 val |= PIPECONF_PROGRESSIVE;
9383
9384 if (intel_crtc->config->limited_color_range)
9385 val |= PIPECONF_COLOR_RANGE_SELECT;
9386
9387 I915_WRITE(PIPECONF(pipe), val);
9388 POSTING_READ(PIPECONF(pipe));
9389 }
9390
9391 static void haswell_set_pipeconf(struct drm_crtc *crtc)
9392 {
9393 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9394 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9395 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9396 u32 val = 0;
9397
9398 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
9399 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9400
9401 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9402 val |= PIPECONF_INTERLACED_ILK;
9403 else
9404 val |= PIPECONF_PROGRESSIVE;
9405
9406 I915_WRITE(PIPECONF(cpu_transcoder), val);
9407 POSTING_READ(PIPECONF(cpu_transcoder));
9408 }
9409
9410 static void haswell_set_pipemisc(struct drm_crtc *crtc)
9411 {
9412 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9413 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9414
9415 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9416 u32 val = 0;
9417
9418 switch (intel_crtc->config->pipe_bpp) {
9419 case 18:
9420 val |= PIPEMISC_DITHER_6_BPC;
9421 break;
9422 case 24:
9423 val |= PIPEMISC_DITHER_8_BPC;
9424 break;
9425 case 30:
9426 val |= PIPEMISC_DITHER_10_BPC;
9427 break;
9428 case 36:
9429 val |= PIPEMISC_DITHER_12_BPC;
9430 break;
9431 default:
9432 /* Case prevented by pipe_config_set_bpp. */
9433 BUG();
9434 }
9435
9436 if (intel_crtc->config->dither)
9437 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9438
9439 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
9440 }
9441 }
9442
9443 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9444 {
9445 /*
9446 * Account for spread spectrum to avoid
9447 * oversubscribing the link. Max center spread
9448 * is 2.5%; use 5% for safety's sake.
9449 */
9450 u32 bps = target_clock * bpp * 21 / 20;
9451 return DIV_ROUND_UP(bps, link_bw * 8);
9452 }
9453
9454 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9455 {
9456 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9457 }
9458
9459 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9460 struct intel_crtc_state *crtc_state,
9461 struct dpll *reduced_clock)
9462 {
9463 struct drm_crtc *crtc = &intel_crtc->base;
9464 struct drm_device *dev = crtc->dev;
9465 struct drm_i915_private *dev_priv = to_i915(dev);
9466 u32 dpll, fp, fp2;
9467 int factor;
9468
9469 /* Enable autotuning of the PLL clock (if permissible) */
9470 factor = 21;
9471 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9472 if ((intel_panel_use_ssc(dev_priv) &&
9473 dev_priv->vbt.lvds_ssc_freq == 100000) ||
9474 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
9475 factor = 25;
9476 } else if (crtc_state->sdvo_tv_clock)
9477 factor = 20;
9478
9479 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9480
9481 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9482 fp |= FP_CB_TUNE;
9483
9484 if (reduced_clock) {
9485 fp2 = i9xx_dpll_compute_fp(reduced_clock);
9486
9487 if (reduced_clock->m < factor * reduced_clock->n)
9488 fp2 |= FP_CB_TUNE;
9489 } else {
9490 fp2 = fp;
9491 }
9492
9493 dpll = 0;
9494
9495 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9496 dpll |= DPLLB_MODE_LVDS;
9497 else
9498 dpll |= DPLLB_MODE_DAC_SERIAL;
9499
9500 dpll |= (crtc_state->pixel_multiplier - 1)
9501 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9502
9503 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9504 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9505 dpll |= DPLL_SDVO_HIGH_SPEED;
9506
9507 if (intel_crtc_has_dp_encoder(crtc_state))
9508 dpll |= DPLL_SDVO_HIGH_SPEED;
9509
9510 /* compute bitmask from p1 value */
9511 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9512 /* also FPA1 */
9513 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9514
9515 switch (crtc_state->dpll.p2) {
9516 case 5:
9517 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9518 break;
9519 case 7:
9520 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9521 break;
9522 case 10:
9523 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9524 break;
9525 case 14:
9526 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9527 break;
9528 }
9529
9530 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9531 intel_panel_use_ssc(dev_priv))
9532 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9533 else
9534 dpll |= PLL_REF_INPUT_DREFCLK;
9535
9536 dpll |= DPLL_VCO_ENABLE;
9537
9538 crtc_state->dpll_hw_state.dpll = dpll;
9539 crtc_state->dpll_hw_state.fp0 = fp;
9540 crtc_state->dpll_hw_state.fp1 = fp2;
9541 }
9542
9543 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9544 struct intel_crtc_state *crtc_state)
9545 {
9546 struct drm_device *dev = crtc->base.dev;
9547 struct drm_i915_private *dev_priv = to_i915(dev);
9548 struct dpll reduced_clock;
9549 bool has_reduced_clock = false;
9550 struct intel_shared_dpll *pll;
9551 const struct intel_limit *limit;
9552 int refclk = 120000;
9553
9554 memset(&crtc_state->dpll_hw_state, 0,
9555 sizeof(crtc_state->dpll_hw_state));
9556
9557 crtc->lowfreq_avail = false;
9558
9559 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9560 if (!crtc_state->has_pch_encoder)
9561 return 0;
9562
9563 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9564 if (intel_panel_use_ssc(dev_priv)) {
9565 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9566 dev_priv->vbt.lvds_ssc_freq);
9567 refclk = dev_priv->vbt.lvds_ssc_freq;
9568 }
9569
9570 if (intel_is_dual_link_lvds(dev)) {
9571 if (refclk == 100000)
9572 limit = &intel_limits_ironlake_dual_lvds_100m;
9573 else
9574 limit = &intel_limits_ironlake_dual_lvds;
9575 } else {
9576 if (refclk == 100000)
9577 limit = &intel_limits_ironlake_single_lvds_100m;
9578 else
9579 limit = &intel_limits_ironlake_single_lvds;
9580 }
9581 } else {
9582 limit = &intel_limits_ironlake_dac;
9583 }
9584
9585 if (!crtc_state->clock_set &&
9586 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9587 refclk, NULL, &crtc_state->dpll)) {
9588 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9589 return -EINVAL;
9590 }
9591
9592 ironlake_compute_dpll(crtc, crtc_state,
9593 has_reduced_clock ? &reduced_clock : NULL);
9594
9595 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9596 if (pll == NULL) {
9597 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9598 pipe_name(crtc->pipe));
9599 return -EINVAL;
9600 }
9601
9602 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9603 has_reduced_clock)
9604 crtc->lowfreq_avail = true;
9605
9606 return 0;
9607 }
9608
9609 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9610 struct intel_link_m_n *m_n)
9611 {
9612 struct drm_device *dev = crtc->base.dev;
9613 struct drm_i915_private *dev_priv = to_i915(dev);
9614 enum pipe pipe = crtc->pipe;
9615
9616 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9617 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9618 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9619 & ~TU_SIZE_MASK;
9620 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9621 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9622 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9623 }
9624
9625 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9626 enum transcoder transcoder,
9627 struct intel_link_m_n *m_n,
9628 struct intel_link_m_n *m2_n2)
9629 {
9630 struct drm_device *dev = crtc->base.dev;
9631 struct drm_i915_private *dev_priv = to_i915(dev);
9632 enum pipe pipe = crtc->pipe;
9633
9634 if (INTEL_INFO(dev)->gen >= 5) {
9635 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9636 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9637 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9638 & ~TU_SIZE_MASK;
9639 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9640 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9641 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9642 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9643 * gen < 8) and if DRRS is supported (to make sure the
9644 * registers are not unnecessarily read).
9645 */
9646 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9647 crtc->config->has_drrs) {
9648 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9649 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9650 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9651 & ~TU_SIZE_MASK;
9652 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9653 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9654 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9655 }
9656 } else {
9657 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9658 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9659 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9660 & ~TU_SIZE_MASK;
9661 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9662 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9663 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9664 }
9665 }
9666
9667 void intel_dp_get_m_n(struct intel_crtc *crtc,
9668 struct intel_crtc_state *pipe_config)
9669 {
9670 if (pipe_config->has_pch_encoder)
9671 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9672 else
9673 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9674 &pipe_config->dp_m_n,
9675 &pipe_config->dp_m2_n2);
9676 }
9677
9678 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9679 struct intel_crtc_state *pipe_config)
9680 {
9681 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9682 &pipe_config->fdi_m_n, NULL);
9683 }
9684
9685 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9686 struct intel_crtc_state *pipe_config)
9687 {
9688 struct drm_device *dev = crtc->base.dev;
9689 struct drm_i915_private *dev_priv = to_i915(dev);
9690 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9691 uint32_t ps_ctrl = 0;
9692 int id = -1;
9693 int i;
9694
9695 /* find scaler attached to this pipe */
9696 for (i = 0; i < crtc->num_scalers; i++) {
9697 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9698 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9699 id = i;
9700 pipe_config->pch_pfit.enabled = true;
9701 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9702 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9703 break;
9704 }
9705 }
9706
9707 scaler_state->scaler_id = id;
9708 if (id >= 0) {
9709 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9710 } else {
9711 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9712 }
9713 }
9714
9715 static void
9716 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9717 struct intel_initial_plane_config *plane_config)
9718 {
9719 struct drm_device *dev = crtc->base.dev;
9720 struct drm_i915_private *dev_priv = to_i915(dev);
9721 u32 val, base, offset, stride_mult, tiling;
9722 int pipe = crtc->pipe;
9723 int fourcc, pixel_format;
9724 unsigned int aligned_height;
9725 struct drm_framebuffer *fb;
9726 struct intel_framebuffer *intel_fb;
9727
9728 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9729 if (!intel_fb) {
9730 DRM_DEBUG_KMS("failed to alloc fb\n");
9731 return;
9732 }
9733
9734 fb = &intel_fb->base;
9735
9736 val = I915_READ(PLANE_CTL(pipe, 0));
9737 if (!(val & PLANE_CTL_ENABLE))
9738 goto error;
9739
9740 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9741 fourcc = skl_format_to_fourcc(pixel_format,
9742 val & PLANE_CTL_ORDER_RGBX,
9743 val & PLANE_CTL_ALPHA_MASK);
9744 fb->pixel_format = fourcc;
9745 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9746
9747 tiling = val & PLANE_CTL_TILED_MASK;
9748 switch (tiling) {
9749 case PLANE_CTL_TILED_LINEAR:
9750 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9751 break;
9752 case PLANE_CTL_TILED_X:
9753 plane_config->tiling = I915_TILING_X;
9754 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9755 break;
9756 case PLANE_CTL_TILED_Y:
9757 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9758 break;
9759 case PLANE_CTL_TILED_YF:
9760 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9761 break;
9762 default:
9763 MISSING_CASE(tiling);
9764 goto error;
9765 }
9766
9767 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9768 plane_config->base = base;
9769
9770 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9771
9772 val = I915_READ(PLANE_SIZE(pipe, 0));
9773 fb->height = ((val >> 16) & 0xfff) + 1;
9774 fb->width = ((val >> 0) & 0x1fff) + 1;
9775
9776 val = I915_READ(PLANE_STRIDE(pipe, 0));
9777 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9778 fb->pixel_format);
9779 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9780
9781 aligned_height = intel_fb_align_height(dev, fb->height,
9782 fb->pixel_format,
9783 fb->modifier[0]);
9784
9785 plane_config->size = fb->pitches[0] * aligned_height;
9786
9787 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9788 pipe_name(pipe), fb->width, fb->height,
9789 fb->bits_per_pixel, base, fb->pitches[0],
9790 plane_config->size);
9791
9792 plane_config->fb = intel_fb;
9793 return;
9794
9795 error:
9796 kfree(intel_fb);
9797 }
9798
9799 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9800 struct intel_crtc_state *pipe_config)
9801 {
9802 struct drm_device *dev = crtc->base.dev;
9803 struct drm_i915_private *dev_priv = to_i915(dev);
9804 uint32_t tmp;
9805
9806 tmp = I915_READ(PF_CTL(crtc->pipe));
9807
9808 if (tmp & PF_ENABLE) {
9809 pipe_config->pch_pfit.enabled = true;
9810 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9811 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9812
9813 /* We currently do not free assignements of panel fitters on
9814 * ivb/hsw (since we don't use the higher upscaling modes which
9815 * differentiates them) so just WARN about this case for now. */
9816 if (IS_GEN7(dev)) {
9817 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9818 PF_PIPE_SEL_IVB(crtc->pipe));
9819 }
9820 }
9821 }
9822
9823 static void
9824 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9825 struct intel_initial_plane_config *plane_config)
9826 {
9827 struct drm_device *dev = crtc->base.dev;
9828 struct drm_i915_private *dev_priv = to_i915(dev);
9829 u32 val, base, offset;
9830 int pipe = crtc->pipe;
9831 int fourcc, pixel_format;
9832 unsigned int aligned_height;
9833 struct drm_framebuffer *fb;
9834 struct intel_framebuffer *intel_fb;
9835
9836 val = I915_READ(DSPCNTR(pipe));
9837 if (!(val & DISPLAY_PLANE_ENABLE))
9838 return;
9839
9840 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9841 if (!intel_fb) {
9842 DRM_DEBUG_KMS("failed to alloc fb\n");
9843 return;
9844 }
9845
9846 fb = &intel_fb->base;
9847
9848 if (INTEL_INFO(dev)->gen >= 4) {
9849 if (val & DISPPLANE_TILED) {
9850 plane_config->tiling = I915_TILING_X;
9851 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9852 }
9853 }
9854
9855 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9856 fourcc = i9xx_format_to_fourcc(pixel_format);
9857 fb->pixel_format = fourcc;
9858 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9859
9860 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9861 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9862 offset = I915_READ(DSPOFFSET(pipe));
9863 } else {
9864 if (plane_config->tiling)
9865 offset = I915_READ(DSPTILEOFF(pipe));
9866 else
9867 offset = I915_READ(DSPLINOFF(pipe));
9868 }
9869 plane_config->base = base;
9870
9871 val = I915_READ(PIPESRC(pipe));
9872 fb->width = ((val >> 16) & 0xfff) + 1;
9873 fb->height = ((val >> 0) & 0xfff) + 1;
9874
9875 val = I915_READ(DSPSTRIDE(pipe));
9876 fb->pitches[0] = val & 0xffffffc0;
9877
9878 aligned_height = intel_fb_align_height(dev, fb->height,
9879 fb->pixel_format,
9880 fb->modifier[0]);
9881
9882 plane_config->size = fb->pitches[0] * aligned_height;
9883
9884 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9885 pipe_name(pipe), fb->width, fb->height,
9886 fb->bits_per_pixel, base, fb->pitches[0],
9887 plane_config->size);
9888
9889 plane_config->fb = intel_fb;
9890 }
9891
9892 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9893 struct intel_crtc_state *pipe_config)
9894 {
9895 struct drm_device *dev = crtc->base.dev;
9896 struct drm_i915_private *dev_priv = to_i915(dev);
9897 enum intel_display_power_domain power_domain;
9898 uint32_t tmp;
9899 bool ret;
9900
9901 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9902 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9903 return false;
9904
9905 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9906 pipe_config->shared_dpll = NULL;
9907
9908 ret = false;
9909 tmp = I915_READ(PIPECONF(crtc->pipe));
9910 if (!(tmp & PIPECONF_ENABLE))
9911 goto out;
9912
9913 switch (tmp & PIPECONF_BPC_MASK) {
9914 case PIPECONF_6BPC:
9915 pipe_config->pipe_bpp = 18;
9916 break;
9917 case PIPECONF_8BPC:
9918 pipe_config->pipe_bpp = 24;
9919 break;
9920 case PIPECONF_10BPC:
9921 pipe_config->pipe_bpp = 30;
9922 break;
9923 case PIPECONF_12BPC:
9924 pipe_config->pipe_bpp = 36;
9925 break;
9926 default:
9927 break;
9928 }
9929
9930 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9931 pipe_config->limited_color_range = true;
9932
9933 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9934 struct intel_shared_dpll *pll;
9935 enum intel_dpll_id pll_id;
9936
9937 pipe_config->has_pch_encoder = true;
9938
9939 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9940 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9941 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9942
9943 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9944
9945 if (HAS_PCH_IBX(dev_priv)) {
9946 /*
9947 * The pipe->pch transcoder and pch transcoder->pll
9948 * mapping is fixed.
9949 */
9950 pll_id = (enum intel_dpll_id) crtc->pipe;
9951 } else {
9952 tmp = I915_READ(PCH_DPLL_SEL);
9953 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9954 pll_id = DPLL_ID_PCH_PLL_B;
9955 else
9956 pll_id= DPLL_ID_PCH_PLL_A;
9957 }
9958
9959 pipe_config->shared_dpll =
9960 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9961 pll = pipe_config->shared_dpll;
9962
9963 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9964 &pipe_config->dpll_hw_state));
9965
9966 tmp = pipe_config->dpll_hw_state.dpll;
9967 pipe_config->pixel_multiplier =
9968 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9969 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9970
9971 ironlake_pch_clock_get(crtc, pipe_config);
9972 } else {
9973 pipe_config->pixel_multiplier = 1;
9974 }
9975
9976 intel_get_pipe_timings(crtc, pipe_config);
9977 intel_get_pipe_src_size(crtc, pipe_config);
9978
9979 ironlake_get_pfit_config(crtc, pipe_config);
9980
9981 ret = true;
9982
9983 out:
9984 intel_display_power_put(dev_priv, power_domain);
9985
9986 return ret;
9987 }
9988
9989 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9990 {
9991 struct drm_device *dev = &dev_priv->drm;
9992 struct intel_crtc *crtc;
9993
9994 for_each_intel_crtc(dev, crtc)
9995 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9996 pipe_name(crtc->pipe));
9997
9998 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9999 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
10000 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
10001 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
10002 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
10003 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
10004 "CPU PWM1 enabled\n");
10005 if (IS_HASWELL(dev))
10006 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
10007 "CPU PWM2 enabled\n");
10008 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
10009 "PCH PWM1 enabled\n");
10010 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
10011 "Utility pin enabled\n");
10012 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
10013
10014 /*
10015 * In theory we can still leave IRQs enabled, as long as only the HPD
10016 * interrupts remain enabled. We used to check for that, but since it's
10017 * gen-specific and since we only disable LCPLL after we fully disable
10018 * the interrupts, the check below should be enough.
10019 */
10020 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
10021 }
10022
10023 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10024 {
10025 struct drm_device *dev = &dev_priv->drm;
10026
10027 if (IS_HASWELL(dev))
10028 return I915_READ(D_COMP_HSW);
10029 else
10030 return I915_READ(D_COMP_BDW);
10031 }
10032
10033 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10034 {
10035 struct drm_device *dev = &dev_priv->drm;
10036
10037 if (IS_HASWELL(dev)) {
10038 mutex_lock(&dev_priv->rps.hw_lock);
10039 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10040 val))
10041 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
10042 mutex_unlock(&dev_priv->rps.hw_lock);
10043 } else {
10044 I915_WRITE(D_COMP_BDW, val);
10045 POSTING_READ(D_COMP_BDW);
10046 }
10047 }
10048
10049 /*
10050 * This function implements pieces of two sequences from BSpec:
10051 * - Sequence for display software to disable LCPLL
10052 * - Sequence for display software to allow package C8+
10053 * The steps implemented here are just the steps that actually touch the LCPLL
10054 * register. Callers should take care of disabling all the display engine
10055 * functions, doing the mode unset, fixing interrupts, etc.
10056 */
10057 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10058 bool switch_to_fclk, bool allow_power_down)
10059 {
10060 uint32_t val;
10061
10062 assert_can_disable_lcpll(dev_priv);
10063
10064 val = I915_READ(LCPLL_CTL);
10065
10066 if (switch_to_fclk) {
10067 val |= LCPLL_CD_SOURCE_FCLK;
10068 I915_WRITE(LCPLL_CTL, val);
10069
10070 if (wait_for_us(I915_READ(LCPLL_CTL) &
10071 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10072 DRM_ERROR("Switching to FCLK failed\n");
10073
10074 val = I915_READ(LCPLL_CTL);
10075 }
10076
10077 val |= LCPLL_PLL_DISABLE;
10078 I915_WRITE(LCPLL_CTL, val);
10079 POSTING_READ(LCPLL_CTL);
10080
10081 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
10082 DRM_ERROR("LCPLL still locked\n");
10083
10084 val = hsw_read_dcomp(dev_priv);
10085 val |= D_COMP_COMP_DISABLE;
10086 hsw_write_dcomp(dev_priv, val);
10087 ndelay(100);
10088
10089 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10090 1))
10091 DRM_ERROR("D_COMP RCOMP still in progress\n");
10092
10093 if (allow_power_down) {
10094 val = I915_READ(LCPLL_CTL);
10095 val |= LCPLL_POWER_DOWN_ALLOW;
10096 I915_WRITE(LCPLL_CTL, val);
10097 POSTING_READ(LCPLL_CTL);
10098 }
10099 }
10100
10101 /*
10102 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10103 * source.
10104 */
10105 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
10106 {
10107 uint32_t val;
10108
10109 val = I915_READ(LCPLL_CTL);
10110
10111 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10112 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10113 return;
10114
10115 /*
10116 * Make sure we're not on PC8 state before disabling PC8, otherwise
10117 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
10118 */
10119 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
10120
10121 if (val & LCPLL_POWER_DOWN_ALLOW) {
10122 val &= ~LCPLL_POWER_DOWN_ALLOW;
10123 I915_WRITE(LCPLL_CTL, val);
10124 POSTING_READ(LCPLL_CTL);
10125 }
10126
10127 val = hsw_read_dcomp(dev_priv);
10128 val |= D_COMP_COMP_FORCE;
10129 val &= ~D_COMP_COMP_DISABLE;
10130 hsw_write_dcomp(dev_priv, val);
10131
10132 val = I915_READ(LCPLL_CTL);
10133 val &= ~LCPLL_PLL_DISABLE;
10134 I915_WRITE(LCPLL_CTL, val);
10135
10136 if (intel_wait_for_register(dev_priv,
10137 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10138 5))
10139 DRM_ERROR("LCPLL not locked yet\n");
10140
10141 if (val & LCPLL_CD_SOURCE_FCLK) {
10142 val = I915_READ(LCPLL_CTL);
10143 val &= ~LCPLL_CD_SOURCE_FCLK;
10144 I915_WRITE(LCPLL_CTL, val);
10145
10146 if (wait_for_us((I915_READ(LCPLL_CTL) &
10147 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10148 DRM_ERROR("Switching back to LCPLL failed\n");
10149 }
10150
10151 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10152 intel_update_cdclk(&dev_priv->drm);
10153 }
10154
10155 /*
10156 * Package states C8 and deeper are really deep PC states that can only be
10157 * reached when all the devices on the system allow it, so even if the graphics
10158 * device allows PC8+, it doesn't mean the system will actually get to these
10159 * states. Our driver only allows PC8+ when going into runtime PM.
10160 *
10161 * The requirements for PC8+ are that all the outputs are disabled, the power
10162 * well is disabled and most interrupts are disabled, and these are also
10163 * requirements for runtime PM. When these conditions are met, we manually do
10164 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10165 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10166 * hang the machine.
10167 *
10168 * When we really reach PC8 or deeper states (not just when we allow it) we lose
10169 * the state of some registers, so when we come back from PC8+ we need to
10170 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10171 * need to take care of the registers kept by RC6. Notice that this happens even
10172 * if we don't put the device in PCI D3 state (which is what currently happens
10173 * because of the runtime PM support).
10174 *
10175 * For more, read "Display Sequences for Package C8" on the hardware
10176 * documentation.
10177 */
10178 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
10179 {
10180 struct drm_device *dev = &dev_priv->drm;
10181 uint32_t val;
10182
10183 DRM_DEBUG_KMS("Enabling package C8+\n");
10184
10185 if (HAS_PCH_LPT_LP(dev)) {
10186 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10187 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10188 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10189 }
10190
10191 lpt_disable_clkout_dp(dev);
10192 hsw_disable_lcpll(dev_priv, true, true);
10193 }
10194
10195 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
10196 {
10197 struct drm_device *dev = &dev_priv->drm;
10198 uint32_t val;
10199
10200 DRM_DEBUG_KMS("Disabling package C8+\n");
10201
10202 hsw_restore_lcpll(dev_priv);
10203 lpt_init_pch_refclk(dev);
10204
10205 if (HAS_PCH_LPT_LP(dev)) {
10206 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10207 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10208 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10209 }
10210 }
10211
10212 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10213 {
10214 struct drm_device *dev = old_state->dev;
10215 struct intel_atomic_state *old_intel_state =
10216 to_intel_atomic_state(old_state);
10217 unsigned int req_cdclk = old_intel_state->dev_cdclk;
10218
10219 bxt_set_cdclk(to_i915(dev), req_cdclk);
10220 }
10221
10222 /* compute the max rate for new configuration */
10223 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
10224 {
10225 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10226 struct drm_i915_private *dev_priv = to_i915(state->dev);
10227 struct drm_crtc *crtc;
10228 struct drm_crtc_state *cstate;
10229 struct intel_crtc_state *crtc_state;
10230 unsigned max_pixel_rate = 0, i;
10231 enum pipe pipe;
10232
10233 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10234 sizeof(intel_state->min_pixclk));
10235
10236 for_each_crtc_in_state(state, crtc, cstate, i) {
10237 int pixel_rate;
10238
10239 crtc_state = to_intel_crtc_state(cstate);
10240 if (!crtc_state->base.enable) {
10241 intel_state->min_pixclk[i] = 0;
10242 continue;
10243 }
10244
10245 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
10246
10247 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10248 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
10249 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10250
10251 intel_state->min_pixclk[i] = pixel_rate;
10252 }
10253
10254 for_each_pipe(dev_priv, pipe)
10255 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10256
10257 return max_pixel_rate;
10258 }
10259
10260 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10261 {
10262 struct drm_i915_private *dev_priv = to_i915(dev);
10263 uint32_t val, data;
10264 int ret;
10265
10266 if (WARN((I915_READ(LCPLL_CTL) &
10267 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10268 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10269 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10270 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10271 "trying to change cdclk frequency with cdclk not enabled\n"))
10272 return;
10273
10274 mutex_lock(&dev_priv->rps.hw_lock);
10275 ret = sandybridge_pcode_write(dev_priv,
10276 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10277 mutex_unlock(&dev_priv->rps.hw_lock);
10278 if (ret) {
10279 DRM_ERROR("failed to inform pcode about cdclk change\n");
10280 return;
10281 }
10282
10283 val = I915_READ(LCPLL_CTL);
10284 val |= LCPLL_CD_SOURCE_FCLK;
10285 I915_WRITE(LCPLL_CTL, val);
10286
10287 if (wait_for_us(I915_READ(LCPLL_CTL) &
10288 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10289 DRM_ERROR("Switching to FCLK failed\n");
10290
10291 val = I915_READ(LCPLL_CTL);
10292 val &= ~LCPLL_CLK_FREQ_MASK;
10293
10294 switch (cdclk) {
10295 case 450000:
10296 val |= LCPLL_CLK_FREQ_450;
10297 data = 0;
10298 break;
10299 case 540000:
10300 val |= LCPLL_CLK_FREQ_54O_BDW;
10301 data = 1;
10302 break;
10303 case 337500:
10304 val |= LCPLL_CLK_FREQ_337_5_BDW;
10305 data = 2;
10306 break;
10307 case 675000:
10308 val |= LCPLL_CLK_FREQ_675_BDW;
10309 data = 3;
10310 break;
10311 default:
10312 WARN(1, "invalid cdclk frequency\n");
10313 return;
10314 }
10315
10316 I915_WRITE(LCPLL_CTL, val);
10317
10318 val = I915_READ(LCPLL_CTL);
10319 val &= ~LCPLL_CD_SOURCE_FCLK;
10320 I915_WRITE(LCPLL_CTL, val);
10321
10322 if (wait_for_us((I915_READ(LCPLL_CTL) &
10323 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10324 DRM_ERROR("Switching back to LCPLL failed\n");
10325
10326 mutex_lock(&dev_priv->rps.hw_lock);
10327 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10328 mutex_unlock(&dev_priv->rps.hw_lock);
10329
10330 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10331
10332 intel_update_cdclk(dev);
10333
10334 WARN(cdclk != dev_priv->cdclk_freq,
10335 "cdclk requested %d kHz but got %d kHz\n",
10336 cdclk, dev_priv->cdclk_freq);
10337 }
10338
10339 static int broadwell_calc_cdclk(int max_pixclk)
10340 {
10341 if (max_pixclk > 540000)
10342 return 675000;
10343 else if (max_pixclk > 450000)
10344 return 540000;
10345 else if (max_pixclk > 337500)
10346 return 450000;
10347 else
10348 return 337500;
10349 }
10350
10351 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
10352 {
10353 struct drm_i915_private *dev_priv = to_i915(state->dev);
10354 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10355 int max_pixclk = ilk_max_pixel_rate(state);
10356 int cdclk;
10357
10358 /*
10359 * FIXME should also account for plane ratio
10360 * once 64bpp pixel formats are supported.
10361 */
10362 cdclk = broadwell_calc_cdclk(max_pixclk);
10363
10364 if (cdclk > dev_priv->max_cdclk_freq) {
10365 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10366 cdclk, dev_priv->max_cdclk_freq);
10367 return -EINVAL;
10368 }
10369
10370 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10371 if (!intel_state->active_crtcs)
10372 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
10373
10374 return 0;
10375 }
10376
10377 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10378 {
10379 struct drm_device *dev = old_state->dev;
10380 struct intel_atomic_state *old_intel_state =
10381 to_intel_atomic_state(old_state);
10382 unsigned req_cdclk = old_intel_state->dev_cdclk;
10383
10384 broadwell_set_cdclk(dev, req_cdclk);
10385 }
10386
10387 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10388 {
10389 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10390 struct drm_i915_private *dev_priv = to_i915(state->dev);
10391 const int max_pixclk = ilk_max_pixel_rate(state);
10392 int vco = intel_state->cdclk_pll_vco;
10393 int cdclk;
10394
10395 /*
10396 * FIXME should also account for plane ratio
10397 * once 64bpp pixel formats are supported.
