]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
Linux v4.13-rc1
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/types.h>
32 #include <linux/notifier.h>
33 #include <linux/reboot.h>
34 #include <asm/byteorder.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc.h>
38 #include <drm/drm_crtc_helper.h>
39 #include <drm/drm_edid.h>
40 #include "intel_drv.h"
41 #include <drm/i915_drm.h>
42 #include "i915_drv.h"
43
44 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
45
46 /* Compliance test status bits */
47 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
48 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
50 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
51
52 struct dp_link_dpll {
53 int clock;
54 struct dpll dpll;
55 };
56
57 static const struct dp_link_dpll gen4_dpll[] = {
58 { 162000,
59 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
60 { 270000,
61 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
62 };
63
64 static const struct dp_link_dpll pch_dpll[] = {
65 { 162000,
66 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
67 { 270000,
68 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
69 };
70
71 static const struct dp_link_dpll vlv_dpll[] = {
72 { 162000,
73 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
74 { 270000,
75 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
76 };
77
78 /*
79 * CHV supports eDP 1.4 that have more link rates.
80 * Below only provides the fixed rate but exclude variable rate.
81 */
82 static const struct dp_link_dpll chv_dpll[] = {
83 /*
84 * CHV requires to program fractional division for m2.
85 * m2 is stored in fixed point format using formula below
86 * (m2_int << 22) | m2_fraction
87 */
88 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
89 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
90 { 270000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
92 { 540000, /* m2_int = 27, m2_fraction = 0 */
93 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
94 };
95
96 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
97 324000, 432000, 540000 };
98 static const int skl_rates[] = { 162000, 216000, 270000,
99 324000, 432000, 540000 };
100 static const int default_rates[] = { 162000, 270000, 540000 };
101
102 /**
103 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
104 * @intel_dp: DP struct
105 *
106 * If a CPU or PCH DP output is attached to an eDP panel, this function
107 * will return true, and false otherwise.
108 */
109 static bool is_edp(struct intel_dp *intel_dp)
110 {
111 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
112
113 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
114 }
115
116 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
117 {
118 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
119
120 return intel_dig_port->base.base.dev;
121 }
122
123 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
124 {
125 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
126 }
127
128 static void intel_dp_link_down(struct intel_dp *intel_dp);
129 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
130 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
131 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
132 static void vlv_steal_power_sequencer(struct drm_device *dev,
133 enum pipe pipe);
134 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
135
136 static int intel_dp_num_rates(u8 link_bw_code)
137 {
138 switch (link_bw_code) {
139 default:
140 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
141 link_bw_code);
142 case DP_LINK_BW_1_62:
143 return 1;
144 case DP_LINK_BW_2_7:
145 return 2;
146 case DP_LINK_BW_5_4:
147 return 3;
148 }
149 }
150
151 /* update sink rates from dpcd */
152 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
153 {
154 int i, num_rates;
155
156 num_rates = intel_dp_num_rates(intel_dp->dpcd[DP_MAX_LINK_RATE]);
157
158 for (i = 0; i < num_rates; i++)
159 intel_dp->sink_rates[i] = default_rates[i];
160
161 intel_dp->num_sink_rates = num_rates;
162 }
163
164 /* Theoretical max between source and sink */
165 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
166 {
167 return intel_dp->common_rates[intel_dp->num_common_rates - 1];
168 }
169
170 /* Theoretical max between source and sink */
171 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
172 {
173 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
174 int source_max = intel_dig_port->max_lanes;
175 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
176
177 return min(source_max, sink_max);
178 }
179
180 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
181 {
182 return intel_dp->max_link_lane_count;
183 }
184
185 int
186 intel_dp_link_required(int pixel_clock, int bpp)
187 {
188 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
189 return DIV_ROUND_UP(pixel_clock * bpp, 8);
190 }
191
192 int
193 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
194 {
195 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
196 * link rate that is generally expressed in Gbps. Since, 8 bits of data
197 * is transmitted every LS_Clk per lane, there is no need to account for
198 * the channel encoding that is done in the PHY layer here.
199 */
200
201 return max_link_clock * max_lanes;
202 }
203
204 static int
205 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
206 {
207 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
208 struct intel_encoder *encoder = &intel_dig_port->base;
209 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
210 int max_dotclk = dev_priv->max_dotclk_freq;
211 int ds_max_dotclk;
212
213 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
214
215 if (type != DP_DS_PORT_TYPE_VGA)
216 return max_dotclk;
217
218 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
219 intel_dp->downstream_ports);
220
221 if (ds_max_dotclk != 0)
222 max_dotclk = min(max_dotclk, ds_max_dotclk);
223
224 return max_dotclk;
225 }
226
227 static void
228 intel_dp_set_source_rates(struct intel_dp *intel_dp)
229 {
230 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
231 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
232 const int *source_rates;
233 int size;
234
235 /* This should only be done once */
236 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
237
238 if (IS_GEN9_LP(dev_priv)) {
239 source_rates = bxt_rates;
240 size = ARRAY_SIZE(bxt_rates);
241 } else if (IS_GEN9_BC(dev_priv)) {
242 source_rates = skl_rates;
243 size = ARRAY_SIZE(skl_rates);
244 } else {
245 source_rates = default_rates;
246 size = ARRAY_SIZE(default_rates);
247 }
248
249 /* This depends on the fact that 5.4 is last value in the array */
250 if (!intel_dp_source_supports_hbr2(intel_dp))
251 size--;
252
253 intel_dp->source_rates = source_rates;
254 intel_dp->num_source_rates = size;
255 }
256
257 static int intersect_rates(const int *source_rates, int source_len,
258 const int *sink_rates, int sink_len,
259 int *common_rates)
260 {
261 int i = 0, j = 0, k = 0;
262
263 while (i < source_len && j < sink_len) {
264 if (source_rates[i] == sink_rates[j]) {
265 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
266 return k;
267 common_rates[k] = source_rates[i];
268 ++k;
269 ++i;
270 ++j;
271 } else if (source_rates[i] < sink_rates[j]) {
272 ++i;
273 } else {
274 ++j;
275 }
276 }
277 return k;
278 }
279
280 /* return index of rate in rates array, or -1 if not found */
281 static int intel_dp_rate_index(const int *rates, int len, int rate)
282 {
283 int i;
284
285 for (i = 0; i < len; i++)
286 if (rate == rates[i])
287 return i;
288
289 return -1;
290 }
291
292 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
293 {
294 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
295
296 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
297 intel_dp->num_source_rates,
298 intel_dp->sink_rates,
299 intel_dp->num_sink_rates,
300 intel_dp->common_rates);
301
302 /* Paranoia, there should always be something in common. */
303 if (WARN_ON(intel_dp->num_common_rates == 0)) {
304 intel_dp->common_rates[0] = default_rates[0];
305 intel_dp->num_common_rates = 1;
306 }
307 }
308
309 /* get length of common rates potentially limited by max_rate */
310 static int intel_dp_common_len_rate_limit(struct intel_dp *intel_dp,
311 int max_rate)
312 {
313 const int *common_rates = intel_dp->common_rates;
314 int i, common_len = intel_dp->num_common_rates;
315
316 /* Limit results by potentially reduced max rate */
317 for (i = 0; i < common_len; i++) {
318 if (common_rates[common_len - i - 1] <= max_rate)
319 return common_len - i;
320 }
321
322 return 0;
323 }
324
325 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp)
326 {
327 /*
328 * FIXME: we need to synchronize the current link parameters with
329 * hardware readout. Currently fast link training doesn't work on
330 * boot-up.
331 */
332 if (intel_dp->link_rate == 0 ||
333 intel_dp->link_rate > intel_dp->max_link_rate)
334 return false;
335
336 if (intel_dp->lane_count == 0 ||
337 intel_dp->lane_count > intel_dp_max_lane_count(intel_dp))
338 return false;
339
340 return true;
341 }
342
343 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
344 int link_rate, uint8_t lane_count)
345 {
346 int index;
347
348 index = intel_dp_rate_index(intel_dp->common_rates,
349 intel_dp->num_common_rates,
350 link_rate);
351 if (index > 0) {
352 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
353 intel_dp->max_link_lane_count = lane_count;
354 } else if (lane_count > 1) {
355 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
356 intel_dp->max_link_lane_count = lane_count >> 1;
357 } else {
358 DRM_ERROR("Link Training Unsuccessful\n");
359 return -1;
360 }
361
362 return 0;
363 }
364
365 static enum drm_mode_status
366 intel_dp_mode_valid(struct drm_connector *connector,
367 struct drm_display_mode *mode)
368 {
369 struct intel_dp *intel_dp = intel_attached_dp(connector);
370 struct intel_connector *intel_connector = to_intel_connector(connector);
371 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
372 int target_clock = mode->clock;
373 int max_rate, mode_rate, max_lanes, max_link_clock;
374 int max_dotclk;
375
376 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
377
378 if (is_edp(intel_dp) && fixed_mode) {
379 if (mode->hdisplay > fixed_mode->hdisplay)
380 return MODE_PANEL;
381
382 if (mode->vdisplay > fixed_mode->vdisplay)
383 return MODE_PANEL;
384
385 target_clock = fixed_mode->clock;
386 }
387
388 max_link_clock = intel_dp_max_link_rate(intel_dp);
389 max_lanes = intel_dp_max_lane_count(intel_dp);
390
391 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
392 mode_rate = intel_dp_link_required(target_clock, 18);
393
394 if (mode_rate > max_rate || target_clock > max_dotclk)
395 return MODE_CLOCK_HIGH;
396
397 if (mode->clock < 10000)
398 return MODE_CLOCK_LOW;
399
400 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
401 return MODE_H_ILLEGAL;
402
403 return MODE_OK;
404 }
405
406 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
407 {
408 int i;
409 uint32_t v = 0;
410
411 if (src_bytes > 4)
412 src_bytes = 4;
413 for (i = 0; i < src_bytes; i++)
414 v |= ((uint32_t) src[i]) << ((3-i) * 8);
415 return v;
416 }
417
418 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
419 {
420 int i;
421 if (dst_bytes > 4)
422 dst_bytes = 4;
423 for (i = 0; i < dst_bytes; i++)
424 dst[i] = src >> ((3-i) * 8);
425 }
426
427 static void
428 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
429 struct intel_dp *intel_dp);
430 static void
431 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
432 struct intel_dp *intel_dp,
433 bool force_disable_vdd);
434 static void
435 intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
436
437 static void pps_lock(struct intel_dp *intel_dp)
438 {
439 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
440 struct intel_encoder *encoder = &intel_dig_port->base;
441 struct drm_device *dev = encoder->base.dev;
442 struct drm_i915_private *dev_priv = to_i915(dev);
443
444 /*
445 * See vlv_power_sequencer_reset() why we need
446 * a power domain reference here.
447 */
448 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
449
450 mutex_lock(&dev_priv->pps_mutex);
451 }
452
453 static void pps_unlock(struct intel_dp *intel_dp)
454 {
455 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
456 struct intel_encoder *encoder = &intel_dig_port->base;
457 struct drm_device *dev = encoder->base.dev;
458 struct drm_i915_private *dev_priv = to_i915(dev);
459
460 mutex_unlock(&dev_priv->pps_mutex);
461
462 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
463 }
464
465 static void
466 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
467 {
468 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
469 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
470 enum pipe pipe = intel_dp->pps_pipe;
471 bool pll_enabled, release_cl_override = false;
472 enum dpio_phy phy = DPIO_PHY(pipe);
473 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
474 uint32_t DP;
475
476 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
477 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
478 pipe_name(pipe), port_name(intel_dig_port->port)))
479 return;
480
481 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
482 pipe_name(pipe), port_name(intel_dig_port->port));
483
484 /* Preserve the BIOS-computed detected bit. This is
485 * supposed to be read-only.
486 */
487 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
488 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
489 DP |= DP_PORT_WIDTH(1);
490 DP |= DP_LINK_TRAIN_PAT_1;
491
492 if (IS_CHERRYVIEW(dev_priv))
493 DP |= DP_PIPE_SELECT_CHV(pipe);
494 else if (pipe == PIPE_B)
495 DP |= DP_PIPEB_SELECT;
496
497 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
498
499 /*
500 * The DPLL for the pipe must be enabled for this to work.
501 * So enable temporarily it if it's not already enabled.
502 */
503 if (!pll_enabled) {
504 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
505 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
506
507 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
508 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
509 DRM_ERROR("Failed to force on pll for pipe %c!\n",
510 pipe_name(pipe));
511 return;
512 }
513 }
514
515 /*
516 * Similar magic as in intel_dp_enable_port().
517 * We _must_ do this port enable + disable trick
518 * to make this power seqeuencer lock onto the port.
519 * Otherwise even VDD force bit won't work.
520 */
521 I915_WRITE(intel_dp->output_reg, DP);
522 POSTING_READ(intel_dp->output_reg);
523
524 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
525 POSTING_READ(intel_dp->output_reg);
526
527 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
528 POSTING_READ(intel_dp->output_reg);
529
530 if (!pll_enabled) {
531 vlv_force_pll_off(dev_priv, pipe);
532
533 if (release_cl_override)
534 chv_phy_powergate_ch(dev_priv, phy, ch, false);
535 }
536 }
537
538 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
539 {
540 struct intel_encoder *encoder;
541 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
542
543 /*
544 * We don't have power sequencer currently.
545 * Pick one that's not used by other ports.
546 */
547 for_each_intel_encoder(&dev_priv->drm, encoder) {
548 struct intel_dp *intel_dp;
549
550 if (encoder->type != INTEL_OUTPUT_DP &&
551 encoder->type != INTEL_OUTPUT_EDP)
552 continue;
553
554 intel_dp = enc_to_intel_dp(&encoder->base);
555
556 if (encoder->type == INTEL_OUTPUT_EDP) {
557 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
558 intel_dp->active_pipe != intel_dp->pps_pipe);
559
560 if (intel_dp->pps_pipe != INVALID_PIPE)
561 pipes &= ~(1 << intel_dp->pps_pipe);
562 } else {
563 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
564
565 if (intel_dp->active_pipe != INVALID_PIPE)
566 pipes &= ~(1 << intel_dp->active_pipe);
567 }
568 }
569
570 if (pipes == 0)
571 return INVALID_PIPE;
572
573 return ffs(pipes) - 1;
574 }
575
576 static enum pipe
577 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
578 {
579 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
580 struct drm_device *dev = intel_dig_port->base.base.dev;
581 struct drm_i915_private *dev_priv = to_i915(dev);
582 enum pipe pipe;
583
584 lockdep_assert_held(&dev_priv->pps_mutex);
585
586 /* We should never land here with regular DP ports */
587 WARN_ON(!is_edp(intel_dp));
588
589 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
590 intel_dp->active_pipe != intel_dp->pps_pipe);
591
592 if (intel_dp->pps_pipe != INVALID_PIPE)
593 return intel_dp->pps_pipe;
594
595 pipe = vlv_find_free_pps(dev_priv);
596
597 /*
598 * Didn't find one. This should not happen since there
599 * are two power sequencers and up to two eDP ports.
600 */
601 if (WARN_ON(pipe == INVALID_PIPE))
602 pipe = PIPE_A;
603
604 vlv_steal_power_sequencer(dev, pipe);
605 intel_dp->pps_pipe = pipe;
606
607 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
608 pipe_name(intel_dp->pps_pipe),
609 port_name(intel_dig_port->port));
610
611 /* init power sequencer on this pipe and port */
612 intel_dp_init_panel_power_sequencer(dev, intel_dp);
613 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, true);
614
615 /*
616 * Even vdd force doesn't work until we've made
617 * the power sequencer lock in on the port.
618 */
619 vlv_power_sequencer_kick(intel_dp);
620
621 return intel_dp->pps_pipe;
622 }
623
624 static int
625 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
626 {
627 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
628 struct drm_device *dev = intel_dig_port->base.base.dev;
629 struct drm_i915_private *dev_priv = to_i915(dev);
630
631 lockdep_assert_held(&dev_priv->pps_mutex);
632
633 /* We should never land here with regular DP ports */
634 WARN_ON(!is_edp(intel_dp));
635
636 /*
637 * TODO: BXT has 2 PPS instances. The correct port->PPS instance
638 * mapping needs to be retrieved from VBT, for now just hard-code to
639 * use instance #0 always.
640 */
641 if (!intel_dp->pps_reset)
642 return 0;
643
644 intel_dp->pps_reset = false;
645
646 /*
647 * Only the HW needs to be reprogrammed, the SW state is fixed and
648 * has been setup during connector init.
649 */
650 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
651
652 return 0;
653 }
654
655 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
656 enum pipe pipe);
657
658 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
659 enum pipe pipe)
660 {
661 return I915_READ(PP_STATUS(pipe)) & PP_ON;
662 }
663
664 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
665 enum pipe pipe)
666 {
667 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
668 }
669
670 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
671 enum pipe pipe)
672 {
673 return true;
674 }
675
676 static enum pipe
677 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
678 enum port port,
679 vlv_pipe_check pipe_check)
680 {
681 enum pipe pipe;
682
683 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
684 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
685 PANEL_PORT_SELECT_MASK;
686
687 if (port_sel != PANEL_PORT_SELECT_VLV(port))
688 continue;
689
690 if (!pipe_check(dev_priv, pipe))
691 continue;
692
693 return pipe;
694 }
695
696 return INVALID_PIPE;
697 }
698
699 static void
700 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
701 {
702 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
703 struct drm_device *dev = intel_dig_port->base.base.dev;
704 struct drm_i915_private *dev_priv = to_i915(dev);
705 enum port port = intel_dig_port->port;
706
707 lockdep_assert_held(&dev_priv->pps_mutex);
708
709 /* try to find a pipe with this port selected */
710 /* first pick one where the panel is on */
711 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
712 vlv_pipe_has_pp_on);
713 /* didn't find one? pick one where vdd is on */
714 if (intel_dp->pps_pipe == INVALID_PIPE)
715 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
716 vlv_pipe_has_vdd_on);
717 /* didn't find one? pick one with just the correct port */
718 if (intel_dp->pps_pipe == INVALID_PIPE)
719 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
720 vlv_pipe_any);
721
722 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
723 if (intel_dp->pps_pipe == INVALID_PIPE) {
724 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
725 port_name(port));
726 return;
727 }
728
729 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
730 port_name(port), pipe_name(intel_dp->pps_pipe));
731
732 intel_dp_init_panel_power_sequencer(dev, intel_dp);
733 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
734 }
735
736 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
737 {
738 struct drm_device *dev = &dev_priv->drm;
739 struct intel_encoder *encoder;
740
741 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
742 !IS_GEN9_LP(dev_priv)))
743 return;
744
745 /*
746 * We can't grab pps_mutex here due to deadlock with power_domain
747 * mutex when power_domain functions are called while holding pps_mutex.
748 * That also means that in order to use pps_pipe the code needs to
749 * hold both a power domain reference and pps_mutex, and the power domain
750 * reference get/put must be done while _not_ holding pps_mutex.
751 * pps_{lock,unlock}() do these steps in the correct order, so one
752 * should use them always.
