]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge branch 'xfs-fixes-for-3.14-rc4' of git://oss.sgi.com/xfs/xfs
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
40
41 struct dp_link_dpll {
42 int link_bw;
43 struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47 { DP_LINK_BW_1_62,
48 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49 { DP_LINK_BW_2_7,
50 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54 { DP_LINK_BW_1_62,
55 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56 { DP_LINK_BW_2_7,
57 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61 { DP_LINK_BW_1_62,
62 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63 { DP_LINK_BW_2_7,
64 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /**
68 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69 * @intel_dp: DP struct
70 *
71 * If a CPU or PCH DP output is attached to an eDP panel, this function
72 * will return true, and false otherwise.
73 */
74 static bool is_edp(struct intel_dp *intel_dp)
75 {
76 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79 }
80
81 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82 {
83 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85 return intel_dig_port->base.base.dev;
86 }
87
88 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89 {
90 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91 }
92
93 static void intel_dp_link_down(struct intel_dp *intel_dp);
94
95 static int
96 intel_dp_max_link_bw(struct intel_dp *intel_dp)
97 {
98 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
99
100 switch (max_link_bw) {
101 case DP_LINK_BW_1_62:
102 case DP_LINK_BW_2_7:
103 break;
104 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
105 max_link_bw = DP_LINK_BW_2_7;
106 break;
107 default:
108 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
109 max_link_bw);
110 max_link_bw = DP_LINK_BW_1_62;
111 break;
112 }
113 return max_link_bw;
114 }
115
116 /*
117 * The units on the numbers in the next two are... bizarre. Examples will
118 * make it clearer; this one parallels an example in the eDP spec.
119 *
120 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
121 *
122 * 270000 * 1 * 8 / 10 == 216000
123 *
124 * The actual data capacity of that configuration is 2.16Gbit/s, so the
125 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
126 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
127 * 119000. At 18bpp that's 2142000 kilobits per second.
128 *
129 * Thus the strange-looking division by 10 in intel_dp_link_required, to
130 * get the result in decakilobits instead of kilobits.
131 */
132
133 static int
134 intel_dp_link_required(int pixel_clock, int bpp)
135 {
136 return (pixel_clock * bpp + 9) / 10;
137 }
138
139 static int
140 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
141 {
142 return (max_link_clock * max_lanes * 8) / 10;
143 }
144
145 static enum drm_mode_status
146 intel_dp_mode_valid(struct drm_connector *connector,
147 struct drm_display_mode *mode)
148 {
149 struct intel_dp *intel_dp = intel_attached_dp(connector);
150 struct intel_connector *intel_connector = to_intel_connector(connector);
151 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
152 int target_clock = mode->clock;
153 int max_rate, mode_rate, max_lanes, max_link_clock;
154
155 if (is_edp(intel_dp) && fixed_mode) {
156 if (mode->hdisplay > fixed_mode->hdisplay)
157 return MODE_PANEL;
158
159 if (mode->vdisplay > fixed_mode->vdisplay)
160 return MODE_PANEL;
161
162 target_clock = fixed_mode->clock;
163 }
164
165 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
166 max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
167
168 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
169 mode_rate = intel_dp_link_required(target_clock, 18);
170
171 if (mode_rate > max_rate)
172 return MODE_CLOCK_HIGH;
173
174 if (mode->clock < 10000)
175 return MODE_CLOCK_LOW;
176
177 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
178 return MODE_H_ILLEGAL;
179
180 return MODE_OK;
181 }
182
183 static uint32_t
184 pack_aux(uint8_t *src, int src_bytes)
185 {
186 int i;
187 uint32_t v = 0;
188
189 if (src_bytes > 4)
190 src_bytes = 4;
191 for (i = 0; i < src_bytes; i++)
192 v |= ((uint32_t) src[i]) << ((3-i) * 8);
193 return v;
194 }
195
196 static void
197 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
198 {
199 int i;
200 if (dst_bytes > 4)
201 dst_bytes = 4;
202 for (i = 0; i < dst_bytes; i++)
203 dst[i] = src >> ((3-i) * 8);
204 }
205
206 /* hrawclock is 1/4 the FSB frequency */
207 static int
208 intel_hrawclk(struct drm_device *dev)
209 {
210 struct drm_i915_private *dev_priv = dev->dev_private;
211 uint32_t clkcfg;
212
213 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
214 if (IS_VALLEYVIEW(dev))
215 return 200;
216
217 clkcfg = I915_READ(CLKCFG);
218 switch (clkcfg & CLKCFG_FSB_MASK) {
219 case CLKCFG_FSB_400:
220 return 100;
221 case CLKCFG_FSB_533:
222 return 133;
223 case CLKCFG_FSB_667:
224 return 166;
225 case CLKCFG_FSB_800:
226 return 200;
227 case CLKCFG_FSB_1067:
228 return 266;
229 case CLKCFG_FSB_1333:
230 return 333;
231 /* these two are just a guess; one of them might be right */
232 case CLKCFG_FSB_1600:
233 case CLKCFG_FSB_1600_ALT:
234 return 400;
235 default:
236 return 133;
237 }
238 }
239
240 static void
241 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
242 struct intel_dp *intel_dp,
243 struct edp_power_seq *out);
244 static void
245 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
246 struct intel_dp *intel_dp,
247 struct edp_power_seq *out);
248
249 static enum pipe
250 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
251 {
252 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
253 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
254 struct drm_device *dev = intel_dig_port->base.base.dev;
255 struct drm_i915_private *dev_priv = dev->dev_private;
256 enum port port = intel_dig_port->port;
257 enum pipe pipe;
258
259 /* modeset should have pipe */
260 if (crtc)
261 return to_intel_crtc(crtc)->pipe;
262
263 /* init time, try to find a pipe with this port selected */
264 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
265 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
266 PANEL_PORT_SELECT_MASK;
267 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
268 return pipe;
269 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
270 return pipe;
271 }
272
273 /* shrug */
274 return PIPE_A;
275 }
276
277 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
278 {
279 struct drm_device *dev = intel_dp_to_dev(intel_dp);
280
281 if (HAS_PCH_SPLIT(dev))
282 return PCH_PP_CONTROL;
283 else
284 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
285 }
286
287 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
288 {
289 struct drm_device *dev = intel_dp_to_dev(intel_dp);
290
291 if (HAS_PCH_SPLIT(dev))
292 return PCH_PP_STATUS;
293 else
294 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
295 }
296
297 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
298 {
299 struct drm_device *dev = intel_dp_to_dev(intel_dp);
300 struct drm_i915_private *dev_priv = dev->dev_private;
301
302 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
303 }
304
305 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
306 {
307 struct drm_device *dev = intel_dp_to_dev(intel_dp);
308 struct drm_i915_private *dev_priv = dev->dev_private;
309
310 return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
311 }
312
313 static void
314 intel_dp_check_edp(struct intel_dp *intel_dp)
315 {
316 struct drm_device *dev = intel_dp_to_dev(intel_dp);
317 struct drm_i915_private *dev_priv = dev->dev_private;
318
319 if (!is_edp(intel_dp))
320 return;
321
322 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
323 WARN(1, "eDP powered off while attempting aux channel communication.\n");
324 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
325 I915_READ(_pp_stat_reg(intel_dp)),
326 I915_READ(_pp_ctrl_reg(intel_dp)));
327 }
328 }
329
330 static uint32_t
331 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
332 {
333 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
334 struct drm_device *dev = intel_dig_port->base.base.dev;
335 struct drm_i915_private *dev_priv = dev->dev_private;
336 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
337 uint32_t status;
338 bool done;
339
340 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
341 if (has_aux_irq)
342 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
343 msecs_to_jiffies_timeout(10));
344 else
345 done = wait_for_atomic(C, 10) == 0;
346 if (!done)
347 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
348 has_aux_irq);
349 #undef C
350
351 return status;
352 }
353
354 static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
355 int index)
356 {
357 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
358 struct drm_device *dev = intel_dig_port->base.base.dev;
359 struct drm_i915_private *dev_priv = dev->dev_private;
360
361 /* The clock divider is based off the hrawclk,
362 * and would like to run at 2MHz. So, take the
363 * hrawclk value and divide by 2 and use that
364 *
365 * Note that PCH attached eDP panels should use a 125MHz input
366 * clock divider.
367 */
368 if (IS_VALLEYVIEW(dev)) {
369 return index ? 0 : 100;
370 } else if (intel_dig_port->port == PORT_A) {
371 if (index)
372 return 0;
373 if (HAS_DDI(dev))
374 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
375 else if (IS_GEN6(dev) || IS_GEN7(dev))
376 return 200; /* SNB & IVB eDP input clock at 400Mhz */
377 else
378 return 225; /* eDP input clock at 450Mhz */
379 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
380 /* Workaround for non-ULT HSW */
381 switch (index) {
382 case 0: return 63;
383 case 1: return 72;
384 default: return 0;
385 }
386 } else if (HAS_PCH_SPLIT(dev)) {
387 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
388 } else {
389 return index ? 0 :intel_hrawclk(dev) / 2;
390 }
391 }
392
393 static int
394 intel_dp_aux_ch(struct intel_dp *intel_dp,
395 uint8_t *send, int send_bytes,
396 uint8_t *recv, int recv_size)
397 {
398 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
399 struct drm_device *dev = intel_dig_port->base.base.dev;
400 struct drm_i915_private *dev_priv = dev->dev_private;
401 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
402 uint32_t ch_data = ch_ctl + 4;
403 uint32_t aux_clock_divider;
404 int i, ret, recv_bytes;
405 uint32_t status;
406 int try, precharge, clock = 0;
407 bool has_aux_irq = HAS_AUX_IRQ(dev);
408 uint32_t timeout;
409
410 /* dp aux is extremely sensitive to irq latency, hence request the
411 * lowest possible wakeup latency and so prevent the cpu from going into
412 * deep sleep states.
413 */
414 pm_qos_update_request(&dev_priv->pm_qos, 0);
415
416 intel_dp_check_edp(intel_dp);
417
418 if (IS_GEN6(dev))
419 precharge = 3;
420 else
421 precharge = 5;
422
423 if (IS_BROADWELL(dev) && ch_ctl == DPA_AUX_CH_CTL)
424 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
425 else
426 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
427
428 intel_aux_display_runtime_get(dev_priv);
429
430 /* Try to wait for any previous AUX channel activity */
431 for (try = 0; try < 3; try++) {
432 status = I915_READ_NOTRACE(ch_ctl);
433 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
434 break;
435 msleep(1);
436 }
437
438 if (try == 3) {
439 WARN(1, "dp_aux_ch not started status 0x%08x\n",
440 I915_READ(ch_ctl));
441 ret = -EBUSY;
442 goto out;
443 }
444
445 /* Only 5 data registers! */
446 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
447 ret = -E2BIG;
448 goto out;
449 }
450
451 while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
452 /* Must try at least 3 times according to DP spec */
453 for (try = 0; try < 5; try++) {
454 /* Load the send data into the aux channel data registers */
455 for (i = 0; i < send_bytes; i += 4)
456 I915_WRITE(ch_data + i,
457 pack_aux(send + i, send_bytes - i));
458
459 /* Send the command and wait for it to complete */
460 I915_WRITE(ch_ctl,
461 DP_AUX_CH_CTL_SEND_BUSY |
462 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
463 timeout |
464 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
465 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
466 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
467 DP_AUX_CH_CTL_DONE |
468 DP_AUX_CH_CTL_TIME_OUT_ERROR |
469 DP_AUX_CH_CTL_RECEIVE_ERROR);
470
471 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
472
473 /* Clear done status and any errors */
474 I915_WRITE(ch_ctl,
475 status |
476 DP_AUX_CH_CTL_DONE |
477 DP_AUX_CH_CTL_TIME_OUT_ERROR |
478 DP_AUX_CH_CTL_RECEIVE_ERROR);
479
480 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
481 DP_AUX_CH_CTL_RECEIVE_ERROR))
482 continue;
483 if (status & DP_AUX_CH_CTL_DONE)
484 break;
485 }
486 if (status & DP_AUX_CH_CTL_DONE)
487 break;
488 }
489
490 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
491 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
492 ret = -EBUSY;
493 goto out;
494 }
495
496 /* Check for timeout or receive error.