10398 */
10399 cdclk = skl_calc_cdclk(max_pixclk, vco);
10400
10401 /*
10402 * FIXME move the cdclk caclulation to
10403 * compute_config() so we can fail gracegully.
10404 */
10405 if (cdclk > dev_priv->max_cdclk_freq) {
10406 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10407 cdclk, dev_priv->max_cdclk_freq);
10408 cdclk = dev_priv->max_cdclk_freq;
10409 }
10410
10411 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10412 if (!intel_state->active_crtcs)
10413 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
10414
10415 return 0;
10416 }
10417
10418 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10419 {
10420 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10421 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10422 unsigned int req_cdclk = intel_state->dev_cdclk;
10423 unsigned int req_vco = intel_state->cdclk_pll_vco;
10424
10425 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
10426 }
10427
10428 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10429 struct intel_crtc_state *crtc_state)
10430 {
10431 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
10432 if (!intel_ddi_pll_select(crtc, crtc_state))
10433 return -EINVAL;
10434 }
10435
10436 crtc->lowfreq_avail = false;
10437
10438 return 0;
10439 }
10440
10441 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10442 enum port port,
10443 struct intel_crtc_state *pipe_config)
10444 {
10445 enum intel_dpll_id id;
10446
10447 switch (port) {
10448 case PORT_A:
10449 id = DPLL_ID_SKL_DPLL0;
10450 break;
10451 case PORT_B:
10452 id = DPLL_ID_SKL_DPLL1;
10453 break;
10454 case PORT_C:
10455 id = DPLL_ID_SKL_DPLL2;
10456 break;
10457 default:
10458 DRM_ERROR("Incorrect port type\n");
10459 return;
10460 }
10461
10462 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10463 }
10464
10465 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10466 enum port port,
10467 struct intel_crtc_state *pipe_config)
10468 {
10469 enum intel_dpll_id id;
10470 u32 temp;
10471
10472 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10473 id = temp >> (port * 3 + 1);
10474
10475 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10476 return;
10477
10478 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10479 }
10480
10481 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10482 enum port port,
10483 struct intel_crtc_state *pipe_config)
10484 {
10485 enum intel_dpll_id id;
10486 uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10487
10488 switch (ddi_pll_sel) {
10489 case PORT_CLK_SEL_WRPLL1:
10490 id = DPLL_ID_WRPLL1;
10491 break;
10492 case PORT_CLK_SEL_WRPLL2:
10493 id = DPLL_ID_WRPLL2;
10494 break;
10495 case PORT_CLK_SEL_SPLL:
10496 id = DPLL_ID_SPLL;
10497 break;
10498 case PORT_CLK_SEL_LCPLL_810:
10499 id = DPLL_ID_LCPLL_810;
10500 break;
10501 case PORT_CLK_SEL_LCPLL_1350:
10502 id = DPLL_ID_LCPLL_1350;
10503 break;
10504 case PORT_CLK_SEL_LCPLL_2700:
10505 id = DPLL_ID_LCPLL_2700;
10506 break;
10507 default:
10508 MISSING_CASE(ddi_pll_sel);
10509 /* fall through */
10510 case PORT_CLK_SEL_NONE:
10511 return;
10512 }
10513
10514 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10515 }
10516
10517 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10518 struct intel_crtc_state *pipe_config,
10519 unsigned long *power_domain_mask)
10520 {
10521 struct drm_device *dev = crtc->base.dev;
10522 struct drm_i915_private *dev_priv = to_i915(dev);
10523 enum intel_display_power_domain power_domain;
10524 u32 tmp;
10525
10526 /*
10527 * The pipe->transcoder mapping is fixed with the exception of the eDP
10528 * transcoder handled below.
10529 */
10530 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10531
10532 /*
10533 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10534 * consistency and less surprising code; it's in always on power).
10535 */
10536 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10537 if (tmp & TRANS_DDI_FUNC_ENABLE) {
10538 enum pipe trans_edp_pipe;
10539 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10540 default:
10541 WARN(1, "unknown pipe linked to edp transcoder\n");
10542 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10543 case TRANS_DDI_EDP_INPUT_A_ON:
10544 trans_edp_pipe = PIPE_A;
10545 break;
10546 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10547 trans_edp_pipe = PIPE_B;
10548 break;
10549 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10550 trans_edp_pipe = PIPE_C;
10551 break;
10552 }
10553
10554 if (trans_edp_pipe == crtc->pipe)
10555 pipe_config->cpu_transcoder = TRANSCODER_EDP;
10556 }
10557
10558 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10559 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10560 return false;
10561 *power_domain_mask |= BIT(power_domain);
10562
10563 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10564
10565 return tmp & PIPECONF_ENABLE;
10566 }
10567
10568 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10569 struct intel_crtc_state *pipe_config,
10570 unsigned long *power_domain_mask)
10571 {
10572 struct drm_device *dev = crtc->base.dev;
10573 struct drm_i915_private *dev_priv = to_i915(dev);
10574 enum intel_display_power_domain power_domain;
10575 enum port port;
10576 enum transcoder cpu_transcoder;
10577 u32 tmp;
10578
10579 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10580 if (port == PORT_A)
10581 cpu_transcoder = TRANSCODER_DSI_A;
10582 else
10583 cpu_transcoder = TRANSCODER_DSI_C;
10584
10585 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10586 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10587 continue;
10588 *power_domain_mask |= BIT(power_domain);
10589
10590 /*
10591 * The PLL needs to be enabled with a valid divider
10592 * configuration, otherwise accessing DSI registers will hang
10593 * the machine. See BSpec North Display Engine
10594 * registers/MIPI[BXT]. We can break out here early, since we
10595 * need the same DSI PLL to be enabled for both DSI ports.
10596 */
10597 if (!intel_dsi_pll_is_enabled(dev_priv))
10598 break;
10599
10600 /* XXX: this works for video mode only */
10601 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10602 if (!(tmp & DPI_ENABLE))
10603 continue;
10604
10605 tmp = I915_READ(MIPI_CTRL(port));
10606 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10607 continue;
10608
10609 pipe_config->cpu_transcoder = cpu_transcoder;
10610 break;
10611 }
10612
10613 return transcoder_is_dsi(pipe_config->cpu_transcoder);
10614 }
10615
10616 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10617 struct intel_crtc_state *pipe_config)
10618 {
10619 struct drm_device *dev = crtc->base.dev;
10620 struct drm_i915_private *dev_priv = to_i915(dev);
10621 struct intel_shared_dpll *pll;
10622 enum port port;
10623 uint32_t tmp;
10624
10625 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10626
10627 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10628
10629 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
10630 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10631 else if (IS_BROXTON(dev))
10632 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10633 else
10634 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10635
10636 pll = pipe_config->shared_dpll;
10637 if (pll) {
10638 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10639 &pipe_config->dpll_hw_state));
10640 }
10641
10642 /*
10643 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10644 * DDI E. So just check whether this pipe is wired to DDI E and whether
10645 * the PCH transcoder is on.
10646 */
10647 if (INTEL_INFO(dev)->gen < 9 &&
10648 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10649 pipe_config->has_pch_encoder = true;
10650
10651 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10652 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10653 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10654
10655 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10656 }
10657 }
10658
10659 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10660 struct intel_crtc_state *pipe_config)
10661 {
10662 struct drm_device *dev = crtc->base.dev;
10663 struct drm_i915_private *dev_priv = to_i915(dev);
10664 enum intel_display_power_domain power_domain;
10665 unsigned long power_domain_mask;
10666 bool active;
10667
10668 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10669 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10670 return false;
10671 power_domain_mask = BIT(power_domain);
10672
10673 pipe_config->shared_dpll = NULL;
10674
10675 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10676
10677 if (IS_BROXTON(dev_priv) &&
10678 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10679 WARN_ON(active);
10680 active = true;
10681 }
10682
10683 if (!active)
10684 goto out;
10685
10686 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10687 haswell_get_ddi_port_state(crtc, pipe_config);
10688 intel_get_pipe_timings(crtc, pipe_config);
10689 }
10690
10691 intel_get_pipe_src_size(crtc, pipe_config);
10692
10693 pipe_config->gamma_mode =
10694 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10695
10696 if (INTEL_INFO(dev)->gen >= 9) {
10697 skl_init_scalers(dev, crtc, pipe_config);
10698 }
10699
10700 if (INTEL_INFO(dev)->gen >= 9) {
10701 pipe_config->scaler_state.scaler_id = -1;
10702 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10703 }
10704
10705 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10706 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10707 power_domain_mask |= BIT(power_domain);
10708 if (INTEL_INFO(dev)->gen >= 9)
10709 skylake_get_pfit_config(crtc, pipe_config);
10710 else
10711 ironlake_get_pfit_config(crtc, pipe_config);
10712 }
10713
10714 if (IS_HASWELL(dev))
10715 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10716 (I915_READ(IPS_CTL) & IPS_ENABLE);
10717
10718 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10719 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10720 pipe_config->pixel_multiplier =
10721 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10722 } else {
10723 pipe_config->pixel_multiplier = 1;
10724 }
10725
10726 out:
10727 for_each_power_domain(power_domain, power_domain_mask)
10728 intel_display_power_put(dev_priv, power_domain);
10729
10730 return active;
10731 }
10732
10733 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10734 const struct intel_plane_state *plane_state)
10735 {
10736 struct drm_device *dev = crtc->dev;
10737 struct drm_i915_private *dev_priv = to_i915(dev);
10738 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10739 uint32_t cntl = 0, size = 0;
10740
10741 if (plane_state && plane_state->base.visible) {
10742 unsigned int width = plane_state->base.crtc_w;
10743 unsigned int height = plane_state->base.crtc_h;
10744 unsigned int stride = roundup_pow_of_two(width) * 4;
10745
10746 switch (stride) {
10747 default:
10748 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10749 width, stride);
10750 stride = 256;
10751 /* fallthrough */
10752 case 256:
10753 case 512:
10754 case 1024:
10755 case 2048:
10756 break;
10757 }
10758
10759 cntl |= CURSOR_ENABLE |
10760 CURSOR_GAMMA_ENABLE |
10761 CURSOR_FORMAT_ARGB |
10762 CURSOR_STRIDE(stride);
10763
10764 size = (height << 12) | width;
10765 }
10766
10767 if (intel_crtc->cursor_cntl != 0 &&
10768 (intel_crtc->cursor_base != base ||
10769 intel_crtc->cursor_size != size ||
10770 intel_crtc->cursor_cntl != cntl)) {
10771 /* On these chipsets we can only modify the base/size/stride
10772 * whilst the cursor is disabled.
10773 */
10774 I915_WRITE(CURCNTR(PIPE_A), 0);
10775 POSTING_READ(CURCNTR(PIPE_A));
10776 intel_crtc->cursor_cntl = 0;
10777 }
10778
10779 if (intel_crtc->cursor_base != base) {
10780 I915_WRITE(CURBASE(PIPE_A), base);
10781 intel_crtc->cursor_base = base;
10782 }
10783
10784 if (intel_crtc->cursor_size != size) {
10785 I915_WRITE(CURSIZE, size);
10786 intel_crtc->cursor_size = size;
10787 }
10788
10789 if (intel_crtc->cursor_cntl != cntl) {
10790 I915_WRITE(CURCNTR(PIPE_A), cntl);
10791 POSTING_READ(CURCNTR(PIPE_A));
10792 intel_crtc->cursor_cntl = cntl;
10793 }
10794 }
10795
10796 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10797 const struct intel_plane_state *plane_state)
10798 {
10799 struct drm_device *dev = crtc->dev;
10800 struct drm_i915_private *dev_priv = to_i915(dev);
10801 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10802 const struct skl_wm_values *wm = &dev_priv->wm.skl_results;
10803 int pipe = intel_crtc->pipe;
10804 uint32_t cntl = 0;
10805
10806 if (INTEL_GEN(dev_priv) >= 9 && wm->dirty_pipes & drm_crtc_mask(crtc))
10807 skl_write_cursor_wm(intel_crtc, wm);
10808
10809 if (plane_state && plane_state->base.visible) {
10810 cntl = MCURSOR_GAMMA_ENABLE;
10811 switch (plane_state->base.crtc_w) {
10812 case 64:
10813 cntl |= CURSOR_MODE_64_ARGB_AX;
10814 break;
10815 case 128:
10816 cntl |= CURSOR_MODE_128_ARGB_AX;
10817 break;
10818 case 256:
10819 cntl |= CURSOR_MODE_256_ARGB_AX;
10820 break;
10821 default:
10822 MISSING_CASE(plane_state->base.crtc_w);
10823 return;
10824 }
10825 cntl |= pipe << 28; /* Connect to correct pipe */
10826
10827 if (HAS_DDI(dev))
10828 cntl |= CURSOR_PIPE_CSC_ENABLE;
10829
10830 if (plane_state->base.rotation == DRM_ROTATE_180)
10831 cntl |= CURSOR_ROTATE_180;
10832 }
10833
10834 if (intel_crtc->cursor_cntl != cntl) {
10835 I915_WRITE(CURCNTR(pipe), cntl);
10836 POSTING_READ(CURCNTR(pipe));
10837 intel_crtc->cursor_cntl = cntl;
10838 }
10839
10840 /* and commit changes on next vblank */
10841 I915_WRITE(CURBASE(pipe), base);
10842 POSTING_READ(CURBASE(pipe));
10843
10844 intel_crtc->cursor_base = base;
10845 }
10846
10847 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10848 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10849 const struct intel_plane_state *plane_state)
10850 {
10851 struct drm_device *dev = crtc->dev;
10852 struct drm_i915_private *dev_priv = to_i915(dev);
10853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10854 int pipe = intel_crtc->pipe;
10855 u32 base = intel_crtc->cursor_addr;
10856 u32 pos = 0;
10857
10858 if (plane_state) {
10859 int x = plane_state->base.crtc_x;
10860 int y = plane_state->base.crtc_y;
10861
10862 if (x < 0) {
10863 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10864 x = -x;
10865 }
10866 pos |= x << CURSOR_X_SHIFT;
10867
10868 if (y < 0) {
10869 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10870 y = -y;
10871 }
10872 pos |= y << CURSOR_Y_SHIFT;
10873
10874 /* ILK+ do this automagically */
10875 if (HAS_GMCH_DISPLAY(dev) &&
10876 plane_state->base.rotation == DRM_ROTATE_180) {
10877 base += (plane_state->base.crtc_h *
10878 plane_state->base.crtc_w - 1) * 4;
10879 }
10880 }
10881
10882 I915_WRITE(CURPOS(pipe), pos);
10883
10884 if (IS_845G(dev) || IS_I865G(dev))
10885 i845_update_cursor(crtc, base, plane_state);
10886 else
10887 i9xx_update_cursor(crtc, base, plane_state);
10888 }
10889
10890 static bool cursor_size_ok(struct drm_device *dev,
10891 uint32_t width, uint32_t height)
10892 {
10893 if (width == 0 || height == 0)
10894 return false;
10895
10896 /*
10897 * 845g/865g are special in that they are only limited by
10898 * the width of their cursors, the height is arbitrary up to
10899 * the precision of the register. Everything else requires
10900 * square cursors, limited to a few power-of-two sizes.
10901 */
10902 if (IS_845G(dev) || IS_I865G(dev)) {
10903 if ((width & 63) != 0)
10904 return false;
10905
10906 if (width > (IS_845G(dev) ? 64 : 512))
10907 return false;
10908
10909 if (height > 1023)
10910 return false;
10911 } else {
10912 switch (width | height) {
10913 case 256:
10914 case 128:
10915 if (IS_GEN2(dev))
10916 return false;
10917 case 64:
10918 break;
10919 default:
10920 return false;
10921 }
10922 }
10923
10924 return true;
10925 }
10926
10927 /* VESA 640x480x72Hz mode to set on the pipe */
10928 static struct drm_display_mode load_detect_mode = {
10929 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10930 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10931 };
10932
10933 struct drm_framebuffer *
10934 __intel_framebuffer_create(struct drm_device *dev,
10935 struct drm_mode_fb_cmd2 *mode_cmd,
10936 struct drm_i915_gem_object *obj)
10937 {
10938 struct intel_framebuffer *intel_fb;
10939 int ret;
10940
10941 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10942 if (!intel_fb)
10943 return ERR_PTR(-ENOMEM);
10944
10945 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10946 if (ret)
10947 goto err;
10948
10949 return &intel_fb->base;
10950
10951 err:
10952 kfree(intel_fb);
10953 return ERR_PTR(ret);
10954 }
10955
10956 static struct drm_framebuffer *
10957 intel_framebuffer_create(struct drm_device *dev,
10958 struct drm_mode_fb_cmd2 *mode_cmd,
10959 struct drm_i915_gem_object *obj)
10960 {
10961 struct drm_framebuffer *fb;
10962 int ret;
10963
10964 ret = i915_mutex_lock_interruptible(dev);
10965 if (ret)
10966 return ERR_PTR(ret);
10967 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10968 mutex_unlock(&dev->struct_mutex);
10969
10970 return fb;
10971 }
10972
10973 static u32
10974 intel_framebuffer_pitch_for_width(int width, int bpp)
10975 {
10976 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10977 return ALIGN(pitch, 64);
10978 }
10979
10980 static u32
10981 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10982 {
10983 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10984 return PAGE_ALIGN(pitch * mode->vdisplay);
10985 }
10986
10987 static struct drm_framebuffer *
10988 intel_framebuffer_create_for_mode(struct drm_device *dev,
10989 struct drm_display_mode *mode,
10990 int depth, int bpp)
10991 {
10992 struct drm_framebuffer *fb;
10993 struct drm_i915_gem_object *obj;
10994 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10995
10996 obj = i915_gem_object_create(dev,
10997 intel_framebuffer_size_for_mode(mode, bpp));
10998 if (IS_ERR(obj))
10999 return ERR_CAST(obj);
11000
11001 mode_cmd.width = mode->hdisplay;
11002 mode_cmd.height = mode->vdisplay;
11003 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
11004 bpp);
11005 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
11006
11007 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11008 if (IS_ERR(fb))
11009 i915_gem_object_put_unlocked(obj);
11010
11011 return fb;
11012 }
11013
11014 static struct drm_framebuffer *
11015 mode_fits_in_fbdev(struct drm_device *dev,
11016 struct drm_display_mode *mode)
11017 {
11018 #ifdef CONFIG_DRM_FBDEV_EMULATION
11019 struct drm_i915_private *dev_priv = to_i915(dev);
11020 struct drm_i915_gem_object *obj;
11021 struct drm_framebuffer *fb;
11022
11023 if (!dev_priv->fbdev)
11024 return NULL;
11025
11026 if (!dev_priv->fbdev->fb)
11027 return NULL;
11028
11029 obj = dev_priv->fbdev->fb->obj;
11030 BUG_ON(!obj);
11031
11032 fb = &dev_priv->fbdev->fb->base;
11033 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11034 fb->bits_per_pixel))
11035 return NULL;
11036
11037 if (obj->base.size < mode->vdisplay * fb->pitches[0])
11038 return NULL;
11039
11040 drm_framebuffer_reference(fb);
11041 return fb;
11042 #else
11043 return NULL;
11044 #endif
11045 }
11046
11047 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11048 struct drm_crtc *crtc,
11049 struct drm_display_mode *mode,
11050 struct drm_framebuffer *fb,
11051 int x, int y)
11052 {
11053 struct drm_plane_state *plane_state;
11054 int hdisplay, vdisplay;
11055 int ret;
11056
11057 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11058 if (IS_ERR(plane_state))
11059 return PTR_ERR(plane_state);
11060
11061 if (mode)
11062 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11063 else
11064 hdisplay = vdisplay = 0;
11065
11066 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11067 if (ret)
11068 return ret;
11069 drm_atomic_set_fb_for_plane(plane_state, fb);
11070 plane_state->crtc_x = 0;
11071 plane_state->crtc_y = 0;
11072 plane_state->crtc_w = hdisplay;
11073 plane_state->crtc_h = vdisplay;
11074 plane_state->src_x = x << 16;
11075 plane_state->src_y = y << 16;
11076 plane_state->src_w = hdisplay << 16;
11077 plane_state->src_h = vdisplay << 16;
11078
11079 return 0;
11080 }
11081
11082 bool intel_get_load_detect_pipe(struct drm_connector *connector,
11083 struct drm_display_mode *mode,
11084 struct intel_load_detect_pipe *old,
11085 struct drm_modeset_acquire_ctx *ctx)
11086 {
11087 struct intel_crtc *intel_crtc;
11088 struct intel_encoder *intel_encoder =
11089 intel_attached_encoder(connector);
11090 struct drm_crtc *possible_crtc;
11091 struct drm_encoder *encoder = &intel_encoder->base;
11092 struct drm_crtc *crtc = NULL;
11093 struct drm_device *dev = encoder->dev;
11094 struct drm_framebuffer *fb;
11095 struct drm_mode_config *config = &dev->mode_config;
11096 struct drm_atomic_state *state = NULL, *restore_state = NULL;
11097 struct drm_connector_state *connector_state;
11098 struct intel_crtc_state *crtc_state;
11099 int ret, i = -1;
11100
11101 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11102 connector->base.id, connector->name,
11103 encoder->base.id, encoder->name);
11104
11105 old->restore_state = NULL;
11106
11107 retry:
11108 ret = drm_modeset_lock(&config->connection_mutex, ctx);
11109 if (ret)
11110 goto fail;
11111
11112 /*
11113 * Algorithm gets a little messy:
11114 *
11115 * - if the connector already has an assigned crtc, use it (but make
11116 * sure it's on first)
11117 *
11118 * - try to find the first unused crtc that can drive this connector,
11119 * and use that if we find one
11120 */
11121
11122 /* See if we already have a CRTC for this connector */
11123 if (connector->state->crtc) {
11124 crtc = connector->state->crtc;
11125
11126 ret = drm_modeset_lock(&crtc->mutex, ctx);
11127 if (ret)
11128 goto fail;
11129
11130 /* Make sure the crtc and connector are running */
11131 goto found;
11132 }
11133
11134 /* Find an unused one (if possible) */
11135 for_each_crtc(dev, possible_crtc) {
11136 i++;
11137 if (!(encoder->possible_crtcs & (1 << i)))
11138 continue;
11139
11140 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11141 if (ret)
11142 goto fail;
11143
11144 if (possible_crtc->state->enable) {
11145 drm_modeset_unlock(&possible_crtc->mutex);
11146 continue;
11147 }
11148
11149 crtc = possible_crtc;
11150 break;
11151 }
11152
11153 /*
11154 * If we didn't find an unused CRTC, don't use any.
11155 */
11156 if (!crtc) {
11157 DRM_DEBUG_KMS("no pipe available for load-detect\n");
11158 goto fail;
11159 }
11160
11161 found:
11162 intel_crtc = to_intel_crtc(crtc);
11163
11164 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11165 if (ret)
11166 goto fail;
11167
11168 state = drm_atomic_state_alloc(dev);
11169 restore_state = drm_atomic_state_alloc(dev);
11170 if (!state || !restore_state) {
11171 ret = -ENOMEM;
11172 goto fail;
11173 }
11174
11175 state->acquire_ctx = ctx;
11176 restore_state->acquire_ctx = ctx;
11177
11178 connector_state = drm_atomic_get_connector_state(state, connector);
11179 if (IS_ERR(connector_state)) {
11180 ret = PTR_ERR(connector_state);
11181 goto fail;
11182 }
11183
11184 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11185 if (ret)
11186 goto fail;
11187
11188 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11189 if (IS_ERR(crtc_state)) {
11190 ret = PTR_ERR(crtc_state);
11191 goto fail;
11192 }
11193
11194 crtc_state->base.active = crtc_state->base.enable = true;
11195
11196 if (!mode)
11197 mode = &load_detect_mode;
11198
11199 /* We need a framebuffer large enough to accommodate all accesses
11200 * that the plane may generate whilst we perform load detection.
11201 * We can not rely on the fbcon either being present (we get called
11202 * during its initialisation to detect all boot displays, or it may
11203 * not even exist) or that it is large enough to satisfy the
11204 * requested mode.
11205 */
11206 fb = mode_fits_in_fbdev(dev, mode);
11207 if (fb == NULL) {
11208 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11209 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
11210 } else
11211 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11212 if (IS_ERR(fb)) {
11213 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11214 goto fail;
11215 }
11216
11217 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11218 if (ret)
11219 goto fail;
11220
11221 drm_framebuffer_unreference(fb);
11222
11223 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11224 if (ret)
11225 goto fail;
11226
11227 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11228 if (!ret)
11229 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11230 if (!ret)
11231 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11232 if (ret) {
11233 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11234 goto fail;
11235 }
11236
11237 ret = drm_atomic_commit(state);
11238 if (ret) {
11239 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11240 goto fail;
11241 }
11242
11243 old->restore_state = restore_state;
11244
11245 /* let the connector get through one full cycle before testing */
11246 intel_wait_for_vblank(dev, intel_crtc->pipe);
11247 return true;
11248
11249 fail:
11250 drm_atomic_state_free(state);
11251 drm_atomic_state_free(restore_state);
11252 restore_state = state = NULL;
11253
11254 if (ret == -EDEADLK) {
11255 drm_modeset_backoff(ctx);
11256 goto retry;
11257 }
11258
11259 return false;
11260 }
11261
11262 void intel_release_load_detect_pipe(struct drm_connector *connector,
11263 struct intel_load_detect_pipe *old,
11264 struct drm_modeset_acquire_ctx *ctx)
11265 {
11266 struct intel_encoder *intel_encoder =
11267 intel_attached_encoder(connector);
11268 struct drm_encoder *encoder = &intel_encoder->base;
11269 struct drm_atomic_state *state = old->restore_state;
11270 int ret;
11271
11272 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11273 connector->base.id, connector->name,
11274 encoder->base.id, encoder->name);
11275
11276 if (!state)
11277 return;
11278
11279 ret = drm_atomic_commit(state);
11280 if (ret) {
11281 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11282 drm_atomic_state_free(state);
11283 }
11284 }
11285
11286 static int i9xx_pll_refclk(struct drm_device *dev,
11287 const struct intel_crtc_state *pipe_config)
11288 {
11289 struct drm_i915_private *dev_priv = to_i915(dev);
11290 u32 dpll = pipe_config->dpll_hw_state.dpll;
11291
11292 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11293 return dev_priv->vbt.lvds_ssc_freq;
11294 else if (HAS_PCH_SPLIT(dev))
11295 return 120000;
11296 else if (!IS_GEN2(dev))
11297 return 96000;
11298 else
11299 return 48000;
11300 }
11301
11302 /* Returns the clock of the currently programmed mode of the given pipe. */
11303 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11304 struct intel_crtc_state *pipe_config)
11305 {
11306 struct drm_device *dev = crtc->base.dev;
11307 struct drm_i915_private *dev_priv = to_i915(dev);
11308 int pipe = pipe_config->cpu_transcoder;
11309 u32 dpll = pipe_config->dpll_hw_state.dpll;
11310 u32 fp;
11311 struct dpll clock;
11312 int port_clock;
11313 int refclk = i9xx_pll_refclk(dev, pipe_config);
11314
11315 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11316 fp = pipe_config->dpll_hw_state.fp0;
11317 else
11318 fp = pipe_config->dpll_hw_state.fp1;
11319
11320 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11321 if (IS_PINEVIEW(dev)) {
11322 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11323 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11324 } else {
11325 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11326 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11327 }
11328
11329 if (!IS_GEN2(dev)) {
11330 if (IS_PINEVIEW(dev))
11331 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11332 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11333 else
11334 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11335 DPLL_FPA01_P1_POST_DIV_SHIFT);
11336
11337 switch (dpll & DPLL_MODE_MASK) {
11338 case DPLLB_MODE_DAC_SERIAL:
11339 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11340 5 : 10;
11341 break;
11342 case DPLLB_MODE_LVDS:
11343 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11344 7 : 14;
11345 break;
11346 default:
11347 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11348 "mode\n", (int)(dpll & DPLL_MODE_MASK));
11349 return;
11350 }
11351
11352 if (IS_PINEVIEW(dev))
11353 port_clock = pnv_calc_dpll_params(refclk, &clock);
11354 else
11355 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11356 } else {
11357 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
11358 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11359
11360 if (is_lvds) {
11361 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11362 DPLL_FPA01_P1_POST_DIV_SHIFT);
11363
11364 if (lvds & LVDS_CLKB_POWER_UP)
11365 clock.p2 = 7;
11366 else
11367 clock.p2 = 14;
11368 } else {
11369 if (dpll & PLL_P1_DIVIDE_BY_TWO)
11370 clock.p1 = 2;
11371 else {
11372 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11373 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11374 }
11375 if (dpll & PLL_P2_DIVIDE_BY_4)
11376 clock.p2 = 4;
11377 else
11378 clock.p2 = 2;
11379 }
11380
11381 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11382 }
11383
11384 /*
11385 * This value includes pixel_multiplier. We will use
11386 * port_clock to compute adjusted_mode.crtc_clock in the
11387 * encoder's get_config() function.
11388 */
11389 pipe_config->port_clock = port_clock;
11390 }
11391
11392 int intel_dotclock_calculate(int link_freq,
11393 const struct intel_link_m_n *m_n)
11394 {
11395 /*
11396 * The calculation for the data clock is:
11397 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11398 * But we want to avoid losing precison if possible, so:
11399 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11400 *
11401 * and the link clock is simpler:
11402 * link_clock = (m * link_clock) / n
11403 */
11404
11405 if (!m_n->link_n)
11406 return 0;
11407
11408 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11409 }
11410
11411 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11412 struct intel_crtc_state *pipe_config)
11413 {
11414 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11415
11416 /* read out port_clock from the DPLL */
11417 i9xx_crtc_clock_get(crtc, pipe_config);
11418
11419 /*
11420 * In case there is an active pipe without active ports,
11421 * we may need some idea for the dotclock anyway.
11422 * Calculate one based on the FDI configuration.