753 */
754
755 for_each_intel_encoder(dev, encoder) {
756 struct intel_dp *intel_dp;
757
758 if (encoder->type != INTEL_OUTPUT_DP &&
759 encoder->type != INTEL_OUTPUT_EDP)
760 continue;
761
762 intel_dp = enc_to_intel_dp(&encoder->base);
763
764 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
765
766 if (encoder->type != INTEL_OUTPUT_EDP)
767 continue;
768
769 if (IS_GEN9_LP(dev_priv))
770 intel_dp->pps_reset = true;
771 else
772 intel_dp->pps_pipe = INVALID_PIPE;
773 }
774 }
775
776 struct pps_registers {
777 i915_reg_t pp_ctrl;
778 i915_reg_t pp_stat;
779 i915_reg_t pp_on;
780 i915_reg_t pp_off;
781 i915_reg_t pp_div;
782 };
783
784 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
785 struct intel_dp *intel_dp,
786 struct pps_registers *regs)
787 {
788 int pps_idx = 0;
789
790 memset(regs, 0, sizeof(*regs));
791
792 if (IS_GEN9_LP(dev_priv))
793 pps_idx = bxt_power_sequencer_idx(intel_dp);
794 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
795 pps_idx = vlv_power_sequencer_pipe(intel_dp);
796
797 regs->pp_ctrl = PP_CONTROL(pps_idx);
798 regs->pp_stat = PP_STATUS(pps_idx);
799 regs->pp_on = PP_ON_DELAYS(pps_idx);
800 regs->pp_off = PP_OFF_DELAYS(pps_idx);
801 if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv))
802 regs->pp_div = PP_DIVISOR(pps_idx);
803 }
804
805 static i915_reg_t
806 _pp_ctrl_reg(struct intel_dp *intel_dp)
807 {
808 struct pps_registers regs;
809
810 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
811 &regs);
812
813 return regs.pp_ctrl;
814 }
815
816 static i915_reg_t
817 _pp_stat_reg(struct intel_dp *intel_dp)
818 {
819 struct pps_registers regs;
820
821 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
822 &regs);
823
824 return regs.pp_stat;
825 }
826
827 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
828 This function only applicable when panel PM state is not to be tracked */
829 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
830 void *unused)
831 {
832 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
833 edp_notifier);
834 struct drm_device *dev = intel_dp_to_dev(intel_dp);
835 struct drm_i915_private *dev_priv = to_i915(dev);
836
837 if (!is_edp(intel_dp) || code != SYS_RESTART)
838 return 0;
839
840 pps_lock(intel_dp);
841
842 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
843 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
844 i915_reg_t pp_ctrl_reg, pp_div_reg;
845 u32 pp_div;
846
847 pp_ctrl_reg = PP_CONTROL(pipe);
848 pp_div_reg = PP_DIVISOR(pipe);
849 pp_div = I915_READ(pp_div_reg);
850 pp_div &= PP_REFERENCE_DIVIDER_MASK;
851
852 /* 0x1F write to PP_DIV_REG sets max cycle delay */
853 I915_WRITE(pp_div_reg, pp_div | 0x1F);
854 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
855 msleep(intel_dp->panel_power_cycle_delay);
856 }
857
858 pps_unlock(intel_dp);
859
860 return 0;
861 }
862
863 static bool edp_have_panel_power(struct intel_dp *intel_dp)
864 {
865 struct drm_device *dev = intel_dp_to_dev(intel_dp);
866 struct drm_i915_private *dev_priv = to_i915(dev);
867
868 lockdep_assert_held(&dev_priv->pps_mutex);
869
870 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
871 intel_dp->pps_pipe == INVALID_PIPE)
872 return false;
873
874 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
875 }
876
877 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
878 {
879 struct drm_device *dev = intel_dp_to_dev(intel_dp);
880 struct drm_i915_private *dev_priv = to_i915(dev);
881
882 lockdep_assert_held(&dev_priv->pps_mutex);
883
884 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
885 intel_dp->pps_pipe == INVALID_PIPE)
886 return false;
887
888 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
889 }
890
891 static void
892 intel_dp_check_edp(struct intel_dp *intel_dp)
893 {
894 struct drm_device *dev = intel_dp_to_dev(intel_dp);
895 struct drm_i915_private *dev_priv = to_i915(dev);
896
897 if (!is_edp(intel_dp))
898 return;
899
900 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
901 WARN(1, "eDP powered off while attempting aux channel communication.\n");
902 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
903 I915_READ(_pp_stat_reg(intel_dp)),
904 I915_READ(_pp_ctrl_reg(intel_dp)));
905 }
906 }
907
908 static uint32_t
909 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
910 {
911 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
912 struct drm_device *dev = intel_dig_port->base.base.dev;
913 struct drm_i915_private *dev_priv = to_i915(dev);
914 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
915 uint32_t status;
916 bool done;
917
918 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
919 if (has_aux_irq)
920 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
921 msecs_to_jiffies_timeout(10));
922 else
923 done = wait_for(C, 10) == 0;
924 if (!done)
925 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
926 has_aux_irq);
927 #undef C
928
929 return status;
930 }
931
932 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
933 {
934 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
935 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
936
937 if (index)
938 return 0;
939
940 /*
941 * The clock divider is based off the hrawclk, and would like to run at
942 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
943 */
944 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
945 }
946
947 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
948 {
949 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
950 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
951
952 if (index)
953 return 0;
954
955 /*
956 * The clock divider is based off the cdclk or PCH rawclk, and would
957 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
958 * divide by 2000 and use that
959 */
960 if (intel_dig_port->port == PORT_A)
961 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
962 else
963 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
964 }
965
966 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
967 {
968 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
969 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
970
971 if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
972 /* Workaround for non-ULT HSW */
973 switch (index) {
974 case 0: return 63;
975 case 1: return 72;
976 default: return 0;
977 }
978 }
979
980 return ilk_get_aux_clock_divider(intel_dp, index);
981 }
982
983 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
984 {
985 /*
986 * SKL doesn't need us to program the AUX clock divider (Hardware will
987 * derive the clock from CDCLK automatically). We still implement the
988 * get_aux_clock_divider vfunc to plug-in into the existing code.
989 */
990 return index ? 0 : 1;
991 }
992
993 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
994 bool has_aux_irq,
995 int send_bytes,
996 uint32_t aux_clock_divider)
997 {
998 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
999 struct drm_i915_private *dev_priv =
1000 to_i915(intel_dig_port->base.base.dev);
1001 uint32_t precharge, timeout;
1002
1003 if (IS_GEN6(dev_priv))
1004 precharge = 3;
1005 else
1006 precharge = 5;
1007
1008 if (IS_BROADWELL(dev_priv) && intel_dig_port->port == PORT_A)
1009 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1010 else
1011 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1012
1013 return DP_AUX_CH_CTL_SEND_BUSY |
1014 DP_AUX_CH_CTL_DONE |
1015 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
1016 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1017 timeout |
1018 DP_AUX_CH_CTL_RECEIVE_ERROR |
1019 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1020 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1021 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1022 }
1023
1024 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1025 bool has_aux_irq,
1026 int send_bytes,
1027 uint32_t unused)
1028 {
1029 return DP_AUX_CH_CTL_SEND_BUSY |
1030 DP_AUX_CH_CTL_DONE |
1031 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
1032 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1033 DP_AUX_CH_CTL_TIME_OUT_1600us |
1034 DP_AUX_CH_CTL_RECEIVE_ERROR |
1035 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1036 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1037 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1038 }
1039
1040 static int
1041 intel_dp_aux_ch(struct intel_dp *intel_dp,
1042 const uint8_t *send, int send_bytes,
1043 uint8_t *recv, int recv_size)
1044 {
1045 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1046 struct drm_i915_private *dev_priv =
1047 to_i915(intel_dig_port->base.base.dev);
1048 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
1049 uint32_t aux_clock_divider;
1050 int i, ret, recv_bytes;
1051 uint32_t status;
1052 int try, clock = 0;
1053 bool has_aux_irq = HAS_AUX_IRQ(dev_priv);
1054 bool vdd;
1055
1056 pps_lock(intel_dp);
1057
1058 /*
1059 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1060 * In such cases we want to leave VDD enabled and it's up to upper layers
1061 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1062 * ourselves.
1063 */
1064 vdd = edp_panel_vdd_on(intel_dp);
1065
1066 /* dp aux is extremely sensitive to irq latency, hence request the
1067 * lowest possible wakeup latency and so prevent the cpu from going into
1068 * deep sleep states.
1069 */
1070 pm_qos_update_request(&dev_priv->pm_qos, 0);
1071
1072 intel_dp_check_edp(intel_dp);
1073
1074 /* Try to wait for any previous AUX channel activity */
1075 for (try = 0; try < 3; try++) {
1076 status = I915_READ_NOTRACE(ch_ctl);
1077 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1078 break;
1079 msleep(1);
1080 }
1081
1082 if (try == 3) {
1083 static u32 last_status = -1;
1084 const u32 status = I915_READ(ch_ctl);
1085
1086 if (status != last_status) {
1087 WARN(1, "dp_aux_ch not started status 0x%08x\n",
1088 status);
1089 last_status = status;
1090 }
1091
1092 ret = -EBUSY;
1093 goto out;
1094 }
1095
1096 /* Only 5 data registers! */
1097 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1098 ret = -E2BIG;
1099 goto out;
1100 }
1101
1102 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1103 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1104 has_aux_irq,
1105 send_bytes,
1106 aux_clock_divider);
1107
1108 /* Must try at least 3 times according to DP spec */
1109 for (try = 0; try < 5; try++) {
1110 /* Load the send data into the aux channel data registers */
1111 for (i = 0; i < send_bytes; i += 4)
1112 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
1113 intel_dp_pack_aux(send + i,
1114 send_bytes - i));
1115
1116 /* Send the command and wait for it to complete */
1117 I915_WRITE(ch_ctl, send_ctl);
1118
1119 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
1120
1121 /* Clear done status and any errors */
1122 I915_WRITE(ch_ctl,
1123 status |
1124 DP_AUX_CH_CTL_DONE |
1125 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1126 DP_AUX_CH_CTL_RECEIVE_ERROR);
1127
1128 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1129 continue;
1130
1131 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1132 * 400us delay required for errors and timeouts
1133 * Timeout errors from the HW already meet this
1134 * requirement so skip to next iteration
1135 */
1136 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1137 usleep_range(400, 500);
1138 continue;
1139 }
1140 if (status & DP_AUX_CH_CTL_DONE)
1141 goto done;
1142 }
1143 }
1144
1145 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1146 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1147 ret = -EBUSY;
1148 goto out;
1149 }
1150
1151 done:
1152 /* Check for timeout or receive error.
1153 * Timeouts occur when the sink is not connected
1154 */
1155 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1156 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1157 ret = -EIO;
1158 goto out;
1159 }
1160
1161 /* Timeouts occur when the device isn't connected, so they're
1162 * "normal" -- don't fill the kernel log with these */
1163 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1164 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1165 ret = -ETIMEDOUT;
1166 goto out;
1167 }
1168
1169 /* Unload any bytes sent back from the other side */
1170 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1171 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1172
1173 /*
1174 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1175 * We have no idea of what happened so we return -EBUSY so
1176 * drm layer takes care for the necessary retries.
1177 */
1178 if (recv_bytes == 0 || recv_bytes > 20) {
1179 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1180 recv_bytes);
1181 /*
1182 * FIXME: This patch was created on top of a series that
1183 * organize the retries at drm level. There EBUSY should
1184 * also take care for 1ms wait before retrying.
1185 * That aux retries re-org is still needed and after that is
1186 * merged we remove this sleep from here.
1187 */
1188 usleep_range(1000, 1500);
1189 ret = -EBUSY;
1190 goto out;
1191 }
1192
1193 if (recv_bytes > recv_size)
1194 recv_bytes = recv_size;
1195
1196 for (i = 0; i < recv_bytes; i += 4)
1197 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1198 recv + i, recv_bytes - i);
1199
1200 ret = recv_bytes;
1201 out:
1202 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1203
1204 if (vdd)
1205 edp_panel_vdd_off(intel_dp, false);
1206
1207 pps_unlock(intel_dp);
1208
1209 return ret;
1210 }
1211
1212 #define BARE_ADDRESS_SIZE 3
1213 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1214 static ssize_t
1215 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1216 {
1217 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1218 uint8_t txbuf[20], rxbuf[20];
1219 size_t txsize, rxsize;
1220 int ret;
1221
1222 txbuf[0] = (msg->request << 4) |
1223 ((msg->address >> 16) & 0xf);
1224 txbuf[1] = (msg->address >> 8) & 0xff;
1225 txbuf[2] = msg->address & 0xff;
1226 txbuf[3] = msg->size - 1;
1227
1228 switch (msg->request & ~DP_AUX_I2C_MOT) {
1229 case DP_AUX_NATIVE_WRITE:
1230 case DP_AUX_I2C_WRITE:
1231 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1232 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1233 rxsize = 2; /* 0 or 1 data bytes */
1234
1235 if (WARN_ON(txsize > 20))
1236 return -E2BIG;
1237
1238 WARN_ON(!msg->buffer != !msg->size);
1239
1240 if (msg->buffer)
1241 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1242
1243 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1244 if (ret > 0) {
1245 msg->reply = rxbuf[0] >> 4;
1246
1247 if (ret > 1) {
1248 /* Number of bytes written in a short write. */
1249 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1250 } else {
1251 /* Return payload size. */
1252 ret = msg->size;
1253 }
1254 }
1255 break;
1256
1257 case DP_AUX_NATIVE_READ:
1258 case DP_AUX_I2C_READ:
1259 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1260 rxsize = msg->size + 1;
1261
1262 if (WARN_ON(rxsize > 20))
1263 return -E2BIG;
1264
1265 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1266 if (ret > 0) {
1267 msg->reply = rxbuf[0] >> 4;
1268 /*
1269 * Assume happy day, and copy the data. The caller is
1270 * expected to check msg->reply before touching it.
1271 *
1272 * Return payload size.
1273 */
1274 ret--;
1275 memcpy(msg->buffer, rxbuf + 1, ret);
1276 }
1277 break;
1278
1279 default:
1280 ret = -EINVAL;
1281 break;
1282 }
1283
1284 return ret;
1285 }
1286
1287 static enum port intel_aux_port(struct drm_i915_private *dev_priv,
1288 enum port port)
1289 {
1290 const struct ddi_vbt_port_info *info =
1291 &dev_priv->vbt.ddi_port_info[port];
1292 enum port aux_port;
1293
1294 if (!info->alternate_aux_channel) {
1295 DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1296 port_name(port), port_name(port));
1297 return port;
1298 }
1299
1300 switch (info->alternate_aux_channel) {
1301 case DP_AUX_A:
1302 aux_port = PORT_A;
1303 break;
1304 case DP_AUX_B:
1305 aux_port = PORT_B;
1306 break;
1307 case DP_AUX_C:
1308 aux_port = PORT_C;
1309 break;
1310 case DP_AUX_D:
1311 aux_port = PORT_D;
1312 break;
1313 default:
1314 MISSING_CASE(info->alternate_aux_channel);
1315 aux_port = PORT_A;
1316 break;
1317 }
1318
1319 DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1320 port_name(aux_port), port_name(port));
1321
1322 return aux_port;
1323 }
1324
1325 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1326 enum port port)
1327 {
1328 switch (port) {
1329 case PORT_B:
1330 case PORT_C:
1331 case PORT_D:
1332 return DP_AUX_CH_CTL(port);
1333 default:
1334 MISSING_CASE(port);
1335 return DP_AUX_CH_CTL(PORT_B);
1336 }
1337 }
1338
1339 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1340 enum port port, int index)
1341 {
1342 switch (port) {
1343 case PORT_B:
1344 case PORT_C:
1345 case PORT_D:
1346 return DP_AUX_CH_DATA(port, index);
1347 default:
1348 MISSING_CASE(port);
1349 return DP_AUX_CH_DATA(PORT_B, index);
1350 }
1351 }
1352
1353 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1354 enum port port)
1355 {
1356 switch (port) {
1357 case PORT_A:
1358 return DP_AUX_CH_CTL(port);
1359 case PORT_B:
1360 case PORT_C:
1361 case PORT_D:
1362 return PCH_DP_AUX_CH_CTL(port);
1363 default:
1364 MISSING_CASE(port);
1365 return DP_AUX_CH_CTL(PORT_A);
1366 }
1367 }
1368
1369 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1370 enum port port, int index)
1371 {
1372 switch (port) {
1373 case PORT_A:
1374 return DP_AUX_CH_DATA(port, index);
1375 case PORT_B:
1376 case PORT_C:
1377 case PORT_D:
1378 return PCH_DP_AUX_CH_DATA(port, index);
1379 default:
1380 MISSING_CASE(port);
1381 return DP_AUX_CH_DATA(PORT_A, index);
1382 }
1383 }
1384
1385 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1386 enum port port)
1387 {
1388 switch (port) {
1389 case PORT_A:
1390 case PORT_B:
1391 case PORT_C:
1392 case PORT_D:
1393 return DP_AUX_CH_CTL(port);
1394 default:
1395 MISSING_CASE(port);
1396 return DP_AUX_CH_CTL(PORT_A);
1397 }
1398 }
1399
1400 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1401 enum port port, int index)
1402 {
1403 switch (port) {
1404 case PORT_A:
1405 case PORT_B:
1406 case PORT_C:
1407 case PORT_D:
1408 return DP_AUX_CH_DATA(port, index);
1409 default:
1410 MISSING_CASE(port);
1411 return DP_AUX_CH_DATA(PORT_A, index);
1412 }
1413 }
1414
1415 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1416 enum port port)
1417 {
1418 if (INTEL_INFO(dev_priv)->gen >= 9)
1419 return skl_aux_ctl_reg(dev_priv, port);
1420 else if (HAS_PCH_SPLIT(dev_priv))
1421 return ilk_aux_ctl_reg(dev_priv, port);
1422 else
1423 return g4x_aux_ctl_reg(dev_priv, port);
1424 }
1425
1426 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1427 enum port port, int index)
1428 {
1429 if (INTEL_INFO(dev_priv)->gen >= 9)
1430 return skl_aux_data_reg(dev_priv, port, index);
1431 else if (HAS_PCH_SPLIT(dev_priv))
1432 return ilk_aux_data_reg(dev_priv, port, index);
1433 else
1434 return g4x_aux_data_reg(dev_priv, port, index);
1435 }
1436
1437 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1438 {
1439 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1440 enum port port = intel_aux_port(dev_priv,
1441 dp_to_dig_port(intel_dp)->port);
1442 int i;
1443
1444 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1445 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1446 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1447 }
1448
1449 static void
1450 intel_dp_aux_fini(struct intel_dp *intel_dp)
1451 {
1452 kfree(intel_dp->aux.name);
1453 }
1454
1455 static void
1456 intel_dp_aux_init(struct intel_dp *intel_dp)
1457 {
1458 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1459 enum port port = intel_dig_port->port;
1460
1461 intel_aux_reg_init(intel_dp);
1462 drm_dp_aux_init(&intel_dp->aux);
1463
1464 /* Failure to allocate our preferred name is not critical */
1465 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1466 intel_dp->aux.transfer = intel_dp_aux_transfer;
1467 }
1468
1469 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1470 {
1471 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1472 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1473
1474 if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
1475 IS_BROADWELL(dev_priv) || (INTEL_GEN(dev_priv) >= 9))
1476 return true;
1477 else
1478 return false;
1479 }
1480
1481 static void
1482 intel_dp_set_clock(struct intel_encoder *encoder,
1483 struct intel_crtc_state *pipe_config)
1484 {
1485 struct drm_device *dev = encoder->base.dev;
1486 struct drm_i915_private *dev_priv = to_i915(dev);
1487 const struct dp_link_dpll *divisor = NULL;
1488 int i, count = 0;
1489
1490 if (IS_G4X(dev_priv)) {
1491 divisor = gen4_dpll;
1492 count = ARRAY_SIZE(gen4_dpll);
1493 } else if (HAS_PCH_SPLIT(dev_priv)) {
1494 divisor = pch_dpll;
1495 count = ARRAY_SIZE(pch_dpll);
1496 } else if (IS_CHERRYVIEW(dev_priv)) {
1497 divisor = chv_dpll;
1498 count = ARRAY_SIZE(chv_dpll);
1499 } else if (IS_VALLEYVIEW(dev_priv)) {
1500 divisor = vlv_dpll;
1501 count = ARRAY_SIZE(vlv_dpll);
1502 }
1503
1504 if (divisor && count) {
1505 for (i = 0; i < count; i++) {
1506 if (pipe_config->port_clock == divisor[i].clock) {
1507 pipe_config->dpll = divisor[i].dpll;
1508 pipe_config->clock_set = true;
1509 break;
1510 }
1511 }
1512 }
1513 }
1514
1515 static void snprintf_int_array(char *str, size_t len,
1516 const int *array, int nelem)
1517 {
1518 int i;
1519
1520 str[0] = '\0';
1521
1522 for (i = 0; i < nelem; i++) {
1523 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1524 if (r >= len)
1525 return;
1526 str += r;
1527 len -= r;
1528 }
1529 }
1530
1531 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1532 {
1533 char str[128]; /* FIXME: too big for stack? */
1534
1535 if ((drm_debug & DRM_UT_KMS) == 0)
1536 return;
1537
1538 snprintf_int_array(str, sizeof(str),
1539 intel_dp->source_rates, intel_dp->num_source_rates);
1540 DRM_DEBUG_KMS("source rates: %s\n", str);
1541
1542 snprintf_int_array(str, sizeof(str),
1543 intel_dp->sink_rates, intel_dp->num_sink_rates);
1544 DRM_DEBUG_KMS("sink rates: %s\n", str);
1545
1546 snprintf_int_array(str, sizeof(str),
1547 intel_dp->common_rates, intel_dp->num_common_rates);
1548 DRM_DEBUG_KMS("common rates: %s\n", str);
1549 }
1550
1551 int
1552 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1553 {
1554 int len;
1555
1556 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1557 if (WARN_ON(len <= 0))
1558 return 162000;
1559
1560 return intel_dp->common_rates[len - 1];
1561 }
1562
1563 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1564 {
1565 int i = intel_dp_rate_index(intel_dp->sink_rates,
1566 intel_dp->num_sink_rates, rate);
1567
1568 if (WARN_ON(i < 0))
1569 i = 0;
1570
1571 return i;
1572 }
1573
1574 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1575 uint8_t *link_bw, uint8_t *rate_select)
1576 {
1577 /* eDP 1.4 rate select method. */
1578 if (intel_dp->use_rate_select) {
1579 *link_bw = 0;
1580 *rate_select =
1581 intel_dp_rate_select(intel_dp, port_clock);
1582 } else {
1583 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1584 *rate_select = 0;
1585 }
1586 }
1587
1588 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1589 struct intel_crtc_state *pipe_config)
1590 {
1591 int bpp, bpc;
1592
1593 bpp = pipe_config->pipe_bpp;
1594 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1595
1596 if (bpc > 0)
1597 bpp = min(bpp, 3*bpc);
1598
1599 /* For DP Compliance we override the computed bpp for the pipe */
1600 if (intel_dp->compliance.test_data.bpc != 0) {
1601 pipe_config->pipe_bpp = 3*intel_dp->compliance.test_data.bpc;
1602 pipe_config->dither_force_disable = pipe_config->pipe_bpp == 6*3;
1603 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n",
1604 pipe_config->pipe_bpp);
1605 }
1606 return bpp;
1607 }
1608
1609 bool
1610 intel_dp_compute_config(struct intel_encoder *encoder,
1611 struct intel_crtc_state *pipe_config,
1612 struct drm_connector_state *conn_state)
1613 {
1614 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1615 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1616 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1617 enum port port = dp_to_dig_port(intel_dp)->port;
1618 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1619 struct intel_connector *intel_connector = intel_dp->attached_connector;
1620 struct intel_digital_connector_state *intel_conn_state =
1621 to_intel_digital_connector_state(conn_state);
1622 int lane_count, clock;
1623 int min_lane_count = 1;
1624 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1625 /* Conveniently, the link BW constants become indices with a shift...*/
1626 int min_clock = 0;
1627 int max_clock;
1628 int bpp, mode_rate;
1629 int link_avail, link_clock;
1630 int common_len;
1631 uint8_t link_bw, rate_select;
1632 bool reduce_m_n = drm_dp_has_quirk(&intel_dp->desc,
1633 DP_DPCD_QUIRK_LIMITED_M_N);
1634
1635 common_len = intel_dp_common_len_rate_limit(intel_dp,
1636 intel_dp->max_link_rate);
1637
1638 /* No common link rates between source and sink */
1639 WARN_ON(common_len <= 0);
1640
1641 max_clock = common_len - 1;
1642
1643 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
1644 pipe_config->has_pch_encoder = true;
1645
1646 pipe_config->has_drrs = false;
1647 if (port == PORT_A)
1648 pipe_config->has_audio = false;
1649 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
1650 pipe_config->has_audio = intel_dp->has_audio;
1651 else
1652 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
1653
1654 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1655 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1656 adjusted_mode);
1657
1658 if (INTEL_GEN(dev_priv) >= 9) {
1659 int ret;
1660 ret = skl_update_scaler_crtc(pipe_config);
1661 if (ret)
1662 return ret;
1663 }
1664
1665 if (HAS_GMCH_DISPLAY(dev_priv))
1666 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1667 conn_state->scaling_mode);
1668 else
1669 intel_pch_panel_fitting(intel_crtc, pipe_config,
1670 conn_state->scaling_mode);
1671 }
1672
1673 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1674 return false;
1675
1676 /* Use values requested by Compliance Test Request */
1677 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1678 int index;
1679
1680 index = intel_dp_rate_index(intel_dp->common_rates,
1681 intel_dp->num_common_rates,
1682 intel_dp->compliance.test_link_rate);
1683 if (index >= 0)
1684 min_clock = max_clock = index;
1685 min_lane_count = max_lane_count = intel_dp->compliance.test_lane_count;
1686 }
1687 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1688 "max bw %d pixel clock %iKHz\n",
1689 max_lane_count, intel_dp->common_rates[max_clock],
1690 adjusted_mode->crtc_clock);
1691
1692 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1693 * bpc in between. */
1694 bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1695 if (is_edp(intel_dp)) {
1696
1697 /* Get bpp from vbt only for panels that dont have bpp in edid */
1698 if (intel_connector->base.display_info.bpc == 0 &&
1699 (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1700 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1701 dev_priv->vbt.edp.bpp);
1702 bpp = dev_priv->vbt.edp.bpp;
1703 }
1704
1705 /*
1706 * Use the maximum clock and number of lanes the eDP panel
1707 * advertizes being capable of. The panels are generally
1708 * designed to support only a single clock and lane
1709 * configuration, and typically these values correspond to the
1710 * native resolution of the panel.
