]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge branch 'linux-4.9' of git://github.com/skeggsb/linux into drm-next
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102 * @intel_dp: DP struct
103 *
104 * If a CPU or PCH DP output is attached to an eDP panel, this function
105 * will return true, and false otherwise.
106 */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118 return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131 enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp *intel_dp)
136 {
137 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139 switch (max_link_bw) {
140 case DP_LINK_BW_1_62:
141 case DP_LINK_BW_2_7:
142 case DP_LINK_BW_5_4:
143 break;
144 default:
145 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146 max_link_bw);
147 max_link_bw = DP_LINK_BW_1_62;
148 break;
149 }
150 return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156 u8 source_max, sink_max;
157
158 source_max = intel_dig_port->max_lanes;
159 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161 return min(source_max, sink_max);
162 }
163
164 /*
165 * The units on the numbers in the next two are... bizarre. Examples will
166 * make it clearer; this one parallels an example in the eDP spec.
167 *
168 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169 *
170 * 270000 * 1 * 8 / 10 == 216000
171 *
172 * The actual data capacity of that configuration is 2.16Gbit/s, so the
173 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
174 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175 * 119000. At 18bpp that's 2142000 kilobits per second.
176 *
177 * Thus the strange-looking division by 10 in intel_dp_link_required, to
178 * get the result in decakilobits instead of kilobits.
179 */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184 return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190 return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static int
194 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
195 {
196 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
197 struct intel_encoder *encoder = &intel_dig_port->base;
198 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
199 int max_dotclk = dev_priv->max_dotclk_freq;
200 int ds_max_dotclk;
201
202 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
203
204 if (type != DP_DS_PORT_TYPE_VGA)
205 return max_dotclk;
206
207 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
208 intel_dp->downstream_ports);
209
210 if (ds_max_dotclk != 0)
211 max_dotclk = min(max_dotclk, ds_max_dotclk);
212
213 return max_dotclk;
214 }
215
216 static enum drm_mode_status
217 intel_dp_mode_valid(struct drm_connector *connector,
218 struct drm_display_mode *mode)
219 {
220 struct intel_dp *intel_dp = intel_attached_dp(connector);
221 struct intel_connector *intel_connector = to_intel_connector(connector);
222 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
223 int target_clock = mode->clock;
224 int max_rate, mode_rate, max_lanes, max_link_clock;
225 int max_dotclk;
226
227 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
228
229 if (is_edp(intel_dp) && fixed_mode) {
230 if (mode->hdisplay > fixed_mode->hdisplay)
231 return MODE_PANEL;
232
233 if (mode->vdisplay > fixed_mode->vdisplay)
234 return MODE_PANEL;
235
236 target_clock = fixed_mode->clock;
237 }
238
239 max_link_clock = intel_dp_max_link_rate(intel_dp);
240 max_lanes = intel_dp_max_lane_count(intel_dp);
241
242 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
243 mode_rate = intel_dp_link_required(target_clock, 18);
244
245 if (mode_rate > max_rate || target_clock > max_dotclk)
246 return MODE_CLOCK_HIGH;
247
248 if (mode->clock < 10000)
249 return MODE_CLOCK_LOW;
250
251 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
252 return MODE_H_ILLEGAL;
253
254 return MODE_OK;
255 }
256
257 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
258 {
259 int i;
260 uint32_t v = 0;
261
262 if (src_bytes > 4)
263 src_bytes = 4;
264 for (i = 0; i < src_bytes; i++)
265 v |= ((uint32_t) src[i]) << ((3-i) * 8);
266 return v;
267 }
268
269 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
270 {
271 int i;
272 if (dst_bytes > 4)
273 dst_bytes = 4;
274 for (i = 0; i < dst_bytes; i++)
275 dst[i] = src >> ((3-i) * 8);
276 }
277
278 static void
279 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
280 struct intel_dp *intel_dp);
281 static void
282 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
283 struct intel_dp *intel_dp);
284 static void
285 intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
286
287 static void pps_lock(struct intel_dp *intel_dp)
288 {
289 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
290 struct intel_encoder *encoder = &intel_dig_port->base;
291 struct drm_device *dev = encoder->base.dev;
292 struct drm_i915_private *dev_priv = to_i915(dev);
293 enum intel_display_power_domain power_domain;
294
295 /*
296 * See vlv_power_sequencer_reset() why we need
297 * a power domain reference here.