11423 */
11424 pipe_config->base.adjusted_mode.crtc_clock =
11425 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11426 &pipe_config->fdi_m_n);
11427 }
11428
11429 /** Returns the currently programmed mode of the given pipe. */
11430 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11431 struct drm_crtc *crtc)
11432 {
11433 struct drm_i915_private *dev_priv = to_i915(dev);
11434 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11435 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
11436 struct drm_display_mode *mode;
11437 struct intel_crtc_state *pipe_config;
11438 int htot = I915_READ(HTOTAL(cpu_transcoder));
11439 int hsync = I915_READ(HSYNC(cpu_transcoder));
11440 int vtot = I915_READ(VTOTAL(cpu_transcoder));
11441 int vsync = I915_READ(VSYNC(cpu_transcoder));
11442 enum pipe pipe = intel_crtc->pipe;
11443
11444 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11445 if (!mode)
11446 return NULL;
11447
11448 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11449 if (!pipe_config) {
11450 kfree(mode);
11451 return NULL;
11452 }
11453
11454 /*
11455 * Construct a pipe_config sufficient for getting the clock info
11456 * back out of crtc_clock_get.
11457 *
11458 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11459 * to use a real value here instead.
11460 */
11461 pipe_config->cpu_transcoder = (enum transcoder) pipe;
11462 pipe_config->pixel_multiplier = 1;
11463 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11464 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11465 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11466 i9xx_crtc_clock_get(intel_crtc, pipe_config);
11467
11468 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
11469 mode->hdisplay = (htot & 0xffff) + 1;
11470 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11471 mode->hsync_start = (hsync & 0xffff) + 1;
11472 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11473 mode->vdisplay = (vtot & 0xffff) + 1;
11474 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11475 mode->vsync_start = (vsync & 0xffff) + 1;
11476 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11477
11478 drm_mode_set_name(mode);
11479
11480 kfree(pipe_config);
11481
11482 return mode;
11483 }
11484
11485 static void intel_crtc_destroy(struct drm_crtc *crtc)
11486 {
11487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11488 struct drm_device *dev = crtc->dev;
11489 struct intel_flip_work *work;
11490
11491 spin_lock_irq(&dev->event_lock);
11492 work = intel_crtc->flip_work;
11493 intel_crtc->flip_work = NULL;
11494 spin_unlock_irq(&dev->event_lock);
11495
11496 if (work) {
11497 cancel_work_sync(&work->mmio_work);
11498 cancel_work_sync(&work->unpin_work);
11499 kfree(work);
11500 }
11501
11502 drm_crtc_cleanup(crtc);
11503
11504 kfree(intel_crtc);
11505 }
11506
11507 static void intel_unpin_work_fn(struct work_struct *__work)
11508 {
11509 struct intel_flip_work *work =
11510 container_of(__work, struct intel_flip_work, unpin_work);
11511 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11512 struct drm_device *dev = crtc->base.dev;
11513 struct drm_plane *primary = crtc->base.primary;
11514
11515 if (is_mmio_work(work))
11516 flush_work(&work->mmio_work);
11517
11518 mutex_lock(&dev->struct_mutex);
11519 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
11520 i915_gem_object_put(work->pending_flip_obj);
11521 mutex_unlock(&dev->struct_mutex);
11522
11523 i915_gem_request_put(work->flip_queued_req);
11524
11525 intel_frontbuffer_flip_complete(to_i915(dev),
11526 to_intel_plane(primary)->frontbuffer_bit);
11527 intel_fbc_post_update(crtc);
11528 drm_framebuffer_unreference(work->old_fb);
11529
11530 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11531 atomic_dec(&crtc->unpin_work_count);
11532
11533 kfree(work);
11534 }
11535
11536 /* Is 'a' after or equal to 'b'? */
11537 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11538 {
11539 return !((a - b) & 0x80000000);
11540 }
11541
11542 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11543 struct intel_flip_work *work)
11544 {
11545 struct drm_device *dev = crtc->base.dev;
11546 struct drm_i915_private *dev_priv = to_i915(dev);
11547
11548 if (abort_flip_on_reset(crtc))
11549 return true;
11550
11551 /*
11552 * The relevant registers doen't exist on pre-ctg.
11553 * As the flip done interrupt doesn't trigger for mmio
11554 * flips on gmch platforms, a flip count check isn't
11555 * really needed there. But since ctg has the registers,
11556 * include it in the check anyway.
11557 */
11558 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
11559 return true;
11560
11561 /*
11562 * BDW signals flip done immediately if the plane
11563 * is disabled, even if the plane enable is already
11564 * armed to occur at the next vblank :(
11565 */
11566
11567 /*
11568 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11569 * used the same base address. In that case the mmio flip might
11570 * have completed, but the CS hasn't even executed the flip yet.
11571 *
11572 * A flip count check isn't enough as the CS might have updated
11573 * the base address just after start of vblank, but before we
11574 * managed to process the interrupt. This means we'd complete the
11575 * CS flip too soon.
11576 *
11577 * Combining both checks should get us a good enough result. It may
11578 * still happen that the CS flip has been executed, but has not
11579 * yet actually completed. But in case the base address is the same
11580 * anyway, we don't really care.
11581 */
11582 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11583 crtc->flip_work->gtt_offset &&
11584 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11585 crtc->flip_work->flip_count);
11586 }
11587
11588 static bool
11589 __pageflip_finished_mmio(struct intel_crtc *crtc,
11590 struct intel_flip_work *work)
11591 {
11592 /*
11593 * MMIO work completes when vblank is different from
11594 * flip_queued_vblank.
11595 *
11596 * Reset counter value doesn't matter, this is handled by
11597 * i915_wait_request finishing early, so no need to handle
11598 * reset here.
11599 */
11600 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11601 }
11602
11603
11604 static bool pageflip_finished(struct intel_crtc *crtc,
11605 struct intel_flip_work *work)
11606 {
11607 if (!atomic_read(&work->pending))
11608 return false;
11609
11610 smp_rmb();
11611
11612 if (is_mmio_work(work))
11613 return __pageflip_finished_mmio(crtc, work);
11614 else
11615 return __pageflip_finished_cs(crtc, work);
11616 }
11617
11618 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11619 {
11620 struct drm_device *dev = &dev_priv->drm;
11621 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11622 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11623 struct intel_flip_work *work;
11624 unsigned long flags;
11625
11626 /* Ignore early vblank irqs */
11627 if (!crtc)
11628 return;
11629
11630 /*
11631 * This is called both by irq handlers and the reset code (to complete
11632 * lost pageflips) so needs the full irqsave spinlocks.
11633 */
11634 spin_lock_irqsave(&dev->event_lock, flags);
11635 work = intel_crtc->flip_work;
11636
11637 if (work != NULL &&
11638 !is_mmio_work(work) &&
11639 pageflip_finished(intel_crtc, work))
11640 page_flip_completed(intel_crtc);
11641
11642 spin_unlock_irqrestore(&dev->event_lock, flags);
11643 }
11644
11645 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11646 {
11647 struct drm_device *dev = &dev_priv->drm;
11648 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11650 struct intel_flip_work *work;
11651 unsigned long flags;
11652
11653 /* Ignore early vblank irqs */
11654 if (!crtc)
11655 return;
11656
11657 /*
11658 * This is called both by irq handlers and the reset code (to complete
11659 * lost pageflips) so needs the full irqsave spinlocks.
11660 */
11661 spin_lock_irqsave(&dev->event_lock, flags);
11662 work = intel_crtc->flip_work;
11663
11664 if (work != NULL &&
11665 is_mmio_work(work) &&
11666 pageflip_finished(intel_crtc, work))
11667 page_flip_completed(intel_crtc);
11668
11669 spin_unlock_irqrestore(&dev->event_lock, flags);
11670 }
11671
11672 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11673 struct intel_flip_work *work)
11674 {
11675 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11676
11677 /* Ensure that the work item is consistent when activating it ... */
11678 smp_mb__before_atomic();
11679 atomic_set(&work->pending, 1);
11680 }
11681
11682 static int intel_gen2_queue_flip(struct drm_device *dev,
11683 struct drm_crtc *crtc,
11684 struct drm_framebuffer *fb,
11685 struct drm_i915_gem_object *obj,
11686 struct drm_i915_gem_request *req,
11687 uint32_t flags)
11688 {
11689 struct intel_ring *ring = req->ring;
11690 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11691 u32 flip_mask;
11692 int ret;
11693
11694 ret = intel_ring_begin(req, 6);
11695 if (ret)
11696 return ret;
11697
11698 /* Can't queue multiple flips, so wait for the previous
11699 * one to finish before executing the next.
11700 */
11701 if (intel_crtc->plane)
11702 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11703 else
11704 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11705 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11706 intel_ring_emit(ring, MI_NOOP);
11707 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11708 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11709 intel_ring_emit(ring, fb->pitches[0]);
11710 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11711 intel_ring_emit(ring, 0); /* aux display base address, unused */
11712
11713 return 0;
11714 }
11715
11716 static int intel_gen3_queue_flip(struct drm_device *dev,
11717 struct drm_crtc *crtc,
11718 struct drm_framebuffer *fb,
11719 struct drm_i915_gem_object *obj,
11720 struct drm_i915_gem_request *req,
11721 uint32_t flags)
11722 {
11723 struct intel_ring *ring = req->ring;
11724 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11725 u32 flip_mask;
11726 int ret;
11727
11728 ret = intel_ring_begin(req, 6);
11729 if (ret)
11730 return ret;
11731
11732 if (intel_crtc->plane)
11733 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11734 else
11735 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11736 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11737 intel_ring_emit(ring, MI_NOOP);
11738 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11739 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11740 intel_ring_emit(ring, fb->pitches[0]);
11741 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11742 intel_ring_emit(ring, MI_NOOP);
11743
11744 return 0;
11745 }
11746
11747 static int intel_gen4_queue_flip(struct drm_device *dev,
11748 struct drm_crtc *crtc,
11749 struct drm_framebuffer *fb,
11750 struct drm_i915_gem_object *obj,
11751 struct drm_i915_gem_request *req,
11752 uint32_t flags)
11753 {
11754 struct intel_ring *ring = req->ring;
11755 struct drm_i915_private *dev_priv = to_i915(dev);
11756 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11757 uint32_t pf, pipesrc;
11758 int ret;
11759
11760 ret = intel_ring_begin(req, 4);
11761 if (ret)
11762 return ret;
11763
11764 /* i965+ uses the linear or tiled offsets from the
11765 * Display Registers (which do not change across a page-flip)
11766 * so we need only reprogram the base address.
11767 */
11768 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11769 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11770 intel_ring_emit(ring, fb->pitches[0]);
11771 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11772 intel_fb_modifier_to_tiling(fb->modifier[0]));
11773
11774 /* XXX Enabling the panel-fitter across page-flip is so far
11775 * untested on non-native modes, so ignore it for now.
11776 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11777 */
11778 pf = 0;
11779 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11780 intel_ring_emit(ring, pf | pipesrc);
11781
11782 return 0;
11783 }
11784
11785 static int intel_gen6_queue_flip(struct drm_device *dev,
11786 struct drm_crtc *crtc,
11787 struct drm_framebuffer *fb,
11788 struct drm_i915_gem_object *obj,
11789 struct drm_i915_gem_request *req,
11790 uint32_t flags)
11791 {
11792 struct intel_ring *ring = req->ring;
11793 struct drm_i915_private *dev_priv = to_i915(dev);
11794 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11795 uint32_t pf, pipesrc;
11796 int ret;
11797
11798 ret = intel_ring_begin(req, 4);
11799 if (ret)
11800 return ret;
11801
11802 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11803 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11804 intel_ring_emit(ring, fb->pitches[0] |
11805 intel_fb_modifier_to_tiling(fb->modifier[0]));
11806 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11807
11808 /* Contrary to the suggestions in the documentation,
11809 * "Enable Panel Fitter" does not seem to be required when page
11810 * flipping with a non-native mode, and worse causes a normal
11811 * modeset to fail.
11812 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11813 */
11814 pf = 0;
11815 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11816 intel_ring_emit(ring, pf | pipesrc);
11817
11818 return 0;
11819 }
11820
11821 static int intel_gen7_queue_flip(struct drm_device *dev,
11822 struct drm_crtc *crtc,
11823 struct drm_framebuffer *fb,
11824 struct drm_i915_gem_object *obj,
11825 struct drm_i915_gem_request *req,
11826 uint32_t flags)
11827 {
11828 struct intel_ring *ring = req->ring;
11829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11830 uint32_t plane_bit = 0;
11831 int len, ret;
11832
11833 switch (intel_crtc->plane) {
11834 case PLANE_A:
11835 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11836 break;
11837 case PLANE_B:
11838 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11839 break;
11840 case PLANE_C:
11841 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11842 break;
11843 default:
11844 WARN_ONCE(1, "unknown plane in flip command\n");
11845 return -ENODEV;
11846 }
11847
11848 len = 4;
11849 if (req->engine->id == RCS) {
11850 len += 6;
11851 /*
11852 * On Gen 8, SRM is now taking an extra dword to accommodate
11853 * 48bits addresses, and we need a NOOP for the batch size to
11854 * stay even.
11855 */
11856 if (IS_GEN8(dev))
11857 len += 2;
11858 }
11859
11860 /*
11861 * BSpec MI_DISPLAY_FLIP for IVB:
11862 * "The full packet must be contained within the same cache line."
11863 *
11864 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11865 * cacheline, if we ever start emitting more commands before
11866 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11867 * then do the cacheline alignment, and finally emit the
11868 * MI_DISPLAY_FLIP.
11869 */
11870 ret = intel_ring_cacheline_align(req);
11871 if (ret)
11872 return ret;
11873
11874 ret = intel_ring_begin(req, len);
11875 if (ret)
11876 return ret;
11877
11878 /* Unmask the flip-done completion message. Note that the bspec says that
11879 * we should do this for both the BCS and RCS, and that we must not unmask
11880 * more than one flip event at any time (or ensure that one flip message
11881 * can be sent by waiting for flip-done prior to queueing new flips).
11882 * Experimentation says that BCS works despite DERRMR masking all
11883 * flip-done completion events and that unmasking all planes at once
11884 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11885 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11886 */
11887 if (req->engine->id == RCS) {
11888 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11889 intel_ring_emit_reg(ring, DERRMR);
11890 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11891 DERRMR_PIPEB_PRI_FLIP_DONE |
11892 DERRMR_PIPEC_PRI_FLIP_DONE));
11893 if (IS_GEN8(dev))
11894 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11895 MI_SRM_LRM_GLOBAL_GTT);
11896 else
11897 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11898 MI_SRM_LRM_GLOBAL_GTT);
11899 intel_ring_emit_reg(ring, DERRMR);
11900 intel_ring_emit(ring,
11901 i915_ggtt_offset(req->engine->scratch) + 256);
11902 if (IS_GEN8(dev)) {
11903 intel_ring_emit(ring, 0);
11904 intel_ring_emit(ring, MI_NOOP);
11905 }
11906 }
11907
11908 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11909 intel_ring_emit(ring, fb->pitches[0] |
11910 intel_fb_modifier_to_tiling(fb->modifier[0]));
11911 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11912 intel_ring_emit(ring, (MI_NOOP));
11913
11914 return 0;
11915 }
11916
11917 static bool use_mmio_flip(struct intel_engine_cs *engine,
11918 struct drm_i915_gem_object *obj)
11919 {
11920 struct reservation_object *resv;
11921
11922 /*
11923 * This is not being used for older platforms, because
11924 * non-availability of flip done interrupt forces us to use
11925 * CS flips. Older platforms derive flip done using some clever
11926 * tricks involving the flip_pending status bits and vblank irqs.
11927 * So using MMIO flips there would disrupt this mechanism.
11928 */
11929
11930 if (engine == NULL)
11931 return true;
11932
11933 if (INTEL_GEN(engine->i915) < 5)
11934 return false;
11935
11936 if (i915.use_mmio_flip < 0)
11937 return false;
11938 else if (i915.use_mmio_flip > 0)
11939 return true;
11940 else if (i915.enable_execlists)
11941 return true;
11942
11943 resv = i915_gem_object_get_dmabuf_resv(obj);
11944 if (resv && !reservation_object_test_signaled_rcu(resv, false))
11945 return true;
11946
11947 return engine != i915_gem_active_get_engine(&obj->last_write,
11948 &obj->base.dev->struct_mutex);
11949 }
11950
11951 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11952 unsigned int rotation,
11953 struct intel_flip_work *work)
11954 {
11955 struct drm_device *dev = intel_crtc->base.dev;
11956 struct drm_i915_private *dev_priv = to_i915(dev);
11957 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11958 const enum pipe pipe = intel_crtc->pipe;
11959 u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
11960
11961 ctl = I915_READ(PLANE_CTL(pipe, 0));
11962 ctl &= ~PLANE_CTL_TILED_MASK;
11963 switch (fb->modifier[0]) {
11964 case DRM_FORMAT_MOD_NONE:
11965 break;
11966 case I915_FORMAT_MOD_X_TILED:
11967 ctl |= PLANE_CTL_TILED_X;
11968 break;
11969 case I915_FORMAT_MOD_Y_TILED:
11970 ctl |= PLANE_CTL_TILED_Y;
11971 break;
11972 case I915_FORMAT_MOD_Yf_TILED:
11973 ctl |= PLANE_CTL_TILED_YF;
11974 break;
11975 default:
11976 MISSING_CASE(fb->modifier[0]);
11977 }
11978
11979 /*
11980 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11981 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11982 */
11983 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11984 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11985
11986 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11987 POSTING_READ(PLANE_SURF(pipe, 0));
11988 }
11989
11990 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11991 struct intel_flip_work *work)
11992 {
11993 struct drm_device *dev = intel_crtc->base.dev;
11994 struct drm_i915_private *dev_priv = to_i915(dev);
11995 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11996 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11997 u32 dspcntr;
11998
11999 dspcntr = I915_READ(reg);
12000
12001 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
12002 dspcntr |= DISPPLANE_TILED;
12003 else
12004 dspcntr &= ~DISPPLANE_TILED;
12005
12006 I915_WRITE(reg, dspcntr);
12007
12008 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12009 POSTING_READ(DSPSURF(intel_crtc->plane));
12010 }
12011
12012 static void intel_mmio_flip_work_func(struct work_struct *w)
12013 {
12014 struct intel_flip_work *work =
12015 container_of(w, struct intel_flip_work, mmio_work);
12016 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12017 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12018 struct intel_framebuffer *intel_fb =
12019 to_intel_framebuffer(crtc->base.primary->fb);
12020 struct drm_i915_gem_object *obj = intel_fb->obj;
12021 struct reservation_object *resv;
12022
12023 if (work->flip_queued_req)
12024 WARN_ON(i915_wait_request(work->flip_queued_req,
12025 0, NULL, NO_WAITBOOST));
12026
12027 /* For framebuffer backed by dmabuf, wait for fence */
12028 resv = i915_gem_object_get_dmabuf_resv(obj);
12029 if (resv)
12030 WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
12031 MAX_SCHEDULE_TIMEOUT) < 0);
12032
12033 intel_pipe_update_start(crtc);
12034
12035 if (INTEL_GEN(dev_priv) >= 9)
12036 skl_do_mmio_flip(crtc, work->rotation, work);
12037 else
12038 /* use_mmio_flip() retricts MMIO flips to ilk+ */
12039 ilk_do_mmio_flip(crtc, work);
12040
12041 intel_pipe_update_end(crtc, work);
12042 }
12043
12044 static int intel_default_queue_flip(struct drm_device *dev,
12045 struct drm_crtc *crtc,
12046 struct drm_framebuffer *fb,
12047 struct drm_i915_gem_object *obj,
12048 struct drm_i915_gem_request *req,
12049 uint32_t flags)
12050 {
12051 return -ENODEV;
12052 }
12053
12054 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12055 struct intel_crtc *intel_crtc,
12056 struct intel_flip_work *work)
12057 {
12058 u32 addr, vblank;
12059
12060 if (!atomic_read(&work->pending))
12061 return false;
12062
12063 smp_rmb();
12064
12065 vblank = intel_crtc_get_vblank_counter(intel_crtc);
12066 if (work->flip_ready_vblank == 0) {
12067 if (work->flip_queued_req &&
12068 !i915_gem_request_completed(work->flip_queued_req))
12069 return false;
12070
12071 work->flip_ready_vblank = vblank;
12072 }
12073
12074 if (vblank - work->flip_ready_vblank < 3)
12075 return false;
12076
12077 /* Potential stall - if we see that the flip has happened,
12078 * assume a missed interrupt. */
12079 if (INTEL_GEN(dev_priv) >= 4)
12080 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12081 else
12082 addr = I915_READ(DSPADDR(intel_crtc->plane));
12083
12084 /* There is a potential issue here with a false positive after a flip
12085 * to the same address. We could address this by checking for a
12086 * non-incrementing frame counter.
12087 */
12088 return addr == work->gtt_offset;
12089 }
12090
12091 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12092 {
12093 struct drm_device *dev = &dev_priv->drm;
12094 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
12095 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12096 struct intel_flip_work *work;
12097
12098 WARN_ON(!in_interrupt());
12099
12100 if (crtc == NULL)
12101 return;
12102
12103 spin_lock(&dev->event_lock);
12104 work = intel_crtc->flip_work;
12105
12106 if (work != NULL && !is_mmio_work(work) &&
12107 __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
12108 WARN_ONCE(1,
12109 "Kicking stuck page flip: queued at %d, now %d\n",
12110 work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
12111 page_flip_completed(intel_crtc);
12112 work = NULL;
12113 }
12114
12115 if (work != NULL && !is_mmio_work(work) &&
12116 intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
12117 intel_queue_rps_boost_for_request(work->flip_queued_req);
12118 spin_unlock(&dev->event_lock);
12119 }
12120
12121 static int intel_crtc_page_flip(struct drm_crtc *crtc,
12122 struct drm_framebuffer *fb,
12123 struct drm_pending_vblank_event *event,
12124 uint32_t page_flip_flags)
12125 {
12126 struct drm_device *dev = crtc->dev;
12127 struct drm_i915_private *dev_priv = to_i915(dev);
12128 struct drm_framebuffer *old_fb = crtc->primary->fb;
12129 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12130 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12131 struct drm_plane *primary = crtc->primary;
12132 enum pipe pipe = intel_crtc->pipe;
12133 struct intel_flip_work *work;
12134 struct intel_engine_cs *engine;
12135 bool mmio_flip;
12136 struct drm_i915_gem_request *request;
12137 struct i915_vma *vma;
12138 int ret;
12139
12140 /*
12141 * drm_mode_page_flip_ioctl() should already catch this, but double
12142 * check to be safe. In the future we may enable pageflipping from
12143 * a disabled primary plane.
12144 */
12145 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12146 return -EBUSY;
12147
12148 /* Can't change pixel format via MI display flips. */
12149 if (fb->pixel_format != crtc->primary->fb->pixel_format)
12150 return -EINVAL;
12151
12152 /*
12153 * TILEOFF/LINOFF registers can't be changed via MI display flips.
12154 * Note that pitch changes could also affect these register.
12155 */
12156 if (INTEL_INFO(dev)->gen > 3 &&
12157 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12158 fb->pitches[0] != crtc->primary->fb->pitches[0]))
12159 return -EINVAL;
12160
12161 if (i915_terminally_wedged(&dev_priv->gpu_error))
12162 goto out_hang;
12163
12164 work = kzalloc(sizeof(*work), GFP_KERNEL);
12165 if (work == NULL)
12166 return -ENOMEM;
12167
12168 work->event = event;
12169 work->crtc = crtc;
12170 work->old_fb = old_fb;
12171 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12172
12173 ret = drm_crtc_vblank_get(crtc);
12174 if (ret)
12175 goto free_work;
12176
12177 /* We borrow the event spin lock for protecting flip_work */
12178 spin_lock_irq(&dev->event_lock);
12179 if (intel_crtc->flip_work) {
12180 /* Before declaring the flip queue wedged, check if
12181 * the hardware completed the operation behind our backs.
12182 */
12183 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12184 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12185 page_flip_completed(intel_crtc);
12186 } else {
12187 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12188 spin_unlock_irq(&dev->event_lock);
12189
12190 drm_crtc_vblank_put(crtc);
12191 kfree(work);
12192 return -EBUSY;
12193 }
12194 }
12195 intel_crtc->flip_work = work;
12196 spin_unlock_irq(&dev->event_lock);
12197
12198 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12199 flush_workqueue(dev_priv->wq);
12200
12201 /* Reference the objects for the scheduled work. */
12202 drm_framebuffer_reference(work->old_fb);
12203
12204 crtc->primary->fb = fb;
12205 update_state_fb(crtc->primary);
12206
12207 work->pending_flip_obj = i915_gem_object_get(obj);
12208
12209 ret = i915_mutex_lock_interruptible(dev);
12210 if (ret)
12211 goto cleanup;
12212
12213 intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12214 if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
12215 ret = -EIO;
12216 goto cleanup;
12217 }
12218
12219 atomic_inc(&intel_crtc->unpin_work_count);
12220
12221 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
12222 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12223
12224 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
12225 engine = &dev_priv->engine[BCS];
12226 if (fb->modifier[0] != old_fb->modifier[0])
12227 /* vlv: DISPLAY_FLIP fails to change tiling */
12228 engine = NULL;
12229 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
12230 engine = &dev_priv->engine[BCS];
12231 } else if (INTEL_INFO(dev)->gen >= 7) {
12232 engine = i915_gem_active_get_engine(&obj->last_write,
12233 &obj->base.dev->struct_mutex);
12234 if (engine == NULL || engine->id != RCS)
12235 engine = &dev_priv->engine[BCS];
12236 } else {
12237 engine = &dev_priv->engine[RCS];
12238 }
12239
12240 mmio_flip = use_mmio_flip(engine, obj);
12241
12242 vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12243 if (IS_ERR(vma)) {
12244 ret = PTR_ERR(vma);
12245 goto cleanup_pending;
12246 }
12247
12248 work->gtt_offset = intel_fb_gtt_offset(fb, primary->state->rotation);
12249 work->gtt_offset += intel_crtc->dspaddr_offset;
12250 work->rotation = crtc->primary->state->rotation;
12251
12252 /*
12253 * There's the potential that the next frame will not be compatible with
12254 * FBC, so we want to call pre_update() before the actual page flip.
12255 * The problem is that pre_update() caches some information about the fb
12256 * object, so we want to do this only after the object is pinned. Let's
12257 * be on the safe side and do this immediately before scheduling the
12258 * flip.
12259 */
12260 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12261 to_intel_plane_state(primary->state));
12262
12263 if (mmio_flip) {
12264 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12265
12266 work->flip_queued_req = i915_gem_active_get(&obj->last_write,
12267 &obj->base.dev->struct_mutex);
12268 schedule_work(&work->mmio_work);
12269 } else {
12270 request = i915_gem_request_alloc(engine, engine->last_context);
12271 if (IS_ERR(request)) {
12272 ret = PTR_ERR(request);
12273 goto cleanup_unpin;
12274 }
12275
12276 ret = i915_gem_request_await_object(request, obj, false);
12277 if (ret)
12278 goto cleanup_request;
12279
12280 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12281 page_flip_flags);
12282 if (ret)
12283 goto cleanup_request;
12284
12285 intel_mark_page_flip_active(intel_crtc, work);
12286
12287 work->flip_queued_req = i915_gem_request_get(request);
12288 i915_add_request_no_flush(request);
12289 }
12290
12291 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12292 to_intel_plane(primary)->frontbuffer_bit);
12293 mutex_unlock(&dev->struct_mutex);
12294
12295 intel_frontbuffer_flip_prepare(to_i915(dev),
12296 to_intel_plane(primary)->frontbuffer_bit);
12297
12298 trace_i915_flip_request(intel_crtc->plane, obj);
12299
12300 return 0;
12301
12302 cleanup_request:
12303 i915_add_request_no_flush(request);
12304 cleanup_unpin:
12305 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
12306 cleanup_pending:
12307 atomic_dec(&intel_crtc->unpin_work_count);
12308 mutex_unlock(&dev->struct_mutex);
12309 cleanup:
12310 crtc->primary->fb = old_fb;
12311 update_state_fb(crtc->primary);
12312
12313 i915_gem_object_put_unlocked(obj);
12314 drm_framebuffer_unreference(work->old_fb);
12315
12316 spin_lock_irq(&dev->event_lock);
12317 intel_crtc->flip_work = NULL;
12318 spin_unlock_irq(&dev->event_lock);
12319
12320 drm_crtc_vblank_put(crtc);
12321 free_work:
12322 kfree(work);
12323
12324 if (ret == -EIO) {
12325 struct drm_atomic_state *state;
12326 struct drm_plane_state *plane_state;
12327
12328 out_hang:
12329 state = drm_atomic_state_alloc(dev);
12330 if (!state)
12331 return -ENOMEM;
12332 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12333
12334 retry:
12335 plane_state = drm_atomic_get_plane_state(state, primary);
12336 ret = PTR_ERR_OR_ZERO(plane_state);
12337 if (!ret) {
12338 drm_atomic_set_fb_for_plane(plane_state, fb);
12339
12340 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12341 if (!ret)
12342 ret = drm_atomic_commit(state);
12343 }
12344
12345 if (ret == -EDEADLK) {
12346 drm_modeset_backoff(state->acquire_ctx);
12347 drm_atomic_state_clear(state);
12348 goto retry;
12349 }
12350
12351 if (ret)
12352 drm_atomic_state_free(state);
12353
12354 if (ret == 0 && event) {
12355 spin_lock_irq(&dev->event_lock);
12356 drm_crtc_send_vblank_event(crtc, event);
12357 spin_unlock_irq(&dev->event_lock);
12358 }
12359 }
12360 return ret;
12361 }
12362
12363
12364 /**
12365 * intel_wm_need_update - Check whether watermarks need updating
12366 * @plane: drm plane
12367 * @state: new plane state
12368 *
12369 * Check current plane state versus the new one to determine whether
12370 * watermarks need to be recalculated.
12371 *
12372 * Returns true or false.
