]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102 * @intel_dp: DP struct
103 *
104 * If a CPU or PCH DP output is attached to an eDP panel, this function
105 * will return true, and false otherwise.
106 */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118 return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131 enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp *intel_dp)
136 {
137 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139 switch (max_link_bw) {
140 case DP_LINK_BW_1_62:
141 case DP_LINK_BW_2_7:
142 case DP_LINK_BW_5_4:
143 break;
144 default:
145 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146 max_link_bw);
147 max_link_bw = DP_LINK_BW_1_62;
148 break;
149 }
150 return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156 u8 source_max, sink_max;
157
158 source_max = intel_dig_port->max_lanes;
159 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161 return min(source_max, sink_max);
162 }
163
164 /*
165 * The units on the numbers in the next two are... bizarre. Examples will
166 * make it clearer; this one parallels an example in the eDP spec.
167 *
168 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169 *
170 * 270000 * 1 * 8 / 10 == 216000
171 *
172 * The actual data capacity of that configuration is 2.16Gbit/s, so the
173 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
174 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175 * 119000. At 18bpp that's 2142000 kilobits per second.
176 *
177 * Thus the strange-looking division by 10 in intel_dp_link_required, to
178 * get the result in decakilobits instead of kilobits.
179 */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184 return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190 return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static int
194 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
195 {
196 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
197 struct intel_encoder *encoder = &intel_dig_port->base;
198 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
199 int max_dotclk = dev_priv->max_dotclk_freq;
200 int ds_max_dotclk;
201
202 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
203
204 if (type != DP_DS_PORT_TYPE_VGA)
205 return max_dotclk;
206
207 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
208 intel_dp->downstream_ports);
209
210 if (ds_max_dotclk != 0)
211 max_dotclk = min(max_dotclk, ds_max_dotclk);
212
213 return max_dotclk;
214 }
215
216 static enum drm_mode_status
217 intel_dp_mode_valid(struct drm_connector *connector,
218 struct drm_display_mode *mode)
219 {
220 struct intel_dp *intel_dp = intel_attached_dp(connector);
221 struct intel_connector *intel_connector = to_intel_connector(connector);
222 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
223 int target_clock = mode->clock;
224 int max_rate, mode_rate, max_lanes, max_link_clock;
225 int max_dotclk;
226
227 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
228
229 if (is_edp(intel_dp) && fixed_mode) {
230 if (mode->hdisplay > fixed_mode->hdisplay)
231 return MODE_PANEL;
232
233 if (mode->vdisplay > fixed_mode->vdisplay)
234 return MODE_PANEL;
235
236 target_clock = fixed_mode->clock;
237 }
238
239 max_link_clock = intel_dp_max_link_rate(intel_dp);
240 max_lanes = intel_dp_max_lane_count(intel_dp);
241
242 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
243 mode_rate = intel_dp_link_required(target_clock, 18);
244
245 if (mode_rate > max_rate || target_clock > max_dotclk)
246 return MODE_CLOCK_HIGH;
247
248 if (mode->clock < 10000)
249 return MODE_CLOCK_LOW;
250
251 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
252 return MODE_H_ILLEGAL;
253
254 return MODE_OK;
255 }
256
257 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
258 {
259 int i;
260 uint32_t v = 0;
261
262 if (src_bytes > 4)
263 src_bytes = 4;
264 for (i = 0; i < src_bytes; i++)
265 v |= ((uint32_t) src[i]) << ((3-i) * 8);
266 return v;
267 }
268
269 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
270 {
271 int i;
272 if (dst_bytes > 4)
273 dst_bytes = 4;
274 for (i = 0; i < dst_bytes; i++)
275 dst[i] = src >> ((3-i) * 8);
276 }
277
278 static void
279 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
280 struct intel_dp *intel_dp);
281 static void
282 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
283 struct intel_dp *intel_dp);
284 static void
285 intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
286
287 static void pps_lock(struct intel_dp *intel_dp)
288 {
289 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
290 struct intel_encoder *encoder = &intel_dig_port->base;
291 struct drm_device *dev = encoder->base.dev;
292 struct drm_i915_private *dev_priv = to_i915(dev);
293 enum intel_display_power_domain power_domain;
294
295 /*
296 * See vlv_power_sequencer_reset() why we need
297 * a power domain reference here.
298 */
299 power_domain = intel_display_port_aux_power_domain(encoder);
300 intel_display_power_get(dev_priv, power_domain);
301
302 mutex_lock(&dev_priv->pps_mutex);
303 }
304
305 static void pps_unlock(struct intel_dp *intel_dp)
306 {
307 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
308 struct intel_encoder *encoder = &intel_dig_port->base;
309 struct drm_device *dev = encoder->base.dev;
310 struct drm_i915_private *dev_priv = to_i915(dev);
311 enum intel_display_power_domain power_domain;
312
313 mutex_unlock(&dev_priv->pps_mutex);
314
315 power_domain = intel_display_port_aux_power_domain(encoder);
316 intel_display_power_put(dev_priv, power_domain);
317 }
318
319 static void
320 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
321 {
322 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
323 struct drm_device *dev = intel_dig_port->base.base.dev;
324 struct drm_i915_private *dev_priv = to_i915(dev);
325 enum pipe pipe = intel_dp->pps_pipe;
326 bool pll_enabled, release_cl_override = false;
327 enum dpio_phy phy = DPIO_PHY(pipe);
328 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
329 uint32_t DP;
330
331 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
332 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
333 pipe_name(pipe), port_name(intel_dig_port->port)))
334 return;
335
336 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
337 pipe_name(pipe), port_name(intel_dig_port->port));
338
339 /* Preserve the BIOS-computed detected bit. This is
340 * supposed to be read-only.
341 */
342 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
343 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
344 DP |= DP_PORT_WIDTH(1);
345 DP |= DP_LINK_TRAIN_PAT_1;
346
347 if (IS_CHERRYVIEW(dev))
348 DP |= DP_PIPE_SELECT_CHV(pipe);
349 else if (pipe == PIPE_B)
350 DP |= DP_PIPEB_SELECT;
351
352 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
353
354 /*
355 * The DPLL for the pipe must be enabled for this to work.
356 * So enable temporarily it if it's not already enabled.
357 */
358 if (!pll_enabled) {
359 release_cl_override = IS_CHERRYVIEW(dev) &&
360 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
361
362 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
363 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
364 DRM_ERROR("Failed to force on pll for pipe %c!\n",
365 pipe_name(pipe));
366 return;
367 }
368 }
369
370 /*
371 * Similar magic as in intel_dp_enable_port().
372 * We _must_ do this port enable + disable trick
373 * to make this power seqeuencer lock onto the port.
374 * Otherwise even VDD force bit won't work.
375 */
376 I915_WRITE(intel_dp->output_reg, DP);
377 POSTING_READ(intel_dp->output_reg);
378
379 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
380 POSTING_READ(intel_dp->output_reg);
381
382 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
383 POSTING_READ(intel_dp->output_reg);
384
385 if (!pll_enabled) {
386 vlv_force_pll_off(dev, pipe);
387
388 if (release_cl_override)
389 chv_phy_powergate_ch(dev_priv, phy, ch, false);
390 }
391 }
392
393 static enum pipe
394 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
395 {
396 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
397 struct drm_device *dev = intel_dig_port->base.base.dev;
398 struct drm_i915_private *dev_priv = to_i915(dev);
399 struct intel_encoder *encoder;
400 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
401 enum pipe pipe;
402
403 lockdep_assert_held(&dev_priv->pps_mutex);
404
405 /* We should never land here with regular DP ports */
406 WARN_ON(!is_edp(intel_dp));
407
408 if (intel_dp->pps_pipe != INVALID_PIPE)
409 return intel_dp->pps_pipe;
410
411 /*
412 * We don't have power sequencer currently.
413 * Pick one that's not used by other ports.
414 */
415 for_each_intel_encoder(dev, encoder) {
416 struct intel_dp *tmp;
417
418 if (encoder->type != INTEL_OUTPUT_EDP)
419 continue;
420
421 tmp = enc_to_intel_dp(&encoder->base);
422
423 if (tmp->pps_pipe != INVALID_PIPE)
424 pipes &= ~(1 << tmp->pps_pipe);
425 }
426
427 /*
428 * Didn't find one. This should not happen since there
429 * are two power sequencers and up to two eDP ports.
430 */
431 if (WARN_ON(pipes == 0))
432 pipe = PIPE_A;
433 else
434 pipe = ffs(pipes) - 1;
435
436 vlv_steal_power_sequencer(dev, pipe);
437 intel_dp->pps_pipe = pipe;
438
439 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
440 pipe_name(intel_dp->pps_pipe),
441 port_name(intel_dig_port->port));
442
443 /* init power sequencer on this pipe and port */
444 intel_dp_init_panel_power_sequencer(dev, intel_dp);
445 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
446
447 /*
448 * Even vdd force doesn't work until we've made
449 * the power sequencer lock in on the port.
450 */
451 vlv_power_sequencer_kick(intel_dp);
452
453 return intel_dp->pps_pipe;
454 }
455
456 static int
457 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
458 {
459 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
460 struct drm_device *dev = intel_dig_port->base.base.dev;
461 struct drm_i915_private *dev_priv = to_i915(dev);
462
463 lockdep_assert_held(&dev_priv->pps_mutex);
464
465 /* We should never land here with regular DP ports */
466 WARN_ON(!is_edp(intel_dp));
467
468 /*
469 * TODO: BXT has 2 PPS instances. The correct port->PPS instance
470 * mapping needs to be retrieved from VBT, for now just hard-code to
471 * use instance #0 always.
472 */
473 if (!intel_dp->pps_reset)
474 return 0;
475
476 intel_dp->pps_reset = false;
477
478 /*
479 * Only the HW needs to be reprogrammed, the SW state is fixed and
480 * has been setup during connector init.
481 */
482 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
483
484 return 0;
485 }
486
487 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
488 enum pipe pipe);
489
490 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
491 enum pipe pipe)
492 {
493 return I915_READ(PP_STATUS(pipe)) & PP_ON;
494 }
495
496 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
497 enum pipe pipe)
498 {
499 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
500 }
501
502 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
503 enum pipe pipe)
504 {
505 return true;
506 }
507
508 static enum pipe
509 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
510 enum port port,
511 vlv_pipe_check pipe_check)
512 {
513 enum pipe pipe;
514
515 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
516 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
517 PANEL_PORT_SELECT_MASK;
518
519 if (port_sel != PANEL_PORT_SELECT_VLV(port))
520 continue;
521
522 if (!pipe_check(dev_priv, pipe))
523 continue;
524
525 return pipe;
526 }
527
528 return INVALID_PIPE;
529 }
530
531 static void
532 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
533 {
534 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
535 struct drm_device *dev = intel_dig_port->base.base.dev;
536 struct drm_i915_private *dev_priv = to_i915(dev);
537 enum port port = intel_dig_port->port;
538
539 lockdep_assert_held(&dev_priv->pps_mutex);
540
541 /* try to find a pipe with this port selected */
542 /* first pick one where the panel is on */
543 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
544 vlv_pipe_has_pp_on);
545 /* didn't find one? pick one where vdd is on */
546 if (intel_dp->pps_pipe == INVALID_PIPE)
547 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
548 vlv_pipe_has_vdd_on);
549 /* didn't find one? pick one with just the correct port */
550 if (intel_dp->pps_pipe == INVALID_PIPE)
551 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
552 vlv_pipe_any);
553
554 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
555 if (intel_dp->pps_pipe == INVALID_PIPE) {
556 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
557 port_name(port));
558 return;
559 }
560
561 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
562 port_name(port), pipe_name(intel_dp->pps_pipe));
563
564 intel_dp_init_panel_power_sequencer(dev, intel_dp);
565 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
566 }
567
568 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
569 {
570 struct drm_device *dev = &dev_priv->drm;
571 struct intel_encoder *encoder;
572
573 if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
574 !IS_BROXTON(dev)))
575 return;
576
577 /*
578 * We can't grab pps_mutex here due to deadlock with power_domain
579 * mutex when power_domain functions are called while holding pps_mutex.
580 * That also means that in order to use pps_pipe the code needs to
581 * hold both a power domain reference and pps_mutex, and the power domain
582 * reference get/put must be done while _not_ holding pps_mutex.
583 * pps_{lock,unlock}() do these steps in the correct order, so one
584 * should use them always.
585 */
586
587 for_each_intel_encoder(dev, encoder) {
588 struct intel_dp *intel_dp;
589
590 if (encoder->type != INTEL_OUTPUT_EDP)
591 continue;
592
593 intel_dp = enc_to_intel_dp(&encoder->base);
594 if (IS_BROXTON(dev))
595 intel_dp->pps_reset = true;
596 else
597 intel_dp->pps_pipe = INVALID_PIPE;
598 }
599 }
600
601 struct pps_registers {
602 i915_reg_t pp_ctrl;
603 i915_reg_t pp_stat;
604 i915_reg_t pp_on;
605 i915_reg_t pp_off;
606 i915_reg_t pp_div;
607 };
608
609 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
610 struct intel_dp *intel_dp,
611 struct pps_registers *regs)
612 {
613 int pps_idx = 0;
614
615 memset(regs, 0, sizeof(*regs));
616
617 if (IS_BROXTON(dev_priv))
618 pps_idx = bxt_power_sequencer_idx(intel_dp);
619 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
620 pps_idx = vlv_power_sequencer_pipe(intel_dp);
621
622 regs->pp_ctrl = PP_CONTROL(pps_idx);
623 regs->pp_stat = PP_STATUS(pps_idx);
624 regs->pp_on = PP_ON_DELAYS(pps_idx);
625 regs->pp_off = PP_OFF_DELAYS(pps_idx);
626 if (!IS_BROXTON(dev_priv))
627 regs->pp_div = PP_DIVISOR(pps_idx);
628 }
629
630 static i915_reg_t
631 _pp_ctrl_reg(struct intel_dp *intel_dp)
632 {
633 struct pps_registers regs;
634
635 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
636 &regs);
637
638 return regs.pp_ctrl;
639 }
640
641 static i915_reg_t
642 _pp_stat_reg(struct intel_dp *intel_dp)
643 {
644 struct pps_registers regs;
645
646 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
647 &regs);
648
649 return regs.pp_stat;
650 }
651
652 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
653 This function only applicable when panel PM state is not to be tracked */
654 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
655 void *unused)
656 {
657 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
658 edp_notifier);
659 struct drm_device *dev = intel_dp_to_dev(intel_dp);
660 struct drm_i915_private *dev_priv = to_i915(dev);
661
662 if (!is_edp(intel_dp) || code != SYS_RESTART)
663 return 0;
664
665 pps_lock(intel_dp);
666
667 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
668 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
669 i915_reg_t pp_ctrl_reg, pp_div_reg;
670 u32 pp_div;
671
672 pp_ctrl_reg = PP_CONTROL(pipe);
673 pp_div_reg = PP_DIVISOR(pipe);
674 pp_div = I915_READ(pp_div_reg);
675 pp_div &= PP_REFERENCE_DIVIDER_MASK;
676
677 /* 0x1F write to PP_DIV_REG sets max cycle delay */
678 I915_WRITE(pp_div_reg, pp_div | 0x1F);
679 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
680 msleep(intel_dp->panel_power_cycle_delay);
681 }
682
683 pps_unlock(intel_dp);
684
685 return 0;
686 }
687
688 static bool edp_have_panel_power(struct intel_dp *intel_dp)
689 {
690 struct drm_device *dev = intel_dp_to_dev(intel_dp);
691 struct drm_i915_private *dev_priv = to_i915(dev);
692
693 lockdep_assert_held(&dev_priv->pps_mutex);
694
695 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
696 intel_dp->pps_pipe == INVALID_PIPE)
697 return false;
698
699 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
700 }
701
702 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
703 {
704 struct drm_device *dev = intel_dp_to_dev(intel_dp);
705 struct drm_i915_private *dev_priv = to_i915(dev);
706
707 lockdep_assert_held(&dev_priv->pps_mutex);
708
709 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
710 intel_dp->pps_pipe == INVALID_PIPE)
711 return false;
712
713 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
714 }
715
716 static void
717 intel_dp_check_edp(struct intel_dp *intel_dp)
718 {
719 struct drm_device *dev = intel_dp_to_dev(intel_dp);
720 struct drm_i915_private *dev_priv = to_i915(dev);
721
722 if (!is_edp(intel_dp))
723 return;
724
725 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
726 WARN(1, "eDP powered off while attempting aux channel communication.\n");
727 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
728 I915_READ(_pp_stat_reg(intel_dp)),
729 I915_READ(_pp_ctrl_reg(intel_dp)));
730 }
731 }
732
733 static uint32_t
734 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
735 {
736 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
737 struct drm_device *dev = intel_dig_port->base.base.dev;
738 struct drm_i915_private *dev_priv = to_i915(dev);
739 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
740 uint32_t status;
741 bool done;
742
743 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
744 if (has_aux_irq)
745 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
746 msecs_to_jiffies_timeout(10));
747 else
748 done = wait_for(C, 10) == 0;
749 if (!done)
750 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
751 has_aux_irq);
752 #undef C
753
754 return status;
755 }
756
757 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
758 {
759 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
760 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
761
762 if (index)
763 return 0;
764
765 /*
766 * The clock divider is based off the hrawclk, and would like to run at
767 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
768 */
769 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
770 }
771
772 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
773 {
774 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
775 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
776
777 if (index)
778 return 0;
779
780 /*
781 * The clock divider is based off the cdclk or PCH rawclk, and would
782 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
783 * divide by 2000 and use that
784 */
785 if (intel_dig_port->port == PORT_A)
786 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
787 else
788 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
789 }
790
791 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
792 {
793 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
794 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
795
796 if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
797 /* Workaround for non-ULT HSW */
798 switch (index) {
799 case 0: return 63;
800 case 1: return 72;
801 default: return 0;
802 }
803 }
804
805 return ilk_get_aux_clock_divider(intel_dp, index);
806 }
807
808 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
809 {
810 /*
811 * SKL doesn't need us to program the AUX clock divider (Hardware will
812 * derive the clock from CDCLK automatically). We still implement the
813 * get_aux_clock_divider vfunc to plug-in into the existing code.
814 */
815 return index ? 0 : 1;
816 }
817
818 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
819 bool has_aux_irq,
820 int send_bytes,
821 uint32_t aux_clock_divider)
822 {
823 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
824 struct drm_device *dev = intel_dig_port->base.base.dev;
825 uint32_t precharge, timeout;
826
827 if (IS_GEN6(dev))
828 precharge = 3;
829 else
830 precharge = 5;
831
832 if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
833 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
834 else
835 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
836
837 return DP_AUX_CH_CTL_SEND_BUSY |
838 DP_AUX_CH_CTL_DONE |
839 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
840 DP_AUX_CH_CTL_TIME_OUT_ERROR |
841 timeout |
842 DP_AUX_CH_CTL_RECEIVE_ERROR |
843 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
844 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
845 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
846 }
847
848 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
849 bool has_aux_irq,
850 int send_bytes,
851 uint32_t unused)
852 {
853 return DP_AUX_CH_CTL_SEND_BUSY |
854 DP_AUX_CH_CTL_DONE |
855 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
856 DP_AUX_CH_CTL_TIME_OUT_ERROR |
857 DP_AUX_CH_CTL_TIME_OUT_1600us |
858 DP_AUX_CH_CTL_RECEIVE_ERROR |
859 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
860 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
861 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
862 }
863
864 static int
865 intel_dp_aux_ch(struct intel_dp *intel_dp,
866 const uint8_t *send, int send_bytes,
867 uint8_t *recv, int recv_size)
868 {
869 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
870 struct drm_device *dev = intel_dig_port->base.base.dev;
871 struct drm_i915_private *dev_priv = to_i915(dev);
872 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
873 uint32_t aux_clock_divider;
874 int i, ret, recv_bytes;
875 uint32_t status;
876 int try, clock = 0;
877 bool has_aux_irq = HAS_AUX_IRQ(dev);
878 bool vdd;
879
880 pps_lock(intel_dp);
881
882 /*
883 * We will be called with VDD already enabled for dpcd/edid/oui reads.
