]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge tag 'spi-for-linus' of git://git.secretlab.ca/git/linux-2.6
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "intel_drv.h"
36 #include "i915_drm.h"
37 #include "i915_drv.h"
38 #include "drm_dp_helper.h"
39
40 #define DP_RECEIVER_CAP_SIZE 0xf
41 #define DP_LINK_STATUS_SIZE 6
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 #define DP_LINK_CONFIGURATION_SIZE 9
45
46 struct intel_dp {
47 struct intel_encoder base;
48 uint32_t output_reg;
49 uint32_t DP;
50 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
51 bool has_audio;
52 int force_audio;
53 uint32_t color_range;
54 int dpms_mode;
55 uint8_t link_bw;
56 uint8_t lane_count;
57 uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
58 struct i2c_adapter adapter;
59 struct i2c_algo_dp_aux_data algo;
60 bool is_pch_edp;
61 uint8_t train_set[4];
62 int panel_power_up_delay;
63 int panel_power_down_delay;
64 int panel_power_cycle_delay;
65 int backlight_on_delay;
66 int backlight_off_delay;
67 struct drm_display_mode *panel_fixed_mode; /* for eDP */
68 struct delayed_work panel_vdd_work;
69 bool want_panel_vdd;
70 };
71
72 /**
73 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
74 * @intel_dp: DP struct
75 *
76 * If a CPU or PCH DP output is attached to an eDP panel, this function
77 * will return true, and false otherwise.
78 */
79 static bool is_edp(struct intel_dp *intel_dp)
80 {
81 return intel_dp->base.type == INTEL_OUTPUT_EDP;
82 }
83
84 /**
85 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
86 * @intel_dp: DP struct
87 *
88 * Returns true if the given DP struct corresponds to a PCH DP port attached
89 * to an eDP panel, false otherwise. Helpful for determining whether we
90 * may need FDI resources for a given DP output or not.
91 */
92 static bool is_pch_edp(struct intel_dp *intel_dp)
93 {
94 return intel_dp->is_pch_edp;
95 }
96
97 /**
98 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
99 * @intel_dp: DP struct
100 *
101 * Returns true if the given DP struct corresponds to a CPU eDP port.
102 */
103 static bool is_cpu_edp(struct intel_dp *intel_dp)
104 {
105 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
106 }
107
108 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
109 {
110 return container_of(encoder, struct intel_dp, base.base);
111 }
112
113 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
114 {
115 return container_of(intel_attached_encoder(connector),
116 struct intel_dp, base);
117 }
118
119 /**
120 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
121 * @encoder: DRM encoder
122 *
123 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
124 * by intel_display.c.
125 */
126 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
127 {
128 struct intel_dp *intel_dp;
129
130 if (!encoder)
131 return false;
132
133 intel_dp = enc_to_intel_dp(encoder);
134
135 return is_pch_edp(intel_dp);
136 }
137
138 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
139 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
140 static void intel_dp_link_down(struct intel_dp *intel_dp);
141
142 void
143 intel_edp_link_config(struct intel_encoder *intel_encoder,
144 int *lane_num, int *link_bw)
145 {
146 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
147
148 *lane_num = intel_dp->lane_count;
149 if (intel_dp->link_bw == DP_LINK_BW_1_62)
150 *link_bw = 162000;
151 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
152 *link_bw = 270000;
153 }
154
155 static int
156 intel_dp_max_lane_count(struct intel_dp *intel_dp)
157 {
158 int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
159 switch (max_lane_count) {
160 case 1: case 2: case 4:
161 break;
162 default:
163 max_lane_count = 4;
164 }
165 return max_lane_count;
166 }
167
168 static int
169 intel_dp_max_link_bw(struct intel_dp *intel_dp)
170 {
171 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
172
173 switch (max_link_bw) {
174 case DP_LINK_BW_1_62:
175 case DP_LINK_BW_2_7:
176 break;
177 default:
178 max_link_bw = DP_LINK_BW_1_62;
179 break;
180 }
181 return max_link_bw;
182 }
183
184 static int
185 intel_dp_link_clock(uint8_t link_bw)
186 {
187 if (link_bw == DP_LINK_BW_2_7)
188 return 270000;
189 else
190 return 162000;
191 }
192
193 /*
194 * The units on the numbers in the next two are... bizarre. Examples will
195 * make it clearer; this one parallels an example in the eDP spec.
196 *
197 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
198 *
199 * 270000 * 1 * 8 / 10 == 216000
200 *
201 * The actual data capacity of that configuration is 2.16Gbit/s, so the
202 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
203 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
204 * 119000. At 18bpp that's 2142000 kilobits per second.
205 *
206 * Thus the strange-looking division by 10 in intel_dp_link_required, to
207 * get the result in decakilobits instead of kilobits.
208 */
209
210 static int
211 intel_dp_link_required(int pixel_clock, int bpp)
212 {
213 return (pixel_clock * bpp + 9) / 10;
214 }
215
216 static int
217 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
218 {
219 return (max_link_clock * max_lanes * 8) / 10;
220 }
221
222 static int
223 intel_dp_mode_valid(struct drm_connector *connector,
224 struct drm_display_mode *mode)
225 {
226 struct intel_dp *intel_dp = intel_attached_dp(connector);
227 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
228 int max_lanes = intel_dp_max_lane_count(intel_dp);
229 int max_rate, mode_rate;
230
231 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
232 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
233 return MODE_PANEL;
234
235 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
236 return MODE_PANEL;
237 }
238
239 mode_rate = intel_dp_link_required(mode->clock, 24);
240 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
241
242 if (mode_rate > max_rate) {
243 mode_rate = intel_dp_link_required(mode->clock, 18);
244 if (mode_rate > max_rate)
245 return MODE_CLOCK_HIGH;
246 else
247 mode->private_flags |= INTEL_MODE_DP_FORCE_6BPC;
248 }
249
250 if (mode->clock < 10000)
251 return MODE_CLOCK_LOW;
252
253 return MODE_OK;
254 }
255
256 static uint32_t
257 pack_aux(uint8_t *src, int src_bytes)
258 {
259 int i;
260 uint32_t v = 0;
261
262 if (src_bytes > 4)
263 src_bytes = 4;
264 for (i = 0; i < src_bytes; i++)
265 v |= ((uint32_t) src[i]) << ((3-i) * 8);
266 return v;
267 }
268
269 static void
270 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
271 {
272 int i;
273 if (dst_bytes > 4)
274 dst_bytes = 4;
275 for (i = 0; i < dst_bytes; i++)
276 dst[i] = src >> ((3-i) * 8);
277 }
278
279 /* hrawclock is 1/4 the FSB frequency */
280 static int
281 intel_hrawclk(struct drm_device *dev)
282 {
283 struct drm_i915_private *dev_priv = dev->dev_private;
284 uint32_t clkcfg;
285
286 clkcfg = I915_READ(CLKCFG);
287 switch (clkcfg & CLKCFG_FSB_MASK) {
288 case CLKCFG_FSB_400:
289 return 100;
290 case CLKCFG_FSB_533:
291 return 133;
292 case CLKCFG_FSB_667:
293 return 166;
294 case CLKCFG_FSB_800:
295 return 200;
296 case CLKCFG_FSB_1067:
297 return 266;
298 case CLKCFG_FSB_1333:
299 return 333;
300 /* these two are just a guess; one of them might be right */
301 case CLKCFG_FSB_1600:
302 case CLKCFG_FSB_1600_ALT:
303 return 400;
304 default:
305 return 133;
306 }
307 }
308
309 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
310 {
311 struct drm_device *dev = intel_dp->base.base.dev;
312 struct drm_i915_private *dev_priv = dev->dev_private;
313
314 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
315 }
316
317 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
318 {
319 struct drm_device *dev = intel_dp->base.base.dev;
320 struct drm_i915_private *dev_priv = dev->dev_private;
321
322 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
323 }
324
325 static void
326 intel_dp_check_edp(struct intel_dp *intel_dp)
327 {
328 struct drm_device *dev = intel_dp->base.base.dev;
329 struct drm_i915_private *dev_priv = dev->dev_private;
330
331 if (!is_edp(intel_dp))
332 return;
333 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
334 WARN(1, "eDP powered off while attempting aux channel communication.\n");
335 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
336 I915_READ(PCH_PP_STATUS),
337 I915_READ(PCH_PP_CONTROL));
338 }
339 }
340
341 static int
342 intel_dp_aux_ch(struct intel_dp *intel_dp,
343 uint8_t *send, int send_bytes,
344 uint8_t *recv, int recv_size)
345 {
346 uint32_t output_reg = intel_dp->output_reg;
347 struct drm_device *dev = intel_dp->base.base.dev;
348 struct drm_i915_private *dev_priv = dev->dev_private;
349 uint32_t ch_ctl = output_reg + 0x10;
350 uint32_t ch_data = ch_ctl + 4;
351 int i;
352 int recv_bytes;
353 uint32_t status;
354 uint32_t aux_clock_divider;
355 int try, precharge;
356
357 intel_dp_check_edp(intel_dp);
358 /* The clock divider is based off the hrawclk,
359 * and would like to run at 2MHz. So, take the
360 * hrawclk value and divide by 2 and use that
361 *
362 * Note that PCH attached eDP panels should use a 125MHz input
363 * clock divider.