12373 */
12374 static bool intel_wm_need_update(struct drm_plane *plane,
12375 struct drm_plane_state *state)
12376 {
12377 struct intel_plane_state *new = to_intel_plane_state(state);
12378 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12379
12380 /* Update watermarks on tiling or size changes. */
12381 if (new->base.visible != cur->base.visible)
12382 return true;
12383
12384 if (!cur->base.fb || !new->base.fb)
12385 return false;
12386
12387 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
12388 cur->base.rotation != new->base.rotation ||
12389 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12390 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12391 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12392 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
12393 return true;
12394
12395 return false;
12396 }
12397
12398 static bool needs_scaling(struct intel_plane_state *state)
12399 {
12400 int src_w = drm_rect_width(&state->base.src) >> 16;
12401 int src_h = drm_rect_height(&state->base.src) >> 16;
12402 int dst_w = drm_rect_width(&state->base.dst);
12403 int dst_h = drm_rect_height(&state->base.dst);
12404
12405 return (src_w != dst_w || src_h != dst_h);
12406 }
12407
12408 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12409 struct drm_plane_state *plane_state)
12410 {
12411 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
12412 struct drm_crtc *crtc = crtc_state->crtc;
12413 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12414 struct drm_plane *plane = plane_state->plane;
12415 struct drm_device *dev = crtc->dev;
12416 struct drm_i915_private *dev_priv = to_i915(dev);
12417 struct intel_plane_state *old_plane_state =
12418 to_intel_plane_state(plane->state);
12419 bool mode_changed = needs_modeset(crtc_state);
12420 bool was_crtc_enabled = crtc->state->active;
12421 bool is_crtc_enabled = crtc_state->active;
12422 bool turn_off, turn_on, visible, was_visible;
12423 struct drm_framebuffer *fb = plane_state->fb;
12424 int ret;
12425
12426 if (INTEL_GEN(dev) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
12427 ret = skl_update_scaler_plane(
12428 to_intel_crtc_state(crtc_state),
12429 to_intel_plane_state(plane_state));
12430 if (ret)
12431 return ret;
12432 }
12433
12434 was_visible = old_plane_state->base.visible;
12435 visible = to_intel_plane_state(plane_state)->base.visible;
12436
12437 if (!was_crtc_enabled && WARN_ON(was_visible))
12438 was_visible = false;
12439
12440 /*
12441 * Visibility is calculated as if the crtc was on, but
12442 * after scaler setup everything depends on it being off
12443 * when the crtc isn't active.
12444 *
12445 * FIXME this is wrong for watermarks. Watermarks should also
12446 * be computed as if the pipe would be active. Perhaps move
12447 * per-plane wm computation to the .check_plane() hook, and
12448 * only combine the results from all planes in the current place?
12449 */
12450 if (!is_crtc_enabled)
12451 to_intel_plane_state(plane_state)->base.visible = visible = false;
12452
12453 if (!was_visible && !visible)
12454 return 0;
12455
12456 if (fb != old_plane_state->base.fb)
12457 pipe_config->fb_changed = true;
12458
12459 turn_off = was_visible && (!visible || mode_changed);
12460 turn_on = visible && (!was_visible || mode_changed);
12461
12462 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12463 intel_crtc->base.base.id,
12464 intel_crtc->base.name,
12465 plane->base.id, plane->name,
12466 fb ? fb->base.id : -1);
12467
12468 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12469 plane->base.id, plane->name,
12470 was_visible, visible,
12471 turn_off, turn_on, mode_changed);
12472
12473 if (turn_on) {
12474 pipe_config->update_wm_pre = true;
12475
12476 /* must disable cxsr around plane enable/disable */
12477 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12478 pipe_config->disable_cxsr = true;
12479 } else if (turn_off) {
12480 pipe_config->update_wm_post = true;
12481
12482 /* must disable cxsr around plane enable/disable */
12483 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12484 pipe_config->disable_cxsr = true;
12485 } else if (intel_wm_need_update(plane, plane_state)) {
12486 /* FIXME bollocks */
12487 pipe_config->update_wm_pre = true;
12488 pipe_config->update_wm_post = true;
12489 }
12490
12491 /* Pre-gen9 platforms need two-step watermark updates */
12492 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12493 INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
12494 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12495
12496 if (visible || was_visible)
12497 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12498
12499 /*
12500 * WaCxSRDisabledForSpriteScaling:ivb
12501 *
12502 * cstate->update_wm was already set above, so this flag will
12503 * take effect when we commit and program watermarks.
12504 */
12505 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
12506 needs_scaling(to_intel_plane_state(plane_state)) &&
12507 !needs_scaling(old_plane_state))
12508 pipe_config->disable_lp_wm = true;
12509
12510 return 0;
12511 }
12512
12513 static bool encoders_cloneable(const struct intel_encoder *a,
12514 const struct intel_encoder *b)
12515 {
12516 /* masks could be asymmetric, so check both ways */
12517 return a == b || (a->cloneable & (1 << b->type) &&
12518 b->cloneable & (1 << a->type));
12519 }
12520
12521 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12522 struct intel_crtc *crtc,
12523 struct intel_encoder *encoder)
12524 {
12525 struct intel_encoder *source_encoder;
12526 struct drm_connector *connector;
12527 struct drm_connector_state *connector_state;
12528 int i;
12529
12530 for_each_connector_in_state(state, connector, connector_state, i) {
12531 if (connector_state->crtc != &crtc->base)
12532 continue;
12533
12534 source_encoder =
12535 to_intel_encoder(connector_state->best_encoder);
12536 if (!encoders_cloneable(encoder, source_encoder))
12537 return false;
12538 }
12539
12540 return true;
12541 }
12542
12543 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12544 struct drm_crtc_state *crtc_state)
12545 {
12546 struct drm_device *dev = crtc->dev;
12547 struct drm_i915_private *dev_priv = to_i915(dev);
12548 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12549 struct intel_crtc_state *pipe_config =
12550 to_intel_crtc_state(crtc_state);
12551 struct drm_atomic_state *state = crtc_state->state;
12552 int ret;
12553 bool mode_changed = needs_modeset(crtc_state);
12554
12555 if (mode_changed && !crtc_state->active)
12556 pipe_config->update_wm_post = true;
12557
12558 if (mode_changed && crtc_state->enable &&
12559 dev_priv->display.crtc_compute_clock &&
12560 !WARN_ON(pipe_config->shared_dpll)) {
12561 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12562 pipe_config);
12563 if (ret)
12564 return ret;
12565 }
12566
12567 if (crtc_state->color_mgmt_changed) {
12568 ret = intel_color_check(crtc, crtc_state);
12569 if (ret)
12570 return ret;
12571
12572 /*
12573 * Changing color management on Intel hardware is
12574 * handled as part of planes update.
12575 */
12576 crtc_state->planes_changed = true;
12577 }
12578
12579 ret = 0;
12580 if (dev_priv->display.compute_pipe_wm) {
12581 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12582 if (ret) {
12583 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12584 return ret;
12585 }
12586 }
12587
12588 if (dev_priv->display.compute_intermediate_wm &&
12589 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12590 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12591 return 0;
12592
12593 /*
12594 * Calculate 'intermediate' watermarks that satisfy both the
12595 * old state and the new state. We can program these
12596 * immediately.
12597 */
12598 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12599 intel_crtc,
12600 pipe_config);
12601 if (ret) {
12602 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12603 return ret;
12604 }
12605 } else if (dev_priv->display.compute_intermediate_wm) {
12606 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12607 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12608 }
12609
12610 if (INTEL_INFO(dev)->gen >= 9) {
12611 if (mode_changed)
12612 ret = skl_update_scaler_crtc(pipe_config);
12613
12614 if (!ret)
12615 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12616 pipe_config);
12617 }
12618
12619 return ret;
12620 }
12621
12622 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12623 .mode_set_base_atomic = intel_pipe_set_base_atomic,
12624 .atomic_begin = intel_begin_crtc_commit,
12625 .atomic_flush = intel_finish_crtc_commit,
12626 .atomic_check = intel_crtc_atomic_check,
12627 };
12628
12629 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12630 {
12631 struct intel_connector *connector;
12632
12633 for_each_intel_connector(dev, connector) {
12634 if (connector->base.state->crtc)
12635 drm_connector_unreference(&connector->base);
12636
12637 if (connector->base.encoder) {
12638 connector->base.state->best_encoder =
12639 connector->base.encoder;
12640 connector->base.state->crtc =
12641 connector->base.encoder->crtc;
12642
12643 drm_connector_reference(&connector->base);
12644 } else {
12645 connector->base.state->best_encoder = NULL;
12646 connector->base.state->crtc = NULL;
12647 }
12648 }
12649 }
12650
12651 static void
12652 connected_sink_compute_bpp(struct intel_connector *connector,
12653 struct intel_crtc_state *pipe_config)
12654 {
12655 int bpp = pipe_config->pipe_bpp;
12656
12657 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12658 connector->base.base.id,
12659 connector->base.name);
12660
12661 /* Don't use an invalid EDID bpc value */
12662 if (connector->base.display_info.bpc &&
12663 connector->base.display_info.bpc * 3 < bpp) {
12664 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12665 bpp, connector->base.display_info.bpc*3);
12666 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12667 }
12668
12669 /* Clamp bpp to 8 on screens without EDID 1.4 */
12670 if (connector->base.display_info.bpc == 0 && bpp > 24) {
12671 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12672 bpp);
12673 pipe_config->pipe_bpp = 24;
12674 }
12675 }
12676
12677 static int
12678 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12679 struct intel_crtc_state *pipe_config)
12680 {
12681 struct drm_device *dev = crtc->base.dev;
12682 struct drm_atomic_state *state;
12683 struct drm_connector *connector;
12684 struct drm_connector_state *connector_state;
12685 int bpp, i;
12686
12687 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12688 bpp = 10*3;
12689 else if (INTEL_INFO(dev)->gen >= 5)
12690 bpp = 12*3;
12691 else
12692 bpp = 8*3;
12693
12694
12695 pipe_config->pipe_bpp = bpp;
12696
12697 state = pipe_config->base.state;
12698
12699 /* Clamp display bpp to EDID value */
12700 for_each_connector_in_state(state, connector, connector_state, i) {
12701 if (connector_state->crtc != &crtc->base)
12702 continue;
12703
12704 connected_sink_compute_bpp(to_intel_connector(connector),
12705 pipe_config);
12706 }
12707
12708 return bpp;
12709 }
12710
12711 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12712 {
12713 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12714 "type: 0x%x flags: 0x%x\n",
12715 mode->crtc_clock,
12716 mode->crtc_hdisplay, mode->crtc_hsync_start,
12717 mode->crtc_hsync_end, mode->crtc_htotal,
12718 mode->crtc_vdisplay, mode->crtc_vsync_start,
12719 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12720 }
12721
12722 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12723 struct intel_crtc_state *pipe_config,
12724 const char *context)
12725 {
12726 struct drm_device *dev = crtc->base.dev;
12727 struct drm_plane *plane;
12728 struct intel_plane *intel_plane;
12729 struct intel_plane_state *state;
12730 struct drm_framebuffer *fb;
12731
12732 DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12733 crtc->base.base.id, crtc->base.name,
12734 context, pipe_config, pipe_name(crtc->pipe));
12735
12736 DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12737 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12738 pipe_config->pipe_bpp, pipe_config->dither);
12739 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12740 pipe_config->has_pch_encoder,
12741 pipe_config->fdi_lanes,
12742 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12743 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12744 pipe_config->fdi_m_n.tu);
12745 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12746 intel_crtc_has_dp_encoder(pipe_config),
12747 pipe_config->lane_count,
12748 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12749 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12750 pipe_config->dp_m_n.tu);
12751
12752 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12753 intel_crtc_has_dp_encoder(pipe_config),
12754 pipe_config->lane_count,
12755 pipe_config->dp_m2_n2.gmch_m,
12756 pipe_config->dp_m2_n2.gmch_n,
12757 pipe_config->dp_m2_n2.link_m,
12758 pipe_config->dp_m2_n2.link_n,
12759 pipe_config->dp_m2_n2.tu);
12760
12761 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12762 pipe_config->has_audio,
12763 pipe_config->has_infoframe);
12764
12765 DRM_DEBUG_KMS("requested mode:\n");
12766 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12767 DRM_DEBUG_KMS("adjusted mode:\n");
12768 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12769 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12770 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12771 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12772 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12773 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12774 crtc->num_scalers,
12775 pipe_config->scaler_state.scaler_users,
12776 pipe_config->scaler_state.scaler_id);
12777 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12778 pipe_config->gmch_pfit.control,
12779 pipe_config->gmch_pfit.pgm_ratios,
12780 pipe_config->gmch_pfit.lvds_border_bits);
12781 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12782 pipe_config->pch_pfit.pos,
12783 pipe_config->pch_pfit.size,
12784 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12785 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12786 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12787
12788 if (IS_BROXTON(dev)) {
12789 DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12790 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12791 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12792 pipe_config->dpll_hw_state.ebb0,
12793 pipe_config->dpll_hw_state.ebb4,
12794 pipe_config->dpll_hw_state.pll0,
12795 pipe_config->dpll_hw_state.pll1,
12796 pipe_config->dpll_hw_state.pll2,
12797 pipe_config->dpll_hw_state.pll3,
12798 pipe_config->dpll_hw_state.pll6,
12799 pipe_config->dpll_hw_state.pll8,
12800 pipe_config->dpll_hw_state.pll9,
12801 pipe_config->dpll_hw_state.pll10,
12802 pipe_config->dpll_hw_state.pcsdw12);
12803 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12804 DRM_DEBUG_KMS("dpll_hw_state: "
12805 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12806 pipe_config->dpll_hw_state.ctrl1,
12807 pipe_config->dpll_hw_state.cfgcr1,
12808 pipe_config->dpll_hw_state.cfgcr2);
12809 } else if (HAS_DDI(dev)) {
12810 DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12811 pipe_config->dpll_hw_state.wrpll,
12812 pipe_config->dpll_hw_state.spll);
12813 } else {
12814 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12815 "fp0: 0x%x, fp1: 0x%x\n",
12816 pipe_config->dpll_hw_state.dpll,
12817 pipe_config->dpll_hw_state.dpll_md,
12818 pipe_config->dpll_hw_state.fp0,
12819 pipe_config->dpll_hw_state.fp1);
12820 }
12821
12822 DRM_DEBUG_KMS("planes on this crtc\n");
12823 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12824 char *format_name;
12825 intel_plane = to_intel_plane(plane);
12826 if (intel_plane->pipe != crtc->pipe)
12827 continue;
12828
12829 state = to_intel_plane_state(plane->state);
12830 fb = state->base.fb;
12831 if (!fb) {
12832 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12833 plane->base.id, plane->name, state->scaler_id);
12834 continue;
12835 }
12836
12837 format_name = drm_get_format_name(fb->pixel_format);
12838
12839 DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12840 plane->base.id, plane->name);
12841 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12842 fb->base.id, fb->width, fb->height, format_name);
12843 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12844 state->scaler_id,
12845 state->base.src.x1 >> 16,
12846 state->base.src.y1 >> 16,
12847 drm_rect_width(&state->base.src) >> 16,
12848 drm_rect_height(&state->base.src) >> 16,
12849 state->base.dst.x1, state->base.dst.y1,
12850 drm_rect_width(&state->base.dst),
12851 drm_rect_height(&state->base.dst));
12852
12853 kfree(format_name);
12854 }
12855 }
12856
12857 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12858 {
12859 struct drm_device *dev = state->dev;
12860 struct drm_connector *connector;
12861 unsigned int used_ports = 0;
12862 unsigned int used_mst_ports = 0;
12863
12864 /*
12865 * Walk the connector list instead of the encoder
12866 * list to detect the problem on ddi platforms
12867 * where there's just one encoder per digital port.
12868 */
12869 drm_for_each_connector(connector, dev) {
12870 struct drm_connector_state *connector_state;
12871 struct intel_encoder *encoder;
12872
12873 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12874 if (!connector_state)
12875 connector_state = connector->state;
12876
12877 if (!connector_state->best_encoder)
12878 continue;
12879
12880 encoder = to_intel_encoder(connector_state->best_encoder);
12881
12882 WARN_ON(!connector_state->crtc);
12883
12884 switch (encoder->type) {
12885 unsigned int port_mask;
12886 case INTEL_OUTPUT_UNKNOWN:
12887 if (WARN_ON(!HAS_DDI(dev)))
12888 break;
12889 case INTEL_OUTPUT_DP:
12890 case INTEL_OUTPUT_HDMI:
12891 case INTEL_OUTPUT_EDP:
12892 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12893
12894 /* the same port mustn't appear more than once */
12895 if (used_ports & port_mask)
12896 return false;
12897
12898 used_ports |= port_mask;
12899 break;
12900 case INTEL_OUTPUT_DP_MST:
12901 used_mst_ports |=
12902 1 << enc_to_mst(&encoder->base)->primary->port;
12903 break;
12904 default:
12905 break;
12906 }
12907 }
12908
12909 /* can't mix MST and SST/HDMI on the same port */
12910 if (used_ports & used_mst_ports)
12911 return false;
12912
12913 return true;
12914 }
12915
12916 static void
12917 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12918 {
12919 struct drm_crtc_state tmp_state;
12920 struct intel_crtc_scaler_state scaler_state;
12921 struct intel_dpll_hw_state dpll_hw_state;
12922 struct intel_shared_dpll *shared_dpll;
12923 bool force_thru;
12924
12925 /* FIXME: before the switch to atomic started, a new pipe_config was
12926 * kzalloc'd. Code that depends on any field being zero should be
12927 * fixed, so that the crtc_state can be safely duplicated. For now,
12928 * only fields that are know to not cause problems are preserved. */
12929
12930 tmp_state = crtc_state->base;
12931 scaler_state = crtc_state->scaler_state;
12932 shared_dpll = crtc_state->shared_dpll;
12933 dpll_hw_state = crtc_state->dpll_hw_state;
12934 force_thru = crtc_state->pch_pfit.force_thru;
12935
12936 memset(crtc_state, 0, sizeof *crtc_state);
12937
12938 crtc_state->base = tmp_state;
12939 crtc_state->scaler_state = scaler_state;
12940 crtc_state->shared_dpll = shared_dpll;
12941 crtc_state->dpll_hw_state = dpll_hw_state;
12942 crtc_state->pch_pfit.force_thru = force_thru;
12943 }
12944
12945 static int
12946 intel_modeset_pipe_config(struct drm_crtc *crtc,
12947 struct intel_crtc_state *pipe_config)
12948 {
12949 struct drm_atomic_state *state = pipe_config->base.state;
12950 struct intel_encoder *encoder;
12951 struct drm_connector *connector;
12952 struct drm_connector_state *connector_state;
12953 int base_bpp, ret = -EINVAL;
12954 int i;
12955 bool retry = true;
12956
12957 clear_intel_crtc_state(pipe_config);
12958
12959 pipe_config->cpu_transcoder =
12960 (enum transcoder) to_intel_crtc(crtc)->pipe;
12961
12962 /*
12963 * Sanitize sync polarity flags based on requested ones. If neither
12964 * positive or negative polarity is requested, treat this as meaning
12965 * negative polarity.
12966 */
12967 if (!(pipe_config->base.adjusted_mode.flags &
12968 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12969 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12970
12971 if (!(pipe_config->base.adjusted_mode.flags &
12972 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12973 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12974
12975 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12976 pipe_config);
12977 if (base_bpp < 0)
12978 goto fail;
12979
12980 /*
12981 * Determine the real pipe dimensions. Note that stereo modes can
12982 * increase the actual pipe size due to the frame doubling and
12983 * insertion of additional space for blanks between the frame. This
12984 * is stored in the crtc timings. We use the requested mode to do this
12985 * computation to clearly distinguish it from the adjusted mode, which
12986 * can be changed by the connectors in the below retry loop.
12987 */
12988 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12989 &pipe_config->pipe_src_w,
12990 &pipe_config->pipe_src_h);
12991
12992 for_each_connector_in_state(state, connector, connector_state, i) {
12993 if (connector_state->crtc != crtc)
12994 continue;
12995
12996 encoder = to_intel_encoder(connector_state->best_encoder);
12997
12998 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12999 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
13000 goto fail;
13001 }
13002
13003 /*
13004 * Determine output_types before calling the .compute_config()
13005 * hooks so that the hooks can use this information safely.
13006 */
13007 pipe_config->output_types |= 1 << encoder->type;
13008 }
13009
13010 encoder_retry:
13011 /* Ensure the port clock defaults are reset when retrying. */
13012 pipe_config->port_clock = 0;
13013 pipe_config->pixel_multiplier = 1;
13014
13015 /* Fill in default crtc timings, allow encoders to overwrite them. */
13016 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13017 CRTC_STEREO_DOUBLE);
13018
13019 /* Pass our mode to the connectors and the CRTC to give them a chance to
13020 * adjust it according to limitations or connector properties, and also
13021 * a chance to reject the mode entirely.
13022 */
13023 for_each_connector_in_state(state, connector, connector_state, i) {
13024 if (connector_state->crtc != crtc)
13025 continue;
13026
13027 encoder = to_intel_encoder(connector_state->best_encoder);
13028
13029 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
13030 DRM_DEBUG_KMS("Encoder config failure\n");
13031 goto fail;
13032 }
13033 }
13034
13035 /* Set default port clock if not overwritten by the encoder. Needs to be
13036 * done afterwards in case the encoder adjusts the mode. */
13037 if (!pipe_config->port_clock)
13038 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
13039 * pipe_config->pixel_multiplier;
13040
13041 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13042 if (ret < 0) {
13043 DRM_DEBUG_KMS("CRTC fixup failed\n");
13044 goto fail;
13045 }
13046
13047 if (ret == RETRY) {
13048 if (WARN(!retry, "loop in pipe configuration computation\n")) {
13049 ret = -EINVAL;
13050 goto fail;
13051 }
13052
13053 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13054 retry = false;
13055 goto encoder_retry;
13056 }
13057
13058 /* Dithering seems to not pass-through bits correctly when it should, so
13059 * only enable it on 6bpc panels. */
13060 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
13061 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13062 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13063
13064 fail:
13065 return ret;
13066 }
13067
13068 static void
13069 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
13070 {
13071 struct drm_crtc *crtc;
13072 struct drm_crtc_state *crtc_state;
13073 int i;
13074
13075 /* Double check state. */
13076 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13077 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
13078
13079 /* Update hwmode for vblank functions */
13080 if (crtc->state->active)
13081 crtc->hwmode = crtc->state->adjusted_mode;
13082 else
13083 crtc->hwmode.crtc_clock = 0;
13084
13085 /*
13086 * Update legacy state to satisfy fbc code. This can
13087 * be removed when fbc uses the atomic state.
13088 */
13089 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13090 struct drm_plane_state *plane_state = crtc->primary->state;
13091
13092 crtc->primary->fb = plane_state->fb;
13093 crtc->x = plane_state->src_x >> 16;
13094 crtc->y = plane_state->src_y >> 16;
13095 }
13096 }
13097 }
13098
13099 static bool intel_fuzzy_clock_check(int clock1, int clock2)
13100 {
13101 int diff;
13102
13103 if (clock1 == clock2)
13104 return true;
13105
13106 if (!clock1 || !clock2)
13107 return false;
13108
13109 diff = abs(clock1 - clock2);
13110
13111 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13112 return true;
13113
13114 return false;
13115 }
13116
13117 static bool
13118 intel_compare_m_n(unsigned int m, unsigned int n,
13119 unsigned int m2, unsigned int n2,
13120 bool exact)
13121 {
13122 if (m == m2 && n == n2)
13123 return true;
13124
13125 if (exact || !m || !n || !m2 || !n2)
13126 return false;
13127
13128 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13129
13130 if (n > n2) {
13131 while (n > n2) {
13132 m2 <<= 1;
13133 n2 <<= 1;
13134 }
13135 } else if (n < n2) {
13136 while (n < n2) {
13137 m <<= 1;
13138 n <<= 1;
13139 }
13140 }
13141
13142 if (n != n2)
13143 return false;
13144
13145 return intel_fuzzy_clock_check(m, m2);
13146 }
13147
13148 static bool
13149 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13150 struct intel_link_m_n *m2_n2,
13151 bool adjust)
13152 {
13153 if (m_n->tu == m2_n2->tu &&
13154 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13155 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13156 intel_compare_m_n(m_n->link_m, m_n->link_n,
13157 m2_n2->link_m, m2_n2->link_n, !adjust)) {
13158 if (adjust)
13159 *m2_n2 = *m_n;
13160
13161 return true;
13162 }
13163
13164 return false;
13165 }
13166
13167 static bool
13168 intel_pipe_config_compare(struct drm_device *dev,
13169 struct intel_crtc_state *current_config,
13170 struct intel_crtc_state *pipe_config,
13171 bool adjust)
13172 {
13173 bool ret = true;
13174
13175 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
13176 do { \
13177 if (!adjust) \
13178 DRM_ERROR(fmt, ##__VA_ARGS__); \
13179 else \
13180 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
13181 } while (0)
13182
13183 #define PIPE_CONF_CHECK_X(name) \
13184 if (current_config->name != pipe_config->name) { \
13185 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13186 "(expected 0x%08x, found 0x%08x)\n", \
13187 current_config->name, \
13188 pipe_config->name); \
13189 ret = false; \
13190 }
13191
13192 #define PIPE_CONF_CHECK_I(name) \
13193 if (current_config->name != pipe_config->name) { \
13194 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13195 "(expected %i, found %i)\n", \
13196 current_config->name, \
13197 pipe_config->name); \
13198 ret = false; \
13199 }
13200
13201 #define PIPE_CONF_CHECK_P(name) \
13202 if (current_config->name != pipe_config->name) { \
13203 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13204 "(expected %p, found %p)\n", \
13205 current_config->name, \
13206 pipe_config->name); \
13207 ret = false; \
13208 }
13209
13210 #define PIPE_CONF_CHECK_M_N(name) \
13211 if (!intel_compare_link_m_n(&current_config->name, \
13212 &pipe_config->name,\
13213 adjust)) { \
13214 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13215 "(expected tu %i gmch %i/%i link %i/%i, " \
13216 "found tu %i, gmch %i/%i link %i/%i)\n", \
13217 current_config->name.tu, \
13218 current_config->name.gmch_m, \
13219 current_config->name.gmch_n, \
13220 current_config->name.link_m, \
13221 current_config->name.link_n, \
13222 pipe_config->name.tu, \
13223 pipe_config->name.gmch_m, \
13224 pipe_config->name.gmch_n, \
13225 pipe_config->name.link_m, \
13226 pipe_config->name.link_n); \
13227 ret = false; \
13228 }
13229
13230 /* This is required for BDW+ where there is only one set of registers for
13231 * switching between high and low RR.
13232 * This macro can be used whenever a comparison has to be made between one
13233 * hw state and multiple sw state variables.
13234 */
13235 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13236 if (!intel_compare_link_m_n(&current_config->name, \
13237 &pipe_config->name, adjust) && \
13238 !intel_compare_link_m_n(&current_config->alt_name, \
13239 &pipe_config->name, adjust)) { \
13240 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13241 "(expected tu %i gmch %i/%i link %i/%i, " \
13242 "or tu %i gmch %i/%i link %i/%i, " \
13243 "found tu %i, gmch %i/%i link %i/%i)\n", \
13244 current_config->name.tu, \
13245 current_config->name.gmch_m, \
13246 current_config->name.gmch_n, \
13247 current_config->name.link_m, \
13248 current_config->name.link_n, \
13249 current_config->alt_name.tu, \
13250 current_config->alt_name.gmch_m, \
13251 current_config->alt_name.gmch_n, \
13252 current_config->alt_name.link_m, \
13253 current_config->alt_name.link_n, \
13254 pipe_config->name.tu, \
13255 pipe_config->name.gmch_m, \
13256 pipe_config->name.gmch_n, \
13257 pipe_config->name.link_m, \
13258 pipe_config->name.link_n); \
13259 ret = false; \
13260 }
13261
13262 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
13263 if ((current_config->name ^ pipe_config->name) & (mask)) { \
13264 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
13265 "(expected %i, found %i)\n", \
13266 current_config->name & (mask), \
13267 pipe_config->name & (mask)); \
13268 ret = false; \
13269 }
13270
13271 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13272 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13273 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13274 "(expected %i, found %i)\n", \
13275 current_config->name, \
13276 pipe_config->name); \
13277 ret = false; \
13278 }
13279
13280 #define PIPE_CONF_QUIRK(quirk) \
13281 ((current_config->quirks | pipe_config->quirks) & (quirk))
13282
13283 PIPE_CONF_CHECK_I(cpu_transcoder);
13284
13285 PIPE_CONF_CHECK_I(has_pch_encoder);
13286 PIPE_CONF_CHECK_I(fdi_lanes);
13287 PIPE_CONF_CHECK_M_N(fdi_m_n);
13288
13289 PIPE_CONF_CHECK_I(lane_count);
13290 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13291
13292 if (INTEL_INFO(dev)->gen < 8) {
13293 PIPE_CONF_CHECK_M_N(dp_m_n);
13294
13295 if (current_config->has_drrs)
13296 PIPE_CONF_CHECK_M_N(dp_m2_n2);
13297 } else
13298 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13299
13300 PIPE_CONF_CHECK_X(output_types);
13301
13302 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13303 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13304 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13305 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13306 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13307 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13308
13309 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13310 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13311 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13312 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13313 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13314 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13315
13316 PIPE_CONF_CHECK_I(pixel_multiplier);
13317 PIPE_CONF_CHECK_I(has_hdmi_sink);
13318 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
13319 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
13320 PIPE_CONF_CHECK_I(limited_color_range);
13321 PIPE_CONF_CHECK_I(has_infoframe);
13322
13323 PIPE_CONF_CHECK_I(has_audio);
13324
13325 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13326 DRM_MODE_FLAG_INTERLACE);
13327
13328 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13329 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13330 DRM_MODE_FLAG_PHSYNC);
13331 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13332 DRM_MODE_FLAG_NHSYNC);
13333 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13334 DRM_MODE_FLAG_PVSYNC);
13335 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13336 DRM_MODE_FLAG_NVSYNC);
13337 }
13338
13339 PIPE_CONF_CHECK_X(gmch_pfit.control);
13340 /* pfit ratios are autocomputed by the hw on gen4+ */
13341 if (INTEL_INFO(dev)->gen < 4)
13342 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13343 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13344
13345 if (!adjust) {
13346 PIPE_CONF_CHECK_I(pipe_src_w);
13347 PIPE_CONF_CHECK_I(pipe_src_h);
13348
13349 PIPE_CONF_CHECK_I(pch_pfit.enabled);
13350 if (current_config->pch_pfit.enabled) {
13351 PIPE_CONF_CHECK_X(pch_pfit.pos);
13352 PIPE_CONF_CHECK_X(pch_pfit.size);
13353 }
13354
13355 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13356 }
13357
13358 /* BDW+ don't expose a synchronous way to read the state */
13359 if (IS_HASWELL(dev))
13360 PIPE_CONF_CHECK_I(ips_enabled);
13361
13362 PIPE_CONF_CHECK_I(double_wide);
13363
13364 PIPE_CONF_CHECK_P(shared_dpll);
13365 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13366 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13367 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13368 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13369 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13370 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13371 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13372 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13373 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13374
13375 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13376 PIPE_CONF_CHECK_X(dsi_pll.div);
13377
13378 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
13379 PIPE_CONF_CHECK_I(pipe_bpp);
13380
13381 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13382 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13383
13384 #undef PIPE_CONF_CHECK_X
13385 #undef PIPE_CONF_CHECK_I
13386 #undef PIPE_CONF_CHECK_P
13387 #undef PIPE_CONF_CHECK_FLAGS
13388 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13389 #undef PIPE_CONF_QUIRK
13390 #undef INTEL_ERR_OR_DBG_KMS
13391
13392 return ret;
13393 }
13394
13395 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13396 const struct intel_crtc_state *pipe_config)
13397 {
13398 if (pipe_config->has_pch_encoder) {
13399 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13400 &pipe_config->fdi_m_n);
13401 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13402
13403 /*
13404 * FDI already provided one idea for the dotclock.