497 * Timeouts occur when the sink is not connected
498 */
499 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
500 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
501 ret = -EIO;
502 goto out;
503 }
504
505 /* Timeouts occur when the device isn't connected, so they're
506 * "normal" -- don't fill the kernel log with these */
507 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
508 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
509 ret = -ETIMEDOUT;
510 goto out;
511 }
512
513 /* Unload any bytes sent back from the other side */
514 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
515 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
516 if (recv_bytes > recv_size)
517 recv_bytes = recv_size;
518
519 for (i = 0; i < recv_bytes; i += 4)
520 unpack_aux(I915_READ(ch_data + i),
521 recv + i, recv_bytes - i);
522
523 ret = recv_bytes;
524 out:
525 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
526 intel_aux_display_runtime_put(dev_priv);
527
528 return ret;
529 }
530
531 /* Write data to the aux channel in native mode */
532 static int
533 intel_dp_aux_native_write(struct intel_dp *intel_dp,
534 uint16_t address, uint8_t *send, int send_bytes)
535 {
536 int ret;
537 uint8_t msg[20];
538 int msg_bytes;
539 uint8_t ack;
540 int retry;
541
542 if (WARN_ON(send_bytes > 16))
543 return -E2BIG;
544
545 intel_dp_check_edp(intel_dp);
546 msg[0] = DP_AUX_NATIVE_WRITE << 4;
547 msg[1] = address >> 8;
548 msg[2] = address & 0xff;
549 msg[3] = send_bytes - 1;
550 memcpy(&msg[4], send, send_bytes);
551 msg_bytes = send_bytes + 4;
552 for (retry = 0; retry < 7; retry++) {
553 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
554 if (ret < 0)
555 return ret;
556 ack >>= 4;
557 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
558 return send_bytes;
559 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
560 usleep_range(400, 500);
561 else
562 return -EIO;
563 }
564
565 DRM_ERROR("too many retries, giving up\n");
566 return -EIO;
567 }
568
569 /* Write a single byte to the aux channel in native mode */
570 static int
571 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
572 uint16_t address, uint8_t byte)
573 {
574 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
575 }
576
577 /* read bytes from a native aux channel */
578 static int
579 intel_dp_aux_native_read(struct intel_dp *intel_dp,
580 uint16_t address, uint8_t *recv, int recv_bytes)
581 {
582 uint8_t msg[4];
583 int msg_bytes;
584 uint8_t reply[20];
585 int reply_bytes;
586 uint8_t ack;
587 int ret;
588 int retry;
589
590 if (WARN_ON(recv_bytes > 19))
591 return -E2BIG;
592
593 intel_dp_check_edp(intel_dp);
594 msg[0] = DP_AUX_NATIVE_READ << 4;
595 msg[1] = address >> 8;
596 msg[2] = address & 0xff;
597 msg[3] = recv_bytes - 1;
598
599 msg_bytes = 4;
600 reply_bytes = recv_bytes + 1;
601
602 for (retry = 0; retry < 7; retry++) {
603 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
604 reply, reply_bytes);
605 if (ret == 0)
606 return -EPROTO;
607 if (ret < 0)
608 return ret;
609 ack = reply[0] >> 4;
610 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
611 memcpy(recv, reply + 1, ret - 1);
612 return ret - 1;
613 }
614 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
615 usleep_range(400, 500);
616 else
617 return -EIO;
618 }
619
620 DRM_ERROR("too many retries, giving up\n");
621 return -EIO;
622 }
623
624 static int
625 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
626 uint8_t write_byte, uint8_t *read_byte)
627 {
628 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
629 struct intel_dp *intel_dp = container_of(adapter,
630 struct intel_dp,
631 adapter);
632 uint16_t address = algo_data->address;
633 uint8_t msg[5];
634 uint8_t reply[2];
635 unsigned retry;
636 int msg_bytes;
637 int reply_bytes;
638 int ret;
639
640 ironlake_edp_panel_vdd_on(intel_dp);
641 intel_dp_check_edp(intel_dp);
642 /* Set up the command byte */
643 if (mode & MODE_I2C_READ)
644 msg[0] = DP_AUX_I2C_READ << 4;
645 else
646 msg[0] = DP_AUX_I2C_WRITE << 4;
647
648 if (!(mode & MODE_I2C_STOP))
649 msg[0] |= DP_AUX_I2C_MOT << 4;
650
651 msg[1] = address >> 8;
652 msg[2] = address;
653
654 switch (mode) {
655 case MODE_I2C_WRITE:
656 msg[3] = 0;
657 msg[4] = write_byte;
658 msg_bytes = 5;
659 reply_bytes = 1;
660 break;
661 case MODE_I2C_READ:
662 msg[3] = 0;
663 msg_bytes = 4;
664 reply_bytes = 2;
665 break;
666 default:
667 msg_bytes = 3;
668 reply_bytes = 1;
669 break;
670 }
671
672 /*
673 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
674 * required to retry at least seven times upon receiving AUX_DEFER
675 * before giving up the AUX transaction.
676 */
677 for (retry = 0; retry < 7; retry++) {
678 ret = intel_dp_aux_ch(intel_dp,
679 msg, msg_bytes,
680 reply, reply_bytes);
681 if (ret < 0) {
682 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
683 goto out;
684 }
685
686 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
687 case DP_AUX_NATIVE_REPLY_ACK:
688 /* I2C-over-AUX Reply field is only valid
689 * when paired with AUX ACK.
690 */
691 break;
692 case DP_AUX_NATIVE_REPLY_NACK:
693 DRM_DEBUG_KMS("aux_ch native nack\n");
694 ret = -EREMOTEIO;
695 goto out;
696 case DP_AUX_NATIVE_REPLY_DEFER:
697 /*
698 * For now, just give more slack to branch devices. We
699 * could check the DPCD for I2C bit rate capabilities,
700 * and if available, adjust the interval. We could also
701 * be more careful with DP-to-Legacy adapters where a
702 * long legacy cable may force very low I2C bit rates.
703 */
704 if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
705 DP_DWN_STRM_PORT_PRESENT)
706 usleep_range(500, 600);
707 else
708 usleep_range(300, 400);
709 continue;
710 default:
711 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
712 reply[0]);
713 ret = -EREMOTEIO;
714 goto out;
715 }
716
717 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
718 case DP_AUX_I2C_REPLY_ACK:
719 if (mode == MODE_I2C_READ) {
720 *read_byte = reply[1];
721 }
722 ret = reply_bytes - 1;
723 goto out;
724 case DP_AUX_I2C_REPLY_NACK:
725 DRM_DEBUG_KMS("aux_i2c nack\n");
726 ret = -EREMOTEIO;
727 goto out;
728 case DP_AUX_I2C_REPLY_DEFER:
729 DRM_DEBUG_KMS("aux_i2c defer\n");
730 udelay(100);
731 break;
732 default:
733 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
734 ret = -EREMOTEIO;
735 goto out;
736 }
737 }
738
739 DRM_ERROR("too many retries, giving up\n");
740 ret = -EREMOTEIO;
741
742 out:
743 ironlake_edp_panel_vdd_off(intel_dp, false);
744 return ret;
745 }
746
747 static int
748 intel_dp_i2c_init(struct intel_dp *intel_dp,
749 struct intel_connector *intel_connector, const char *name)
750 {
751 int ret;
752
753 DRM_DEBUG_KMS("i2c_init %s\n", name);
754 intel_dp->algo.running = false;
755 intel_dp->algo.address = 0;
756 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
757
758 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
759 intel_dp->adapter.owner = THIS_MODULE;
760 intel_dp->adapter.class = I2C_CLASS_DDC;
761 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
762 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
763 intel_dp->adapter.algo_data = &intel_dp->algo;
764 intel_dp->adapter.dev.parent = intel_connector->base.kdev;
765
766 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
767 return ret;
768 }
769
770 static void
771 intel_dp_set_clock(struct intel_encoder *encoder,
772 struct intel_crtc_config *pipe_config, int link_bw)
773 {
774 struct drm_device *dev = encoder->base.dev;
775 const struct dp_link_dpll *divisor = NULL;
776 int i, count = 0;
777
778 if (IS_G4X(dev)) {
779 divisor = gen4_dpll;
780 count = ARRAY_SIZE(gen4_dpll);
781 } else if (IS_HASWELL(dev)) {
782 /* Haswell has special-purpose DP DDI clocks. */
783 } else if (HAS_PCH_SPLIT(dev)) {
784 divisor = pch_dpll;
785 count = ARRAY_SIZE(pch_dpll);
786 } else if (IS_VALLEYVIEW(dev)) {
787 divisor = vlv_dpll;
788 count = ARRAY_SIZE(vlv_dpll);
789 }
790
791 if (divisor && count) {
792 for (i = 0; i < count; i++) {
793 if (link_bw == divisor[i].link_bw) {
794 pipe_config->dpll = divisor[i].dpll;
795 pipe_config->clock_set = true;
796 break;
797 }
798 }
799 }
800 }
801
802 bool
803 intel_dp_compute_config(struct intel_encoder *encoder,
804 struct intel_crtc_config *pipe_config)
805 {
806 struct drm_device *dev = encoder->base.dev;
807 struct drm_i915_private *dev_priv = dev->dev_private;
808 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
809 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
810 enum port port = dp_to_dig_port(intel_dp)->port;
811 struct intel_crtc *intel_crtc = encoder->new_crtc;
812 struct intel_connector *intel_connector = intel_dp->attached_connector;
813 int lane_count, clock;
814 int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
815 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
816 int bpp, mode_rate;
817 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
818 int link_avail, link_clock;
819
820 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
821 pipe_config->has_pch_encoder = true;
822
823 pipe_config->has_dp_encoder = true;
824
825 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
826 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
827 adjusted_mode);
828 if (!HAS_PCH_SPLIT(dev))
829 intel_gmch_panel_fitting(intel_crtc, pipe_config,
830 intel_connector->panel.fitting_mode);
831 else
832 intel_pch_panel_fitting(intel_crtc, pipe_config,
833 intel_connector->panel.fitting_mode);
834 }
835
836 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
837 return false;
838
839 DRM_DEBUG_KMS("DP link computation with max lane count %i "
840 "max bw %02x pixel clock %iKHz\n",
841 max_lane_count, bws[max_clock],
842 adjusted_mode->crtc_clock);
843
844 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
845 * bpc in between. */
846 bpp = pipe_config->pipe_bpp;
847 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
848 dev_priv->vbt.edp_bpp < bpp) {
849 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
850 dev_priv->vbt.edp_bpp);
851 bpp = dev_priv->vbt.edp_bpp;
852 }
853
854 for (; bpp >= 6*3; bpp -= 2*3) {
855 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
856 bpp);
857
858 for (clock = 0; clock <= max_clock; clock++) {
859 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
860 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
861 link_avail = intel_dp_max_data_rate(link_clock,
862 lane_count);
863
864 if (mode_rate <= link_avail) {
865 goto found;
866 }
867 }
868 }
869 }
870
871 return false;
872
873 found:
874 if (intel_dp->color_range_auto) {
875 /*
876 * See:
877 * CEA-861-E - 5.1 Default Encoding Parameters
878 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
879 */
880 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
881 intel_dp->color_range = DP_COLOR_RANGE_16_235;
882 else
883 intel_dp->color_range = 0;
884 }
885
886 if (intel_dp->color_range)
887 pipe_config->limited_color_range = true;
888
889 intel_dp->link_bw = bws[clock];
890 intel_dp->lane_count = lane_count;
891 pipe_config->pipe_bpp = bpp;
892 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
893
894 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
895 intel_dp->link_bw, intel_dp->lane_count,
896 pipe_config->port_clock, bpp);
897 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
898 mode_rate, link_avail);
899
900 intel_link_compute_m_n(bpp, lane_count,
901 adjusted_mode->crtc_clock,
902 pipe_config->port_clock,
903 &pipe_config->dp_m_n);
904
905 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
906
907 return true;
908 }
909
910 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
911 {
912 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
913 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
914 struct drm_device *dev = crtc->base.dev;
915 struct drm_i915_private *dev_priv = dev->dev_private;
916 u32 dpa_ctl;
917
918 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
919 dpa_ctl = I915_READ(DP_A);
920 dpa_ctl &= ~DP_PLL_FREQ_MASK;
921
922 if (crtc->config.port_clock == 162000) {
923 /* For a long time we've carried around a ILK-DevA w/a for the
924 * 160MHz clock. If we're really unlucky, it's still required.
925 */
926 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
927 dpa_ctl |= DP_PLL_FREQ_160MHZ;
928 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
929 } else {
930 dpa_ctl |= DP_PLL_FREQ_270MHZ;
931 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
932 }
933
934 I915_WRITE(DP_A, dpa_ctl);
935
936 POSTING_READ(DP_A);
937 udelay(500);
938 }
939
940 static void intel_dp_mode_set(struct intel_encoder *encoder)
941 {
942 struct drm_device *dev = encoder->base.dev;
943 struct drm_i915_private *dev_priv = dev->dev_private;
944 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
945 enum port port = dp_to_dig_port(intel_dp)->port;
946 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
947 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
948
949 /*
950 * There are four kinds of DP registers:
951 *
952 * IBX PCH
953 * SNB CPU
954 * IVB CPU
955 * CPT PCH
956 *
957 * IBX PCH and CPU are the same for almost everything,
958 * except that the CPU DP PLL is configured in this
959 * register
960 *
961 * CPT PCH is quite different, having many bits moved
962 * to the TRANS_DP_CTL register instead. That
963 * configuration happens (oddly) in ironlake_pch_enable
964 */
965
966 /* Preserve the BIOS-computed detected bit. This is
967 * supposed to be read-only.