298 */
299 power_domain = intel_display_port_aux_power_domain(encoder);
300 intel_display_power_get(dev_priv, power_domain);
301
302 mutex_lock(&dev_priv->pps_mutex);
303 }
304
305 static void pps_unlock(struct intel_dp *intel_dp)
306 {
307 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
308 struct intel_encoder *encoder = &intel_dig_port->base;
309 struct drm_device *dev = encoder->base.dev;
310 struct drm_i915_private *dev_priv = to_i915(dev);
311 enum intel_display_power_domain power_domain;
312
313 mutex_unlock(&dev_priv->pps_mutex);
314
315 power_domain = intel_display_port_aux_power_domain(encoder);
316 intel_display_power_put(dev_priv, power_domain);
317 }
318
319 static void
320 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
321 {
322 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
323 struct drm_device *dev = intel_dig_port->base.base.dev;
324 struct drm_i915_private *dev_priv = to_i915(dev);
325 enum pipe pipe = intel_dp->pps_pipe;
326 bool pll_enabled, release_cl_override = false;
327 enum dpio_phy phy = DPIO_PHY(pipe);
328 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
329 uint32_t DP;
330
331 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
332 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
333 pipe_name(pipe), port_name(intel_dig_port->port)))
334 return;
335
336 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
337 pipe_name(pipe), port_name(intel_dig_port->port));
338
339 /* Preserve the BIOS-computed detected bit. This is
340 * supposed to be read-only.
341 */
342 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
343 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
344 DP |= DP_PORT_WIDTH(1);
345 DP |= DP_LINK_TRAIN_PAT_1;
346
347 if (IS_CHERRYVIEW(dev_priv))
348 DP |= DP_PIPE_SELECT_CHV(pipe);
349 else if (pipe == PIPE_B)
350 DP |= DP_PIPEB_SELECT;
351
352 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
353
354 /*
355 * The DPLL for the pipe must be enabled for this to work.
356 * So enable temporarily it if it's not already enabled.
357 */
358 if (!pll_enabled) {
359 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
360 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
361
362 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev_priv) ?
363 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
364 DRM_ERROR("Failed to force on pll for pipe %c!\n",
365 pipe_name(pipe));
366 return;
367 }
368 }
369
370 /*
371 * Similar magic as in intel_dp_enable_port().
372 * We _must_ do this port enable + disable trick
373 * to make this power seqeuencer lock onto the port.
374 * Otherwise even VDD force bit won't work.
375 */
376 I915_WRITE(intel_dp->output_reg, DP);
377 POSTING_READ(intel_dp->output_reg);
378
379 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
380 POSTING_READ(intel_dp->output_reg);
381
382 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
383 POSTING_READ(intel_dp->output_reg);
384
385 if (!pll_enabled) {
386 vlv_force_pll_off(dev, pipe);
387
388 if (release_cl_override)
389 chv_phy_powergate_ch(dev_priv, phy, ch, false);
390 }
391 }
392
393 static enum pipe
394 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
395 {
396 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
397 struct drm_device *dev = intel_dig_port->base.base.dev;
398 struct drm_i915_private *dev_priv = to_i915(dev);
399 struct intel_encoder *encoder;
400 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
401 enum pipe pipe;
402
403 lockdep_assert_held(&dev_priv->pps_mutex);
404
405 /* We should never land here with regular DP ports */
406 WARN_ON(!is_edp(intel_dp));
407
408 if (intel_dp->pps_pipe != INVALID_PIPE)
409 return intel_dp->pps_pipe;
410
411 /*
412 * We don't have power sequencer currently.
413 * Pick one that's not used by other ports.
414 */
415 for_each_intel_encoder(dev, encoder) {
416 struct intel_dp *tmp;
417
418 if (encoder->type != INTEL_OUTPUT_EDP)
419 continue;
420
421 tmp = enc_to_intel_dp(&encoder->base);
422
423 if (tmp->pps_pipe != INVALID_PIPE)
424 pipes &= ~(1 << tmp->pps_pipe);
425 }
426
427 /*
428 * Didn't find one. This should not happen since there
429 * are two power sequencers and up to two eDP ports.