13405 * Yell if the encoder disagrees.
13406 */
13407 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13408 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13409 fdi_dotclock, dotclock);
13410 }
13411 }
13412
13413 static void verify_wm_state(struct drm_crtc *crtc,
13414 struct drm_crtc_state *new_state)
13415 {
13416 struct drm_device *dev = crtc->dev;
13417 struct drm_i915_private *dev_priv = to_i915(dev);
13418 struct skl_ddb_allocation hw_ddb, *sw_ddb;
13419 struct skl_ddb_entry *hw_entry, *sw_entry;
13420 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13421 const enum pipe pipe = intel_crtc->pipe;
13422 int plane;
13423
13424 if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
13425 return;
13426
13427 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13428 sw_ddb = &dev_priv->wm.skl_hw.ddb;
13429
13430 /* planes */
13431 for_each_plane(dev_priv, pipe, plane) {
13432 hw_entry = &hw_ddb.plane[pipe][plane];
13433 sw_entry = &sw_ddb->plane[pipe][plane];
13434
13435 if (skl_ddb_entry_equal(hw_entry, sw_entry))
13436 continue;
13437
13438 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
13439 "(expected (%u,%u), found (%u,%u))\n",
13440 pipe_name(pipe), plane + 1,
13441 sw_entry->start, sw_entry->end,
13442 hw_entry->start, hw_entry->end);
13443 }
13444
13445 /*
13446 * cursor
13447 * If the cursor plane isn't active, we may not have updated it's ddb
13448 * allocation. In that case since the ddb allocation will be updated
13449 * once the plane becomes visible, we can skip this check
13450 */
13451 if (intel_crtc->cursor_addr) {
13452 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13453 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13454
13455 if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
13456 DRM_ERROR("mismatch in DDB state pipe %c cursor "
13457 "(expected (%u,%u), found (%u,%u))\n",
13458 pipe_name(pipe),
13459 sw_entry->start, sw_entry->end,
13460 hw_entry->start, hw_entry->end);
13461 }
13462 }
13463 }
13464
13465 static void
13466 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
13467 {
13468 struct drm_connector *connector;
13469
13470 drm_for_each_connector(connector, dev) {
13471 struct drm_encoder *encoder = connector->encoder;
13472 struct drm_connector_state *state = connector->state;
13473
13474 if (state->crtc != crtc)
13475 continue;
13476
13477 intel_connector_verify_state(to_intel_connector(connector));
13478
13479 I915_STATE_WARN(state->best_encoder != encoder,
13480 "connector's atomic encoder doesn't match legacy encoder\n");
13481 }
13482 }
13483
13484 static void
13485 verify_encoder_state(struct drm_device *dev)
13486 {
13487 struct intel_encoder *encoder;
13488 struct intel_connector *connector;
13489
13490 for_each_intel_encoder(dev, encoder) {
13491 bool enabled = false;
13492 enum pipe pipe;
13493
13494 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13495 encoder->base.base.id,
13496 encoder->base.name);
13497
13498 for_each_intel_connector(dev, connector) {
13499 if (connector->base.state->best_encoder != &encoder->base)
13500 continue;
13501 enabled = true;
13502
13503 I915_STATE_WARN(connector->base.state->crtc !=
13504 encoder->base.crtc,
13505 "connector's crtc doesn't match encoder crtc\n");
13506 }
13507
13508 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13509 "encoder's enabled state mismatch "
13510 "(expected %i, found %i)\n",
13511 !!encoder->base.crtc, enabled);
13512
13513 if (!encoder->base.crtc) {
13514 bool active;
13515
13516 active = encoder->get_hw_state(encoder, &pipe);
13517 I915_STATE_WARN(active,
13518 "encoder detached but still enabled on pipe %c.\n",
13519 pipe_name(pipe));
13520 }
13521 }
13522 }
13523
13524 static void
13525 verify_crtc_state(struct drm_crtc *crtc,
13526 struct drm_crtc_state *old_crtc_state,
13527 struct drm_crtc_state *new_crtc_state)
13528 {
13529 struct drm_device *dev = crtc->dev;
13530 struct drm_i915_private *dev_priv = to_i915(dev);
13531 struct intel_encoder *encoder;
13532 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13533 struct intel_crtc_state *pipe_config, *sw_config;
13534 struct drm_atomic_state *old_state;
13535 bool active;
13536
13537 old_state = old_crtc_state->state;
13538 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13539 pipe_config = to_intel_crtc_state(old_crtc_state);
13540 memset(pipe_config, 0, sizeof(*pipe_config));
13541 pipe_config->base.crtc = crtc;
13542 pipe_config->base.state = old_state;
13543
13544 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13545
13546 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13547
13548 /* hw state is inconsistent with the pipe quirk */
13549 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13550 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13551 active = new_crtc_state->active;
13552
13553 I915_STATE_WARN(new_crtc_state->active != active,
13554 "crtc active state doesn't match with hw state "
13555 "(expected %i, found %i)\n", new_crtc_state->active, active);
13556
13557 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13558 "transitional active state does not match atomic hw state "
13559 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13560
13561 for_each_encoder_on_crtc(dev, crtc, encoder) {
13562 enum pipe pipe;
13563
13564 active = encoder->get_hw_state(encoder, &pipe);
13565 I915_STATE_WARN(active != new_crtc_state->active,
13566 "[ENCODER:%i] active %i with crtc active %i\n",
13567 encoder->base.base.id, active, new_crtc_state->active);
13568
13569 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13570 "Encoder connected to wrong pipe %c\n",
13571 pipe_name(pipe));
13572
13573 if (active) {
13574 pipe_config->output_types |= 1 << encoder->type;
13575 encoder->get_config(encoder, pipe_config);
13576 }
13577 }
13578
13579 if (!new_crtc_state->active)
13580 return;
13581
13582 intel_pipe_config_sanity_check(dev_priv, pipe_config);
13583
13584 sw_config = to_intel_crtc_state(crtc->state);
13585 if (!intel_pipe_config_compare(dev, sw_config,
13586 pipe_config, false)) {
13587 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13588 intel_dump_pipe_config(intel_crtc, pipe_config,
13589 "[hw state]");
13590 intel_dump_pipe_config(intel_crtc, sw_config,
13591 "[sw state]");
13592 }
13593 }
13594
13595 static void
13596 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13597 struct intel_shared_dpll *pll,
13598 struct drm_crtc *crtc,
13599 struct drm_crtc_state *new_state)
13600 {
13601 struct intel_dpll_hw_state dpll_hw_state;
13602 unsigned crtc_mask;
13603 bool active;
13604
13605 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13606
13607 DRM_DEBUG_KMS("%s\n", pll->name);
13608
13609 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13610
13611 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13612 I915_STATE_WARN(!pll->on && pll->active_mask,
13613 "pll in active use but not on in sw tracking\n");
13614 I915_STATE_WARN(pll->on && !pll->active_mask,
13615 "pll is on but not used by any active crtc\n");
13616 I915_STATE_WARN(pll->on != active,
13617 "pll on state mismatch (expected %i, found %i)\n",
13618 pll->on, active);
13619 }
13620
13621 if (!crtc) {
13622 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13623 "more active pll users than references: %x vs %x\n",
13624 pll->active_mask, pll->config.crtc_mask);
13625
13626 return;
13627 }
13628
13629 crtc_mask = 1 << drm_crtc_index(crtc);
13630
13631 if (new_state->active)
13632 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13633 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13634 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13635 else
13636 I915_STATE_WARN(pll->active_mask & crtc_mask,
13637 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13638 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13639
13640 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13641 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13642 crtc_mask, pll->config.crtc_mask);
13643
13644 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13645 &dpll_hw_state,
13646 sizeof(dpll_hw_state)),
13647 "pll hw state mismatch\n");
13648 }
13649
13650 static void
13651 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13652 struct drm_crtc_state *old_crtc_state,
13653 struct drm_crtc_state *new_crtc_state)
13654 {
13655 struct drm_i915_private *dev_priv = to_i915(dev);
13656 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13657 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13658
13659 if (new_state->shared_dpll)
13660 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13661
13662 if (old_state->shared_dpll &&
13663 old_state->shared_dpll != new_state->shared_dpll) {
13664 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13665 struct intel_shared_dpll *pll = old_state->shared_dpll;
13666
13667 I915_STATE_WARN(pll->active_mask & crtc_mask,
13668 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13669 pipe_name(drm_crtc_index(crtc)));
13670 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13671 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13672 pipe_name(drm_crtc_index(crtc)));
13673 }
13674 }
13675
13676 static void
13677 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13678 struct drm_crtc_state *old_state,
13679 struct drm_crtc_state *new_state)
13680 {
13681 if (!needs_modeset(new_state) &&
13682 !to_intel_crtc_state(new_state)->update_pipe)
13683 return;
13684
13685 verify_wm_state(crtc, new_state);
13686 verify_connector_state(crtc->dev, crtc);
13687 verify_crtc_state(crtc, old_state, new_state);
13688 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13689 }
13690
13691 static void
13692 verify_disabled_dpll_state(struct drm_device *dev)
13693 {
13694 struct drm_i915_private *dev_priv = to_i915(dev);
13695 int i;
13696
13697 for (i = 0; i < dev_priv->num_shared_dpll; i++)
13698 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13699 }
13700
13701 static void
13702 intel_modeset_verify_disabled(struct drm_device *dev)
13703 {
13704 verify_encoder_state(dev);
13705 verify_connector_state(dev, NULL);
13706 verify_disabled_dpll_state(dev);
13707 }
13708
13709 static void update_scanline_offset(struct intel_crtc *crtc)
13710 {
13711 struct drm_device *dev = crtc->base.dev;
13712
13713 /*
13714 * The scanline counter increments at the leading edge of hsync.
13715 *
13716 * On most platforms it starts counting from vtotal-1 on the
13717 * first active line. That means the scanline counter value is
13718 * always one less than what we would expect. Ie. just after
13719 * start of vblank, which also occurs at start of hsync (on the
13720 * last active line), the scanline counter will read vblank_start-1.
13721 *
13722 * On gen2 the scanline counter starts counting from 1 instead
13723 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13724 * to keep the value positive), instead of adding one.
13725 *
13726 * On HSW+ the behaviour of the scanline counter depends on the output
13727 * type. For DP ports it behaves like most other platforms, but on HDMI
13728 * there's an extra 1 line difference. So we need to add two instead of
13729 * one to the value.
13730 */
13731 if (IS_GEN2(dev)) {
13732 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13733 int vtotal;
13734
13735 vtotal = adjusted_mode->crtc_vtotal;
13736 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13737 vtotal /= 2;
13738
13739 crtc->scanline_offset = vtotal - 1;
13740 } else if (HAS_DDI(dev) &&
13741 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13742 crtc->scanline_offset = 2;
13743 } else
13744 crtc->scanline_offset = 1;
13745 }
13746
13747 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13748 {
13749 struct drm_device *dev = state->dev;
13750 struct drm_i915_private *dev_priv = to_i915(dev);
13751 struct intel_shared_dpll_config *shared_dpll = NULL;
13752 struct drm_crtc *crtc;
13753 struct drm_crtc_state *crtc_state;
13754 int i;
13755
13756 if (!dev_priv->display.crtc_compute_clock)
13757 return;
13758
13759 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13760 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13761 struct intel_shared_dpll *old_dpll =
13762 to_intel_crtc_state(crtc->state)->shared_dpll;
13763
13764 if (!needs_modeset(crtc_state))
13765 continue;
13766
13767 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13768
13769 if (!old_dpll)
13770 continue;
13771
13772 if (!shared_dpll)
13773 shared_dpll = intel_atomic_get_shared_dpll_state(state);
13774
13775 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13776 }
13777 }
13778
13779 /*
13780 * This implements the workaround described in the "notes" section of the mode
13781 * set sequence documentation. When going from no pipes or single pipe to
13782 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13783 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13784 */
13785 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13786 {
13787 struct drm_crtc_state *crtc_state;
13788 struct intel_crtc *intel_crtc;
13789 struct drm_crtc *crtc;
13790 struct intel_crtc_state *first_crtc_state = NULL;
13791 struct intel_crtc_state *other_crtc_state = NULL;
13792 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13793 int i;
13794
13795 /* look at all crtc's that are going to be enabled in during modeset */
13796 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13797 intel_crtc = to_intel_crtc(crtc);
13798
13799 if (!crtc_state->active || !needs_modeset(crtc_state))
13800 continue;
13801
13802 if (first_crtc_state) {
13803 other_crtc_state = to_intel_crtc_state(crtc_state);
13804 break;
13805 } else {
13806 first_crtc_state = to_intel_crtc_state(crtc_state);
13807 first_pipe = intel_crtc->pipe;
13808 }
13809 }
13810
13811 /* No workaround needed? */
13812 if (!first_crtc_state)
13813 return 0;
13814
13815 /* w/a possibly needed, check how many crtc's are already enabled. */
13816 for_each_intel_crtc(state->dev, intel_crtc) {
13817 struct intel_crtc_state *pipe_config;
13818
13819 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13820 if (IS_ERR(pipe_config))
13821 return PTR_ERR(pipe_config);
13822
13823 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13824
13825 if (!pipe_config->base.active ||
13826 needs_modeset(&pipe_config->base))
13827 continue;
13828
13829 /* 2 or more enabled crtcs means no need for w/a */
13830 if (enabled_pipe != INVALID_PIPE)
13831 return 0;
13832
13833 enabled_pipe = intel_crtc->pipe;
13834 }
13835
13836 if (enabled_pipe != INVALID_PIPE)
13837 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13838 else if (other_crtc_state)
13839 other_crtc_state->hsw_workaround_pipe = first_pipe;
13840
13841 return 0;
13842 }
13843
13844 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13845 {
13846 struct drm_crtc *crtc;
13847 struct drm_crtc_state *crtc_state;
13848 int ret = 0;
13849
13850 /* add all active pipes to the state */
13851 for_each_crtc(state->dev, crtc) {
13852 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13853 if (IS_ERR(crtc_state))
13854 return PTR_ERR(crtc_state);
13855
13856 if (!crtc_state->active || needs_modeset(crtc_state))
13857 continue;
13858
13859 crtc_state->mode_changed = true;
13860
13861 ret = drm_atomic_add_affected_connectors(state, crtc);
13862 if (ret)
13863 break;
13864
13865 ret = drm_atomic_add_affected_planes(state, crtc);
13866 if (ret)
13867 break;
13868 }
13869
13870 return ret;
13871 }
13872
13873 static int intel_modeset_checks(struct drm_atomic_state *state)
13874 {
13875 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13876 struct drm_i915_private *dev_priv = to_i915(state->dev);
13877 struct drm_crtc *crtc;
13878 struct drm_crtc_state *crtc_state;
13879 int ret = 0, i;
13880
13881 if (!check_digital_port_conflicts(state)) {
13882 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13883 return -EINVAL;
13884 }
13885
13886 intel_state->modeset = true;
13887 intel_state->active_crtcs = dev_priv->active_crtcs;
13888
13889 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13890 if (crtc_state->active)
13891 intel_state->active_crtcs |= 1 << i;
13892 else
13893 intel_state->active_crtcs &= ~(1 << i);
13894
13895 if (crtc_state->active != crtc->state->active)
13896 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13897 }
13898
13899 /*
13900 * See if the config requires any additional preparation, e.g.
13901 * to adjust global state with pipes off. We need to do this
13902 * here so we can get the modeset_pipe updated config for the new
13903 * mode set on this crtc. For other crtcs we need to use the
13904 * adjusted_mode bits in the crtc directly.
13905 */
13906 if (dev_priv->display.modeset_calc_cdclk) {
13907 if (!intel_state->cdclk_pll_vco)
13908 intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13909 if (!intel_state->cdclk_pll_vco)
13910 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13911
13912 ret = dev_priv->display.modeset_calc_cdclk(state);
13913 if (ret < 0)
13914 return ret;
13915
13916 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13917 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13918 ret = intel_modeset_all_pipes(state);
13919
13920 if (ret < 0)
13921 return ret;
13922
13923 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13924 intel_state->cdclk, intel_state->dev_cdclk);
13925 } else
13926 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13927
13928 intel_modeset_clear_plls(state);
13929
13930 if (IS_HASWELL(dev_priv))
13931 return haswell_mode_set_planes_workaround(state);
13932
13933 return 0;
13934 }
13935
13936 /*
13937 * Handle calculation of various watermark data at the end of the atomic check
13938 * phase. The code here should be run after the per-crtc and per-plane 'check'
13939 * handlers to ensure that all derived state has been updated.
13940 */
13941 static int calc_watermark_data(struct drm_atomic_state *state)
13942 {
13943 struct drm_device *dev = state->dev;
13944 struct drm_i915_private *dev_priv = to_i915(dev);
13945
13946 /* Is there platform-specific watermark information to calculate? */
13947 if (dev_priv->display.compute_global_watermarks)
13948 return dev_priv->display.compute_global_watermarks(state);
13949
13950 return 0;
13951 }
13952
13953 /**
13954 * intel_atomic_check - validate state object
13955 * @dev: drm device
13956 * @state: state to validate
13957 */
13958 static int intel_atomic_check(struct drm_device *dev,
13959 struct drm_atomic_state *state)
13960 {
13961 struct drm_i915_private *dev_priv = to_i915(dev);
13962 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13963 struct drm_crtc *crtc;
13964 struct drm_crtc_state *crtc_state;
13965 int ret, i;
13966 bool any_ms = false;
13967
13968 ret = drm_atomic_helper_check_modeset(dev, state);
13969 if (ret)
13970 return ret;
13971
13972 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13973 struct intel_crtc_state *pipe_config =
13974 to_intel_crtc_state(crtc_state);
13975
13976 /* Catch I915_MODE_FLAG_INHERITED */
13977 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13978 crtc_state->mode_changed = true;
13979
13980 if (!needs_modeset(crtc_state))
13981 continue;
13982
13983 if (!crtc_state->enable) {
13984 any_ms = true;
13985 continue;
13986 }
13987
13988 /* FIXME: For only active_changed we shouldn't need to do any
13989 * state recomputation at all. */
13990
13991 ret = drm_atomic_add_affected_connectors(state, crtc);
13992 if (ret)
13993 return ret;
13994
13995 ret = intel_modeset_pipe_config(crtc, pipe_config);
13996 if (ret) {
13997 intel_dump_pipe_config(to_intel_crtc(crtc),
13998 pipe_config, "[failed]");
13999 return ret;
14000 }
14001
14002 if (i915.fastboot &&
14003 intel_pipe_config_compare(dev,
14004 to_intel_crtc_state(crtc->state),
14005 pipe_config, true)) {
14006 crtc_state->mode_changed = false;
14007 to_intel_crtc_state(crtc_state)->update_pipe = true;
14008 }
14009
14010 if (needs_modeset(crtc_state))
14011 any_ms = true;
14012
14013 ret = drm_atomic_add_affected_planes(state, crtc);
14014 if (ret)
14015 return ret;
14016
14017 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14018 needs_modeset(crtc_state) ?
14019 "[modeset]" : "[fastset]");
14020 }
14021
14022 if (any_ms) {
14023 ret = intel_modeset_checks(state);
14024
14025 if (ret)
14026 return ret;
14027 } else
14028 intel_state->cdclk = dev_priv->cdclk_freq;
14029
14030 ret = drm_atomic_helper_check_planes(dev, state);
14031 if (ret)
14032 return ret;
14033
14034 intel_fbc_choose_crtc(dev_priv, state);
14035 return calc_watermark_data(state);
14036 }
14037
14038 static int intel_atomic_prepare_commit(struct drm_device *dev,
14039 struct drm_atomic_state *state,
14040 bool nonblock)
14041 {
14042 struct drm_i915_private *dev_priv = to_i915(dev);
14043 struct drm_plane_state *plane_state;
14044 struct drm_crtc_state *crtc_state;
14045 struct drm_plane *plane;
14046 struct drm_crtc *crtc;
14047 int i, ret;
14048
14049 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14050 if (state->legacy_cursor_update)
14051 continue;
14052
14053 ret = intel_crtc_wait_for_pending_flips(crtc);
14054 if (ret)
14055 return ret;
14056
14057 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14058 flush_workqueue(dev_priv->wq);
14059 }
14060
14061 ret = mutex_lock_interruptible(&dev->struct_mutex);
14062 if (ret)
14063 return ret;
14064
14065 ret = drm_atomic_helper_prepare_planes(dev, state);
14066 mutex_unlock(&dev->struct_mutex);
14067
14068 if (!ret && !nonblock) {
14069 for_each_plane_in_state(state, plane, plane_state, i) {
14070 struct intel_plane_state *intel_plane_state =
14071 to_intel_plane_state(plane_state);
14072
14073 if (!intel_plane_state->wait_req)
14074 continue;
14075
14076 ret = i915_wait_request(intel_plane_state->wait_req,
14077 I915_WAIT_INTERRUPTIBLE,
14078 NULL, NULL);
14079 if (ret) {
14080 /* Any hang should be swallowed by the wait */
14081 WARN_ON(ret == -EIO);
14082 mutex_lock(&dev->struct_mutex);
14083 drm_atomic_helper_cleanup_planes(dev, state);
14084 mutex_unlock(&dev->struct_mutex);
14085 break;
14086 }
14087 }
14088 }
14089
14090 return ret;
14091 }
14092
14093 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14094 {
14095 struct drm_device *dev = crtc->base.dev;
14096
14097 if (!dev->max_vblank_count)
14098 return drm_accurate_vblank_count(&crtc->base);
14099
14100 return dev->driver->get_vblank_counter(dev, crtc->pipe);
14101 }
14102
14103 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14104 struct drm_i915_private *dev_priv,
14105 unsigned crtc_mask)
14106 {
14107 unsigned last_vblank_count[I915_MAX_PIPES];
14108 enum pipe pipe;
14109 int ret;
14110
14111 if (!crtc_mask)
14112 return;
14113
14114 for_each_pipe(dev_priv, pipe) {
14115 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
14116
14117 if (!((1 << pipe) & crtc_mask))
14118 continue;
14119
14120 ret = drm_crtc_vblank_get(crtc);
14121 if (WARN_ON(ret != 0)) {
14122 crtc_mask &= ~(1 << pipe);
14123 continue;
14124 }
14125
14126 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
14127 }
14128
14129 for_each_pipe(dev_priv, pipe) {
14130 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
14131 long lret;
14132
14133 if (!((1 << pipe) & crtc_mask))
14134 continue;
14135
14136 lret = wait_event_timeout(dev->vblank[pipe].queue,
14137 last_vblank_count[pipe] !=
14138 drm_crtc_vblank_count(crtc),
14139 msecs_to_jiffies(50));
14140
14141 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
14142
14143 drm_crtc_vblank_put(crtc);
14144 }
14145 }
14146
14147 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
14148 {
14149 /* fb updated, need to unpin old fb */
14150 if (crtc_state->fb_changed)
14151 return true;
14152
14153 /* wm changes, need vblank before final wm's */
14154 if (crtc_state->update_wm_post)
14155 return true;
14156
14157 /*
14158 * cxsr is re-enabled after vblank.
14159 * This is already handled by crtc_state->update_wm_post,
14160 * but added for clarity.
14161 */
14162 if (crtc_state->disable_cxsr)
14163 return true;
14164
14165 return false;
14166 }
14167
14168 static void intel_update_crtc(struct drm_crtc *crtc,
14169 struct drm_atomic_state *state,
14170 struct drm_crtc_state *old_crtc_state,
14171 unsigned int *crtc_vblank_mask)
14172 {
14173 struct drm_device *dev = crtc->dev;
14174 struct drm_i915_private *dev_priv = to_i915(dev);
14175 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14176 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14177 bool modeset = needs_modeset(crtc->state);
14178
14179 if (modeset) {
14180 update_scanline_offset(intel_crtc);
14181 dev_priv->display.crtc_enable(pipe_config, state);
14182 } else {
14183 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14184 }
14185
14186 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14187 intel_fbc_enable(
14188 intel_crtc, pipe_config,
14189 to_intel_plane_state(crtc->primary->state));
14190 }
14191
14192 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14193
14194 if (needs_vblank_wait(pipe_config))
14195 *crtc_vblank_mask |= drm_crtc_mask(crtc);
14196 }
14197
14198 static void intel_update_crtcs(struct drm_atomic_state *state,
14199 unsigned int *crtc_vblank_mask)
14200 {
14201 struct drm_crtc *crtc;
14202 struct drm_crtc_state *old_crtc_state;
14203 int i;
14204
14205 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14206 if (!crtc->state->active)
14207 continue;
14208
14209 intel_update_crtc(crtc, state, old_crtc_state,
14210 crtc_vblank_mask);
14211 }
14212 }
14213
14214 static void skl_update_crtcs(struct drm_atomic_state *state,
14215 unsigned int *crtc_vblank_mask)
14216 {
14217 struct drm_device *dev = state->dev;
14218 struct drm_i915_private *dev_priv = to_i915(dev);
14219 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14220 struct drm_crtc *crtc;
14221 struct drm_crtc_state *old_crtc_state;
14222 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
14223 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
14224 unsigned int updated = 0;
14225 bool progress;
14226 enum pipe pipe;
14227
14228 /*
14229 * Whenever the number of active pipes changes, we need to make sure we
14230 * update the pipes in the right order so that their ddb allocations
14231 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14232 * cause pipe underruns and other bad stuff.
14233 */
14234 do {
14235 int i;
14236 progress = false;
14237
14238 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14239 bool vbl_wait = false;
14240 unsigned int cmask = drm_crtc_mask(crtc);
14241 pipe = to_intel_crtc(crtc)->pipe;
14242
14243 if (updated & cmask || !crtc->state->active)
14244 continue;
14245 if (skl_ddb_allocation_overlaps(state, cur_ddb, new_ddb,
14246 pipe))
14247 continue;
14248
14249 updated |= cmask;
14250
14251 /*
14252 * If this is an already active pipe, it's DDB changed,
14253 * and this isn't the last pipe that needs updating
14254 * then we need to wait for a vblank to pass for the
14255 * new ddb allocation to take effect.
14256 */
14257 if (!skl_ddb_allocation_equals(cur_ddb, new_ddb, pipe) &&
14258 !crtc->state->active_changed &&
14259 intel_state->wm_results.dirty_pipes != updated)
14260 vbl_wait = true;
14261
14262 intel_update_crtc(crtc, state, old_crtc_state,
14263 crtc_vblank_mask);
14264
14265 if (vbl_wait)
14266 intel_wait_for_vblank(dev, pipe);
14267
14268 progress = true;
14269 }
14270 } while (progress);
14271 }
14272
14273 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
14274 {
14275 struct drm_device *dev = state->dev;
14276 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14277 struct drm_i915_private *dev_priv = to_i915(dev);
14278 struct drm_crtc_state *old_crtc_state;
14279 struct drm_crtc *crtc;
14280 struct intel_crtc_state *intel_cstate;
14281 struct drm_plane *plane;
14282 struct drm_plane_state *plane_state;
14283 bool hw_check = intel_state->modeset;
14284 unsigned long put_domains[I915_MAX_PIPES] = {};
14285 unsigned crtc_vblank_mask = 0;
14286 int i, ret;
14287
14288 for_each_plane_in_state(state, plane, plane_state, i) {
14289 struct intel_plane_state *intel_plane_state =
14290 to_intel_plane_state(plane_state);
14291
14292 if (!intel_plane_state->wait_req)
14293 continue;
14294
14295 ret = i915_wait_request(intel_plane_state->wait_req,
14296 0, NULL, NULL);
14297 /* EIO should be eaten, and we can't get interrupted in the
14298 * worker, and blocking commits have waited already. */
14299 WARN_ON(ret);
14300 }
14301
14302 drm_atomic_helper_wait_for_dependencies(state);
14303
14304 if (intel_state->modeset) {
14305 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14306 sizeof(intel_state->min_pixclk));
14307 dev_priv->active_crtcs = intel_state->active_crtcs;
14308 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
14309
14310 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14311 }
14312
14313 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14314 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14315
14316 if (needs_modeset(crtc->state) ||
14317 to_intel_crtc_state(crtc->state)->update_pipe) {
14318 hw_check = true;
14319
14320 put_domains[to_intel_crtc(crtc)->pipe] =
14321 modeset_get_crtc_power_domains(crtc,
14322 to_intel_crtc_state(crtc->state));
14323 }
14324
14325 if (!needs_modeset(crtc->state))
14326 continue;
14327
14328 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14329
14330 if (old_crtc_state->active) {
14331 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
14332 dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
14333 intel_crtc->active = false;
14334 intel_fbc_disable(intel_crtc);
14335 intel_disable_shared_dpll(intel_crtc);
14336
14337 /*
14338 * Underruns don't always raise
14339 * interrupts, so check manually.