968 */
969 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
970
971 /* Handle DP bits in common between all three register formats */
972 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
973 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
974
975 if (intel_dp->has_audio) {
976 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
977 pipe_name(crtc->pipe));
978 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
979 intel_write_eld(&encoder->base, adjusted_mode);
980 }
981
982 /* Split out the IBX/CPU vs CPT settings */
983
984 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
985 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
986 intel_dp->DP |= DP_SYNC_HS_HIGH;
987 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
988 intel_dp->DP |= DP_SYNC_VS_HIGH;
989 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
990
991 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
992 intel_dp->DP |= DP_ENHANCED_FRAMING;
993
994 intel_dp->DP |= crtc->pipe << 29;
995 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
996 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
997 intel_dp->DP |= intel_dp->color_range;
998
999 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1000 intel_dp->DP |= DP_SYNC_HS_HIGH;
1001 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1002 intel_dp->DP |= DP_SYNC_VS_HIGH;
1003 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1004
1005 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1006 intel_dp->DP |= DP_ENHANCED_FRAMING;
1007
1008 if (crtc->pipe == 1)
1009 intel_dp->DP |= DP_PIPEB_SELECT;
1010 } else {
1011 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1012 }
1013
1014 if (port == PORT_A && !IS_VALLEYVIEW(dev))
1015 ironlake_set_pll_cpu_edp(intel_dp);
1016 }
1017
1018 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1019 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1020
1021 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1022 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1023
1024 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1025 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1026
1027 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1028 u32 mask,
1029 u32 value)
1030 {
1031 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1032 struct drm_i915_private *dev_priv = dev->dev_private;
1033 u32 pp_stat_reg, pp_ctrl_reg;
1034
1035 pp_stat_reg = _pp_stat_reg(intel_dp);
1036 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1037
1038 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1039 mask, value,
1040 I915_READ(pp_stat_reg),
1041 I915_READ(pp_ctrl_reg));
1042
1043 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1044 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1045 I915_READ(pp_stat_reg),
1046 I915_READ(pp_ctrl_reg));
1047 }
1048
1049 DRM_DEBUG_KMS("Wait complete\n");
1050 }
1051
1052 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1053 {
1054 DRM_DEBUG_KMS("Wait for panel power on\n");
1055 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1056 }
1057
1058 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1059 {
1060 DRM_DEBUG_KMS("Wait for panel power off time\n");
1061 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1062 }
1063
1064 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1065 {
1066 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1067 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1068 }
1069
1070
1071 /* Read the current pp_control value, unlocking the register if it
1072 * is locked
1073 */
1074
1075 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1076 {
1077 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 u32 control;
1080
1081 control = I915_READ(_pp_ctrl_reg(intel_dp));
1082 control &= ~PANEL_UNLOCK_MASK;
1083 control |= PANEL_UNLOCK_REGS;
1084 return control;
1085 }
1086
1087 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1088 {
1089 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1090 struct drm_i915_private *dev_priv = dev->dev_private;
1091 u32 pp;
1092 u32 pp_stat_reg, pp_ctrl_reg;
1093
1094 if (!is_edp(intel_dp))
1095 return;
1096
1097 WARN(intel_dp->want_panel_vdd,
1098 "eDP VDD already requested on\n");
1099
1100 intel_dp->want_panel_vdd = true;
1101
1102 if (ironlake_edp_have_panel_vdd(intel_dp))
1103 return;
1104
1105 intel_runtime_pm_get(dev_priv);
1106
1107 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1108
1109 if (!ironlake_edp_have_panel_power(intel_dp))
1110 ironlake_wait_panel_power_cycle(intel_dp);
1111
1112 pp = ironlake_get_pp_control(intel_dp);
1113 pp |= EDP_FORCE_VDD;
1114
1115 pp_stat_reg = _pp_stat_reg(intel_dp);
1116 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1117
1118 I915_WRITE(pp_ctrl_reg, pp);
1119 POSTING_READ(pp_ctrl_reg);
1120 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1121 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1122 /*
1123 * If the panel wasn't on, delay before accessing aux channel
1124 */
1125 if (!ironlake_edp_have_panel_power(intel_dp)) {
1126 DRM_DEBUG_KMS("eDP was not running\n");
1127 msleep(intel_dp->panel_power_up_delay);
1128 }
1129 }
1130
1131 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1132 {
1133 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1134 struct drm_i915_private *dev_priv = dev->dev_private;
1135 u32 pp;
1136 u32 pp_stat_reg, pp_ctrl_reg;
1137
1138 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1139
1140 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1141 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1142
1143 pp = ironlake_get_pp_control(intel_dp);
1144 pp &= ~EDP_FORCE_VDD;
1145
1146 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1147 pp_stat_reg = _pp_stat_reg(intel_dp);
1148
1149 I915_WRITE(pp_ctrl_reg, pp);
1150 POSTING_READ(pp_ctrl_reg);
1151
1152 /* Make sure sequencer is idle before allowing subsequent activity */
1153 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1154 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1155
1156 if ((pp & POWER_TARGET_ON) == 0)
1157 msleep(intel_dp->panel_power_cycle_delay);
1158
1159 intel_runtime_pm_put(dev_priv);
1160 }
1161 }
1162
1163 static void ironlake_panel_vdd_work(struct work_struct *__work)
1164 {
1165 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1166 struct intel_dp, panel_vdd_work);
1167 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1168
1169 mutex_lock(&dev->mode_config.mutex);
1170 ironlake_panel_vdd_off_sync(intel_dp);
1171 mutex_unlock(&dev->mode_config.mutex);
1172 }
1173
1174 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1175 {
1176 if (!is_edp(intel_dp))
1177 return;
1178
1179 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1180
1181 intel_dp->want_panel_vdd = false;
1182
1183 if (sync) {
1184 ironlake_panel_vdd_off_sync(intel_dp);
1185 } else {
1186 /*
1187 * Queue the timer to fire a long
1188 * time from now (relative to the power down delay)
1189 * to keep the panel power up across a sequence of operations
1190 */
1191 schedule_delayed_work(&intel_dp->panel_vdd_work,
1192 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1193 }
1194 }
1195
1196 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1197 {
1198 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1199 struct drm_i915_private *dev_priv = dev->dev_private;
1200 u32 pp;
1201 u32 pp_ctrl_reg;
1202
1203 if (!is_edp(intel_dp))
1204 return;
1205
1206 DRM_DEBUG_KMS("Turn eDP power on\n");
1207
1208 if (ironlake_edp_have_panel_power(intel_dp)) {
1209 DRM_DEBUG_KMS("eDP power already on\n");
1210 return;
1211 }
1212
1213 ironlake_wait_panel_power_cycle(intel_dp);
1214
1215 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1216 pp = ironlake_get_pp_control(intel_dp);
1217 if (IS_GEN5(dev)) {
1218 /* ILK workaround: disable reset around power sequence */
1219 pp &= ~PANEL_POWER_RESET;
1220 I915_WRITE(pp_ctrl_reg, pp);
1221 POSTING_READ(pp_ctrl_reg);
1222 }
1223
1224 pp |= POWER_TARGET_ON;
1225 if (!IS_GEN5(dev))
1226 pp |= PANEL_POWER_RESET;
1227
1228 I915_WRITE(pp_ctrl_reg, pp);
1229 POSTING_READ(pp_ctrl_reg);
1230
1231 ironlake_wait_panel_on(intel_dp);
1232
1233 if (IS_GEN5(dev)) {
1234 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1235 I915_WRITE(pp_ctrl_reg, pp);
1236 POSTING_READ(pp_ctrl_reg);
1237 }
1238 }
1239
1240 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1241 {
1242 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1243 struct drm_i915_private *dev_priv = dev->dev_private;
1244 u32 pp;
1245 u32 pp_ctrl_reg;
1246
1247 if (!is_edp(intel_dp))
1248 return;
1249
1250 DRM_DEBUG_KMS("Turn eDP power off\n");
1251
1252 pp = ironlake_get_pp_control(intel_dp);
1253 /* We need to switch off panel power _and_ force vdd, for otherwise some
1254 * panels get very unhappy and cease to work. */
1255 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1256
1257 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1258
1259 I915_WRITE(pp_ctrl_reg, pp);
1260 POSTING_READ(pp_ctrl_reg);
1261
1262 ironlake_wait_panel_off(intel_dp);
1263 }
1264
1265 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1266 {
1267 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1268 struct drm_device *dev = intel_dig_port->base.base.dev;
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270 u32 pp;
1271 u32 pp_ctrl_reg;
1272
1273 if (!is_edp(intel_dp))
1274 return;
1275
1276 DRM_DEBUG_KMS("\n");
1277 /*
1278 * If we enable the backlight right away following a panel power
1279 * on, we may see slight flicker as the panel syncs with the eDP
1280 * link. So delay a bit to make sure the image is solid before
1281 * allowing it to appear.
1282 */
1283 msleep(intel_dp->backlight_on_delay);
1284 pp = ironlake_get_pp_control(intel_dp);
1285 pp |= EDP_BLC_ENABLE;
1286
1287 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1288
1289 I915_WRITE(pp_ctrl_reg, pp);
1290 POSTING_READ(pp_ctrl_reg);
1291
1292 intel_panel_enable_backlight(intel_dp->attached_connector);
1293 }
1294
1295 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1296 {
1297 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1298 struct drm_i915_private *dev_priv = dev->dev_private;
1299 u32 pp;
1300 u32 pp_ctrl_reg;
1301
1302 if (!is_edp(intel_dp))
1303 return;
1304
1305 intel_panel_disable_backlight(intel_dp->attached_connector);
1306
1307 DRM_DEBUG_KMS("\n");
1308 pp = ironlake_get_pp_control(intel_dp);
1309 pp &= ~EDP_BLC_ENABLE;
1310
1311 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1312
1313 I915_WRITE(pp_ctrl_reg, pp);
1314 POSTING_READ(pp_ctrl_reg);
1315 msleep(intel_dp->backlight_off_delay);
1316 }
1317
1318 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1319 {
1320 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1321 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1322 struct drm_device *dev = crtc->dev;
1323 struct drm_i915_private *dev_priv = dev->dev_private;
1324 u32 dpa_ctl;
1325
1326 assert_pipe_disabled(dev_priv,
1327 to_intel_crtc(crtc)->pipe);
1328
1329 DRM_DEBUG_KMS("\n");
1330 dpa_ctl = I915_READ(DP_A);
1331 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1332 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1333
1334 /* We don't adjust intel_dp->DP while tearing down the link, to
1335 * facilitate link retraining (e.g. after hotplug). Hence clear all
1336 * enable bits here to ensure that we don't enable too much. */
1337 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1338 intel_dp->DP |= DP_PLL_ENABLE;
1339 I915_WRITE(DP_A, intel_dp->DP);
1340 POSTING_READ(DP_A);
1341 udelay(200);
1342 }
1343
1344 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1345 {
1346 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1347 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1348 struct drm_device *dev = crtc->dev;
1349 struct drm_i915_private *dev_priv = dev->dev_private;
1350 u32 dpa_ctl;
1351
1352 assert_pipe_disabled(dev_priv,
1353 to_intel_crtc(crtc)->pipe);
1354
1355 dpa_ctl = I915_READ(DP_A);
1356 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1357 "dp pll off, should be on\n");
1358 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1359
1360 /* We can't rely on the value tracked for the DP register in
1361 * intel_dp->DP because link_down must not change that (otherwise link
1362 * re-training will fail. */
1363 dpa_ctl &= ~DP_PLL_ENABLE;
1364 I915_WRITE(DP_A, dpa_ctl);
1365 POSTING_READ(DP_A);
1366 udelay(200);
1367 }
1368
1369 /* If the sink supports it, try to set the power state appropriately */
1370 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1371 {
1372 int ret, i;
1373
1374 /* Should have a valid DPCD by this point */
1375 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1376 return;
1377
1378 if (mode != DRM_MODE_DPMS_ON) {
1379 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1380 DP_SET_POWER_D3);
1381 if (ret != 1)
1382 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1383 } else {
1384 /*
1385 * When turning on, we need to retry for 1ms to give the sink
1386 * time to wake up.
1387 */
1388 for (i = 0; i < 3; i++) {
1389 ret = intel_dp_aux_native_write_1(intel_dp,
1390 DP_SET_POWER,
1391 DP_SET_POWER_D0);
1392 if (ret == 1)
1393 break;
1394 msleep(1);
1395 }
1396 }
1397 }
1398
1399 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1400 enum pipe *pipe)
1401 {
1402 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1403 enum port port = dp_to_dig_port(intel_dp)->port;
1404 struct drm_device *dev = encoder->base.dev;
1405 struct drm_i915_private *dev_priv = dev->dev_private;
1406 u32 tmp = I915_READ(intel_dp->output_reg);
1407
1408 if (!(tmp & DP_PORT_EN))
1409 return false;
1410
1411 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1412 *pipe = PORT_TO_PIPE_CPT(tmp);
1413 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1414 *pipe = PORT_TO_PIPE(tmp);
1415 } else {
1416 u32 trans_sel;
1417 u32 trans_dp;
1418 int i;
1419
1420 switch (intel_dp->output_reg) {
1421 case PCH_DP_B:
1422 trans_sel = TRANS_DP_PORT_SEL_B;
1423 break;
1424 case PCH_DP_C:
1425 trans_sel = TRANS_DP_PORT_SEL_C;
1426 break;
1427 case PCH_DP_D:
1428 trans_sel = TRANS_DP_PORT_SEL_D;
1429 break;
1430 default:
1431 return true;
1432 }
1433
1434 for_each_pipe(i) {
1435 trans_dp = I915_READ(TRANS_DP_CTL(i));
1436 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1437 *pipe = i;
1438 return true;
1439 }
1440 }
1441
1442 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1443 intel_dp->output_reg);
1444 }
1445
1446 return true;
1447 }
1448
1449 static void intel_dp_get_config(struct intel_encoder *encoder,
1450 struct intel_crtc_config *pipe_config)
1451 {
1452 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1453 u32 tmp, flags = 0;
1454 struct drm_device *dev = encoder->base.dev;
1455 struct drm_i915_private *dev_priv = dev->dev_private;
1456 enum port port = dp_to_dig_port(intel_dp)->port;
1457 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1458 int dotclock;
1459
1460 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1461 tmp = I915_READ(intel_dp->output_reg);
1462 if (tmp & DP_SYNC_HS_HIGH)
1463 flags |= DRM_MODE_FLAG_PHSYNC;
1464 else
1465 flags |= DRM_MODE_FLAG_NHSYNC;
1466
1467 if (tmp & DP_SYNC_VS_HIGH)
1468 flags |= DRM_MODE_FLAG_PVSYNC;
1469 else
1470 flags |= DRM_MODE_FLAG_NVSYNC;
1471 } else {
1472 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1473 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1474 flags |= DRM_MODE_FLAG_PHSYNC;
1475 else
1476 flags |= DRM_MODE_FLAG_NHSYNC;
1477
1478 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1479 flags |= DRM_MODE_FLAG_PVSYNC;
1480 else
1481 flags |= DRM_MODE_FLAG_NVSYNC;
1482 }
1483
1484 pipe_config->adjusted_mode.flags |= flags;
1485
1486 pipe_config->has_dp_encoder = true;
1487
1488 intel_dp_get_m_n(crtc, pipe_config);
1489
1490 if (port == PORT_A) {
1491 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1492 pipe_config->port_clock = 162000;
1493 else
1494 pipe_config->port_clock = 270000;
1495 }
1496
1497 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1498 &pipe_config->dp_m_n);
1499
1500 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1501 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1502
1503 pipe_config->adjusted_mode.crtc_clock = dotclock;
1504
1505 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1506 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1507 /*
1508 * This is a big fat ugly hack.