364 */
365 if (is_cpu_edp(intel_dp)) {
366 if (IS_GEN6(dev) || IS_GEN7(dev))
367 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
368 else
369 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
370 } else if (HAS_PCH_SPLIT(dev))
371 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
372 else
373 aux_clock_divider = intel_hrawclk(dev) / 2;
374
375 if (IS_GEN6(dev))
376 precharge = 3;
377 else
378 precharge = 5;
379
380 /* Try to wait for any previous AUX channel activity */
381 for (try = 0; try < 3; try++) {
382 status = I915_READ(ch_ctl);
383 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
384 break;
385 msleep(1);
386 }
387
388 if (try == 3) {
389 WARN(1, "dp_aux_ch not started status 0x%08x\n",
390 I915_READ(ch_ctl));
391 return -EBUSY;
392 }
393
394 /* Must try at least 3 times according to DP spec */
395 for (try = 0; try < 5; try++) {
396 /* Load the send data into the aux channel data registers */
397 for (i = 0; i < send_bytes; i += 4)
398 I915_WRITE(ch_data + i,
399 pack_aux(send + i, send_bytes - i));
400
401 /* Send the command and wait for it to complete */
402 I915_WRITE(ch_ctl,
403 DP_AUX_CH_CTL_SEND_BUSY |
404 DP_AUX_CH_CTL_TIME_OUT_400us |
405 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
406 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
407 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
408 DP_AUX_CH_CTL_DONE |
409 DP_AUX_CH_CTL_TIME_OUT_ERROR |
410 DP_AUX_CH_CTL_RECEIVE_ERROR);
411 for (;;) {
412 status = I915_READ(ch_ctl);
413 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
414 break;
415 udelay(100);
416 }
417
418 /* Clear done status and any errors */
419 I915_WRITE(ch_ctl,
420 status |
421 DP_AUX_CH_CTL_DONE |
422 DP_AUX_CH_CTL_TIME_OUT_ERROR |
423 DP_AUX_CH_CTL_RECEIVE_ERROR);
424 if (status & DP_AUX_CH_CTL_DONE)
425 break;
426 }
427
428 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
429 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
430 return -EBUSY;
431 }
432
433 /* Check for timeout or receive error.
434 * Timeouts occur when the sink is not connected
435 */
436 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
437 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
438 return -EIO;
439 }
440
441 /* Timeouts occur when the device isn't connected, so they're
442 * "normal" -- don't fill the kernel log with these */
443 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
444 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
445 return -ETIMEDOUT;
446 }
447
448 /* Unload any bytes sent back from the other side */
449 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
450 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
451 if (recv_bytes > recv_size)
452 recv_bytes = recv_size;
453
454 for (i = 0; i < recv_bytes; i += 4)
455 unpack_aux(I915_READ(ch_data + i),
456 recv + i, recv_bytes - i);
457
458 return recv_bytes;
459 }
460
461 /* Write data to the aux channel in native mode */
462 static int
463 intel_dp_aux_native_write(struct intel_dp *intel_dp,
464 uint16_t address, uint8_t *send, int send_bytes)
465 {
466 int ret;
467 uint8_t msg[20];
468 int msg_bytes;
469 uint8_t ack;
470
471 intel_dp_check_edp(intel_dp);
472 if (send_bytes > 16)
473 return -1;
474 msg[0] = AUX_NATIVE_WRITE << 4;
475 msg[1] = address >> 8;
476 msg[2] = address & 0xff;
477 msg[3] = send_bytes - 1;
478 memcpy(&msg[4], send, send_bytes);
479 msg_bytes = send_bytes + 4;
480 for (;;) {
481 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
482 if (ret < 0)
483 return ret;
484 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
485 break;
486 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
487 udelay(100);
488 else
489 return -EIO;
490 }
491 return send_bytes;
492 }
493
494 /* Write a single byte to the aux channel in native mode */
495 static int
496 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
497 uint16_t address, uint8_t byte)
498 {
499 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
500 }
501
502 /* read bytes from a native aux channel */
503 static int
504 intel_dp_aux_native_read(struct intel_dp *intel_dp,
505 uint16_t address, uint8_t *recv, int recv_bytes)
506 {
507 uint8_t msg[4];
508 int msg_bytes;
509 uint8_t reply[20];
510 int reply_bytes;
511 uint8_t ack;
512 int ret;
513
514 intel_dp_check_edp(intel_dp);
515 msg[0] = AUX_NATIVE_READ << 4;
516 msg[1] = address >> 8;
517 msg[2] = address & 0xff;
518 msg[3] = recv_bytes - 1;
519
520 msg_bytes = 4;
521 reply_bytes = recv_bytes + 1;
522
523 for (;;) {
524 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
525 reply, reply_bytes);
526 if (ret == 0)
527 return -EPROTO;
528 if (ret < 0)
529 return ret;
530 ack = reply[0];
531 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
532 memcpy(recv, reply + 1, ret - 1);
533 return ret - 1;
534 }
535 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
536 udelay(100);
537 else
538 return -EIO;
539 }
540 }
541
542 static int
543 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
544 uint8_t write_byte, uint8_t *read_byte)
545 {
546 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
547 struct intel_dp *intel_dp = container_of(adapter,
548 struct intel_dp,
549 adapter);
550 uint16_t address = algo_data->address;
551 uint8_t msg[5];
552 uint8_t reply[2];
553 unsigned retry;
554 int msg_bytes;
555 int reply_bytes;
556 int ret;
557
558 intel_dp_check_edp(intel_dp);
559 /* Set up the command byte */
560 if (mode & MODE_I2C_READ)
561 msg[0] = AUX_I2C_READ << 4;
562 else
563 msg[0] = AUX_I2C_WRITE << 4;
564
565 if (!(mode & MODE_I2C_STOP))
566 msg[0] |= AUX_I2C_MOT << 4;
567
568 msg[1] = address >> 8;
569 msg[2] = address;
570
571 switch (mode) {
572 case MODE_I2C_WRITE:
573 msg[3] = 0;
574 msg[4] = write_byte;
575 msg_bytes = 5;
576 reply_bytes = 1;
577 break;
578 case MODE_I2C_READ:
579 msg[3] = 0;
580 msg_bytes = 4;
581 reply_bytes = 2;
582 break;
583 default:
584 msg_bytes = 3;
585 reply_bytes = 1;
586 break;
587 }
588
589 for (retry = 0; retry < 5; retry++) {
590 ret = intel_dp_aux_ch(intel_dp,
591 msg, msg_bytes,
592 reply, reply_bytes);
593 if (ret < 0) {
594 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
595 return ret;
596 }
597
598 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
599 case AUX_NATIVE_REPLY_ACK:
600 /* I2C-over-AUX Reply field is only valid
601 * when paired with AUX ACK.
602 */
603 break;
604 case AUX_NATIVE_REPLY_NACK:
605 DRM_DEBUG_KMS("aux_ch native nack\n");
606 return -EREMOTEIO;
607 case AUX_NATIVE_REPLY_DEFER:
608 udelay(100);
609 continue;
610 default:
611 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
612 reply[0]);
613 return -EREMOTEIO;
614 }
615
616 switch (reply[0] & AUX_I2C_REPLY_MASK) {
617 case AUX_I2C_REPLY_ACK:
618 if (mode == MODE_I2C_READ) {
619 *read_byte = reply[1];
620 }
621 return reply_bytes - 1;
622 case AUX_I2C_REPLY_NACK:
623 DRM_DEBUG_KMS("aux_i2c nack\n");
624 return -EREMOTEIO;
625 case AUX_I2C_REPLY_DEFER:
626 DRM_DEBUG_KMS("aux_i2c defer\n");
627 udelay(100);
628 break;
629 default:
630 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
631 return -EREMOTEIO;
632 }
633 }
634
635 DRM_ERROR("too many retries, giving up\n");
636 return -EREMOTEIO;
637 }
638
639 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
640 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
641
642 static int
643 intel_dp_i2c_init(struct intel_dp *intel_dp,
644 struct intel_connector *intel_connector, const char *name)
645 {
646 int ret;
647
648 DRM_DEBUG_KMS("i2c_init %s\n", name);
649 intel_dp->algo.running = false;
650 intel_dp->algo.address = 0;
651 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
652
653 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
654 intel_dp->adapter.owner = THIS_MODULE;
655 intel_dp->adapter.class = I2C_CLASS_DDC;
656 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
657 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
658 intel_dp->adapter.algo_data = &intel_dp->algo;
659 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
660
661 ironlake_edp_panel_vdd_on(intel_dp);
662 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
663 ironlake_edp_panel_vdd_off(intel_dp, false);
664 return ret;
665 }
666
667 static bool
668 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
669 struct drm_display_mode *adjusted_mode)
670 {
671 struct drm_device *dev = encoder->dev;
672 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
673 int lane_count, clock;
674 int max_lane_count = intel_dp_max_lane_count(intel_dp);
675 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
676 int bpp = mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
677 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
678
679 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
680 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
681 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
682 mode, adjusted_mode);
683 /*
684 * the mode->clock is used to calculate the Data&Link M/N
685 * of the pipe. For the eDP the fixed clock should be used.