430 */
431 if (WARN_ON(pipes == 0))
432 pipe = PIPE_A;
433 else
434 pipe = ffs(pipes) - 1;
435
436 vlv_steal_power_sequencer(dev, pipe);
437 intel_dp->pps_pipe = pipe;
438
439 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
440 pipe_name(intel_dp->pps_pipe),
441 port_name(intel_dig_port->port));
442
443 /* init power sequencer on this pipe and port */
444 intel_dp_init_panel_power_sequencer(dev, intel_dp);
445 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
446
447 /*
448 * Even vdd force doesn't work until we've made
449 * the power sequencer lock in on the port.
450 */
451 vlv_power_sequencer_kick(intel_dp);
452
453 return intel_dp->pps_pipe;
454 }
455
456 static int
457 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
458 {
459 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
460 struct drm_device *dev = intel_dig_port->base.base.dev;
461 struct drm_i915_private *dev_priv = to_i915(dev);
462
463 lockdep_assert_held(&dev_priv->pps_mutex);
464
465 /* We should never land here with regular DP ports */
466 WARN_ON(!is_edp(intel_dp));
467
468 /*
469 * TODO: BXT has 2 PPS instances. The correct port->PPS instance
470 * mapping needs to be retrieved from VBT, for now just hard-code to
471 * use instance #0 always.
472 */
473 if (!intel_dp->pps_reset)
474 return 0;
475
476 intel_dp->pps_reset = false;
477
478 /*
479 * Only the HW needs to be reprogrammed, the SW state is fixed and
480 * has been setup during connector init.
481 */
482 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
483
484 return 0;
485 }
486
487 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
488 enum pipe pipe);
489
490 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
491 enum pipe pipe)
492 {
493 return I915_READ(PP_STATUS(pipe)) & PP_ON;
494 }
495
496 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
497 enum pipe pipe)
498 {
499 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
500 }
501
502 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
503 enum pipe pipe)
504 {
505 return true;
506 }
507
508 static enum pipe
509 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
510 enum port port,
511 vlv_pipe_check pipe_check)
512 {
513 enum pipe pipe;
514
515 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
516 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
517 PANEL_PORT_SELECT_MASK;
518
519 if (port_sel != PANEL_PORT_SELECT_VLV(port))
520 continue;
521
522 if (!pipe_check(dev_priv, pipe))
523 continue;
524
525 return pipe;
526 }
527
528 return INVALID_PIPE;
529 }
530
531 static void
532 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
533 {
534 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
535 struct drm_device *dev = intel_dig_port->base.base.dev;
536 struct drm_i915_private *dev_priv = to_i915(dev);
537 enum port port = intel_dig_port->port;
538
539 lockdep_assert_held(&dev_priv->pps_mutex);
540
541 /* try to find a pipe with this port selected */
542 /* first pick one where the panel is on */
543 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
544 vlv_pipe_has_pp_on);
545 /* didn't find one? pick one where vdd is on */
546 if (intel_dp->pps_pipe == INVALID_PIPE)
547 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
548 vlv_pipe_has_vdd_on);
549 /* didn't find one? pick one with just the correct port */
550 if (intel_dp->pps_pipe == INVALID_PIPE)
551 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
552 vlv_pipe_any);
553
554 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
555 if (intel_dp->pps_pipe == INVALID_PIPE) {
556 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
557 port_name(port));
558 return;
559 }
560
561 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
562 port_name(port), pipe_name(intel_dp->pps_pipe));
563
564 intel_dp_init_panel_power_sequencer(dev, intel_dp);
565 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
566 }
567
568 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
569 {
570 struct drm_device *dev = &dev_priv->drm;
571 struct intel_encoder *encoder;
572
573 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
574 !IS_BROXTON(dev_priv)))
575 return;
576
577 /*
578 * We can't grab pps_mutex here due to deadlock with power_domain
579 * mutex when power_domain functions are called while holding pps_mutex.
580 * That also means that in order to use pps_pipe the code needs to
581 * hold both a power domain reference and pps_mutex, and the power domain
582 * reference get/put must be done while _not_ holding pps_mutex.
583 * pps_{lock,unlock}() do these steps in the correct order, so one
584 * should use them always.