884 * In such cases we want to leave VDD enabled and it's up to upper layers
885 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
886 * ourselves.
887 */
888 vdd = edp_panel_vdd_on(intel_dp);
889
890 /* dp aux is extremely sensitive to irq latency, hence request the
891 * lowest possible wakeup latency and so prevent the cpu from going into
892 * deep sleep states.
893 */
894 pm_qos_update_request(&dev_priv->pm_qos, 0);
895
896 intel_dp_check_edp(intel_dp);
897
898 /* Try to wait for any previous AUX channel activity */
899 for (try = 0; try < 3; try++) {
900 status = I915_READ_NOTRACE(ch_ctl);
901 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
902 break;
903 msleep(1);
904 }
905
906 if (try == 3) {
907 static u32 last_status = -1;
908 const u32 status = I915_READ(ch_ctl);
909
910 if (status != last_status) {
911 WARN(1, "dp_aux_ch not started status 0x%08x\n",
912 status);
913 last_status = status;
914 }
915
916 ret = -EBUSY;
917 goto out;
918 }
919
920 /* Only 5 data registers! */
921 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
922 ret = -E2BIG;
923 goto out;
924 }
925
926 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
927 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
928 has_aux_irq,
929 send_bytes,
930 aux_clock_divider);
931
932 /* Must try at least 3 times according to DP spec */
933 for (try = 0; try < 5; try++) {
934 /* Load the send data into the aux channel data registers */
935 for (i = 0; i < send_bytes; i += 4)
936 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
937 intel_dp_pack_aux(send + i,
938 send_bytes - i));
939
940 /* Send the command and wait for it to complete */
941 I915_WRITE(ch_ctl, send_ctl);
942
943 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
944
945 /* Clear done status and any errors */
946 I915_WRITE(ch_ctl,
947 status |
948 DP_AUX_CH_CTL_DONE |
949 DP_AUX_CH_CTL_TIME_OUT_ERROR |
950 DP_AUX_CH_CTL_RECEIVE_ERROR);
951
952 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
953 continue;
954
955 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
956 * 400us delay required for errors and timeouts
957 * Timeout errors from the HW already meet this
958 * requirement so skip to next iteration
959 */
960 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
961 usleep_range(400, 500);
962 continue;
963 }
964 if (status & DP_AUX_CH_CTL_DONE)
965 goto done;
966 }
967 }
968
969 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
970 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
971 ret = -EBUSY;
972 goto out;
973 }
974
975 done:
976 /* Check for timeout or receive error.
977 * Timeouts occur when the sink is not connected
978 */
979 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
980 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
981 ret = -EIO;
982 goto out;
983 }
984
985 /* Timeouts occur when the device isn't connected, so they're
986 * "normal" -- don't fill the kernel log with these */
987 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
988 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
989 ret = -ETIMEDOUT;
990 goto out;
991 }
992
993 /* Unload any bytes sent back from the other side */
994 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
995 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
996
997 /*
998 * By BSpec: "Message sizes of 0 or >20 are not allowed."
999 * We have no idea of what happened so we return -EBUSY so
1000 * drm layer takes care for the necessary retries.
1001 */
1002 if (recv_bytes == 0 || recv_bytes > 20) {
1003 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1004 recv_bytes);
1005 /*
1006 * FIXME: This patch was created on top of a series that
1007 * organize the retries at drm level. There EBUSY should
1008 * also take care for 1ms wait before retrying.
1009 * That aux retries re-org is still needed and after that is
1010 * merged we remove this sleep from here.
1011 */
1012 usleep_range(1000, 1500);
1013 ret = -EBUSY;
1014 goto out;
1015 }
1016
1017 if (recv_bytes > recv_size)
1018 recv_bytes = recv_size;
1019
1020 for (i = 0; i < recv_bytes; i += 4)
1021 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1022 recv + i, recv_bytes - i);
1023
1024 ret = recv_bytes;
1025 out:
1026 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1027
1028 if (vdd)
1029 edp_panel_vdd_off(intel_dp, false);
1030
1031 pps_unlock(intel_dp);
1032
1033 return ret;
1034 }
1035
1036 #define BARE_ADDRESS_SIZE 3
1037 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1038 static ssize_t
1039 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1040 {
1041 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1042 uint8_t txbuf[20], rxbuf[20];
1043 size_t txsize, rxsize;
1044 int ret;
1045
1046 txbuf[0] = (msg->request << 4) |
1047 ((msg->address >> 16) & 0xf);
1048 txbuf[1] = (msg->address >> 8) & 0xff;
1049 txbuf[2] = msg->address & 0xff;
1050 txbuf[3] = msg->size - 1;
1051
1052 switch (msg->request & ~DP_AUX_I2C_MOT) {
1053 case DP_AUX_NATIVE_WRITE:
1054 case DP_AUX_I2C_WRITE:
1055 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1056 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1057 rxsize = 2; /* 0 or 1 data bytes */
1058
1059 if (WARN_ON(txsize > 20))
1060 return -E2BIG;
1061
1062 WARN_ON(!msg->buffer != !msg->size);
1063
1064 if (msg->buffer)
1065 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1066
1067 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1068 if (ret > 0) {
1069 msg->reply = rxbuf[0] >> 4;
1070
1071 if (ret > 1) {
1072 /* Number of bytes written in a short write. */
1073 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1074 } else {
1075 /* Return payload size. */
1076 ret = msg->size;
1077 }
1078 }
1079 break;
1080
1081 case DP_AUX_NATIVE_READ:
1082 case DP_AUX_I2C_READ:
1083 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1084 rxsize = msg->size + 1;
1085
1086 if (WARN_ON(rxsize > 20))
1087 return -E2BIG;
1088
1089 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1090 if (ret > 0) {
1091 msg->reply = rxbuf[0] >> 4;
1092 /*
1093 * Assume happy day, and copy the data. The caller is
1094 * expected to check msg->reply before touching it.
1095 *
1096 * Return payload size.
1097 */
1098 ret--;
1099 memcpy(msg->buffer, rxbuf + 1, ret);
1100 }
1101 break;
1102
1103 default:
1104 ret = -EINVAL;
1105 break;
1106 }
1107
1108 return ret;
1109 }
1110
1111 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1112 enum port port)
1113 {
1114 switch (port) {
1115 case PORT_B:
1116 case PORT_C:
1117 case PORT_D:
1118 return DP_AUX_CH_CTL(port);
1119 default:
1120 MISSING_CASE(port);
1121 return DP_AUX_CH_CTL(PORT_B);
1122 }
1123 }
1124
1125 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1126 enum port port, int index)
1127 {
1128 switch (port) {
1129 case PORT_B:
1130 case PORT_C:
1131 case PORT_D:
1132 return DP_AUX_CH_DATA(port, index);
1133 default:
1134 MISSING_CASE(port);
1135 return DP_AUX_CH_DATA(PORT_B, index);
1136 }
1137 }
1138
1139 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1140 enum port port)
1141 {
1142 switch (port) {
1143 case PORT_A:
1144 return DP_AUX_CH_CTL(port);
1145 case PORT_B:
1146 case PORT_C:
1147 case PORT_D:
1148 return PCH_DP_AUX_CH_CTL(port);
1149 default:
1150 MISSING_CASE(port);
1151 return DP_AUX_CH_CTL(PORT_A);
1152 }
1153 }
1154
1155 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1156 enum port port, int index)
1157 {
1158 switch (port) {
1159 case PORT_A:
1160 return DP_AUX_CH_DATA(port, index);
1161 case PORT_B:
1162 case PORT_C:
1163 case PORT_D:
1164 return PCH_DP_AUX_CH_DATA(port, index);
1165 default:
1166 MISSING_CASE(port);
1167 return DP_AUX_CH_DATA(PORT_A, index);
1168 }
1169 }
1170
1171 /*
1172 * On SKL we don't have Aux for port E so we rely
1173 * on VBT to set a proper alternate aux channel.
1174 */
1175 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1176 {
1177 const struct ddi_vbt_port_info *info =
1178 &dev_priv->vbt.ddi_port_info[PORT_E];
1179
1180 switch (info->alternate_aux_channel) {
1181 case DP_AUX_A:
1182 return PORT_A;
1183 case DP_AUX_B:
1184 return PORT_B;
1185 case DP_AUX_C:
1186 return PORT_C;
1187 case DP_AUX_D:
1188 return PORT_D;
1189 default:
1190 MISSING_CASE(info->alternate_aux_channel);
1191 return PORT_A;
1192 }
1193 }
1194
1195 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1196 enum port port)
1197 {
1198 if (port == PORT_E)
1199 port = skl_porte_aux_port(dev_priv);
1200
1201 switch (port) {
1202 case PORT_A:
1203 case PORT_B:
1204 case PORT_C:
1205 case PORT_D:
1206 return DP_AUX_CH_CTL(port);
1207 default:
1208 MISSING_CASE(port);
1209 return DP_AUX_CH_CTL(PORT_A);
1210 }
1211 }
1212
1213 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1214 enum port port, int index)
1215 {
1216 if (port == PORT_E)
1217 port = skl_porte_aux_port(dev_priv);
1218
1219 switch (port) {
1220 case PORT_A:
1221 case PORT_B:
1222 case PORT_C:
1223 case PORT_D:
1224 return DP_AUX_CH_DATA(port, index);
1225 default:
1226 MISSING_CASE(port);
1227 return DP_AUX_CH_DATA(PORT_A, index);
1228 }
1229 }
1230
1231 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1232 enum port port)
1233 {
1234 if (INTEL_INFO(dev_priv)->gen >= 9)
1235 return skl_aux_ctl_reg(dev_priv, port);
1236 else if (HAS_PCH_SPLIT(dev_priv))
1237 return ilk_aux_ctl_reg(dev_priv, port);
1238 else
1239 return g4x_aux_ctl_reg(dev_priv, port);
1240 }
1241
1242 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1243 enum port port, int index)
1244 {
1245 if (INTEL_INFO(dev_priv)->gen >= 9)
1246 return skl_aux_data_reg(dev_priv, port, index);
1247 else if (HAS_PCH_SPLIT(dev_priv))
1248 return ilk_aux_data_reg(dev_priv, port, index);
1249 else
1250 return g4x_aux_data_reg(dev_priv, port, index);
1251 }
1252
1253 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1254 {
1255 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1256 enum port port = dp_to_dig_port(intel_dp)->port;
1257 int i;
1258
1259 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1260 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1261 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1262 }
1263
1264 static void
1265 intel_dp_aux_fini(struct intel_dp *intel_dp)
1266 {
1267 kfree(intel_dp->aux.name);
1268 }
1269
1270 static void
1271 intel_dp_aux_init(struct intel_dp *intel_dp)
1272 {
1273 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1274 enum port port = intel_dig_port->port;
1275
1276 intel_aux_reg_init(intel_dp);
1277 drm_dp_aux_init(&intel_dp->aux);
1278
1279 /* Failure to allocate our preferred name is not critical */
1280 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1281 intel_dp->aux.transfer = intel_dp_aux_transfer;
1282 }
1283
1284 static int
1285 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1286 {
1287 if (intel_dp->num_sink_rates) {
1288 *sink_rates = intel_dp->sink_rates;
1289 return intel_dp->num_sink_rates;
1290 }
1291
1292 *sink_rates = default_rates;
1293
1294 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1295 }
1296
1297 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1298 {
1299 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1300 struct drm_device *dev = dig_port->base.base.dev;
1301
1302 /* WaDisableHBR2:skl */
1303 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1304 return false;
1305
1306 if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1307 (INTEL_INFO(dev)->gen >= 9))
1308 return true;
1309 else
1310 return false;
1311 }
1312
1313 static int
1314 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1315 {
1316 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1317 struct drm_device *dev = dig_port->base.base.dev;
1318 int size;
1319
1320 if (IS_BROXTON(dev)) {
1321 *source_rates = bxt_rates;
1322 size = ARRAY_SIZE(bxt_rates);
1323 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1324 *source_rates = skl_rates;
1325 size = ARRAY_SIZE(skl_rates);
1326 } else {
1327 *source_rates = default_rates;
1328 size = ARRAY_SIZE(default_rates);
1329 }
1330
1331 /* This depends on the fact that 5.4 is last value in the array */
1332 if (!intel_dp_source_supports_hbr2(intel_dp))
1333 size--;
1334
1335 return size;
1336 }
1337
1338 static void
1339 intel_dp_set_clock(struct intel_encoder *encoder,
1340 struct intel_crtc_state *pipe_config)
1341 {
1342 struct drm_device *dev = encoder->base.dev;
1343 const struct dp_link_dpll *divisor = NULL;
1344 int i, count = 0;
1345
1346 if (IS_G4X(dev)) {
1347 divisor = gen4_dpll;
1348 count = ARRAY_SIZE(gen4_dpll);
1349 } else if (HAS_PCH_SPLIT(dev)) {
1350 divisor = pch_dpll;
1351 count = ARRAY_SIZE(pch_dpll);
1352 } else if (IS_CHERRYVIEW(dev)) {
1353 divisor = chv_dpll;
1354 count = ARRAY_SIZE(chv_dpll);
1355 } else if (IS_VALLEYVIEW(dev)) {
1356 divisor = vlv_dpll;
1357 count = ARRAY_SIZE(vlv_dpll);
1358 }
1359
1360 if (divisor && count) {
1361 for (i = 0; i < count; i++) {
1362 if (pipe_config->port_clock == divisor[i].clock) {
1363 pipe_config->dpll = divisor[i].dpll;
1364 pipe_config->clock_set = true;
1365 break;
1366 }
1367 }
1368 }
1369 }
1370
1371 static int intersect_rates(const int *source_rates, int source_len,
1372 const int *sink_rates, int sink_len,
1373 int *common_rates)
1374 {
1375 int i = 0, j = 0, k = 0;
1376
1377 while (i < source_len && j < sink_len) {
1378 if (source_rates[i] == sink_rates[j]) {
1379 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1380 return k;
1381 common_rates[k] = source_rates[i];
1382 ++k;
1383 ++i;
1384 ++j;
1385 } else if (source_rates[i] < sink_rates[j]) {
1386 ++i;
1387 } else {
1388 ++j;
1389 }
1390 }
1391 return k;
1392 }
1393
1394 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1395 int *common_rates)
1396 {
1397 const int *source_rates, *sink_rates;
1398 int source_len, sink_len;
1399
1400 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1401 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1402
1403 return intersect_rates(source_rates, source_len,
1404 sink_rates, sink_len,
1405 common_rates);
1406 }
1407
1408 static void snprintf_int_array(char *str, size_t len,
1409 const int *array, int nelem)
1410 {
1411 int i;
1412
1413 str[0] = '\0';
1414
1415 for (i = 0; i < nelem; i++) {
1416 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1417 if (r >= len)
1418 return;
1419 str += r;
1420 len -= r;
1421 }
1422 }
1423
1424 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1425 {
1426 const int *source_rates, *sink_rates;
1427 int source_len, sink_len, common_len;
1428 int common_rates[DP_MAX_SUPPORTED_RATES];
1429 char str[128]; /* FIXME: too big for stack? */
1430
1431 if ((drm_debug & DRM_UT_KMS) == 0)
1432 return;
1433
1434 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1435 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1436 DRM_DEBUG_KMS("source rates: %s\n", str);
1437
1438 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1439 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1440 DRM_DEBUG_KMS("sink rates: %s\n", str);
1441
1442 common_len = intel_dp_common_rates(intel_dp, common_rates);
1443 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1444 DRM_DEBUG_KMS("common rates: %s\n", str);
1445 }
1446
1447 static void intel_dp_print_hw_revision(struct intel_dp *intel_dp)
1448 {
1449 uint8_t rev;
1450 int len;
1451
1452 if ((drm_debug & DRM_UT_KMS) == 0)
1453 return;
1454
1455 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1456 DP_DWN_STRM_PORT_PRESENT))
1457 return;
1458
1459 len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_HW_REV, &rev, 1);
1460 if (len < 0)
1461 return;
1462
1463 DRM_DEBUG_KMS("sink hw revision: %d.%d\n", (rev & 0xf0) >> 4, rev & 0xf);
1464 }
1465
1466 static void intel_dp_print_sw_revision(struct intel_dp *intel_dp)
1467 {
1468 uint8_t rev[2];
1469 int len;
1470
1471 if ((drm_debug & DRM_UT_KMS) == 0)
1472 return;
1473
1474 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1475 DP_DWN_STRM_PORT_PRESENT))
1476 return;
1477
1478 len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_SW_REV, &rev, 2);
1479 if (len < 0)
1480 return;
1481
1482 DRM_DEBUG_KMS("sink sw revision: %d.%d\n", rev[0], rev[1]);
1483 }
1484
1485 static int rate_to_index(int find, const int *rates)
1486 {
1487 int i = 0;
1488
1489 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1490 if (find == rates[i])
1491 break;
1492
1493 return i;
1494 }
1495
1496 int
1497 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1498 {
1499 int rates[DP_MAX_SUPPORTED_RATES] = {};
1500 int len;
1501
1502 len = intel_dp_common_rates(intel_dp, rates);
1503 if (WARN_ON(len <= 0))
1504 return 162000;
1505
1506 return rates[len - 1];
1507 }
1508
1509 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1510 {
1511 return rate_to_index(rate, intel_dp->sink_rates);
1512 }
1513
1514 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1515 uint8_t *link_bw, uint8_t *rate_select)
1516 {
1517 if (intel_dp->num_sink_rates) {
1518 *link_bw = 0;
1519 *rate_select =
1520 intel_dp_rate_select(intel_dp, port_clock);
1521 } else {
1522 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1523 *rate_select = 0;
1524 }
1525 }
1526
1527 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1528 struct intel_crtc_state *pipe_config)
1529 {
1530 int bpp, bpc;
1531
1532 bpp = pipe_config->pipe_bpp;
1533 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1534
1535 if (bpc > 0)
1536 bpp = min(bpp, 3*bpc);
1537
1538 return bpp;
1539 }
1540
1541 bool
1542 intel_dp_compute_config(struct intel_encoder *encoder,
1543 struct intel_crtc_state *pipe_config,
1544 struct drm_connector_state *conn_state)
1545 {
1546 struct drm_device *dev = encoder->base.dev;
1547 struct drm_i915_private *dev_priv = to_i915(dev);
1548 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1549 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1550 enum port port = dp_to_dig_port(intel_dp)->port;
1551 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1552 struct intel_connector *intel_connector = intel_dp->attached_connector;
1553 int lane_count, clock;
1554 int min_lane_count = 1;
1555 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1556 /* Conveniently, the link BW constants become indices with a shift...*/
1557 int min_clock = 0;
1558 int max_clock;
1559 int bpp, mode_rate;
1560 int link_avail, link_clock;
1561 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1562 int common_len;
1563 uint8_t link_bw, rate_select;
1564
1565 common_len = intel_dp_common_rates(intel_dp, common_rates);
1566
1567 /* No common link rates between source and sink */
1568 WARN_ON(common_len <= 0);
1569
1570 max_clock = common_len - 1;
1571
1572 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1573 pipe_config->has_pch_encoder = true;
1574
1575 pipe_config->has_drrs = false;
1576 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1577
1578 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1579 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1580 adjusted_mode);
1581
1582 if (INTEL_INFO(dev)->gen >= 9) {
1583 int ret;
1584 ret = skl_update_scaler_crtc(pipe_config);
1585 if (ret)
1586 return ret;
1587 }
1588
1589 if (HAS_GMCH_DISPLAY(dev))
1590 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1591 intel_connector->panel.fitting_mode);
1592 else
1593 intel_pch_panel_fitting(intel_crtc, pipe_config,
1594 intel_connector->panel.fitting_mode);
1595 }
1596
1597 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1598 return false;
1599
1600 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1601 "max bw %d pixel clock %iKHz\n",
1602 max_lane_count, common_rates[max_clock],
1603 adjusted_mode->crtc_clock);
1604
1605 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1606 * bpc in between. */
1607 bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1608 if (is_edp(intel_dp)) {
1609
1610 /* Get bpp from vbt only for panels that dont have bpp in edid */
1611 if (intel_connector->base.display_info.bpc == 0 &&
1612 (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1613 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1614 dev_priv->vbt.edp.bpp);
1615 bpp = dev_priv->vbt.edp.bpp;
1616 }
1617
1618 /*
1619 * Use the maximum clock and number of lanes the eDP panel
1620 * advertizes being capable of. The panels are generally
1621 * designed to support only a single clock and lane
1622 * configuration, and typically these values correspond to the
1623 * native resolution of the panel.