686 */
687 mode->clock = intel_dp->panel_fixed_mode->clock;
688 }
689
690 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
691 for (clock = 0; clock <= max_clock; clock++) {
692 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
693
694 if (intel_dp_link_required(mode->clock, bpp)
695 <= link_avail) {
696 intel_dp->link_bw = bws[clock];
697 intel_dp->lane_count = lane_count;
698 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
699 DRM_DEBUG_KMS("Display port link bw %02x lane "
700 "count %d clock %d\n",
701 intel_dp->link_bw, intel_dp->lane_count,
702 adjusted_mode->clock);
703 return true;
704 }
705 }
706 }
707
708 return false;
709 }
710
711 struct intel_dp_m_n {
712 uint32_t tu;
713 uint32_t gmch_m;
714 uint32_t gmch_n;
715 uint32_t link_m;
716 uint32_t link_n;
717 };
718
719 static void
720 intel_reduce_ratio(uint32_t *num, uint32_t *den)
721 {
722 while (*num > 0xffffff || *den > 0xffffff) {
723 *num >>= 1;
724 *den >>= 1;
725 }
726 }
727
728 static void
729 intel_dp_compute_m_n(int bpp,
730 int nlanes,
731 int pixel_clock,
732 int link_clock,
733 struct intel_dp_m_n *m_n)
734 {
735 m_n->tu = 64;
736 m_n->gmch_m = (pixel_clock * bpp) >> 3;
737 m_n->gmch_n = link_clock * nlanes;
738 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
739 m_n->link_m = pixel_clock;
740 m_n->link_n = link_clock;
741 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
742 }
743
744 void
745 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
746 struct drm_display_mode *adjusted_mode)
747 {
748 struct drm_device *dev = crtc->dev;
749 struct drm_mode_config *mode_config = &dev->mode_config;
750 struct drm_encoder *encoder;
751 struct drm_i915_private *dev_priv = dev->dev_private;
752 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
753 int lane_count = 4;
754 struct intel_dp_m_n m_n;
755 int pipe = intel_crtc->pipe;
756
757 /*
758 * Find the lane count in the intel_encoder private
759 */
760 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
761 struct intel_dp *intel_dp;
762
763 if (encoder->crtc != crtc)
764 continue;
765
766 intel_dp = enc_to_intel_dp(encoder);
767 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
768 intel_dp->base.type == INTEL_OUTPUT_EDP)
769 {
770 lane_count = intel_dp->lane_count;
771 break;
772 }
773 }
774
775 /*
776 * Compute the GMCH and Link ratios. The '3' here is
777 * the number of bytes_per_pixel post-LUT, which we always
778 * set up for 8-bits of R/G/B, or 3 bytes total.
779 */
780 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
781 mode->clock, adjusted_mode->clock, &m_n);
782
783 if (HAS_PCH_SPLIT(dev)) {
784 I915_WRITE(TRANSDATA_M1(pipe),
785 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
786 m_n.gmch_m);
787 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
788 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
789 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
790 } else {
791 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
792 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
793 m_n.gmch_m);
794 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
795 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
796 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
797 }
798 }
799
800 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
801 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
802
803 static void
804 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
805 struct drm_display_mode *adjusted_mode)
806 {
807 struct drm_device *dev = encoder->dev;
808 struct drm_i915_private *dev_priv = dev->dev_private;
809 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
810 struct drm_crtc *crtc = intel_dp->base.base.crtc;
811 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
812
813 /* Turn on the eDP PLL if needed */
814 if (is_edp(intel_dp)) {
815 if (!is_pch_edp(intel_dp))
816 ironlake_edp_pll_on(encoder);
817 else
818 ironlake_edp_pll_off(encoder);
819 }
820
821 /*
822 * There are four kinds of DP registers:
823 *
824 * IBX PCH
825 * SNB CPU
826 * IVB CPU
827 * CPT PCH
828 *
829 * IBX PCH and CPU are the same for almost everything,
830 * except that the CPU DP PLL is configured in this
831 * register
832 *
833 * CPT PCH is quite different, having many bits moved
834 * to the TRANS_DP_CTL register instead. That
835 * configuration happens (oddly) in ironlake_pch_enable
836 */
837
838 /* Preserve the BIOS-computed detected bit. This is
839 * supposed to be read-only.
840 */
841 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
842 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
843
844 /* Handle DP bits in common between all three register formats */
845
846 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
847
848 switch (intel_dp->lane_count) {
849 case 1:
850 intel_dp->DP |= DP_PORT_WIDTH_1;
851 break;
852 case 2:
853 intel_dp->DP |= DP_PORT_WIDTH_2;
854 break;
855 case 4:
856 intel_dp->DP |= DP_PORT_WIDTH_4;
857 break;
858 }
859 if (intel_dp->has_audio) {
860 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
861 pipe_name(intel_crtc->pipe));
862 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
863 intel_write_eld(encoder, adjusted_mode);
864 }
865 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
866 intel_dp->link_configuration[0] = intel_dp->link_bw;
867 intel_dp->link_configuration[1] = intel_dp->lane_count;
868 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
869 /*
870 * Check for DPCD version > 1.1 and enhanced framing support
871 */
872 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
873 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
874 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
875 }
876
877 /* Split out the IBX/CPU vs CPT settings */
878
879 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
880 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
881 intel_dp->DP |= DP_SYNC_HS_HIGH;
882 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
883 intel_dp->DP |= DP_SYNC_VS_HIGH;
884 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
885
886 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
887 intel_dp->DP |= DP_ENHANCED_FRAMING;
888
889 intel_dp->DP |= intel_crtc->pipe << 29;
890
891 /* don't miss out required setting for eDP */
892 intel_dp->DP |= DP_PLL_ENABLE;
893 if (adjusted_mode->clock < 200000)
894 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
895 else
896 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
897 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
898 intel_dp->DP |= intel_dp->color_range;
899
900 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
901 intel_dp->DP |= DP_SYNC_HS_HIGH;
902 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
903 intel_dp->DP |= DP_SYNC_VS_HIGH;
904 intel_dp->DP |= DP_LINK_TRAIN_OFF;
905
906 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
907 intel_dp->DP |= DP_ENHANCED_FRAMING;
908
909 if (intel_crtc->pipe == 1)
910 intel_dp->DP |= DP_PIPEB_SELECT;
911
912 if (is_cpu_edp(intel_dp)) {
913 /* don't miss out required setting for eDP */
914 intel_dp->DP |= DP_PLL_ENABLE;
915 if (adjusted_mode->clock < 200000)
916 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
917 else
918 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
919 }
920 } else {
921 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
922 }
923 }
924
925 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
926 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
927
928 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
929 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
930
931 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
932 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
933
934 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
935 u32 mask,
936 u32 value)
937 {
938 struct drm_device *dev = intel_dp->base.base.dev;
939 struct drm_i915_private *dev_priv = dev->dev_private;
940
941 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
942 mask, value,
943 I915_READ(PCH_PP_STATUS),
944 I915_READ(PCH_PP_CONTROL));
945
946 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
947 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
948 I915_READ(PCH_PP_STATUS),
949 I915_READ(PCH_PP_CONTROL));
950 }
951 }
952
953 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
954 {
955 DRM_DEBUG_KMS("Wait for panel power on\n");
956 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
957 }
958
959 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
960 {
961 DRM_DEBUG_KMS("Wait for panel power off time\n");
962 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
963 }
964
965 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
966 {
967 DRM_DEBUG_KMS("Wait for panel power cycle\n");
968 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
969 }
970
971
972 /* Read the current pp_control value, unlocking the register if it
973 * is locked
974 */
975
976 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
977 {
978 u32 control = I915_READ(PCH_PP_CONTROL);
979
980 control &= ~PANEL_UNLOCK_MASK;
981 control |= PANEL_UNLOCK_REGS;
982 return control;
983 }
984
985 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
986 {
987 struct drm_device *dev = intel_dp->base.base.dev;
988 struct drm_i915_private *dev_priv = dev->dev_private;
989 u32 pp;
990
991 if (!is_edp(intel_dp))
992 return;
993 DRM_DEBUG_KMS("Turn eDP VDD on\n");
994
995 WARN(intel_dp->want_panel_vdd,
996 "eDP VDD already requested on\n");
997
998 intel_dp->want_panel_vdd = true;