1509 *
1510 * Some machines in UEFI boot mode provide us a VBT that has 18
1511 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1512 * unknown we fail to light up. Yet the same BIOS boots up with
1513 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1514 * max, not what it tells us to use.
1515 *
1516 * Note: This will still be broken if the eDP panel is not lit
1517 * up by the BIOS, and thus we can't get the mode at module
1518 * load.
1519 */
1520 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1521 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1522 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1523 }
1524 }
1525
1526 static bool is_edp_psr(struct drm_device *dev)
1527 {
1528 struct drm_i915_private *dev_priv = dev->dev_private;
1529
1530 return dev_priv->psr.sink_support;
1531 }
1532
1533 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1534 {
1535 struct drm_i915_private *dev_priv = dev->dev_private;
1536
1537 if (!HAS_PSR(dev))
1538 return false;
1539
1540 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1541 }
1542
1543 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1544 struct edp_vsc_psr *vsc_psr)
1545 {
1546 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1547 struct drm_device *dev = dig_port->base.base.dev;
1548 struct drm_i915_private *dev_priv = dev->dev_private;
1549 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1550 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1551 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1552 uint32_t *data = (uint32_t *) vsc_psr;
1553 unsigned int i;
1554
1555 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1556 the video DIP being updated before program video DIP data buffer
1557 registers for DIP being updated. */
1558 I915_WRITE(ctl_reg, 0);
1559 POSTING_READ(ctl_reg);
1560
1561 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1562 if (i < sizeof(struct edp_vsc_psr))
1563 I915_WRITE(data_reg + i, *data++);
1564 else
1565 I915_WRITE(data_reg + i, 0);
1566 }
1567
1568 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1569 POSTING_READ(ctl_reg);
1570 }
1571
1572 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1573 {
1574 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1575 struct drm_i915_private *dev_priv = dev->dev_private;
1576 struct edp_vsc_psr psr_vsc;
1577
1578 if (intel_dp->psr_setup_done)
1579 return;
1580
1581 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1582 memset(&psr_vsc, 0, sizeof(psr_vsc));
1583 psr_vsc.sdp_header.HB0 = 0;
1584 psr_vsc.sdp_header.HB1 = 0x7;
1585 psr_vsc.sdp_header.HB2 = 0x2;
1586 psr_vsc.sdp_header.HB3 = 0x8;
1587 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1588
1589 /* Avoid continuous PSR exit by masking memup and hpd */
1590 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1591 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1592
1593 intel_dp->psr_setup_done = true;
1594 }
1595
1596 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1597 {
1598 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1599 struct drm_i915_private *dev_priv = dev->dev_private;
1600 uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
1601 int precharge = 0x3;
1602 int msg_size = 5; /* Header(4) + Message(1) */
1603
1604 /* Enable PSR in sink */
1605 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1606 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1607 DP_PSR_ENABLE &
1608 ~DP_PSR_MAIN_LINK_ACTIVE);
1609 else
1610 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1611 DP_PSR_ENABLE |
1612 DP_PSR_MAIN_LINK_ACTIVE);
1613
1614 /* Setup AUX registers */
1615 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1616 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1617 I915_WRITE(EDP_PSR_AUX_CTL(dev),
1618 DP_AUX_CH_CTL_TIME_OUT_400us |
1619 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1620 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1621 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1622 }
1623
1624 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1625 {
1626 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1627 struct drm_i915_private *dev_priv = dev->dev_private;
1628 uint32_t max_sleep_time = 0x1f;
1629 uint32_t idle_frames = 1;
1630 uint32_t val = 0x0;
1631 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1632
1633 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1634 val |= EDP_PSR_LINK_STANDBY;
1635 val |= EDP_PSR_TP2_TP3_TIME_0us;
1636 val |= EDP_PSR_TP1_TIME_0us;
1637 val |= EDP_PSR_SKIP_AUX_EXIT;
1638 } else
1639 val |= EDP_PSR_LINK_DISABLE;
1640
1641 I915_WRITE(EDP_PSR_CTL(dev), val |
1642 IS_BROADWELL(dev) ? 0 : link_entry_time |
1643 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1644 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1645 EDP_PSR_ENABLE);
1646 }
1647
1648 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1649 {
1650 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1651 struct drm_device *dev = dig_port->base.base.dev;
1652 struct drm_i915_private *dev_priv = dev->dev_private;
1653 struct drm_crtc *crtc = dig_port->base.base.crtc;
1654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1655 struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1656 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1657
1658 dev_priv->psr.source_ok = false;
1659
1660 if (!HAS_PSR(dev)) {
1661 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1662 return false;
1663 }
1664
1665 if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1666 (dig_port->port != PORT_A)) {
1667 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1668 return false;
1669 }
1670
1671 if (!i915_enable_psr) {
1672 DRM_DEBUG_KMS("PSR disable by flag\n");
1673 return false;
1674 }
1675
1676 crtc = dig_port->base.base.crtc;
1677 if (crtc == NULL) {
1678 DRM_DEBUG_KMS("crtc not active for PSR\n");
1679 return false;
1680 }
1681
1682 intel_crtc = to_intel_crtc(crtc);
1683 if (!intel_crtc_active(crtc)) {
1684 DRM_DEBUG_KMS("crtc not active for PSR\n");
1685 return false;
1686 }
1687
1688 obj = to_intel_framebuffer(crtc->fb)->obj;
1689 if (obj->tiling_mode != I915_TILING_X ||
1690 obj->fence_reg == I915_FENCE_REG_NONE) {
1691 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1692 return false;
1693 }
1694
1695 if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1696 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1697 return false;
1698 }
1699
1700 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1701 S3D_ENABLE) {
1702 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1703 return false;
1704 }
1705
1706 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1707 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1708 return false;
1709 }
1710
1711 dev_priv->psr.source_ok = true;
1712 return true;
1713 }
1714
1715 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1716 {
1717 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1718
1719 if (!intel_edp_psr_match_conditions(intel_dp) ||
1720 intel_edp_is_psr_enabled(dev))
1721 return;
1722
1723 /* Setup PSR once */
1724 intel_edp_psr_setup(intel_dp);
1725
1726 /* Enable PSR on the panel */
1727 intel_edp_psr_enable_sink(intel_dp);
1728
1729 /* Enable PSR on the host */
1730 intel_edp_psr_enable_source(intel_dp);
1731 }
1732
1733 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1734 {
1735 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1736
1737 if (intel_edp_psr_match_conditions(intel_dp) &&
1738 !intel_edp_is_psr_enabled(dev))
1739 intel_edp_psr_do_enable(intel_dp);
1740 }
1741
1742 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1743 {
1744 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1745 struct drm_i915_private *dev_priv = dev->dev_private;
1746
1747 if (!intel_edp_is_psr_enabled(dev))
1748 return;
1749
1750 I915_WRITE(EDP_PSR_CTL(dev),
1751 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1752
1753 /* Wait till PSR is idle */
1754 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1755 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1756 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1757 }
1758
1759 void intel_edp_psr_update(struct drm_device *dev)
1760 {
1761 struct intel_encoder *encoder;
1762 struct intel_dp *intel_dp = NULL;
1763
1764 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1765 if (encoder->type == INTEL_OUTPUT_EDP) {
1766 intel_dp = enc_to_intel_dp(&encoder->base);
1767
1768 if (!is_edp_psr(dev))
1769 return;
1770
1771 if (!intel_edp_psr_match_conditions(intel_dp))
1772 intel_edp_psr_disable(intel_dp);
1773 else
1774 if (!intel_edp_is_psr_enabled(dev))
1775 intel_edp_psr_do_enable(intel_dp);
1776 }
1777 }
1778
1779 static void intel_disable_dp(struct intel_encoder *encoder)
1780 {
1781 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1782 enum port port = dp_to_dig_port(intel_dp)->port;
1783 struct drm_device *dev = encoder->base.dev;
1784
1785 /* Make sure the panel is off before trying to change the mode. But also
1786 * ensure that we have vdd while we switch off the panel. */
1787 ironlake_edp_backlight_off(intel_dp);
1788 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1789 ironlake_edp_panel_off(intel_dp);
1790
1791 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1792 if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1793 intel_dp_link_down(intel_dp);
1794 }
1795
1796 static void intel_post_disable_dp(struct intel_encoder *encoder)
1797 {
1798 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1799 enum port port = dp_to_dig_port(intel_dp)->port;
1800 struct drm_device *dev = encoder->base.dev;
1801
1802 if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1803 intel_dp_link_down(intel_dp);
1804 if (!IS_VALLEYVIEW(dev))
1805 ironlake_edp_pll_off(intel_dp);
1806 }
1807 }
1808
1809 static void intel_enable_dp(struct intel_encoder *encoder)
1810 {
1811 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1812 struct drm_device *dev = encoder->base.dev;
1813 struct drm_i915_private *dev_priv = dev->dev_private;
1814 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1815
1816 if (WARN_ON(dp_reg & DP_PORT_EN))
1817 return;
1818
1819 ironlake_edp_panel_vdd_on(intel_dp);
1820 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1821 intel_dp_start_link_train(intel_dp);
1822 ironlake_edp_panel_on(intel_dp);
1823 ironlake_edp_panel_vdd_off(intel_dp, true);
1824 intel_dp_complete_link_train(intel_dp);
1825 intel_dp_stop_link_train(intel_dp);
1826 }
1827
1828 static void g4x_enable_dp(struct intel_encoder *encoder)
1829 {
1830 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1831
1832 intel_enable_dp(encoder);
1833 ironlake_edp_backlight_on(intel_dp);
1834 }
1835
1836 static void vlv_enable_dp(struct intel_encoder *encoder)
1837 {
1838 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1839
1840 ironlake_edp_backlight_on(intel_dp);
1841 }
1842
1843 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1844 {
1845 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1846 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1847
1848 if (dport->port == PORT_A)
1849 ironlake_edp_pll_on(intel_dp);
1850 }
1851
1852 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1853 {
1854 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1855 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1856 struct drm_device *dev = encoder->base.dev;
1857 struct drm_i915_private *dev_priv = dev->dev_private;
1858 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1859 enum dpio_channel port = vlv_dport_to_channel(dport);
1860 int pipe = intel_crtc->pipe;
1861 struct edp_power_seq power_seq;
1862 u32 val;
1863
1864 mutex_lock(&dev_priv->dpio_lock);
1865
1866 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1867 val = 0;
1868 if (pipe)
1869 val |= (1<<21);
1870 else
1871 val &= ~(1<<21);
1872 val |= 0x001000c4;
1873 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1874 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1875 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1876
1877 mutex_unlock(&dev_priv->dpio_lock);
1878
1879 if (is_edp(intel_dp)) {
1880 /* init power sequencer on this pipe and port */
1881 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1882 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1883 &power_seq);
1884 }
1885
1886 intel_enable_dp(encoder);
1887
1888 vlv_wait_port_ready(dev_priv, dport);
1889 }
1890
1891 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1892 {
1893 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1894 struct drm_device *dev = encoder->base.dev;
1895 struct drm_i915_private *dev_priv = dev->dev_private;
1896 struct intel_crtc *intel_crtc =
1897 to_intel_crtc(encoder->base.crtc);
1898 enum dpio_channel port = vlv_dport_to_channel(dport);
1899 int pipe = intel_crtc->pipe;
1900
1901 /* Program Tx lane resets to default */
1902 mutex_lock(&dev_priv->dpio_lock);
1903 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1904 DPIO_PCS_TX_LANE2_RESET |
1905 DPIO_PCS_TX_LANE1_RESET);
1906 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1907 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1908 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1909 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1910 DPIO_PCS_CLK_SOFT_RESET);
1911
1912 /* Fix up inter-pair skew failure */
1913 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1914 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1915 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1916 mutex_unlock(&dev_priv->dpio_lock);
1917 }
1918
1919 /*
1920 * Native read with retry for link status and receiver capability reads for
1921 * cases where the sink may still be asleep.
1922 */
1923 static bool
1924 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1925 uint8_t *recv, int recv_bytes)
1926 {
1927 int ret, i;
1928
1929 /*
1930 * Sinks are *supposed* to come up within 1ms from an off state,
1931 * but we're also supposed to retry 3 times per the spec.