1711 */
1712 min_lane_count = max_lane_count;
1713 min_clock = max_clock;
1714 }
1715
1716 for (; bpp >= 6*3; bpp -= 2*3) {
1717 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1718 bpp);
1719
1720 for (clock = min_clock; clock <= max_clock; clock++) {
1721 for (lane_count = min_lane_count;
1722 lane_count <= max_lane_count;
1723 lane_count <<= 1) {
1724
1725 link_clock = intel_dp->common_rates[clock];
1726 link_avail = intel_dp_max_data_rate(link_clock,
1727 lane_count);
1728
1729 if (mode_rate <= link_avail) {
1730 goto found;
1731 }
1732 }
1733 }
1734 }
1735
1736 return false;
1737
1738 found:
1739 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
1740 /*
1741 * See:
1742 * CEA-861-E - 5.1 Default Encoding Parameters
1743 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1744 */
1745 pipe_config->limited_color_range =
1746 bpp != 18 &&
1747 drm_default_rgb_quant_range(adjusted_mode) ==
1748 HDMI_QUANTIZATION_RANGE_LIMITED;
1749 } else {
1750 pipe_config->limited_color_range =
1751 intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
1752 }
1753
1754 pipe_config->lane_count = lane_count;
1755
1756 pipe_config->pipe_bpp = bpp;
1757 pipe_config->port_clock = intel_dp->common_rates[clock];
1758
1759 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1760 &link_bw, &rate_select);
1761
1762 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1763 link_bw, rate_select, pipe_config->lane_count,
1764 pipe_config->port_clock, bpp);
1765 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1766 mode_rate, link_avail);
1767
1768 intel_link_compute_m_n(bpp, lane_count,
1769 adjusted_mode->crtc_clock,
1770 pipe_config->port_clock,
1771 &pipe_config->dp_m_n,
1772 reduce_m_n);
1773
1774 if (intel_connector->panel.downclock_mode != NULL &&
1775 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1776 pipe_config->has_drrs = true;
1777 intel_link_compute_m_n(bpp, lane_count,
1778 intel_connector->panel.downclock_mode->clock,
1779 pipe_config->port_clock,
1780 &pipe_config->dp_m2_n2,
1781 reduce_m_n);
1782 }
1783
1784 /*
1785 * DPLL0 VCO may need to be adjusted to get the correct
1786 * clock for eDP. This will affect cdclk as well.
1787 */
1788 if (is_edp(intel_dp) && IS_GEN9_BC(dev_priv)) {
1789 int vco;
1790
1791 switch (pipe_config->port_clock / 2) {
1792 case 108000:
1793 case 216000:
1794 vco = 8640000;
1795 break;
1796 default:
1797 vco = 8100000;
1798 break;
1799 }
1800
1801 to_intel_atomic_state(pipe_config->base.state)->cdclk.logical.vco = vco;
1802 }
1803
1804 if (!HAS_DDI(dev_priv))
1805 intel_dp_set_clock(encoder, pipe_config);
1806
1807 return true;
1808 }
1809
1810 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1811 int link_rate, uint8_t lane_count,
1812 bool link_mst)
1813 {
1814 intel_dp->link_rate = link_rate;
1815 intel_dp->lane_count = lane_count;
1816 intel_dp->link_mst = link_mst;
1817 }
1818
1819 static void intel_dp_prepare(struct intel_encoder *encoder,
1820 struct intel_crtc_state *pipe_config)
1821 {
1822 struct drm_device *dev = encoder->base.dev;
1823 struct drm_i915_private *dev_priv = to_i915(dev);
1824 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1825 enum port port = dp_to_dig_port(intel_dp)->port;
1826 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1827 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1828
1829 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1830 pipe_config->lane_count,
1831 intel_crtc_has_type(pipe_config,
1832 INTEL_OUTPUT_DP_MST));
1833
1834 /*
1835 * There are four kinds of DP registers:
1836 *
1837 * IBX PCH
1838 * SNB CPU
1839 * IVB CPU
1840 * CPT PCH
1841 *
1842 * IBX PCH and CPU are the same for almost everything,
1843 * except that the CPU DP PLL is configured in this
1844 * register
1845 *
1846 * CPT PCH is quite different, having many bits moved
1847 * to the TRANS_DP_CTL register instead. That
1848 * configuration happens (oddly) in ironlake_pch_enable
1849 */
1850
1851 /* Preserve the BIOS-computed detected bit. This is
1852 * supposed to be read-only.
1853 */
1854 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1855
1856 /* Handle DP bits in common between all three register formats */
1857 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1858 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1859
1860 /* Split out the IBX/CPU vs CPT settings */
1861
1862 if (IS_GEN7(dev_priv) && port == PORT_A) {
1863 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1864 intel_dp->DP |= DP_SYNC_HS_HIGH;
1865 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1866 intel_dp->DP |= DP_SYNC_VS_HIGH;
1867 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1868
1869 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1870 intel_dp->DP |= DP_ENHANCED_FRAMING;
1871
1872 intel_dp->DP |= crtc->pipe << 29;
1873 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
1874 u32 trans_dp;
1875
1876 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1877
1878 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1879 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1880 trans_dp |= TRANS_DP_ENH_FRAMING;
1881 else
1882 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1883 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1884 } else {
1885 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
1886 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1887
1888 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1889 intel_dp->DP |= DP_SYNC_HS_HIGH;
1890 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1891 intel_dp->DP |= DP_SYNC_VS_HIGH;
1892 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1893
1894 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1895 intel_dp->DP |= DP_ENHANCED_FRAMING;
1896
1897 if (IS_CHERRYVIEW(dev_priv))
1898 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1899 else if (crtc->pipe == PIPE_B)
1900 intel_dp->DP |= DP_PIPEB_SELECT;
1901 }
1902 }
1903
1904 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1905 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1906
1907 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1908 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1909
1910 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1911 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1912
1913 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1914 struct intel_dp *intel_dp);
1915
1916 static void wait_panel_status(struct intel_dp *intel_dp,
1917 u32 mask,
1918 u32 value)
1919 {
1920 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1921 struct drm_i915_private *dev_priv = to_i915(dev);
1922 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1923
1924 lockdep_assert_held(&dev_priv->pps_mutex);
1925
1926 intel_pps_verify_state(dev_priv, intel_dp);
1927
1928 pp_stat_reg = _pp_stat_reg(intel_dp);
1929 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1930
1931 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1932 mask, value,
1933 I915_READ(pp_stat_reg),
1934 I915_READ(pp_ctrl_reg));
1935
1936 if (intel_wait_for_register(dev_priv,
1937 pp_stat_reg, mask, value,
1938 5000))
1939 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1940 I915_READ(pp_stat_reg),
1941 I915_READ(pp_ctrl_reg));
1942
1943 DRM_DEBUG_KMS("Wait complete\n");
1944 }
1945
1946 static void wait_panel_on(struct intel_dp *intel_dp)
1947 {
1948 DRM_DEBUG_KMS("Wait for panel power on\n");
1949 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1950 }
1951
1952 static void wait_panel_off(struct intel_dp *intel_dp)
1953 {
1954 DRM_DEBUG_KMS("Wait for panel power off time\n");
1955 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1956 }
1957
1958 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1959 {
1960 ktime_t panel_power_on_time;
1961 s64 panel_power_off_duration;
1962
1963 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1964
1965 /* take the difference of currrent time and panel power off time
1966 * and then make panel wait for t11_t12 if needed. */
1967 panel_power_on_time = ktime_get_boottime();
1968 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1969
1970 /* When we disable the VDD override bit last we have to do the manual
1971 * wait. */
1972 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1973 wait_remaining_ms_from_jiffies(jiffies,
1974 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1975
1976 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1977 }
1978
1979 static void wait_backlight_on(struct intel_dp *intel_dp)
1980 {
1981 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1982 intel_dp->backlight_on_delay);
1983 }
1984
1985 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1986 {
1987 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1988 intel_dp->backlight_off_delay);
1989 }
1990
1991 /* Read the current pp_control value, unlocking the register if it
1992 * is locked
1993 */
1994
1995 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1996 {
1997 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1998 struct drm_i915_private *dev_priv = to_i915(dev);
1999 u32 control;
2000
2001 lockdep_assert_held(&dev_priv->pps_mutex);
2002
2003 control = I915_READ(_pp_ctrl_reg(intel_dp));
2004 if (WARN_ON(!HAS_DDI(dev_priv) &&
2005 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2006 control &= ~PANEL_UNLOCK_MASK;
2007 control |= PANEL_UNLOCK_REGS;
2008 }
2009 return control;
2010 }
2011
2012 /*
2013 * Must be paired with edp_panel_vdd_off().
2014 * Must hold pps_mutex around the whole on/off sequence.
2015 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2016 */
2017 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2018 {
2019 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2020 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2021 struct drm_i915_private *dev_priv = to_i915(dev);
2022 u32 pp;
2023 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2024 bool need_to_disable = !intel_dp->want_panel_vdd;
2025
2026 lockdep_assert_held(&dev_priv->pps_mutex);
2027
2028 if (!is_edp(intel_dp))
2029 return false;
2030
2031 cancel_delayed_work(&intel_dp->panel_vdd_work);
2032 intel_dp->want_panel_vdd = true;
2033
2034 if (edp_have_panel_vdd(intel_dp))
2035 return need_to_disable;
2036
2037 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
2038
2039 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2040 port_name(intel_dig_port->port));
2041
2042 if (!edp_have_panel_power(intel_dp))
2043 wait_panel_power_cycle(intel_dp);
2044
2045 pp = ironlake_get_pp_control(intel_dp);
2046 pp |= EDP_FORCE_VDD;
2047
2048 pp_stat_reg = _pp_stat_reg(intel_dp);
2049 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2050
2051 I915_WRITE(pp_ctrl_reg, pp);
2052 POSTING_READ(pp_ctrl_reg);
2053 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2054 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2055 /*
2056 * If the panel wasn't on, delay before accessing aux channel
2057 */
2058 if (!edp_have_panel_power(intel_dp)) {
2059 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2060 port_name(intel_dig_port->port));
2061 msleep(intel_dp->panel_power_up_delay);
2062 }
2063
2064 return need_to_disable;
2065 }
2066
2067 /*
2068 * Must be paired with intel_edp_panel_vdd_off() or
2069 * intel_edp_panel_off().
2070 * Nested calls to these functions are not allowed since
2071 * we drop the lock. Caller must use some higher level
2072 * locking to prevent nested calls from other threads.
2073 */
2074 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2075 {
2076 bool vdd;
2077
2078 if (!is_edp(intel_dp))
2079 return;
2080
2081 pps_lock(intel_dp);
2082 vdd = edp_panel_vdd_on(intel_dp);
2083 pps_unlock(intel_dp);
2084
2085 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2086 port_name(dp_to_dig_port(intel_dp)->port));
2087 }
2088
2089 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2090 {
2091 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2092 struct drm_i915_private *dev_priv = to_i915(dev);
2093 struct intel_digital_port *intel_dig_port =
2094 dp_to_dig_port(intel_dp);
2095 u32 pp;
2096 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2097
2098 lockdep_assert_held(&dev_priv->pps_mutex);
2099
2100 WARN_ON(intel_dp->want_panel_vdd);
2101
2102 if (!edp_have_panel_vdd(intel_dp))
2103 return;
2104
2105 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2106 port_name(intel_dig_port->port));
2107
2108 pp = ironlake_get_pp_control(intel_dp);
2109 pp &= ~EDP_FORCE_VDD;
2110
2111 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2112 pp_stat_reg = _pp_stat_reg(intel_dp);
2113
2114 I915_WRITE(pp_ctrl_reg, pp);
2115 POSTING_READ(pp_ctrl_reg);
2116
2117 /* Make sure sequencer is idle before allowing subsequent activity */
2118 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2119 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2120
2121 if ((pp & PANEL_POWER_ON) == 0)
2122 intel_dp->panel_power_off_time = ktime_get_boottime();
2123
2124 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2125 }
2126
2127 static void edp_panel_vdd_work(struct work_struct *__work)
2128 {
2129 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2130 struct intel_dp, panel_vdd_work);
2131
2132 pps_lock(intel_dp);
2133 if (!intel_dp->want_panel_vdd)
2134 edp_panel_vdd_off_sync(intel_dp);
2135 pps_unlock(intel_dp);
2136 }
2137
2138 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2139 {
2140 unsigned long delay;
2141
2142 /*
2143 * Queue the timer to fire a long time from now (relative to the power
2144 * down delay) to keep the panel power up across a sequence of
2145 * operations.
2146 */
2147 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2148 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2149 }
2150
2151 /*
2152 * Must be paired with edp_panel_vdd_on().
2153 * Must hold pps_mutex around the whole on/off sequence.
2154 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2155 */
2156 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2157 {
2158 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2159
2160 lockdep_assert_held(&dev_priv->pps_mutex);
2161
2162 if (!is_edp(intel_dp))
2163 return;
2164
2165 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2166 port_name(dp_to_dig_port(intel_dp)->port));
2167
2168 intel_dp->want_panel_vdd = false;
2169
2170 if (sync)
2171 edp_panel_vdd_off_sync(intel_dp);
2172 else
2173 edp_panel_vdd_schedule_off(intel_dp);
2174 }
2175
2176 static void edp_panel_on(struct intel_dp *intel_dp)
2177 {
2178 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2179 struct drm_i915_private *dev_priv = to_i915(dev);
2180 u32 pp;
2181 i915_reg_t pp_ctrl_reg;
2182
2183 lockdep_assert_held(&dev_priv->pps_mutex);
2184
2185 if (!is_edp(intel_dp))
2186 return;
2187
2188 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2189 port_name(dp_to_dig_port(intel_dp)->port));
2190
2191 if (WARN(edp_have_panel_power(intel_dp),
2192 "eDP port %c panel power already on\n",
2193 port_name(dp_to_dig_port(intel_dp)->port)))
2194 return;
2195
2196 wait_panel_power_cycle(intel_dp);
2197
2198 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2199 pp = ironlake_get_pp_control(intel_dp);
2200 if (IS_GEN5(dev_priv)) {
2201 /* ILK workaround: disable reset around power sequence */
2202 pp &= ~PANEL_POWER_RESET;
2203 I915_WRITE(pp_ctrl_reg, pp);
2204 POSTING_READ(pp_ctrl_reg);
2205 }
2206
2207 pp |= PANEL_POWER_ON;
2208 if (!IS_GEN5(dev_priv))
2209 pp |= PANEL_POWER_RESET;
2210
2211 I915_WRITE(pp_ctrl_reg, pp);
2212 POSTING_READ(pp_ctrl_reg);
2213
2214 wait_panel_on(intel_dp);
2215 intel_dp->last_power_on = jiffies;
2216
2217 if (IS_GEN5(dev_priv)) {
2218 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2219 I915_WRITE(pp_ctrl_reg, pp);
2220 POSTING_READ(pp_ctrl_reg);
2221 }
2222 }
2223
2224 void intel_edp_panel_on(struct intel_dp *intel_dp)
2225 {
2226 if (!is_edp(intel_dp))
2227 return;
2228
2229 pps_lock(intel_dp);
2230 edp_panel_on(intel_dp);
2231 pps_unlock(intel_dp);
2232 }
2233
2234
2235 static void edp_panel_off(struct intel_dp *intel_dp)
2236 {
2237 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2238 struct drm_i915_private *dev_priv = to_i915(dev);
2239 u32 pp;
2240 i915_reg_t pp_ctrl_reg;
2241
2242 lockdep_assert_held(&dev_priv->pps_mutex);
2243
2244 if (!is_edp(intel_dp))
2245 return;
2246
2247 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2248 port_name(dp_to_dig_port(intel_dp)->port));
2249
2250 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2251 port_name(dp_to_dig_port(intel_dp)->port));
2252
2253 pp = ironlake_get_pp_control(intel_dp);
2254 /* We need to switch off panel power _and_ force vdd, for otherwise some
2255 * panels get very unhappy and cease to work. */
2256 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2257 EDP_BLC_ENABLE);
2258
2259 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2260
2261 intel_dp->want_panel_vdd = false;
2262
2263 I915_WRITE(pp_ctrl_reg, pp);
2264 POSTING_READ(pp_ctrl_reg);
2265
2266 intel_dp->panel_power_off_time = ktime_get_boottime();
2267 wait_panel_off(intel_dp);
2268
2269 /* We got a reference when we enabled the VDD. */
2270 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2271 }
2272
2273 void intel_edp_panel_off(struct intel_dp *intel_dp)
2274 {
2275 if (!is_edp(intel_dp))
2276 return;
2277
2278 pps_lock(intel_dp);
2279 edp_panel_off(intel_dp);
2280 pps_unlock(intel_dp);
2281 }
2282
2283 /* Enable backlight in the panel power control. */
2284 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2285 {
2286 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2287 struct drm_device *dev = intel_dig_port->base.base.dev;
2288 struct drm_i915_private *dev_priv = to_i915(dev);
2289 u32 pp;
2290 i915_reg_t pp_ctrl_reg;
2291
2292 /*
2293 * If we enable the backlight right away following a panel power
2294 * on, we may see slight flicker as the panel syncs with the eDP
2295 * link. So delay a bit to make sure the image is solid before
2296 * allowing it to appear.
2297 */
2298 wait_backlight_on(intel_dp);
2299
2300 pps_lock(intel_dp);
2301
2302 pp = ironlake_get_pp_control(intel_dp);
2303 pp |= EDP_BLC_ENABLE;
2304
2305 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2306
2307 I915_WRITE(pp_ctrl_reg, pp);
2308 POSTING_READ(pp_ctrl_reg);
2309
2310 pps_unlock(intel_dp);
2311 }
2312
2313 /* Enable backlight PWM and backlight PP control. */
2314 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2315 const struct drm_connector_state *conn_state)
2316 {
2317 struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2318
2319 if (!is_edp(intel_dp))
2320 return;
2321
2322 DRM_DEBUG_KMS("\n");
2323
2324 intel_panel_enable_backlight(crtc_state, conn_state);
2325 _intel_edp_backlight_on(intel_dp);
2326 }
2327
2328 /* Disable backlight in the panel power control. */
2329 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2330 {
2331 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2332 struct drm_i915_private *dev_priv = to_i915(dev);
2333 u32 pp;
2334 i915_reg_t pp_ctrl_reg;
2335
2336 if (!is_edp(intel_dp))
2337 return;
2338
2339 pps_lock(intel_dp);
2340
2341 pp = ironlake_get_pp_control(intel_dp);
2342 pp &= ~EDP_BLC_ENABLE;
2343
2344 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2345
2346 I915_WRITE(pp_ctrl_reg, pp);
2347 POSTING_READ(pp_ctrl_reg);
2348
2349 pps_unlock(intel_dp);
2350
2351 intel_dp->last_backlight_off = jiffies;
2352 edp_wait_backlight_off(intel_dp);
2353 }
2354
2355 /* Disable backlight PP control and backlight PWM. */
2356 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2357 {
2358 struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2359
2360 if (!is_edp(intel_dp))
2361 return;
2362
2363 DRM_DEBUG_KMS("\n");
2364
2365 _intel_edp_backlight_off(intel_dp);
2366 intel_panel_disable_backlight(old_conn_state);
2367 }
2368
2369 /*
2370 * Hook for controlling the panel power control backlight through the bl_power
2371 * sysfs attribute. Take care to handle multiple calls.