999
1000 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1001 DRM_DEBUG_KMS("eDP VDD already on\n");
1002 return;
1003 }
1004
1005 if (!ironlake_edp_have_panel_power(intel_dp))
1006 ironlake_wait_panel_power_cycle(intel_dp);
1007
1008 pp = ironlake_get_pp_control(dev_priv);
1009 pp |= EDP_FORCE_VDD;
1010 I915_WRITE(PCH_PP_CONTROL, pp);
1011 POSTING_READ(PCH_PP_CONTROL);
1012 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1013 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1014
1015 /*
1016 * If the panel wasn't on, delay before accessing aux channel
1017 */
1018 if (!ironlake_edp_have_panel_power(intel_dp)) {
1019 DRM_DEBUG_KMS("eDP was not running\n");
1020 msleep(intel_dp->panel_power_up_delay);
1021 }
1022 }
1023
1024 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1025 {
1026 struct drm_device *dev = intel_dp->base.base.dev;
1027 struct drm_i915_private *dev_priv = dev->dev_private;
1028 u32 pp;
1029
1030 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1031 pp = ironlake_get_pp_control(dev_priv);
1032 pp &= ~EDP_FORCE_VDD;
1033 I915_WRITE(PCH_PP_CONTROL, pp);
1034 POSTING_READ(PCH_PP_CONTROL);
1035
1036 /* Make sure sequencer is idle before allowing subsequent activity */
1037 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1038 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1039
1040 msleep(intel_dp->panel_power_down_delay);
1041 }
1042 }
1043
1044 static void ironlake_panel_vdd_work(struct work_struct *__work)
1045 {
1046 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1047 struct intel_dp, panel_vdd_work);
1048 struct drm_device *dev = intel_dp->base.base.dev;
1049
1050 mutex_lock(&dev->mode_config.mutex);
1051 ironlake_panel_vdd_off_sync(intel_dp);
1052 mutex_unlock(&dev->mode_config.mutex);
1053 }
1054
1055 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1056 {
1057 if (!is_edp(intel_dp))
1058 return;
1059
1060 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1061 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1062
1063 intel_dp->want_panel_vdd = false;
1064
1065 if (sync) {
1066 ironlake_panel_vdd_off_sync(intel_dp);
1067 } else {
1068 /*
1069 * Queue the timer to fire a long
1070 * time from now (relative to the power down delay)
1071 * to keep the panel power up across a sequence of operations
1072 */
1073 schedule_delayed_work(&intel_dp->panel_vdd_work,
1074 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1075 }
1076 }
1077
1078 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1079 {
1080 struct drm_device *dev = intel_dp->base.base.dev;
1081 struct drm_i915_private *dev_priv = dev->dev_private;
1082 u32 pp;
1083
1084 if (!is_edp(intel_dp))
1085 return;
1086
1087 DRM_DEBUG_KMS("Turn eDP power on\n");
1088
1089 if (ironlake_edp_have_panel_power(intel_dp)) {
1090 DRM_DEBUG_KMS("eDP power already on\n");
1091 return;
1092 }
1093
1094 ironlake_wait_panel_power_cycle(intel_dp);
1095
1096 pp = ironlake_get_pp_control(dev_priv);
1097 if (IS_GEN5(dev)) {
1098 /* ILK workaround: disable reset around power sequence */
1099 pp &= ~PANEL_POWER_RESET;
1100 I915_WRITE(PCH_PP_CONTROL, pp);
1101 POSTING_READ(PCH_PP_CONTROL);
1102 }
1103
1104 pp |= POWER_TARGET_ON;
1105 if (!IS_GEN5(dev))
1106 pp |= PANEL_POWER_RESET;
1107
1108 I915_WRITE(PCH_PP_CONTROL, pp);
1109 POSTING_READ(PCH_PP_CONTROL);
1110
1111 ironlake_wait_panel_on(intel_dp);
1112
1113 if (IS_GEN5(dev)) {
1114 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1115 I915_WRITE(PCH_PP_CONTROL, pp);
1116 POSTING_READ(PCH_PP_CONTROL);
1117 }
1118 }
1119
1120 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1121 {
1122 struct drm_device *dev = intel_dp->base.base.dev;
1123 struct drm_i915_private *dev_priv = dev->dev_private;
1124 u32 pp;
1125
1126 if (!is_edp(intel_dp))
1127 return;
1128
1129 DRM_DEBUG_KMS("Turn eDP power off\n");
1130
1131 WARN(intel_dp->want_panel_vdd, "Cannot turn power off while VDD is on\n");
1132
1133 pp = ironlake_get_pp_control(dev_priv);
1134 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1135 I915_WRITE(PCH_PP_CONTROL, pp);
1136 POSTING_READ(PCH_PP_CONTROL);
1137
1138 ironlake_wait_panel_off(intel_dp);
1139 }
1140
1141 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1142 {
1143 struct drm_device *dev = intel_dp->base.base.dev;
1144 struct drm_i915_private *dev_priv = dev->dev_private;
1145 u32 pp;
1146
1147 if (!is_edp(intel_dp))
1148 return;
1149
1150 DRM_DEBUG_KMS("\n");
1151 /*
1152 * If we enable the backlight right away following a panel power
1153 * on, we may see slight flicker as the panel syncs with the eDP
1154 * link. So delay a bit to make sure the image is solid before
1155 * allowing it to appear.
1156 */
1157 msleep(intel_dp->backlight_on_delay);
1158 pp = ironlake_get_pp_control(dev_priv);
1159 pp |= EDP_BLC_ENABLE;
1160 I915_WRITE(PCH_PP_CONTROL, pp);
1161 POSTING_READ(PCH_PP_CONTROL);
1162 }
1163
1164 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1165 {
1166 struct drm_device *dev = intel_dp->base.base.dev;
1167 struct drm_i915_private *dev_priv = dev->dev_private;
1168 u32 pp;
1169
1170 if (!is_edp(intel_dp))
1171 return;
1172
1173 DRM_DEBUG_KMS("\n");
1174 pp = ironlake_get_pp_control(dev_priv);
1175 pp &= ~EDP_BLC_ENABLE;
1176 I915_WRITE(PCH_PP_CONTROL, pp);
1177 POSTING_READ(PCH_PP_CONTROL);
1178 msleep(intel_dp->backlight_off_delay);
1179 }
1180
1181 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1182 {
1183 struct drm_device *dev = encoder->dev;
1184 struct drm_i915_private *dev_priv = dev->dev_private;
1185 u32 dpa_ctl;
1186
1187 DRM_DEBUG_KMS("\n");
1188 dpa_ctl = I915_READ(DP_A);
1189 dpa_ctl |= DP_PLL_ENABLE;
1190 I915_WRITE(DP_A, dpa_ctl);
1191 POSTING_READ(DP_A);
1192 udelay(200);
1193 }
1194
1195 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1196 {
1197 struct drm_device *dev = encoder->dev;
1198 struct drm_i915_private *dev_priv = dev->dev_private;
1199 u32 dpa_ctl;
1200
1201 dpa_ctl = I915_READ(DP_A);
1202 dpa_ctl &= ~DP_PLL_ENABLE;
1203 I915_WRITE(DP_A, dpa_ctl);
1204 POSTING_READ(DP_A);
1205 udelay(200);
1206 }
1207
1208 /* If the sink supports it, try to set the power state appropriately */
1209 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1210 {
1211 int ret, i;
1212
1213 /* Should have a valid DPCD by this point */
1214 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1215 return;
1216
1217 if (mode != DRM_MODE_DPMS_ON) {
1218 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1219 DP_SET_POWER_D3);
1220 if (ret != 1)
1221 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1222 } else {
1223 /*
1224 * When turning on, we need to retry for 1ms to give the sink
1225 * time to wake up.
1226 */
1227 for (i = 0; i < 3; i++) {
1228 ret = intel_dp_aux_native_write_1(intel_dp,
1229 DP_SET_POWER,
1230 DP_SET_POWER_D0);
1231 if (ret == 1)
1232 break;
1233 msleep(1);
1234 }
1235 }
1236 }
1237
1238 static void intel_dp_prepare(struct drm_encoder *encoder)
1239 {
1240 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1241
1242 ironlake_edp_backlight_off(intel_dp);
1243 ironlake_edp_panel_off(intel_dp);
1244
1245 /* Wake up the sink first */
1246 ironlake_edp_panel_vdd_on(intel_dp);
1247 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1248 intel_dp_link_down(intel_dp);
1249 ironlake_edp_panel_vdd_off(intel_dp, false);
1250
1251 /* Make sure the panel is off before trying to
1252 * change the mode
1253 */
1254 }
1255
1256 static void intel_dp_commit(struct drm_encoder *encoder)
1257 {
1258 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1259 struct drm_device *dev = encoder->dev;
1260 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1261
1262 ironlake_edp_panel_vdd_on(intel_dp);
1263 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1264 intel_dp_start_link_train(intel_dp);
1265 ironlake_edp_panel_on(intel_dp);
1266 ironlake_edp_panel_vdd_off(intel_dp, true);
1267 intel_dp_complete_link_train(intel_dp);
1268 ironlake_edp_backlight_on(intel_dp);
1269
1270 intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1271
1272 if (HAS_PCH_CPT(dev))
1273 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1274 }
1275
1276 static void
1277 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1278 {
1279 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1280 struct drm_device *dev = encoder->dev;
1281 struct drm_i915_private *dev_priv = dev->dev_private;
1282 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1283
1284 if (mode != DRM_MODE_DPMS_ON) {
1285 ironlake_edp_backlight_off(intel_dp);
1286 ironlake_edp_panel_off(intel_dp);
1287
1288 ironlake_edp_panel_vdd_on(intel_dp);
1289 intel_dp_sink_dpms(intel_dp, mode);
1290 intel_dp_link_down(intel_dp);
1291 ironlake_edp_panel_vdd_off(intel_dp, false);
1292
1293 if (is_cpu_edp(intel_dp))
1294 ironlake_edp_pll_off(encoder);
1295 } else {
1296 if (is_cpu_edp(intel_dp))
1297 ironlake_edp_pll_on(encoder);
1298
1299 ironlake_edp_panel_vdd_on(intel_dp);
1300 intel_dp_sink_dpms(intel_dp, mode);
1301 if (!(dp_reg & DP_PORT_EN)) {
1302 intel_dp_start_link_train(intel_dp);
1303 ironlake_edp_panel_on(intel_dp);
1304 ironlake_edp_panel_vdd_off(intel_dp, true);
1305 intel_dp_complete_link_train(intel_dp);
1306 } else
1307 ironlake_edp_panel_vdd_off(intel_dp, false);
1308 ironlake_edp_backlight_on(intel_dp);
1309 }
1310 intel_dp->dpms_mode = mode;
1311 }
1312
1313 /*
1314 * Native read with retry for link status and receiver capability reads for
1315 * cases where the sink may still be asleep.