1932 */
1933 for (i = 0; i < 3; i++) {
1934 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1935 recv_bytes);
1936 if (ret == recv_bytes)
1937 return true;
1938 msleep(1);
1939 }
1940
1941 return false;
1942 }
1943
1944 /*
1945 * Fetch AUX CH registers 0x202 - 0x207 which contain
1946 * link status information
1947 */
1948 static bool
1949 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1950 {
1951 return intel_dp_aux_native_read_retry(intel_dp,
1952 DP_LANE0_1_STATUS,
1953 link_status,
1954 DP_LINK_STATUS_SIZE);
1955 }
1956
1957 /*
1958 * These are source-specific values; current Intel hardware supports
1959 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1960 */
1961
1962 static uint8_t
1963 intel_dp_voltage_max(struct intel_dp *intel_dp)
1964 {
1965 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1966 enum port port = dp_to_dig_port(intel_dp)->port;
1967
1968 if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
1969 return DP_TRAIN_VOLTAGE_SWING_1200;
1970 else if (IS_GEN7(dev) && port == PORT_A)
1971 return DP_TRAIN_VOLTAGE_SWING_800;
1972 else if (HAS_PCH_CPT(dev) && port != PORT_A)
1973 return DP_TRAIN_VOLTAGE_SWING_1200;
1974 else
1975 return DP_TRAIN_VOLTAGE_SWING_800;
1976 }
1977
1978 static uint8_t
1979 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1980 {
1981 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1982 enum port port = dp_to_dig_port(intel_dp)->port;
1983
1984 if (IS_BROADWELL(dev)) {
1985 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1986 case DP_TRAIN_VOLTAGE_SWING_400:
1987 case DP_TRAIN_VOLTAGE_SWING_600:
1988 return DP_TRAIN_PRE_EMPHASIS_6;
1989 case DP_TRAIN_VOLTAGE_SWING_800:
1990 return DP_TRAIN_PRE_EMPHASIS_3_5;
1991 case DP_TRAIN_VOLTAGE_SWING_1200:
1992 default:
1993 return DP_TRAIN_PRE_EMPHASIS_0;
1994 }
1995 } else if (IS_HASWELL(dev)) {
1996 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1997 case DP_TRAIN_VOLTAGE_SWING_400:
1998 return DP_TRAIN_PRE_EMPHASIS_9_5;
1999 case DP_TRAIN_VOLTAGE_SWING_600:
2000 return DP_TRAIN_PRE_EMPHASIS_6;
2001 case DP_TRAIN_VOLTAGE_SWING_800:
2002 return DP_TRAIN_PRE_EMPHASIS_3_5;
2003 case DP_TRAIN_VOLTAGE_SWING_1200:
2004 default:
2005 return DP_TRAIN_PRE_EMPHASIS_0;
2006 }
2007 } else if (IS_VALLEYVIEW(dev)) {
2008 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2009 case DP_TRAIN_VOLTAGE_SWING_400:
2010 return DP_TRAIN_PRE_EMPHASIS_9_5;
2011 case DP_TRAIN_VOLTAGE_SWING_600:
2012 return DP_TRAIN_PRE_EMPHASIS_6;
2013 case DP_TRAIN_VOLTAGE_SWING_800:
2014 return DP_TRAIN_PRE_EMPHASIS_3_5;
2015 case DP_TRAIN_VOLTAGE_SWING_1200:
2016 default:
2017 return DP_TRAIN_PRE_EMPHASIS_0;
2018 }
2019 } else if (IS_GEN7(dev) && port == PORT_A) {
2020 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2021 case DP_TRAIN_VOLTAGE_SWING_400:
2022 return DP_TRAIN_PRE_EMPHASIS_6;
2023 case DP_TRAIN_VOLTAGE_SWING_600:
2024 case DP_TRAIN_VOLTAGE_SWING_800:
2025 return DP_TRAIN_PRE_EMPHASIS_3_5;
2026 default:
2027 return DP_TRAIN_PRE_EMPHASIS_0;
2028 }
2029 } else {
2030 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2031 case DP_TRAIN_VOLTAGE_SWING_400:
2032 return DP_TRAIN_PRE_EMPHASIS_6;
2033 case DP_TRAIN_VOLTAGE_SWING_600:
2034 return DP_TRAIN_PRE_EMPHASIS_6;
2035 case DP_TRAIN_VOLTAGE_SWING_800:
2036 return DP_TRAIN_PRE_EMPHASIS_3_5;
2037 case DP_TRAIN_VOLTAGE_SWING_1200:
2038 default:
2039 return DP_TRAIN_PRE_EMPHASIS_0;
2040 }
2041 }
2042 }
2043
2044 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2045 {
2046 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2047 struct drm_i915_private *dev_priv = dev->dev_private;
2048 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2049 struct intel_crtc *intel_crtc =
2050 to_intel_crtc(dport->base.base.crtc);
2051 unsigned long demph_reg_value, preemph_reg_value,
2052 uniqtranscale_reg_value;
2053 uint8_t train_set = intel_dp->train_set[0];
2054 enum dpio_channel port = vlv_dport_to_channel(dport);
2055 int pipe = intel_crtc->pipe;
2056
2057 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2058 case DP_TRAIN_PRE_EMPHASIS_0:
2059 preemph_reg_value = 0x0004000;
2060 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2061 case DP_TRAIN_VOLTAGE_SWING_400:
2062 demph_reg_value = 0x2B405555;
2063 uniqtranscale_reg_value = 0x552AB83A;
2064 break;
2065 case DP_TRAIN_VOLTAGE_SWING_600:
2066 demph_reg_value = 0x2B404040;
2067 uniqtranscale_reg_value = 0x5548B83A;
2068 break;
2069 case DP_TRAIN_VOLTAGE_SWING_800:
2070 demph_reg_value = 0x2B245555;
2071 uniqtranscale_reg_value = 0x5560B83A;
2072 break;
2073 case DP_TRAIN_VOLTAGE_SWING_1200:
2074 demph_reg_value = 0x2B405555;
2075 uniqtranscale_reg_value = 0x5598DA3A;
2076 break;
2077 default:
2078 return 0;
2079 }
2080 break;
2081 case DP_TRAIN_PRE_EMPHASIS_3_5:
2082 preemph_reg_value = 0x0002000;
2083 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2084 case DP_TRAIN_VOLTAGE_SWING_400:
2085 demph_reg_value = 0x2B404040;
2086 uniqtranscale_reg_value = 0x5552B83A;
2087 break;
2088 case DP_TRAIN_VOLTAGE_SWING_600:
2089 demph_reg_value = 0x2B404848;
2090 uniqtranscale_reg_value = 0x5580B83A;
2091 break;
2092 case DP_TRAIN_VOLTAGE_SWING_800:
2093 demph_reg_value = 0x2B404040;
2094 uniqtranscale_reg_value = 0x55ADDA3A;
2095 break;
2096 default:
2097 return 0;
2098 }
2099 break;
2100 case DP_TRAIN_PRE_EMPHASIS_6:
2101 preemph_reg_value = 0x0000000;
2102 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2103 case DP_TRAIN_VOLTAGE_SWING_400:
2104 demph_reg_value = 0x2B305555;
2105 uniqtranscale_reg_value = 0x5570B83A;
2106 break;
2107 case DP_TRAIN_VOLTAGE_SWING_600:
2108 demph_reg_value = 0x2B2B4040;
2109 uniqtranscale_reg_value = 0x55ADDA3A;
2110 break;
2111 default:
2112 return 0;
2113 }
2114 break;
2115 case DP_TRAIN_PRE_EMPHASIS_9_5:
2116 preemph_reg_value = 0x0006000;
2117 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2118 case DP_TRAIN_VOLTAGE_SWING_400:
2119 demph_reg_value = 0x1B405555;
2120 uniqtranscale_reg_value = 0x55ADDA3A;
2121 break;
2122 default:
2123 return 0;
2124 }
2125 break;
2126 default:
2127 return 0;
2128 }
2129
2130 mutex_lock(&dev_priv->dpio_lock);
2131 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2132 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2133 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2134 uniqtranscale_reg_value);
2135 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2136 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2137 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2138 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2139 mutex_unlock(&dev_priv->dpio_lock);
2140
2141 return 0;
2142 }
2143
2144 static void
2145 intel_get_adjust_train(struct intel_dp *intel_dp,
2146 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2147 {
2148 uint8_t v = 0;
2149 uint8_t p = 0;
2150 int lane;
2151 uint8_t voltage_max;
2152 uint8_t preemph_max;
2153
2154 for (lane = 0; lane < intel_dp->lane_count; lane++) {
2155 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2156 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2157
2158 if (this_v > v)
2159 v = this_v;
2160 if (this_p > p)
2161 p = this_p;
2162 }
2163
2164 voltage_max = intel_dp_voltage_max(intel_dp);
2165 if (v >= voltage_max)
2166 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2167
2168 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2169 if (p >= preemph_max)
2170 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2171
2172 for (lane = 0; lane < 4; lane++)
2173 intel_dp->train_set[lane] = v | p;
2174 }
2175
2176 static uint32_t
2177 intel_gen4_signal_levels(uint8_t train_set)
2178 {
2179 uint32_t signal_levels = 0;
2180
2181 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2182 case DP_TRAIN_VOLTAGE_SWING_400:
2183 default:
2184 signal_levels |= DP_VOLTAGE_0_4;
2185 break;
2186 case DP_TRAIN_VOLTAGE_SWING_600:
2187 signal_levels |= DP_VOLTAGE_0_6;
2188 break;
2189 case DP_TRAIN_VOLTAGE_SWING_800:
2190 signal_levels |= DP_VOLTAGE_0_8;
2191 break;
2192 case DP_TRAIN_VOLTAGE_SWING_1200:
2193 signal_levels |= DP_VOLTAGE_1_2;
2194 break;
2195 }
2196 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2197 case DP_TRAIN_PRE_EMPHASIS_0:
2198 default:
2199 signal_levels |= DP_PRE_EMPHASIS_0;
2200 break;
2201 case DP_TRAIN_PRE_EMPHASIS_3_5:
2202 signal_levels |= DP_PRE_EMPHASIS_3_5;
2203 break;
2204 case DP_TRAIN_PRE_EMPHASIS_6:
2205 signal_levels |= DP_PRE_EMPHASIS_6;
2206 break;
2207 case DP_TRAIN_PRE_EMPHASIS_9_5:
2208 signal_levels |= DP_PRE_EMPHASIS_9_5;
2209 break;
2210 }
2211 return signal_levels;
2212 }
2213
2214 /* Gen6's DP voltage swing and pre-emphasis control */
2215 static uint32_t
2216 intel_gen6_edp_signal_levels(uint8_t train_set)
2217 {
2218 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2219 DP_TRAIN_PRE_EMPHASIS_MASK);
2220 switch (signal_levels) {
2221 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2222 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2223 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2224 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2225 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2226 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2227 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2228 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2229 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2230 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2231 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2232 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2233 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2234 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2235 default:
2236 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2237 "0x%x\n", signal_levels);
2238 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2239 }
2240 }
2241
2242 /* Gen7's DP voltage swing and pre-emphasis control */
2243 static uint32_t
2244 intel_gen7_edp_signal_levels(uint8_t train_set)
2245 {
2246 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2247 DP_TRAIN_PRE_EMPHASIS_MASK);
2248 switch (signal_levels) {
2249 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2250 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2251 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2252 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2253 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2254 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2255
2256 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2257 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2258 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2259 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2260
2261 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2262 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2263 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2264 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2265
2266 default:
2267 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2268 "0x%x\n", signal_levels);
2269 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2270 }
2271 }
2272
2273 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2274 static uint32_t
2275 intel_hsw_signal_levels(uint8_t train_set)
2276 {
2277 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2278 DP_TRAIN_PRE_EMPHASIS_MASK);
2279 switch (signal_levels) {
2280 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2281 return DDI_BUF_EMP_400MV_0DB_HSW;
2282 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2283 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2284 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2285 return DDI_BUF_EMP_400MV_6DB_HSW;
2286 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2287 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2288
2289 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2290 return DDI_BUF_EMP_600MV_0DB_HSW;
2291 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2292 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2293 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2294 return DDI_BUF_EMP_600MV_6DB_HSW;
2295
2296 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2297 return DDI_BUF_EMP_800MV_0DB_HSW;
2298 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2299 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2300 default:
2301 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2302 "0x%x\n", signal_levels);
2303 return DDI_BUF_EMP_400MV_0DB_HSW;
2304 }
2305 }
2306
2307 static uint32_t
2308 intel_bdw_signal_levels(uint8_t train_set)
2309 {
2310 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2311 DP_TRAIN_PRE_EMPHASIS_MASK);
2312 switch (signal_levels) {
2313 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2314 return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
2315 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2316 return DDI_BUF_EMP_400MV_3_5DB_BDW; /* Sel1 */
2317 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2318 return DDI_BUF_EMP_400MV_6DB_BDW; /* Sel2 */
2319
2320 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2321 return DDI_BUF_EMP_600MV_0DB_BDW; /* Sel3 */
2322 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2323 return DDI_BUF_EMP_600MV_3_5DB_BDW; /* Sel4 */
2324 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2325 return DDI_BUF_EMP_600MV_6DB_BDW; /* Sel5 */
2326
2327 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2328 return DDI_BUF_EMP_800MV_0DB_BDW; /* Sel6 */
2329 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2330 return DDI_BUF_EMP_800MV_3_5DB_BDW; /* Sel7 */
2331
2332 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2333 return DDI_BUF_EMP_1200MV_0DB_BDW; /* Sel8 */
2334
2335 default:
2336 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2337 "0x%x\n", signal_levels);
2338 return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
2339 }
2340 }
2341
2342 /* Properly updates "DP" with the correct signal levels. */
2343 static void
2344 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2345 {
2346 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2347 enum port port = intel_dig_port->port;
2348 struct drm_device *dev = intel_dig_port->base.base.dev;
2349 uint32_t signal_levels, mask;
2350 uint8_t train_set = intel_dp->train_set[0];
2351
2352 if (IS_BROADWELL(dev)) {
2353 signal_levels = intel_bdw_signal_levels(train_set);
2354 mask = DDI_BUF_EMP_MASK;
2355 } else if (IS_HASWELL(dev)) {
2356 signal_levels = intel_hsw_signal_levels(train_set);
2357 mask = DDI_BUF_EMP_MASK;
2358 } else if (IS_VALLEYVIEW(dev)) {
2359 signal_levels = intel_vlv_signal_levels(intel_dp);
2360 mask = 0;
2361 } else if (IS_GEN7(dev) && port == PORT_A) {
2362 signal_levels = intel_gen7_edp_signal_levels(train_set);
2363 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2364 } else if (IS_GEN6(dev) && port == PORT_A) {
2365 signal_levels = intel_gen6_edp_signal_levels(train_set);
2366 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2367 } else {
2368 signal_levels = intel_gen4_signal_levels(train_set);
2369 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2370 }
2371
2372 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2373
2374 *DP = (*DP & ~mask) | signal_levels;
2375 }
2376
2377 static bool
2378 intel_dp_set_link_train(struct intel_dp *intel_dp,
2379 uint32_t *DP,
2380 uint8_t dp_train_pat)
2381 {
2382 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2383 struct drm_device *dev = intel_dig_port->base.base.dev;
2384 struct drm_i915_private *dev_priv = dev->dev_private;
2385 enum port port = intel_dig_port->port;
2386 uint8_t buf[sizeof(intel_dp->train_set) + 1];
2387 int ret, len;
2388
2389 if (HAS_DDI(dev)) {
2390 uint32_t temp = I915_READ(DP_TP_CTL(port));
2391
2392 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2393 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2394 else
2395 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2396
2397 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2398 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2399 case DP_TRAINING_PATTERN_DISABLE:
2400 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2401
2402 break;
2403 case DP_TRAINING_PATTERN_1:
2404 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2405 break;
2406 case DP_TRAINING_PATTERN_2:
2407 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2408 break;
2409 case DP_TRAINING_PATTERN_3:
2410 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2411 break;
2412 }
2413 I915_WRITE(DP_TP_CTL(port), temp);
2414
2415 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2416 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2417
2418 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2419 case DP_TRAINING_PATTERN_DISABLE:
2420 *DP |= DP_LINK_TRAIN_OFF_CPT;
2421 break;
2422 case DP_TRAINING_PATTERN_1:
2423 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2424 break;
2425 case DP_TRAINING_PATTERN_2:
2426 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2427 break;
2428 case DP_TRAINING_PATTERN_3:
2429 DRM_ERROR("DP training pattern 3 not supported\n");
2430 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2431 break;
2432 }
2433
2434 } else {
2435 *DP &= ~DP_LINK_TRAIN_MASK;
2436
2437 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2438 case DP_TRAINING_PATTERN_DISABLE:
2439 *DP |= DP_LINK_TRAIN_OFF;
2440 break;
2441 case DP_TRAINING_PATTERN_1:
2442 *DP |= DP_LINK_TRAIN_PAT_1;
2443 break;
2444 case DP_TRAINING_PATTERN_2:
2445 *DP |= DP_LINK_TRAIN_PAT_2;
2446 break;
2447 case DP_TRAINING_PATTERN_3:
2448 DRM_ERROR("DP training pattern 3 not supported\n");
2449 *DP |= DP_LINK_TRAIN_PAT_2;
2450 break;
2451 }
2452 }
2453
2454 I915_WRITE(intel_dp->output_reg, *DP);
2455 POSTING_READ(intel_dp->output_reg);
2456
2457 buf[0] = dp_train_pat;
2458 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2459 DP_TRAINING_PATTERN_DISABLE) {
2460 /* don't write DP_TRAINING_LANEx_SET on disable */
2461 len = 1;
2462 } else {
2463 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2464 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2465 len = intel_dp->lane_count + 1;
2466 }
2467
2468 ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_PATTERN_SET,
2469 buf, len);
2470
2471 return ret == len;
2472 }
2473
2474 static bool
2475 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2476 uint8_t dp_train_pat)
2477 {
2478 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2479 intel_dp_set_signal_levels(intel_dp, DP);
2480 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2481 }
2482
2483 static bool
2484 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2485 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2486 {
2487 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2488 struct drm_device *dev = intel_dig_port->base.base.dev;
2489 struct drm_i915_private *dev_priv = dev->dev_private;
2490 int ret;
2491
2492 intel_get_adjust_train(intel_dp, link_status);
2493 intel_dp_set_signal_levels(intel_dp, DP);
2494
2495 I915_WRITE(intel_dp->output_reg, *DP);
2496 POSTING_READ(intel_dp->output_reg);
2497
2498 ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET,
2499 intel_dp->train_set,
2500 intel_dp->lane_count);
2501
2502 return ret == intel_dp->lane_count;
2503 }
2504
2505 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2506 {
2507 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2508 struct drm_device *dev = intel_dig_port->base.base.dev;
2509 struct drm_i915_private *dev_priv = dev->dev_private;
2510 enum port port = intel_dig_port->port;
2511 uint32_t val;
2512
2513 if (!HAS_DDI(dev))
2514 return;
2515
2516 val = I915_READ(DP_TP_CTL(port));
2517 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2518 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2519 I915_WRITE(DP_TP_CTL(port), val);
2520
2521 /*
2522 * On PORT_A we can have only eDP in SST mode. There the only reason
2523 * we need to set idle transmission mode is to work around a HW issue
2524 * where we enable the pipe while not in idle link-training mode.