2372 */
2373 static void intel_edp_backlight_power(struct intel_connector *connector,
2374 bool enable)
2375 {
2376 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2377 bool is_enabled;
2378
2379 pps_lock(intel_dp);
2380 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2381 pps_unlock(intel_dp);
2382
2383 if (is_enabled == enable)
2384 return;
2385
2386 DRM_DEBUG_KMS("panel power control backlight %s\n",
2387 enable ? "enable" : "disable");
2388
2389 if (enable)
2390 _intel_edp_backlight_on(intel_dp);
2391 else
2392 _intel_edp_backlight_off(intel_dp);
2393 }
2394
2395 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2396 {
2397 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2398 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2399 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2400
2401 I915_STATE_WARN(cur_state != state,
2402 "DP port %c state assertion failure (expected %s, current %s)\n",
2403 port_name(dig_port->port),
2404 onoff(state), onoff(cur_state));
2405 }
2406 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2407
2408 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2409 {
2410 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2411
2412 I915_STATE_WARN(cur_state != state,
2413 "eDP PLL state assertion failure (expected %s, current %s)\n",
2414 onoff(state), onoff(cur_state));
2415 }
2416 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2417 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2418
2419 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2420 struct intel_crtc_state *pipe_config)
2421 {
2422 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2423 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2424
2425 assert_pipe_disabled(dev_priv, crtc->pipe);
2426 assert_dp_port_disabled(intel_dp);
2427 assert_edp_pll_disabled(dev_priv);
2428
2429 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2430 pipe_config->port_clock);
2431
2432 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2433
2434 if (pipe_config->port_clock == 162000)
2435 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2436 else
2437 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2438
2439 I915_WRITE(DP_A, intel_dp->DP);
2440 POSTING_READ(DP_A);
2441 udelay(500);
2442
2443 /*
2444 * [DevILK] Work around required when enabling DP PLL
2445 * while a pipe is enabled going to FDI:
2446 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2447 * 2. Program DP PLL enable
2448 */
2449 if (IS_GEN5(dev_priv))
2450 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2451
2452 intel_dp->DP |= DP_PLL_ENABLE;
2453
2454 I915_WRITE(DP_A, intel_dp->DP);
2455 POSTING_READ(DP_A);
2456 udelay(200);
2457 }
2458
2459 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2460 {
2461 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2462 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2463 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2464
2465 assert_pipe_disabled(dev_priv, crtc->pipe);
2466 assert_dp_port_disabled(intel_dp);
2467 assert_edp_pll_enabled(dev_priv);
2468
2469 DRM_DEBUG_KMS("disabling eDP PLL\n");
2470
2471 intel_dp->DP &= ~DP_PLL_ENABLE;
2472
2473 I915_WRITE(DP_A, intel_dp->DP);
2474 POSTING_READ(DP_A);
2475 udelay(200);
2476 }
2477
2478 /* If the sink supports it, try to set the power state appropriately */
2479 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2480 {
2481 int ret, i;
2482
2483 /* Should have a valid DPCD by this point */
2484 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2485 return;
2486
2487 if (mode != DRM_MODE_DPMS_ON) {
2488 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2489 DP_SET_POWER_D3);
2490 } else {
2491 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
2492
2493 /*
2494 * When turning on, we need to retry for 1ms to give the sink
2495 * time to wake up.
2496 */
2497 for (i = 0; i < 3; i++) {
2498 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2499 DP_SET_POWER_D0);
2500 if (ret == 1)
2501 break;
2502 msleep(1);
2503 }
2504
2505 if (ret == 1 && lspcon->active)
2506 lspcon_wait_pcon_mode(lspcon);
2507 }
2508
2509 if (ret != 1)
2510 DRM_DEBUG_KMS("failed to %s sink power state\n",
2511 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2512 }
2513
2514 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2515 enum pipe *pipe)
2516 {
2517 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2518 enum port port = dp_to_dig_port(intel_dp)->port;
2519 struct drm_device *dev = encoder->base.dev;
2520 struct drm_i915_private *dev_priv = to_i915(dev);
2521 u32 tmp;
2522 bool ret;
2523
2524 if (!intel_display_power_get_if_enabled(dev_priv,
2525 encoder->power_domain))
2526 return false;
2527
2528 ret = false;
2529
2530 tmp = I915_READ(intel_dp->output_reg);
2531
2532 if (!(tmp & DP_PORT_EN))
2533 goto out;
2534
2535 if (IS_GEN7(dev_priv) && port == PORT_A) {
2536 *pipe = PORT_TO_PIPE_CPT(tmp);
2537 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2538 enum pipe p;
2539
2540 for_each_pipe(dev_priv, p) {
2541 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2542 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2543 *pipe = p;
2544 ret = true;
2545
2546 goto out;
2547 }
2548 }
2549
2550 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2551 i915_mmio_reg_offset(intel_dp->output_reg));
2552 } else if (IS_CHERRYVIEW(dev_priv)) {
2553 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2554 } else {
2555 *pipe = PORT_TO_PIPE(tmp);
2556 }
2557
2558 ret = true;
2559
2560 out:
2561 intel_display_power_put(dev_priv, encoder->power_domain);
2562
2563 return ret;
2564 }
2565
2566 static void intel_dp_get_config(struct intel_encoder *encoder,
2567 struct intel_crtc_state *pipe_config)
2568 {
2569 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2570 u32 tmp, flags = 0;
2571 struct drm_device *dev = encoder->base.dev;
2572 struct drm_i915_private *dev_priv = to_i915(dev);
2573 enum port port = dp_to_dig_port(intel_dp)->port;
2574 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2575
2576 tmp = I915_READ(intel_dp->output_reg);
2577
2578 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2579
2580 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2581 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2582
2583 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2584 flags |= DRM_MODE_FLAG_PHSYNC;
2585 else
2586 flags |= DRM_MODE_FLAG_NHSYNC;
2587
2588 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2589 flags |= DRM_MODE_FLAG_PVSYNC;
2590 else
2591 flags |= DRM_MODE_FLAG_NVSYNC;
2592 } else {
2593 if (tmp & DP_SYNC_HS_HIGH)
2594 flags |= DRM_MODE_FLAG_PHSYNC;
2595 else
2596 flags |= DRM_MODE_FLAG_NHSYNC;
2597
2598 if (tmp & DP_SYNC_VS_HIGH)
2599 flags |= DRM_MODE_FLAG_PVSYNC;
2600 else
2601 flags |= DRM_MODE_FLAG_NVSYNC;
2602 }
2603
2604 pipe_config->base.adjusted_mode.flags |= flags;
2605
2606 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2607 pipe_config->limited_color_range = true;
2608
2609 pipe_config->lane_count =
2610 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2611
2612 intel_dp_get_m_n(crtc, pipe_config);
2613
2614 if (port == PORT_A) {
2615 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2616 pipe_config->port_clock = 162000;
2617 else
2618 pipe_config->port_clock = 270000;
2619 }
2620
2621 pipe_config->base.adjusted_mode.crtc_clock =
2622 intel_dotclock_calculate(pipe_config->port_clock,
2623 &pipe_config->dp_m_n);
2624
2625 if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2626 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2627 /*
2628 * This is a big fat ugly hack.
2629 *
2630 * Some machines in UEFI boot mode provide us a VBT that has 18
2631 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2632 * unknown we fail to light up. Yet the same BIOS boots up with
2633 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2634 * max, not what it tells us to use.
2635 *
2636 * Note: This will still be broken if the eDP panel is not lit
2637 * up by the BIOS, and thus we can't get the mode at module
2638 * load.
2639 */
2640 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2641 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2642 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2643 }
2644 }
2645
2646 static void intel_disable_dp(struct intel_encoder *encoder,
2647 struct intel_crtc_state *old_crtc_state,
2648 struct drm_connector_state *old_conn_state)
2649 {
2650 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2651 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2652
2653 if (old_crtc_state->has_audio)
2654 intel_audio_codec_disable(encoder);
2655
2656 if (HAS_PSR(dev_priv) && !HAS_DDI(dev_priv))
2657 intel_psr_disable(intel_dp);
2658
2659 /* Make sure the panel is off before trying to change the mode. But also
2660 * ensure that we have vdd while we switch off the panel. */
2661 intel_edp_panel_vdd_on(intel_dp);
2662 intel_edp_backlight_off(old_conn_state);
2663 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2664 intel_edp_panel_off(intel_dp);
2665
2666 /* disable the port before the pipe on g4x */
2667 if (INTEL_GEN(dev_priv) < 5)
2668 intel_dp_link_down(intel_dp);
2669 }
2670
2671 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2672 struct intel_crtc_state *old_crtc_state,
2673 struct drm_connector_state *old_conn_state)
2674 {
2675 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2676 enum port port = dp_to_dig_port(intel_dp)->port;
2677
2678 intel_dp_link_down(intel_dp);
2679
2680 /* Only ilk+ has port A */
2681 if (port == PORT_A)
2682 ironlake_edp_pll_off(intel_dp);
2683 }
2684
2685 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2686 struct intel_crtc_state *old_crtc_state,
2687 struct drm_connector_state *old_conn_state)
2688 {
2689 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2690
2691 intel_dp_link_down(intel_dp);
2692 }
2693
2694 static void chv_post_disable_dp(struct intel_encoder *encoder,
2695 struct intel_crtc_state *old_crtc_state,
2696 struct drm_connector_state *old_conn_state)
2697 {
2698 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2699 struct drm_device *dev = encoder->base.dev;
2700 struct drm_i915_private *dev_priv = to_i915(dev);
2701
2702 intel_dp_link_down(intel_dp);
2703
2704 mutex_lock(&dev_priv->sb_lock);
2705
2706 /* Assert data lane reset */
2707 chv_data_lane_soft_reset(encoder, true);
2708
2709 mutex_unlock(&dev_priv->sb_lock);
2710 }
2711
2712 static void
2713 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2714 uint32_t *DP,
2715 uint8_t dp_train_pat)
2716 {
2717 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2718 struct drm_device *dev = intel_dig_port->base.base.dev;
2719 struct drm_i915_private *dev_priv = to_i915(dev);
2720 enum port port = intel_dig_port->port;
2721
2722 if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2723 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2724 dp_train_pat & DP_TRAINING_PATTERN_MASK);
2725
2726 if (HAS_DDI(dev_priv)) {
2727 uint32_t temp = I915_READ(DP_TP_CTL(port));
2728
2729 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2730 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2731 else
2732 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2733
2734 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2735 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2736 case DP_TRAINING_PATTERN_DISABLE:
2737 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2738
2739 break;
2740 case DP_TRAINING_PATTERN_1:
2741 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2742 break;
2743 case DP_TRAINING_PATTERN_2:
2744 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2745 break;
2746 case DP_TRAINING_PATTERN_3:
2747 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2748 break;
2749 }
2750 I915_WRITE(DP_TP_CTL(port), temp);
2751
2752 } else if ((IS_GEN7(dev_priv) && port == PORT_A) ||
2753 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
2754 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2755
2756 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2757 case DP_TRAINING_PATTERN_DISABLE:
2758 *DP |= DP_LINK_TRAIN_OFF_CPT;
2759 break;
2760 case DP_TRAINING_PATTERN_1:
2761 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2762 break;
2763 case DP_TRAINING_PATTERN_2:
2764 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2765 break;
2766 case DP_TRAINING_PATTERN_3:
2767 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2768 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2769 break;
2770 }
2771
2772 } else {
2773 if (IS_CHERRYVIEW(dev_priv))
2774 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2775 else
2776 *DP &= ~DP_LINK_TRAIN_MASK;
2777
2778 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2779 case DP_TRAINING_PATTERN_DISABLE:
2780 *DP |= DP_LINK_TRAIN_OFF;
2781 break;
2782 case DP_TRAINING_PATTERN_1:
2783 *DP |= DP_LINK_TRAIN_PAT_1;
2784 break;
2785 case DP_TRAINING_PATTERN_2:
2786 *DP |= DP_LINK_TRAIN_PAT_2;
2787 break;
2788 case DP_TRAINING_PATTERN_3:
2789 if (IS_CHERRYVIEW(dev_priv)) {
2790 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2791 } else {
2792 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2793 *DP |= DP_LINK_TRAIN_PAT_2;
2794 }
2795 break;
2796 }
2797 }
2798 }
2799
2800 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2801 struct intel_crtc_state *old_crtc_state)
2802 {
2803 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2804 struct drm_i915_private *dev_priv = to_i915(dev);
2805
2806 /* enable with pattern 1 (as per spec) */
2807
2808 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2809
2810 /*
2811 * Magic for VLV/CHV. We _must_ first set up the register
2812 * without actually enabling the port, and then do another
2813 * write to enable the port. Otherwise link training will
2814 * fail when the power sequencer is freshly used for this port.
2815 */
2816 intel_dp->DP |= DP_PORT_EN;
2817 if (old_crtc_state->has_audio)
2818 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2819
2820 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2821 POSTING_READ(intel_dp->output_reg);
2822 }
2823
2824 static void intel_enable_dp(struct intel_encoder *encoder,
2825 struct intel_crtc_state *pipe_config,
2826 struct drm_connector_state *conn_state)
2827 {
2828 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2829 struct drm_device *dev = encoder->base.dev;
2830 struct drm_i915_private *dev_priv = to_i915(dev);
2831 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2832 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2833 enum pipe pipe = crtc->pipe;
2834
2835 if (WARN_ON(dp_reg & DP_PORT_EN))
2836 return;
2837
2838 pps_lock(intel_dp);
2839
2840 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2841 vlv_init_panel_power_sequencer(intel_dp);
2842
2843 intel_dp_enable_port(intel_dp, pipe_config);
2844
2845 edp_panel_vdd_on(intel_dp);
2846 edp_panel_on(intel_dp);
2847 edp_panel_vdd_off(intel_dp, true);
2848
2849 pps_unlock(intel_dp);
2850
2851 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2852 unsigned int lane_mask = 0x0;
2853
2854 if (IS_CHERRYVIEW(dev_priv))
2855 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2856
2857 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2858 lane_mask);
2859 }
2860
2861 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2862 intel_dp_start_link_train(intel_dp);
2863 intel_dp_stop_link_train(intel_dp);
2864
2865 if (pipe_config->has_audio) {
2866 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2867 pipe_name(pipe));
2868 intel_audio_codec_enable(encoder, pipe_config, conn_state);
2869 }
2870 }
2871
2872 static void g4x_enable_dp(struct intel_encoder *encoder,
2873 struct intel_crtc_state *pipe_config,
2874 struct drm_connector_state *conn_state)
2875 {
2876 intel_enable_dp(encoder, pipe_config, conn_state);
2877 intel_edp_backlight_on(pipe_config, conn_state);
2878 }
2879
2880 static void vlv_enable_dp(struct intel_encoder *encoder,
2881 struct intel_crtc_state *pipe_config,
2882 struct drm_connector_state *conn_state)
2883 {
2884 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2885
2886 intel_edp_backlight_on(pipe_config, conn_state);
2887 intel_psr_enable(intel_dp);
2888 }
2889
2890 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
2891 struct intel_crtc_state *pipe_config,
2892 struct drm_connector_state *conn_state)
2893 {
2894 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2895 enum port port = dp_to_dig_port(intel_dp)->port;
2896
2897 intel_dp_prepare(encoder, pipe_config);
2898
2899 /* Only ilk+ has port A */
2900 if (port == PORT_A)
2901 ironlake_edp_pll_on(intel_dp, pipe_config);
2902 }
2903
2904 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2905 {
2906 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2907 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2908 enum pipe pipe = intel_dp->pps_pipe;
2909 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2910
2911 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
2912
2913 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2914 return;
2915
2916 edp_panel_vdd_off_sync(intel_dp);
2917
2918 /*
2919 * VLV seems to get confused when multiple power seqeuencers
2920 * have the same port selected (even if only one has power/vdd
2921 * enabled). The failure manifests as vlv_wait_port_ready() failing
2922 * CHV on the other hand doesn't seem to mind having the same port
2923 * selected in multiple power seqeuencers, but let's clear the
2924 * port select always when logically disconnecting a power sequencer
2925 * from a port.
2926 */
2927 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2928 pipe_name(pipe), port_name(intel_dig_port->port));
2929 I915_WRITE(pp_on_reg, 0);
2930 POSTING_READ(pp_on_reg);
2931
2932 intel_dp->pps_pipe = INVALID_PIPE;
2933 }
2934
2935 static void vlv_steal_power_sequencer(struct drm_device *dev,
2936 enum pipe pipe)
2937 {
2938 struct drm_i915_private *dev_priv = to_i915(dev);
2939 struct intel_encoder *encoder;
2940
2941 lockdep_assert_held(&dev_priv->pps_mutex);
2942
2943 for_each_intel_encoder(dev, encoder) {
2944 struct intel_dp *intel_dp;
2945 enum port port;
2946
2947 if (encoder->type != INTEL_OUTPUT_DP &&
2948 encoder->type != INTEL_OUTPUT_EDP)
2949 continue;
2950
2951 intel_dp = enc_to_intel_dp(&encoder->base);
2952 port = dp_to_dig_port(intel_dp)->port;
2953
2954 WARN(intel_dp->active_pipe == pipe,
2955 "stealing pipe %c power sequencer from active (e)DP port %c\n",
2956 pipe_name(pipe), port_name(port));
2957
2958 if (intel_dp->pps_pipe != pipe)
2959 continue;
2960
2961 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2962 pipe_name(pipe), port_name(port));
2963
2964 /* make sure vdd is off before we steal it */
2965 vlv_detach_power_sequencer(intel_dp);
2966 }
2967 }
2968
2969 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2970 {
2971 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2972 struct intel_encoder *encoder = &intel_dig_port->base;
2973 struct drm_device *dev = encoder->base.dev;
2974 struct drm_i915_private *dev_priv = to_i915(dev);
2975 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2976
2977 lockdep_assert_held(&dev_priv->pps_mutex);
2978
2979 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
2980
2981 if (intel_dp->pps_pipe != INVALID_PIPE &&
2982 intel_dp->pps_pipe != crtc->pipe) {
2983 /*
2984 * If another power sequencer was being used on this
2985 * port previously make sure to turn off vdd there while
2986 * we still have control of it.
2987 */
2988 vlv_detach_power_sequencer(intel_dp);
2989 }
2990
2991 /*
2992 * We may be stealing the power
2993 * sequencer from another port.