14340 */
14341 intel_check_cpu_fifo_underruns(dev_priv);
14342 intel_check_pch_fifo_underruns(dev_priv);
14343
14344 if (!crtc->state->active)
14345 intel_update_watermarks(crtc);
14346 }
14347 }
14348
14349 /* Only after disabling all output pipelines that will be changed can we
14350 * update the the output configuration. */
14351 intel_modeset_update_crtc_state(state);
14352
14353 if (intel_state->modeset) {
14354 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
14355
14356 if (dev_priv->display.modeset_commit_cdclk &&
14357 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14358 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
14359 dev_priv->display.modeset_commit_cdclk(state);
14360
14361 /*
14362 * SKL workaround: bspec recommends we disable the SAGV when we
14363 * have more then one pipe enabled
14364 */
14365 if (IS_SKYLAKE(dev_priv) && !skl_can_enable_sagv(state))
14366 skl_disable_sagv(dev_priv);
14367
14368 intel_modeset_verify_disabled(dev);
14369 }
14370
14371 /* Complete the events for pipes that have now been disabled */
14372 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14373 bool modeset = needs_modeset(crtc->state);
14374
14375 /* Complete events for now disable pipes here. */
14376 if (modeset && !crtc->state->active && crtc->state->event) {
14377 spin_lock_irq(&dev->event_lock);
14378 drm_crtc_send_vblank_event(crtc, crtc->state->event);
14379 spin_unlock_irq(&dev->event_lock);
14380
14381 crtc->state->event = NULL;
14382 }
14383 }
14384
14385 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14386 dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14387
14388 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14389 * already, but still need the state for the delayed optimization. To
14390 * fix this:
14391 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14392 * - schedule that vblank worker _before_ calling hw_done
14393 * - at the start of commit_tail, cancel it _synchrously
14394 * - switch over to the vblank wait helper in the core after that since
14395 * we don't need out special handling any more.
14396 */
14397 if (!state->legacy_cursor_update)
14398 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14399
14400 /*
14401 * Now that the vblank has passed, we can go ahead and program the
14402 * optimal watermarks on platforms that need two-step watermark
14403 * programming.
14404 *
14405 * TODO: Move this (and other cleanup) to an async worker eventually.
14406 */
14407 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14408 intel_cstate = to_intel_crtc_state(crtc->state);
14409
14410 if (dev_priv->display.optimize_watermarks)
14411 dev_priv->display.optimize_watermarks(intel_cstate);
14412 }
14413
14414 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14415 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14416
14417 if (put_domains[i])
14418 modeset_put_power_domains(dev_priv, put_domains[i]);
14419
14420 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
14421 }
14422
14423 if (IS_SKYLAKE(dev_priv) && intel_state->modeset &&
14424 skl_can_enable_sagv(state))
14425 skl_enable_sagv(dev_priv);
14426
14427 drm_atomic_helper_commit_hw_done(state);
14428
14429 if (intel_state->modeset)
14430 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14431
14432 mutex_lock(&dev->struct_mutex);
14433 drm_atomic_helper_cleanup_planes(dev, state);
14434 mutex_unlock(&dev->struct_mutex);
14435
14436 drm_atomic_helper_commit_cleanup_done(state);
14437
14438 drm_atomic_state_free(state);
14439
14440 /* As one of the primary mmio accessors, KMS has a high likelihood
14441 * of triggering bugs in unclaimed access. After we finish
14442 * modesetting, see if an error has been flagged, and if so
14443 * enable debugging for the next modeset - and hope we catch
14444 * the culprit.
14445 *
14446 * XXX note that we assume display power is on at this point.
14447 * This might hold true now but we need to add pm helper to check
14448 * unclaimed only when the hardware is on, as atomic commits
14449 * can happen also when the device is completely off.
14450 */
14451 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
14452 }
14453
14454 static void intel_atomic_commit_work(struct work_struct *work)
14455 {
14456 struct drm_atomic_state *state = container_of(work,
14457 struct drm_atomic_state,
14458 commit_work);
14459 intel_atomic_commit_tail(state);
14460 }
14461
14462 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14463 {
14464 struct drm_plane_state *old_plane_state;
14465 struct drm_plane *plane;
14466 int i;
14467
14468 for_each_plane_in_state(state, plane, old_plane_state, i)
14469 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14470 intel_fb_obj(plane->state->fb),
14471 to_intel_plane(plane)->frontbuffer_bit);
14472 }
14473
14474 /**
14475 * intel_atomic_commit - commit validated state object
14476 * @dev: DRM device
14477 * @state: the top-level driver state object
14478 * @nonblock: nonblocking commit
14479 *
14480 * This function commits a top-level state object that has been validated
14481 * with drm_atomic_helper_check().
14482 *
14483 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
14484 * nonblocking commits are only safe for pure plane updates. Everything else
14485 * should work though.
14486 *
14487 * RETURNS
14488 * Zero for success or -errno.
14489 */
14490 static int intel_atomic_commit(struct drm_device *dev,
14491 struct drm_atomic_state *state,
14492 bool nonblock)
14493 {
14494 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14495 struct drm_i915_private *dev_priv = to_i915(dev);
14496 int ret = 0;
14497
14498 if (intel_state->modeset && nonblock) {
14499 DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
14500 return -EINVAL;
14501 }
14502
14503 ret = drm_atomic_helper_setup_commit(state, nonblock);
14504 if (ret)
14505 return ret;
14506
14507 INIT_WORK(&state->commit_work, intel_atomic_commit_work);
14508
14509 ret = intel_atomic_prepare_commit(dev, state, nonblock);
14510 if (ret) {
14511 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14512 return ret;
14513 }
14514
14515 drm_atomic_helper_swap_state(state, true);
14516 dev_priv->wm.distrust_bios_wm = false;
14517 dev_priv->wm.skl_results = intel_state->wm_results;
14518 intel_shared_dpll_commit(state);
14519 intel_atomic_track_fbs(state);
14520
14521 if (nonblock)
14522 queue_work(system_unbound_wq, &state->commit_work);
14523 else
14524 intel_atomic_commit_tail(state);
14525
14526 return 0;
14527 }
14528
14529 void intel_crtc_restore_mode(struct drm_crtc *crtc)
14530 {
14531 struct drm_device *dev = crtc->dev;
14532 struct drm_atomic_state *state;
14533 struct drm_crtc_state *crtc_state;
14534 int ret;
14535
14536 state = drm_atomic_state_alloc(dev);
14537 if (!state) {
14538 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14539 crtc->base.id, crtc->name);
14540 return;
14541 }
14542
14543 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14544
14545 retry:
14546 crtc_state = drm_atomic_get_crtc_state(state, crtc);
14547 ret = PTR_ERR_OR_ZERO(crtc_state);
14548 if (!ret) {
14549 if (!crtc_state->active)
14550 goto out;
14551
14552 crtc_state->mode_changed = true;
14553 ret = drm_atomic_commit(state);
14554 }
14555
14556 if (ret == -EDEADLK) {
14557 drm_atomic_state_clear(state);
14558 drm_modeset_backoff(state->acquire_ctx);
14559 goto retry;
14560 }
14561
14562 if (ret)
14563 out:
14564 drm_atomic_state_free(state);
14565 }
14566
14567 /*
14568 * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14569 * drm_atomic_helper_legacy_gamma_set() directly.
14570 */
14571 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14572 u16 *red, u16 *green, u16 *blue,
14573 uint32_t size)
14574 {
14575 struct drm_device *dev = crtc->dev;
14576 struct drm_mode_config *config = &dev->mode_config;
14577 struct drm_crtc_state *state;
14578 int ret;
14579
14580 ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14581 if (ret)
14582 return ret;
14583
14584 /*
14585 * Make sure we update the legacy properties so this works when
14586 * atomic is not enabled.
14587 */
14588
14589 state = crtc->state;
14590
14591 drm_object_property_set_value(&crtc->base,
14592 config->degamma_lut_property,
14593 (state->degamma_lut) ?
14594 state->degamma_lut->base.id : 0);
14595
14596 drm_object_property_set_value(&crtc->base,
14597 config->ctm_property,
14598 (state->ctm) ?
14599 state->ctm->base.id : 0);
14600
14601 drm_object_property_set_value(&crtc->base,
14602 config->gamma_lut_property,
14603 (state->gamma_lut) ?
14604 state->gamma_lut->base.id : 0);
14605
14606 return 0;
14607 }
14608
14609 static const struct drm_crtc_funcs intel_crtc_funcs = {
14610 .gamma_set = intel_atomic_legacy_gamma_set,
14611 .set_config = drm_atomic_helper_set_config,
14612 .set_property = drm_atomic_helper_crtc_set_property,
14613 .destroy = intel_crtc_destroy,
14614 .page_flip = intel_crtc_page_flip,
14615 .atomic_duplicate_state = intel_crtc_duplicate_state,
14616 .atomic_destroy_state = intel_crtc_destroy_state,
14617 };
14618
14619 /**
14620 * intel_prepare_plane_fb - Prepare fb for usage on plane
14621 * @plane: drm plane to prepare for
14622 * @fb: framebuffer to prepare for presentation
14623 *
14624 * Prepares a framebuffer for usage on a display plane. Generally this
14625 * involves pinning the underlying object and updating the frontbuffer tracking
14626 * bits. Some older platforms need special physical address handling for
14627 * cursor planes.
14628 *
14629 * Must be called with struct_mutex held.
14630 *
14631 * Returns 0 on success, negative error code on failure.
14632 */
14633 int
14634 intel_prepare_plane_fb(struct drm_plane *plane,
14635 struct drm_plane_state *new_state)
14636 {
14637 struct drm_device *dev = plane->dev;
14638 struct drm_framebuffer *fb = new_state->fb;
14639 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14640 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14641 struct reservation_object *resv;
14642 int ret = 0;
14643
14644 if (!obj && !old_obj)
14645 return 0;
14646
14647 if (old_obj) {
14648 struct drm_crtc_state *crtc_state =
14649 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14650
14651 /* Big Hammer, we also need to ensure that any pending
14652 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14653 * current scanout is retired before unpinning the old
14654 * framebuffer. Note that we rely on userspace rendering
14655 * into the buffer attached to the pipe they are waiting
14656 * on. If not, userspace generates a GPU hang with IPEHR
14657 * point to the MI_WAIT_FOR_EVENT.
14658 *
14659 * This should only fail upon a hung GPU, in which case we
14660 * can safely continue.
14661 */
14662 if (needs_modeset(crtc_state))
14663 ret = i915_gem_object_wait_rendering(old_obj, true);
14664 if (ret) {
14665 /* GPU hangs should have been swallowed by the wait */
14666 WARN_ON(ret == -EIO);
14667 return ret;
14668 }
14669 }
14670
14671 if (!obj)
14672 return 0;
14673
14674 /* For framebuffer backed by dmabuf, wait for fence */
14675 resv = i915_gem_object_get_dmabuf_resv(obj);
14676 if (resv) {
14677 long lret;
14678
14679 lret = reservation_object_wait_timeout_rcu(resv, false, true,
14680 MAX_SCHEDULE_TIMEOUT);
14681 if (lret == -ERESTARTSYS)
14682 return lret;
14683
14684 WARN(lret < 0, "waiting returns %li\n", lret);
14685 }
14686
14687 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14688 INTEL_INFO(dev)->cursor_needs_physical) {
14689 int align = IS_I830(dev) ? 16 * 1024 : 256;
14690 ret = i915_gem_object_attach_phys(obj, align);
14691 if (ret)
14692 DRM_DEBUG_KMS("failed to attach phys object\n");
14693 } else {
14694 struct i915_vma *vma;
14695
14696 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14697 if (IS_ERR(vma))
14698 ret = PTR_ERR(vma);
14699 }
14700
14701 if (ret == 0) {
14702 to_intel_plane_state(new_state)->wait_req =
14703 i915_gem_active_get(&obj->last_write,
14704 &obj->base.dev->struct_mutex);
14705 }
14706
14707 return ret;
14708 }
14709
14710 /**
14711 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14712 * @plane: drm plane to clean up for
14713 * @fb: old framebuffer that was on plane
14714 *
14715 * Cleans up a framebuffer that has just been removed from a plane.
14716 *
14717 * Must be called with struct_mutex held.
14718 */
14719 void
14720 intel_cleanup_plane_fb(struct drm_plane *plane,
14721 struct drm_plane_state *old_state)
14722 {
14723 struct drm_device *dev = plane->dev;
14724 struct intel_plane_state *old_intel_state;
14725 struct intel_plane_state *intel_state = to_intel_plane_state(plane->state);
14726 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14727 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14728
14729 old_intel_state = to_intel_plane_state(old_state);
14730
14731 if (!obj && !old_obj)
14732 return;
14733
14734 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14735 !INTEL_INFO(dev)->cursor_needs_physical))
14736 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14737
14738 i915_gem_request_assign(&intel_state->wait_req, NULL);
14739 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
14740 }
14741
14742 int
14743 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14744 {
14745 int max_scale;
14746 int crtc_clock, cdclk;
14747
14748 if (!intel_crtc || !crtc_state->base.enable)
14749 return DRM_PLANE_HELPER_NO_SCALING;
14750
14751 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14752 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14753
14754 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14755 return DRM_PLANE_HELPER_NO_SCALING;
14756
14757 /*
14758 * skl max scale is lower of:
14759 * close to 3 but not 3, -1 is for that purpose
14760 * or
14761 * cdclk/crtc_clock
14762 */
14763 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14764
14765 return max_scale;
14766 }
14767
14768 static int
14769 intel_check_primary_plane(struct drm_plane *plane,
14770 struct intel_crtc_state *crtc_state,
14771 struct intel_plane_state *state)
14772 {
14773 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14774 struct drm_crtc *crtc = state->base.crtc;
14775 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14776 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14777 bool can_position = false;
14778 int ret;
14779
14780 if (INTEL_GEN(dev_priv) >= 9) {
14781 /* use scaler when colorkey is not required */
14782 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14783 min_scale = 1;
14784 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14785 }
14786 can_position = true;
14787 }
14788
14789 ret = drm_plane_helper_check_state(&state->base,
14790 &state->clip,
14791 min_scale, max_scale,
14792 can_position, true);
14793 if (ret)
14794 return ret;
14795
14796 if (!state->base.fb)
14797 return 0;
14798
14799 if (INTEL_GEN(dev_priv) >= 9) {
14800 ret = skl_check_plane_surface(state);
14801 if (ret)
14802 return ret;
14803 }
14804
14805 return 0;
14806 }
14807
14808 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14809 struct drm_crtc_state *old_crtc_state)
14810 {
14811 struct drm_device *dev = crtc->dev;
14812 struct drm_i915_private *dev_priv = to_i915(dev);
14813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14814 struct intel_crtc_state *old_intel_state =
14815 to_intel_crtc_state(old_crtc_state);
14816 bool modeset = needs_modeset(crtc->state);
14817 enum pipe pipe = intel_crtc->pipe;
14818
14819 /* Perform vblank evasion around commit operation */
14820 intel_pipe_update_start(intel_crtc);
14821
14822 if (modeset)
14823 return;
14824
14825 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14826 intel_color_set_csc(crtc->state);
14827 intel_color_load_luts(crtc->state);
14828 }
14829
14830 if (to_intel_crtc_state(crtc->state)->update_pipe)
14831 intel_update_pipe_config(intel_crtc, old_intel_state);
14832 else if (INTEL_GEN(dev_priv) >= 9) {
14833 skl_detach_scalers(intel_crtc);
14834
14835 I915_WRITE(PIPE_WM_LINETIME(pipe),
14836 dev_priv->wm.skl_hw.wm_linetime[pipe]);
14837 }
14838 }
14839
14840 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14841 struct drm_crtc_state *old_crtc_state)
14842 {
14843 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14844
14845 intel_pipe_update_end(intel_crtc, NULL);
14846 }
14847
14848 /**
14849 * intel_plane_destroy - destroy a plane
14850 * @plane: plane to destroy
14851 *
14852 * Common destruction function for all types of planes (primary, cursor,
14853 * sprite).
14854 */
14855 void intel_plane_destroy(struct drm_plane *plane)
14856 {
14857 if (!plane)
14858 return;
14859
14860 drm_plane_cleanup(plane);
14861 kfree(to_intel_plane(plane));
14862 }
14863
14864 const struct drm_plane_funcs intel_plane_funcs = {
14865 .update_plane = drm_atomic_helper_update_plane,
14866 .disable_plane = drm_atomic_helper_disable_plane,
14867 .destroy = intel_plane_destroy,
14868 .set_property = drm_atomic_helper_plane_set_property,
14869 .atomic_get_property = intel_plane_atomic_get_property,
14870 .atomic_set_property = intel_plane_atomic_set_property,
14871 .atomic_duplicate_state = intel_plane_duplicate_state,
14872 .atomic_destroy_state = intel_plane_destroy_state,
14873
14874 };
14875
14876 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14877 int pipe)
14878 {
14879 struct intel_plane *primary = NULL;
14880 struct intel_plane_state *state = NULL;
14881 const uint32_t *intel_primary_formats;
14882 unsigned int num_formats;
14883 int ret;
14884
14885 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14886 if (!primary)
14887 goto fail;
14888
14889 state = intel_create_plane_state(&primary->base);
14890 if (!state)
14891 goto fail;
14892 primary->base.state = &state->base;
14893
14894 primary->can_scale = false;
14895 primary->max_downscale = 1;
14896 if (INTEL_INFO(dev)->gen >= 9) {
14897 primary->can_scale = true;
14898 state->scaler_id = -1;
14899 }
14900 primary->pipe = pipe;
14901 primary->plane = pipe;
14902 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14903 primary->check_plane = intel_check_primary_plane;
14904 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14905 primary->plane = !pipe;
14906
14907 if (INTEL_INFO(dev)->gen >= 9) {
14908 intel_primary_formats = skl_primary_formats;
14909 num_formats = ARRAY_SIZE(skl_primary_formats);
14910
14911 primary->update_plane = skylake_update_primary_plane;
14912 primary->disable_plane = skylake_disable_primary_plane;
14913 } else if (HAS_PCH_SPLIT(dev)) {
14914 intel_primary_formats = i965_primary_formats;
14915 num_formats = ARRAY_SIZE(i965_primary_formats);
14916
14917 primary->update_plane = ironlake_update_primary_plane;
14918 primary->disable_plane = i9xx_disable_primary_plane;
14919 } else if (INTEL_INFO(dev)->gen >= 4) {
14920 intel_primary_formats = i965_primary_formats;
14921 num_formats = ARRAY_SIZE(i965_primary_formats);
14922
14923 primary->update_plane = i9xx_update_primary_plane;
14924 primary->disable_plane = i9xx_disable_primary_plane;
14925 } else {
14926 intel_primary_formats = i8xx_primary_formats;
14927 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14928
14929 primary->update_plane = i9xx_update_primary_plane;
14930 primary->disable_plane = i9xx_disable_primary_plane;
14931 }
14932
14933 if (INTEL_INFO(dev)->gen >= 9)
14934 ret = drm_universal_plane_init(dev, &primary->base, 0,
14935 &intel_plane_funcs,
14936 intel_primary_formats, num_formats,
14937 DRM_PLANE_TYPE_PRIMARY,
14938 "plane 1%c", pipe_name(pipe));
14939 else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
14940 ret = drm_universal_plane_init(dev, &primary->base, 0,
14941 &intel_plane_funcs,
14942 intel_primary_formats, num_formats,
14943 DRM_PLANE_TYPE_PRIMARY,
14944 "primary %c", pipe_name(pipe));
14945 else
14946 ret = drm_universal_plane_init(dev, &primary->base, 0,
14947 &intel_plane_funcs,
14948 intel_primary_formats, num_formats,
14949 DRM_PLANE_TYPE_PRIMARY,
14950 "plane %c", plane_name(primary->plane));
14951 if (ret)
14952 goto fail;
14953
14954 if (INTEL_INFO(dev)->gen >= 4)
14955 intel_create_rotation_property(dev, primary);
14956
14957 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14958
14959 return &primary->base;
14960
14961 fail:
14962 kfree(state);
14963 kfree(primary);
14964
14965 return NULL;
14966 }
14967
14968 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14969 {
14970 if (!dev->mode_config.rotation_property) {
14971 unsigned long flags = DRM_ROTATE_0 |
14972 DRM_ROTATE_180;
14973
14974 if (INTEL_INFO(dev)->gen >= 9)
14975 flags |= DRM_ROTATE_90 | DRM_ROTATE_270;
14976
14977 dev->mode_config.rotation_property =
14978 drm_mode_create_rotation_property(dev, flags);
14979 }
14980 if (dev->mode_config.rotation_property)
14981 drm_object_attach_property(&plane->base.base,
14982 dev->mode_config.rotation_property,
14983 plane->base.state->rotation);
14984 }
14985
14986 static int
14987 intel_check_cursor_plane(struct drm_plane *plane,
14988 struct intel_crtc_state *crtc_state,
14989 struct intel_plane_state *state)
14990 {
14991 struct drm_framebuffer *fb = state->base.fb;
14992 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14993 enum pipe pipe = to_intel_plane(plane)->pipe;
14994 unsigned stride;
14995 int ret;
14996
14997 ret = drm_plane_helper_check_state(&state->base,
14998 &state->clip,
14999 DRM_PLANE_HELPER_NO_SCALING,
15000 DRM_PLANE_HELPER_NO_SCALING,
15001 true, true);
15002 if (ret)
15003 return ret;
15004
15005 /* if we want to turn off the cursor ignore width and height */
15006 if (!obj)
15007 return 0;
15008
15009 /* Check for which cursor types we support */
15010 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
15011 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15012 state->base.crtc_w, state->base.crtc_h);
15013 return -EINVAL;
15014 }
15015
15016 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15017 if (obj->base.size < stride * state->base.crtc_h) {
15018 DRM_DEBUG_KMS("buffer is too small\n");
15019 return -ENOMEM;
15020 }
15021
15022 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
15023 DRM_DEBUG_KMS("cursor cannot be tiled\n");
15024 return -EINVAL;
15025 }
15026
15027 /*
15028 * There's something wrong with the cursor on CHV pipe C.
15029 * If it straddles the left edge of the screen then
15030 * moving it away from the edge or disabling it often
15031 * results in a pipe underrun, and often that can lead to
15032 * dead pipe (constant underrun reported, and it scans
15033 * out just a solid color). To recover from that, the
15034 * display power well must be turned off and on again.
15035 * Refuse the put the cursor into that compromised position.
15036 */
15037 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
15038 state->base.visible && state->base.crtc_x < 0) {
15039 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15040 return -EINVAL;
15041 }
15042
15043 return 0;
15044 }
15045
15046 static void
15047 intel_disable_cursor_plane(struct drm_plane *plane,
15048 struct drm_crtc *crtc)
15049 {
15050 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15051
15052 intel_crtc->cursor_addr = 0;
15053 intel_crtc_update_cursor(crtc, NULL);
15054 }
15055
15056 static void
15057 intel_update_cursor_plane(struct drm_plane *plane,
15058 const struct intel_crtc_state *crtc_state,
15059 const struct intel_plane_state *state)
15060 {
15061 struct drm_crtc *crtc = crtc_state->base.crtc;
15062 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15063 struct drm_device *dev = plane->dev;
15064 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
15065 uint32_t addr;
15066
15067 if (!obj)
15068 addr = 0;
15069 else if (!INTEL_INFO(dev)->cursor_needs_physical)
15070 addr = i915_gem_object_ggtt_offset(obj, NULL);
15071 else
15072 addr = obj->phys_handle->busaddr;
15073
15074 intel_crtc->cursor_addr = addr;
15075 intel_crtc_update_cursor(crtc, state);
15076 }
15077
15078 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
15079 int pipe)
15080 {
15081 struct intel_plane *cursor = NULL;
15082 struct intel_plane_state *state = NULL;
15083 int ret;
15084
15085 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
15086 if (!cursor)
15087 goto fail;
15088
15089 state = intel_create_plane_state(&cursor->base);
15090 if (!state)
15091 goto fail;
15092 cursor->base.state = &state->base;
15093
15094 cursor->can_scale = false;
15095 cursor->max_downscale = 1;
15096 cursor->pipe = pipe;
15097 cursor->plane = pipe;
15098 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
15099 cursor->check_plane = intel_check_cursor_plane;
15100 cursor->update_plane = intel_update_cursor_plane;
15101 cursor->disable_plane = intel_disable_cursor_plane;
15102
15103 ret = drm_universal_plane_init(dev, &cursor->base, 0,
15104 &intel_plane_funcs,
15105 intel_cursor_formats,
15106 ARRAY_SIZE(intel_cursor_formats),
15107 DRM_PLANE_TYPE_CURSOR,
15108 "cursor %c", pipe_name(pipe));
15109 if (ret)
15110 goto fail;
15111
15112 if (INTEL_INFO(dev)->gen >= 4) {
15113 if (!dev->mode_config.rotation_property)
15114 dev->mode_config.rotation_property =
15115 drm_mode_create_rotation_property(dev,
15116 DRM_ROTATE_0 |
15117 DRM_ROTATE_180);
15118 if (dev->mode_config.rotation_property)
15119 drm_object_attach_property(&cursor->base.base,
15120 dev->mode_config.rotation_property,
15121 state->base.rotation);
15122 }
15123
15124 if (INTEL_INFO(dev)->gen >=9)
15125 state->scaler_id = -1;
15126
15127 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15128
15129 return &cursor->base;
15130
15131 fail:
15132 kfree(state);
15133 kfree(cursor);
15134
15135 return NULL;
15136 }
15137
15138 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
15139 struct intel_crtc_state *crtc_state)
15140 {
15141 int i;
15142 struct intel_scaler *intel_scaler;
15143 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
15144
15145 for (i = 0; i < intel_crtc->num_scalers; i++) {
15146 intel_scaler = &scaler_state->scalers[i];
15147 intel_scaler->in_use = 0;
15148 intel_scaler->mode = PS_SCALER_MODE_DYN;
15149 }
15150
15151 scaler_state->scaler_id = -1;
15152 }
15153
15154 static void intel_crtc_init(struct drm_device *dev, int pipe)
15155 {
15156 struct drm_i915_private *dev_priv = to_i915(dev);
15157 struct intel_crtc *intel_crtc;
15158 struct intel_crtc_state *crtc_state = NULL;
15159 struct drm_plane *primary = NULL;
15160 struct drm_plane *cursor = NULL;
15161 int ret;
15162
15163 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15164 if (intel_crtc == NULL)
15165 return;
15166
15167 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15168 if (!crtc_state)
15169 goto fail;
15170 intel_crtc->config = crtc_state;
15171 intel_crtc->base.state = &crtc_state->base;
15172 crtc_state->base.crtc = &intel_crtc->base;
15173
15174 /* initialize shared scalers */
15175 if (INTEL_INFO(dev)->gen >= 9) {
15176 if (pipe == PIPE_C)
15177 intel_crtc->num_scalers = 1;
15178 else
15179 intel_crtc->num_scalers = SKL_NUM_SCALERS;
15180
15181 skl_init_scalers(dev, intel_crtc, crtc_state);
15182 }
15183
15184 primary = intel_primary_plane_create(dev, pipe);
15185 if (!primary)
15186 goto fail;
15187
15188 cursor = intel_cursor_plane_create(dev, pipe);
15189 if (!cursor)
15190 goto fail;
15191
15192 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
15193 cursor, &intel_crtc_funcs,
15194 "pipe %c", pipe_name(pipe));
15195 if (ret)
15196 goto fail;
15197
15198 /*
15199 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
15200 * is hooked to pipe B. Hence we want plane A feeding pipe B.
15201 */
15202 intel_crtc->pipe = pipe;
15203 intel_crtc->plane = pipe;
15204 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
15205 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
15206 intel_crtc->plane = !pipe;
15207 }
15208
15209 intel_crtc->cursor_base = ~0;
15210 intel_crtc->cursor_cntl = ~0;
15211 intel_crtc->cursor_size = ~0;
15212
15213 intel_crtc->wm.cxsr_allowed = true;
15214
15215 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15216 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15217 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
15218 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
15219
15220 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15221
15222 intel_color_init(&intel_crtc->base);
15223
15224 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15225 return;
15226
15227 fail:
15228 intel_plane_destroy(primary);
15229 intel_plane_destroy(cursor);
15230 kfree(crtc_state);
15231 kfree(intel_crtc);
15232 }
15233
15234 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15235 {
15236 struct drm_encoder *encoder = connector->base.encoder;
15237 struct drm_device *dev = connector->base.dev;
15238
15239 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
15240
15241 if (!encoder || WARN_ON(!encoder->crtc))
15242 return INVALID_PIPE;
15243
15244 return to_intel_crtc(encoder->crtc)->pipe;
15245 }
15246
15247 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
15248 struct drm_file *file)
15249 {
15250 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15251 struct drm_crtc *drmmode_crtc;
15252 struct intel_crtc *crtc;
15253
15254 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
15255 if (!drmmode_crtc)
15256 return -ENOENT;
15257
15258 crtc = to_intel_crtc(drmmode_crtc);
15259 pipe_from_crtc_id->pipe = crtc->pipe;
15260
15261 return 0;
15262 }
15263
15264 static int intel_encoder_clones(struct intel_encoder *encoder)
15265 {
15266 struct drm_device *dev = encoder->base.dev;
15267 struct intel_encoder *source_encoder;
15268 int index_mask = 0;
15269 int entry = 0;
15270
15271 for_each_intel_encoder(dev, source_encoder) {
15272 if (encoders_cloneable(encoder, source_encoder))
15273 index_mask |= (1 << entry);
15274
15275 entry++;
15276 }
15277
15278 return index_mask;
15279 }
15280
15281 static bool has_edp_a(struct drm_device *dev)
15282 {
15283 struct drm_i915_private *dev_priv = to_i915(dev);
15284
15285 if (!IS_MOBILE(dev))
15286 return false;
15287
15288 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15289 return false;
15290
15291 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15292 return false;
15293
15294 return true;
15295 }
15296
15297 static bool intel_crt_present(struct drm_device *dev)
15298 {
15299 struct drm_i915_private *dev_priv = to_i915(dev);
15300
15301 if (INTEL_INFO(dev)->gen >= 9)
15302 return false;
15303
15304 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
15305 return false;
15306
15307 if (IS_CHERRYVIEW(dev))
15308 return false;
15309
15310 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15311 return false;
15312
15313 /* DDI E can't be used if DDI A requires 4 lanes */
15314 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15315 return false;
15316
15317 if (!dev_priv->vbt.int_crt_support)
15318 return false;
15319
15320 return true;
15321 }
15322
15323 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15324 {
15325 int pps_num;
15326 int pps_idx;
15327
15328 if (HAS_DDI(dev_priv))
15329 return;
15330 /*
15331 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15332 * everywhere where registers can be write protected.