1624 */
1625 min_lane_count = max_lane_count;
1626 min_clock = max_clock;
1627 }
1628
1629 for (; bpp >= 6*3; bpp -= 2*3) {
1630 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1631 bpp);
1632
1633 for (clock = min_clock; clock <= max_clock; clock++) {
1634 for (lane_count = min_lane_count;
1635 lane_count <= max_lane_count;
1636 lane_count <<= 1) {
1637
1638 link_clock = common_rates[clock];
1639 link_avail = intel_dp_max_data_rate(link_clock,
1640 lane_count);
1641
1642 if (mode_rate <= link_avail) {
1643 goto found;
1644 }
1645 }
1646 }
1647 }
1648
1649 return false;
1650
1651 found:
1652 if (intel_dp->color_range_auto) {
1653 /*
1654 * See:
1655 * CEA-861-E - 5.1 Default Encoding Parameters
1656 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1657 */
1658 pipe_config->limited_color_range =
1659 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1660 } else {
1661 pipe_config->limited_color_range =
1662 intel_dp->limited_color_range;
1663 }
1664
1665 pipe_config->lane_count = lane_count;
1666
1667 pipe_config->pipe_bpp = bpp;
1668 pipe_config->port_clock = common_rates[clock];
1669
1670 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1671 &link_bw, &rate_select);
1672
1673 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1674 link_bw, rate_select, pipe_config->lane_count,
1675 pipe_config->port_clock, bpp);
1676 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1677 mode_rate, link_avail);
1678
1679 intel_link_compute_m_n(bpp, lane_count,
1680 adjusted_mode->crtc_clock,
1681 pipe_config->port_clock,
1682 &pipe_config->dp_m_n);
1683
1684 if (intel_connector->panel.downclock_mode != NULL &&
1685 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1686 pipe_config->has_drrs = true;
1687 intel_link_compute_m_n(bpp, lane_count,
1688 intel_connector->panel.downclock_mode->clock,
1689 pipe_config->port_clock,
1690 &pipe_config->dp_m2_n2);
1691 }
1692
1693 /*
1694 * DPLL0 VCO may need to be adjusted to get the correct
1695 * clock for eDP. This will affect cdclk as well.
1696 */
1697 if (is_edp(intel_dp) &&
1698 (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
1699 int vco;
1700
1701 switch (pipe_config->port_clock / 2) {
1702 case 108000:
1703 case 216000:
1704 vco = 8640000;
1705 break;
1706 default:
1707 vco = 8100000;
1708 break;
1709 }
1710
1711 to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
1712 }
1713
1714 if (!HAS_DDI(dev))
1715 intel_dp_set_clock(encoder, pipe_config);
1716
1717 return true;
1718 }
1719
1720 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1721 int link_rate, uint8_t lane_count,
1722 bool link_mst)
1723 {
1724 intel_dp->link_rate = link_rate;
1725 intel_dp->lane_count = lane_count;
1726 intel_dp->link_mst = link_mst;
1727 }
1728
1729 static void intel_dp_prepare(struct intel_encoder *encoder,
1730 struct intel_crtc_state *pipe_config)
1731 {
1732 struct drm_device *dev = encoder->base.dev;
1733 struct drm_i915_private *dev_priv = to_i915(dev);
1734 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1735 enum port port = dp_to_dig_port(intel_dp)->port;
1736 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1737 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1738
1739 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1740 pipe_config->lane_count,
1741 intel_crtc_has_type(pipe_config,
1742 INTEL_OUTPUT_DP_MST));
1743
1744 /*
1745 * There are four kinds of DP registers:
1746 *
1747 * IBX PCH
1748 * SNB CPU
1749 * IVB CPU
1750 * CPT PCH
1751 *
1752 * IBX PCH and CPU are the same for almost everything,
1753 * except that the CPU DP PLL is configured in this
1754 * register
1755 *
1756 * CPT PCH is quite different, having many bits moved
1757 * to the TRANS_DP_CTL register instead. That
1758 * configuration happens (oddly) in ironlake_pch_enable
1759 */
1760
1761 /* Preserve the BIOS-computed detected bit. This is
1762 * supposed to be read-only.
1763 */
1764 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1765
1766 /* Handle DP bits in common between all three register formats */
1767 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1768 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1769
1770 /* Split out the IBX/CPU vs CPT settings */
1771
1772 if (IS_GEN7(dev) && port == PORT_A) {
1773 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1774 intel_dp->DP |= DP_SYNC_HS_HIGH;
1775 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1776 intel_dp->DP |= DP_SYNC_VS_HIGH;
1777 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1778
1779 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1780 intel_dp->DP |= DP_ENHANCED_FRAMING;
1781
1782 intel_dp->DP |= crtc->pipe << 29;
1783 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1784 u32 trans_dp;
1785
1786 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1787
1788 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1789 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1790 trans_dp |= TRANS_DP_ENH_FRAMING;
1791 else
1792 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1793 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1794 } else {
1795 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1796 !IS_CHERRYVIEW(dev) && pipe_config->limited_color_range)
1797 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1798
1799 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1800 intel_dp->DP |= DP_SYNC_HS_HIGH;
1801 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1802 intel_dp->DP |= DP_SYNC_VS_HIGH;
1803 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1804
1805 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1806 intel_dp->DP |= DP_ENHANCED_FRAMING;
1807
1808 if (IS_CHERRYVIEW(dev))
1809 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1810 else if (crtc->pipe == PIPE_B)
1811 intel_dp->DP |= DP_PIPEB_SELECT;
1812 }
1813 }
1814
1815 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1816 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1817
1818 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1819 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1820
1821 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1822 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1823
1824 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1825 struct intel_dp *intel_dp);
1826
1827 static void wait_panel_status(struct intel_dp *intel_dp,
1828 u32 mask,
1829 u32 value)
1830 {
1831 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1832 struct drm_i915_private *dev_priv = to_i915(dev);
1833 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1834
1835 lockdep_assert_held(&dev_priv->pps_mutex);
1836
1837 intel_pps_verify_state(dev_priv, intel_dp);
1838
1839 pp_stat_reg = _pp_stat_reg(intel_dp);
1840 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1841
1842 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1843 mask, value,
1844 I915_READ(pp_stat_reg),
1845 I915_READ(pp_ctrl_reg));
1846
1847 if (intel_wait_for_register(dev_priv,
1848 pp_stat_reg, mask, value,
1849 5000))
1850 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1851 I915_READ(pp_stat_reg),
1852 I915_READ(pp_ctrl_reg));
1853
1854 DRM_DEBUG_KMS("Wait complete\n");
1855 }
1856
1857 static void wait_panel_on(struct intel_dp *intel_dp)
1858 {
1859 DRM_DEBUG_KMS("Wait for panel power on\n");
1860 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1861 }
1862
1863 static void wait_panel_off(struct intel_dp *intel_dp)
1864 {
1865 DRM_DEBUG_KMS("Wait for panel power off time\n");
1866 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1867 }
1868
1869 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1870 {
1871 ktime_t panel_power_on_time;
1872 s64 panel_power_off_duration;
1873
1874 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1875
1876 /* take the difference of currrent time and panel power off time
1877 * and then make panel wait for t11_t12 if needed. */
1878 panel_power_on_time = ktime_get_boottime();
1879 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1880
1881 /* When we disable the VDD override bit last we have to do the manual
1882 * wait. */
1883 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1884 wait_remaining_ms_from_jiffies(jiffies,
1885 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1886
1887 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1888 }
1889
1890 static void wait_backlight_on(struct intel_dp *intel_dp)
1891 {
1892 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1893 intel_dp->backlight_on_delay);
1894 }
1895
1896 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1897 {
1898 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1899 intel_dp->backlight_off_delay);
1900 }
1901
1902 /* Read the current pp_control value, unlocking the register if it
1903 * is locked
1904 */
1905
1906 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1907 {
1908 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1909 struct drm_i915_private *dev_priv = to_i915(dev);
1910 u32 control;
1911
1912 lockdep_assert_held(&dev_priv->pps_mutex);
1913
1914 control = I915_READ(_pp_ctrl_reg(intel_dp));
1915 if (WARN_ON(!HAS_DDI(dev_priv) &&
1916 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
1917 control &= ~PANEL_UNLOCK_MASK;
1918 control |= PANEL_UNLOCK_REGS;
1919 }
1920 return control;
1921 }
1922
1923 /*
1924 * Must be paired with edp_panel_vdd_off().
1925 * Must hold pps_mutex around the whole on/off sequence.
1926 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1927 */
1928 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1929 {
1930 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1931 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1932 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1933 struct drm_i915_private *dev_priv = to_i915(dev);
1934 enum intel_display_power_domain power_domain;
1935 u32 pp;
1936 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1937 bool need_to_disable = !intel_dp->want_panel_vdd;
1938
1939 lockdep_assert_held(&dev_priv->pps_mutex);
1940
1941 if (!is_edp(intel_dp))
1942 return false;
1943
1944 cancel_delayed_work(&intel_dp->panel_vdd_work);
1945 intel_dp->want_panel_vdd = true;
1946
1947 if (edp_have_panel_vdd(intel_dp))
1948 return need_to_disable;
1949
1950 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1951 intel_display_power_get(dev_priv, power_domain);
1952
1953 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1954 port_name(intel_dig_port->port));
1955
1956 if (!edp_have_panel_power(intel_dp))
1957 wait_panel_power_cycle(intel_dp);
1958
1959 pp = ironlake_get_pp_control(intel_dp);
1960 pp |= EDP_FORCE_VDD;
1961
1962 pp_stat_reg = _pp_stat_reg(intel_dp);
1963 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1964
1965 I915_WRITE(pp_ctrl_reg, pp);
1966 POSTING_READ(pp_ctrl_reg);
1967 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1968 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1969 /*
1970 * If the panel wasn't on, delay before accessing aux channel
1971 */
1972 if (!edp_have_panel_power(intel_dp)) {
1973 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1974 port_name(intel_dig_port->port));
1975 msleep(intel_dp->panel_power_up_delay);
1976 }
1977
1978 return need_to_disable;
1979 }
1980
1981 /*
1982 * Must be paired with intel_edp_panel_vdd_off() or
1983 * intel_edp_panel_off().
1984 * Nested calls to these functions are not allowed since
1985 * we drop the lock. Caller must use some higher level
1986 * locking to prevent nested calls from other threads.
1987 */
1988 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1989 {
1990 bool vdd;
1991
1992 if (!is_edp(intel_dp))
1993 return;
1994
1995 pps_lock(intel_dp);
1996 vdd = edp_panel_vdd_on(intel_dp);
1997 pps_unlock(intel_dp);
1998
1999 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2000 port_name(dp_to_dig_port(intel_dp)->port));
2001 }
2002
2003 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2004 {
2005 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2006 struct drm_i915_private *dev_priv = to_i915(dev);
2007 struct intel_digital_port *intel_dig_port =
2008 dp_to_dig_port(intel_dp);
2009 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2010 enum intel_display_power_domain power_domain;
2011 u32 pp;
2012 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2013
2014 lockdep_assert_held(&dev_priv->pps_mutex);
2015
2016 WARN_ON(intel_dp->want_panel_vdd);
2017
2018 if (!edp_have_panel_vdd(intel_dp))
2019 return;
2020
2021 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2022 port_name(intel_dig_port->port));
2023
2024 pp = ironlake_get_pp_control(intel_dp);
2025 pp &= ~EDP_FORCE_VDD;
2026
2027 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2028 pp_stat_reg = _pp_stat_reg(intel_dp);
2029
2030 I915_WRITE(pp_ctrl_reg, pp);
2031 POSTING_READ(pp_ctrl_reg);
2032
2033 /* Make sure sequencer is idle before allowing subsequent activity */
2034 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2035 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2036
2037 if ((pp & PANEL_POWER_ON) == 0)
2038 intel_dp->panel_power_off_time = ktime_get_boottime();
2039
2040 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2041 intel_display_power_put(dev_priv, power_domain);
2042 }
2043
2044 static void edp_panel_vdd_work(struct work_struct *__work)
2045 {
2046 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2047 struct intel_dp, panel_vdd_work);
2048
2049 pps_lock(intel_dp);
2050 if (!intel_dp->want_panel_vdd)
2051 edp_panel_vdd_off_sync(intel_dp);
2052 pps_unlock(intel_dp);
2053 }
2054
2055 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2056 {
2057 unsigned long delay;
2058
2059 /*
2060 * Queue the timer to fire a long time from now (relative to the power
2061 * down delay) to keep the panel power up across a sequence of
2062 * operations.
2063 */
2064 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2065 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2066 }
2067
2068 /*
2069 * Must be paired with edp_panel_vdd_on().
2070 * Must hold pps_mutex around the whole on/off sequence.
2071 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2072 */
2073 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2074 {
2075 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2076
2077 lockdep_assert_held(&dev_priv->pps_mutex);
2078
2079 if (!is_edp(intel_dp))
2080 return;
2081
2082 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2083 port_name(dp_to_dig_port(intel_dp)->port));
2084
2085 intel_dp->want_panel_vdd = false;
2086
2087 if (sync)
2088 edp_panel_vdd_off_sync(intel_dp);
2089 else
2090 edp_panel_vdd_schedule_off(intel_dp);
2091 }
2092
2093 static void edp_panel_on(struct intel_dp *intel_dp)
2094 {
2095 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2096 struct drm_i915_private *dev_priv = to_i915(dev);
2097 u32 pp;
2098 i915_reg_t pp_ctrl_reg;
2099
2100 lockdep_assert_held(&dev_priv->pps_mutex);
2101
2102 if (!is_edp(intel_dp))
2103 return;
2104
2105 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2106 port_name(dp_to_dig_port(intel_dp)->port));
2107
2108 if (WARN(edp_have_panel_power(intel_dp),
2109 "eDP port %c panel power already on\n",
2110 port_name(dp_to_dig_port(intel_dp)->port)))
2111 return;
2112
2113 wait_panel_power_cycle(intel_dp);
2114
2115 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2116 pp = ironlake_get_pp_control(intel_dp);
2117 if (IS_GEN5(dev)) {
2118 /* ILK workaround: disable reset around power sequence */
2119 pp &= ~PANEL_POWER_RESET;
2120 I915_WRITE(pp_ctrl_reg, pp);
2121 POSTING_READ(pp_ctrl_reg);
2122 }
2123
2124 pp |= PANEL_POWER_ON;
2125 if (!IS_GEN5(dev))
2126 pp |= PANEL_POWER_RESET;
2127
2128 I915_WRITE(pp_ctrl_reg, pp);
2129 POSTING_READ(pp_ctrl_reg);
2130
2131 wait_panel_on(intel_dp);
2132 intel_dp->last_power_on = jiffies;
2133
2134 if (IS_GEN5(dev)) {
2135 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2136 I915_WRITE(pp_ctrl_reg, pp);
2137 POSTING_READ(pp_ctrl_reg);
2138 }
2139 }
2140
2141 void intel_edp_panel_on(struct intel_dp *intel_dp)
2142 {
2143 if (!is_edp(intel_dp))
2144 return;
2145
2146 pps_lock(intel_dp);
2147 edp_panel_on(intel_dp);
2148 pps_unlock(intel_dp);
2149 }
2150
2151
2152 static void edp_panel_off(struct intel_dp *intel_dp)
2153 {
2154 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2155 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2156 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2157 struct drm_i915_private *dev_priv = to_i915(dev);
2158 enum intel_display_power_domain power_domain;
2159 u32 pp;
2160 i915_reg_t pp_ctrl_reg;
2161
2162 lockdep_assert_held(&dev_priv->pps_mutex);
2163
2164 if (!is_edp(intel_dp))
2165 return;
2166
2167 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2168 port_name(dp_to_dig_port(intel_dp)->port));
2169
2170 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2171 port_name(dp_to_dig_port(intel_dp)->port));
2172
2173 pp = ironlake_get_pp_control(intel_dp);
2174 /* We need to switch off panel power _and_ force vdd, for otherwise some
2175 * panels get very unhappy and cease to work. */
2176 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2177 EDP_BLC_ENABLE);
2178
2179 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2180
2181 intel_dp->want_panel_vdd = false;
2182
2183 I915_WRITE(pp_ctrl_reg, pp);
2184 POSTING_READ(pp_ctrl_reg);
2185
2186 intel_dp->panel_power_off_time = ktime_get_boottime();
2187 wait_panel_off(intel_dp);
2188
2189 /* We got a reference when we enabled the VDD. */
2190 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2191 intel_display_power_put(dev_priv, power_domain);
2192 }
2193
2194 void intel_edp_panel_off(struct intel_dp *intel_dp)
2195 {
2196 if (!is_edp(intel_dp))
2197 return;
2198
2199 pps_lock(intel_dp);
2200 edp_panel_off(intel_dp);
2201 pps_unlock(intel_dp);
2202 }
2203
2204 /* Enable backlight in the panel power control. */
2205 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2206 {
2207 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2208 struct drm_device *dev = intel_dig_port->base.base.dev;
2209 struct drm_i915_private *dev_priv = to_i915(dev);
2210 u32 pp;
2211 i915_reg_t pp_ctrl_reg;
2212
2213 /*
2214 * If we enable the backlight right away following a panel power
2215 * on, we may see slight flicker as the panel syncs with the eDP
2216 * link. So delay a bit to make sure the image is solid before
2217 * allowing it to appear.
2218 */
2219 wait_backlight_on(intel_dp);
2220
2221 pps_lock(intel_dp);
2222
2223 pp = ironlake_get_pp_control(intel_dp);
2224 pp |= EDP_BLC_ENABLE;
2225
2226 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2227
2228 I915_WRITE(pp_ctrl_reg, pp);
2229 POSTING_READ(pp_ctrl_reg);
2230
2231 pps_unlock(intel_dp);
2232 }
2233
2234 /* Enable backlight PWM and backlight PP control. */
2235 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2236 {
2237 if (!is_edp(intel_dp))
2238 return;
2239
2240 DRM_DEBUG_KMS("\n");
2241
2242 intel_panel_enable_backlight(intel_dp->attached_connector);
2243 _intel_edp_backlight_on(intel_dp);
2244 }
2245
2246 /* Disable backlight in the panel power control. */
2247 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2248 {
2249 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2250 struct drm_i915_private *dev_priv = to_i915(dev);
2251 u32 pp;
2252 i915_reg_t pp_ctrl_reg;
2253
2254 if (!is_edp(intel_dp))
2255 return;
2256
2257 pps_lock(intel_dp);
2258
2259 pp = ironlake_get_pp_control(intel_dp);
2260 pp &= ~EDP_BLC_ENABLE;
2261
2262 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2263
2264 I915_WRITE(pp_ctrl_reg, pp);
2265 POSTING_READ(pp_ctrl_reg);
2266
2267 pps_unlock(intel_dp);
2268
2269 intel_dp->last_backlight_off = jiffies;
2270 edp_wait_backlight_off(intel_dp);
2271 }
2272
2273 /* Disable backlight PP control and backlight PWM. */
2274 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2275 {
2276 if (!is_edp(intel_dp))
2277 return;
2278
2279 DRM_DEBUG_KMS("\n");
2280
2281 _intel_edp_backlight_off(intel_dp);
2282 intel_panel_disable_backlight(intel_dp->attached_connector);
2283 }
2284
2285 /*
2286 * Hook for controlling the panel power control backlight through the bl_power
2287 * sysfs attribute. Take care to handle multiple calls.