2994 */
2995 vlv_steal_power_sequencer(dev, crtc->pipe);
2996
2997 intel_dp->active_pipe = crtc->pipe;
2998
2999 if (!is_edp(intel_dp))
3000 return;
3001
3002 /* now it's all ours */
3003 intel_dp->pps_pipe = crtc->pipe;
3004
3005 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3006 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
3007
3008 /* init power sequencer on this pipe and port */
3009 intel_dp_init_panel_power_sequencer(dev, intel_dp);
3010 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, true);
3011 }
3012
3013 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3014 struct intel_crtc_state *pipe_config,
3015 struct drm_connector_state *conn_state)
3016 {
3017 vlv_phy_pre_encoder_enable(encoder);
3018
3019 intel_enable_dp(encoder, pipe_config, conn_state);
3020 }
3021
3022 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3023 struct intel_crtc_state *pipe_config,
3024 struct drm_connector_state *conn_state)
3025 {
3026 intel_dp_prepare(encoder, pipe_config);
3027
3028 vlv_phy_pre_pll_enable(encoder);
3029 }
3030
3031 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3032 struct intel_crtc_state *pipe_config,
3033 struct drm_connector_state *conn_state)
3034 {
3035 chv_phy_pre_encoder_enable(encoder);
3036
3037 intel_enable_dp(encoder, pipe_config, conn_state);
3038
3039 /* Second common lane will stay alive on its own now */
3040 chv_phy_release_cl2_override(encoder);
3041 }
3042
3043 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3044 struct intel_crtc_state *pipe_config,
3045 struct drm_connector_state *conn_state)
3046 {
3047 intel_dp_prepare(encoder, pipe_config);
3048
3049 chv_phy_pre_pll_enable(encoder);
3050 }
3051
3052 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3053 struct intel_crtc_state *pipe_config,
3054 struct drm_connector_state *conn_state)
3055 {
3056 chv_phy_post_pll_disable(encoder);
3057 }
3058
3059 /*
3060 * Fetch AUX CH registers 0x202 - 0x207 which contain
3061 * link status information
3062 */
3063 bool
3064 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3065 {
3066 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3067 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3068 }
3069
3070 static bool intel_dp_get_y_cord_status(struct intel_dp *intel_dp)
3071 {
3072 uint8_t psr_caps = 0;
3073
3074 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_CAPS, &psr_caps) != 1)
3075 return false;
3076 return psr_caps & DP_PSR2_SU_Y_COORDINATE_REQUIRED;
3077 }
3078
3079 static bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
3080 {
3081 uint8_t dprx = 0;
3082
3083 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
3084 &dprx) != 1)
3085 return false;
3086 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
3087 }
3088
3089 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
3090 {
3091 uint8_t alpm_caps = 0;
3092
3093 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
3094 &alpm_caps) != 1)
3095 return false;
3096 return alpm_caps & DP_ALPM_CAP;
3097 }
3098
3099 /* These are source-specific values. */
3100 uint8_t
3101 intel_dp_voltage_max(struct intel_dp *intel_dp)
3102 {
3103 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3104 enum port port = dp_to_dig_port(intel_dp)->port;
3105
3106 if (IS_GEN9_LP(dev_priv))
3107 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3108 else if (INTEL_GEN(dev_priv) >= 9) {
3109 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3110 return intel_ddi_dp_voltage_max(encoder);
3111 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3112 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3113 else if (IS_GEN7(dev_priv) && port == PORT_A)
3114 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3115 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3116 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3117 else
3118 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3119 }
3120
3121 uint8_t
3122 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3123 {
3124 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3125 enum port port = dp_to_dig_port(intel_dp)->port;
3126
3127 if (INTEL_GEN(dev_priv) >= 9) {
3128 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3129 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3130 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3131 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3132 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3133 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3134 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3135 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3136 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3137 default:
3138 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3139 }
3140 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3141 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3142 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3143 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3144 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3145 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3146 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3147 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3148 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3149 default:
3150 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3151 }
3152 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3153 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3154 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3155 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3156 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3157 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3158 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3159 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3160 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3161 default:
3162 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3163 }
3164 } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3165 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3166 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3167 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3168 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3169 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3170 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3171 default:
3172 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3173 }
3174 } else {
3175 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3176 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3177 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3178 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3179 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3180 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3181 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3182 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3183 default:
3184 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3185 }
3186 }
3187 }
3188
3189 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3190 {
3191 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3192 unsigned long demph_reg_value, preemph_reg_value,
3193 uniqtranscale_reg_value;
3194 uint8_t train_set = intel_dp->train_set[0];
3195
3196 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3197 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3198 preemph_reg_value = 0x0004000;
3199 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3200 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3201 demph_reg_value = 0x2B405555;
3202 uniqtranscale_reg_value = 0x552AB83A;
3203 break;
3204 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3205 demph_reg_value = 0x2B404040;
3206 uniqtranscale_reg_value = 0x5548B83A;
3207 break;
3208 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3209 demph_reg_value = 0x2B245555;
3210 uniqtranscale_reg_value = 0x5560B83A;
3211 break;
3212 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3213 demph_reg_value = 0x2B405555;
3214 uniqtranscale_reg_value = 0x5598DA3A;
3215 break;
3216 default:
3217 return 0;
3218 }
3219 break;
3220 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3221 preemph_reg_value = 0x0002000;
3222 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3223 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3224 demph_reg_value = 0x2B404040;
3225 uniqtranscale_reg_value = 0x5552B83A;
3226 break;
3227 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3228 demph_reg_value = 0x2B404848;
3229 uniqtranscale_reg_value = 0x5580B83A;
3230 break;
3231 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3232 demph_reg_value = 0x2B404040;
3233 uniqtranscale_reg_value = 0x55ADDA3A;
3234 break;
3235 default:
3236 return 0;
3237 }
3238 break;
3239 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3240 preemph_reg_value = 0x0000000;
3241 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3242 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3243 demph_reg_value = 0x2B305555;
3244 uniqtranscale_reg_value = 0x5570B83A;
3245 break;
3246 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3247 demph_reg_value = 0x2B2B4040;
3248 uniqtranscale_reg_value = 0x55ADDA3A;
3249 break;
3250 default:
3251 return 0;
3252 }
3253 break;
3254 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3255 preemph_reg_value = 0x0006000;
3256 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3257 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3258 demph_reg_value = 0x1B405555;
3259 uniqtranscale_reg_value = 0x55ADDA3A;
3260 break;
3261 default:
3262 return 0;
3263 }
3264 break;
3265 default:
3266 return 0;
3267 }
3268
3269 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3270 uniqtranscale_reg_value, 0);
3271
3272 return 0;
3273 }
3274
3275 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3276 {
3277 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3278 u32 deemph_reg_value, margin_reg_value;
3279 bool uniq_trans_scale = false;
3280 uint8_t train_set = intel_dp->train_set[0];
3281
3282 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3283 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3284 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3285 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3286 deemph_reg_value = 128;
3287 margin_reg_value = 52;
3288 break;
3289 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3290 deemph_reg_value = 128;
3291 margin_reg_value = 77;
3292 break;
3293 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3294 deemph_reg_value = 128;
3295 margin_reg_value = 102;
3296 break;
3297 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3298 deemph_reg_value = 128;
3299 margin_reg_value = 154;
3300 uniq_trans_scale = true;
3301 break;
3302 default:
3303 return 0;
3304 }
3305 break;
3306 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3307 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3308 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3309 deemph_reg_value = 85;
3310 margin_reg_value = 78;
3311 break;
3312 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3313 deemph_reg_value = 85;
3314 margin_reg_value = 116;
3315 break;
3316 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3317 deemph_reg_value = 85;
3318 margin_reg_value = 154;
3319 break;
3320 default:
3321 return 0;
3322 }
3323 break;
3324 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3325 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3326 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3327 deemph_reg_value = 64;
3328 margin_reg_value = 104;
3329 break;
3330 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3331 deemph_reg_value = 64;
3332 margin_reg_value = 154;
3333 break;
3334 default:
3335 return 0;
3336 }
3337 break;
3338 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3339 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3340 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3341 deemph_reg_value = 43;
3342 margin_reg_value = 154;
3343 break;
3344 default:
3345 return 0;
3346 }
3347 break;
3348 default:
3349 return 0;
3350 }
3351
3352 chv_set_phy_signal_level(encoder, deemph_reg_value,
3353 margin_reg_value, uniq_trans_scale);
3354
3355 return 0;
3356 }
3357
3358 static uint32_t
3359 gen4_signal_levels(uint8_t train_set)
3360 {
3361 uint32_t signal_levels = 0;
3362
3363 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3364 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3365 default:
3366 signal_levels |= DP_VOLTAGE_0_4;
3367 break;
3368 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3369 signal_levels |= DP_VOLTAGE_0_6;
3370 break;
3371 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3372 signal_levels |= DP_VOLTAGE_0_8;
3373 break;
3374 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3375 signal_levels |= DP_VOLTAGE_1_2;
3376 break;
3377 }
3378 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3379 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3380 default:
3381 signal_levels |= DP_PRE_EMPHASIS_0;
3382 break;
3383 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3384 signal_levels |= DP_PRE_EMPHASIS_3_5;
3385 break;
3386 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3387 signal_levels |= DP_PRE_EMPHASIS_6;
3388 break;
3389 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3390 signal_levels |= DP_PRE_EMPHASIS_9_5;
3391 break;
3392 }
3393 return signal_levels;
3394 }
3395
3396 /* Gen6's DP voltage swing and pre-emphasis control */
3397 static uint32_t
3398 gen6_edp_signal_levels(uint8_t train_set)
3399 {
3400 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3401 DP_TRAIN_PRE_EMPHASIS_MASK);
3402 switch (signal_levels) {
3403 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3404 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3405 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3406 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3407 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3408 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3409 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3410 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3411 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3412 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3413 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3414 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3415 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3416 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3417 default:
3418 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3419 "0x%x\n", signal_levels);
3420 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3421 }
3422 }
3423
3424 /* Gen7's DP voltage swing and pre-emphasis control */
3425 static uint32_t
3426 gen7_edp_signal_levels(uint8_t train_set)
3427 {
3428 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3429 DP_TRAIN_PRE_EMPHASIS_MASK);
3430 switch (signal_levels) {
3431 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3432 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3433 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3434 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3435 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3436 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3437
3438 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3439 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3440 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3441 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3442
3443 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3444 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3445 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3446 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3447
3448 default:
3449 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3450 "0x%x\n", signal_levels);
3451 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3452 }
3453 }
3454
3455 void
3456 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3457 {
3458 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3459 enum port port = intel_dig_port->port;
3460 struct drm_device *dev = intel_dig_port->base.base.dev;
3461 struct drm_i915_private *dev_priv = to_i915(dev);
3462 uint32_t signal_levels, mask = 0;
3463 uint8_t train_set = intel_dp->train_set[0];
3464
3465 if (HAS_DDI(dev_priv)) {
3466 signal_levels = ddi_signal_levels(intel_dp);
3467
3468 if (IS_GEN9_LP(dev_priv) || IS_CANNONLAKE(dev_priv))
3469 signal_levels = 0;
3470 else
3471 mask = DDI_BUF_EMP_MASK;
3472 } else if (IS_CHERRYVIEW(dev_priv)) {
3473 signal_levels = chv_signal_levels(intel_dp);
3474 } else if (IS_VALLEYVIEW(dev_priv)) {
3475 signal_levels = vlv_signal_levels(intel_dp);
3476 } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3477 signal_levels = gen7_edp_signal_levels(train_set);
3478 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3479 } else if (IS_GEN6(dev_priv) && port == PORT_A) {
3480 signal_levels = gen6_edp_signal_levels(train_set);
3481 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3482 } else {
3483 signal_levels = gen4_signal_levels(train_set);
3484 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3485 }
3486
3487 if (mask)
3488 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3489
3490 DRM_DEBUG_KMS("Using vswing level %d\n",
3491 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3492 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3493 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3494 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3495
3496 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3497
3498 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3499 POSTING_READ(intel_dp->output_reg);
3500 }
3501
3502 void
3503 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3504 uint8_t dp_train_pat)
3505 {
3506 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3507 struct drm_i915_private *dev_priv =
3508 to_i915(intel_dig_port->base.base.dev);
3509
3510 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3511
3512 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3513 POSTING_READ(intel_dp->output_reg);
3514 }
3515
3516 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3517 {
3518 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3519 struct drm_device *dev = intel_dig_port->base.base.dev;
3520 struct drm_i915_private *dev_priv = to_i915(dev);
3521 enum port port = intel_dig_port->port;
3522 uint32_t val;
3523
3524 if (!HAS_DDI(dev_priv))
3525 return;
3526
3527 val = I915_READ(DP_TP_CTL(port));
3528 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3529 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3530 I915_WRITE(DP_TP_CTL(port), val);
3531
3532 /*
3533 * On PORT_A we can have only eDP in SST mode. There the only reason
3534 * we need to set idle transmission mode is to work around a HW issue
3535 * where we enable the pipe while not in idle link-training mode.
3536 * In this case there is requirement to wait for a minimum number of
3537 * idle patterns to be sent.
3538 */
3539 if (port == PORT_A)
3540 return;
3541
3542 if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3543 DP_TP_STATUS_IDLE_DONE,
3544 DP_TP_STATUS_IDLE_DONE,
3545 1))
3546 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3547 }
3548
3549 static void
3550 intel_dp_link_down(struct intel_dp *intel_dp)
3551 {
3552 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3553 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3554 enum port port = intel_dig_port->port;
3555 struct drm_device *dev = intel_dig_port->base.base.dev;
3556 struct drm_i915_private *dev_priv = to_i915(dev);
3557 uint32_t DP = intel_dp->DP;
3558
3559 if (WARN_ON(HAS_DDI(dev_priv)))
3560 return;
3561
3562 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3563 return;
3564
3565 DRM_DEBUG_KMS("\n");
3566
3567 if ((IS_GEN7(dev_priv) && port == PORT_A) ||
3568 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3569 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3570 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3571 } else {
3572 if (IS_CHERRYVIEW(dev_priv))
3573 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3574 else
3575 DP &= ~DP_LINK_TRAIN_MASK;
3576 DP |= DP_LINK_TRAIN_PAT_IDLE;
3577 }
3578 I915_WRITE(intel_dp->output_reg, DP);
3579 POSTING_READ(intel_dp->output_reg);
3580
3581 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3582 I915_WRITE(intel_dp->output_reg, DP);
3583 POSTING_READ(intel_dp->output_reg);
3584
3585 /*
3586 * HW workaround for IBX, we need to move the port
3587 * to transcoder A after disabling it to allow the
3588 * matching HDMI port to be enabled on transcoder A.
3589 */
3590 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3591 /*
3592 * We get CPU/PCH FIFO underruns on the other pipe when
3593 * doing the workaround. Sweep them under the rug.
3594 */
3595 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3596 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3597
3598 /* always enable with pattern 1 (as per spec) */
3599 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3600 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3601 I915_WRITE(intel_dp->output_reg, DP);
3602 POSTING_READ(intel_dp->output_reg);
3603
3604 DP &= ~DP_PORT_EN;
3605 I915_WRITE(intel_dp->output_reg, DP);
3606 POSTING_READ(intel_dp->output_reg);
3607
3608 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3609 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3610 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3611 }
3612
3613 msleep(intel_dp->panel_power_down_delay);
3614
3615 intel_dp->DP = DP;
3616
3617 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3618 pps_lock(intel_dp);
3619 intel_dp->active_pipe = INVALID_PIPE;
3620 pps_unlock(intel_dp);
3621 }
3622 }
3623
3624 bool
3625 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3626 {
3627 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3628 sizeof(intel_dp->dpcd)) < 0)
3629 return false; /* aux transfer failed */
3630
3631 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3632
3633 return intel_dp->dpcd[DP_DPCD_REV] != 0;
3634 }
3635
3636 static bool
3637 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3638 {
3639 struct drm_i915_private *dev_priv =
3640 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3641
3642 /* this function is meant to be called only once */
3643 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3644
3645 if (!intel_dp_read_dpcd(intel_dp))
3646 return false;
3647
3648 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
3649 drm_dp_is_branch(intel_dp->dpcd));
3650
3651 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3652 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3653 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3654
3655 /* Check if the panel supports PSR */
3656 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3657 intel_dp->psr_dpcd,
3658 sizeof(intel_dp->psr_dpcd));
3659 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3660 dev_priv->psr.sink_support = true;
3661 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3662 }
3663
3664 if (INTEL_GEN(dev_priv) >= 9 &&
3665 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3666 uint8_t frame_sync_cap;
3667
3668 dev_priv->psr.sink_support = true;
3669 if (drm_dp_dpcd_readb(&intel_dp->aux,
3670 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3671 &frame_sync_cap) != 1)
3672 frame_sync_cap = 0;
3673 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3674 /* PSR2 needs frame sync as well */
3675 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3676 DRM_DEBUG_KMS("PSR2 %s on sink",
3677 dev_priv->psr.psr2_support ? "supported" : "not supported");
3678
3679 if (dev_priv->psr.psr2_support) {
3680 dev_priv->psr.y_cord_support =
3681 intel_dp_get_y_cord_status(intel_dp);
3682 dev_priv->psr.colorimetry_support =
3683 intel_dp_get_colorimetry_status(intel_dp);
3684 dev_priv->psr.alpm =
3685 intel_dp_get_alpm_status(intel_dp);
3686 }
3687
3688 }
3689
3690 /* Read the eDP Display control capabilities registers */
3691 if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3692 drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3693 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3694 sizeof(intel_dp->edp_dpcd))
3695 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3696 intel_dp->edp_dpcd);
3697
3698 /* Intermediate frequency support */
3699 if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3700 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3701 int i;
3702
3703 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3704 sink_rates, sizeof(sink_rates));
3705
3706 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3707 int val = le16_to_cpu(sink_rates[i]);
3708
3709 if (val == 0)
3710 break;
3711
3712 /* Value read multiplied by 200kHz gives the per-lane
3713 * link rate in kHz. The source rates are, however,
3714 * stored in terms of LS_Clk kHz. The full conversion
3715 * back to symbols is
3716 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
3717 */
3718 intel_dp->sink_rates[i] = (val * 200) / 10;
3719 }
3720 intel_dp->num_sink_rates = i;
3721 }
3722
3723 if (intel_dp->num_sink_rates)
3724 intel_dp->use_rate_select = true;
3725 else
3726 intel_dp_set_sink_rates(intel_dp);
3727
3728 intel_dp_set_common_rates(intel_dp);
3729
3730 return true;
3731 }
3732
3733
3734 static bool
3735 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3736 {
3737 u8 sink_count;
3738
3739 if (!intel_dp_read_dpcd(intel_dp))
3740 return false;
3741
3742 /* Don't clobber cached eDP rates. */
3743 if (!is_edp(intel_dp)) {
3744 intel_dp_set_sink_rates(intel_dp);
3745 intel_dp_set_common_rates(intel_dp);
3746 }
3747
3748 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &sink_count) <= 0)
3749 return false;
3750
3751 /*
3752 * Sink count can change between short pulse hpd hence
3753 * a member variable in intel_dp will track any changes
3754 * between short pulse interrupts.
3755 */
3756 intel_dp->sink_count = DP_GET_SINK_COUNT(sink_count);
3757
3758 /*
3759 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3760 * a dongle is present but no display. Unless we require to know
3761 * if a dongle is present or not, we don't need to update
3762 * downstream port information. So, an early return here saves
3763 * time from performing other operations which are not required.