585 */
586
587 for_each_intel_encoder(dev, encoder) {
588 struct intel_dp *intel_dp;
589
590 if (encoder->type != INTEL_OUTPUT_EDP)
591 continue;
592
593 intel_dp = enc_to_intel_dp(&encoder->base);
594 if (IS_BROXTON(dev_priv))
595 intel_dp->pps_reset = true;
596 else
597 intel_dp->pps_pipe = INVALID_PIPE;
598 }
599 }
600
601 struct pps_registers {
602 i915_reg_t pp_ctrl;
603 i915_reg_t pp_stat;
604 i915_reg_t pp_on;
605 i915_reg_t pp_off;
606 i915_reg_t pp_div;
607 };
608
609 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
610 struct intel_dp *intel_dp,
611 struct pps_registers *regs)
612 {
613 int pps_idx = 0;
614
615 memset(regs, 0, sizeof(*regs));
616
617 if (IS_BROXTON(dev_priv))
618 pps_idx = bxt_power_sequencer_idx(intel_dp);
619 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
620 pps_idx = vlv_power_sequencer_pipe(intel_dp);
621
622 regs->pp_ctrl = PP_CONTROL(pps_idx);
623 regs->pp_stat = PP_STATUS(pps_idx);
624 regs->pp_on = PP_ON_DELAYS(pps_idx);
625 regs->pp_off = PP_OFF_DELAYS(pps_idx);
626 if (!IS_BROXTON(dev_priv))
627 regs->pp_div = PP_DIVISOR(pps_idx);
628 }
629
630 static i915_reg_t
631 _pp_ctrl_reg(struct intel_dp *intel_dp)
632 {
633 struct pps_registers regs;
634
635 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
636 &regs);
637
638 return regs.pp_ctrl;
639 }
640
641 static i915_reg_t
642 _pp_stat_reg(struct intel_dp *intel_dp)
643 {
644 struct pps_registers regs;
645
646 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
647 &regs);
648
649 return regs.pp_stat;
650 }
651
652 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
653 This function only applicable when panel PM state is not to be tracked */
654 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
655 void *unused)
656 {
657 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
658 edp_notifier);
659 struct drm_device *dev = intel_dp_to_dev(intel_dp);
660 struct drm_i915_private *dev_priv = to_i915(dev);
661
662 if (!is_edp(intel_dp) || code != SYS_RESTART)
663 return 0;
664
665 pps_lock(intel_dp);
666
667 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
668 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
669 i915_reg_t pp_ctrl_reg, pp_div_reg;
670 u32 pp_div;
671
672 pp_ctrl_reg = PP_CONTROL(pipe);
673 pp_div_reg = PP_DIVISOR(pipe);
674 pp_div = I915_READ(pp_div_reg);
675 pp_div &= PP_REFERENCE_DIVIDER_MASK;
676
677 /* 0x1F write to PP_DIV_REG sets max cycle delay */
678 I915_WRITE(pp_div_reg, pp_div | 0x1F);
679 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
680 msleep(intel_dp->panel_power_cycle_delay);
681 }
682
683 pps_unlock(intel_dp);
684
685 return 0;
686 }
687
688 static bool edp_have_panel_power(struct intel_dp *intel_dp)
689 {
690 struct drm_device *dev = intel_dp_to_dev(intel_dp);
691 struct drm_i915_private *dev_priv = to_i915(dev);
692
693 lockdep_assert_held(&dev_priv->pps_mutex);
694
695 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
696 intel_dp->pps_pipe == INVALID_PIPE)
697 return false;
698
699 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
700 }
701
702 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
703 {
704 struct drm_device *dev = intel_dp_to_dev(intel_dp);
705 struct drm_i915_private *dev_priv = to_i915(dev);
706
707 lockdep_assert_held(&dev_priv->pps_mutex);
708
709 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
710 intel_dp->pps_pipe == INVALID_PIPE)
711 return false;
712
713 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
714 }
715
716 static void
717 intel_dp_check_edp(struct intel_dp *intel_dp)
718 {
719 struct drm_device *dev = intel_dp_to_dev(intel_dp);
720 struct drm_i915_private *dev_priv = to_i915(dev);
721
722 if (!is_edp(intel_dp))
723 return;
724
725 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
726 WARN(1, "eDP powered off while attempting aux channel communication.\n");
727 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
728 I915_READ(_pp_stat_reg(intel_dp)),
729 I915_READ(_pp_ctrl_reg(intel_dp)));
730 }
731 }
732
733 static uint32_t
734 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
735 {
736 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
737 struct drm_device *dev = intel_dig_port->base.base.dev;
738 struct drm_i915_private *dev_priv = to_i915(dev);
739 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
740 uint32_t status;
741 bool done;
742
743 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
744 if (has_aux_irq)
745 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
746 msecs_to_jiffies_timeout(10));