15333 */
15334 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15335 pps_num = 2;
15336 else
15337 pps_num = 1;
15338
15339 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15340 u32 val = I915_READ(PP_CONTROL(pps_idx));
15341
15342 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15343 I915_WRITE(PP_CONTROL(pps_idx), val);
15344 }
15345 }
15346
15347 static void intel_pps_init(struct drm_i915_private *dev_priv)
15348 {
15349 if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv))
15350 dev_priv->pps_mmio_base = PCH_PPS_BASE;
15351 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15352 dev_priv->pps_mmio_base = VLV_PPS_BASE;
15353 else
15354 dev_priv->pps_mmio_base = PPS_BASE;
15355
15356 intel_pps_unlock_regs_wa(dev_priv);
15357 }
15358
15359 static void intel_setup_outputs(struct drm_device *dev)
15360 {
15361 struct drm_i915_private *dev_priv = to_i915(dev);
15362 struct intel_encoder *encoder;
15363 bool dpd_is_edp = false;
15364
15365 intel_pps_init(dev_priv);
15366
15367 /*
15368 * intel_edp_init_connector() depends on this completing first, to
15369 * prevent the registeration of both eDP and LVDS and the incorrect
15370 * sharing of the PPS.
15371 */
15372 intel_lvds_init(dev);
15373
15374 if (intel_crt_present(dev))
15375 intel_crt_init(dev);
15376
15377 if (IS_BROXTON(dev)) {
15378 /*
15379 * FIXME: Broxton doesn't support port detection via the
15380 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15381 * detect the ports.
15382 */
15383 intel_ddi_init(dev, PORT_A);
15384 intel_ddi_init(dev, PORT_B);
15385 intel_ddi_init(dev, PORT_C);
15386
15387 intel_dsi_init(dev);
15388 } else if (HAS_DDI(dev)) {
15389 int found;
15390
15391 /*
15392 * Haswell uses DDI functions to detect digital outputs.
15393 * On SKL pre-D0 the strap isn't connected, so we assume
15394 * it's there.
15395 */
15396 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15397 /* WaIgnoreDDIAStrap: skl */
15398 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
15399 intel_ddi_init(dev, PORT_A);
15400
15401 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
15402 * register */
15403 found = I915_READ(SFUSE_STRAP);
15404
15405 if (found & SFUSE_STRAP_DDIB_DETECTED)
15406 intel_ddi_init(dev, PORT_B);
15407 if (found & SFUSE_STRAP_DDIC_DETECTED)
15408 intel_ddi_init(dev, PORT_C);
15409 if (found & SFUSE_STRAP_DDID_DETECTED)
15410 intel_ddi_init(dev, PORT_D);
15411 /*
15412 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15413 */
15414 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
15415 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15416 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15417 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15418 intel_ddi_init(dev, PORT_E);
15419
15420 } else if (HAS_PCH_SPLIT(dev)) {
15421 int found;
15422 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
15423
15424 if (has_edp_a(dev))
15425 intel_dp_init(dev, DP_A, PORT_A);
15426
15427 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15428 /* PCH SDVOB multiplex with HDMIB */
15429 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
15430 if (!found)
15431 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
15432 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15433 intel_dp_init(dev, PCH_DP_B, PORT_B);
15434 }
15435
15436 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15437 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
15438
15439 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15440 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
15441
15442 if (I915_READ(PCH_DP_C) & DP_DETECTED)
15443 intel_dp_init(dev, PCH_DP_C, PORT_C);
15444
15445 if (I915_READ(PCH_DP_D) & DP_DETECTED)
15446 intel_dp_init(dev, PCH_DP_D, PORT_D);
15447 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
15448 bool has_edp, has_port;
15449
15450 /*
15451 * The DP_DETECTED bit is the latched state of the DDC
15452 * SDA pin at boot. However since eDP doesn't require DDC
15453 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15454 * eDP ports may have been muxed to an alternate function.
15455 * Thus we can't rely on the DP_DETECTED bit alone to detect
15456 * eDP ports. Consult the VBT as well as DP_DETECTED to
15457 * detect eDP ports.
15458 *
15459 * Sadly the straps seem to be missing sometimes even for HDMI
15460 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15461 * and VBT for the presence of the port. Additionally we can't
15462 * trust the port type the VBT declares as we've seen at least
15463 * HDMI ports that the VBT claim are DP or eDP.
15464 */
15465 has_edp = intel_dp_is_edp(dev, PORT_B);
15466 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15467 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15468 has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
15469 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15470 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
15471
15472 has_edp = intel_dp_is_edp(dev, PORT_C);
15473 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15474 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15475 has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
15476 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15477 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
15478
15479 if (IS_CHERRYVIEW(dev)) {
15480 /*
15481 * eDP not supported on port D,
15482 * so no need to worry about it
15483 */
15484 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15485 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15486 intel_dp_init(dev, CHV_DP_D, PORT_D);
15487 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15488 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
15489 }
15490
15491 intel_dsi_init(dev);
15492 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
15493 bool found = false;
15494
15495 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15496 DRM_DEBUG_KMS("probing SDVOB\n");
15497 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
15498 if (!found && IS_G4X(dev)) {
15499 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15500 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
15501 }
15502
15503 if (!found && IS_G4X(dev))
15504 intel_dp_init(dev, DP_B, PORT_B);
15505 }
15506
15507 /* Before G4X SDVOC doesn't have its own detect register */
15508
15509 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15510 DRM_DEBUG_KMS("probing SDVOC\n");
15511 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
15512 }
15513
15514 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15515
15516 if (IS_G4X(dev)) {
15517 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15518 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
15519 }
15520 if (IS_G4X(dev))
15521 intel_dp_init(dev, DP_C, PORT_C);
15522 }
15523
15524 if (IS_G4X(dev) &&
15525 (I915_READ(DP_D) & DP_DETECTED))
15526 intel_dp_init(dev, DP_D, PORT_D);
15527 } else if (IS_GEN2(dev))
15528 intel_dvo_init(dev);
15529
15530 if (SUPPORTS_TV(dev))
15531 intel_tv_init(dev);
15532
15533 intel_psr_init(dev);
15534
15535 for_each_intel_encoder(dev, encoder) {
15536 encoder->base.possible_crtcs = encoder->crtc_mask;
15537 encoder->base.possible_clones =
15538 intel_encoder_clones(encoder);
15539 }
15540
15541 intel_init_pch_refclk(dev);
15542
15543 drm_helper_move_panel_connectors_to_head(dev);
15544 }
15545
15546 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15547 {
15548 struct drm_device *dev = fb->dev;
15549 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15550
15551 drm_framebuffer_cleanup(fb);
15552 mutex_lock(&dev->struct_mutex);
15553 WARN_ON(!intel_fb->obj->framebuffer_references--);
15554 i915_gem_object_put(intel_fb->obj);
15555 mutex_unlock(&dev->struct_mutex);
15556 kfree(intel_fb);
15557 }
15558
15559 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15560 struct drm_file *file,
15561 unsigned int *handle)
15562 {
15563 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15564 struct drm_i915_gem_object *obj = intel_fb->obj;
15565
15566 if (obj->userptr.mm) {
15567 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15568 return -EINVAL;
15569 }
15570
15571 return drm_gem_handle_create(file, &obj->base, handle);
15572 }
15573
15574 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15575 struct drm_file *file,
15576 unsigned flags, unsigned color,
15577 struct drm_clip_rect *clips,
15578 unsigned num_clips)
15579 {
15580 struct drm_device *dev = fb->dev;
15581 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15582 struct drm_i915_gem_object *obj = intel_fb->obj;
15583
15584 mutex_lock(&dev->struct_mutex);
15585 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
15586 mutex_unlock(&dev->struct_mutex);
15587
15588 return 0;
15589 }
15590
15591 static const struct drm_framebuffer_funcs intel_fb_funcs = {
15592 .destroy = intel_user_framebuffer_destroy,
15593 .create_handle = intel_user_framebuffer_create_handle,
15594 .dirty = intel_user_framebuffer_dirty,
15595 };
15596
15597 static
15598 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
15599 uint32_t pixel_format)
15600 {
15601 u32 gen = INTEL_INFO(dev)->gen;
15602
15603 if (gen >= 9) {
15604 int cpp = drm_format_plane_cpp(pixel_format, 0);
15605
15606 /* "The stride in bytes must not exceed the of the size of 8K
15607 * pixels and 32K bytes."
15608 */
15609 return min(8192 * cpp, 32768);
15610 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15611 return 32*1024;
15612 } else if (gen >= 4) {
15613 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15614 return 16*1024;
15615 else
15616 return 32*1024;
15617 } else if (gen >= 3) {
15618 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15619 return 8*1024;
15620 else
15621 return 16*1024;
15622 } else {
15623 /* XXX DSPC is limited to 4k tiled */
15624 return 8*1024;
15625 }
15626 }
15627
15628 static int intel_framebuffer_init(struct drm_device *dev,
15629 struct intel_framebuffer *intel_fb,
15630 struct drm_mode_fb_cmd2 *mode_cmd,
15631 struct drm_i915_gem_object *obj)
15632 {
15633 struct drm_i915_private *dev_priv = to_i915(dev);
15634 unsigned int tiling = i915_gem_object_get_tiling(obj);
15635 int ret;
15636 u32 pitch_limit, stride_alignment;
15637 char *format_name;
15638
15639 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15640
15641 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15642 /*
15643 * If there's a fence, enforce that
15644 * the fb modifier and tiling mode match.
15645 */
15646 if (tiling != I915_TILING_NONE &&
15647 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15648 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15649 return -EINVAL;
15650 }
15651 } else {
15652 if (tiling == I915_TILING_X) {
15653 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15654 } else if (tiling == I915_TILING_Y) {
15655 DRM_DEBUG("No Y tiling for legacy addfb\n");
15656 return -EINVAL;
15657 }
15658 }
15659
15660 /* Passed in modifier sanity checking. */
15661 switch (mode_cmd->modifier[0]) {
15662 case I915_FORMAT_MOD_Y_TILED:
15663 case I915_FORMAT_MOD_Yf_TILED:
15664 if (INTEL_INFO(dev)->gen < 9) {
15665 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15666 mode_cmd->modifier[0]);
15667 return -EINVAL;
15668 }
15669 case DRM_FORMAT_MOD_NONE:
15670 case I915_FORMAT_MOD_X_TILED:
15671 break;
15672 default:
15673 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15674 mode_cmd->modifier[0]);
15675 return -EINVAL;
15676 }
15677
15678 /*
15679 * gen2/3 display engine uses the fence if present,
15680 * so the tiling mode must match the fb modifier exactly.
15681 */
15682 if (INTEL_INFO(dev_priv)->gen < 4 &&
15683 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15684 DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15685 return -EINVAL;
15686 }
15687
15688 stride_alignment = intel_fb_stride_alignment(dev_priv,
15689 mode_cmd->modifier[0],
15690 mode_cmd->pixel_format);
15691 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15692 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15693 mode_cmd->pitches[0], stride_alignment);
15694 return -EINVAL;
15695 }
15696
15697 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
15698 mode_cmd->pixel_format);
15699 if (mode_cmd->pitches[0] > pitch_limit) {
15700 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15701 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15702 "tiled" : "linear",
15703 mode_cmd->pitches[0], pitch_limit);
15704 return -EINVAL;
15705 }
15706
15707 /*
15708 * If there's a fence, enforce that
15709 * the fb pitch and fence stride match.
15710 */
15711 if (tiling != I915_TILING_NONE &&
15712 mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
15713 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15714 mode_cmd->pitches[0],
15715 i915_gem_object_get_stride(obj));
15716 return -EINVAL;
15717 }
15718
15719 /* Reject formats not supported by any plane early. */
15720 switch (mode_cmd->pixel_format) {
15721 case DRM_FORMAT_C8:
15722 case DRM_FORMAT_RGB565:
15723 case DRM_FORMAT_XRGB8888:
15724 case DRM_FORMAT_ARGB8888:
15725 break;
15726 case DRM_FORMAT_XRGB1555:
15727 if (INTEL_INFO(dev)->gen > 3) {
15728 format_name = drm_get_format_name(mode_cmd->pixel_format);
15729 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15730 kfree(format_name);
15731 return -EINVAL;
15732 }
15733 break;
15734 case DRM_FORMAT_ABGR8888:
15735 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
15736 INTEL_INFO(dev)->gen < 9) {
15737 format_name = drm_get_format_name(mode_cmd->pixel_format);
15738 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15739 kfree(format_name);
15740 return -EINVAL;
15741 }
15742 break;
15743 case DRM_FORMAT_XBGR8888:
15744 case DRM_FORMAT_XRGB2101010:
15745 case DRM_FORMAT_XBGR2101010:
15746 if (INTEL_INFO(dev)->gen < 4) {
15747 format_name = drm_get_format_name(mode_cmd->pixel_format);
15748 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15749 kfree(format_name);
15750 return -EINVAL;
15751 }
15752 break;
15753 case DRM_FORMAT_ABGR2101010:
15754 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15755 format_name = drm_get_format_name(mode_cmd->pixel_format);
15756 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15757 kfree(format_name);
15758 return -EINVAL;
15759 }
15760 break;
15761 case DRM_FORMAT_YUYV:
15762 case DRM_FORMAT_UYVY:
15763 case DRM_FORMAT_YVYU:
15764 case DRM_FORMAT_VYUY:
15765 if (INTEL_INFO(dev)->gen < 5) {
15766 format_name = drm_get_format_name(mode_cmd->pixel_format);
15767 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15768 kfree(format_name);
15769 return -EINVAL;
15770 }
15771 break;
15772 default:
15773 format_name = drm_get_format_name(mode_cmd->pixel_format);
15774 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15775 kfree(format_name);
15776 return -EINVAL;
15777 }
15778
15779 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15780 if (mode_cmd->offsets[0] != 0)
15781 return -EINVAL;
15782
15783 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15784 intel_fb->obj = obj;
15785
15786 ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
15787 if (ret)
15788 return ret;
15789
15790 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15791 if (ret) {
15792 DRM_ERROR("framebuffer init failed %d\n", ret);
15793 return ret;
15794 }
15795
15796 intel_fb->obj->framebuffer_references++;
15797
15798 return 0;
15799 }
15800
15801 static struct drm_framebuffer *
15802 intel_user_framebuffer_create(struct drm_device *dev,
15803 struct drm_file *filp,
15804 const struct drm_mode_fb_cmd2 *user_mode_cmd)
15805 {
15806 struct drm_framebuffer *fb;
15807 struct drm_i915_gem_object *obj;
15808 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15809
15810 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15811 if (!obj)
15812 return ERR_PTR(-ENOENT);
15813
15814 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15815 if (IS_ERR(fb))
15816 i915_gem_object_put_unlocked(obj);
15817
15818 return fb;
15819 }
15820
15821 #ifndef CONFIG_DRM_FBDEV_EMULATION
15822 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
15823 {
15824 }
15825 #endif
15826
15827 static const struct drm_mode_config_funcs intel_mode_funcs = {
15828 .fb_create = intel_user_framebuffer_create,
15829 .output_poll_changed = intel_fbdev_output_poll_changed,
15830 .atomic_check = intel_atomic_check,
15831 .atomic_commit = intel_atomic_commit,
15832 .atomic_state_alloc = intel_atomic_state_alloc,
15833 .atomic_state_clear = intel_atomic_state_clear,
15834 };
15835
15836 /**
15837 * intel_init_display_hooks - initialize the display modesetting hooks
15838 * @dev_priv: device private
15839 */
15840 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15841 {
15842 if (INTEL_INFO(dev_priv)->gen >= 9) {
15843 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15844 dev_priv->display.get_initial_plane_config =
15845 skylake_get_initial_plane_config;
15846 dev_priv->display.crtc_compute_clock =
15847 haswell_crtc_compute_clock;
15848 dev_priv->display.crtc_enable = haswell_crtc_enable;
15849 dev_priv->display.crtc_disable = haswell_crtc_disable;
15850 } else if (HAS_DDI(dev_priv)) {
15851 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15852 dev_priv->display.get_initial_plane_config =
15853 ironlake_get_initial_plane_config;
15854 dev_priv->display.crtc_compute_clock =
15855 haswell_crtc_compute_clock;
15856 dev_priv->display.crtc_enable = haswell_crtc_enable;
15857 dev_priv->display.crtc_disable = haswell_crtc_disable;
15858 } else if (HAS_PCH_SPLIT(dev_priv)) {
15859 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15860 dev_priv->display.get_initial_plane_config =
15861 ironlake_get_initial_plane_config;
15862 dev_priv->display.crtc_compute_clock =
15863 ironlake_crtc_compute_clock;
15864 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15865 dev_priv->display.crtc_disable = ironlake_crtc_disable;
15866 } else if (IS_CHERRYVIEW(dev_priv)) {
15867 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15868 dev_priv->display.get_initial_plane_config =
15869 i9xx_get_initial_plane_config;
15870 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15871 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15872 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15873 } else if (IS_VALLEYVIEW(dev_priv)) {
15874 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15875 dev_priv->display.get_initial_plane_config =
15876 i9xx_get_initial_plane_config;
15877 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15878 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15879 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15880 } else if (IS_G4X(dev_priv)) {
15881 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15882 dev_priv->display.get_initial_plane_config =
15883 i9xx_get_initial_plane_config;
15884 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15885 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15886 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15887 } else if (IS_PINEVIEW(dev_priv)) {
15888 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15889 dev_priv->display.get_initial_plane_config =
15890 i9xx_get_initial_plane_config;
15891 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15892 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15893 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15894 } else if (!IS_GEN2(dev_priv)) {
15895 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15896 dev_priv->display.get_initial_plane_config =
15897 i9xx_get_initial_plane_config;
15898 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15899 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15900 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15901 } else {
15902 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15903 dev_priv->display.get_initial_plane_config =
15904 i9xx_get_initial_plane_config;
15905 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15906 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15907 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15908 }
15909
15910 /* Returns the core display clock speed */
15911 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15912 dev_priv->display.get_display_clock_speed =
15913 skylake_get_display_clock_speed;
15914 else if (IS_BROXTON(dev_priv))
15915 dev_priv->display.get_display_clock_speed =
15916 broxton_get_display_clock_speed;
15917 else if (IS_BROADWELL(dev_priv))
15918 dev_priv->display.get_display_clock_speed =
15919 broadwell_get_display_clock_speed;
15920 else if (IS_HASWELL(dev_priv))
15921 dev_priv->display.get_display_clock_speed =
15922 haswell_get_display_clock_speed;
15923 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15924 dev_priv->display.get_display_clock_speed =
15925 valleyview_get_display_clock_speed;
15926 else if (IS_GEN5(dev_priv))
15927 dev_priv->display.get_display_clock_speed =
15928 ilk_get_display_clock_speed;
15929 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15930 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15931 dev_priv->display.get_display_clock_speed =
15932 i945_get_display_clock_speed;
15933 else if (IS_GM45(dev_priv))
15934 dev_priv->display.get_display_clock_speed =
15935 gm45_get_display_clock_speed;
15936 else if (IS_CRESTLINE(dev_priv))
15937 dev_priv->display.get_display_clock_speed =
15938 i965gm_get_display_clock_speed;
15939 else if (IS_PINEVIEW(dev_priv))
15940 dev_priv->display.get_display_clock_speed =
15941 pnv_get_display_clock_speed;
15942 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15943 dev_priv->display.get_display_clock_speed =
15944 g33_get_display_clock_speed;
15945 else if (IS_I915G(dev_priv))
15946 dev_priv->display.get_display_clock_speed =
15947 i915_get_display_clock_speed;
15948 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15949 dev_priv->display.get_display_clock_speed =
15950 i9xx_misc_get_display_clock_speed;
15951 else if (IS_I915GM(dev_priv))
15952 dev_priv->display.get_display_clock_speed =
15953 i915gm_get_display_clock_speed;
15954 else if (IS_I865G(dev_priv))
15955 dev_priv->display.get_display_clock_speed =
15956 i865_get_display_clock_speed;
15957 else if (IS_I85X(dev_priv))
15958 dev_priv->display.get_display_clock_speed =
15959 i85x_get_display_clock_speed;
15960 else { /* 830 */
15961 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
15962 dev_priv->display.get_display_clock_speed =
15963 i830_get_display_clock_speed;
15964 }
15965
15966 if (IS_GEN5(dev_priv)) {
15967 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15968 } else if (IS_GEN6(dev_priv)) {
15969 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15970 } else if (IS_IVYBRIDGE(dev_priv)) {
15971 /* FIXME: detect B0+ stepping and use auto training */
15972 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15973 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15974 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15975 }
15976
15977 if (IS_BROADWELL(dev_priv)) {
15978 dev_priv->display.modeset_commit_cdclk =
15979 broadwell_modeset_commit_cdclk;
15980 dev_priv->display.modeset_calc_cdclk =
15981 broadwell_modeset_calc_cdclk;
15982 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15983 dev_priv->display.modeset_commit_cdclk =
15984 valleyview_modeset_commit_cdclk;
15985 dev_priv->display.modeset_calc_cdclk =
15986 valleyview_modeset_calc_cdclk;
15987 } else if (IS_BROXTON(dev_priv)) {
15988 dev_priv->display.modeset_commit_cdclk =
15989 bxt_modeset_commit_cdclk;
15990 dev_priv->display.modeset_calc_cdclk =
15991 bxt_modeset_calc_cdclk;
15992 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
15993 dev_priv->display.modeset_commit_cdclk =
15994 skl_modeset_commit_cdclk;
15995 dev_priv->display.modeset_calc_cdclk =
15996 skl_modeset_calc_cdclk;
15997 }
15998
15999 if (dev_priv->info.gen >= 9)
16000 dev_priv->display.update_crtcs = skl_update_crtcs;
16001 else
16002 dev_priv->display.update_crtcs = intel_update_crtcs;
16003
16004 switch (INTEL_INFO(dev_priv)->gen) {
16005 case 2:
16006 dev_priv->display.queue_flip = intel_gen2_queue_flip;
16007 break;
16008
16009 case 3:
16010 dev_priv->display.queue_flip = intel_gen3_queue_flip;
16011 break;
16012
16013 case 4:
16014 case 5:
16015 dev_priv->display.queue_flip = intel_gen4_queue_flip;
16016 break;
16017
16018 case 6:
16019 dev_priv->display.queue_flip = intel_gen6_queue_flip;
16020 break;
16021 case 7:
16022 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16023 dev_priv->display.queue_flip = intel_gen7_queue_flip;
16024 break;
16025 case 9:
16026 /* Drop through - unsupported since execlist only. */
16027 default:
16028 /* Default just returns -ENODEV to indicate unsupported */
16029 dev_priv->display.queue_flip = intel_default_queue_flip;
16030 }
16031 }
16032
16033 /*
16034 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16035 * resume, or other times. This quirk makes sure that's the case for
16036 * affected systems.
16037 */
16038 static void quirk_pipea_force(struct drm_device *dev)
16039 {
16040 struct drm_i915_private *dev_priv = to_i915(dev);
16041
16042 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
16043 DRM_INFO("applying pipe a force quirk\n");
16044 }
16045
16046 static void quirk_pipeb_force(struct drm_device *dev)
16047 {
16048 struct drm_i915_private *dev_priv = to_i915(dev);
16049
16050 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16051 DRM_INFO("applying pipe b force quirk\n");
16052 }
16053
16054 /*
16055 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16056 */
16057 static void quirk_ssc_force_disable(struct drm_device *dev)
16058 {
16059 struct drm_i915_private *dev_priv = to_i915(dev);
16060 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
16061 DRM_INFO("applying lvds SSC disable quirk\n");
16062 }
16063
16064 /*
16065 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16066 * brightness value
16067 */
16068 static void quirk_invert_brightness(struct drm_device *dev)
16069 {
16070 struct drm_i915_private *dev_priv = to_i915(dev);
16071 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
16072 DRM_INFO("applying inverted panel brightness quirk\n");
16073 }
16074
16075 /* Some VBT's incorrectly indicate no backlight is present */
16076 static void quirk_backlight_present(struct drm_device *dev)
16077 {
16078 struct drm_i915_private *dev_priv = to_i915(dev);
16079 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16080 DRM_INFO("applying backlight present quirk\n");
16081 }
16082
16083 struct intel_quirk {
16084 int device;
16085 int subsystem_vendor;
16086 int subsystem_device;
16087 void (*hook)(struct drm_device *dev);
16088 };
16089
16090 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16091 struct intel_dmi_quirk {
16092 void (*hook)(struct drm_device *dev);
16093 const struct dmi_system_id (*dmi_id_list)[];
16094 };
16095
16096 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16097 {
16098 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16099 return 1;
16100 }
16101
16102 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16103 {
16104 .dmi_id_list = &(const struct dmi_system_id[]) {
16105 {
16106 .callback = intel_dmi_reverse_brightness,
16107 .ident = "NCR Corporation",
16108 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16109 DMI_MATCH(DMI_PRODUCT_NAME, ""),
16110 },
16111 },
16112 { } /* terminating entry */
16113 },
16114 .hook = quirk_invert_brightness,
16115 },
16116 };
16117
16118 static struct intel_quirk intel_quirks[] = {
16119 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16120 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16121
16122 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16123 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16124
16125 /* 830 needs to leave pipe A & dpll A up */
16126 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16127
16128 /* 830 needs to leave pipe B & dpll B up */
16129 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16130
16131 /* Lenovo U160 cannot use SSC on LVDS */
16132 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
16133
16134 /* Sony Vaio Y cannot use SSC on LVDS */
16135 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
16136
16137 /* Acer Aspire 5734Z must invert backlight brightness */
16138 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16139
16140 /* Acer/eMachines G725 */
16141 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16142
16143 /* Acer/eMachines e725 */
16144 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16145
16146 /* Acer/Packard Bell NCL20 */
16147 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16148
16149 /* Acer Aspire 4736Z */
16150 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
16151
16152 /* Acer Aspire 5336 */
16153 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
16154
16155 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16156 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
16157
16158 /* Acer C720 Chromebook (Core i3 4005U) */
16159 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16160
16161 /* Apple Macbook 2,1 (Core 2 T7400) */
16162 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16163
16164 /* Apple Macbook 4,1 */
16165 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16166
16167 /* Toshiba CB35 Chromebook (Celeron 2955U) */
16168 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
16169
16170 /* HP Chromebook 14 (Celeron 2955U) */
16171 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
16172
16173 /* Dell Chromebook 11 */
16174 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
16175
16176 /* Dell Chromebook 11 (2015 version) */
16177 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
16178 };
16179
16180 static void intel_init_quirks(struct drm_device *dev)
16181 {
16182 struct pci_dev *d = dev->pdev;
16183 int i;
16184
16185 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16186 struct intel_quirk *q = &intel_quirks[i];
16187
16188 if (d->device == q->device &&
16189 (d->subsystem_vendor == q->subsystem_vendor ||
16190 q->subsystem_vendor == PCI_ANY_ID) &&
16191 (d->subsystem_device == q->subsystem_device ||
16192 q->subsystem_device == PCI_ANY_ID))
16193 q->hook(dev);
16194 }
16195 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16196 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16197 intel_dmi_quirks[i].hook(dev);
16198 }
16199 }
16200
16201 /* Disable the VGA plane that we never use */
16202 static void i915_disable_vga(struct drm_device *dev)
16203 {
16204 struct drm_i915_private *dev_priv = to_i915(dev);
16205 struct pci_dev *pdev = dev_priv->drm.pdev;
16206 u8 sr1;
16207 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
16208
16209 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
16210 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
16211 outb(SR01, VGA_SR_INDEX);
16212 sr1 = inb(VGA_SR_DATA);
16213 outb(sr1 | 1<<5, VGA_SR_DATA);
16214 vga_put(pdev, VGA_RSRC_LEGACY_IO);
16215 udelay(300);
16216
16217 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
16218 POSTING_READ(vga_reg);
16219 }
16220
16221 void intel_modeset_init_hw(struct drm_device *dev)
16222 {
16223 struct drm_i915_private *dev_priv = to_i915(dev);
16224
16225 intel_update_cdclk(dev);
16226
16227 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16228
16229 intel_init_clock_gating(dev);
16230 }
16231
16232 /*
16233 * Calculate what we think the watermarks should be for the state we've read
16234 * out of the hardware and then immediately program those watermarks so that
16235 * we ensure the hardware settings match our internal state.
16236 *
16237 * We can calculate what we think WM's should be by creating a duplicate of the
16238 * current state (which was constructed during hardware readout) and running it
16239 * through the atomic check code to calculate new watermark values in the
16240 * state object.
16241 */
16242 static void sanitize_watermarks(struct drm_device *dev)
16243 {
16244 struct drm_i915_private *dev_priv = to_i915(dev);
16245 struct drm_atomic_state *state;
16246 struct drm_crtc *crtc;
16247 struct drm_crtc_state *cstate;
16248 struct drm_modeset_acquire_ctx ctx;
16249 int ret;
16250 int i;
16251
16252 /* Only supported on platforms that use atomic watermark design */
16253 if (!dev_priv->display.optimize_watermarks)
16254 return;
16255
16256 /*
16257 * We need to hold connection_mutex before calling duplicate_state so
16258 * that the connector loop is protected.
16259 */
16260 drm_modeset_acquire_init(&ctx, 0);
16261 retry:
16262 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16263 if (ret == -EDEADLK) {
16264 drm_modeset_backoff(&ctx);
16265 goto retry;
16266 } else if (WARN_ON(ret)) {
16267 goto fail;
16268 }
16269
16270 state = drm_atomic_helper_duplicate_state(dev, &ctx);
16271 if (WARN_ON(IS_ERR(state)))
16272 goto fail;
16273
16274 /*
16275 * Hardware readout is the only time we don't want to calculate
16276 * intermediate watermarks (since we don't trust the current
16277 * watermarks).
16278 */
16279 to_intel_atomic_state(state)->skip_intermediate_wm = true;
16280
16281 ret = intel_atomic_check(dev, state);
16282 if (ret) {
16283 /*
16284 * If we fail here, it means that the hardware appears to be
16285 * programmed in a way that shouldn't be possible, given our
16286 * understanding of watermark requirements. This might mean a
16287 * mistake in the hardware readout code or a mistake in the
16288 * watermark calculations for a given platform. Raise a WARN
16289 * so that this is noticeable.