1316 */
1317 static bool
1318 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1319 uint8_t *recv, int recv_bytes)
1320 {
1321 int ret, i;
1322
1323 /*
1324 * Sinks are *supposed* to come up within 1ms from an off state,
1325 * but we're also supposed to retry 3 times per the spec.
1326 */
1327 for (i = 0; i < 3; i++) {
1328 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1329 recv_bytes);
1330 if (ret == recv_bytes)
1331 return true;
1332 msleep(1);
1333 }
1334
1335 return false;
1336 }
1337
1338 /*
1339 * Fetch AUX CH registers 0x202 - 0x207 which contain
1340 * link status information
1341 */
1342 static bool
1343 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1344 {
1345 return intel_dp_aux_native_read_retry(intel_dp,
1346 DP_LANE0_1_STATUS,
1347 link_status,
1348 DP_LINK_STATUS_SIZE);
1349 }
1350
1351 static uint8_t
1352 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1353 int r)
1354 {
1355 return link_status[r - DP_LANE0_1_STATUS];
1356 }
1357
1358 static uint8_t
1359 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1360 int lane)
1361 {
1362 int s = ((lane & 1) ?
1363 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1364 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1365 uint8_t l = adjust_request[lane>>1];
1366
1367 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1368 }
1369
1370 static uint8_t
1371 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1372 int lane)
1373 {
1374 int s = ((lane & 1) ?
1375 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1376 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1377 uint8_t l = adjust_request[lane>>1];
1378
1379 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1380 }
1381
1382
1383 #if 0
1384 static char *voltage_names[] = {
1385 "0.4V", "0.6V", "0.8V", "1.2V"
1386 };
1387 static char *pre_emph_names[] = {
1388 "0dB", "3.5dB", "6dB", "9.5dB"
1389 };
1390 static char *link_train_names[] = {
1391 "pattern 1", "pattern 2", "idle", "off"
1392 };
1393 #endif
1394
1395 /*
1396 * These are source-specific values; current Intel hardware supports
1397 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1398 */
1399
1400 static uint8_t
1401 intel_dp_voltage_max(struct intel_dp *intel_dp)
1402 {
1403 struct drm_device *dev = intel_dp->base.base.dev;
1404
1405 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1406 return DP_TRAIN_VOLTAGE_SWING_800;
1407 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1408 return DP_TRAIN_VOLTAGE_SWING_1200;
1409 else
1410 return DP_TRAIN_VOLTAGE_SWING_800;
1411 }
1412
1413 static uint8_t
1414 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1415 {
1416 struct drm_device *dev = intel_dp->base.base.dev;
1417
1418 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1419 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1420 case DP_TRAIN_VOLTAGE_SWING_400:
1421 return DP_TRAIN_PRE_EMPHASIS_6;
1422 case DP_TRAIN_VOLTAGE_SWING_600:
1423 case DP_TRAIN_VOLTAGE_SWING_800:
1424 return DP_TRAIN_PRE_EMPHASIS_3_5;
1425 default:
1426 return DP_TRAIN_PRE_EMPHASIS_0;
1427 }
1428 } else {
1429 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1430 case DP_TRAIN_VOLTAGE_SWING_400:
1431 return DP_TRAIN_PRE_EMPHASIS_6;
1432 case DP_TRAIN_VOLTAGE_SWING_600:
1433 return DP_TRAIN_PRE_EMPHASIS_6;
1434 case DP_TRAIN_VOLTAGE_SWING_800:
1435 return DP_TRAIN_PRE_EMPHASIS_3_5;
1436 case DP_TRAIN_VOLTAGE_SWING_1200:
1437 default:
1438 return DP_TRAIN_PRE_EMPHASIS_0;
1439 }
1440 }
1441 }
1442
1443 static void
1444 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1445 {
1446 uint8_t v = 0;
1447 uint8_t p = 0;
1448 int lane;
1449 uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1450 uint8_t voltage_max;
1451 uint8_t preemph_max;
1452
1453 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1454 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1455 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1456
1457 if (this_v > v)
1458 v = this_v;
1459 if (this_p > p)
1460 p = this_p;
1461 }
1462
1463 voltage_max = intel_dp_voltage_max(intel_dp);
1464 if (v >= voltage_max)
1465 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1466
1467 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1468 if (p >= preemph_max)
1469 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1470
1471 for (lane = 0; lane < 4; lane++)
1472 intel_dp->train_set[lane] = v | p;
1473 }
1474
1475 static uint32_t
1476 intel_dp_signal_levels(uint8_t train_set)
1477 {
1478 uint32_t signal_levels = 0;
1479
1480 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1481 case DP_TRAIN_VOLTAGE_SWING_400:
1482 default:
1483 signal_levels |= DP_VOLTAGE_0_4;
1484 break;
1485 case DP_TRAIN_VOLTAGE_SWING_600:
1486 signal_levels |= DP_VOLTAGE_0_6;
1487 break;
1488 case DP_TRAIN_VOLTAGE_SWING_800:
1489 signal_levels |= DP_VOLTAGE_0_8;
1490 break;
1491 case DP_TRAIN_VOLTAGE_SWING_1200:
1492 signal_levels |= DP_VOLTAGE_1_2;
1493 break;
1494 }
1495 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1496 case DP_TRAIN_PRE_EMPHASIS_0:
1497 default:
1498 signal_levels |= DP_PRE_EMPHASIS_0;
1499 break;
1500 case DP_TRAIN_PRE_EMPHASIS_3_5:
1501 signal_levels |= DP_PRE_EMPHASIS_3_5;
1502 break;
1503 case DP_TRAIN_PRE_EMPHASIS_6:
1504 signal_levels |= DP_PRE_EMPHASIS_6;
1505 break;
1506 case DP_TRAIN_PRE_EMPHASIS_9_5:
1507 signal_levels |= DP_PRE_EMPHASIS_9_5;
1508 break;
1509 }
1510 return signal_levels;
1511 }
1512
1513 /* Gen6's DP voltage swing and pre-emphasis control */
1514 static uint32_t
1515 intel_gen6_edp_signal_levels(uint8_t train_set)
1516 {
1517 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1518 DP_TRAIN_PRE_EMPHASIS_MASK);
1519 switch (signal_levels) {
1520 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1521 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1522 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1523 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1524 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1525 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1526 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1527 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1528 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1529 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1530 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1531 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1532 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1533 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1534 default:
1535 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1536 "0x%x\n", signal_levels);
1537 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1538 }
1539 }
1540
1541 /* Gen7's DP voltage swing and pre-emphasis control */
1542 static uint32_t
1543 intel_gen7_edp_signal_levels(uint8_t train_set)
1544 {
1545 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1546 DP_TRAIN_PRE_EMPHASIS_MASK);
1547 switch (signal_levels) {
1548 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1549 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1550 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1551 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1552 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1553 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1554
1555 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1556 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1557 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1558 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1559
1560 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1561 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1562 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1563 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1564
1565 default:
1566 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1567 "0x%x\n", signal_levels);
1568 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1569 }
1570 }
1571
1572 static uint8_t
1573 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1574 int lane)
1575 {
1576 int s = (lane & 1) * 4;
1577 uint8_t l = link_status[lane>>1];
1578
1579 return (l >> s) & 0xf;
1580 }
1581
1582 /* Check for clock recovery is done on all channels */
1583 static bool
1584 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1585 {
1586 int lane;
1587 uint8_t lane_status;
1588
1589 for (lane = 0; lane < lane_count; lane++) {
1590 lane_status = intel_get_lane_status(link_status, lane);
1591 if ((lane_status & DP_LANE_CR_DONE) == 0)
1592 return false;
1593 }
1594 return true;
1595 }
1596
1597 /* Check to see if channel eq is done on all channels */
1598 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1599 DP_LANE_CHANNEL_EQ_DONE|\
1600 DP_LANE_SYMBOL_LOCKED)
1601 static bool
1602 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1603 {
1604 uint8_t lane_align;
1605 uint8_t lane_status;
1606 int lane;
1607
1608 lane_align = intel_dp_link_status(link_status,
1609 DP_LANE_ALIGN_STATUS_UPDATED);
1610 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1611 return false;
1612 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1613 lane_status = intel_get_lane_status(link_status, lane);
1614 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1615 return false;
1616 }
1617 return true;
1618 }
1619
1620 static bool
1621 intel_dp_set_link_train(struct intel_dp *intel_dp,
1622 uint32_t dp_reg_value,
1623 uint8_t dp_train_pat)
1624 {
1625 struct drm_device *dev = intel_dp->base.base.dev;
1626 struct drm_i915_private *dev_priv = dev->dev_private;
1627 int ret;
1628
1629 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1630 POSTING_READ(intel_dp->output_reg);
1631
1632 intel_dp_aux_native_write_1(intel_dp,
1633 DP_TRAINING_PATTERN_SET,
1634 dp_train_pat);
1635
1636 ret = intel_dp_aux_native_write(intel_dp,
1637 DP_TRAINING_LANE0_SET,
1638 intel_dp->train_set,
1639 intel_dp->lane_count);
1640 if (ret != intel_dp->lane_count)
1641 return false;
1642
1643 return true;
1644 }
1645
1646 /* Enable corresponding port and start training pattern 1 */
1647 static void
1648 intel_dp_start_link_train(struct intel_dp *intel_dp)
1649 {
1650 struct drm_device *dev = intel_dp->base.base.dev;
1651 struct drm_i915_private *dev_priv = dev->dev_private;
1652 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1653 int i;
1654 uint8_t voltage;
1655 bool clock_recovery = false;
1656 int voltage_tries, loop_tries;
1657 u32 reg;
1658 uint32_t DP = intel_dp->DP;
1659
1660 /*
1661 * On CPT we have to enable the port in training pattern 1, which
1662 * will happen below in intel_dp_set_link_train. Otherwise, enable
1663 * the port and wait for it to become active.