3764 */
3765 if (!is_edp(intel_dp) && !intel_dp->sink_count)
3766 return false;
3767
3768 if (!drm_dp_is_branch(intel_dp->dpcd))
3769 return true; /* native DP sink */
3770
3771 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3772 return true; /* no per-port downstream info */
3773
3774 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3775 intel_dp->downstream_ports,
3776 DP_MAX_DOWNSTREAM_PORTS) < 0)
3777 return false; /* downstream port status fetch failed */
3778
3779 return true;
3780 }
3781
3782 static bool
3783 intel_dp_can_mst(struct intel_dp *intel_dp)
3784 {
3785 u8 mstm_cap;
3786
3787 if (!i915.enable_dp_mst)
3788 return false;
3789
3790 if (!intel_dp->can_mst)
3791 return false;
3792
3793 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3794 return false;
3795
3796 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
3797 return false;
3798
3799 return mstm_cap & DP_MST_CAP;
3800 }
3801
3802 static void
3803 intel_dp_configure_mst(struct intel_dp *intel_dp)
3804 {
3805 if (!i915.enable_dp_mst)
3806 return;
3807
3808 if (!intel_dp->can_mst)
3809 return;
3810
3811 intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3812
3813 if (intel_dp->is_mst)
3814 DRM_DEBUG_KMS("Sink is MST capable\n");
3815 else
3816 DRM_DEBUG_KMS("Sink is not MST capable\n");
3817
3818 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3819 intel_dp->is_mst);
3820 }
3821
3822 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3823 {
3824 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3825 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3826 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3827 u8 buf;
3828 int ret = 0;
3829 int count = 0;
3830 int attempts = 10;
3831
3832 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3833 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3834 ret = -EIO;
3835 goto out;
3836 }
3837
3838 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3839 buf & ~DP_TEST_SINK_START) < 0) {
3840 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3841 ret = -EIO;
3842 goto out;
3843 }
3844
3845 do {
3846 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3847
3848 if (drm_dp_dpcd_readb(&intel_dp->aux,
3849 DP_TEST_SINK_MISC, &buf) < 0) {
3850 ret = -EIO;
3851 goto out;
3852 }
3853 count = buf & DP_TEST_COUNT_MASK;
3854 } while (--attempts && count);
3855
3856 if (attempts == 0) {
3857 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3858 ret = -ETIMEDOUT;
3859 }
3860
3861 out:
3862 hsw_enable_ips(intel_crtc);
3863 return ret;
3864 }
3865
3866 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3867 {
3868 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3869 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3870 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3871 u8 buf;
3872 int ret;
3873
3874 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3875 return -EIO;
3876
3877 if (!(buf & DP_TEST_CRC_SUPPORTED))
3878 return -ENOTTY;
3879
3880 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3881 return -EIO;
3882
3883 if (buf & DP_TEST_SINK_START) {
3884 ret = intel_dp_sink_crc_stop(intel_dp);
3885 if (ret)
3886 return ret;
3887 }
3888
3889 hsw_disable_ips(intel_crtc);
3890
3891 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3892 buf | DP_TEST_SINK_START) < 0) {
3893 hsw_enable_ips(intel_crtc);
3894 return -EIO;
3895 }
3896
3897 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3898 return 0;
3899 }
3900
3901 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3902 {
3903 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3904 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3905 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3906 u8 buf;
3907 int count, ret;
3908 int attempts = 6;
3909
3910 ret = intel_dp_sink_crc_start(intel_dp);
3911 if (ret)
3912 return ret;
3913
3914 do {
3915 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3916
3917 if (drm_dp_dpcd_readb(&intel_dp->aux,
3918 DP_TEST_SINK_MISC, &buf) < 0) {
3919 ret = -EIO;
3920 goto stop;
3921 }
3922 count = buf & DP_TEST_COUNT_MASK;
3923
3924 } while (--attempts && count == 0);
3925
3926 if (attempts == 0) {
3927 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3928 ret = -ETIMEDOUT;
3929 goto stop;
3930 }
3931
3932 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3933 ret = -EIO;
3934 goto stop;
3935 }
3936
3937 stop:
3938 intel_dp_sink_crc_stop(intel_dp);
3939 return ret;
3940 }
3941
3942 static bool
3943 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3944 {
3945 return drm_dp_dpcd_readb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
3946 sink_irq_vector) == 1;
3947 }
3948
3949 static bool
3950 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3951 {
3952 int ret;
3953
3954 ret = drm_dp_dpcd_read(&intel_dp->aux,
3955 DP_SINK_COUNT_ESI,
3956 sink_irq_vector, 14);
3957 if (ret != 14)
3958 return false;
3959
3960 return true;
3961 }
3962
3963 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3964 {
3965 int status = 0;
3966 int min_lane_count = 1;
3967 int link_rate_index, test_link_rate;
3968 uint8_t test_lane_count, test_link_bw;
3969 /* (DP CTS 1.2)
3970 * 4.3.1.11
3971 */
3972 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
3973 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
3974 &test_lane_count);
3975
3976 if (status <= 0) {
3977 DRM_DEBUG_KMS("Lane count read failed\n");
3978 return DP_TEST_NAK;
3979 }
3980 test_lane_count &= DP_MAX_LANE_COUNT_MASK;
3981 /* Validate the requested lane count */
3982 if (test_lane_count < min_lane_count ||
3983 test_lane_count > intel_dp->max_link_lane_count)
3984 return DP_TEST_NAK;
3985
3986 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
3987 &test_link_bw);
3988 if (status <= 0) {
3989 DRM_DEBUG_KMS("Link Rate read failed\n");
3990 return DP_TEST_NAK;
3991 }
3992 /* Validate the requested link rate */
3993 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
3994 link_rate_index = intel_dp_rate_index(intel_dp->common_rates,
3995 intel_dp->num_common_rates,
3996 test_link_rate);
3997 if (link_rate_index < 0)
3998 return DP_TEST_NAK;
3999
4000 intel_dp->compliance.test_lane_count = test_lane_count;
4001 intel_dp->compliance.test_link_rate = test_link_rate;
4002
4003 return DP_TEST_ACK;
4004 }
4005
4006 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4007 {
4008 uint8_t test_pattern;
4009 uint8_t test_misc;
4010 __be16 h_width, v_height;
4011 int status = 0;
4012
4013 /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4014 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4015 &test_pattern);
4016 if (status <= 0) {
4017 DRM_DEBUG_KMS("Test pattern read failed\n");
4018 return DP_TEST_NAK;
4019 }
4020 if (test_pattern != DP_COLOR_RAMP)
4021 return DP_TEST_NAK;
4022
4023 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4024 &h_width, 2);
4025 if (status <= 0) {
4026 DRM_DEBUG_KMS("H Width read failed\n");
4027 return DP_TEST_NAK;
4028 }
4029
4030 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4031 &v_height, 2);
4032 if (status <= 0) {
4033 DRM_DEBUG_KMS("V Height read failed\n");
4034 return DP_TEST_NAK;
4035 }
4036
4037 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4038 &test_misc);
4039 if (status <= 0) {
4040 DRM_DEBUG_KMS("TEST MISC read failed\n");
4041 return DP_TEST_NAK;
4042 }
4043 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4044 return DP_TEST_NAK;
4045 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4046 return DP_TEST_NAK;
4047 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4048 case DP_TEST_BIT_DEPTH_6:
4049 intel_dp->compliance.test_data.bpc = 6;
4050 break;
4051 case DP_TEST_BIT_DEPTH_8:
4052 intel_dp->compliance.test_data.bpc = 8;
4053 break;
4054 default:
4055 return DP_TEST_NAK;
4056 }
4057
4058 intel_dp->compliance.test_data.video_pattern = test_pattern;
4059 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4060 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4061 /* Set test active flag here so userspace doesn't interrupt things */
4062 intel_dp->compliance.test_active = 1;
4063
4064 return DP_TEST_ACK;
4065 }
4066
4067 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4068 {
4069 uint8_t test_result = DP_TEST_ACK;
4070 struct intel_connector *intel_connector = intel_dp->attached_connector;
4071 struct drm_connector *connector = &intel_connector->base;
4072
4073 if (intel_connector->detect_edid == NULL ||
4074 connector->edid_corrupt ||
4075 intel_dp->aux.i2c_defer_count > 6) {
4076 /* Check EDID read for NACKs, DEFERs and corruption
4077 * (DP CTS 1.2 Core r1.1)
4078 * 4.2.2.4 : Failed EDID read, I2C_NAK
4079 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4080 * 4.2.2.6 : EDID corruption detected
4081 * Use failsafe mode for all cases
4082 */
4083 if (intel_dp->aux.i2c_nack_count > 0 ||
4084 intel_dp->aux.i2c_defer_count > 0)
4085 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4086 intel_dp->aux.i2c_nack_count,
4087 intel_dp->aux.i2c_defer_count);
4088 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4089 } else {
4090 struct edid *block = intel_connector->detect_edid;
4091
4092 /* We have to write the checksum
4093 * of the last block read
4094 */
4095 block += intel_connector->detect_edid->extensions;
4096
4097 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4098 block->checksum) <= 0)
4099 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4100
4101 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4102 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4103 }
4104
4105 /* Set test active flag here so userspace doesn't interrupt things */
4106 intel_dp->compliance.test_active = 1;
4107
4108 return test_result;
4109 }
4110
4111 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4112 {
4113 uint8_t test_result = DP_TEST_NAK;
4114 return test_result;
4115 }
4116
4117 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4118 {
4119 uint8_t response = DP_TEST_NAK;
4120 uint8_t request = 0;
4121 int status;
4122
4123 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4124 if (status <= 0) {
4125 DRM_DEBUG_KMS("Could not read test request from sink\n");
4126 goto update_status;
4127 }
4128
4129 switch (request) {
4130 case DP_TEST_LINK_TRAINING:
4131 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4132 response = intel_dp_autotest_link_training(intel_dp);
4133 break;
4134 case DP_TEST_LINK_VIDEO_PATTERN:
4135 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4136 response = intel_dp_autotest_video_pattern(intel_dp);
4137 break;
4138 case DP_TEST_LINK_EDID_READ:
4139 DRM_DEBUG_KMS("EDID test requested\n");
4140 response = intel_dp_autotest_edid(intel_dp);
4141 break;
4142 case DP_TEST_LINK_PHY_TEST_PATTERN:
4143 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4144 response = intel_dp_autotest_phy_pattern(intel_dp);
4145 break;
4146 default:
4147 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4148 break;
4149 }
4150
4151 if (response & DP_TEST_ACK)
4152 intel_dp->compliance.test_type = request;
4153
4154 update_status:
4155 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4156 if (status <= 0)
4157 DRM_DEBUG_KMS("Could not write test response to sink\n");
4158 }
4159
4160 static int
4161 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4162 {
4163 bool bret;
4164
4165 if (intel_dp->is_mst) {
4166 u8 esi[16] = { 0 };
4167 int ret = 0;
4168 int retry;
4169 bool handled;
4170 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4171 go_again:
4172 if (bret == true) {
4173
4174 /* check link status - esi[10] = 0x200c */
4175 if (intel_dp->active_mst_links &&
4176 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4177 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4178 intel_dp_start_link_train(intel_dp);
4179 intel_dp_stop_link_train(intel_dp);
4180 }
4181
4182 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4183 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4184
4185 if (handled) {
4186 for (retry = 0; retry < 3; retry++) {
4187 int wret;
4188 wret = drm_dp_dpcd_write(&intel_dp->aux,
4189 DP_SINK_COUNT_ESI+1,
4190 &esi[1], 3);
4191 if (wret == 3) {
4192 break;
4193 }
4194 }
4195
4196 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4197 if (bret == true) {
4198 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4199 goto go_again;
4200 }
4201 } else
4202 ret = 0;
4203
4204 return ret;
4205 } else {
4206 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4207 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4208 intel_dp->is_mst = false;
4209 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4210 /* send a hotplug event */
4211 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4212 }
4213 }
4214 return -EINVAL;
4215 }
4216
4217 static void
4218 intel_dp_retrain_link(struct intel_dp *intel_dp)
4219 {
4220 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4221 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4222 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
4223
4224 /* Suppress underruns caused by re-training */
4225 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4226 if (crtc->config->has_pch_encoder)
4227 intel_set_pch_fifo_underrun_reporting(dev_priv,
4228 intel_crtc_pch_transcoder(crtc), false);
4229
4230 intel_dp_start_link_train(intel_dp);
4231 intel_dp_stop_link_train(intel_dp);
4232
4233 /* Keep underrun reporting disabled until things are stable */
4234 intel_wait_for_vblank(dev_priv, crtc->pipe);
4235
4236 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4237 if (crtc->config->has_pch_encoder)
4238 intel_set_pch_fifo_underrun_reporting(dev_priv,
4239 intel_crtc_pch_transcoder(crtc), true);
4240 }
4241
4242 static void
4243 intel_dp_check_link_status(struct intel_dp *intel_dp)
4244 {
4245 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4246 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4247 u8 link_status[DP_LINK_STATUS_SIZE];
4248
4249 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4250
4251 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4252 DRM_ERROR("Failed to get link status\n");
4253 return;
4254 }
4255
4256 if (!intel_encoder->base.crtc)
4257 return;
4258
4259 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4260 return;
4261
4262 /*
4263 * Validate the cached values of intel_dp->link_rate and
4264 * intel_dp->lane_count before attempting to retrain.
4265 */
4266 if (!intel_dp_link_params_valid(intel_dp))
4267 return;
4268
4269 /* Retrain if Channel EQ or CR not ok */
4270 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4271 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4272 intel_encoder->base.name);
4273
4274 intel_dp_retrain_link(intel_dp);
4275 }
4276 }
4277
4278 /*
4279 * According to DP spec
4280 * 5.1.2:
4281 * 1. Read DPCD
4282 * 2. Configure link according to Receiver Capabilities
4283 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4284 * 4. Check link status on receipt of hot-plug interrupt
4285 *
4286 * intel_dp_short_pulse - handles short pulse interrupts
4287 * when full detection is not required.
4288 * Returns %true if short pulse is handled and full detection
4289 * is NOT required and %false otherwise.
4290 */
4291 static bool
4292 intel_dp_short_pulse(struct intel_dp *intel_dp)
4293 {
4294 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4295 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4296 u8 sink_irq_vector = 0;
4297 u8 old_sink_count = intel_dp->sink_count;
4298 bool ret;
4299
4300 /*
4301 * Clearing compliance test variables to allow capturing
4302 * of values for next automated test request.
4303 */
4304 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4305
4306 /*
4307 * Now read the DPCD to see if it's actually running
4308 * If the current value of sink count doesn't match with
4309 * the value that was stored earlier or dpcd read failed
4310 * we need to do full detection
4311 */
4312 ret = intel_dp_get_dpcd(intel_dp);
4313
4314 if ((old_sink_count != intel_dp->sink_count) || !ret) {
4315 /* No need to proceed if we are going to do full detect */
4316 return false;
4317 }
4318
4319 /* Try to read the source of the interrupt */
4320 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4321 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4322 sink_irq_vector != 0) {
4323 /* Clear interrupt source */
4324 drm_dp_dpcd_writeb(&intel_dp->aux,
4325 DP_DEVICE_SERVICE_IRQ_VECTOR,
4326 sink_irq_vector);
4327
4328 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4329 intel_dp_handle_test_request(intel_dp);
4330 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4331 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4332 }
4333
4334 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4335 intel_dp_check_link_status(intel_dp);
4336 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4337 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
4338 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
4339 /* Send a Hotplug Uevent to userspace to start modeset */
4340 drm_kms_helper_hotplug_event(intel_encoder->base.dev);
4341 }
4342
4343 return true;
4344 }
4345
4346 /* XXX this is probably wrong for multiple downstream ports */
4347 static enum drm_connector_status
4348 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4349 {
4350 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4351 uint8_t *dpcd = intel_dp->dpcd;
4352 uint8_t type;
4353
4354 if (lspcon->active)
4355 lspcon_resume(lspcon);
4356
4357 if (!intel_dp_get_dpcd(intel_dp))
4358 return connector_status_disconnected;
4359
4360 if (is_edp(intel_dp))
4361 return connector_status_connected;
4362
4363 /* if there's no downstream port, we're done */
4364 if (!drm_dp_is_branch(dpcd))
4365 return connector_status_connected;
4366
4367 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4368 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4369 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4370
4371 return intel_dp->sink_count ?
4372 connector_status_connected : connector_status_disconnected;
4373 }
4374
4375 if (intel_dp_can_mst(intel_dp))
4376 return connector_status_connected;
4377
4378 /* If no HPD, poke DDC gently */
4379 if (drm_probe_ddc(&intel_dp->aux.ddc))
4380 return connector_status_connected;
4381
4382 /* Well we tried, say unknown for unreliable port types */
4383 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4384 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4385 if (type == DP_DS_PORT_TYPE_VGA ||
4386 type == DP_DS_PORT_TYPE_NON_EDID)
4387 return connector_status_unknown;
4388 } else {
4389 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4390 DP_DWN_STRM_PORT_TYPE_MASK;
4391 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4392 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4393 return connector_status_unknown;
4394 }
4395
4396 /* Anything else is out of spec, warn and ignore */
4397 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4398 return connector_status_disconnected;
4399 }
4400
4401 static enum drm_connector_status
4402 edp_detect(struct intel_dp *intel_dp)
4403 {
4404 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4405 struct drm_i915_private *dev_priv = to_i915(dev);
4406 enum drm_connector_status status;
4407
4408 status = intel_panel_detect(dev_priv);
4409 if (status == connector_status_unknown)
4410 status = connector_status_connected;
4411
4412 return status;
4413 }
4414
4415 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4416 struct intel_digital_port *port)
4417 {
4418 u32 bit;
4419
4420 switch (port->port) {
4421 case PORT_A:
4422 return true;
4423 case PORT_B:
4424 bit = SDE_PORTB_HOTPLUG;
4425 break;
4426 case PORT_C:
4427 bit = SDE_PORTC_HOTPLUG;
4428 break;
4429 case PORT_D:
4430 bit = SDE_PORTD_HOTPLUG;
4431 break;
4432 default:
4433 MISSING_CASE(port->port);
4434 return false;
4435 }
4436
4437 return I915_READ(SDEISR) & bit;
4438 }
4439
4440 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4441 struct intel_digital_port *port)
4442 {
4443 u32 bit;
4444
4445 switch (port->port) {
4446 case PORT_A:
4447 return true;
4448 case PORT_B:
4449 bit = SDE_PORTB_HOTPLUG_CPT;
4450 break;
4451 case PORT_C:
4452 bit = SDE_PORTC_HOTPLUG_CPT;
4453 break;
4454 case PORT_D:
4455 bit = SDE_PORTD_HOTPLUG_CPT;
4456 break;
4457 case PORT_E:
4458 bit = SDE_PORTE_HOTPLUG_SPT;
4459 break;
4460 default:
4461 MISSING_CASE(port->port);
4462 return false;
4463 }
4464
4465 return I915_READ(SDEISR) & bit;
4466 }
4467
4468 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4469 struct intel_digital_port *port)
4470 {
4471 u32 bit;
4472
4473 switch (port->port) {
4474 case PORT_B:
4475 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4476 break;
4477 case PORT_C:
4478 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4479 break;
4480 case PORT_D:
4481 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4482 break;
4483 default:
4484 MISSING_CASE(port->port);
4485 return false;
4486 }
4487
4488 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4489 }
4490
4491 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4492 struct intel_digital_port *port)
4493 {
4494 u32 bit;
4495
4496 switch (port->port) {
4497 case PORT_B:
4498 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4499 break;
4500 case PORT_C:
4501 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4502 break;
4503 case PORT_D:
4504 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4505 break;
4506 default:
4507 MISSING_CASE(port->port);
4508 return false;
4509 }
4510
4511 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4512 }
4513
4514 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4515 struct intel_digital_port *intel_dig_port)
4516 {
4517 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4518 enum port port;
4519 u32 bit;
4520
4521 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4522 switch (port) {
4523 case PORT_A:
4524 bit = BXT_DE_PORT_HP_DDIA;
4525 break;
4526 case PORT_B:
4527 bit = BXT_DE_PORT_HP_DDIB;
4528 break;
4529 case PORT_C:
4530 bit = BXT_DE_PORT_HP_DDIC;
4531 break;
4532 default:
4533 MISSING_CASE(port);
4534 return false;
4535 }
4536
4537 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4538 }
4539
4540 /*
4541 * intel_digital_port_connected - is the specified port connected?
4542 * @dev_priv: i915 private structure
4543 * @port: the port to test
4544 *
4545 * Return %true if @port is connected, %false otherwise.
4546 */
4547 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4548 struct intel_digital_port *port)
4549 {
4550 if (HAS_PCH_IBX(dev_priv))
4551 return ibx_digital_port_connected(dev_priv, port);
4552 else if (HAS_PCH_SPLIT(dev_priv))
4553 return cpt_digital_port_connected(dev_priv, port);
4554 else if (IS_GEN9_LP(dev_priv))
4555 return bxt_digital_port_connected(dev_priv, port);
4556 else if (IS_GM45(dev_priv))
4557 return gm45_digital_port_connected(dev_priv, port);
4558 else
4559 return g4x_digital_port_connected(dev_priv, port);
4560 }
4561
4562 static struct edid *
4563 intel_dp_get_edid(struct intel_dp *intel_dp)
4564 {
4565 struct intel_connector *intel_connector = intel_dp->attached_connector;
4566
4567 /* use cached edid if we have one */
4568 if (intel_connector->edid) {
4569 /* invalid edid */
4570 if (IS_ERR(intel_connector->edid))
4571 return NULL;
4572
4573 return drm_edid_duplicate(intel_connector->edid);
4574 } else
4575 return drm_get_edid(&intel_connector->base,
4576 &intel_dp->aux.ddc);
4577 }
4578
4579 static void
4580 intel_dp_set_edid(struct intel_dp *intel_dp)
4581 {
4582 struct intel_connector *intel_connector = intel_dp->attached_connector;
4583 struct edid *edid;
4584
4585 intel_dp_unset_edid(intel_dp);
4586 edid = intel_dp_get_edid(intel_dp);
4587 intel_connector->detect_edid = edid;
4588
4589 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4590 }
4591
4592 static void
4593 intel_dp_unset_edid(struct intel_dp *intel_dp)
4594 {
4595 struct intel_connector *intel_connector = intel_dp->attached_connector;
4596
4597 kfree(intel_connector->detect_edid);
4598 intel_connector->detect_edid = NULL;
4599
4600 intel_dp->has_audio = false;
4601 }
4602
4603 static int
4604 intel_dp_long_pulse(struct intel_connector *intel_connector)
4605 {
4606 struct drm_connector *connector = &intel_connector->base;
4607 struct intel_dp *intel_dp = intel_attached_dp(connector);
4608 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4609 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4610 struct drm_device *dev = connector->dev;
4611 enum drm_connector_status status;
4612 u8 sink_irq_vector = 0;
4613
4614 WARN_ON(!drm_modeset_is_locked(&connector->dev->mode_config.connection_mutex));
4615
4616 intel_display_power_get(to_i915(dev), intel_dp->aux_power_domain);
4617
4618 /* Can't disconnect eDP, but you can close the lid... */
4619 if (is_edp(intel_dp))
4620 status = edp_detect(intel_dp);
4621 else if (intel_digital_port_connected(to_i915(dev),
4622 dp_to_dig_port(intel_dp)))
4623 status = intel_dp_detect_dpcd(intel_dp);
4624 else
4625 status = connector_status_disconnected;
4626
4627 if (status == connector_status_disconnected) {
4628 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4629
4630 if (intel_dp->is_mst) {
4631 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4632 intel_dp->is_mst,
4633 intel_dp->mst_mgr.mst_state);
4634 intel_dp->is_mst = false;
4635 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4636 intel_dp->is_mst);
4637 }
4638
4639 goto out;
4640 }
4641
4642 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4643 intel_encoder->type = INTEL_OUTPUT_DP;
4644
4645 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4646 yesno(intel_dp_source_supports_hbr2(intel_dp)),
4647 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4648
4649 if (intel_dp->reset_link_params) {
4650 /* Initial max link lane count */
4651 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
4652
4653 /* Initial max link rate */
4654 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
4655
4656 intel_dp->reset_link_params = false;
4657 }
4658
4659 intel_dp_print_rates(intel_dp);
4660
4661 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4662 drm_dp_is_branch(intel_dp->dpcd));
4663
4664 intel_dp_configure_mst(intel_dp);
4665
4666 if (intel_dp->is_mst) {
4667 /*
4668 * If we are in MST mode then this connector
4669 * won't appear connected or have anything
4670 * with EDID on it
4671 */
4672 status = connector_status_disconnected;
4673 goto out;
4674 } else {
4675 /*
4676 * If display is now connected check links status,
4677 * there has been known issues of link loss triggerring
4678 * long pulse.
4679 *
4680 * Some sinks (eg. ASUS PB287Q) seem to perform some
4681 * weird HPD ping pong during modesets. So we can apparently
4682 * end up with HPD going low during a modeset, and then
4683 * going back up soon after. And once that happens we must
4684 * retrain the link to get a picture. That's in case no
4685 * userspace component reacted to intermittent HPD dip.