747 else
748 done = wait_for(C, 10) == 0;
749 if (!done)
750 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
751 has_aux_irq);
752 #undef C
753
754 return status;
755 }
756
757 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
758 {
759 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
760 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
761
762 if (index)
763 return 0;
764
765 /*
766 * The clock divider is based off the hrawclk, and would like to run at
767 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
768 */
769 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
770 }
771
772 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
773 {
774 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
775 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
776
777 if (index)
778 return 0;
779
780 /*
781 * The clock divider is based off the cdclk or PCH rawclk, and would
782 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
783 * divide by 2000 and use that
784 */
785 if (intel_dig_port->port == PORT_A)
786 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
787 else
788 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
789 }
790
791 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
792 {
793 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
794 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
795
796 if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
797 /* Workaround for non-ULT HSW */
798 switch (index) {
799 case 0: return 63;
800 case 1: return 72;
801 default: return 0;
802 }
803 }
804
805 return ilk_get_aux_clock_divider(intel_dp, index);
806 }
807
808 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
809 {
810 /*
811 * SKL doesn't need us to program the AUX clock divider (Hardware will
812 * derive the clock from CDCLK automatically). We still implement the
813 * get_aux_clock_divider vfunc to plug-in into the existing code.
814 */
815 return index ? 0 : 1;
816 }
817
818 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
819 bool has_aux_irq,
820 int send_bytes,
821 uint32_t aux_clock_divider)
822 {
823 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
824 struct drm_i915_private *dev_priv =
825 to_i915(intel_dig_port->base.base.dev);
826 uint32_t precharge, timeout;
827
828 if (IS_GEN6(dev_priv))
829 precharge = 3;
830 else
831 precharge = 5;
832
833 if (IS_BROADWELL(dev_priv) && intel_dig_port->port == PORT_A)
834 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
835 else
836 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
837
838 return DP_AUX_CH_CTL_SEND_BUSY |
839 DP_AUX_CH_CTL_DONE |
840 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
841 DP_AUX_CH_CTL_TIME_OUT_ERROR |
842 timeout |
843 DP_AUX_CH_CTL_RECEIVE_ERROR |
844 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
845 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
846 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
847 }
848
849 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
850 bool has_aux_irq,
851 int send_bytes,
852 uint32_t unused)
853 {
854 return DP_AUX_CH_CTL_SEND_BUSY |
855 DP_AUX_CH_CTL_DONE |
856 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
857 DP_AUX_CH_CTL_TIME_OUT_ERROR |
858 DP_AUX_CH_CTL_TIME_OUT_1600us |
859 DP_AUX_CH_CTL_RECEIVE_ERROR |
860 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
861 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
862 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
863 }
864
865 static int
866 intel_dp_aux_ch(struct intel_dp *intel_dp,
867 const uint8_t *send, int send_bytes,
868 uint8_t *recv, int recv_size)
869 {
870 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
871 struct drm_device *dev = intel_dig_port->base.base.dev;
872 struct drm_i915_private *dev_priv = to_i915(dev);
873 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
874 uint32_t aux_clock_divider;
875 int i, ret, recv_bytes;
876 uint32_t status;
877 int try, clock = 0;
878 bool has_aux_irq = HAS_AUX_IRQ(dev);
879 bool vdd;
880
881 pps_lock(intel_dp);
882
883 /*
884 * We will be called with VDD already enabled for dpcd/edid/oui reads.
885 * In such cases we want to leave VDD enabled and it's up to upper layers
886 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
887 * ourselves.
888 */
889 vdd = edp_panel_vdd_on(intel_dp);
890
891 /* dp aux is extremely sensitive to irq latency, hence request the
892 * lowest possible wakeup latency and so prevent the cpu from going into
893 * deep sleep states.