2288 */
2289 static void intel_edp_backlight_power(struct intel_connector *connector,
2290 bool enable)
2291 {
2292 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2293 bool is_enabled;
2294
2295 pps_lock(intel_dp);
2296 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2297 pps_unlock(intel_dp);
2298
2299 if (is_enabled == enable)
2300 return;
2301
2302 DRM_DEBUG_KMS("panel power control backlight %s\n",
2303 enable ? "enable" : "disable");
2304
2305 if (enable)
2306 _intel_edp_backlight_on(intel_dp);
2307 else
2308 _intel_edp_backlight_off(intel_dp);
2309 }
2310
2311 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2312 {
2313 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2314 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2315 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2316
2317 I915_STATE_WARN(cur_state != state,
2318 "DP port %c state assertion failure (expected %s, current %s)\n",
2319 port_name(dig_port->port),
2320 onoff(state), onoff(cur_state));
2321 }
2322 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2323
2324 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2325 {
2326 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2327
2328 I915_STATE_WARN(cur_state != state,
2329 "eDP PLL state assertion failure (expected %s, current %s)\n",
2330 onoff(state), onoff(cur_state));
2331 }
2332 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2333 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2334
2335 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2336 struct intel_crtc_state *pipe_config)
2337 {
2338 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2339 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2340
2341 assert_pipe_disabled(dev_priv, crtc->pipe);
2342 assert_dp_port_disabled(intel_dp);
2343 assert_edp_pll_disabled(dev_priv);
2344
2345 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2346 pipe_config->port_clock);
2347
2348 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2349
2350 if (pipe_config->port_clock == 162000)
2351 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2352 else
2353 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2354
2355 I915_WRITE(DP_A, intel_dp->DP);
2356 POSTING_READ(DP_A);
2357 udelay(500);
2358
2359 /*
2360 * [DevILK] Work around required when enabling DP PLL
2361 * while a pipe is enabled going to FDI:
2362 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2363 * 2. Program DP PLL enable
2364 */
2365 if (IS_GEN5(dev_priv))
2366 intel_wait_for_vblank_if_active(&dev_priv->drm, !crtc->pipe);
2367
2368 intel_dp->DP |= DP_PLL_ENABLE;
2369
2370 I915_WRITE(DP_A, intel_dp->DP);
2371 POSTING_READ(DP_A);
2372 udelay(200);
2373 }
2374
2375 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2376 {
2377 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2378 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2379 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2380
2381 assert_pipe_disabled(dev_priv, crtc->pipe);
2382 assert_dp_port_disabled(intel_dp);
2383 assert_edp_pll_enabled(dev_priv);
2384
2385 DRM_DEBUG_KMS("disabling eDP PLL\n");
2386
2387 intel_dp->DP &= ~DP_PLL_ENABLE;
2388
2389 I915_WRITE(DP_A, intel_dp->DP);
2390 POSTING_READ(DP_A);
2391 udelay(200);
2392 }
2393
2394 /* If the sink supports it, try to set the power state appropriately */
2395 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2396 {
2397 int ret, i;
2398
2399 /* Should have a valid DPCD by this point */
2400 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2401 return;
2402
2403 if (mode != DRM_MODE_DPMS_ON) {
2404 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2405 DP_SET_POWER_D3);
2406 } else {
2407 /*
2408 * When turning on, we need to retry for 1ms to give the sink
2409 * time to wake up.
2410 */
2411 for (i = 0; i < 3; i++) {
2412 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2413 DP_SET_POWER_D0);
2414 if (ret == 1)
2415 break;
2416 msleep(1);
2417 }
2418 }
2419
2420 if (ret != 1)
2421 DRM_DEBUG_KMS("failed to %s sink power state\n",
2422 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2423 }
2424
2425 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2426 enum pipe *pipe)
2427 {
2428 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2429 enum port port = dp_to_dig_port(intel_dp)->port;
2430 struct drm_device *dev = encoder->base.dev;
2431 struct drm_i915_private *dev_priv = to_i915(dev);
2432 enum intel_display_power_domain power_domain;
2433 u32 tmp;
2434 bool ret;
2435
2436 power_domain = intel_display_port_power_domain(encoder);
2437 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2438 return false;
2439
2440 ret = false;
2441
2442 tmp = I915_READ(intel_dp->output_reg);
2443
2444 if (!(tmp & DP_PORT_EN))
2445 goto out;
2446
2447 if (IS_GEN7(dev) && port == PORT_A) {
2448 *pipe = PORT_TO_PIPE_CPT(tmp);
2449 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2450 enum pipe p;
2451
2452 for_each_pipe(dev_priv, p) {
2453 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2454 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2455 *pipe = p;
2456 ret = true;
2457
2458 goto out;
2459 }
2460 }
2461
2462 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2463 i915_mmio_reg_offset(intel_dp->output_reg));
2464 } else if (IS_CHERRYVIEW(dev)) {
2465 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2466 } else {
2467 *pipe = PORT_TO_PIPE(tmp);
2468 }
2469
2470 ret = true;
2471
2472 out:
2473 intel_display_power_put(dev_priv, power_domain);
2474
2475 return ret;
2476 }
2477
2478 static void intel_dp_get_config(struct intel_encoder *encoder,
2479 struct intel_crtc_state *pipe_config)
2480 {
2481 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2482 u32 tmp, flags = 0;
2483 struct drm_device *dev = encoder->base.dev;
2484 struct drm_i915_private *dev_priv = to_i915(dev);
2485 enum port port = dp_to_dig_port(intel_dp)->port;
2486 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2487
2488 tmp = I915_READ(intel_dp->output_reg);
2489
2490 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2491
2492 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2493 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2494
2495 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2496 flags |= DRM_MODE_FLAG_PHSYNC;
2497 else
2498 flags |= DRM_MODE_FLAG_NHSYNC;
2499
2500 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2501 flags |= DRM_MODE_FLAG_PVSYNC;
2502 else
2503 flags |= DRM_MODE_FLAG_NVSYNC;
2504 } else {
2505 if (tmp & DP_SYNC_HS_HIGH)
2506 flags |= DRM_MODE_FLAG_PHSYNC;
2507 else
2508 flags |= DRM_MODE_FLAG_NHSYNC;
2509
2510 if (tmp & DP_SYNC_VS_HIGH)
2511 flags |= DRM_MODE_FLAG_PVSYNC;
2512 else
2513 flags |= DRM_MODE_FLAG_NVSYNC;
2514 }
2515
2516 pipe_config->base.adjusted_mode.flags |= flags;
2517
2518 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2519 !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2520 pipe_config->limited_color_range = true;
2521
2522 pipe_config->lane_count =
2523 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2524
2525 intel_dp_get_m_n(crtc, pipe_config);
2526
2527 if (port == PORT_A) {
2528 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2529 pipe_config->port_clock = 162000;
2530 else
2531 pipe_config->port_clock = 270000;
2532 }
2533
2534 pipe_config->base.adjusted_mode.crtc_clock =
2535 intel_dotclock_calculate(pipe_config->port_clock,
2536 &pipe_config->dp_m_n);
2537
2538 if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2539 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2540 /*
2541 * This is a big fat ugly hack.
2542 *
2543 * Some machines in UEFI boot mode provide us a VBT that has 18
2544 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2545 * unknown we fail to light up. Yet the same BIOS boots up with
2546 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2547 * max, not what it tells us to use.
2548 *
2549 * Note: This will still be broken if the eDP panel is not lit
2550 * up by the BIOS, and thus we can't get the mode at module
2551 * load.
2552 */
2553 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2554 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2555 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2556 }
2557 }
2558
2559 static void intel_disable_dp(struct intel_encoder *encoder,
2560 struct intel_crtc_state *old_crtc_state,
2561 struct drm_connector_state *old_conn_state)
2562 {
2563 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2564 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2565
2566 if (old_crtc_state->has_audio)
2567 intel_audio_codec_disable(encoder);
2568
2569 if (HAS_PSR(dev_priv) && !HAS_DDI(dev_priv))
2570 intel_psr_disable(intel_dp);
2571
2572 /* Make sure the panel is off before trying to change the mode. But also
2573 * ensure that we have vdd while we switch off the panel. */
2574 intel_edp_panel_vdd_on(intel_dp);
2575 intel_edp_backlight_off(intel_dp);
2576 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2577 intel_edp_panel_off(intel_dp);
2578
2579 /* disable the port before the pipe on g4x */
2580 if (INTEL_GEN(dev_priv) < 5)
2581 intel_dp_link_down(intel_dp);
2582 }
2583
2584 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2585 struct intel_crtc_state *old_crtc_state,
2586 struct drm_connector_state *old_conn_state)
2587 {
2588 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2589 enum port port = dp_to_dig_port(intel_dp)->port;
2590
2591 intel_dp_link_down(intel_dp);
2592
2593 /* Only ilk+ has port A */
2594 if (port == PORT_A)
2595 ironlake_edp_pll_off(intel_dp);
2596 }
2597
2598 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2599 struct intel_crtc_state *old_crtc_state,
2600 struct drm_connector_state *old_conn_state)
2601 {
2602 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2603
2604 intel_dp_link_down(intel_dp);
2605 }
2606
2607 static void chv_post_disable_dp(struct intel_encoder *encoder,
2608 struct intel_crtc_state *old_crtc_state,
2609 struct drm_connector_state *old_conn_state)
2610 {
2611 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2612 struct drm_device *dev = encoder->base.dev;
2613 struct drm_i915_private *dev_priv = to_i915(dev);
2614
2615 intel_dp_link_down(intel_dp);
2616
2617 mutex_lock(&dev_priv->sb_lock);
2618
2619 /* Assert data lane reset */
2620 chv_data_lane_soft_reset(encoder, true);
2621
2622 mutex_unlock(&dev_priv->sb_lock);
2623 }
2624
2625 static void
2626 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2627 uint32_t *DP,
2628 uint8_t dp_train_pat)
2629 {
2630 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2631 struct drm_device *dev = intel_dig_port->base.base.dev;
2632 struct drm_i915_private *dev_priv = to_i915(dev);
2633 enum port port = intel_dig_port->port;
2634
2635 if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2636 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2637 dp_train_pat & DP_TRAINING_PATTERN_MASK);
2638
2639 if (HAS_DDI(dev)) {
2640 uint32_t temp = I915_READ(DP_TP_CTL(port));
2641
2642 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2643 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2644 else
2645 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2646
2647 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2648 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2649 case DP_TRAINING_PATTERN_DISABLE:
2650 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2651
2652 break;
2653 case DP_TRAINING_PATTERN_1:
2654 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2655 break;
2656 case DP_TRAINING_PATTERN_2:
2657 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2658 break;
2659 case DP_TRAINING_PATTERN_3:
2660 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2661 break;
2662 }
2663 I915_WRITE(DP_TP_CTL(port), temp);
2664
2665 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2666 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2667 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2668
2669 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2670 case DP_TRAINING_PATTERN_DISABLE:
2671 *DP |= DP_LINK_TRAIN_OFF_CPT;
2672 break;
2673 case DP_TRAINING_PATTERN_1:
2674 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2675 break;
2676 case DP_TRAINING_PATTERN_2:
2677 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2678 break;
2679 case DP_TRAINING_PATTERN_3:
2680 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2681 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2682 break;
2683 }
2684
2685 } else {
2686 if (IS_CHERRYVIEW(dev))
2687 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2688 else
2689 *DP &= ~DP_LINK_TRAIN_MASK;
2690
2691 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2692 case DP_TRAINING_PATTERN_DISABLE:
2693 *DP |= DP_LINK_TRAIN_OFF;
2694 break;
2695 case DP_TRAINING_PATTERN_1:
2696 *DP |= DP_LINK_TRAIN_PAT_1;
2697 break;
2698 case DP_TRAINING_PATTERN_2:
2699 *DP |= DP_LINK_TRAIN_PAT_2;
2700 break;
2701 case DP_TRAINING_PATTERN_3:
2702 if (IS_CHERRYVIEW(dev)) {
2703 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2704 } else {
2705 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2706 *DP |= DP_LINK_TRAIN_PAT_2;
2707 }
2708 break;
2709 }
2710 }
2711 }
2712
2713 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2714 struct intel_crtc_state *old_crtc_state)
2715 {
2716 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2717 struct drm_i915_private *dev_priv = to_i915(dev);
2718
2719 /* enable with pattern 1 (as per spec) */
2720
2721 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2722
2723 /*
2724 * Magic for VLV/CHV. We _must_ first set up the register
2725 * without actually enabling the port, and then do another
2726 * write to enable the port. Otherwise link training will
2727 * fail when the power sequencer is freshly used for this port.
2728 */
2729 intel_dp->DP |= DP_PORT_EN;
2730 if (old_crtc_state->has_audio)
2731 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2732
2733 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2734 POSTING_READ(intel_dp->output_reg);
2735 }
2736
2737 static void intel_enable_dp(struct intel_encoder *encoder,
2738 struct intel_crtc_state *pipe_config)
2739 {
2740 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2741 struct drm_device *dev = encoder->base.dev;
2742 struct drm_i915_private *dev_priv = to_i915(dev);
2743 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2744 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2745 enum pipe pipe = crtc->pipe;
2746
2747 if (WARN_ON(dp_reg & DP_PORT_EN))
2748 return;
2749
2750 pps_lock(intel_dp);
2751
2752 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2753 vlv_init_panel_power_sequencer(intel_dp);
2754
2755 intel_dp_enable_port(intel_dp, pipe_config);
2756
2757 edp_panel_vdd_on(intel_dp);
2758 edp_panel_on(intel_dp);
2759 edp_panel_vdd_off(intel_dp, true);
2760
2761 pps_unlock(intel_dp);
2762
2763 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2764 unsigned int lane_mask = 0x0;
2765
2766 if (IS_CHERRYVIEW(dev))
2767 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2768
2769 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2770 lane_mask);
2771 }
2772
2773 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2774 intel_dp_start_link_train(intel_dp);
2775 intel_dp_stop_link_train(intel_dp);
2776
2777 if (pipe_config->has_audio) {
2778 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2779 pipe_name(pipe));
2780 intel_audio_codec_enable(encoder);
2781 }
2782 }
2783
2784 static void g4x_enable_dp(struct intel_encoder *encoder,
2785 struct intel_crtc_state *pipe_config,
2786 struct drm_connector_state *conn_state)
2787 {
2788 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2789
2790 intel_enable_dp(encoder, pipe_config);
2791 intel_edp_backlight_on(intel_dp);
2792 }
2793
2794 static void vlv_enable_dp(struct intel_encoder *encoder,
2795 struct intel_crtc_state *pipe_config,
2796 struct drm_connector_state *conn_state)
2797 {
2798 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2799
2800 intel_edp_backlight_on(intel_dp);
2801 intel_psr_enable(intel_dp);
2802 }
2803
2804 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
2805 struct intel_crtc_state *pipe_config,
2806 struct drm_connector_state *conn_state)
2807 {
2808 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2809 enum port port = dp_to_dig_port(intel_dp)->port;
2810
2811 intel_dp_prepare(encoder, pipe_config);
2812
2813 /* Only ilk+ has port A */
2814 if (port == PORT_A)
2815 ironlake_edp_pll_on(intel_dp, pipe_config);
2816 }
2817
2818 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2819 {
2820 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2821 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2822 enum pipe pipe = intel_dp->pps_pipe;
2823 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2824
2825 edp_panel_vdd_off_sync(intel_dp);
2826
2827 /*
2828 * VLV seems to get confused when multiple power seqeuencers
2829 * have the same port selected (even if only one has power/vdd
2830 * enabled). The failure manifests as vlv_wait_port_ready() failing
2831 * CHV on the other hand doesn't seem to mind having the same port
2832 * selected in multiple power seqeuencers, but let's clear the
2833 * port select always when logically disconnecting a power sequencer
2834 * from a port.
2835 */
2836 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2837 pipe_name(pipe), port_name(intel_dig_port->port));
2838 I915_WRITE(pp_on_reg, 0);
2839 POSTING_READ(pp_on_reg);
2840
2841 intel_dp->pps_pipe = INVALID_PIPE;
2842 }
2843
2844 static void vlv_steal_power_sequencer(struct drm_device *dev,
2845 enum pipe pipe)
2846 {
2847 struct drm_i915_private *dev_priv = to_i915(dev);
2848 struct intel_encoder *encoder;
2849
2850 lockdep_assert_held(&dev_priv->pps_mutex);
2851
2852 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2853 return;
2854
2855 for_each_intel_encoder(dev, encoder) {
2856 struct intel_dp *intel_dp;
2857 enum port port;
2858
2859 if (encoder->type != INTEL_OUTPUT_EDP)
2860 continue;
2861
2862 intel_dp = enc_to_intel_dp(&encoder->base);
2863 port = dp_to_dig_port(intel_dp)->port;
2864
2865 if (intel_dp->pps_pipe != pipe)
2866 continue;
2867
2868 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2869 pipe_name(pipe), port_name(port));
2870
2871 WARN(encoder->base.crtc,
2872 "stealing pipe %c power sequencer from active eDP port %c\n",
2873 pipe_name(pipe), port_name(port));
2874
2875 /* make sure vdd is off before we steal it */
2876 vlv_detach_power_sequencer(intel_dp);
2877 }
2878 }
2879
2880 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2881 {
2882 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2883 struct intel_encoder *encoder = &intel_dig_port->base;
2884 struct drm_device *dev = encoder->base.dev;
2885 struct drm_i915_private *dev_priv = to_i915(dev);
2886 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2887
2888 lockdep_assert_held(&dev_priv->pps_mutex);
2889
2890 if (!is_edp(intel_dp))
2891 return;
2892
2893 if (intel_dp->pps_pipe == crtc->pipe)
2894 return;
2895
2896 /*
2897 * If another power sequencer was being used on this
2898 * port previously make sure to turn off vdd there while
2899 * we still have control of it.
2900 */
2901 if (intel_dp->pps_pipe != INVALID_PIPE)
2902 vlv_detach_power_sequencer(intel_dp);
2903
2904 /*
2905 * We may be stealing the power
2906 * sequencer from another port.