4686 */
4687 intel_dp_check_link_status(intel_dp);
4688 }
4689
4690 /*
4691 * Clearing NACK and defer counts to get their exact values
4692 * while reading EDID which are required by Compliance tests
4693 * 4.2.2.4 and 4.2.2.5
4694 */
4695 intel_dp->aux.i2c_nack_count = 0;
4696 intel_dp->aux.i2c_defer_count = 0;
4697
4698 intel_dp_set_edid(intel_dp);
4699 if (is_edp(intel_dp) || intel_connector->detect_edid)
4700 status = connector_status_connected;
4701 intel_dp->detect_done = true;
4702
4703 /* Try to read the source of the interrupt */
4704 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4705 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4706 sink_irq_vector != 0) {
4707 /* Clear interrupt source */
4708 drm_dp_dpcd_writeb(&intel_dp->aux,
4709 DP_DEVICE_SERVICE_IRQ_VECTOR,
4710 sink_irq_vector);
4711
4712 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4713 intel_dp_handle_test_request(intel_dp);
4714 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4715 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4716 }
4717
4718 out:
4719 if (status != connector_status_connected && !intel_dp->is_mst)
4720 intel_dp_unset_edid(intel_dp);
4721
4722 intel_display_power_put(to_i915(dev), intel_dp->aux_power_domain);
4723 return status;
4724 }
4725
4726 static int
4727 intel_dp_detect(struct drm_connector *connector,
4728 struct drm_modeset_acquire_ctx *ctx,
4729 bool force)
4730 {
4731 struct intel_dp *intel_dp = intel_attached_dp(connector);
4732 int status = connector->status;
4733
4734 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4735 connector->base.id, connector->name);
4736
4737 /* If full detect is not performed yet, do a full detect */
4738 if (!intel_dp->detect_done)
4739 status = intel_dp_long_pulse(intel_dp->attached_connector);
4740
4741 intel_dp->detect_done = false;
4742
4743 return status;
4744 }
4745
4746 static void
4747 intel_dp_force(struct drm_connector *connector)
4748 {
4749 struct intel_dp *intel_dp = intel_attached_dp(connector);
4750 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4751 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4752
4753 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4754 connector->base.id, connector->name);
4755 intel_dp_unset_edid(intel_dp);
4756
4757 if (connector->status != connector_status_connected)
4758 return;
4759
4760 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
4761
4762 intel_dp_set_edid(intel_dp);
4763
4764 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
4765
4766 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4767 intel_encoder->type = INTEL_OUTPUT_DP;
4768 }
4769
4770 static int intel_dp_get_modes(struct drm_connector *connector)
4771 {
4772 struct intel_connector *intel_connector = to_intel_connector(connector);
4773 struct edid *edid;
4774
4775 edid = intel_connector->detect_edid;
4776 if (edid) {
4777 int ret = intel_connector_update_modes(connector, edid);
4778 if (ret)
4779 return ret;
4780 }
4781
4782 /* if eDP has no EDID, fall back to fixed mode */
4783 if (is_edp(intel_attached_dp(connector)) &&
4784 intel_connector->panel.fixed_mode) {
4785 struct drm_display_mode *mode;
4786
4787 mode = drm_mode_duplicate(connector->dev,
4788 intel_connector->panel.fixed_mode);
4789 if (mode) {
4790 drm_mode_probed_add(connector, mode);
4791 return 1;
4792 }
4793 }
4794
4795 return 0;
4796 }
4797
4798 static int
4799 intel_dp_connector_register(struct drm_connector *connector)
4800 {
4801 struct intel_dp *intel_dp = intel_attached_dp(connector);
4802 int ret;
4803
4804 ret = intel_connector_register(connector);
4805 if (ret)
4806 return ret;
4807
4808 i915_debugfs_connector_add(connector);
4809
4810 DRM_DEBUG_KMS("registering %s bus for %s\n",
4811 intel_dp->aux.name, connector->kdev->kobj.name);
4812
4813 intel_dp->aux.dev = connector->kdev;
4814 return drm_dp_aux_register(&intel_dp->aux);
4815 }
4816
4817 static void
4818 intel_dp_connector_unregister(struct drm_connector *connector)
4819 {
4820 drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4821 intel_connector_unregister(connector);
4822 }
4823
4824 static void
4825 intel_dp_connector_destroy(struct drm_connector *connector)
4826 {
4827 struct intel_connector *intel_connector = to_intel_connector(connector);
4828
4829 kfree(intel_connector->detect_edid);
4830
4831 if (!IS_ERR_OR_NULL(intel_connector->edid))
4832 kfree(intel_connector->edid);
4833
4834 /* Can't call is_edp() since the encoder may have been destroyed
4835 * already. */
4836 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4837 intel_panel_fini(&intel_connector->panel);
4838
4839 drm_connector_cleanup(connector);
4840 kfree(connector);
4841 }
4842
4843 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4844 {
4845 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4846 struct intel_dp *intel_dp = &intel_dig_port->dp;
4847
4848 intel_dp_mst_encoder_cleanup(intel_dig_port);
4849 if (is_edp(intel_dp)) {
4850 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4851 /*
4852 * vdd might still be enabled do to the delayed vdd off.
4853 * Make sure vdd is actually turned off here.
4854 */
4855 pps_lock(intel_dp);
4856 edp_panel_vdd_off_sync(intel_dp);
4857 pps_unlock(intel_dp);
4858
4859 if (intel_dp->edp_notifier.notifier_call) {
4860 unregister_reboot_notifier(&intel_dp->edp_notifier);
4861 intel_dp->edp_notifier.notifier_call = NULL;
4862 }
4863 }
4864
4865 intel_dp_aux_fini(intel_dp);
4866
4867 drm_encoder_cleanup(encoder);
4868 kfree(intel_dig_port);
4869 }
4870
4871 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4872 {
4873 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4874
4875 if (!is_edp(intel_dp))
4876 return;
4877
4878 /*
4879 * vdd might still be enabled do to the delayed vdd off.
4880 * Make sure vdd is actually turned off here.
4881 */
4882 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4883 pps_lock(intel_dp);
4884 edp_panel_vdd_off_sync(intel_dp);
4885 pps_unlock(intel_dp);
4886 }
4887
4888 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4889 {
4890 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4891 struct drm_device *dev = intel_dig_port->base.base.dev;
4892 struct drm_i915_private *dev_priv = to_i915(dev);
4893
4894 lockdep_assert_held(&dev_priv->pps_mutex);
4895
4896 if (!edp_have_panel_vdd(intel_dp))
4897 return;
4898
4899 /*
4900 * The VDD bit needs a power domain reference, so if the bit is
4901 * already enabled when we boot or resume, grab this reference and
4902 * schedule a vdd off, so we don't hold on to the reference
4903 * indefinitely.
4904 */
4905 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4906 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
4907
4908 edp_panel_vdd_schedule_off(intel_dp);
4909 }
4910
4911 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
4912 {
4913 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
4914
4915 if ((intel_dp->DP & DP_PORT_EN) == 0)
4916 return INVALID_PIPE;
4917
4918 if (IS_CHERRYVIEW(dev_priv))
4919 return DP_PORT_TO_PIPE_CHV(intel_dp->DP);
4920 else
4921 return PORT_TO_PIPE(intel_dp->DP);
4922 }
4923
4924 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4925 {
4926 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4927 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4928 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4929
4930 if (!HAS_DDI(dev_priv))
4931 intel_dp->DP = I915_READ(intel_dp->output_reg);
4932
4933 if (lspcon->active)
4934 lspcon_resume(lspcon);
4935
4936 intel_dp->reset_link_params = true;
4937
4938 pps_lock(intel_dp);
4939
4940 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4941 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
4942
4943 if (is_edp(intel_dp)) {
4944 /* Reinit the power sequencer, in case BIOS did something with it. */
4945 intel_dp_pps_init(encoder->dev, intel_dp);
4946 intel_edp_panel_vdd_sanitize(intel_dp);
4947 }
4948
4949 pps_unlock(intel_dp);
4950 }
4951
4952 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4953 .dpms = drm_atomic_helper_connector_dpms,
4954 .force = intel_dp_force,
4955 .fill_modes = drm_helper_probe_single_connector_modes,
4956 .set_property = drm_atomic_helper_connector_set_property,
4957 .atomic_get_property = intel_digital_connector_atomic_get_property,
4958 .atomic_set_property = intel_digital_connector_atomic_set_property,
4959 .late_register = intel_dp_connector_register,
4960 .early_unregister = intel_dp_connector_unregister,
4961 .destroy = intel_dp_connector_destroy,
4962 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4963 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
4964 };
4965
4966 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4967 .detect_ctx = intel_dp_detect,
4968 .get_modes = intel_dp_get_modes,
4969 .mode_valid = intel_dp_mode_valid,
4970 .atomic_check = intel_digital_connector_atomic_check,
4971 };
4972
4973 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4974 .reset = intel_dp_encoder_reset,
4975 .destroy = intel_dp_encoder_destroy,
4976 };
4977
4978 enum irqreturn
4979 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4980 {
4981 struct intel_dp *intel_dp = &intel_dig_port->dp;
4982 struct drm_device *dev = intel_dig_port->base.base.dev;
4983 struct drm_i915_private *dev_priv = to_i915(dev);
4984 enum irqreturn ret = IRQ_NONE;
4985
4986 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4987 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4988 intel_dig_port->base.type = INTEL_OUTPUT_DP;
4989
4990 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4991 /*
4992 * vdd off can generate a long pulse on eDP which
4993 * would require vdd on to handle it, and thus we
4994 * would end up in an endless cycle of
4995 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4996 */
4997 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4998 port_name(intel_dig_port->port));
4999 return IRQ_HANDLED;
5000 }
5001
5002 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5003 port_name(intel_dig_port->port),
5004 long_hpd ? "long" : "short");
5005
5006 if (long_hpd) {
5007 intel_dp->reset_link_params = true;
5008 intel_dp->detect_done = false;
5009 return IRQ_NONE;
5010 }
5011
5012 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5013
5014 if (intel_dp->is_mst) {
5015 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
5016 /*
5017 * If we were in MST mode, and device is not
5018 * there, get out of MST mode
5019 */
5020 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5021 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5022 intel_dp->is_mst = false;
5023 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5024 intel_dp->is_mst);
5025 intel_dp->detect_done = false;
5026 goto put_power;
5027 }
5028 }
5029
5030 if (!intel_dp->is_mst) {
5031 if (!intel_dp_short_pulse(intel_dp)) {
5032 intel_dp->detect_done = false;
5033 goto put_power;
5034 }
5035 }
5036
5037 ret = IRQ_HANDLED;
5038
5039 put_power:
5040 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5041
5042 return ret;
5043 }
5044
5045 /* check the VBT to see whether the eDP is on another port */
5046 bool intel_dp_is_edp(struct drm_i915_private *dev_priv, enum port port)
5047 {
5048 /*
5049 * eDP not supported on g4x. so bail out early just
5050 * for a bit extra safety in case the VBT is bonkers.
5051 */
5052 if (INTEL_GEN(dev_priv) < 5)
5053 return false;
5054
5055 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
5056 return true;
5057
5058 return intel_bios_is_port_edp(dev_priv, port);
5059 }
5060
5061 static void
5062 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5063 {
5064 struct drm_i915_private *dev_priv = to_i915(connector->dev);
5065
5066 intel_attach_force_audio_property(connector);
5067 intel_attach_broadcast_rgb_property(connector);
5068
5069 if (is_edp(intel_dp)) {
5070 u32 allowed_scalers;
5071
5072 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
5073 if (!HAS_GMCH_DISPLAY(dev_priv))
5074 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
5075
5076 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
5077
5078 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
5079
5080 }
5081 }
5082
5083 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5084 {
5085 intel_dp->panel_power_off_time = ktime_get_boottime();
5086 intel_dp->last_power_on = jiffies;
5087 intel_dp->last_backlight_off = jiffies;
5088 }
5089
5090 static void
5091 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
5092 struct intel_dp *intel_dp, struct edp_power_seq *seq)
5093 {
5094 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5095 struct pps_registers regs;
5096
5097 intel_pps_get_registers(dev_priv, intel_dp, &regs);
5098
5099 /* Workaround: Need to write PP_CONTROL with the unlock key as
5100 * the very first thing. */
5101 pp_ctl = ironlake_get_pp_control(intel_dp);
5102
5103 pp_on = I915_READ(regs.pp_on);
5104 pp_off = I915_READ(regs.pp_off);
5105 if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv)) {
5106 I915_WRITE(regs.pp_ctrl, pp_ctl);
5107 pp_div = I915_READ(regs.pp_div);
5108 }
5109
5110 /* Pull timing values out of registers */
5111 seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5112 PANEL_POWER_UP_DELAY_SHIFT;
5113
5114 seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5115 PANEL_LIGHT_ON_DELAY_SHIFT;
5116
5117 seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5118 PANEL_LIGHT_OFF_DELAY_SHIFT;
5119
5120 seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5121 PANEL_POWER_DOWN_DELAY_SHIFT;
5122
5123 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)) {
5124 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5125 BXT_POWER_CYCLE_DELAY_SHIFT;
5126 if (tmp > 0)
5127 seq->t11_t12 = (tmp - 1) * 1000;
5128 else
5129 seq->t11_t12 = 0;
5130 } else {
5131 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5132 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5133 }
5134 }
5135
5136 static void
5137 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
5138 {
5139 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5140 state_name,
5141 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
5142 }
5143
5144 static void
5145 intel_pps_verify_state(struct drm_i915_private *dev_priv,
5146 struct intel_dp *intel_dp)
5147 {
5148 struct edp_power_seq hw;
5149 struct edp_power_seq *sw = &intel_dp->pps_delays;
5150
5151 intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
5152
5153 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
5154 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
5155 DRM_ERROR("PPS state mismatch\n");
5156 intel_pps_dump_state("sw", sw);
5157 intel_pps_dump_state("hw", &hw);
5158 }
5159 }
5160
5161 static void
5162 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5163 struct intel_dp *intel_dp)
5164 {
5165 struct drm_i915_private *dev_priv = to_i915(dev);
5166 struct edp_power_seq cur, vbt, spec,
5167 *final = &intel_dp->pps_delays;
5168
5169 lockdep_assert_held(&dev_priv->pps_mutex);
5170
5171 /* already initialized? */
5172 if (final->t11_t12 != 0)
5173 return;
5174
5175 intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
5176
5177 intel_pps_dump_state("cur", &cur);
5178
5179 vbt = dev_priv->vbt.edp.pps;
5180
5181 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5182 * our hw here, which are all in 100usec. */
5183 spec.t1_t3 = 210 * 10;
5184 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5185 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5186 spec.t10 = 500 * 10;
5187 /* This one is special and actually in units of 100ms, but zero
5188 * based in the hw (so we need to add 100 ms). But the sw vbt
5189 * table multiplies it with 1000 to make it in units of 100usec,
5190 * too. */
5191 spec.t11_t12 = (510 + 100) * 10;
5192
5193 intel_pps_dump_state("vbt", &vbt);
5194
5195 /* Use the max of the register settings and vbt. If both are
5196 * unset, fall back to the spec limits. */
5197 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5198 spec.field : \
5199 max(cur.field, vbt.field))
5200 assign_final(t1_t3);
5201 assign_final(t8);
5202 assign_final(t9);
5203 assign_final(t10);
5204 assign_final(t11_t12);
5205 #undef assign_final
5206
5207 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5208 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5209 intel_dp->backlight_on_delay = get_delay(t8);
5210 intel_dp->backlight_off_delay = get_delay(t9);
5211 intel_dp->panel_power_down_delay = get_delay(t10);
5212 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5213 #undef get_delay
5214
5215 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5216 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5217 intel_dp->panel_power_cycle_delay);
5218
5219 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5220 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5221
5222 /*
5223 * We override the HW backlight delays to 1 because we do manual waits
5224 * on them. For T8, even BSpec recommends doing it. For T9, if we
5225 * don't do this, we'll end up waiting for the backlight off delay
5226 * twice: once when we do the manual sleep, and once when we disable
5227 * the panel and wait for the PP_STATUS bit to become zero.
5228 */
5229 final->t8 = 1;
5230 final->t9 = 1;
5231 }
5232
5233 static void
5234 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5235 struct intel_dp *intel_dp,
5236 bool force_disable_vdd)
5237 {
5238 struct drm_i915_private *dev_priv = to_i915(dev);
5239 u32 pp_on, pp_off, pp_div, port_sel = 0;
5240 int div = dev_priv->rawclk_freq / 1000;
5241 struct pps_registers regs;
5242 enum port port = dp_to_dig_port(intel_dp)->port;
5243 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5244
5245 lockdep_assert_held(&dev_priv->pps_mutex);
5246
5247 intel_pps_get_registers(dev_priv, intel_dp, &regs);
5248
5249 /*
5250 * On some VLV machines the BIOS can leave the VDD
5251 * enabled even on power seqeuencers which aren't
5252 * hooked up to any port. This would mess up the
5253 * power domain tracking the first time we pick
5254 * one of these power sequencers for use since
5255 * edp_panel_vdd_on() would notice that the VDD was
5256 * already on and therefore wouldn't grab the power
5257 * domain reference. Disable VDD first to avoid this.
5258 * This also avoids spuriously turning the VDD on as
5259 * soon as the new power seqeuencer gets initialized.
5260 */
5261 if (force_disable_vdd) {
5262 u32 pp = ironlake_get_pp_control(intel_dp);
5263
5264 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
5265
5266 if (pp & EDP_FORCE_VDD)
5267 DRM_DEBUG_KMS("VDD already on, disabling first\n");
5268
5269 pp &= ~EDP_FORCE_VDD;
5270
5271 I915_WRITE(regs.pp_ctrl, pp);
5272 }
5273
5274 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5275 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5276 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5277 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5278 /* Compute the divisor for the pp clock, simply match the Bspec
5279 * formula. */
5280 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)) {
5281 pp_div = I915_READ(regs.pp_ctrl);
5282 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5283 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5284 << BXT_POWER_CYCLE_DELAY_SHIFT);
5285 } else {
5286 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5287 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5288 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5289 }
5290
5291 /* Haswell doesn't have any port selection bits for the panel
5292 * power sequencer any more. */
5293 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5294 port_sel = PANEL_PORT_SELECT_VLV(port);
5295 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5296 if (port == PORT_A)
5297 port_sel = PANEL_PORT_SELECT_DPA;
5298 else
5299 port_sel = PANEL_PORT_SELECT_DPD;
5300 }
5301
5302 pp_on |= port_sel;
5303
5304 I915_WRITE(regs.pp_on, pp_on);
5305 I915_WRITE(regs.pp_off, pp_off);
5306 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv))
5307 I915_WRITE(regs.pp_ctrl, pp_div);
5308 else
5309 I915_WRITE(regs.pp_div, pp_div);
5310
5311 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5312 I915_READ(regs.pp_on),
5313 I915_READ(regs.pp_off),
5314 (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)) ?
5315 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5316 I915_READ(regs.pp_div));
5317 }
5318
5319 static void intel_dp_pps_init(struct drm_device *dev,
5320 struct intel_dp *intel_dp)
5321 {
5322 struct drm_i915_private *dev_priv = to_i915(dev);
5323
5324 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5325 vlv_initial_power_sequencer_setup(intel_dp);
5326 } else {
5327 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5328 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
5329 }
5330 }
5331
5332 /**
5333 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5334 * @dev_priv: i915 device
5335 * @crtc_state: a pointer to the active intel_crtc_state
5336 * @refresh_rate: RR to be programmed
5337 *
5338 * This function gets called when refresh rate (RR) has to be changed from
5339 * one frequency to another. Switches can be between high and low RR
5340 * supported by the panel or to any other RR based on media playback (in
5341 * this case, RR value needs to be passed from user space).
5342 *
5343 * The caller of this function needs to take a lock on dev_priv->drrs.
5344 */
5345 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5346 struct intel_crtc_state *crtc_state,
5347 int refresh_rate)
5348 {
5349 struct intel_encoder *encoder;
5350 struct intel_digital_port *dig_port = NULL;
5351 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5353 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5354
5355 if (refresh_rate <= 0) {
5356 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5357 return;
5358 }
5359
5360 if (intel_dp == NULL) {
5361 DRM_DEBUG_KMS("DRRS not supported.\n");
5362 return;
5363 }
5364
5365 /*
5366 * FIXME: This needs proper synchronization with psr state for some
5367 * platforms that cannot have PSR and DRRS enabled at the same time.
5368 */
5369
5370 dig_port = dp_to_dig_port(intel_dp);
5371 encoder = &dig_port->base;
5372 intel_crtc = to_intel_crtc(encoder->base.crtc);
5373
5374 if (!intel_crtc) {
5375 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5376 return;
5377 }
5378
5379 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5380 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5381 return;
5382 }
5383
5384 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5385 refresh_rate)
5386 index = DRRS_LOW_RR;
5387
5388 if (index == dev_priv->drrs.refresh_rate_type) {
5389 DRM_DEBUG_KMS(
5390 "DRRS requested for previously set RR...ignoring\n");
5391 return;
5392 }
5393
5394 if (!crtc_state->base.active) {
5395 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5396 return;
5397 }
5398
5399 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5400 switch (index) {
5401 case DRRS_HIGH_RR:
5402 intel_dp_set_m_n(intel_crtc, M1_N1);
5403 break;
5404 case DRRS_LOW_RR:
5405 intel_dp_set_m_n(intel_crtc, M2_N2);
5406 break;
5407 case DRRS_MAX_RR:
5408 default:
5409 DRM_ERROR("Unsupported refreshrate type\n");
5410 }
5411 } else if (INTEL_GEN(dev_priv) > 6) {
5412 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5413 u32 val;
5414
5415 val = I915_READ(reg);
5416 if (index > DRRS_HIGH_RR) {
5417 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5418 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5419 else
5420 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5421 } else {
5422 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5423 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5424 else
5425 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5426 }
5427 I915_WRITE(reg, val);
5428 }
5429
5430 dev_priv->drrs.refresh_rate_type = index;
5431
5432 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5433 }
5434
5435 /**
5436 * intel_edp_drrs_enable - init drrs struct if supported
5437 * @intel_dp: DP struct
5438 * @crtc_state: A pointer to the active crtc state.