894 */
895 pm_qos_update_request(&dev_priv->pm_qos, 0);
896
897 intel_dp_check_edp(intel_dp);
898
899 /* Try to wait for any previous AUX channel activity */
900 for (try = 0; try < 3; try++) {
901 status = I915_READ_NOTRACE(ch_ctl);
902 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
903 break;
904 msleep(1);
905 }
906
907 if (try == 3) {
908 static u32 last_status = -1;
909 const u32 status = I915_READ(ch_ctl);
910
911 if (status != last_status) {
912 WARN(1, "dp_aux_ch not started status 0x%08x\n",
913 status);
914 last_status = status;
915 }
916
917 ret = -EBUSY;
918 goto out;
919 }
920
921 /* Only 5 data registers! */
922 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
923 ret = -E2BIG;
924 goto out;
925 }
926
927 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
928 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
929 has_aux_irq,
930 send_bytes,
931 aux_clock_divider);
932
933 /* Must try at least 3 times according to DP spec */
934 for (try = 0; try < 5; try++) {
935 /* Load the send data into the aux channel data registers */
936 for (i = 0; i < send_bytes; i += 4)
937 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
938 intel_dp_pack_aux(send + i,
939 send_bytes - i));
940
941 /* Send the command and wait for it to complete */
942 I915_WRITE(ch_ctl, send_ctl);
943
944 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
945
946 /* Clear done status and any errors */
947 I915_WRITE(ch_ctl,
948 status |
949 DP_AUX_CH_CTL_DONE |
950 DP_AUX_CH_CTL_TIME_OUT_ERROR |
951 DP_AUX_CH_CTL_RECEIVE_ERROR);
952
953 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
954 continue;
955
956 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
957 * 400us delay required for errors and timeouts
958 * Timeout errors from the HW already meet this
959 * requirement so skip to next iteration
960 */
961 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
962 usleep_range(400, 500);
963 continue;
964 }
965 if (status & DP_AUX_CH_CTL_DONE)
966 goto done;
967 }
968 }
969
970 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
971 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
972 ret = -EBUSY;
973 goto out;
974 }
975
976 done:
977 /* Check for timeout or receive error.
978 * Timeouts occur when the sink is not connected
979 */
980 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
981 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
982 ret = -EIO;
983 goto out;
984 }
985
986 /* Timeouts occur when the device isn't connected, so they're
987 * "normal" -- don't fill the kernel log with these */
988 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
989 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
990 ret = -ETIMEDOUT;
991 goto out;
992 }
993
994 /* Unload any bytes sent back from the other side */
995 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
996 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
997
998 /*
999 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1000 * We have no idea of what happened so we return -EBUSY so
1001 * drm layer takes care for the necessary retries.
1002 */
1003 if (recv_bytes == 0 || recv_bytes > 20) {
1004 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1005 recv_bytes);
1006 /*
1007 * FIXME: This patch was created on top of a series that
1008 * organize the retries at drm level. There EBUSY should
1009 * also take care for 1ms wait before retrying.
1010 * That aux retries re-org is still needed and after that is
1011 * merged we remove this sleep from here.