2907 */
2908 vlv_steal_power_sequencer(dev, crtc->pipe);
2909
2910 /* now it's all ours */
2911 intel_dp->pps_pipe = crtc->pipe;
2912
2913 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2914 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2915
2916 /* init power sequencer on this pipe and port */
2917 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2918 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2919 }
2920
2921 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
2922 struct intel_crtc_state *pipe_config,
2923 struct drm_connector_state *conn_state)
2924 {
2925 vlv_phy_pre_encoder_enable(encoder);
2926
2927 intel_enable_dp(encoder, pipe_config);
2928 }
2929
2930 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
2931 struct intel_crtc_state *pipe_config,
2932 struct drm_connector_state *conn_state)
2933 {
2934 intel_dp_prepare(encoder, pipe_config);
2935
2936 vlv_phy_pre_pll_enable(encoder);
2937 }
2938
2939 static void chv_pre_enable_dp(struct intel_encoder *encoder,
2940 struct intel_crtc_state *pipe_config,
2941 struct drm_connector_state *conn_state)
2942 {
2943 chv_phy_pre_encoder_enable(encoder);
2944
2945 intel_enable_dp(encoder, pipe_config);
2946
2947 /* Second common lane will stay alive on its own now */
2948 chv_phy_release_cl2_override(encoder);
2949 }
2950
2951 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
2952 struct intel_crtc_state *pipe_config,
2953 struct drm_connector_state *conn_state)
2954 {
2955 intel_dp_prepare(encoder, pipe_config);
2956
2957 chv_phy_pre_pll_enable(encoder);
2958 }
2959
2960 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
2961 struct intel_crtc_state *pipe_config,
2962 struct drm_connector_state *conn_state)
2963 {
2964 chv_phy_post_pll_disable(encoder);
2965 }
2966
2967 /*
2968 * Fetch AUX CH registers 0x202 - 0x207 which contain
2969 * link status information
2970 */
2971 bool
2972 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2973 {
2974 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
2975 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2976 }
2977
2978 /* These are source-specific values. */
2979 uint8_t
2980 intel_dp_voltage_max(struct intel_dp *intel_dp)
2981 {
2982 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2983 struct drm_i915_private *dev_priv = to_i915(dev);
2984 enum port port = dp_to_dig_port(intel_dp)->port;
2985
2986 if (IS_BROXTON(dev))
2987 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2988 else if (INTEL_INFO(dev)->gen >= 9) {
2989 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
2990 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2991 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2992 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2993 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2994 else if (IS_GEN7(dev) && port == PORT_A)
2995 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2996 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2997 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2998 else
2999 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3000 }
3001
3002 uint8_t
3003 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3004 {
3005 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3006 enum port port = dp_to_dig_port(intel_dp)->port;
3007
3008 if (INTEL_INFO(dev)->gen >= 9) {
3009 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3010 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3011 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3012 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3013 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3014 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3015 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3016 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3017 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3018 default:
3019 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3020 }
3021 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3022 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3023 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3024 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3025 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3026 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3027 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3028 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3029 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3030 default:
3031 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3032 }
3033 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3034 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3035 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3036 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3037 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3038 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3039 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3040 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3041 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3042 default:
3043 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3044 }
3045 } else if (IS_GEN7(dev) && port == PORT_A) {
3046 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3047 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3048 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3049 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3050 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3051 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3052 default:
3053 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3054 }
3055 } else {
3056 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3057 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3058 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3059 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3060 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3061 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3062 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3063 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3064 default:
3065 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3066 }
3067 }
3068 }
3069
3070 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3071 {
3072 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3073 unsigned long demph_reg_value, preemph_reg_value,
3074 uniqtranscale_reg_value;
3075 uint8_t train_set = intel_dp->train_set[0];
3076
3077 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3078 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3079 preemph_reg_value = 0x0004000;
3080 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3081 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3082 demph_reg_value = 0x2B405555;
3083 uniqtranscale_reg_value = 0x552AB83A;
3084 break;
3085 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3086 demph_reg_value = 0x2B404040;
3087 uniqtranscale_reg_value = 0x5548B83A;
3088 break;
3089 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3090 demph_reg_value = 0x2B245555;
3091 uniqtranscale_reg_value = 0x5560B83A;
3092 break;
3093 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3094 demph_reg_value = 0x2B405555;
3095 uniqtranscale_reg_value = 0x5598DA3A;
3096 break;
3097 default:
3098 return 0;
3099 }
3100 break;
3101 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3102 preemph_reg_value = 0x0002000;
3103 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3104 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3105 demph_reg_value = 0x2B404040;
3106 uniqtranscale_reg_value = 0x5552B83A;
3107 break;
3108 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3109 demph_reg_value = 0x2B404848;
3110 uniqtranscale_reg_value = 0x5580B83A;
3111 break;
3112 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3113 demph_reg_value = 0x2B404040;
3114 uniqtranscale_reg_value = 0x55ADDA3A;
3115 break;
3116 default:
3117 return 0;
3118 }
3119 break;
3120 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3121 preemph_reg_value = 0x0000000;
3122 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3123 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3124 demph_reg_value = 0x2B305555;
3125 uniqtranscale_reg_value = 0x5570B83A;
3126 break;
3127 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3128 demph_reg_value = 0x2B2B4040;
3129 uniqtranscale_reg_value = 0x55ADDA3A;
3130 break;
3131 default:
3132 return 0;
3133 }
3134 break;
3135 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3136 preemph_reg_value = 0x0006000;
3137 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3138 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3139 demph_reg_value = 0x1B405555;
3140 uniqtranscale_reg_value = 0x55ADDA3A;
3141 break;
3142 default:
3143 return 0;
3144 }
3145 break;
3146 default:
3147 return 0;
3148 }
3149
3150 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3151 uniqtranscale_reg_value, 0);
3152
3153 return 0;
3154 }
3155
3156 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3157 {
3158 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3159 u32 deemph_reg_value, margin_reg_value;
3160 bool uniq_trans_scale = false;
3161 uint8_t train_set = intel_dp->train_set[0];
3162
3163 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3164 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3165 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3166 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3167 deemph_reg_value = 128;
3168 margin_reg_value = 52;
3169 break;
3170 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3171 deemph_reg_value = 128;
3172 margin_reg_value = 77;
3173 break;
3174 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3175 deemph_reg_value = 128;
3176 margin_reg_value = 102;
3177 break;
3178 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3179 deemph_reg_value = 128;
3180 margin_reg_value = 154;
3181 uniq_trans_scale = true;
3182 break;
3183 default:
3184 return 0;
3185 }
3186 break;
3187 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3188 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3189 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3190 deemph_reg_value = 85;
3191 margin_reg_value = 78;
3192 break;
3193 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3194 deemph_reg_value = 85;
3195 margin_reg_value = 116;
3196 break;
3197 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3198 deemph_reg_value = 85;
3199 margin_reg_value = 154;
3200 break;
3201 default:
3202 return 0;
3203 }
3204 break;
3205 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3206 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3207 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3208 deemph_reg_value = 64;
3209 margin_reg_value = 104;
3210 break;
3211 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3212 deemph_reg_value = 64;
3213 margin_reg_value = 154;
3214 break;
3215 default:
3216 return 0;
3217 }
3218 break;
3219 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3220 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3221 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3222 deemph_reg_value = 43;
3223 margin_reg_value = 154;
3224 break;
3225 default:
3226 return 0;
3227 }
3228 break;
3229 default:
3230 return 0;
3231 }
3232
3233 chv_set_phy_signal_level(encoder, deemph_reg_value,
3234 margin_reg_value, uniq_trans_scale);
3235
3236 return 0;
3237 }
3238
3239 static uint32_t
3240 gen4_signal_levels(uint8_t train_set)
3241 {
3242 uint32_t signal_levels = 0;
3243
3244 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3245 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3246 default:
3247 signal_levels |= DP_VOLTAGE_0_4;
3248 break;
3249 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3250 signal_levels |= DP_VOLTAGE_0_6;
3251 break;
3252 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3253 signal_levels |= DP_VOLTAGE_0_8;
3254 break;
3255 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3256 signal_levels |= DP_VOLTAGE_1_2;
3257 break;
3258 }
3259 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3260 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3261 default:
3262 signal_levels |= DP_PRE_EMPHASIS_0;
3263 break;
3264 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3265 signal_levels |= DP_PRE_EMPHASIS_3_5;
3266 break;
3267 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3268 signal_levels |= DP_PRE_EMPHASIS_6;
3269 break;
3270 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3271 signal_levels |= DP_PRE_EMPHASIS_9_5;
3272 break;
3273 }
3274 return signal_levels;
3275 }
3276
3277 /* Gen6's DP voltage swing and pre-emphasis control */
3278 static uint32_t
3279 gen6_edp_signal_levels(uint8_t train_set)
3280 {
3281 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3282 DP_TRAIN_PRE_EMPHASIS_MASK);
3283 switch (signal_levels) {
3284 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3285 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3286 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3287 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3288 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3289 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3290 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3291 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3292 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3293 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3294 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3295 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3296 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3297 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3298 default:
3299 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3300 "0x%x\n", signal_levels);
3301 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3302 }
3303 }
3304
3305 /* Gen7's DP voltage swing and pre-emphasis control */
3306 static uint32_t
3307 gen7_edp_signal_levels(uint8_t train_set)
3308 {
3309 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3310 DP_TRAIN_PRE_EMPHASIS_MASK);
3311 switch (signal_levels) {
3312 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3313 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3314 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3315 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3316 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3317 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3318
3319 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3320 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3321 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3322 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3323
3324 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3325 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3326 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3327 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3328
3329 default:
3330 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3331 "0x%x\n", signal_levels);
3332 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3333 }
3334 }
3335
3336 void
3337 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3338 {
3339 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3340 enum port port = intel_dig_port->port;
3341 struct drm_device *dev = intel_dig_port->base.base.dev;
3342 struct drm_i915_private *dev_priv = to_i915(dev);
3343 uint32_t signal_levels, mask = 0;
3344 uint8_t train_set = intel_dp->train_set[0];
3345
3346 if (HAS_DDI(dev)) {
3347 signal_levels = ddi_signal_levels(intel_dp);
3348
3349 if (IS_BROXTON(dev))
3350 signal_levels = 0;
3351 else
3352 mask = DDI_BUF_EMP_MASK;
3353 } else if (IS_CHERRYVIEW(dev)) {
3354 signal_levels = chv_signal_levels(intel_dp);
3355 } else if (IS_VALLEYVIEW(dev)) {
3356 signal_levels = vlv_signal_levels(intel_dp);
3357 } else if (IS_GEN7(dev) && port == PORT_A) {
3358 signal_levels = gen7_edp_signal_levels(train_set);
3359 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3360 } else if (IS_GEN6(dev) && port == PORT_A) {
3361 signal_levels = gen6_edp_signal_levels(train_set);
3362 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3363 } else {
3364 signal_levels = gen4_signal_levels(train_set);
3365 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3366 }
3367
3368 if (mask)
3369 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3370
3371 DRM_DEBUG_KMS("Using vswing level %d\n",
3372 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3373 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3374 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3375 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3376
3377 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3378
3379 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3380 POSTING_READ(intel_dp->output_reg);
3381 }
3382
3383 void
3384 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3385 uint8_t dp_train_pat)
3386 {
3387 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3388 struct drm_i915_private *dev_priv =
3389 to_i915(intel_dig_port->base.base.dev);
3390
3391 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3392
3393 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3394 POSTING_READ(intel_dp->output_reg);
3395 }
3396
3397 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3398 {
3399 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3400 struct drm_device *dev = intel_dig_port->base.base.dev;
3401 struct drm_i915_private *dev_priv = to_i915(dev);
3402 enum port port = intel_dig_port->port;
3403 uint32_t val;
3404
3405 if (!HAS_DDI(dev))
3406 return;
3407
3408 val = I915_READ(DP_TP_CTL(port));
3409 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3410 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3411 I915_WRITE(DP_TP_CTL(port), val);
3412
3413 /*
3414 * On PORT_A we can have only eDP in SST mode. There the only reason
3415 * we need to set idle transmission mode is to work around a HW issue
3416 * where we enable the pipe while not in idle link-training mode.
3417 * In this case there is requirement to wait for a minimum number of
3418 * idle patterns to be sent.
3419 */
3420 if (port == PORT_A)
3421 return;
3422
3423 if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3424 DP_TP_STATUS_IDLE_DONE,
3425 DP_TP_STATUS_IDLE_DONE,
3426 1))
3427 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3428 }
3429
3430 static void
3431 intel_dp_link_down(struct intel_dp *intel_dp)
3432 {
3433 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3434 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3435 enum port port = intel_dig_port->port;
3436 struct drm_device *dev = intel_dig_port->base.base.dev;
3437 struct drm_i915_private *dev_priv = to_i915(dev);
3438 uint32_t DP = intel_dp->DP;
3439
3440 if (WARN_ON(HAS_DDI(dev)))
3441 return;
3442
3443 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3444 return;
3445
3446 DRM_DEBUG_KMS("\n");
3447
3448 if ((IS_GEN7(dev) && port == PORT_A) ||
3449 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3450 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3451 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3452 } else {
3453 if (IS_CHERRYVIEW(dev))
3454 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3455 else
3456 DP &= ~DP_LINK_TRAIN_MASK;
3457 DP |= DP_LINK_TRAIN_PAT_IDLE;
3458 }
3459 I915_WRITE(intel_dp->output_reg, DP);
3460 POSTING_READ(intel_dp->output_reg);
3461
3462 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3463 I915_WRITE(intel_dp->output_reg, DP);
3464 POSTING_READ(intel_dp->output_reg);
3465
3466 /*
3467 * HW workaround for IBX, we need to move the port
3468 * to transcoder A after disabling it to allow the
3469 * matching HDMI port to be enabled on transcoder A.
3470 */
3471 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3472 /*
3473 * We get CPU/PCH FIFO underruns on the other pipe when
3474 * doing the workaround. Sweep them under the rug.
3475 */
3476 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3477 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3478
3479 /* always enable with pattern 1 (as per spec) */
3480 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3481 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3482 I915_WRITE(intel_dp->output_reg, DP);
3483 POSTING_READ(intel_dp->output_reg);
3484
3485 DP &= ~DP_PORT_EN;
3486 I915_WRITE(intel_dp->output_reg, DP);
3487 POSTING_READ(intel_dp->output_reg);
3488
3489 intel_wait_for_vblank_if_active(&dev_priv->drm, PIPE_A);
3490 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3491 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3492 }
3493
3494 msleep(intel_dp->panel_power_down_delay);
3495
3496 intel_dp->DP = DP;
3497 }
3498
3499 static bool
3500 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3501 {
3502 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3503 sizeof(intel_dp->dpcd)) < 0)
3504 return false; /* aux transfer failed */
3505
3506 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3507
3508 return intel_dp->dpcd[DP_DPCD_REV] != 0;
3509 }
3510
3511 static bool
3512 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3513 {
3514 struct drm_i915_private *dev_priv =
3515 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3516
3517 /* this function is meant to be called only once */
3518 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3519
3520 if (!intel_dp_read_dpcd(intel_dp))
3521 return false;
3522
3523 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3524 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3525 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3526
3527 /* Check if the panel supports PSR */
3528 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3529 intel_dp->psr_dpcd,
3530 sizeof(intel_dp->psr_dpcd));
3531 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3532 dev_priv->psr.sink_support = true;
3533 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3534 }
3535
3536 if (INTEL_GEN(dev_priv) >= 9 &&
3537 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3538 uint8_t frame_sync_cap;
3539
3540 dev_priv->psr.sink_support = true;
3541 drm_dp_dpcd_read(&intel_dp->aux,
3542 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3543 &frame_sync_cap, 1);
3544 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3545 /* PSR2 needs frame sync as well */
3546 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3547 DRM_DEBUG_KMS("PSR2 %s on sink",
3548 dev_priv->psr.psr2_support ? "supported" : "not supported");
3549 }
3550
3551 /* Read the eDP Display control capabilities registers */
3552 if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3553 drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3554 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd) ==
3555 sizeof(intel_dp->edp_dpcd)))
3556 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3557 intel_dp->edp_dpcd);
3558
3559 /* Intermediate frequency support */
3560 if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3561 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3562 int i;
3563
3564 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3565 sink_rates, sizeof(sink_rates));
3566
3567 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3568 int val = le16_to_cpu(sink_rates[i]);
3569
3570 if (val == 0)
3571 break;
3572
3573 /* Value read is in kHz while drm clock is saved in deca-kHz */
3574 intel_dp->sink_rates[i] = (val * 200) / 10;
3575 }
3576 intel_dp->num_sink_rates = i;
3577 }
3578
3579 return true;
3580 }
3581
3582
3583 static bool
3584 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3585 {
3586 if (!intel_dp_read_dpcd(intel_dp))
3587 return false;
3588
3589 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3590 &intel_dp->sink_count, 1) < 0)
3591 return false;
3592
3593 /*
3594 * Sink count can change between short pulse hpd hence
3595 * a member variable in intel_dp will track any changes
3596 * between short pulse interrupts.
3597 */
3598 intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3599
3600 /*
3601 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3602 * a dongle is present but no display. Unless we require to know
3603 * if a dongle is present or not, we don't need to update
3604 * downstream port information. So, an early return here saves
3605 * time from performing other operations which are not required.
3606 */
3607 if (!is_edp(intel_dp) && !intel_dp->sink_count)
3608 return false;
3609
3610 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3611 DP_DWN_STRM_PORT_PRESENT))
3612 return true; /* native DP sink */
3613
3614 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3615 return true; /* no per-port downstream info */
3616
3617 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3618 intel_dp->downstream_ports,
3619 DP_MAX_DOWNSTREAM_PORTS) < 0)
3620 return false; /* downstream port status fetch failed */
3621
3622 return true;
3623 }
3624
3625 static void
3626 intel_dp_probe_oui(struct intel_dp *intel_dp)
3627 {
3628 u8 buf[3];
3629
3630 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3631 return;
3632
3633 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3634 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3635 buf[0], buf[1], buf[2]);
3636
3637 if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3638 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3639 buf[0], buf[1], buf[2]);
3640 }
3641
3642 static bool
3643 intel_dp_can_mst(struct intel_dp *intel_dp)
3644 {
3645 u8 buf[1];
3646
3647 if (!i915.enable_dp_mst)
3648 return false;
3649
3650 if (!intel_dp->can_mst)
3651 return false;
3652
3653 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3654 return false;
3655
3656 if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1) != 1)
3657 return false;
3658
3659 return buf[0] & DP_MST_CAP;
3660 }
3661
3662 static void
3663 intel_dp_configure_mst(struct intel_dp *intel_dp)
3664 {
3665 if (!i915.enable_dp_mst)
3666 return;
3667
3668 if (!intel_dp->can_mst)
3669 return;
3670
3671 intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3672
3673 if (intel_dp->is_mst)
3674 DRM_DEBUG_KMS("Sink is MST capable\n");
3675 else
3676 DRM_DEBUG_KMS("Sink is not MST capable\n");
3677
3678 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3679 intel_dp->is_mst);
3680 }
3681
3682 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3683 {
3684 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3685 struct drm_device *dev = dig_port->base.base.dev;
3686 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3687 u8 buf;
3688 int ret = 0;
3689 int count = 0;
3690 int attempts = 10;
3691
3692 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3693 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3694 ret = -EIO;
3695 goto out;
3696 }
3697
3698 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3699 buf & ~DP_TEST_SINK_START) < 0) {
3700 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3701 ret = -EIO;
3702 goto out;
3703 }
3704
3705 do {
3706 intel_wait_for_vblank(dev, intel_crtc->pipe);
3707
3708 if (drm_dp_dpcd_readb(&intel_dp->aux,
3709 DP_TEST_SINK_MISC, &buf) < 0) {
3710 ret = -EIO;
3711 goto out;
3712 }
3713 count = buf & DP_TEST_COUNT_MASK;
3714 } while (--attempts && count);
3715
3716 if (attempts == 0) {
3717 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3718 ret = -ETIMEDOUT;
3719 }
3720
3721 out:
3722 hsw_enable_ips(intel_crtc);
3723 return ret;
3724 }
3725
3726 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3727 {
3728 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3729 struct drm_device *dev = dig_port->base.base.dev;
3730 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3731 u8 buf;
3732 int ret;
3733
3734 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3735 return -EIO;
3736
3737 if (!(buf & DP_TEST_CRC_SUPPORTED))
3738 return -ENOTTY;
3739
3740 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3741 return -EIO;
3742
3743 if (buf & DP_TEST_SINK_START) {
3744 ret = intel_dp_sink_crc_stop(intel_dp);
3745 if (ret)
3746 return ret;
3747 }
3748
3749 hsw_disable_ips(intel_crtc);
3750
3751 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3752 buf | DP_TEST_SINK_START) < 0) {
3753 hsw_enable_ips(intel_crtc);
3754 return -EIO;
3755 }
3756
3757 intel_wait_for_vblank(dev, intel_crtc->pipe);
3758 return 0;
3759 }
3760
3761 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3762 {
3763 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3764 struct drm_device *dev = dig_port->base.base.dev;
3765 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3766 u8 buf;
3767 int count, ret;
3768 int attempts = 6;
3769
3770 ret = intel_dp_sink_crc_start(intel_dp);
3771 if (ret)
3772 return ret;
3773
3774 do {
3775 intel_wait_for_vblank(dev, intel_crtc->pipe);
3776
3777 if (drm_dp_dpcd_readb(&intel_dp->aux,
3778 DP_TEST_SINK_MISC, &buf) < 0) {
3779 ret = -EIO;
3780 goto stop;
3781 }
3782 count = buf & DP_TEST_COUNT_MASK;
3783
3784 } while (--attempts && count == 0);
3785
3786 if (attempts == 0) {
3787 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3788 ret = -ETIMEDOUT;
3789 goto stop;
3790 }
3791
3792 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3793 ret = -EIO;
3794 goto stop;
3795 }
3796
3797 stop:
3798 intel_dp_sink_crc_stop(intel_dp);
3799 return ret;
3800 }
3801
3802 static bool
3803 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3804 {
3805 return drm_dp_dpcd_read(&intel_dp->aux,
3806 DP_DEVICE_SERVICE_IRQ_VECTOR,
3807 sink_irq_vector, 1) == 1;
3808 }
3809
3810 static bool
3811 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3812 {
3813 int ret;
3814
3815 ret = drm_dp_dpcd_read(&intel_dp->aux,
3816 DP_SINK_COUNT_ESI,
3817 sink_irq_vector, 14);
3818 if (ret != 14)
3819 return false;
3820
3821 return true;
3822 }
3823
3824 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3825 {
3826 uint8_t test_result = DP_TEST_ACK;
3827 return test_result;
3828 }
3829
3830 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3831 {
3832 uint8_t test_result = DP_TEST_NAK;
3833 return test_result;
3834 }
3835
3836 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3837 {
3838 uint8_t test_result = DP_TEST_NAK;
3839 struct intel_connector *intel_connector = intel_dp->attached_connector;
3840 struct drm_connector *connector = &intel_connector->base;
3841
3842 if (intel_connector->detect_edid == NULL ||
3843 connector->edid_corrupt ||
3844 intel_dp->aux.i2c_defer_count > 6) {
3845 /* Check EDID read for NACKs, DEFERs and corruption
3846 * (DP CTS 1.2 Core r1.1)
3847 * 4.2.2.4 : Failed EDID read, I2C_NAK
3848 * 4.2.2.5 : Failed EDID read, I2C_DEFER
3849 * 4.2.2.6 : EDID corruption detected
3850 * Use failsafe mode for all cases
3851 */
3852 if (intel_dp->aux.i2c_nack_count > 0 ||
3853 intel_dp->aux.i2c_defer_count > 0)
3854 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3855 intel_dp->aux.i2c_nack_count,
3856 intel_dp->aux.i2c_defer_count);
3857 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3858 } else {
3859 struct edid *block = intel_connector->detect_edid;
3860
3861 /* We have to write the checksum
3862 * of the last block read
3863 */
3864 block += intel_connector->detect_edid->extensions;
3865
3866 if (!drm_dp_dpcd_write(&intel_dp->aux,
3867 DP_TEST_EDID_CHECKSUM,
3868 &block->checksum,
3869 1))
3870 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3871
3872 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3873 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3874 }
3875
3876 /* Set test active flag here so userspace doesn't interrupt things */
3877 intel_dp->compliance_test_active = 1;
3878
3879 return test_result;
3880 }
3881
3882 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3883 {
3884 uint8_t test_result = DP_TEST_NAK;
3885 return test_result;
3886 }
3887
3888 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3889 {
3890 uint8_t response = DP_TEST_NAK;
3891 uint8_t rxdata = 0;
3892 int status = 0;
3893
3894 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3895 if (status <= 0) {
3896 DRM_DEBUG_KMS("Could not read test request from sink\n");
3897 goto update_status;
3898 }
3899
3900 switch (rxdata) {
3901 case DP_TEST_LINK_TRAINING:
3902 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3903 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3904 response = intel_dp_autotest_link_training(intel_dp);
3905 break;
3906 case DP_TEST_LINK_VIDEO_PATTERN:
3907 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3908 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3909 response = intel_dp_autotest_video_pattern(intel_dp);
3910 break;
3911 case DP_TEST_LINK_EDID_READ:
3912 DRM_DEBUG_KMS("EDID test requested\n");
3913 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3914 response = intel_dp_autotest_edid(intel_dp);
3915 break;
3916 case DP_TEST_LINK_PHY_TEST_PATTERN:
3917 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3918 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3919 response = intel_dp_autotest_phy_pattern(intel_dp);
3920 break;
3921 default:
3922 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3923 break;
3924 }
3925
3926 update_status:
3927 status = drm_dp_dpcd_write(&intel_dp->aux,
3928 DP_TEST_RESPONSE,
3929 &response, 1);
3930 if (status <= 0)
3931 DRM_DEBUG_KMS("Could not write test response to sink\n");
3932 }
3933
3934 static int
3935 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3936 {
3937 bool bret;
3938
3939 if (intel_dp->is_mst) {
3940 u8 esi[16] = { 0 };
3941 int ret = 0;
3942 int retry;
3943 bool handled;
3944 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3945 go_again:
3946 if (bret == true) {
3947
3948 /* check link status - esi[10] = 0x200c */
3949 if (intel_dp->active_mst_links &&
3950 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3951 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3952 intel_dp_start_link_train(intel_dp);
3953 intel_dp_stop_link_train(intel_dp);
3954 }
3955
3956 DRM_DEBUG_KMS("got esi %3ph\n", esi);
3957 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3958
3959 if (handled) {
3960 for (retry = 0; retry < 3; retry++) {
3961 int wret;
3962 wret = drm_dp_dpcd_write(&intel_dp->aux,
3963 DP_SINK_COUNT_ESI+1,
3964 &esi[1], 3);
3965 if (wret == 3) {
3966 break;
3967 }
3968 }
3969
3970 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3971 if (bret == true) {
3972 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3973 goto go_again;
3974 }
3975 } else
3976 ret = 0;
3977
3978 return ret;
3979 } else {
3980 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3981 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3982 intel_dp->is_mst = false;
3983 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3984 /* send a hotplug event */
3985 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3986 }
3987 }
3988 return -EINVAL;
3989 }
3990
3991 static void
3992 intel_dp_check_link_status(struct intel_dp *intel_dp)
3993 {
3994 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3995 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3996 u8 link_status[DP_LINK_STATUS_SIZE];
3997
3998 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3999
4000 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4001 DRM_ERROR("Failed to get link status\n");
4002 return;
4003 }
4004
4005 if (!intel_encoder->base.crtc)
4006 return;
4007
4008 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4009 return;
4010
4011 /* if link training is requested we should perform it always */
4012 if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4013 (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4014 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4015 intel_encoder->base.name);
4016 intel_dp_start_link_train(intel_dp);
4017 intel_dp_stop_link_train(intel_dp);
4018 }
4019 }
4020
4021 /*
4022 * According to DP spec
4023 * 5.1.2:
4024 * 1. Read DPCD
4025 * 2. Configure link according to Receiver Capabilities
4026 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4027 * 4. Check link status on receipt of hot-plug interrupt
4028 *
4029 * intel_dp_short_pulse - handles short pulse interrupts
4030 * when full detection is not required.