1664 */
1665 if (!HAS_PCH_CPT(dev)) {
1666 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1667 POSTING_READ(intel_dp->output_reg);
1668 intel_wait_for_vblank(dev, intel_crtc->pipe);
1669 }
1670
1671 /* Write the link configuration data */
1672 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1673 intel_dp->link_configuration,
1674 DP_LINK_CONFIGURATION_SIZE);
1675
1676 DP |= DP_PORT_EN;
1677
1678 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1679 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1680 else
1681 DP &= ~DP_LINK_TRAIN_MASK;
1682 memset(intel_dp->train_set, 0, 4);
1683 voltage = 0xff;
1684 voltage_tries = 0;
1685 loop_tries = 0;
1686 clock_recovery = false;
1687 for (;;) {
1688 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1689 uint8_t link_status[DP_LINK_STATUS_SIZE];
1690 uint32_t signal_levels;
1691
1692
1693 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1694 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1695 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1696 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1697 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1698 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1699 } else {
1700 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1701 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1702 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1703 }
1704
1705 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1706 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1707 else
1708 reg = DP | DP_LINK_TRAIN_PAT_1;
1709
1710 if (!intel_dp_set_link_train(intel_dp, reg,
1711 DP_TRAINING_PATTERN_1 |
1712 DP_LINK_SCRAMBLING_DISABLE))
1713 break;
1714 /* Set training pattern 1 */
1715
1716 udelay(100);
1717 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1718 DRM_ERROR("failed to get link status\n");
1719 break;
1720 }
1721
1722 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1723 DRM_DEBUG_KMS("clock recovery OK\n");
1724 clock_recovery = true;
1725 break;
1726 }
1727
1728 /* Check to see if we've tried the max voltage */
1729 for (i = 0; i < intel_dp->lane_count; i++)
1730 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1731 break;
1732 if (i == intel_dp->lane_count) {
1733 ++loop_tries;
1734 if (loop_tries == 5) {
1735 DRM_DEBUG_KMS("too many full retries, give up\n");
1736 break;
1737 }
1738 memset(intel_dp->train_set, 0, 4);
1739 voltage_tries = 0;
1740 continue;
1741 }
1742
1743 /* Check to see if we've tried the same voltage 5 times */
1744 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1745 ++voltage_tries;
1746 if (voltage_tries == 5) {
1747 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1748 break;
1749 }
1750 } else
1751 voltage_tries = 0;
1752 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1753
1754 /* Compute new intel_dp->train_set as requested by target */
1755 intel_get_adjust_train(intel_dp, link_status);
1756 }
1757
1758 intel_dp->DP = DP;
1759 }
1760
1761 static void
1762 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1763 {
1764 struct drm_device *dev = intel_dp->base.base.dev;
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 bool channel_eq = false;
1767 int tries, cr_tries;
1768 u32 reg;
1769 uint32_t DP = intel_dp->DP;
1770
1771 /* channel equalization */
1772 tries = 0;
1773 cr_tries = 0;
1774 channel_eq = false;
1775 for (;;) {
1776 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1777 uint32_t signal_levels;
1778 uint8_t link_status[DP_LINK_STATUS_SIZE];
1779
1780 if (cr_tries > 5) {
1781 DRM_ERROR("failed to train DP, aborting\n");
1782 intel_dp_link_down(intel_dp);
1783 break;
1784 }
1785
1786 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1787 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1788 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1789 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1790 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1791 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1792 } else {
1793 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1794 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1795 }
1796
1797 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1798 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1799 else
1800 reg = DP | DP_LINK_TRAIN_PAT_2;
1801
1802 /* channel eq pattern */
1803 if (!intel_dp_set_link_train(intel_dp, reg,
1804 DP_TRAINING_PATTERN_2 |
1805 DP_LINK_SCRAMBLING_DISABLE))
1806 break;
1807
1808 udelay(400);
1809 if (!intel_dp_get_link_status(intel_dp, link_status))
1810 break;
1811
1812 /* Make sure clock is still ok */
1813 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1814 intel_dp_start_link_train(intel_dp);
1815 cr_tries++;
1816 continue;
1817 }
1818
1819 if (intel_channel_eq_ok(intel_dp, link_status)) {
1820 channel_eq = true;
1821 break;
1822 }
1823
1824 /* Try 5 times, then try clock recovery if that fails */
1825 if (tries > 5) {
1826 intel_dp_link_down(intel_dp);
1827 intel_dp_start_link_train(intel_dp);
1828 tries = 0;
1829 cr_tries++;
1830 continue;
1831 }
1832
1833 /* Compute new intel_dp->train_set as requested by target */
1834 intel_get_adjust_train(intel_dp, link_status);
1835 ++tries;
1836 }
1837
1838 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1839 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1840 else
1841 reg = DP | DP_LINK_TRAIN_OFF;
1842
1843 I915_WRITE(intel_dp->output_reg, reg);
1844 POSTING_READ(intel_dp->output_reg);
1845 intel_dp_aux_native_write_1(intel_dp,
1846 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1847 }
1848
1849 static void
1850 intel_dp_link_down(struct intel_dp *intel_dp)
1851 {
1852 struct drm_device *dev = intel_dp->base.base.dev;
1853 struct drm_i915_private *dev_priv = dev->dev_private;
1854 uint32_t DP = intel_dp->DP;
1855
1856 if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1857 return;
1858
1859 DRM_DEBUG_KMS("\n");
1860
1861 if (is_edp(intel_dp)) {
1862 DP &= ~DP_PLL_ENABLE;
1863 I915_WRITE(intel_dp->output_reg, DP);
1864 POSTING_READ(intel_dp->output_reg);
1865 udelay(100);
1866 }
1867
1868 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1869 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1870 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1871 } else {
1872 DP &= ~DP_LINK_TRAIN_MASK;
1873 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1874 }
1875 POSTING_READ(intel_dp->output_reg);
1876
1877 msleep(17);
1878
1879 if (is_edp(intel_dp)) {
1880 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1881 DP |= DP_LINK_TRAIN_OFF_CPT;
1882 else
1883 DP |= DP_LINK_TRAIN_OFF;
1884 }
1885
1886 if (!HAS_PCH_CPT(dev) &&
1887 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1888 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1889
1890 /* Hardware workaround: leaving our transcoder select
1891 * set to transcoder B while it's off will prevent the
1892 * corresponding HDMI output on transcoder A.
1893 *
1894 * Combine this with another hardware workaround:
1895 * transcoder select bit can only be cleared while the
1896 * port is enabled.
1897 */
1898 DP &= ~DP_PIPEB_SELECT;
1899 I915_WRITE(intel_dp->output_reg, DP);
1900
1901 /* Changes to enable or select take place the vblank
1902 * after being written.
1903 */
1904 if (crtc == NULL) {
1905 /* We can arrive here never having been attached
1906 * to a CRTC, for instance, due to inheriting
1907 * random state from the BIOS.
1908 *
1909 * If the pipe is not running, play safe and
1910 * wait for the clocks to stabilise before
1911 * continuing.