5439 *
5440 * Initializes frontbuffer_bits and drrs.dp
5441 */
5442 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5443 struct intel_crtc_state *crtc_state)
5444 {
5445 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5446 struct drm_i915_private *dev_priv = to_i915(dev);
5447
5448 if (!crtc_state->has_drrs) {
5449 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5450 return;
5451 }
5452
5453 mutex_lock(&dev_priv->drrs.mutex);
5454 if (WARN_ON(dev_priv->drrs.dp)) {
5455 DRM_ERROR("DRRS already enabled\n");
5456 goto unlock;
5457 }
5458
5459 dev_priv->drrs.busy_frontbuffer_bits = 0;
5460
5461 dev_priv->drrs.dp = intel_dp;
5462
5463 unlock:
5464 mutex_unlock(&dev_priv->drrs.mutex);
5465 }
5466
5467 /**
5468 * intel_edp_drrs_disable - Disable DRRS
5469 * @intel_dp: DP struct
5470 * @old_crtc_state: Pointer to old crtc_state.
5471 *
5472 */
5473 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5474 struct intel_crtc_state *old_crtc_state)
5475 {
5476 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5477 struct drm_i915_private *dev_priv = to_i915(dev);
5478
5479 if (!old_crtc_state->has_drrs)
5480 return;
5481
5482 mutex_lock(&dev_priv->drrs.mutex);
5483 if (!dev_priv->drrs.dp) {
5484 mutex_unlock(&dev_priv->drrs.mutex);
5485 return;
5486 }
5487
5488 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5489 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5490 intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5491
5492 dev_priv->drrs.dp = NULL;
5493 mutex_unlock(&dev_priv->drrs.mutex);
5494
5495 cancel_delayed_work_sync(&dev_priv->drrs.work);
5496 }
5497
5498 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5499 {
5500 struct drm_i915_private *dev_priv =
5501 container_of(work, typeof(*dev_priv), drrs.work.work);
5502 struct intel_dp *intel_dp;
5503
5504 mutex_lock(&dev_priv->drrs.mutex);
5505
5506 intel_dp = dev_priv->drrs.dp;
5507
5508 if (!intel_dp)
5509 goto unlock;
5510
5511 /*
5512 * The delayed work can race with an invalidate hence we need to
5513 * recheck.
5514 */
5515
5516 if (dev_priv->drrs.busy_frontbuffer_bits)
5517 goto unlock;
5518
5519 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5520 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5521
5522 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5523 intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5524 }
5525
5526 unlock:
5527 mutex_unlock(&dev_priv->drrs.mutex);
5528 }
5529
5530 /**
5531 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5532 * @dev_priv: i915 device
5533 * @frontbuffer_bits: frontbuffer plane tracking bits
5534 *
5535 * This function gets called everytime rendering on the given planes start.
5536 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5537 *
5538 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5539 */
5540 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5541 unsigned int frontbuffer_bits)
5542 {
5543 struct drm_crtc *crtc;
5544 enum pipe pipe;
5545
5546 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5547 return;
5548
5549 cancel_delayed_work(&dev_priv->drrs.work);
5550
5551 mutex_lock(&dev_priv->drrs.mutex);
5552 if (!dev_priv->drrs.dp) {
5553 mutex_unlock(&dev_priv->drrs.mutex);
5554 return;
5555 }
5556
5557 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5558 pipe = to_intel_crtc(crtc)->pipe;
5559
5560 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5561 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5562
5563 /* invalidate means busy screen hence upclock */
5564 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5565 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5566 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5567
5568 mutex_unlock(&dev_priv->drrs.mutex);
5569 }
5570
5571 /**
5572 * intel_edp_drrs_flush - Restart Idleness DRRS
5573 * @dev_priv: i915 device
5574 * @frontbuffer_bits: frontbuffer plane tracking bits
5575 *
5576 * This function gets called every time rendering on the given planes has
5577 * completed or flip on a crtc is completed. So DRRS should be upclocked
5578 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5579 * if no other planes are dirty.
5580 *
5581 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5582 */
5583 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5584 unsigned int frontbuffer_bits)
5585 {
5586 struct drm_crtc *crtc;
5587 enum pipe pipe;
5588
5589 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5590 return;
5591
5592 cancel_delayed_work(&dev_priv->drrs.work);
5593
5594 mutex_lock(&dev_priv->drrs.mutex);
5595 if (!dev_priv->drrs.dp) {
5596 mutex_unlock(&dev_priv->drrs.mutex);
5597 return;
5598 }
5599
5600 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5601 pipe = to_intel_crtc(crtc)->pipe;
5602
5603 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5604 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5605
5606 /* flush means busy screen hence upclock */
5607 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5608 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5609 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5610
5611 /*
5612 * flush also means no more activity hence schedule downclock, if all
5613 * other fbs are quiescent too
5614 */
5615 if (!dev_priv->drrs.busy_frontbuffer_bits)
5616 schedule_delayed_work(&dev_priv->drrs.work,
5617 msecs_to_jiffies(1000));
5618 mutex_unlock(&dev_priv->drrs.mutex);
5619 }
5620
5621 /**
5622 * DOC: Display Refresh Rate Switching (DRRS)
5623 *
5624 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5625 * which enables swtching between low and high refresh rates,
5626 * dynamically, based on the usage scenario. This feature is applicable
5627 * for internal panels.
5628 *
5629 * Indication that the panel supports DRRS is given by the panel EDID, which
5630 * would list multiple refresh rates for one resolution.
5631 *
5632 * DRRS is of 2 types - static and seamless.
5633 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5634 * (may appear as a blink on screen) and is used in dock-undock scenario.
5635 * Seamless DRRS involves changing RR without any visual effect to the user
5636 * and can be used during normal system usage. This is done by programming
5637 * certain registers.
5638 *
5639 * Support for static/seamless DRRS may be indicated in the VBT based on
5640 * inputs from the panel spec.
5641 *
5642 * DRRS saves power by switching to low RR based on usage scenarios.
5643 *
5644 * The implementation is based on frontbuffer tracking implementation. When
5645 * there is a disturbance on the screen triggered by user activity or a periodic
5646 * system activity, DRRS is disabled (RR is changed to high RR). When there is
5647 * no movement on screen, after a timeout of 1 second, a switch to low RR is
5648 * made.
5649 *
5650 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5651 * and intel_edp_drrs_flush() are called.
5652 *
5653 * DRRS can be further extended to support other internal panels and also
5654 * the scenario of video playback wherein RR is set based on the rate
5655 * requested by userspace.
5656 */
5657
5658 /**
5659 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5660 * @intel_connector: eDP connector
5661 * @fixed_mode: preferred mode of panel
5662 *
5663 * This function is called only once at driver load to initialize basic
5664 * DRRS stuff.
5665 *
5666 * Returns:
5667 * Downclock mode if panel supports it, else return NULL.
5668 * DRRS support is determined by the presence of downclock mode (apart
5669 * from VBT setting).
5670 */
5671 static struct drm_display_mode *
5672 intel_dp_drrs_init(struct intel_connector *intel_connector,
5673 struct drm_display_mode *fixed_mode)
5674 {
5675 struct drm_connector *connector = &intel_connector->base;
5676 struct drm_device *dev = connector->dev;
5677 struct drm_i915_private *dev_priv = to_i915(dev);
5678 struct drm_display_mode *downclock_mode = NULL;
5679
5680 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5681 mutex_init(&dev_priv->drrs.mutex);
5682
5683 if (INTEL_GEN(dev_priv) <= 6) {
5684 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5685 return NULL;
5686 }
5687
5688 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5689 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5690 return NULL;
5691 }
5692
5693 downclock_mode = intel_find_panel_downclock
5694 (dev_priv, fixed_mode, connector);
5695
5696 if (!downclock_mode) {
5697 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5698 return NULL;
5699 }
5700
5701 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5702
5703 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5704 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5705 return downclock_mode;
5706 }
5707
5708 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5709 struct intel_connector *intel_connector)
5710 {
5711 struct drm_connector *connector = &intel_connector->base;
5712 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5713 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5714 struct drm_device *dev = intel_encoder->base.dev;
5715 struct drm_i915_private *dev_priv = to_i915(dev);
5716 struct drm_display_mode *fixed_mode = NULL;
5717 struct drm_display_mode *downclock_mode = NULL;
5718 bool has_dpcd;
5719 struct drm_display_mode *scan;
5720 struct edid *edid;
5721 enum pipe pipe = INVALID_PIPE;
5722
5723 if (!is_edp(intel_dp))
5724 return true;
5725
5726 /*
5727 * On IBX/CPT we may get here with LVDS already registered. Since the
5728 * driver uses the only internal power sequencer available for both
5729 * eDP and LVDS bail out early in this case to prevent interfering
5730 * with an already powered-on LVDS power sequencer.
5731 */
5732 if (intel_get_lvds_encoder(dev)) {
5733 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5734 DRM_INFO("LVDS was detected, not registering eDP\n");
5735
5736 return false;
5737 }
5738
5739 pps_lock(intel_dp);
5740
5741 intel_dp_init_panel_power_timestamps(intel_dp);
5742 intel_dp_pps_init(dev, intel_dp);
5743 intel_edp_panel_vdd_sanitize(intel_dp);
5744
5745 pps_unlock(intel_dp);
5746
5747 /* Cache DPCD and EDID for edp. */
5748 has_dpcd = intel_edp_init_dpcd(intel_dp);
5749
5750 if (!has_dpcd) {
5751 /* if this fails, presume the device is a ghost */
5752 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5753 goto out_vdd_off;
5754 }
5755
5756 mutex_lock(&dev->mode_config.mutex);
5757 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5758 if (edid) {
5759 if (drm_add_edid_modes(connector, edid)) {
5760 drm_mode_connector_update_edid_property(connector,
5761 edid);
5762 drm_edid_to_eld(connector, edid);
5763 } else {
5764 kfree(edid);
5765 edid = ERR_PTR(-EINVAL);
5766 }
5767 } else {
5768 edid = ERR_PTR(-ENOENT);
5769 }
5770 intel_connector->edid = edid;
5771
5772 /* prefer fixed mode from EDID if available */
5773 list_for_each_entry(scan, &connector->probed_modes, head) {
5774 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5775 fixed_mode = drm_mode_duplicate(dev, scan);
5776 downclock_mode = intel_dp_drrs_init(
5777 intel_connector, fixed_mode);
5778 break;
5779 }
5780 }
5781
5782 /* fallback to VBT if available for eDP */
5783 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5784 fixed_mode = drm_mode_duplicate(dev,
5785 dev_priv->vbt.lfp_lvds_vbt_mode);
5786 if (fixed_mode) {
5787 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5788 connector->display_info.width_mm = fixed_mode->width_mm;
5789 connector->display_info.height_mm = fixed_mode->height_mm;
5790 }
5791 }
5792 mutex_unlock(&dev->mode_config.mutex);
5793
5794 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5795 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5796 register_reboot_notifier(&intel_dp->edp_notifier);
5797
5798 /*
5799 * Figure out the current pipe for the initial backlight setup.
5800 * If the current pipe isn't valid, try the PPS pipe, and if that
5801 * fails just assume pipe A.
5802 */
5803 pipe = vlv_active_pipe(intel_dp);
5804
5805 if (pipe != PIPE_A && pipe != PIPE_B)
5806 pipe = intel_dp->pps_pipe;
5807
5808 if (pipe != PIPE_A && pipe != PIPE_B)
5809 pipe = PIPE_A;
5810
5811 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5812 pipe_name(pipe));
5813 }
5814
5815 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5816 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5817 intel_panel_setup_backlight(connector, pipe);
5818
5819 return true;
5820
5821 out_vdd_off:
5822 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5823 /*
5824 * vdd might still be enabled do to the delayed vdd off.
5825 * Make sure vdd is actually turned off here.
5826 */
5827 pps_lock(intel_dp);
5828 edp_panel_vdd_off_sync(intel_dp);
5829 pps_unlock(intel_dp);
5830
5831 return false;
5832 }
5833
5834 /* Set up the hotplug pin and aux power domain. */
5835 static void
5836 intel_dp_init_connector_port_info(struct intel_digital_port *intel_dig_port)
5837 {
5838 struct intel_encoder *encoder = &intel_dig_port->base;
5839 struct intel_dp *intel_dp = &intel_dig_port->dp;
5840
5841 switch (intel_dig_port->port) {
5842 case PORT_A:
5843 encoder->hpd_pin = HPD_PORT_A;
5844 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_A;
5845 break;
5846 case PORT_B:
5847 encoder->hpd_pin = HPD_PORT_B;
5848 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_B;
5849 break;
5850 case PORT_C:
5851 encoder->hpd_pin = HPD_PORT_C;
5852 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_C;
5853 break;
5854 case PORT_D:
5855 encoder->hpd_pin = HPD_PORT_D;
5856 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_D;
5857 break;
5858 case PORT_E:
5859 encoder->hpd_pin = HPD_PORT_E;
5860
5861 /* FIXME: Check VBT for actual wiring of PORT E */
5862 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_D;
5863 break;
5864 default:
5865 MISSING_CASE(intel_dig_port->port);
5866 }
5867 }
5868
5869 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
5870 {
5871 struct intel_connector *intel_connector;
5872 struct drm_connector *connector;
5873
5874 intel_connector = container_of(work, typeof(*intel_connector),
5875 modeset_retry_work);
5876 connector = &intel_connector->base;
5877 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
5878 connector->name);
5879
5880 /* Grab the locks before changing connector property*/
5881 mutex_lock(&connector->dev->mode_config.mutex);
5882 /* Set connector link status to BAD and send a Uevent to notify
5883 * userspace to do a modeset.
5884 */
5885 drm_mode_connector_set_link_status_property(connector,
5886 DRM_MODE_LINK_STATUS_BAD);
5887 mutex_unlock(&connector->dev->mode_config.mutex);
5888 /* Send Hotplug uevent so userspace can reprobe */
5889 drm_kms_helper_hotplug_event(connector->dev);
5890 }
5891
5892 bool
5893 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5894 struct intel_connector *intel_connector)
5895 {
5896 struct drm_connector *connector = &intel_connector->base;
5897 struct intel_dp *intel_dp = &intel_dig_port->dp;
5898 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5899 struct drm_device *dev = intel_encoder->base.dev;
5900 struct drm_i915_private *dev_priv = to_i915(dev);
5901 enum port port = intel_dig_port->port;
5902 int type;
5903
5904 /* Initialize the work for modeset in case of link train failure */
5905 INIT_WORK(&intel_connector->modeset_retry_work,
5906 intel_dp_modeset_retry_work_fn);
5907
5908 if (WARN(intel_dig_port->max_lanes < 1,
5909 "Not enough lanes (%d) for DP on port %c\n",
5910 intel_dig_port->max_lanes, port_name(port)))
5911 return false;
5912
5913 intel_dp_set_source_rates(intel_dp);
5914
5915 intel_dp->reset_link_params = true;
5916 intel_dp->pps_pipe = INVALID_PIPE;
5917 intel_dp->active_pipe = INVALID_PIPE;
5918
5919 /* intel_dp vfuncs */
5920 if (INTEL_GEN(dev_priv) >= 9)
5921 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5922 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5923 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5924 else if (HAS_PCH_SPLIT(dev_priv))
5925 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5926 else
5927 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5928
5929 if (INTEL_GEN(dev_priv) >= 9)
5930 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5931 else
5932 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5933
5934 if (HAS_DDI(dev_priv))
5935 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5936
5937 /* Preserve the current hw state. */
5938 intel_dp->DP = I915_READ(intel_dp->output_reg);
5939 intel_dp->attached_connector = intel_connector;
5940
5941 if (intel_dp_is_edp(dev_priv, port))
5942 type = DRM_MODE_CONNECTOR_eDP;
5943 else
5944 type = DRM_MODE_CONNECTOR_DisplayPort;
5945
5946 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5947 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
5948
5949 /*
5950 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5951 * for DP the encoder type can be set by the caller to
5952 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5953 */
5954 if (type == DRM_MODE_CONNECTOR_eDP)
5955 intel_encoder->type = INTEL_OUTPUT_EDP;
5956
5957 /* eDP only on port B and/or C on vlv/chv */
5958 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
5959 is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5960 return false;
5961
5962 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5963 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5964 port_name(port));
5965
5966 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5967 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5968
5969 connector->interlace_allowed = true;
5970 connector->doublescan_allowed = 0;
5971
5972 intel_dp_init_connector_port_info(intel_dig_port);
5973
5974 intel_dp_aux_init(intel_dp);
5975
5976 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5977 edp_panel_vdd_work);
5978
5979 intel_connector_attach_encoder(intel_connector, intel_encoder);
5980
5981 if (HAS_DDI(dev_priv))
5982 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5983 else
5984 intel_connector->get_hw_state = intel_connector_get_hw_state;
5985
5986 /* init MST on ports that can support it */
5987 if (HAS_DP_MST(dev_priv) && !is_edp(intel_dp) &&
5988 (port == PORT_B || port == PORT_C || port == PORT_D))
5989 intel_dp_mst_encoder_init(intel_dig_port,
5990 intel_connector->base.base.id);
5991
5992 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5993 intel_dp_aux_fini(intel_dp);
5994 intel_dp_mst_encoder_cleanup(intel_dig_port);
5995 goto fail;
5996 }
5997
5998 intel_dp_add_properties(intel_dp, connector);
5999
6000 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
6001 * 0xd. Failure to do so will result in spurious interrupts being
6002 * generated on the port when a cable is not attached.
6003 */
6004 if (IS_G4X(dev_priv) && !IS_GM45(dev_priv)) {
6005 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
6006 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
6007 }
6008
6009 return true;
6010
6011 fail:
6012 drm_connector_cleanup(connector);
6013
6014 return false;
6015 }
6016
6017 bool intel_dp_init(struct drm_i915_private *dev_priv,
6018 i915_reg_t output_reg,
6019 enum port port)
6020 {
6021 struct intel_digital_port *intel_dig_port;
6022 struct intel_encoder *intel_encoder;
6023 struct drm_encoder *encoder;
6024 struct intel_connector *intel_connector;
6025
6026 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6027 if (!intel_dig_port)
6028 return false;
6029
6030 intel_connector = intel_connector_alloc();
6031 if (!intel_connector)
6032 goto err_connector_alloc;
6033
6034 intel_encoder = &intel_dig_port->base;
6035 encoder = &intel_encoder->base;
6036
6037 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
6038 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
6039 "DP %c", port_name(port)))
6040 goto err_encoder_init;
6041
6042 intel_encoder->compute_config = intel_dp_compute_config;
6043 intel_encoder->disable = intel_disable_dp;
6044 intel_encoder->get_hw_state = intel_dp_get_hw_state;
6045 intel_encoder->get_config = intel_dp_get_config;
6046 intel_encoder->suspend = intel_dp_encoder_suspend;
6047 if (IS_CHERRYVIEW(dev_priv)) {
6048 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6049 intel_encoder->pre_enable = chv_pre_enable_dp;
6050 intel_encoder->enable = vlv_enable_dp;
6051 intel_encoder->post_disable = chv_post_disable_dp;
6052 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6053 } else if (IS_VALLEYVIEW(dev_priv)) {
6054 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6055 intel_encoder->pre_enable = vlv_pre_enable_dp;
6056 intel_encoder->enable = vlv_enable_dp;
6057 intel_encoder->post_disable = vlv_post_disable_dp;
6058 } else {
6059 intel_encoder->pre_enable = g4x_pre_enable_dp;
6060 intel_encoder->enable = g4x_enable_dp;
6061 if (INTEL_GEN(dev_priv) >= 5)
6062 intel_encoder->post_disable = ilk_post_disable_dp;
6063 }
6064
6065 intel_dig_port->port = port;
6066 intel_dig_port->dp.output_reg = output_reg;
6067 intel_dig_port->max_lanes = 4;
6068
6069 intel_encoder->type = INTEL_OUTPUT_DP;
6070 intel_encoder->power_domain = intel_port_to_power_domain(port);
6071 if (IS_CHERRYVIEW(dev_priv)) {
6072 if (port == PORT_D)
6073 intel_encoder->crtc_mask = 1 << 2;
6074 else
6075 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6076 } else {
6077 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6078 }
6079 intel_encoder->cloneable = 0;
6080 intel_encoder->port = port;
6081
6082 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6083 dev_priv->hotplug.irq_port[port] = intel_dig_port;
6084
6085 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6086 goto err_init_connector;
6087
6088 return true;
6089
6090 err_init_connector:
6091 drm_encoder_cleanup(encoder);
6092 err_encoder_init:
6093 kfree(intel_connector);
6094 err_connector_alloc:
6095 kfree(intel_dig_port);
6096 return false;
6097 }
6098
6099 void intel_dp_mst_suspend(struct drm_device *dev)
6100 {
6101 struct drm_i915_private *dev_priv = to_i915(dev);
6102 int i;
6103
6104 /* disable MST */
6105 for (i = 0; i < I915_MAX_PORTS; i++) {
6106 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6107
6108 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
6109 continue;
6110
6111 if (intel_dig_port->dp.is_mst)
6112 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6113 }
6114 }
6115
6116 void intel_dp_mst_resume(struct drm_device *dev)
6117 {
6118 struct drm_i915_private *dev_priv = to_i915(dev);
6119 int i;
6120
6121 for (i = 0; i < I915_MAX_PORTS; i++) {
6122 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6123 int ret;
6124
6125 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
6126 continue;
6127
6128 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6129 if (ret)
6130 intel_dp_check_mst_status(&intel_dig_port->dp);
6131 }
6132 }