2525 * In this case there is requirement to wait for a minimum number of
2526 * idle patterns to be sent.
2527 */
2528 if (port == PORT_A)
2529 return;
2530
2531 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2532 1))
2533 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2534 }
2535
2536 /* Enable corresponding port and start training pattern 1 */
2537 void
2538 intel_dp_start_link_train(struct intel_dp *intel_dp)
2539 {
2540 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2541 struct drm_device *dev = encoder->dev;
2542 int i;
2543 uint8_t voltage;
2544 int voltage_tries, loop_tries;
2545 uint32_t DP = intel_dp->DP;
2546 uint8_t link_config[2];
2547
2548 if (HAS_DDI(dev))
2549 intel_ddi_prepare_link_retrain(encoder);
2550
2551 /* Write the link configuration data */
2552 link_config[0] = intel_dp->link_bw;
2553 link_config[1] = intel_dp->lane_count;
2554 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2555 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2556 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, link_config, 2);
2557
2558 link_config[0] = 0;
2559 link_config[1] = DP_SET_ANSI_8B10B;
2560 intel_dp_aux_native_write(intel_dp, DP_DOWNSPREAD_CTRL, link_config, 2);
2561
2562 DP |= DP_PORT_EN;
2563
2564 /* clock recovery */
2565 if (!intel_dp_reset_link_train(intel_dp, &DP,
2566 DP_TRAINING_PATTERN_1 |
2567 DP_LINK_SCRAMBLING_DISABLE)) {
2568 DRM_ERROR("failed to enable link training\n");
2569 return;
2570 }
2571
2572 voltage = 0xff;
2573 voltage_tries = 0;
2574 loop_tries = 0;
2575 for (;;) {
2576 uint8_t link_status[DP_LINK_STATUS_SIZE];
2577
2578 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2579 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2580 DRM_ERROR("failed to get link status\n");
2581 break;
2582 }
2583
2584 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2585 DRM_DEBUG_KMS("clock recovery OK\n");
2586 break;
2587 }
2588
2589 /* Check to see if we've tried the max voltage */
2590 for (i = 0; i < intel_dp->lane_count; i++)
2591 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2592 break;
2593 if (i == intel_dp->lane_count) {
2594 ++loop_tries;
2595 if (loop_tries == 5) {
2596 DRM_ERROR("too many full retries, give up\n");
2597 break;
2598 }
2599 intel_dp_reset_link_train(intel_dp, &DP,
2600 DP_TRAINING_PATTERN_1 |
2601 DP_LINK_SCRAMBLING_DISABLE);
2602 voltage_tries = 0;
2603 continue;
2604 }
2605
2606 /* Check to see if we've tried the same voltage 5 times */
2607 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2608 ++voltage_tries;
2609 if (voltage_tries == 5) {
2610 DRM_ERROR("too many voltage retries, give up\n");
2611 break;
2612 }
2613 } else
2614 voltage_tries = 0;
2615 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2616
2617 /* Update training set as requested by target */
2618 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2619 DRM_ERROR("failed to update link training\n");
2620 break;
2621 }
2622 }
2623
2624 intel_dp->DP = DP;
2625 }
2626
2627 void
2628 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2629 {
2630 bool channel_eq = false;
2631 int tries, cr_tries;
2632 uint32_t DP = intel_dp->DP;
2633
2634 /* channel equalization */
2635 if (!intel_dp_set_link_train(intel_dp, &DP,
2636 DP_TRAINING_PATTERN_2 |
2637 DP_LINK_SCRAMBLING_DISABLE)) {
2638 DRM_ERROR("failed to start channel equalization\n");
2639 return;
2640 }
2641
2642 tries = 0;
2643 cr_tries = 0;
2644 channel_eq = false;
2645 for (;;) {
2646 uint8_t link_status[DP_LINK_STATUS_SIZE];
2647
2648 if (cr_tries > 5) {
2649 DRM_ERROR("failed to train DP, aborting\n");
2650 break;
2651 }
2652
2653 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2654 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2655 DRM_ERROR("failed to get link status\n");
2656 break;
2657 }
2658
2659 /* Make sure clock is still ok */
2660 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2661 intel_dp_start_link_train(intel_dp);
2662 intel_dp_set_link_train(intel_dp, &DP,
2663 DP_TRAINING_PATTERN_2 |
2664 DP_LINK_SCRAMBLING_DISABLE);
2665 cr_tries++;
2666 continue;
2667 }
2668
2669 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2670 channel_eq = true;
2671 break;
2672 }
2673
2674 /* Try 5 times, then try clock recovery if that fails */
2675 if (tries > 5) {
2676 intel_dp_link_down(intel_dp);
2677 intel_dp_start_link_train(intel_dp);
2678 intel_dp_set_link_train(intel_dp, &DP,
2679 DP_TRAINING_PATTERN_2 |
2680 DP_LINK_SCRAMBLING_DISABLE);
2681 tries = 0;
2682 cr_tries++;
2683 continue;
2684 }
2685
2686 /* Update training set as requested by target */
2687 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2688 DRM_ERROR("failed to update link training\n");
2689 break;
2690 }
2691 ++tries;
2692 }
2693
2694 intel_dp_set_idle_link_train(intel_dp);
2695
2696 intel_dp->DP = DP;
2697
2698 if (channel_eq)
2699 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2700
2701 }
2702
2703 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2704 {
2705 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2706 DP_TRAINING_PATTERN_DISABLE);
2707 }
2708
2709 static void
2710 intel_dp_link_down(struct intel_dp *intel_dp)
2711 {
2712 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2713 enum port port = intel_dig_port->port;
2714 struct drm_device *dev = intel_dig_port->base.base.dev;
2715 struct drm_i915_private *dev_priv = dev->dev_private;
2716 struct intel_crtc *intel_crtc =
2717 to_intel_crtc(intel_dig_port->base.base.crtc);
2718 uint32_t DP = intel_dp->DP;
2719
2720 /*
2721 * DDI code has a strict mode set sequence and we should try to respect
2722 * it, otherwise we might hang the machine in many different ways. So we
2723 * really should be disabling the port only on a complete crtc_disable
2724 * sequence. This function is just called under two conditions on DDI
2725 * code:
2726 * - Link train failed while doing crtc_enable, and on this case we
2727 * really should respect the mode set sequence and wait for a
2728 * crtc_disable.
2729 * - Someone turned the monitor off and intel_dp_check_link_status
2730 * called us. We don't need to disable the whole port on this case, so
2731 * when someone turns the monitor on again,
2732 * intel_ddi_prepare_link_retrain will take care of redoing the link
2733 * train.
2734 */
2735 if (HAS_DDI(dev))
2736 return;
2737
2738 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2739 return;
2740
2741 DRM_DEBUG_KMS("\n");
2742
2743 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2744 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2745 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2746 } else {
2747 DP &= ~DP_LINK_TRAIN_MASK;
2748 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2749 }
2750 POSTING_READ(intel_dp->output_reg);
2751
2752 /* We don't really know why we're doing this */
2753 intel_wait_for_vblank(dev, intel_crtc->pipe);
2754
2755 if (HAS_PCH_IBX(dev) &&
2756 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2757 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2758
2759 /* Hardware workaround: leaving our transcoder select
2760 * set to transcoder B while it's off will prevent the
2761 * corresponding HDMI output on transcoder A.
2762 *
2763 * Combine this with another hardware workaround:
2764 * transcoder select bit can only be cleared while the
2765 * port is enabled.
2766 */
2767 DP &= ~DP_PIPEB_SELECT;
2768 I915_WRITE(intel_dp->output_reg, DP);
2769
2770 /* Changes to enable or select take place the vblank
2771 * after being written.