4031 * Returns %true if short pulse is handled and full detection
4032 * is NOT required and %false otherwise.
4033 */
4034 static bool
4035 intel_dp_short_pulse(struct intel_dp *intel_dp)
4036 {
4037 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4038 u8 sink_irq_vector = 0;
4039 u8 old_sink_count = intel_dp->sink_count;
4040 bool ret;
4041
4042 /*
4043 * Clearing compliance test variables to allow capturing
4044 * of values for next automated test request.
4045 */
4046 intel_dp->compliance_test_active = 0;
4047 intel_dp->compliance_test_type = 0;
4048 intel_dp->compliance_test_data = 0;
4049
4050 /*
4051 * Now read the DPCD to see if it's actually running
4052 * If the current value of sink count doesn't match with
4053 * the value that was stored earlier or dpcd read failed
4054 * we need to do full detection
4055 */
4056 ret = intel_dp_get_dpcd(intel_dp);
4057
4058 if ((old_sink_count != intel_dp->sink_count) || !ret) {
4059 /* No need to proceed if we are going to do full detect */
4060 return false;
4061 }
4062
4063 /* Try to read the source of the interrupt */
4064 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4065 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4066 sink_irq_vector != 0) {
4067 /* Clear interrupt source */
4068 drm_dp_dpcd_writeb(&intel_dp->aux,
4069 DP_DEVICE_SERVICE_IRQ_VECTOR,
4070 sink_irq_vector);
4071
4072 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4073 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4074 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4075 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4076 }
4077
4078 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4079 intel_dp_check_link_status(intel_dp);
4080 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4081
4082 return true;
4083 }
4084
4085 /* XXX this is probably wrong for multiple downstream ports */
4086 static enum drm_connector_status
4087 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4088 {
4089 uint8_t *dpcd = intel_dp->dpcd;
4090 uint8_t type;
4091
4092 if (!intel_dp_get_dpcd(intel_dp))
4093 return connector_status_disconnected;
4094
4095 if (is_edp(intel_dp))
4096 return connector_status_connected;
4097
4098 /* if there's no downstream port, we're done */
4099 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4100 return connector_status_connected;
4101
4102 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4103 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4104 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4105
4106 return intel_dp->sink_count ?
4107 connector_status_connected : connector_status_disconnected;
4108 }
4109
4110 if (intel_dp_can_mst(intel_dp))
4111 return connector_status_connected;
4112
4113 /* If no HPD, poke DDC gently */
4114 if (drm_probe_ddc(&intel_dp->aux.ddc))
4115 return connector_status_connected;
4116
4117 /* Well we tried, say unknown for unreliable port types */
4118 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4119 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4120 if (type == DP_DS_PORT_TYPE_VGA ||
4121 type == DP_DS_PORT_TYPE_NON_EDID)
4122 return connector_status_unknown;
4123 } else {
4124 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4125 DP_DWN_STRM_PORT_TYPE_MASK;
4126 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4127 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4128 return connector_status_unknown;
4129 }
4130
4131 /* Anything else is out of spec, warn and ignore */
4132 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4133 return connector_status_disconnected;
4134 }
4135
4136 static enum drm_connector_status
4137 edp_detect(struct intel_dp *intel_dp)
4138 {
4139 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4140 enum drm_connector_status status;
4141
4142 status = intel_panel_detect(dev);
4143 if (status == connector_status_unknown)
4144 status = connector_status_connected;
4145
4146 return status;
4147 }
4148
4149 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4150 struct intel_digital_port *port)
4151 {
4152 u32 bit;
4153
4154 switch (port->port) {
4155 case PORT_A:
4156 return true;
4157 case PORT_B:
4158 bit = SDE_PORTB_HOTPLUG;
4159 break;
4160 case PORT_C:
4161 bit = SDE_PORTC_HOTPLUG;
4162 break;
4163 case PORT_D:
4164 bit = SDE_PORTD_HOTPLUG;
4165 break;
4166 default:
4167 MISSING_CASE(port->port);
4168 return false;
4169 }
4170
4171 return I915_READ(SDEISR) & bit;
4172 }
4173
4174 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4175 struct intel_digital_port *port)
4176 {
4177 u32 bit;
4178
4179 switch (port->port) {
4180 case PORT_A:
4181 return true;
4182 case PORT_B:
4183 bit = SDE_PORTB_HOTPLUG_CPT;
4184 break;
4185 case PORT_C:
4186 bit = SDE_PORTC_HOTPLUG_CPT;
4187 break;
4188 case PORT_D:
4189 bit = SDE_PORTD_HOTPLUG_CPT;
4190 break;
4191 case PORT_E:
4192 bit = SDE_PORTE_HOTPLUG_SPT;
4193 break;
4194 default:
4195 MISSING_CASE(port->port);
4196 return false;
4197 }
4198
4199 return I915_READ(SDEISR) & bit;
4200 }
4201
4202 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4203 struct intel_digital_port *port)
4204 {
4205 u32 bit;
4206
4207 switch (port->port) {
4208 case PORT_B:
4209 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4210 break;
4211 case PORT_C:
4212 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4213 break;
4214 case PORT_D:
4215 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4216 break;
4217 default:
4218 MISSING_CASE(port->port);
4219 return false;
4220 }
4221
4222 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4223 }
4224
4225 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4226 struct intel_digital_port *port)
4227 {
4228 u32 bit;
4229
4230 switch (port->port) {
4231 case PORT_B:
4232 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4233 break;
4234 case PORT_C:
4235 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4236 break;
4237 case PORT_D:
4238 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4239 break;
4240 default:
4241 MISSING_CASE(port->port);
4242 return false;
4243 }
4244
4245 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4246 }
4247
4248 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4249 struct intel_digital_port *intel_dig_port)
4250 {
4251 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4252 enum port port;
4253 u32 bit;
4254
4255 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4256 switch (port) {
4257 case PORT_A:
4258 bit = BXT_DE_PORT_HP_DDIA;
4259 break;
4260 case PORT_B:
4261 bit = BXT_DE_PORT_HP_DDIB;
4262 break;
4263 case PORT_C:
4264 bit = BXT_DE_PORT_HP_DDIC;
4265 break;
4266 default:
4267 MISSING_CASE(port);
4268 return false;
4269 }
4270
4271 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4272 }
4273
4274 /*
4275 * intel_digital_port_connected - is the specified port connected?
4276 * @dev_priv: i915 private structure
4277 * @port: the port to test
4278 *
4279 * Return %true if @port is connected, %false otherwise.
4280 */
4281 static bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4282 struct intel_digital_port *port)
4283 {
4284 if (HAS_PCH_IBX(dev_priv))
4285 return ibx_digital_port_connected(dev_priv, port);
4286 else if (HAS_PCH_SPLIT(dev_priv))
4287 return cpt_digital_port_connected(dev_priv, port);
4288 else if (IS_BROXTON(dev_priv))
4289 return bxt_digital_port_connected(dev_priv, port);
4290 else if (IS_GM45(dev_priv))
4291 return gm45_digital_port_connected(dev_priv, port);
4292 else
4293 return g4x_digital_port_connected(dev_priv, port);
4294 }
4295
4296 static struct edid *
4297 intel_dp_get_edid(struct intel_dp *intel_dp)
4298 {
4299 struct intel_connector *intel_connector = intel_dp->attached_connector;
4300
4301 /* use cached edid if we have one */
4302 if (intel_connector->edid) {
4303 /* invalid edid */
4304 if (IS_ERR(intel_connector->edid))
4305 return NULL;
4306
4307 return drm_edid_duplicate(intel_connector->edid);
4308 } else
4309 return drm_get_edid(&intel_connector->base,
4310 &intel_dp->aux.ddc);
4311 }
4312
4313 static void
4314 intel_dp_set_edid(struct intel_dp *intel_dp)
4315 {
4316 struct intel_connector *intel_connector = intel_dp->attached_connector;
4317 struct edid *edid;
4318
4319 intel_dp_unset_edid(intel_dp);
4320 edid = intel_dp_get_edid(intel_dp);
4321 intel_connector->detect_edid = edid;
4322
4323 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4324 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4325 else
4326 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4327 }
4328
4329 static void
4330 intel_dp_unset_edid(struct intel_dp *intel_dp)
4331 {
4332 struct intel_connector *intel_connector = intel_dp->attached_connector;
4333
4334 kfree(intel_connector->detect_edid);
4335 intel_connector->detect_edid = NULL;
4336
4337 intel_dp->has_audio = false;
4338 }
4339
4340 static enum drm_connector_status
4341 intel_dp_long_pulse(struct intel_connector *intel_connector)
4342 {
4343 struct drm_connector *connector = &intel_connector->base;
4344 struct intel_dp *intel_dp = intel_attached_dp(connector);
4345 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4346 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4347 struct drm_device *dev = connector->dev;
4348 enum drm_connector_status status;
4349 enum intel_display_power_domain power_domain;
4350 u8 sink_irq_vector = 0;
4351
4352 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4353 intel_display_power_get(to_i915(dev), power_domain);
4354
4355 /* Can't disconnect eDP, but you can close the lid... */
4356 if (is_edp(intel_dp))
4357 status = edp_detect(intel_dp);
4358 else if (intel_digital_port_connected(to_i915(dev),
4359 dp_to_dig_port(intel_dp)))
4360 status = intel_dp_detect_dpcd(intel_dp);
4361 else
4362 status = connector_status_disconnected;
4363
4364 if (status == connector_status_disconnected) {
4365 intel_dp->compliance_test_active = 0;
4366 intel_dp->compliance_test_type = 0;
4367 intel_dp->compliance_test_data = 0;
4368
4369 if (intel_dp->is_mst) {
4370 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4371 intel_dp->is_mst,
4372 intel_dp->mst_mgr.mst_state);
4373 intel_dp->is_mst = false;
4374 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4375 intel_dp->is_mst);
4376 }
4377
4378 goto out;
4379 }
4380
4381 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4382 intel_encoder->type = INTEL_OUTPUT_DP;
4383
4384 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4385 yesno(intel_dp_source_supports_hbr2(intel_dp)),
4386 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4387
4388 intel_dp_print_rates(intel_dp);
4389
4390 intel_dp_probe_oui(intel_dp);
4391
4392 intel_dp_print_hw_revision(intel_dp);
4393 intel_dp_print_sw_revision(intel_dp);
4394
4395 intel_dp_configure_mst(intel_dp);
4396
4397 if (intel_dp->is_mst) {
4398 /*
4399 * If we are in MST mode then this connector
4400 * won't appear connected or have anything
4401 * with EDID on it
4402 */
4403 status = connector_status_disconnected;
4404 goto out;
4405 } else if (connector->status == connector_status_connected) {
4406 /*
4407 * If display was connected already and is still connected
4408 * check links status, there has been known issues of
4409 * link loss triggerring long pulse!!!!