16290 *
16291 * If this actually happens, we'll have to just leave the
16292 * BIOS-programmed watermarks untouched and hope for the best.
16293 */
16294 WARN(true, "Could not determine valid watermarks for inherited state\n");
16295 goto fail;
16296 }
16297
16298 /* Write calculated watermark values back */
16299 for_each_crtc_in_state(state, crtc, cstate, i) {
16300 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16301
16302 cs->wm.need_postvbl_update = true;
16303 dev_priv->display.optimize_watermarks(cs);
16304 }
16305
16306 drm_atomic_state_free(state);
16307 fail:
16308 drm_modeset_drop_locks(&ctx);
16309 drm_modeset_acquire_fini(&ctx);
16310 }
16311
16312 void intel_modeset_init(struct drm_device *dev)
16313 {
16314 struct drm_i915_private *dev_priv = to_i915(dev);
16315 struct i915_ggtt *ggtt = &dev_priv->ggtt;
16316 int sprite, ret;
16317 enum pipe pipe;
16318 struct intel_crtc *crtc;
16319
16320 drm_mode_config_init(dev);
16321
16322 dev->mode_config.min_width = 0;
16323 dev->mode_config.min_height = 0;
16324
16325 dev->mode_config.preferred_depth = 24;
16326 dev->mode_config.prefer_shadow = 1;
16327
16328 dev->mode_config.allow_fb_modifiers = true;
16329
16330 dev->mode_config.funcs = &intel_mode_funcs;
16331
16332 intel_init_quirks(dev);
16333
16334 intel_init_pm(dev);
16335
16336 if (INTEL_INFO(dev)->num_pipes == 0)
16337 return;
16338
16339 /*
16340 * There may be no VBT; and if the BIOS enabled SSC we can
16341 * just keep using it to avoid unnecessary flicker. Whereas if the
16342 * BIOS isn't using it, don't assume it will work even if the VBT
16343 * indicates as much.
16344 */
16345 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
16346 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16347 DREF_SSC1_ENABLE);
16348
16349 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16350 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16351 bios_lvds_use_ssc ? "en" : "dis",
16352 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16353 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16354 }
16355 }
16356
16357 if (IS_GEN2(dev)) {
16358 dev->mode_config.max_width = 2048;
16359 dev->mode_config.max_height = 2048;
16360 } else if (IS_GEN3(dev)) {
16361 dev->mode_config.max_width = 4096;
16362 dev->mode_config.max_height = 4096;
16363 } else {
16364 dev->mode_config.max_width = 8192;
16365 dev->mode_config.max_height = 8192;
16366 }
16367
16368 if (IS_845G(dev) || IS_I865G(dev)) {
16369 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
16370 dev->mode_config.cursor_height = 1023;
16371 } else if (IS_GEN2(dev)) {
16372 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16373 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16374 } else {
16375 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16376 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16377 }
16378
16379 dev->mode_config.fb_base = ggtt->mappable_base;
16380
16381 DRM_DEBUG_KMS("%d display pipe%s available.\n",
16382 INTEL_INFO(dev)->num_pipes,
16383 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
16384
16385 for_each_pipe(dev_priv, pipe) {
16386 intel_crtc_init(dev, pipe);
16387 for_each_sprite(dev_priv, pipe, sprite) {
16388 ret = intel_plane_init(dev, pipe, sprite);
16389 if (ret)
16390 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
16391 pipe_name(pipe), sprite_name(pipe, sprite), ret);
16392 }
16393 }
16394
16395 intel_update_czclk(dev_priv);
16396 intel_update_cdclk(dev);
16397
16398 intel_shared_dpll_init(dev);
16399
16400 if (dev_priv->max_cdclk_freq == 0)
16401 intel_update_max_cdclk(dev);
16402
16403 /* Just disable it once at startup */
16404 i915_disable_vga(dev);
16405 intel_setup_outputs(dev);
16406
16407 drm_modeset_lock_all(dev);
16408 intel_modeset_setup_hw_state(dev);
16409 drm_modeset_unlock_all(dev);
16410
16411 for_each_intel_crtc(dev, crtc) {
16412 struct intel_initial_plane_config plane_config = {};
16413
16414 if (!crtc->active)
16415 continue;
16416
16417 /*
16418 * Note that reserving the BIOS fb up front prevents us
16419 * from stuffing other stolen allocations like the ring
16420 * on top. This prevents some ugliness at boot time, and
16421 * can even allow for smooth boot transitions if the BIOS
16422 * fb is large enough for the active pipe configuration.
16423 */
16424 dev_priv->display.get_initial_plane_config(crtc,
16425 &plane_config);
16426
16427 /*
16428 * If the fb is shared between multiple heads, we'll
16429 * just get the first one.
16430 */
16431 intel_find_initial_plane_obj(crtc, &plane_config);
16432 }
16433
16434 /*
16435 * Make sure hardware watermarks really match the state we read out.
16436 * Note that we need to do this after reconstructing the BIOS fb's
16437 * since the watermark calculation done here will use pstate->fb.
16438 */
16439 sanitize_watermarks(dev);
16440 }
16441
16442 static void intel_enable_pipe_a(struct drm_device *dev)
16443 {
16444 struct intel_connector *connector;
16445 struct drm_connector *crt = NULL;
16446 struct intel_load_detect_pipe load_detect_temp;
16447 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
16448
16449 /* We can't just switch on the pipe A, we need to set things up with a
16450 * proper mode and output configuration. As a gross hack, enable pipe A
16451 * by enabling the load detect pipe once. */
16452 for_each_intel_connector(dev, connector) {
16453 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16454 crt = &connector->base;
16455 break;
16456 }
16457 }
16458
16459 if (!crt)
16460 return;
16461
16462 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
16463 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
16464 }
16465
16466 static bool
16467 intel_check_plane_mapping(struct intel_crtc *crtc)
16468 {
16469 struct drm_device *dev = crtc->base.dev;
16470 struct drm_i915_private *dev_priv = to_i915(dev);
16471 u32 val;
16472
16473 if (INTEL_INFO(dev)->num_pipes == 1)
16474 return true;
16475
16476 val = I915_READ(DSPCNTR(!crtc->plane));
16477
16478 if ((val & DISPLAY_PLANE_ENABLE) &&
16479 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16480 return false;
16481
16482 return true;
16483 }
16484
16485 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16486 {
16487 struct drm_device *dev = crtc->base.dev;
16488 struct intel_encoder *encoder;
16489
16490 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16491 return true;
16492
16493 return false;
16494 }
16495
16496 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16497 {
16498 struct drm_device *dev = encoder->base.dev;
16499 struct intel_connector *connector;
16500
16501 for_each_connector_on_encoder(dev, &encoder->base, connector)
16502 return connector;
16503
16504 return NULL;
16505 }
16506
16507 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16508 enum transcoder pch_transcoder)
16509 {
16510 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16511 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16512 }
16513
16514 static void intel_sanitize_crtc(struct intel_crtc *crtc)
16515 {
16516 struct drm_device *dev = crtc->base.dev;
16517 struct drm_i915_private *dev_priv = to_i915(dev);
16518 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
16519
16520 /* Clear any frame start delays used for debugging left by the BIOS */
16521 if (!transcoder_is_dsi(cpu_transcoder)) {
16522 i915_reg_t reg = PIPECONF(cpu_transcoder);
16523
16524 I915_WRITE(reg,
16525 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16526 }
16527
16528 /* restore vblank interrupts to correct state */
16529 drm_crtc_vblank_reset(&crtc->base);
16530 if (crtc->active) {
16531 struct intel_plane *plane;
16532
16533 drm_crtc_vblank_on(&crtc->base);
16534
16535 /* Disable everything but the primary plane */
16536 for_each_intel_plane_on_crtc(dev, crtc, plane) {
16537 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16538 continue;
16539
16540 plane->disable_plane(&plane->base, &crtc->base);
16541 }
16542 }
16543
16544 /* We need to sanitize the plane -> pipe mapping first because this will
16545 * disable the crtc (and hence change the state) if it is wrong. Note
16546 * that gen4+ has a fixed plane -> pipe mapping. */
16547 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
16548 bool plane;
16549
16550 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16551 crtc->base.base.id, crtc->base.name);
16552
16553 /* Pipe has the wrong plane attached and the plane is active.
16554 * Temporarily change the plane mapping and disable everything
16555 * ... */
16556 plane = crtc->plane;
16557 to_intel_plane_state(crtc->base.primary->state)->base.visible = true;
16558 crtc->plane = !plane;
16559 intel_crtc_disable_noatomic(&crtc->base);
16560 crtc->plane = plane;
16561 }
16562
16563 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16564 crtc->pipe == PIPE_A && !crtc->active) {
16565 /* BIOS forgot to enable pipe A, this mostly happens after
16566 * resume. Force-enable the pipe to fix this, the update_dpms
16567 * call below we restore the pipe to the right state, but leave
16568 * the required bits on. */
16569 intel_enable_pipe_a(dev);
16570 }
16571
16572 /* Adjust the state of the output pipe according to whether we
16573 * have active connectors/encoders. */
16574 if (crtc->active && !intel_crtc_has_encoders(crtc))
16575 intel_crtc_disable_noatomic(&crtc->base);
16576
16577 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
16578 /*
16579 * We start out with underrun reporting disabled to avoid races.
16580 * For correct bookkeeping mark this on active crtcs.
16581 *
16582 * Also on gmch platforms we dont have any hardware bits to
16583 * disable the underrun reporting. Which means we need to start
16584 * out with underrun reporting disabled also on inactive pipes,
16585 * since otherwise we'll complain about the garbage we read when
16586 * e.g. coming up after runtime pm.
16587 *
16588 * No protection against concurrent access is required - at
16589 * worst a fifo underrun happens which also sets this to false.
16590 */
16591 crtc->cpu_fifo_underrun_disabled = true;
16592 /*
16593 * We track the PCH trancoder underrun reporting state
16594 * within the crtc. With crtc for pipe A housing the underrun
16595 * reporting state for PCH transcoder A, crtc for pipe B housing
16596 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16597 * and marking underrun reporting as disabled for the non-existing
16598 * PCH transcoders B and C would prevent enabling the south
16599 * error interrupt (see cpt_can_enable_serr_int()).
16600 */
16601 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16602 crtc->pch_fifo_underrun_disabled = true;
16603 }
16604 }
16605
16606 static void intel_sanitize_encoder(struct intel_encoder *encoder)
16607 {
16608 struct intel_connector *connector;
16609
16610 /* We need to check both for a crtc link (meaning that the
16611 * encoder is active and trying to read from a pipe) and the
16612 * pipe itself being active. */
16613 bool has_active_crtc = encoder->base.crtc &&
16614 to_intel_crtc(encoder->base.crtc)->active;
16615
16616 connector = intel_encoder_find_connector(encoder);
16617 if (connector && !has_active_crtc) {
16618 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16619 encoder->base.base.id,
16620 encoder->base.name);
16621
16622 /* Connector is active, but has no active pipe. This is
16623 * fallout from our resume register restoring. Disable
16624 * the encoder manually again. */
16625 if (encoder->base.crtc) {
16626 struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16627
16628 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16629 encoder->base.base.id,
16630 encoder->base.name);
16631 encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16632 if (encoder->post_disable)
16633 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16634 }
16635 encoder->base.crtc = NULL;
16636
16637 /* Inconsistent output/port/pipe state happens presumably due to
16638 * a bug in one of the get_hw_state functions. Or someplace else
16639 * in our code, like the register restore mess on resume. Clamp
16640 * things to off as a safer default. */
16641
16642 connector->base.dpms = DRM_MODE_DPMS_OFF;
16643 connector->base.encoder = NULL;
16644 }
16645 /* Enabled encoders without active connectors will be fixed in
16646 * the crtc fixup. */
16647 }
16648
16649 void i915_redisable_vga_power_on(struct drm_device *dev)
16650 {
16651 struct drm_i915_private *dev_priv = to_i915(dev);
16652 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
16653
16654 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16655 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16656 i915_disable_vga(dev);
16657 }
16658 }
16659
16660 void i915_redisable_vga(struct drm_device *dev)
16661 {
16662 struct drm_i915_private *dev_priv = to_i915(dev);
16663
16664 /* This function can be called both from intel_modeset_setup_hw_state or
16665 * at a very early point in our resume sequence, where the power well
16666 * structures are not yet restored. Since this function is at a very
16667 * paranoid "someone might have enabled VGA while we were not looking"
16668 * level, just check if the power well is enabled instead of trying to
16669 * follow the "don't touch the power well if we don't need it" policy
16670 * the rest of the driver uses. */
16671 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16672 return;
16673
16674 i915_redisable_vga_power_on(dev);
16675
16676 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16677 }
16678
16679 static bool primary_get_hw_state(struct intel_plane *plane)
16680 {
16681 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16682
16683 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16684 }
16685
16686 /* FIXME read out full plane state for all planes */
16687 static void readout_plane_state(struct intel_crtc *crtc)
16688 {
16689 struct drm_plane *primary = crtc->base.primary;
16690 struct intel_plane_state *plane_state =
16691 to_intel_plane_state(primary->state);
16692
16693 plane_state->base.visible = crtc->active &&
16694 primary_get_hw_state(to_intel_plane(primary));
16695
16696 if (plane_state->base.visible)
16697 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16698 }
16699
16700 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16701 {
16702 struct drm_i915_private *dev_priv = to_i915(dev);
16703 enum pipe pipe;
16704 struct intel_crtc *crtc;
16705 struct intel_encoder *encoder;
16706 struct intel_connector *connector;
16707 int i;
16708
16709 dev_priv->active_crtcs = 0;
16710
16711 for_each_intel_crtc(dev, crtc) {
16712 struct intel_crtc_state *crtc_state = crtc->config;
16713 int pixclk = 0;
16714
16715 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16716 memset(crtc_state, 0, sizeof(*crtc_state));
16717 crtc_state->base.crtc = &crtc->base;
16718
16719 crtc_state->base.active = crtc_state->base.enable =
16720 dev_priv->display.get_pipe_config(crtc, crtc_state);
16721
16722 crtc->base.enabled = crtc_state->base.enable;
16723 crtc->active = crtc_state->base.active;
16724
16725 if (crtc_state->base.active) {
16726 dev_priv->active_crtcs |= 1 << crtc->pipe;
16727
16728 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16729 pixclk = ilk_pipe_pixel_rate(crtc_state);
16730 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16731 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
16732 else
16733 WARN_ON(dev_priv->display.modeset_calc_cdclk);
16734
16735 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16736 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
16737 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16738 }
16739
16740 dev_priv->min_pixclk[crtc->pipe] = pixclk;
16741
16742 readout_plane_state(crtc);
16743
16744 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16745 crtc->base.base.id, crtc->base.name,
16746 crtc->active ? "enabled" : "disabled");
16747 }
16748
16749 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16750 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16751
16752 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16753 &pll->config.hw_state);
16754 pll->config.crtc_mask = 0;
16755 for_each_intel_crtc(dev, crtc) {
16756 if (crtc->active && crtc->config->shared_dpll == pll)
16757 pll->config.crtc_mask |= 1 << crtc->pipe;
16758 }
16759 pll->active_mask = pll->config.crtc_mask;
16760
16761 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16762 pll->name, pll->config.crtc_mask, pll->on);
16763 }
16764
16765 for_each_intel_encoder(dev, encoder) {
16766 pipe = 0;
16767
16768 if (encoder->get_hw_state(encoder, &pipe)) {
16769 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16770 encoder->base.crtc = &crtc->base;
16771 crtc->config->output_types |= 1 << encoder->type;
16772 encoder->get_config(encoder, crtc->config);
16773 } else {
16774 encoder->base.crtc = NULL;
16775 }
16776
16777 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16778 encoder->base.base.id,
16779 encoder->base.name,
16780 encoder->base.crtc ? "enabled" : "disabled",
16781 pipe_name(pipe));
16782 }
16783
16784 for_each_intel_connector(dev, connector) {
16785 if (connector->get_hw_state(connector)) {
16786 connector->base.dpms = DRM_MODE_DPMS_ON;
16787
16788 encoder = connector->encoder;
16789 connector->base.encoder = &encoder->base;
16790
16791 if (encoder->base.crtc &&
16792 encoder->base.crtc->state->active) {
16793 /*
16794 * This has to be done during hardware readout
16795 * because anything calling .crtc_disable may
16796 * rely on the connector_mask being accurate.
16797 */
16798 encoder->base.crtc->state->connector_mask |=
16799 1 << drm_connector_index(&connector->base);
16800 encoder->base.crtc->state->encoder_mask |=
16801 1 << drm_encoder_index(&encoder->base);
16802 }
16803
16804 } else {
16805 connector->base.dpms = DRM_MODE_DPMS_OFF;
16806 connector->base.encoder = NULL;
16807 }
16808 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16809 connector->base.base.id,
16810 connector->base.name,
16811 connector->base.encoder ? "enabled" : "disabled");
16812 }
16813
16814 for_each_intel_crtc(dev, crtc) {
16815 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16816
16817 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16818 if (crtc->base.state->active) {
16819 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16820 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16821 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16822
16823 /*
16824 * The initial mode needs to be set in order to keep
16825 * the atomic core happy. It wants a valid mode if the
16826 * crtc's enabled, so we do the above call.
16827 *
16828 * At this point some state updated by the connectors
16829 * in their ->detect() callback has not run yet, so
16830 * no recalculation can be done yet.
16831 *
16832 * Even if we could do a recalculation and modeset
16833 * right now it would cause a double modeset if
16834 * fbdev or userspace chooses a different initial mode.
16835 *
16836 * If that happens, someone indicated they wanted a
16837 * mode change, which means it's safe to do a full
16838 * recalculation.
16839 */
16840 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16841
16842 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16843 update_scanline_offset(crtc);
16844 }
16845
16846 intel_pipe_config_sanity_check(dev_priv, crtc->config);
16847 }
16848 }
16849
16850 /* Scan out the current hw modeset state,
16851 * and sanitizes it to the current state
16852 */
16853 static void
16854 intel_modeset_setup_hw_state(struct drm_device *dev)
16855 {
16856 struct drm_i915_private *dev_priv = to_i915(dev);
16857 enum pipe pipe;
16858 struct intel_crtc *crtc;
16859 struct intel_encoder *encoder;
16860 int i;
16861
16862 intel_modeset_readout_hw_state(dev);
16863
16864 /* HW state is read out, now we need to sanitize this mess. */
16865 for_each_intel_encoder(dev, encoder) {
16866 intel_sanitize_encoder(encoder);
16867 }
16868
16869 for_each_pipe(dev_priv, pipe) {
16870 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16871 intel_sanitize_crtc(crtc);
16872 intel_dump_pipe_config(crtc, crtc->config,
16873 "[setup_hw_state]");
16874 }
16875
16876 intel_modeset_update_connector_atomic_state(dev);
16877
16878 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16879 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16880
16881 if (!pll->on || pll->active_mask)
16882 continue;
16883
16884 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16885
16886 pll->funcs.disable(dev_priv, pll);
16887 pll->on = false;
16888 }
16889
16890 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
16891 vlv_wm_get_hw_state(dev);
16892 else if (IS_GEN9(dev))
16893 skl_wm_get_hw_state(dev);
16894 else if (HAS_PCH_SPLIT(dev))
16895 ilk_wm_get_hw_state(dev);
16896
16897 for_each_intel_crtc(dev, crtc) {
16898 unsigned long put_domains;
16899
16900 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
16901 if (WARN_ON(put_domains))
16902 modeset_put_power_domains(dev_priv, put_domains);
16903 }
16904 intel_display_set_init_power(dev_priv, false);
16905
16906 intel_fbc_init_pipe_state(dev_priv);
16907 }
16908
16909 void intel_display_resume(struct drm_device *dev)
16910 {
16911 struct drm_i915_private *dev_priv = to_i915(dev);
16912 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16913 struct drm_modeset_acquire_ctx ctx;
16914 int ret;
16915
16916 dev_priv->modeset_restore_state = NULL;
16917 if (state)
16918 state->acquire_ctx = &ctx;
16919
16920 /*
16921 * This is a cludge because with real atomic modeset mode_config.mutex
16922 * won't be taken. Unfortunately some probed state like
16923 * audio_codec_enable is still protected by mode_config.mutex, so lock
16924 * it here for now.
16925 */
16926 mutex_lock(&dev->mode_config.mutex);
16927 drm_modeset_acquire_init(&ctx, 0);
16928
16929 while (1) {
16930 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16931 if (ret != -EDEADLK)
16932 break;
16933
16934 drm_modeset_backoff(&ctx);
16935 }
16936
16937 if (!ret)
16938 ret = __intel_display_resume(dev, state);
16939
16940 drm_modeset_drop_locks(&ctx);
16941 drm_modeset_acquire_fini(&ctx);
16942 mutex_unlock(&dev->mode_config.mutex);
16943
16944 if (ret) {
16945 DRM_ERROR("Restoring old state failed with %i\n", ret);
16946 drm_atomic_state_free(state);
16947 }
16948 }
16949
16950 void intel_modeset_gem_init(struct drm_device *dev)
16951 {
16952 struct drm_i915_private *dev_priv = to_i915(dev);
16953 struct drm_crtc *c;
16954 struct drm_i915_gem_object *obj;
16955
16956 intel_init_gt_powersave(dev_priv);
16957
16958 intel_modeset_init_hw(dev);
16959
16960 intel_setup_overlay(dev_priv);
16961
16962 /*
16963 * Make sure any fbs we allocated at startup are properly
16964 * pinned & fenced. When we do the allocation it's too early
16965 * for this.
16966 */
16967 for_each_crtc(dev, c) {
16968 struct i915_vma *vma;
16969
16970 obj = intel_fb_obj(c->primary->fb);
16971 if (obj == NULL)
16972 continue;
16973
16974 mutex_lock(&dev->struct_mutex);
16975 vma = intel_pin_and_fence_fb_obj(c->primary->fb,
16976 c->primary->state->rotation);
16977 mutex_unlock(&dev->struct_mutex);
16978 if (IS_ERR(vma)) {
16979 DRM_ERROR("failed to pin boot fb on pipe %d\n",
16980 to_intel_crtc(c)->pipe);
16981 drm_framebuffer_unreference(c->primary->fb);
16982 c->primary->fb = NULL;
16983 c->primary->crtc = c->primary->state->crtc = NULL;
16984 update_state_fb(c->primary);
16985 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16986 }
16987 }
16988 }
16989
16990 int intel_connector_register(struct drm_connector *connector)
16991 {
16992 struct intel_connector *intel_connector = to_intel_connector(connector);
16993 int ret;
16994
16995 ret = intel_backlight_device_register(intel_connector);
16996 if (ret)
16997 goto err;
16998
16999 return 0;
17000
17001 err:
17002 return ret;
17003 }
17004
17005 void intel_connector_unregister(struct drm_connector *connector)
17006 {
17007 struct intel_connector *intel_connector = to_intel_connector(connector);
17008
17009 intel_backlight_device_unregister(intel_connector);
17010 intel_panel_destroy_backlight(connector);
17011 }
17012
17013 void intel_modeset_cleanup(struct drm_device *dev)
17014 {
17015 struct drm_i915_private *dev_priv = to_i915(dev);
17016
17017 intel_disable_gt_powersave(dev_priv);
17018
17019 /*
17020 * Interrupts and polling as the first thing to avoid creating havoc.
17021 * Too much stuff here (turning of connectors, ...) would
17022 * experience fancy races otherwise.
17023 */
17024 intel_irq_uninstall(dev_priv);
17025
17026 /*
17027 * Due to the hpd irq storm handling the hotplug work can re-arm the
17028 * poll handlers. Hence disable polling after hpd handling is shut down.
17029 */
17030 drm_kms_helper_poll_fini(dev);
17031
17032 intel_unregister_dsm_handler();
17033
17034 intel_fbc_global_disable(dev_priv);
17035
17036 /* flush any delayed tasks or pending work */
17037 flush_scheduled_work();
17038
17039 drm_mode_config_cleanup(dev);
17040
17041 intel_cleanup_overlay(dev_priv);
17042
17043 intel_cleanup_gt_powersave(dev_priv);
17044
17045 intel_teardown_gmbus(dev);
17046 }
17047
17048 void intel_connector_attach_encoder(struct intel_connector *connector,
17049 struct intel_encoder *encoder)
17050 {
17051 connector->encoder = encoder;
17052 drm_mode_connector_attach_encoder(&connector->base,
17053 &encoder->base);
17054 }
17055
17056 /*
17057 * set vga decode state - true == enable VGA decode
17058 */
17059 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
17060 {
17061 struct drm_i915_private *dev_priv = to_i915(dev);
17062 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
17063 u16 gmch_ctrl;
17064
17065 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17066 DRM_ERROR("failed to read control word\n");
17067 return -EIO;
17068 }
17069
17070 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17071 return 0;
17072
17073 if (state)
17074 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17075 else
17076 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
17077
17078 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17079 DRM_ERROR("failed to write control word\n");
17080 return -EIO;
17081 }
17082
17083 return 0;
17084 }
17085
17086 struct intel_display_error_state {
17087
17088 u32 power_well_driver;
17089
17090 int num_transcoders;
17091
17092 struct intel_cursor_error_state {
17093 u32 control;
17094 u32 position;
17095 u32 base;
17096 u32 size;
17097 } cursor[I915_MAX_PIPES];
17098
17099 struct intel_pipe_error_state {
17100 bool power_domain_on;
17101 u32 source;
17102 u32 stat;
17103 } pipe[I915_MAX_PIPES];
17104
17105 struct intel_plane_error_state {
17106 u32 control;
17107 u32 stride;
17108 u32 size;
17109 u32 pos;
17110 u32 addr;
17111 u32 surface;
17112 u32 tile_offset;
17113 } plane[I915_MAX_PIPES];
17114
17115 struct intel_transcoder_error_state {
17116 bool power_domain_on;
17117 enum transcoder cpu_transcoder;
17118
17119 u32 conf;
17120
17121 u32 htotal;
17122 u32 hblank;
17123 u32 hsync;
17124 u32 vtotal;
17125 u32 vblank;
17126 u32 vsync;
17127 } transcoder[4];
17128 };
17129
17130 struct intel_display_error_state *
17131 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17132 {
17133 struct intel_display_error_state *error;
17134 int transcoders[] = {
17135 TRANSCODER_A,
17136 TRANSCODER_B,
17137 TRANSCODER_C,
17138 TRANSCODER_EDP,
17139 };
17140 int i;
17141
17142 if (INTEL_INFO(dev_priv)->num_pipes == 0)
17143 return NULL;
17144
17145 error = kzalloc(sizeof(*error), GFP_ATOMIC);
17146 if (error == NULL)
17147 return NULL;
17148
17149 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17150 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17151
17152 for_each_pipe(dev_priv, i) {
17153 error->pipe[i].power_domain_on =
17154 __intel_display_power_is_enabled(dev_priv,
17155 POWER_DOMAIN_PIPE(i));
17156 if (!error->pipe[i].power_domain_on)
17157 continue;
17158
17159 error->cursor[i].control = I915_READ(CURCNTR(i));
17160 error->cursor[i].position = I915_READ(CURPOS(i));
17161 error->cursor[i].base = I915_READ(CURBASE(i));
17162
17163 error->plane[i].control = I915_READ(DSPCNTR(i));
17164 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17165 if (INTEL_GEN(dev_priv) <= 3) {
17166 error->plane[i].size = I915_READ(DSPSIZE(i));
17167 error->plane[i].pos = I915_READ(DSPPOS(i));
17168 }
17169 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17170 error->plane[i].addr = I915_READ(DSPADDR(i));
17171 if (INTEL_GEN(dev_priv) >= 4) {
17172 error->plane[i].surface = I915_READ(DSPSURF(i));
17173 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17174 }
17175
17176 error->pipe[i].source = I915_READ(PIPESRC(i));
17177
17178 if (HAS_GMCH_DISPLAY(dev_priv))
17179 error->pipe[i].stat = I915_READ(PIPESTAT(i));
17180 }
17181
17182 /* Note: this does not include DSI transcoders. */
17183 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
17184 if (HAS_DDI(dev_priv))
17185 error->num_transcoders++; /* Account for eDP. */
17186
17187 for (i = 0; i < error->num_transcoders; i++) {
17188 enum transcoder cpu_transcoder = transcoders[i];
17189
17190 error->transcoder[i].power_domain_on =
17191 __intel_display_power_is_enabled(dev_priv,
17192 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17193 if (!error->transcoder[i].power_domain_on)
17194 continue;
17195
17196 error->transcoder[i].cpu_transcoder = cpu_transcoder;
17197
17198 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17199 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17200 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17201 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17202 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17203 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17204 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17205 }
17206
17207 return error;
17208 }
17209
17210 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17211
17212 void
17213 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17214 struct drm_device *dev,
17215 struct intel_display_error_state *error)
17216 {
17217 struct drm_i915_private *dev_priv = to_i915(dev);
17218 int i;
17219
17220 if (!error)
17221 return;
17222
17223 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
17224 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
17225 err_printf(m, "PWR_WELL_CTL2: %08x\n",
17226 error->power_well_driver);
17227 for_each_pipe(dev_priv, i) {
17228 err_printf(m, "Pipe [%d]:\n", i);
17229 err_printf(m, " Power: %s\n",
17230 onoff(error->pipe[i].power_domain_on));
17231 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
17232 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
17233
17234 err_printf(m, "Plane [%d]:\n", i);
17235 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
17236 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
17237 if (INTEL_INFO(dev)->gen <= 3) {
17238 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
17239 err_printf(m, " POS: %08x\n", error->plane[i].pos);
17240 }
17241 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
17242 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
17243 if (INTEL_INFO(dev)->gen >= 4) {
17244 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
17245 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
17246 }
17247
17248 err_printf(m, "Cursor [%d]:\n", i);
17249 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
17250 err_printf(m, " POS: %08x\n", error->cursor[i].position);
17251 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
17252 }
17253
17254 for (i = 0; i < error->num_transcoders; i++) {
17255 err_printf(m, "CPU transcoder: %s\n",
17256 transcoder_name(error->transcoder[i].cpu_transcoder));
17257 err_printf(m, " Power: %s\n",
17258 onoff(error->transcoder[i].power_domain_on));
17259 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
17260 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
17261 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
17262 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
17263 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
17264 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
17265 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
17266 }
17267 }