2772 */
2773 if (WARN_ON(crtc == NULL)) {
2774 /* We should never try to disable a port without a crtc
2775 * attached. For paranoia keep the code around for a
2776 * bit. */
2777 POSTING_READ(intel_dp->output_reg);
2778 msleep(50);
2779 } else
2780 intel_wait_for_vblank(dev, intel_crtc->pipe);
2781 }
2782
2783 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2784 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2785 POSTING_READ(intel_dp->output_reg);
2786 msleep(intel_dp->panel_power_down_delay);
2787 }
2788
2789 static bool
2790 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2791 {
2792 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2793 struct drm_device *dev = dig_port->base.base.dev;
2794 struct drm_i915_private *dev_priv = dev->dev_private;
2795
2796 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2797
2798 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2799 sizeof(intel_dp->dpcd)) == 0)
2800 return false; /* aux transfer failed */
2801
2802 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2803 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2804 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2805
2806 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2807 return false; /* DPCD not present */
2808
2809 /* Check if the panel supports PSR */
2810 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2811 if (is_edp(intel_dp)) {
2812 intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2813 intel_dp->psr_dpcd,
2814 sizeof(intel_dp->psr_dpcd));
2815 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2816 dev_priv->psr.sink_support = true;
2817 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2818 }
2819 }
2820
2821 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2822 DP_DWN_STRM_PORT_PRESENT))
2823 return true; /* native DP sink */
2824
2825 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2826 return true; /* no per-port downstream info */
2827
2828 if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2829 intel_dp->downstream_ports,
2830 DP_MAX_DOWNSTREAM_PORTS) == 0)
2831 return false; /* downstream port status fetch failed */
2832
2833 return true;
2834 }
2835
2836 static void
2837 intel_dp_probe_oui(struct intel_dp *intel_dp)
2838 {
2839 u8 buf[3];
2840
2841 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2842 return;
2843
2844 ironlake_edp_panel_vdd_on(intel_dp);
2845
2846 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2847 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2848 buf[0], buf[1], buf[2]);
2849
2850 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2851 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2852 buf[0], buf[1], buf[2]);
2853
2854 ironlake_edp_panel_vdd_off(intel_dp, false);
2855 }
2856
2857 static bool
2858 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2859 {
2860 int ret;
2861
2862 ret = intel_dp_aux_native_read_retry(intel_dp,
2863 DP_DEVICE_SERVICE_IRQ_VECTOR,
2864 sink_irq_vector, 1);
2865 if (!ret)
2866 return false;
2867
2868 return true;
2869 }
2870
2871 static void
2872 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2873 {
2874 /* NAK by default */
2875 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2876 }
2877
2878 /*
2879 * According to DP spec
2880 * 5.1.2:
2881 * 1. Read DPCD
2882 * 2. Configure link according to Receiver Capabilities
2883 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2884 * 4. Check link status on receipt of hot-plug interrupt
2885 */
2886
2887 void
2888 intel_dp_check_link_status(struct intel_dp *intel_dp)
2889 {
2890 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2891 u8 sink_irq_vector;
2892 u8 link_status[DP_LINK_STATUS_SIZE];
2893
2894 if (!intel_encoder->connectors_active)
2895 return;
2896
2897 if (WARN_ON(!intel_encoder->base.crtc))
2898 return;
2899
2900 /* Try to read receiver status if the link appears to be up */
2901 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2902 return;
2903 }
2904
2905 /* Now read the DPCD to see if it's actually running */
2906 if (!intel_dp_get_dpcd(intel_dp)) {
2907 return;
2908 }
2909
2910 /* Try to read the source of the interrupt */
2911 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2912 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2913 /* Clear interrupt source */
2914 intel_dp_aux_native_write_1(intel_dp,
2915 DP_DEVICE_SERVICE_IRQ_VECTOR,
2916 sink_irq_vector);
2917
2918 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2919 intel_dp_handle_test_request(intel_dp);
2920 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2921 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2922 }
2923
2924 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2925 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2926 drm_get_encoder_name(&intel_encoder->base));
2927 intel_dp_start_link_train(intel_dp);
2928 intel_dp_complete_link_train(intel_dp);
2929 intel_dp_stop_link_train(intel_dp);
2930 }
2931 }
2932
2933 /* XXX this is probably wrong for multiple downstream ports */
2934 static enum drm_connector_status
2935 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2936 {
2937 uint8_t *dpcd = intel_dp->dpcd;
2938 uint8_t type;
2939
2940 if (!intel_dp_get_dpcd(intel_dp))
2941 return connector_status_disconnected;
2942
2943 /* if there's no downstream port, we're done */
2944 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2945 return connector_status_connected;
2946
2947 /* If we're HPD-aware, SINK_COUNT changes dynamically */
2948 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2949 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
2950 uint8_t reg;
2951 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2952 &reg, 1))
2953 return connector_status_unknown;
2954 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2955 : connector_status_disconnected;
2956 }
2957
2958 /* If no HPD, poke DDC gently */
2959 if (drm_probe_ddc(&intel_dp->adapter))
2960 return connector_status_connected;
2961
2962 /* Well we tried, say unknown for unreliable port types */
2963 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
2964 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2965 if (type == DP_DS_PORT_TYPE_VGA ||
2966 type == DP_DS_PORT_TYPE_NON_EDID)
2967 return connector_status_unknown;
2968 } else {
2969 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2970 DP_DWN_STRM_PORT_TYPE_MASK;
2971 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
2972 type == DP_DWN_STRM_PORT_TYPE_OTHER)
2973 return connector_status_unknown;
2974 }
2975
2976 /* Anything else is out of spec, warn and ignore */
2977 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2978 return connector_status_disconnected;
2979 }
2980
2981 static enum drm_connector_status
2982 ironlake_dp_detect(struct intel_dp *intel_dp)
2983 {
2984 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2985 struct drm_i915_private *dev_priv = dev->dev_private;
2986 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2987 enum drm_connector_status status;
2988
2989 /* Can't disconnect eDP, but you can close the lid... */
2990 if (is_edp(intel_dp)) {
2991 status = intel_panel_detect(dev);
2992 if (status == connector_status_unknown)
2993 status = connector_status_connected;
2994 return status;
2995 }
2996
2997 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2998 return connector_status_disconnected;
2999
3000 return intel_dp_detect_dpcd(intel_dp);
3001 }
3002
3003 static enum drm_connector_status
3004 g4x_dp_detect(struct intel_dp *intel_dp)
3005 {
3006 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3007 struct drm_i915_private *dev_priv = dev->dev_private;
3008 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3009 uint32_t bit;
3010
3011 /* Can't disconnect eDP, but you can close the lid... */
3012 if (is_edp(intel_dp)) {
3013 enum drm_connector_status status;
3014
3015 status = intel_panel_detect(dev);
3016 if (status == connector_status_unknown)
3017 status = connector_status_connected;
3018 return status;
3019 }
3020
3021 if (IS_VALLEYVIEW(dev)) {
3022 switch (intel_dig_port->port) {
3023 case PORT_B:
3024 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3025 break;
3026 case PORT_C:
3027 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3028 break;
3029 case PORT_D:
3030 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3031 break;
3032 default:
3033 return connector_status_unknown;
3034 }
3035 } else {
3036 switch (intel_dig_port->port) {
3037 case PORT_B:
3038 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3039 break;
3040 case PORT_C:
3041 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3042 break;
3043 case PORT_D:
3044 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3045 break;
3046 default:
3047 return connector_status_unknown;
3048 }
3049 }
3050
3051 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3052 return connector_status_disconnected;
3053
3054 return intel_dp_detect_dpcd(intel_dp);
3055 }
3056
3057 static struct edid *
3058 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3059 {
3060 struct intel_connector *intel_connector = to_intel_connector(connector);
3061
3062 /* use cached edid if we have one */
3063 if (intel_connector->edid) {
3064 /* invalid edid */
3065 if (IS_ERR(intel_connector->edid))
3066 return NULL;
3067
3068 return drm_edid_duplicate(intel_connector->edid);
3069 }
3070
3071 return drm_get_edid(connector, adapter);
3072 }
3073
3074 static int
3075 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3076 {
3077 struct intel_connector *intel_connector = to_intel_connector(connector);
3078
3079 /* use cached edid if we have one */
3080 if (intel_connector->edid) {
3081 /* invalid edid */
3082 if (IS_ERR(intel_connector->edid))
3083 return 0;
3084
3085 return intel_connector_update_modes(connector,
3086 intel_connector->edid);
3087 }
3088
3089 return intel_ddc_get_modes(connector, adapter);
3090 }
3091
3092 static enum drm_connector_status
3093 intel_dp_detect(struct drm_connector *connector, bool force)
3094 {
3095 struct intel_dp *intel_dp = intel_attached_dp(connector);
3096 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3097 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3098 struct drm_device *dev = connector->dev;
3099 struct drm_i915_private *dev_priv = dev->dev_private;
3100 enum drm_connector_status status;
3101 struct edid *edid = NULL;
3102
3103 intel_runtime_pm_get(dev_priv);
3104
3105 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3106 connector->base.id, drm_get_connector_name(connector));
3107
3108 intel_dp->has_audio = false;
3109
3110 if (HAS_PCH_SPLIT(dev))
3111 status = ironlake_dp_detect(intel_dp);
3112 else
3113 status = g4x_dp_detect(intel_dp);
3114
3115 if (status != connector_status_connected)
3116 goto out;
3117
3118 intel_dp_probe_oui(intel_dp);
3119
3120 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3121 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3122 } else {
3123 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3124 if (edid) {
3125 intel_dp->has_audio = drm_detect_monitor_audio(edid);
3126 kfree(edid);
3127 }
3128 }
3129
3130 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3131 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3132 status = connector_status_connected;
3133
3134 out:
3135 intel_runtime_pm_put(dev_priv);
3136 return status;
3137 }
3138
3139 static int intel_dp_get_modes(struct drm_connector *connector)
3140 {
3141 struct intel_dp *intel_dp = intel_attached_dp(connector);
3142 struct intel_connector *intel_connector = to_intel_connector(connector);
3143 struct drm_device *dev = connector->dev;
3144 int ret;
3145
3146 /* We should parse the EDID data and find out if it has an audio sink
3147 */
3148
3149 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3150 if (ret)
3151 return ret;
3152
3153 /* if eDP has no EDID, fall back to fixed mode */
3154 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3155 struct drm_display_mode *mode;
3156 mode = drm_mode_duplicate(dev,
3157 intel_connector->panel.fixed_mode);
3158 if (mode) {
3159 drm_mode_probed_add(connector, mode);
3160 return 1;
3161 }
3162 }
3163 return 0;
3164 }
3165
3166 static bool
3167 intel_dp_detect_audio(struct drm_connector *connector)
3168 {
3169 struct intel_dp *intel_dp = intel_attached_dp(connector);
3170 struct edid *edid;
3171 bool has_audio = false;
3172
3173 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3174 if (edid) {
3175 has_audio = drm_detect_monitor_audio(edid);
3176 kfree(edid);
3177 }
3178
3179 return has_audio;
3180 }
3181
3182 static int
3183 intel_dp_set_property(struct drm_connector *connector,
3184 struct drm_property *property,
3185 uint64_t val)
3186 {
3187 struct drm_i915_private *dev_priv = connector->dev->dev_private;
3188 struct intel_connector *intel_connector = to_intel_connector(connector);
3189 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3190 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3191 int ret;
3192
3193 ret = drm_object_property_set_value(&connector->base, property, val);
3194 if (ret)
3195 return ret;
3196
3197 if (property == dev_priv->force_audio_property) {
3198 int i = val;
3199 bool has_audio;
3200
3201 if (i == intel_dp->force_audio)
3202 return 0;
3203
3204 intel_dp->force_audio = i;
3205
3206 if (i == HDMI_AUDIO_AUTO)
3207 has_audio = intel_dp_detect_audio(connector);
3208 else
3209 has_audio = (i == HDMI_AUDIO_ON);
3210
3211 if (has_audio == intel_dp->has_audio)
3212 return 0;
3213
3214 intel_dp->has_audio = has_audio;
3215 goto done;
3216 }
3217
3218 if (property == dev_priv->broadcast_rgb_property) {
3219 bool old_auto = intel_dp->color_range_auto;
3220 uint32_t old_range = intel_dp->color_range;
3221
3222 switch (val) {
3223 case INTEL_BROADCAST_RGB_AUTO:
3224 intel_dp->color_range_auto = true;
3225 break;
3226 case INTEL_BROADCAST_RGB_FULL:
3227 intel_dp->color_range_auto = false;
3228 intel_dp->color_range = 0;
3229 break;
3230 case INTEL_BROADCAST_RGB_LIMITED:
3231 intel_dp->color_range_auto = false;
3232 intel_dp->color_range = DP_COLOR_RANGE_16_235;
3233 break;
3234 default:
3235 return -EINVAL;
3236 }
3237
3238 if (old_auto == intel_dp->color_range_auto &&
3239 old_range == intel_dp->color_range)
3240 return 0;
3241
3242 goto done;
3243 }
3244
3245 if (is_edp(intel_dp) &&
3246 property == connector->dev->mode_config.scaling_mode_property) {
3247 if (val == DRM_MODE_SCALE_NONE) {
3248 DRM_DEBUG_KMS("no scaling not supported\n");
3249 return -EINVAL;
3250 }
3251
3252 if (intel_connector->panel.fitting_mode == val) {
3253 /* the eDP scaling property is not changed */
3254 return 0;
3255 }
3256 intel_connector->panel.fitting_mode = val;
3257
3258 goto done;
3259 }
3260
3261 return -EINVAL;
3262
3263 done:
3264 if (intel_encoder->base.crtc)
3265 intel_crtc_restore_mode(intel_encoder->base.crtc);
3266
3267 return 0;
3268 }
3269
3270 static void
3271 intel_dp_connector_destroy(struct drm_connector *connector)
3272 {
3273 struct intel_connector *intel_connector = to_intel_connector(connector);
3274
3275 if (!IS_ERR_OR_NULL(intel_connector->edid))
3276 kfree(intel_connector->edid);
3277
3278 /* Can't call is_edp() since the encoder may have been destroyed
3279 * already. */
3280 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3281 intel_panel_fini(&intel_connector->panel);
3282
3283 drm_connector_cleanup(connector);
3284 kfree(connector);
3285 }
3286
3287 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3288 {
3289 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3290 struct intel_dp *intel_dp = &intel_dig_port->dp;
3291 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3292
3293 i2c_del_adapter(&intel_dp->adapter);
3294 drm_encoder_cleanup(encoder);
3295 if (is_edp(intel_dp)) {
3296 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3297 mutex_lock(&dev->mode_config.mutex);
3298 ironlake_panel_vdd_off_sync(intel_dp);
3299 mutex_unlock(&dev->mode_config.mutex);
3300 }
3301 kfree(intel_dig_port);
3302 }
3303
3304 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3305 .dpms = intel_connector_dpms,
3306 .detect = intel_dp_detect,
3307 .fill_modes = drm_helper_probe_single_connector_modes,
3308 .set_property = intel_dp_set_property,
3309 .destroy = intel_dp_connector_destroy,
3310 };
3311