4410 */
4411 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4412 intel_dp_check_link_status(intel_dp);
4413 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4414 goto out;
4415 }
4416
4417 /*
4418 * Clearing NACK and defer counts to get their exact values
4419 * while reading EDID which are required by Compliance tests
4420 * 4.2.2.4 and 4.2.2.5
4421 */
4422 intel_dp->aux.i2c_nack_count = 0;
4423 intel_dp->aux.i2c_defer_count = 0;
4424
4425 intel_dp_set_edid(intel_dp);
4426 if (is_edp(intel_dp) || intel_connector->detect_edid)
4427 status = connector_status_connected;
4428 intel_dp->detect_done = true;
4429
4430 /* Try to read the source of the interrupt */
4431 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4432 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4433 sink_irq_vector != 0) {
4434 /* Clear interrupt source */
4435 drm_dp_dpcd_writeb(&intel_dp->aux,
4436 DP_DEVICE_SERVICE_IRQ_VECTOR,
4437 sink_irq_vector);
4438
4439 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4440 intel_dp_handle_test_request(intel_dp);
4441 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4442 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4443 }
4444
4445 out:
4446 if (status != connector_status_connected && !intel_dp->is_mst)
4447 intel_dp_unset_edid(intel_dp);
4448
4449 intel_display_power_put(to_i915(dev), power_domain);
4450 return status;
4451 }
4452
4453 static enum drm_connector_status
4454 intel_dp_detect(struct drm_connector *connector, bool force)
4455 {
4456 struct intel_dp *intel_dp = intel_attached_dp(connector);
4457 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4458 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4459 enum drm_connector_status status = connector->status;
4460
4461 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4462 connector->base.id, connector->name);
4463
4464 if (intel_dp->is_mst) {
4465 /* MST devices are disconnected from a monitor POV */
4466 intel_dp_unset_edid(intel_dp);
4467 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4468 intel_encoder->type = INTEL_OUTPUT_DP;
4469 return connector_status_disconnected;
4470 }
4471
4472 /* If full detect is not performed yet, do a full detect */
4473 if (!intel_dp->detect_done)
4474 status = intel_dp_long_pulse(intel_dp->attached_connector);
4475
4476 intel_dp->detect_done = false;
4477
4478 return status;
4479 }
4480
4481 static void
4482 intel_dp_force(struct drm_connector *connector)
4483 {
4484 struct intel_dp *intel_dp = intel_attached_dp(connector);
4485 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4486 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4487 enum intel_display_power_domain power_domain;
4488
4489 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4490 connector->base.id, connector->name);
4491 intel_dp_unset_edid(intel_dp);
4492
4493 if (connector->status != connector_status_connected)
4494 return;
4495
4496 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4497 intel_display_power_get(dev_priv, power_domain);
4498
4499 intel_dp_set_edid(intel_dp);
4500
4501 intel_display_power_put(dev_priv, power_domain);
4502
4503 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4504 intel_encoder->type = INTEL_OUTPUT_DP;
4505 }
4506
4507 static int intel_dp_get_modes(struct drm_connector *connector)
4508 {
4509 struct intel_connector *intel_connector = to_intel_connector(connector);
4510 struct edid *edid;
4511
4512 edid = intel_connector->detect_edid;
4513 if (edid) {
4514 int ret = intel_connector_update_modes(connector, edid);
4515 if (ret)
4516 return ret;
4517 }
4518
4519 /* if eDP has no EDID, fall back to fixed mode */
4520 if (is_edp(intel_attached_dp(connector)) &&
4521 intel_connector->panel.fixed_mode) {
4522 struct drm_display_mode *mode;
4523
4524 mode = drm_mode_duplicate(connector->dev,
4525 intel_connector->panel.fixed_mode);
4526 if (mode) {
4527 drm_mode_probed_add(connector, mode);
4528 return 1;
4529 }
4530 }
4531
4532 return 0;
4533 }
4534
4535 static bool
4536 intel_dp_detect_audio(struct drm_connector *connector)
4537 {
4538 bool has_audio = false;
4539 struct edid *edid;
4540
4541 edid = to_intel_connector(connector)->detect_edid;
4542 if (edid)
4543 has_audio = drm_detect_monitor_audio(edid);
4544
4545 return has_audio;
4546 }
4547
4548 static int
4549 intel_dp_set_property(struct drm_connector *connector,
4550 struct drm_property *property,
4551 uint64_t val)
4552 {
4553 struct drm_i915_private *dev_priv = to_i915(connector->dev);
4554 struct intel_connector *intel_connector = to_intel_connector(connector);
4555 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4556 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4557 int ret;
4558
4559 ret = drm_object_property_set_value(&connector->base, property, val);
4560 if (ret)
4561 return ret;
4562
4563 if (property == dev_priv->force_audio_property) {
4564 int i = val;
4565 bool has_audio;
4566
4567 if (i == intel_dp->force_audio)
4568 return 0;
4569
4570 intel_dp->force_audio = i;
4571
4572 if (i == HDMI_AUDIO_AUTO)
4573 has_audio = intel_dp_detect_audio(connector);
4574 else
4575 has_audio = (i == HDMI_AUDIO_ON);
4576
4577 if (has_audio == intel_dp->has_audio)
4578 return 0;
4579
4580 intel_dp->has_audio = has_audio;
4581 goto done;
4582 }
4583
4584 if (property == dev_priv->broadcast_rgb_property) {
4585 bool old_auto = intel_dp->color_range_auto;
4586 bool old_range = intel_dp->limited_color_range;
4587
4588 switch (val) {
4589 case INTEL_BROADCAST_RGB_AUTO:
4590 intel_dp->color_range_auto = true;
4591 break;
4592 case INTEL_BROADCAST_RGB_FULL:
4593 intel_dp->color_range_auto = false;
4594 intel_dp->limited_color_range = false;
4595 break;
4596 case INTEL_BROADCAST_RGB_LIMITED:
4597 intel_dp->color_range_auto = false;
4598 intel_dp->limited_color_range = true;
4599 break;
4600 default:
4601 return -EINVAL;
4602 }
4603
4604 if (old_auto == intel_dp->color_range_auto &&
4605 old_range == intel_dp->limited_color_range)
4606 return 0;
4607
4608 goto done;
4609 }
4610
4611 if (is_edp(intel_dp) &&
4612 property == connector->dev->mode_config.scaling_mode_property) {
4613 if (val == DRM_MODE_SCALE_NONE) {
4614 DRM_DEBUG_KMS("no scaling not supported\n");
4615 return -EINVAL;
4616 }
4617 if (HAS_GMCH_DISPLAY(dev_priv) &&
4618 val == DRM_MODE_SCALE_CENTER) {
4619 DRM_DEBUG_KMS("centering not supported\n");
4620 return -EINVAL;
4621 }
4622
4623 if (intel_connector->panel.fitting_mode == val) {
4624 /* the eDP scaling property is not changed */
4625 return 0;
4626 }
4627 intel_connector->panel.fitting_mode = val;
4628
4629 goto done;
4630 }
4631
4632 return -EINVAL;
4633
4634 done:
4635 if (intel_encoder->base.crtc)
4636 intel_crtc_restore_mode(intel_encoder->base.crtc);
4637
4638 return 0;
4639 }
4640
4641 static int
4642 intel_dp_connector_register(struct drm_connector *connector)
4643 {
4644 struct intel_dp *intel_dp = intel_attached_dp(connector);
4645 int ret;
4646
4647 ret = intel_connector_register(connector);
4648 if (ret)
4649 return ret;
4650
4651 i915_debugfs_connector_add(connector);
4652
4653 DRM_DEBUG_KMS("registering %s bus for %s\n",
4654 intel_dp->aux.name, connector->kdev->kobj.name);
4655
4656 intel_dp->aux.dev = connector->kdev;
4657 return drm_dp_aux_register(&intel_dp->aux);
4658 }
4659
4660 static void
4661 intel_dp_connector_unregister(struct drm_connector *connector)
4662 {
4663 drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4664 intel_connector_unregister(connector);
4665 }
4666
4667 static void
4668 intel_dp_connector_destroy(struct drm_connector *connector)
4669 {
4670 struct intel_connector *intel_connector = to_intel_connector(connector);
4671
4672 kfree(intel_connector->detect_edid);
4673
4674 if (!IS_ERR_OR_NULL(intel_connector->edid))
4675 kfree(intel_connector->edid);
4676
4677 /* Can't call is_edp() since the encoder may have been destroyed
4678 * already. */
4679 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4680 intel_panel_fini(&intel_connector->panel);
4681
4682 drm_connector_cleanup(connector);
4683 kfree(connector);
4684 }
4685
4686 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4687 {
4688 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4689 struct intel_dp *intel_dp = &intel_dig_port->dp;
4690
4691 intel_dp_mst_encoder_cleanup(intel_dig_port);
4692 if (is_edp(intel_dp)) {
4693 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4694 /*
4695 * vdd might still be enabled do to the delayed vdd off.
4696 * Make sure vdd is actually turned off here.
4697 */
4698 pps_lock(intel_dp);
4699 edp_panel_vdd_off_sync(intel_dp);
4700 pps_unlock(intel_dp);
4701
4702 if (intel_dp->edp_notifier.notifier_call) {
4703 unregister_reboot_notifier(&intel_dp->edp_notifier);
4704 intel_dp->edp_notifier.notifier_call = NULL;
4705 }
4706 }
4707
4708 intel_dp_aux_fini(intel_dp);
4709
4710 drm_encoder_cleanup(encoder);
4711 kfree(intel_dig_port);
4712 }
4713
4714 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4715 {
4716 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4717
4718 if (!is_edp(intel_dp))
4719 return;
4720
4721 /*
4722 * vdd might still be enabled do to the delayed vdd off.
4723 * Make sure vdd is actually turned off here.
4724 */
4725 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4726 pps_lock(intel_dp);
4727 edp_panel_vdd_off_sync(intel_dp);
4728 pps_unlock(intel_dp);
4729 }
4730
4731 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4732 {
4733 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4734 struct drm_device *dev = intel_dig_port->base.base.dev;
4735 struct drm_i915_private *dev_priv = to_i915(dev);
4736 enum intel_display_power_domain power_domain;
4737
4738 lockdep_assert_held(&dev_priv->pps_mutex);
4739
4740 if (!edp_have_panel_vdd(intel_dp))
4741 return;
4742
4743 /*
4744 * The VDD bit needs a power domain reference, so if the bit is
4745 * already enabled when we boot or resume, grab this reference and
4746 * schedule a vdd off, so we don't hold on to the reference
4747 * indefinitely.
4748 */
4749 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4750 power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4751 intel_display_power_get(dev_priv, power_domain);
4752
4753 edp_panel_vdd_schedule_off(intel_dp);
4754 }
4755
4756 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4757 {
4758 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4759 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4760
4761 if (!HAS_DDI(dev_priv))
4762 intel_dp->DP = I915_READ(intel_dp->output_reg);
4763
4764 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4765 return;
4766
4767 pps_lock(intel_dp);
4768
4769 /* Reinit the power sequencer, in case BIOS did something with it. */
4770 intel_dp_pps_init(encoder->dev, intel_dp);
4771 intel_edp_panel_vdd_sanitize(intel_dp);
4772
4773 pps_unlock(intel_dp);
4774 }
4775
4776 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4777 .dpms = drm_atomic_helper_connector_dpms,
4778 .detect = intel_dp_detect,
4779 .force = intel_dp_force,
4780 .fill_modes = drm_helper_probe_single_connector_modes,
4781 .set_property = intel_dp_set_property,
4782 .atomic_get_property = intel_connector_atomic_get_property,
4783 .late_register = intel_dp_connector_register,
4784 .early_unregister = intel_dp_connector_unregister,
4785 .destroy = intel_dp_connector_destroy,
4786 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4787 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4788 };
4789
4790 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4791 .get_modes = intel_dp_get_modes,
4792 .mode_valid = intel_dp_mode_valid,
4793 };
4794
4795 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4796 .reset = intel_dp_encoder_reset,
4797 .destroy = intel_dp_encoder_destroy,
4798 };
4799
4800 enum irqreturn
4801 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4802 {
4803 struct intel_dp *intel_dp = &intel_dig_port->dp;
4804 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4805 struct drm_device *dev = intel_dig_port->base.base.dev;
4806 struct drm_i915_private *dev_priv = to_i915(dev);
4807 enum intel_display_power_domain power_domain;
4808 enum irqreturn ret = IRQ_NONE;
4809
4810 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4811 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4812 intel_dig_port->base.type = INTEL_OUTPUT_DP;
4813
4814 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4815 /*
4816 * vdd off can generate a long pulse on eDP which
4817 * would require vdd on to handle it, and thus we
4818 * would end up in an endless cycle of
4819 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4820 */
4821 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4822 port_name(intel_dig_port->port));
4823 return IRQ_HANDLED;
4824 }
4825
4826 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4827 port_name(intel_dig_port->port),
4828 long_hpd ? "long" : "short");
4829
4830 if (long_hpd) {
4831 intel_dp->detect_done = false;
4832 return IRQ_NONE;
4833 }
4834
4835 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4836 intel_display_power_get(dev_priv, power_domain);
4837
4838 if (intel_dp->is_mst) {
4839 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4840 /*
4841 * If we were in MST mode, and device is not
4842 * there, get out of MST mode
4843 */
4844 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4845 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4846 intel_dp->is_mst = false;
4847 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4848 intel_dp->is_mst);
4849 intel_dp->detect_done = false;
4850 goto put_power;
4851 }
4852 }
4853
4854 if (!intel_dp->is_mst) {
4855 if (!intel_dp_short_pulse(intel_dp)) {
4856 intel_dp->detect_done = false;
4857 goto put_power;
4858 }
4859 }
4860
4861 ret = IRQ_HANDLED;
4862
4863 put_power:
4864 intel_display_power_put(dev_priv, power_domain);
4865
4866 return ret;
4867 }
4868
4869 /* check the VBT to see whether the eDP is on another port */
4870 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4871 {
4872 struct drm_i915_private *dev_priv = to_i915(dev);
4873
4874 /*
4875 * eDP not supported on g4x. so bail out early just
4876 * for a bit extra safety in case the VBT is bonkers.
4877 */
4878 if (INTEL_INFO(dev)->gen < 5)
4879 return false;
4880
4881 if (port == PORT_A)
4882 return true;
4883
4884 return intel_bios_is_port_edp(dev_priv, port);
4885 }
4886
4887 void
4888 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4889 {
4890 struct intel_connector *intel_connector = to_intel_connector(connector);
4891
4892 intel_attach_force_audio_property(connector);
4893 intel_attach_broadcast_rgb_property(connector);
4894 intel_dp->color_range_auto = true;
4895
4896 if (is_edp(intel_dp)) {
4897 drm_mode_create_scaling_mode_property(connector->dev);
4898 drm_object_attach_property(
4899 &connector->base,
4900 connector->dev->mode_config.scaling_mode_property,
4901 DRM_MODE_SCALE_ASPECT);
4902 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4903 }
4904 }
4905
4906 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4907 {
4908 intel_dp->panel_power_off_time = ktime_get_boottime();
4909 intel_dp->last_power_on = jiffies;
4910 intel_dp->last_backlight_off = jiffies;
4911 }
4912
4913 static void
4914 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
4915 struct intel_dp *intel_dp, struct edp_power_seq *seq)
4916 {
4917 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4918 struct pps_registers regs;
4919
4920 intel_pps_get_registers(dev_priv, intel_dp, &regs);
4921
4922 /* Workaround: Need to write PP_CONTROL with the unlock key as
4923 * the very first thing. */
4924 pp_ctl = ironlake_get_pp_control(intel_dp);
4925
4926 pp_on = I915_READ(regs.pp_on);
4927 pp_off = I915_READ(regs.pp_off);
4928 if (!IS_BROXTON(dev_priv)) {
4929 I915_WRITE(regs.pp_ctrl, pp_ctl);
4930 pp_div = I915_READ(regs.pp_div);
4931 }
4932
4933 /* Pull timing values out of registers */
4934 seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4935 PANEL_POWER_UP_DELAY_SHIFT;
4936
4937 seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4938 PANEL_LIGHT_ON_DELAY_SHIFT;
4939
4940 seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4941 PANEL_LIGHT_OFF_DELAY_SHIFT;
4942
4943 seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4944 PANEL_POWER_DOWN_DELAY_SHIFT;
4945
4946 if (IS_BROXTON(dev_priv)) {
4947 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4948 BXT_POWER_CYCLE_DELAY_SHIFT;
4949 if (tmp > 0)
4950 seq->t11_t12 = (tmp - 1) * 1000;
4951 else
4952 seq->t11_t12 = 0;
4953 } else {
4954 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4955 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4956 }
4957 }
4958
4959 static void
4960 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
4961 {
4962 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4963 state_name,
4964 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
4965 }
4966
4967 static void
4968 intel_pps_verify_state(struct drm_i915_private *dev_priv,
4969 struct intel_dp *intel_dp)
4970 {
4971 struct edp_power_seq hw;
4972 struct edp_power_seq *sw = &intel_dp->pps_delays;
4973
4974 intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
4975
4976 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
4977 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
4978 DRM_ERROR("PPS state mismatch\n");
4979 intel_pps_dump_state("sw", sw);
4980 intel_pps_dump_state("hw", &hw);
4981 }
4982 }
4983
4984 static void
4985 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4986 struct intel_dp *intel_dp)
4987 {
4988 struct drm_i915_private *dev_priv = to_i915(dev);
4989 struct edp_power_seq cur, vbt, spec,
4990 *final = &intel_dp->pps_delays;
4991
4992 lockdep_assert_held(&dev_priv->pps_mutex);
4993
4994 /* already initialized? */
4995 if (final->t11_t12 != 0)
4996 return;
4997
4998 intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
4999
5000 intel_pps_dump_state("cur", &cur);
5001
5002 vbt = dev_priv->vbt.edp.pps;
5003
5004 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5005 * our hw here, which are all in 100usec. */
5006 spec.t1_t3 = 210 * 10;
5007 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5008 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5009 spec.t10 = 500 * 10;
5010 /* This one is special and actually in units of 100ms, but zero
5011 * based in the hw (so we need to add 100 ms). But the sw vbt
5012 * table multiplies it with 1000 to make it in units of 100usec,
5013 * too. */
5014 spec.t11_t12 = (510 + 100) * 10;
5015
5016 intel_pps_dump_state("vbt", &vbt);
5017
5018 /* Use the max of the register settings and vbt. If both are
5019 * unset, fall back to the spec limits. */
5020 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5021 spec.field : \
5022 max(cur.field, vbt.field))
5023 assign_final(t1_t3);
5024 assign_final(t8);
5025 assign_final(t9);
5026 assign_final(t10);
5027 assign_final(t11_t12);
5028 #undef assign_final
5029
5030 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5031 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5032 intel_dp->backlight_on_delay = get_delay(t8);
5033 intel_dp->backlight_off_delay = get_delay(t9);
5034 intel_dp->panel_power_down_delay = get_delay(t10);
5035 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5036 #undef get_delay
5037
5038 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5039 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5040 intel_dp->panel_power_cycle_delay);
5041
5042 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5043 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5044
5045 /*
5046 * We override the HW backlight delays to 1 because we do manual waits
5047 * on them. For T8, even BSpec recommends doing it. For T9, if we
5048 * don't do this, we'll end up waiting for the backlight off delay
5049 * twice: once when we do the manual sleep, and once when we disable
5050 * the panel and wait for the PP_STATUS bit to become zero.
5051 */
5052 final->t8 = 1;
5053 final->t9 = 1;
5054 }
5055
5056 static void
5057 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5058 struct intel_dp *intel_dp)
5059 {
5060 struct drm_i915_private *dev_priv = to_i915(dev);
5061 u32 pp_on, pp_off, pp_div, port_sel = 0;
5062 int div = dev_priv->rawclk_freq / 1000;
5063 struct pps_registers regs;
5064 enum port port = dp_to_dig_port(intel_dp)->port;
5065 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5066
5067 lockdep_assert_held(&dev_priv->pps_mutex);
5068
5069 intel_pps_get_registers(dev_priv, intel_dp, &regs);
5070
5071 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5072 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5073 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5074 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5075 /* Compute the divisor for the pp clock, simply match the Bspec
5076 * formula. */
5077 if (IS_BROXTON(dev)) {
5078 pp_div = I915_READ(regs.pp_ctrl);
5079 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5080 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5081 << BXT_POWER_CYCLE_DELAY_SHIFT);
5082 } else {
5083 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5084 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5085 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5086 }
5087
5088 /* Haswell doesn't have any port selection bits for the panel
5089 * power sequencer any more. */
5090 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5091 port_sel = PANEL_PORT_SELECT_VLV(port);
5092 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5093 if (port == PORT_A)
5094 port_sel = PANEL_PORT_SELECT_DPA;
5095 else
5096 port_sel = PANEL_PORT_SELECT_DPD;
5097 }
5098
5099 pp_on |= port_sel;
5100
5101 I915_WRITE(regs.pp_on, pp_on);
5102 I915_WRITE(regs.pp_off, pp_off);
5103 if (IS_BROXTON(dev))
5104 I915_WRITE(regs.pp_ctrl, pp_div);
5105 else
5106 I915_WRITE(regs.pp_div, pp_div);
5107
5108 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5109 I915_READ(regs.pp_on),
5110 I915_READ(regs.pp_off),
5111 IS_BROXTON(dev) ?
5112 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5113 I915_READ(regs.pp_div));
5114 }
5115
5116 static void intel_dp_pps_init(struct drm_device *dev,
5117 struct intel_dp *intel_dp)
5118 {
5119 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5120 vlv_initial_power_sequencer_setup(intel_dp);
5121 } else {
5122 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5123 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5124 }
5125 }
5126
5127 /**
5128 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5129 * @dev_priv: i915 device
5130 * @crtc_state: a pointer to the active intel_crtc_state
5131 * @refresh_rate: RR to be programmed
5132 *
5133 * This function gets called when refresh rate (RR) has to be changed from
5134 * one frequency to another. Switches can be between high and low RR
5135 * supported by the panel or to any other RR based on media playback (in
5136 * this case, RR value needs to be passed from user space).
5137 *
5138 * The caller of this function needs to take a lock on dev_priv->drrs.
5139 */
5140 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5141 struct intel_crtc_state *crtc_state,
5142 int refresh_rate)
5143 {
5144 struct intel_encoder *encoder;
5145 struct intel_digital_port *dig_port = NULL;
5146 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5147 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5148 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5149
5150 if (refresh_rate <= 0) {
5151 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5152 return;
5153 }
5154
5155 if (intel_dp == NULL) {
5156 DRM_DEBUG_KMS("DRRS not supported.\n");
5157 return;
5158 }
5159
5160 /*
5161 * FIXME: This needs proper synchronization with psr state for some
5162 * platforms that cannot have PSR and DRRS enabled at the same time.
5163 */
5164
5165 dig_port = dp_to_dig_port(intel_dp);
5166 encoder = &dig_port->base;
5167 intel_crtc = to_intel_crtc(encoder->base.crtc);
5168
5169 if (!intel_crtc) {
5170 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5171 return;
5172 }
5173
5174 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5175 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5176 return;
5177 }
5178
5179 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5180 refresh_rate)
5181 index = DRRS_LOW_RR;
5182
5183 if (index == dev_priv->drrs.refresh_rate_type) {
5184 DRM_DEBUG_KMS(
5185 "DRRS requested for previously set RR...ignoring\n");
5186 return;
5187 }
5188
5189 if (!crtc_state->base.active) {
5190 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5191 return;
5192 }
5193
5194 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5195 switch (index) {
5196 case DRRS_HIGH_RR:
5197 intel_dp_set_m_n(intel_crtc, M1_N1);
5198 break;
5199 case DRRS_LOW_RR:
5200 intel_dp_set_m_n(intel_crtc, M2_N2);
5201 break;
5202 case DRRS_MAX_RR:
5203 default:
5204 DRM_ERROR("Unsupported refreshrate type\n");
5205 }
5206 } else if (INTEL_GEN(dev_priv) > 6) {
5207 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5208 u32 val;
5209
5210 val = I915_READ(reg);
5211 if (index > DRRS_HIGH_RR) {
5212 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5213 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5214 else
5215 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5216 } else {
5217 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5218 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5219 else
5220 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5221 }
5222 I915_WRITE(reg, val);
5223 }
5224
5225 dev_priv->drrs.refresh_rate_type = index;
5226
5227 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5228 }
5229
5230 /**
5231 * intel_edp_drrs_enable - init drrs struct if supported
5232 * @intel_dp: DP struct
5233 * @crtc_state: A pointer to the active crtc state.