1912 */
1913 POSTING_READ(intel_dp->output_reg);
1914 msleep(50);
1915 } else
1916 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1917 }
1918
1919 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1920 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1921 POSTING_READ(intel_dp->output_reg);
1922 msleep(intel_dp->panel_power_down_delay);
1923 }
1924
1925 static bool
1926 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1927 {
1928 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1929 sizeof(intel_dp->dpcd)) &&
1930 (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1931 return true;
1932 }
1933
1934 return false;
1935 }
1936
1937 static bool
1938 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1939 {
1940 int ret;
1941
1942 ret = intel_dp_aux_native_read_retry(intel_dp,
1943 DP_DEVICE_SERVICE_IRQ_VECTOR,
1944 sink_irq_vector, 1);
1945 if (!ret)
1946 return false;
1947
1948 return true;
1949 }
1950
1951 static void
1952 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1953 {
1954 /* NAK by default */
1955 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1956 }
1957
1958 /*
1959 * According to DP spec
1960 * 5.1.2:
1961 * 1. Read DPCD
1962 * 2. Configure link according to Receiver Capabilities
1963 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1964 * 4. Check link status on receipt of hot-plug interrupt
1965 */
1966
1967 static void
1968 intel_dp_check_link_status(struct intel_dp *intel_dp)
1969 {
1970 u8 sink_irq_vector;
1971 u8 link_status[DP_LINK_STATUS_SIZE];
1972
1973 if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1974 return;
1975
1976 if (!intel_dp->base.base.crtc)
1977 return;
1978
1979 /* Try to read receiver status if the link appears to be up */
1980 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1981 intel_dp_link_down(intel_dp);
1982 return;
1983 }
1984
1985 /* Now read the DPCD to see if it's actually running */
1986 if (!intel_dp_get_dpcd(intel_dp)) {
1987 intel_dp_link_down(intel_dp);
1988 return;
1989 }
1990
1991 /* Try to read the source of the interrupt */
1992 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1993 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
1994 /* Clear interrupt source */
1995 intel_dp_aux_native_write_1(intel_dp,
1996 DP_DEVICE_SERVICE_IRQ_VECTOR,
1997 sink_irq_vector);
1998
1999 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2000 intel_dp_handle_test_request(intel_dp);
2001 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2002 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2003 }
2004
2005 if (!intel_channel_eq_ok(intel_dp, link_status)) {
2006 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2007 drm_get_encoder_name(&intel_dp->base.base));
2008 intel_dp_start_link_train(intel_dp);
2009 intel_dp_complete_link_train(intel_dp);
2010 }
2011 }
2012
2013 static enum drm_connector_status
2014 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2015 {
2016 if (intel_dp_get_dpcd(intel_dp))
2017 return connector_status_connected;
2018 return connector_status_disconnected;
2019 }
2020
2021 static enum drm_connector_status
2022 ironlake_dp_detect(struct intel_dp *intel_dp)
2023 {
2024 enum drm_connector_status status;
2025
2026 /* Can't disconnect eDP, but you can close the lid... */
2027 if (is_edp(intel_dp)) {
2028 status = intel_panel_detect(intel_dp->base.base.dev);
2029 if (status == connector_status_unknown)
2030 status = connector_status_connected;
2031 return status;
2032 }
2033
2034 return intel_dp_detect_dpcd(intel_dp);
2035 }
2036
2037 static enum drm_connector_status
2038 g4x_dp_detect(struct intel_dp *intel_dp)
2039 {
2040 struct drm_device *dev = intel_dp->base.base.dev;
2041 struct drm_i915_private *dev_priv = dev->dev_private;
2042 uint32_t temp, bit;
2043
2044 switch (intel_dp->output_reg) {
2045 case DP_B:
2046 bit = DPB_HOTPLUG_INT_STATUS;
2047 break;
2048 case DP_C:
2049 bit = DPC_HOTPLUG_INT_STATUS;
2050 break;
2051 case DP_D:
2052 bit = DPD_HOTPLUG_INT_STATUS;
2053 break;
2054 default:
2055 return connector_status_unknown;
2056 }
2057
2058 temp = I915_READ(PORT_HOTPLUG_STAT);
2059
2060 if ((temp & bit) == 0)
2061 return connector_status_disconnected;
2062
2063 return intel_dp_detect_dpcd(intel_dp);
2064 }
2065
2066 static struct edid *
2067 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2068 {
2069 struct intel_dp *intel_dp = intel_attached_dp(connector);
2070 struct edid *edid;
2071
2072 ironlake_edp_panel_vdd_on(intel_dp);
2073 edid = drm_get_edid(connector, adapter);
2074 ironlake_edp_panel_vdd_off(intel_dp, false);
2075 return edid;
2076 }
2077
2078 static int
2079 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2080 {
2081 struct intel_dp *intel_dp = intel_attached_dp(connector);
2082 int ret;
2083
2084 ironlake_edp_panel_vdd_on(intel_dp);
2085 ret = intel_ddc_get_modes(connector, adapter);
2086 ironlake_edp_panel_vdd_off(intel_dp, false);
2087 return ret;
2088 }
2089
2090
2091 /**
2092 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2093 *
2094 * \return true if DP port is connected.
2095 * \return false if DP port is disconnected.
2096 */
2097 static enum drm_connector_status
2098 intel_dp_detect(struct drm_connector *connector, bool force)
2099 {
2100 struct intel_dp *intel_dp = intel_attached_dp(connector);
2101 struct drm_device *dev = intel_dp->base.base.dev;
2102 enum drm_connector_status status;
2103 struct edid *edid = NULL;
2104
2105 intel_dp->has_audio = false;
2106
2107 if (HAS_PCH_SPLIT(dev))
2108 status = ironlake_dp_detect(intel_dp);
2109 else
2110 status = g4x_dp_detect(intel_dp);
2111
2112 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2113 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2114 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2115 intel_dp->dpcd[6], intel_dp->dpcd[7]);
2116
2117 if (status != connector_status_connected)
2118 return status;
2119
2120 if (intel_dp->force_audio) {
2121 intel_dp->has_audio = intel_dp->force_audio > 0;
2122 } else {
2123 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2124 if (edid) {
2125 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2126 connector->display_info.raw_edid = NULL;
2127 kfree(edid);
2128 }
2129 }
2130
2131 return connector_status_connected;
2132 }
2133
2134 static int intel_dp_get_modes(struct drm_connector *connector)
2135 {
2136 struct intel_dp *intel_dp = intel_attached_dp(connector);
2137 struct drm_device *dev = intel_dp->base.base.dev;
2138 struct drm_i915_private *dev_priv = dev->dev_private;
2139 int ret;
2140
2141 /* We should parse the EDID data and find out if it has an audio sink
2142 */
2143
2144 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2145 if (ret) {
2146 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2147 struct drm_display_mode *newmode;
2148 list_for_each_entry(newmode, &connector->probed_modes,
2149 head) {
2150 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2151 intel_dp->panel_fixed_mode =
2152 drm_mode_duplicate(dev, newmode);
2153 break;
2154 }
2155 }
2156 }
2157 return ret;
2158 }
2159
2160 /* if eDP has no EDID, try to use fixed panel mode from VBT */
2161 if (is_edp(intel_dp)) {
2162 /* initialize panel mode from VBT if available for eDP */
2163 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2164 intel_dp->panel_fixed_mode =
2165 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2166 if (intel_dp->panel_fixed_mode) {
2167 intel_dp->panel_fixed_mode->type |=
2168 DRM_MODE_TYPE_PREFERRED;
2169 }
2170 }
2171 if (intel_dp->panel_fixed_mode) {
2172 struct drm_display_mode *mode;
2173 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2174 drm_mode_probed_add(connector, mode);
2175 return 1;
2176 }
2177 }
2178 return 0;
2179 }
2180
2181 static bool
2182 intel_dp_detect_audio(struct drm_connector *connector)
2183 {
2184 struct intel_dp *intel_dp = intel_attached_dp(connector);
2185 struct edid *edid;
2186 bool has_audio = false;
2187
2188 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2189 if (edid) {
2190 has_audio = drm_detect_monitor_audio(edid);
2191
2192 connector->display_info.raw_edid = NULL;
2193 kfree(edid);
2194 }
2195
2196 return has_audio;
2197 }
2198
2199 static int
2200 intel_dp_set_property(struct drm_connector *connector,
2201 struct drm_property *property,
2202 uint64_t val)
2203 {
2204 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2205 struct intel_dp *intel_dp = intel_attached_dp(connector);
2206 int ret;
2207
2208 ret = drm_connector_property_set_value(connector, property, val);
2209 if (ret)
2210 return ret;
2211
2212 if (property == dev_priv->force_audio_property) {
2213 int i = val;
2214 bool has_audio;
2215
2216 if (i == intel_dp->force_audio)
2217 return 0;
2218
2219 intel_dp->force_audio = i;
2220
2221 if (i == 0)
2222 has_audio = intel_dp_detect_audio(connector);
2223 else
2224 has_audio = i > 0;
2225
2226 if (has_audio == intel_dp->has_audio)
2227 return 0;
2228
2229 intel_dp->has_audio = has_audio;
2230 goto done;
2231 }
2232
2233 if (property == dev_priv->broadcast_rgb_property) {
2234 if (val == !!intel_dp->color_range)
2235 return 0;
2236
2237 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2238 goto done;
2239 }
2240
2241 return -EINVAL;
2242
2243 done:
2244 if (intel_dp->base.base.crtc) {