3312 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3313 .get_modes = intel_dp_get_modes,
3314 .mode_valid = intel_dp_mode_valid,
3315 .best_encoder = intel_best_encoder,
3316 };
3317
3318 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3319 .destroy = intel_dp_encoder_destroy,
3320 };
3321
3322 static void
3323 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3324 {
3325 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3326
3327 intel_dp_check_link_status(intel_dp);
3328 }
3329
3330 /* Return which DP Port should be selected for Transcoder DP control */
3331 int
3332 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3333 {
3334 struct drm_device *dev = crtc->dev;
3335 struct intel_encoder *intel_encoder;
3336 struct intel_dp *intel_dp;
3337
3338 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3339 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3340
3341 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3342 intel_encoder->type == INTEL_OUTPUT_EDP)
3343 return intel_dp->output_reg;
3344 }
3345
3346 return -1;
3347 }
3348
3349 /* check the VBT to see whether the eDP is on DP-D port */
3350 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3351 {
3352 struct drm_i915_private *dev_priv = dev->dev_private;
3353 union child_device_config *p_child;
3354 int i;
3355 static const short port_mapping[] = {
3356 [PORT_B] = PORT_IDPB,
3357 [PORT_C] = PORT_IDPC,
3358 [PORT_D] = PORT_IDPD,
3359 };
3360
3361 if (port == PORT_A)
3362 return true;
3363
3364 if (!dev_priv->vbt.child_dev_num)
3365 return false;
3366
3367 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3368 p_child = dev_priv->vbt.child_dev + i;
3369
3370 if (p_child->common.dvo_port == port_mapping[port] &&
3371 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3372 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3373 return true;
3374 }
3375 return false;
3376 }
3377
3378 static void
3379 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3380 {
3381 struct intel_connector *intel_connector = to_intel_connector(connector);
3382
3383 intel_attach_force_audio_property(connector);
3384 intel_attach_broadcast_rgb_property(connector);
3385 intel_dp->color_range_auto = true;
3386
3387 if (is_edp(intel_dp)) {
3388 drm_mode_create_scaling_mode_property(connector->dev);
3389 drm_object_attach_property(
3390 &connector->base,
3391 connector->dev->mode_config.scaling_mode_property,
3392 DRM_MODE_SCALE_ASPECT);
3393 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3394 }
3395 }
3396
3397 static void
3398 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3399 struct intel_dp *intel_dp,
3400 struct edp_power_seq *out)
3401 {
3402 struct drm_i915_private *dev_priv = dev->dev_private;
3403 struct edp_power_seq cur, vbt, spec, final;
3404 u32 pp_on, pp_off, pp_div, pp;
3405 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3406
3407 if (HAS_PCH_SPLIT(dev)) {
3408 pp_ctrl_reg = PCH_PP_CONTROL;
3409 pp_on_reg = PCH_PP_ON_DELAYS;
3410 pp_off_reg = PCH_PP_OFF_DELAYS;
3411 pp_div_reg = PCH_PP_DIVISOR;
3412 } else {
3413 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3414
3415 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3416 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3417 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3418 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3419 }
3420
3421 /* Workaround: Need to write PP_CONTROL with the unlock key as
3422 * the very first thing. */
3423 pp = ironlake_get_pp_control(intel_dp);
3424 I915_WRITE(pp_ctrl_reg, pp);
3425
3426 pp_on = I915_READ(pp_on_reg);
3427 pp_off = I915_READ(pp_off_reg);
3428 pp_div = I915_READ(pp_div_reg);
3429
3430 /* Pull timing values out of registers */
3431 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3432 PANEL_POWER_UP_DELAY_SHIFT;
3433
3434 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3435 PANEL_LIGHT_ON_DELAY_SHIFT;
3436
3437 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3438 PANEL_LIGHT_OFF_DELAY_SHIFT;
3439
3440 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3441 PANEL_POWER_DOWN_DELAY_SHIFT;
3442
3443 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3444 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3445
3446 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3447 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3448
3449 vbt = dev_priv->vbt.edp_pps;
3450
3451 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3452 * our hw here, which are all in 100usec. */
3453 spec.t1_t3 = 210 * 10;
3454 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3455 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3456 spec.t10 = 500 * 10;
3457 /* This one is special and actually in units of 100ms, but zero
3458 * based in the hw (so we need to add 100 ms). But the sw vbt
3459 * table multiplies it with 1000 to make it in units of 100usec,
3460 * too. */
3461 spec.t11_t12 = (510 + 100) * 10;
3462
3463 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3464 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3465
3466 /* Use the max of the register settings and vbt. If both are
3467 * unset, fall back to the spec limits. */
3468 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
3469 spec.field : \
3470 max(cur.field, vbt.field))
3471 assign_final(t1_t3);
3472 assign_final(t8);
3473 assign_final(t9);
3474 assign_final(t10);
3475 assign_final(t11_t12);
3476 #undef assign_final
3477
3478 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
3479 intel_dp->panel_power_up_delay = get_delay(t1_t3);
3480 intel_dp->backlight_on_delay = get_delay(t8);
3481 intel_dp->backlight_off_delay = get_delay(t9);
3482 intel_dp->panel_power_down_delay = get_delay(t10);
3483 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3484 #undef get_delay
3485
3486 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3487 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3488 intel_dp->panel_power_cycle_delay);
3489
3490 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3491 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3492
3493 if (out)
3494 *out = final;
3495 }
3496
3497 static void
3498 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3499 struct intel_dp *intel_dp,
3500 struct edp_power_seq *seq)
3501 {
3502 struct drm_i915_private *dev_priv = dev->dev_private;
3503 u32 pp_on, pp_off, pp_div, port_sel = 0;
3504 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3505 int pp_on_reg, pp_off_reg, pp_div_reg;
3506
3507 if (HAS_PCH_SPLIT(dev)) {
3508 pp_on_reg = PCH_PP_ON_DELAYS;
3509 pp_off_reg = PCH_PP_OFF_DELAYS;
3510 pp_div_reg = PCH_PP_DIVISOR;
3511 } else {
3512 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3513
3514 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3515 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3516 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3517 }
3518
3519 /* And finally store the new values in the power sequencer. */
3520 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3521 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3522 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3523 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3524 /* Compute the divisor for the pp clock, simply match the Bspec
3525 * formula. */
3526 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3527 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3528 << PANEL_POWER_CYCLE_DELAY_SHIFT);
3529
3530 /* Haswell doesn't have any port selection bits for the panel
3531 * power sequencer any more. */
3532 if (IS_VALLEYVIEW(dev)) {
3533 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3534 port_sel = PANEL_PORT_SELECT_DPB_VLV;
3535 else
3536 port_sel = PANEL_PORT_SELECT_DPC_VLV;
3537 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3538 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3539 port_sel = PANEL_PORT_SELECT_DPA;
3540 else
3541 port_sel = PANEL_PORT_SELECT_DPD;
3542 }
3543
3544 pp_on |= port_sel;
3545
3546 I915_WRITE(pp_on_reg, pp_on);
3547 I915_WRITE(pp_off_reg, pp_off);
3548 I915_WRITE(pp_div_reg, pp_div);
3549
3550 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3551 I915_READ(pp_on_reg),
3552 I915_READ(pp_off_reg),
3553 I915_READ(pp_div_reg));
3554 }
3555
3556 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3557 struct intel_connector *intel_connector)
3558 {
3559 struct drm_connector *connector = &intel_connector->base;
3560 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3561 struct drm_device *dev = intel_dig_port->base.base.dev;
3562 struct drm_i915_private *dev_priv = dev->dev_private;
3563 struct drm_display_mode *fixed_mode = NULL;
3564 struct edp_power_seq power_seq = { 0 };
3565 bool has_dpcd;
3566 struct drm_display_mode *scan;
3567 struct edid *edid;
3568
3569 if (!is_edp(intel_dp))
3570 return true;
3571
3572 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3573
3574 /* Cache DPCD and EDID for edp. */
3575 ironlake_edp_panel_vdd_on(intel_dp);
3576 has_dpcd = intel_dp_get_dpcd(intel_dp);
3577 ironlake_edp_panel_vdd_off(intel_dp, false);
3578
3579 if (has_dpcd) {
3580 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3581 dev_priv->no_aux_handshake =
3582 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3583 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3584 } else {
3585 /* if this fails, presume the device is a ghost */
3586 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3587 return false;
3588 }
3589
3590 /* We now know it's not a ghost, init power sequence regs. */
3591 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3592 &power_seq);
3593
3594 edid = drm_get_edid(connector, &intel_dp->adapter);
3595 if (edid) {
3596 if (drm_add_edid_modes(connector, edid)) {
3597 drm_mode_connector_update_edid_property(connector,
3598 edid);
3599 drm_edid_to_eld(connector, edid);
3600 } else {
3601 kfree(edid);
3602 edid = ERR_PTR(-EINVAL);
3603 }
3604 } else {
3605 edid = ERR_PTR(-ENOENT);
3606 }
3607 intel_connector->edid = edid;
3608
3609 /* prefer fixed mode from EDID if available */
3610 list_for_each_entry(scan, &connector->probed_modes, head) {
3611 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3612 fixed_mode = drm_mode_duplicate(dev, scan);
3613 break;
3614 }
3615 }
3616
3617 /* fallback to VBT if available for eDP */
3618 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3619 fixed_mode = drm_mode_duplicate(dev,
3620 dev_priv->vbt.lfp_lvds_vbt_mode);
3621 if (fixed_mode)
3622 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3623 }
3624
3625 intel_panel_init(&intel_connector->panel, fixed_mode);
3626 intel_panel_setup_backlight(connector);
3627
3628 return true;
3629 }
3630
3631 bool
3632 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3633 struct intel_connector *intel_connector)
3634 {
3635 struct drm_connector *connector = &intel_connector->base;
3636 struct intel_dp *intel_dp = &intel_dig_port->dp;
3637 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3638 struct drm_device *dev = intel_encoder->base.dev;
3639 struct drm_i915_private *dev_priv = dev->dev_private;
3640 enum port port = intel_dig_port->port;
3641 const char *name = NULL;
3642 int type, error;
3643
3644 /* Preserve the current hw state. */
3645 intel_dp->DP = I915_READ(intel_dp->output_reg);
3646 intel_dp->attached_connector = intel_connector;
3647
3648 if (intel_dp_is_edp(dev, port))
3649 type = DRM_MODE_CONNECTOR_eDP;
3650 else
3651 type = DRM_MODE_CONNECTOR_DisplayPort;
3652
3653 /*
3654 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3655 * for DP the encoder type can be set by the caller to
3656 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3657 */
3658 if (type == DRM_MODE_CONNECTOR_eDP)
3659 intel_encoder->type = INTEL_OUTPUT_EDP;
3660
3661 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3662 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3663 port_name(port));
3664
3665 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3666 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3667
3668 connector->interlace_allowed = true;
3669 connector->doublescan_allowed = 0;
3670
3671 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3672 ironlake_panel_vdd_work);
3673
3674 intel_connector_attach_encoder(intel_connector, intel_encoder);
3675 drm_sysfs_connector_add(connector);
3676
3677 if (HAS_DDI(dev))
3678 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3679 else
3680 intel_connector->get_hw_state = intel_connector_get_hw_state;
3681
3682 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3683 if (HAS_DDI(dev)) {
3684 switch (intel_dig_port->port) {
3685 case PORT_A:
3686 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3687 break;
3688 case PORT_B:
3689 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3690 break;
3691 case PORT_C:
3692 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3693 break;
3694 case PORT_D:
3695 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3696 break;
3697 default:
3698 BUG();
3699 }
3700 }
3701
3702 /* Set up the DDC bus. */
3703 switch (port) {
3704 case PORT_A:
3705 intel_encoder->hpd_pin = HPD_PORT_A;
3706 name = "DPDDC-A";
3707 break;
3708 case PORT_B:
3709 intel_encoder->hpd_pin = HPD_PORT_B;
3710 name = "DPDDC-B";
3711 break;
3712 case PORT_C:
3713 intel_encoder->hpd_pin = HPD_PORT_C;
3714 name = "DPDDC-C";
3715 break;
3716 case PORT_D:
3717 intel_encoder->hpd_pin = HPD_PORT_D;
3718 name = "DPDDC-D";
3719 break;
3720 default:
3721 BUG();
3722 }
3723
3724 error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3725 WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3726 error, port_name(port));
3727
3728 intel_dp->psr_setup_done = false;
3729
3730 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3731 i2c_del_adapter(&intel_dp->adapter);
3732 if (is_edp(intel_dp)) {
3733 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3734 mutex_lock(&dev->mode_config.mutex);
3735 ironlake_panel_vdd_off_sync(intel_dp);
3736 mutex_unlock(&dev->mode_config.mutex);
3737 }
3738 drm_sysfs_connector_remove(connector);
3739 drm_connector_cleanup(connector);
3740 return false;
3741 }
3742
3743 intel_dp_add_properties(intel_dp, connector);
3744
3745 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3746 * 0xd. Failure to do so will result in spurious interrupts being
3747 * generated on the port when a cable is not attached.
3748 */
3749 if (IS_G4X(dev) && !IS_GM45(dev)) {
3750 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3751 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3752 }
3753
3754 return true;
3755 }
3756
3757 void
3758 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3759 {
3760 struct intel_digital_port *intel_dig_port;
3761 struct intel_encoder *intel_encoder;
3762 struct drm_encoder *encoder;
3763 struct intel_connector *intel_connector;
3764
3765 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3766 if (!intel_dig_port)
3767 return;
3768
3769 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3770 if (!intel_connector) {
3771 kfree(intel_dig_port);
3772 return;
3773 }
3774
3775 intel_encoder = &intel_dig_port->base;
3776 encoder = &intel_encoder->base;
3777
3778 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3779 DRM_MODE_ENCODER_TMDS);
3780
3781 intel_encoder->compute_config = intel_dp_compute_config;
3782 intel_encoder->mode_set = intel_dp_mode_set;
3783 intel_encoder->disable = intel_disable_dp;
3784 intel_encoder->post_disable = intel_post_disable_dp;
3785 intel_encoder->get_hw_state = intel_dp_get_hw_state;
3786 intel_encoder->get_config = intel_dp_get_config;
3787 if (IS_VALLEYVIEW(dev)) {
3788 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3789 intel_encoder->pre_enable = vlv_pre_enable_dp;
3790 intel_encoder->enable = vlv_enable_dp;
3791 } else {
3792 intel_encoder->pre_enable = g4x_pre_enable_dp;
3793 intel_encoder->enable = g4x_enable_dp;
3794 }
3795
3796 intel_dig_port->port = port;
3797 intel_dig_port->dp.output_reg = output_reg;
3798
3799 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3800 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3801 intel_encoder->cloneable = false;
3802 intel_encoder->hot_plug = intel_dp_hot_plug;
3803
3804 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3805 drm_encoder_cleanup(encoder);
3806 kfree(intel_dig_port);
3807 kfree(intel_connector);
3808 }
3809 }