5234 *
5235 * Initializes frontbuffer_bits and drrs.dp
5236 */
5237 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5238 struct intel_crtc_state *crtc_state)
5239 {
5240 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5241 struct drm_i915_private *dev_priv = to_i915(dev);
5242
5243 if (!crtc_state->has_drrs) {
5244 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5245 return;
5246 }
5247
5248 mutex_lock(&dev_priv->drrs.mutex);
5249 if (WARN_ON(dev_priv->drrs.dp)) {
5250 DRM_ERROR("DRRS already enabled\n");
5251 goto unlock;
5252 }
5253
5254 dev_priv->drrs.busy_frontbuffer_bits = 0;
5255
5256 dev_priv->drrs.dp = intel_dp;
5257
5258 unlock:
5259 mutex_unlock(&dev_priv->drrs.mutex);
5260 }
5261
5262 /**
5263 * intel_edp_drrs_disable - Disable DRRS
5264 * @intel_dp: DP struct
5265 * @old_crtc_state: Pointer to old crtc_state.
5266 *
5267 */
5268 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5269 struct intel_crtc_state *old_crtc_state)
5270 {
5271 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5272 struct drm_i915_private *dev_priv = to_i915(dev);
5273
5274 if (!old_crtc_state->has_drrs)
5275 return;
5276
5277 mutex_lock(&dev_priv->drrs.mutex);
5278 if (!dev_priv->drrs.dp) {
5279 mutex_unlock(&dev_priv->drrs.mutex);
5280 return;
5281 }
5282
5283 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5284 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5285 intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5286
5287 dev_priv->drrs.dp = NULL;
5288 mutex_unlock(&dev_priv->drrs.mutex);
5289
5290 cancel_delayed_work_sync(&dev_priv->drrs.work);
5291 }
5292
5293 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5294 {
5295 struct drm_i915_private *dev_priv =
5296 container_of(work, typeof(*dev_priv), drrs.work.work);
5297 struct intel_dp *intel_dp;
5298
5299 mutex_lock(&dev_priv->drrs.mutex);
5300
5301 intel_dp = dev_priv->drrs.dp;
5302
5303 if (!intel_dp)
5304 goto unlock;
5305
5306 /*
5307 * The delayed work can race with an invalidate hence we need to
5308 * recheck.
5309 */
5310
5311 if (dev_priv->drrs.busy_frontbuffer_bits)
5312 goto unlock;
5313
5314 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5315 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5316
5317 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5318 intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5319 }
5320
5321 unlock:
5322 mutex_unlock(&dev_priv->drrs.mutex);
5323 }
5324
5325 /**
5326 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5327 * @dev_priv: i915 device
5328 * @frontbuffer_bits: frontbuffer plane tracking bits
5329 *
5330 * This function gets called everytime rendering on the given planes start.
5331 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5332 *
5333 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5334 */
5335 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5336 unsigned int frontbuffer_bits)
5337 {
5338 struct drm_crtc *crtc;
5339 enum pipe pipe;
5340
5341 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5342 return;
5343
5344 cancel_delayed_work(&dev_priv->drrs.work);
5345
5346 mutex_lock(&dev_priv->drrs.mutex);
5347 if (!dev_priv->drrs.dp) {
5348 mutex_unlock(&dev_priv->drrs.mutex);
5349 return;
5350 }
5351
5352 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5353 pipe = to_intel_crtc(crtc)->pipe;
5354
5355 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5356 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5357
5358 /* invalidate means busy screen hence upclock */
5359 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5360 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5361 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5362
5363 mutex_unlock(&dev_priv->drrs.mutex);
5364 }
5365
5366 /**
5367 * intel_edp_drrs_flush - Restart Idleness DRRS
5368 * @dev_priv: i915 device
5369 * @frontbuffer_bits: frontbuffer plane tracking bits
5370 *
5371 * This function gets called every time rendering on the given planes has
5372 * completed or flip on a crtc is completed. So DRRS should be upclocked
5373 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5374 * if no other planes are dirty.
5375 *
5376 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5377 */
5378 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5379 unsigned int frontbuffer_bits)
5380 {
5381 struct drm_crtc *crtc;
5382 enum pipe pipe;
5383
5384 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5385 return;
5386
5387 cancel_delayed_work(&dev_priv->drrs.work);
5388
5389 mutex_lock(&dev_priv->drrs.mutex);
5390 if (!dev_priv->drrs.dp) {
5391 mutex_unlock(&dev_priv->drrs.mutex);
5392 return;
5393 }
5394
5395 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5396 pipe = to_intel_crtc(crtc)->pipe;
5397
5398 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5399 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5400
5401 /* flush means busy screen hence upclock */
5402 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5403 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5404 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5405
5406 /*
5407 * flush also means no more activity hence schedule downclock, if all
5408 * other fbs are quiescent too
5409 */
5410 if (!dev_priv->drrs.busy_frontbuffer_bits)
5411 schedule_delayed_work(&dev_priv->drrs.work,
5412 msecs_to_jiffies(1000));
5413 mutex_unlock(&dev_priv->drrs.mutex);
5414 }
5415
5416 /**
5417 * DOC: Display Refresh Rate Switching (DRRS)
5418 *
5419 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5420 * which enables swtching between low and high refresh rates,
5421 * dynamically, based on the usage scenario. This feature is applicable
5422 * for internal panels.
5423 *
5424 * Indication that the panel supports DRRS is given by the panel EDID, which
5425 * would list multiple refresh rates for one resolution.
5426 *
5427 * DRRS is of 2 types - static and seamless.
5428 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5429 * (may appear as a blink on screen) and is used in dock-undock scenario.
5430 * Seamless DRRS involves changing RR without any visual effect to the user
5431 * and can be used during normal system usage. This is done by programming
5432 * certain registers.
5433 *
5434 * Support for static/seamless DRRS may be indicated in the VBT based on
5435 * inputs from the panel spec.
5436 *
5437 * DRRS saves power by switching to low RR based on usage scenarios.
5438 *
5439 * The implementation is based on frontbuffer tracking implementation. When
5440 * there is a disturbance on the screen triggered by user activity or a periodic
5441 * system activity, DRRS is disabled (RR is changed to high RR). When there is
5442 * no movement on screen, after a timeout of 1 second, a switch to low RR is
5443 * made.
5444 *
5445 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5446 * and intel_edp_drrs_flush() are called.
5447 *
5448 * DRRS can be further extended to support other internal panels and also
5449 * the scenario of video playback wherein RR is set based on the rate
5450 * requested by userspace.
5451 */
5452
5453 /**
5454 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5455 * @intel_connector: eDP connector
5456 * @fixed_mode: preferred mode of panel
5457 *
5458 * This function is called only once at driver load to initialize basic
5459 * DRRS stuff.
5460 *
5461 * Returns:
5462 * Downclock mode if panel supports it, else return NULL.
5463 * DRRS support is determined by the presence of downclock mode (apart
5464 * from VBT setting).
5465 */
5466 static struct drm_display_mode *
5467 intel_dp_drrs_init(struct intel_connector *intel_connector,
5468 struct drm_display_mode *fixed_mode)
5469 {
5470 struct drm_connector *connector = &intel_connector->base;
5471 struct drm_device *dev = connector->dev;
5472 struct drm_i915_private *dev_priv = to_i915(dev);
5473 struct drm_display_mode *downclock_mode = NULL;
5474
5475 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5476 mutex_init(&dev_priv->drrs.mutex);
5477
5478 if (INTEL_INFO(dev)->gen <= 6) {
5479 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5480 return NULL;
5481 }
5482
5483 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5484 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5485 return NULL;
5486 }
5487
5488 downclock_mode = intel_find_panel_downclock
5489 (dev, fixed_mode, connector);
5490
5491 if (!downclock_mode) {
5492 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5493 return NULL;
5494 }
5495
5496 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5497
5498 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5499 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5500 return downclock_mode;
5501 }
5502
5503 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5504 struct intel_connector *intel_connector)
5505 {
5506 struct drm_connector *connector = &intel_connector->base;
5507 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5508 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5509 struct drm_device *dev = intel_encoder->base.dev;
5510 struct drm_i915_private *dev_priv = to_i915(dev);
5511 struct drm_display_mode *fixed_mode = NULL;
5512 struct drm_display_mode *downclock_mode = NULL;
5513 bool has_dpcd;
5514 struct drm_display_mode *scan;
5515 struct edid *edid;
5516 enum pipe pipe = INVALID_PIPE;
5517
5518 if (!is_edp(intel_dp))
5519 return true;
5520
5521 /*
5522 * On IBX/CPT we may get here with LVDS already registered. Since the
5523 * driver uses the only internal power sequencer available for both
5524 * eDP and LVDS bail out early in this case to prevent interfering
5525 * with an already powered-on LVDS power sequencer.
5526 */
5527 if (intel_get_lvds_encoder(dev)) {
5528 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5529 DRM_INFO("LVDS was detected, not registering eDP\n");
5530
5531 return false;
5532 }
5533
5534 pps_lock(intel_dp);
5535
5536 intel_dp_init_panel_power_timestamps(intel_dp);
5537 intel_dp_pps_init(dev, intel_dp);
5538 intel_edp_panel_vdd_sanitize(intel_dp);
5539
5540 pps_unlock(intel_dp);
5541
5542 /* Cache DPCD and EDID for edp. */
5543 has_dpcd = intel_edp_init_dpcd(intel_dp);
5544
5545 if (!has_dpcd) {
5546 /* if this fails, presume the device is a ghost */
5547 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5548 goto out_vdd_off;
5549 }
5550
5551 mutex_lock(&dev->mode_config.mutex);
5552 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5553 if (edid) {
5554 if (drm_add_edid_modes(connector, edid)) {
5555 drm_mode_connector_update_edid_property(connector,
5556 edid);
5557 drm_edid_to_eld(connector, edid);
5558 } else {
5559 kfree(edid);
5560 edid = ERR_PTR(-EINVAL);
5561 }
5562 } else {
5563 edid = ERR_PTR(-ENOENT);
5564 }
5565 intel_connector->edid = edid;
5566
5567 /* prefer fixed mode from EDID if available */
5568 list_for_each_entry(scan, &connector->probed_modes, head) {
5569 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5570 fixed_mode = drm_mode_duplicate(dev, scan);
5571 downclock_mode = intel_dp_drrs_init(
5572 intel_connector, fixed_mode);
5573 break;
5574 }
5575 }
5576
5577 /* fallback to VBT if available for eDP */
5578 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5579 fixed_mode = drm_mode_duplicate(dev,
5580 dev_priv->vbt.lfp_lvds_vbt_mode);
5581 if (fixed_mode) {
5582 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5583 connector->display_info.width_mm = fixed_mode->width_mm;
5584 connector->display_info.height_mm = fixed_mode->height_mm;
5585 }
5586 }
5587 mutex_unlock(&dev->mode_config.mutex);
5588
5589 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5590 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5591 register_reboot_notifier(&intel_dp->edp_notifier);
5592
5593 /*
5594 * Figure out the current pipe for the initial backlight setup.
5595 * If the current pipe isn't valid, try the PPS pipe, and if that
5596 * fails just assume pipe A.
5597 */
5598 if (IS_CHERRYVIEW(dev))
5599 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5600 else
5601 pipe = PORT_TO_PIPE(intel_dp->DP);
5602
5603 if (pipe != PIPE_A && pipe != PIPE_B)
5604 pipe = intel_dp->pps_pipe;
5605
5606 if (pipe != PIPE_A && pipe != PIPE_B)
5607 pipe = PIPE_A;
5608
5609 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5610 pipe_name(pipe));
5611 }
5612
5613 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5614 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5615 intel_panel_setup_backlight(connector, pipe);
5616
5617 return true;
5618
5619 out_vdd_off:
5620 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5621 /*
5622 * vdd might still be enabled do to the delayed vdd off.
5623 * Make sure vdd is actually turned off here.
5624 */
5625 pps_lock(intel_dp);
5626 edp_panel_vdd_off_sync(intel_dp);
5627 pps_unlock(intel_dp);
5628
5629 return false;
5630 }
5631
5632 bool
5633 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5634 struct intel_connector *intel_connector)
5635 {
5636 struct drm_connector *connector = &intel_connector->base;
5637 struct intel_dp *intel_dp = &intel_dig_port->dp;
5638 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5639 struct drm_device *dev = intel_encoder->base.dev;
5640 struct drm_i915_private *dev_priv = to_i915(dev);
5641 enum port port = intel_dig_port->port;
5642 int type;
5643
5644 if (WARN(intel_dig_port->max_lanes < 1,
5645 "Not enough lanes (%d) for DP on port %c\n",
5646 intel_dig_port->max_lanes, port_name(port)))
5647 return false;
5648
5649 intel_dp->pps_pipe = INVALID_PIPE;
5650
5651 /* intel_dp vfuncs */
5652 if (INTEL_INFO(dev)->gen >= 9)
5653 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5654 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5655 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5656 else if (HAS_PCH_SPLIT(dev))
5657 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5658 else
5659 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5660
5661 if (INTEL_INFO(dev)->gen >= 9)
5662 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5663 else
5664 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5665
5666 if (HAS_DDI(dev))
5667 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5668
5669 /* Preserve the current hw state. */
5670 intel_dp->DP = I915_READ(intel_dp->output_reg);
5671 intel_dp->attached_connector = intel_connector;
5672
5673 if (intel_dp_is_edp(dev, port))
5674 type = DRM_MODE_CONNECTOR_eDP;
5675 else
5676 type = DRM_MODE_CONNECTOR_DisplayPort;
5677
5678 /*
5679 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5680 * for DP the encoder type can be set by the caller to
5681 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5682 */
5683 if (type == DRM_MODE_CONNECTOR_eDP)
5684 intel_encoder->type = INTEL_OUTPUT_EDP;
5685
5686 /* eDP only on port B and/or C on vlv/chv */
5687 if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5688 is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5689 return false;
5690
5691 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5692 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5693 port_name(port));
5694
5695 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5696 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5697
5698 connector->interlace_allowed = true;
5699 connector->doublescan_allowed = 0;
5700
5701 intel_dp_aux_init(intel_dp);
5702
5703 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5704 edp_panel_vdd_work);
5705
5706 intel_connector_attach_encoder(intel_connector, intel_encoder);
5707
5708 if (HAS_DDI(dev))
5709 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5710 else
5711 intel_connector->get_hw_state = intel_connector_get_hw_state;
5712
5713 /* Set up the hotplug pin. */
5714 switch (port) {
5715 case PORT_A:
5716 intel_encoder->hpd_pin = HPD_PORT_A;
5717 break;
5718 case PORT_B:
5719 intel_encoder->hpd_pin = HPD_PORT_B;
5720 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5721 intel_encoder->hpd_pin = HPD_PORT_A;
5722 break;
5723 case PORT_C:
5724 intel_encoder->hpd_pin = HPD_PORT_C;
5725 break;
5726 case PORT_D:
5727 intel_encoder->hpd_pin = HPD_PORT_D;
5728 break;
5729 case PORT_E:
5730 intel_encoder->hpd_pin = HPD_PORT_E;
5731 break;
5732 default:
5733 BUG();
5734 }
5735
5736 /* init MST on ports that can support it */
5737 if (HAS_DP_MST(dev) && !is_edp(intel_dp) &&
5738 (port == PORT_B || port == PORT_C || port == PORT_D))
5739 intel_dp_mst_encoder_init(intel_dig_port,
5740 intel_connector->base.base.id);
5741
5742 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5743 intel_dp_aux_fini(intel_dp);
5744 intel_dp_mst_encoder_cleanup(intel_dig_port);
5745 goto fail;
5746 }
5747
5748 intel_dp_add_properties(intel_dp, connector);
5749
5750 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5751 * 0xd. Failure to do so will result in spurious interrupts being
5752 * generated on the port when a cable is not attached.
5753 */
5754 if (IS_G4X(dev) && !IS_GM45(dev)) {
5755 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5756 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5757 }
5758
5759 return true;
5760
5761 fail:
5762 drm_connector_cleanup(connector);
5763
5764 return false;
5765 }
5766
5767 bool intel_dp_init(struct drm_device *dev,
5768 i915_reg_t output_reg,
5769 enum port port)
5770 {
5771 struct drm_i915_private *dev_priv = to_i915(dev);
5772 struct intel_digital_port *intel_dig_port;
5773 struct intel_encoder *intel_encoder;
5774 struct drm_encoder *encoder;
5775 struct intel_connector *intel_connector;
5776
5777 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5778 if (!intel_dig_port)
5779 return false;
5780
5781 intel_connector = intel_connector_alloc();
5782 if (!intel_connector)
5783 goto err_connector_alloc;
5784
5785 intel_encoder = &intel_dig_port->base;
5786 encoder = &intel_encoder->base;
5787
5788 if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5789 DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
5790 goto err_encoder_init;
5791
5792 intel_encoder->compute_config = intel_dp_compute_config;
5793 intel_encoder->disable = intel_disable_dp;
5794 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5795 intel_encoder->get_config = intel_dp_get_config;
5796 intel_encoder->suspend = intel_dp_encoder_suspend;
5797 if (IS_CHERRYVIEW(dev)) {
5798 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5799 intel_encoder->pre_enable = chv_pre_enable_dp;
5800 intel_encoder->enable = vlv_enable_dp;
5801 intel_encoder->post_disable = chv_post_disable_dp;
5802 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5803 } else if (IS_VALLEYVIEW(dev)) {
5804 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5805 intel_encoder->pre_enable = vlv_pre_enable_dp;
5806 intel_encoder->enable = vlv_enable_dp;
5807 intel_encoder->post_disable = vlv_post_disable_dp;
5808 } else {
5809 intel_encoder->pre_enable = g4x_pre_enable_dp;
5810 intel_encoder->enable = g4x_enable_dp;
5811 if (INTEL_INFO(dev)->gen >= 5)
5812 intel_encoder->post_disable = ilk_post_disable_dp;
5813 }
5814
5815 intel_dig_port->port = port;
5816 intel_dig_port->dp.output_reg = output_reg;
5817 intel_dig_port->max_lanes = 4;
5818
5819 intel_encoder->type = INTEL_OUTPUT_DP;
5820 if (IS_CHERRYVIEW(dev)) {
5821 if (port == PORT_D)
5822 intel_encoder->crtc_mask = 1 << 2;
5823 else
5824 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5825 } else {
5826 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5827 }
5828 intel_encoder->cloneable = 0;
5829
5830 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5831 dev_priv->hotplug.irq_port[port] = intel_dig_port;
5832
5833 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5834 goto err_init_connector;
5835
5836 return true;
5837
5838 err_init_connector:
5839 drm_encoder_cleanup(encoder);
5840 err_encoder_init:
5841 kfree(intel_connector);
5842 err_connector_alloc:
5843 kfree(intel_dig_port);
5844 return false;
5845 }
5846
5847 void intel_dp_mst_suspend(struct drm_device *dev)
5848 {
5849 struct drm_i915_private *dev_priv = to_i915(dev);
5850 int i;
5851
5852 /* disable MST */
5853 for (i = 0; i < I915_MAX_PORTS; i++) {
5854 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5855
5856 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5857 continue;
5858
5859 if (intel_dig_port->dp.is_mst)
5860 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5861 }
5862 }
5863
5864 void intel_dp_mst_resume(struct drm_device *dev)
5865 {
5866 struct drm_i915_private *dev_priv = to_i915(dev);
5867 int i;
5868
5869 for (i = 0; i < I915_MAX_PORTS; i++) {
5870 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5871 int ret;
5872
5873 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5874 continue;
5875
5876 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5877 if (ret)
5878 intel_dp_check_mst_status(&intel_dig_port->dp);
5879 }
5880 }