2245 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2246 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2247 crtc->x, crtc->y,
2248 crtc->fb);
2249 }
2250
2251 return 0;
2252 }
2253
2254 static void
2255 intel_dp_destroy(struct drm_connector *connector)
2256 {
2257 struct drm_device *dev = connector->dev;
2258
2259 if (intel_dpd_is_edp(dev))
2260 intel_panel_destroy_backlight(dev);
2261
2262 drm_sysfs_connector_remove(connector);
2263 drm_connector_cleanup(connector);
2264 kfree(connector);
2265 }
2266
2267 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2268 {
2269 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2270
2271 i2c_del_adapter(&intel_dp->adapter);
2272 drm_encoder_cleanup(encoder);
2273 if (is_edp(intel_dp)) {
2274 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2275 ironlake_panel_vdd_off_sync(intel_dp);
2276 }
2277 kfree(intel_dp);
2278 }
2279
2280 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2281 .dpms = intel_dp_dpms,
2282 .mode_fixup = intel_dp_mode_fixup,
2283 .prepare = intel_dp_prepare,
2284 .mode_set = intel_dp_mode_set,
2285 .commit = intel_dp_commit,
2286 };
2287
2288 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2289 .dpms = drm_helper_connector_dpms,
2290 .detect = intel_dp_detect,
2291 .fill_modes = drm_helper_probe_single_connector_modes,
2292 .set_property = intel_dp_set_property,
2293 .destroy = intel_dp_destroy,
2294 };
2295
2296 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2297 .get_modes = intel_dp_get_modes,
2298 .mode_valid = intel_dp_mode_valid,
2299 .best_encoder = intel_best_encoder,
2300 };
2301
2302 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2303 .destroy = intel_dp_encoder_destroy,
2304 };
2305
2306 static void
2307 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2308 {
2309 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2310
2311 intel_dp_check_link_status(intel_dp);
2312 }
2313
2314 /* Return which DP Port should be selected for Transcoder DP control */
2315 int
2316 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2317 {
2318 struct drm_device *dev = crtc->dev;
2319 struct drm_mode_config *mode_config = &dev->mode_config;
2320 struct drm_encoder *encoder;
2321
2322 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2323 struct intel_dp *intel_dp;
2324
2325 if (encoder->crtc != crtc)
2326 continue;
2327
2328 intel_dp = enc_to_intel_dp(encoder);
2329 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2330 intel_dp->base.type == INTEL_OUTPUT_EDP)
2331 return intel_dp->output_reg;
2332 }
2333
2334 return -1;
2335 }
2336
2337 /* check the VBT to see whether the eDP is on DP-D port */
2338 bool intel_dpd_is_edp(struct drm_device *dev)
2339 {
2340 struct drm_i915_private *dev_priv = dev->dev_private;
2341 struct child_device_config *p_child;
2342 int i;
2343
2344 if (!dev_priv->child_dev_num)
2345 return false;
2346
2347 for (i = 0; i < dev_priv->child_dev_num; i++) {
2348 p_child = dev_priv->child_dev + i;
2349
2350 if (p_child->dvo_port == PORT_IDPD &&
2351 p_child->device_type == DEVICE_TYPE_eDP)
2352 return true;
2353 }
2354 return false;
2355 }
2356
2357 static void
2358 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2359 {
2360 intel_attach_force_audio_property(connector);
2361 intel_attach_broadcast_rgb_property(connector);
2362 }
2363
2364 void
2365 intel_dp_init(struct drm_device *dev, int output_reg)
2366 {
2367 struct drm_i915_private *dev_priv = dev->dev_private;
2368 struct drm_connector *connector;
2369 struct intel_dp *intel_dp;
2370 struct intel_encoder *intel_encoder;
2371 struct intel_connector *intel_connector;
2372 const char *name = NULL;
2373 int type;
2374
2375 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2376 if (!intel_dp)
2377 return;
2378
2379 intel_dp->output_reg = output_reg;
2380 intel_dp->dpms_mode = -1;
2381
2382 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2383 if (!intel_connector) {
2384 kfree(intel_dp);
2385 return;
2386 }
2387 intel_encoder = &intel_dp->base;
2388
2389 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2390 if (intel_dpd_is_edp(dev))
2391 intel_dp->is_pch_edp = true;
2392
2393 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2394 type = DRM_MODE_CONNECTOR_eDP;
2395 intel_encoder->type = INTEL_OUTPUT_EDP;
2396 } else {
2397 type = DRM_MODE_CONNECTOR_DisplayPort;
2398 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2399 }
2400
2401 connector = &intel_connector->base;
2402 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2403 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2404
2405 connector->polled = DRM_CONNECTOR_POLL_HPD;
2406
2407 if (output_reg == DP_B || output_reg == PCH_DP_B)
2408 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2409 else if (output_reg == DP_C || output_reg == PCH_DP_C)
2410 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2411 else if (output_reg == DP_D || output_reg == PCH_DP_D)
2412 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2413
2414 if (is_edp(intel_dp)) {
2415 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2416 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2417 ironlake_panel_vdd_work);
2418 }
2419
2420 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2421 connector->interlace_allowed = true;
2422 connector->doublescan_allowed = 0;
2423
2424 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2425 DRM_MODE_ENCODER_TMDS);
2426 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2427
2428 intel_connector_attach_encoder(intel_connector, intel_encoder);
2429 drm_sysfs_connector_add(connector);
2430
2431 /* Set up the DDC bus. */
2432 switch (output_reg) {
2433 case DP_A:
2434 name = "DPDDC-A";
2435 break;
2436 case DP_B:
2437 case PCH_DP_B:
2438 dev_priv->hotplug_supported_mask |=
2439 HDMIB_HOTPLUG_INT_STATUS;
2440 name = "DPDDC-B";
2441 break;
2442 case DP_C:
2443 case PCH_DP_C:
2444 dev_priv->hotplug_supported_mask |=
2445 HDMIC_HOTPLUG_INT_STATUS;
2446 name = "DPDDC-C";
2447 break;
2448 case DP_D:
2449 case PCH_DP_D:
2450 dev_priv->hotplug_supported_mask |=
2451 HDMID_HOTPLUG_INT_STATUS;
2452 name = "DPDDC-D";
2453 break;
2454 }
2455
2456 /* Cache some DPCD data in the eDP case */
2457 if (is_edp(intel_dp)) {
2458 bool ret;
2459 struct edp_power_seq cur, vbt;
2460 u32 pp_on, pp_off, pp_div;
2461
2462 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2463 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2464 pp_div = I915_READ(PCH_PP_DIVISOR);
2465
2466 /* Pull timing values out of registers */
2467 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2468 PANEL_POWER_UP_DELAY_SHIFT;
2469
2470 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2471 PANEL_LIGHT_ON_DELAY_SHIFT;
2472
2473 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2474 PANEL_LIGHT_OFF_DELAY_SHIFT;
2475
2476 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2477 PANEL_POWER_DOWN_DELAY_SHIFT;
2478
2479 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2480 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2481
2482 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2483 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2484
2485 vbt = dev_priv->edp.pps;
2486
2487 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2488 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2489
2490 #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
2491
2492 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2493 intel_dp->backlight_on_delay = get_delay(t8);
2494 intel_dp->backlight_off_delay = get_delay(t9);
2495 intel_dp->panel_power_down_delay = get_delay(t10);
2496 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2497
2498 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2499 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2500 intel_dp->panel_power_cycle_delay);
2501
2502 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2503 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2504
2505 ironlake_edp_panel_vdd_on(intel_dp);
2506 ret = intel_dp_get_dpcd(intel_dp);
2507 ironlake_edp_panel_vdd_off(intel_dp, false);
2508
2509 if (ret) {
2510 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2511 dev_priv->no_aux_handshake =
2512 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2513 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2514 } else {
2515 /* if this fails, presume the device is a ghost */
2516 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2517 intel_dp_encoder_destroy(&intel_dp->base.base);
2518 intel_dp_destroy(&intel_connector->base);
2519 return;
2520 }
2521 }
2522
2523 intel_dp_i2c_init(intel_dp, intel_connector, name);
2524
2525 intel_encoder->hot_plug = intel_dp_hot_plug;
2526
2527 if (is_edp(intel_dp)) {
2528 dev_priv->int_edp_connector = connector;
2529 intel_panel_setup_backlight(dev);
2530 }
2531
2532 intel_dp_add_properties(intel_dp, connector);
2533
2534 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2535 * 0xd. Failure to do so will result in spurious interrupts being
2536 * generated on the port when a cable is not attached.
2537 */
2538 if (IS_G4X(dev) && !IS_GM45(dev)) {
2539 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2540 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2541 }
2542 }