1012 */
1013 usleep_range(1000, 1500);
1014 ret = -EBUSY;
1015 goto out;
1016 }
1017
1018 if (recv_bytes > recv_size)
1019 recv_bytes = recv_size;
1020
1021 for (i = 0; i < recv_bytes; i += 4)
1022 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1023 recv + i, recv_bytes - i);
1024
1025 ret = recv_bytes;
1026 out:
1027 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1028
1029 if (vdd)
1030 edp_panel_vdd_off(intel_dp, false);
1031
1032 pps_unlock(intel_dp);
1033
1034 return ret;
1035 }
1036
1037 #define BARE_ADDRESS_SIZE 3
1038 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1039 static ssize_t
1040 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1041 {
1042 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1043 uint8_t txbuf[20], rxbuf[20];
1044 size_t txsize, rxsize;
1045 int ret;
1046
1047 txbuf[0] = (msg->request << 4) |
1048 ((msg->address >> 16) & 0xf);
1049 txbuf[1] = (msg->address >> 8) & 0xff;
1050 txbuf[2] = msg->address & 0xff;
1051 txbuf[3] = msg->size - 1;
1052
1053 switch (msg->request & ~DP_AUX_I2C_MOT) {
1054 case DP_AUX_NATIVE_WRITE:
1055 case DP_AUX_I2C_WRITE:
1056 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1057 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1058 rxsize = 2; /* 0 or 1 data bytes */
1059
1060 if (WARN_ON(txsize > 20))
1061 return -E2BIG;
1062
1063 WARN_ON(!msg->buffer != !msg->size);
1064
1065 if (msg->buffer)
1066 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1067
1068 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1069 if (ret > 0) {
1070 msg->reply = rxbuf[0] >> 4;
1071
1072 if (ret > 1) {
1073 /* Number of bytes written in a short write. */
1074 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1075 } else {
1076 /* Return payload size. */
1077 ret = msg->size;
1078 }
1079 }
1080 break;
1081
1082 case DP_AUX_NATIVE_READ:
1083 case DP_AUX_I2C_READ:
1084 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1085 rxsize = msg->size + 1;
1086
1087 if (WARN_ON(rxsize > 20))
1088 return -E2BIG;
1089
1090 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1091 if (ret > 0) {
1092 msg->reply = rxbuf[0] >> 4;
1093 /*
1094 * Assume happy day, and copy the data. The caller is
1095 * expected to check msg->reply before touching it.
1096 *
1097 * Return payload size.
1098 */
1099 ret--;
1100 memcpy(msg->buffer, rxbuf + 1, ret);
1101 }
1102 break;
1103
1104 default:
1105 ret = -EINVAL;
1106 break;
1107 }
1108
1109 return ret;
1110 }
1111
1112 static enum port intel_aux_port(struct drm_i915_private *dev_priv,
1113 enum port port)
1114 {
1115 const struct ddi_vbt_port_info *info =
1116 &dev_priv->vbt.ddi_port_info[port];
1117 enum port aux_port;
1118
1119 if (!info->alternate_aux_channel) {
1120 DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1121 port_name(port), port_name(port));
1122 return port;
1123 }
1124
1125 switch (info->alternate_aux_channel) {
1126 case DP_AUX_A:
1127 aux_port = PORT_A;
1128 break;
1129 case DP_AUX_B:
1130 aux_port = PORT_B;
1131 break;
1132 case DP_AUX_C:
1133 aux_port = PORT_C;
1134 break;
1135 case DP_AUX_D:
1136 aux_port = PORT_D;
1137 break;
1138 default:
1139 MISSING_CASE(info->alternate_aux_channel);
1140 aux_port = PORT_A;
1141 break;
1142 }
1143
1144 DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1145 port_name(aux_port), port_name(port));
1146
1147 return aux_port;
1148 }
1149
1150 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1151 enum port port)
1152 {
1153 switch (port) {
1154 case PORT_B:
1155 case PORT_C:
1156 case PORT_D:
1157 return DP_AUX_CH_CTL(port);
1158 default:
1159 MISSING_CASE(port);
1160 return DP_AUX_CH_CTL(PORT_B);
1161 }
1162 }
1163
1164 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1165 enum port port, int index)
1166 {
1167 switch (port) {
1168 case PORT_B:
1169 case PORT_C:
1170 case PORT_D:
1171 return DP_AUX_CH_DATA(port, index);
1172 default:
1173 MISSING_CASE(port);
1174 return DP_AUX_CH_DATA(PORT_B, index);
1175 }
1176 }
1177
1178 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1179 enum port port)
1180 {
1181 switch (port) {
1182 case PORT_A:
1183 return DP_AUX_CH_CTL(port);
1184 case PORT_B:
1185 case PORT_C:
1186 case PORT_D:
1187 return PCH_DP_AUX_CH_CTL(port);
1188 default:
1189 MISSING_CASE(port);
1190 return DP_AUX_CH_CTL(PORT_A);
1191 }
1192 }
1193
1194 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1195 enum port port, int index)
1196 {
1197 switch (port) {
1198 case PORT_A:
1199 return DP_AUX_CH_DATA(port, index);
1200 case PORT_B:
1201 case PORT_C:
1202 case PORT_D:
1203 return PCH_DP_AUX_CH_DATA(port, index);
1204 default:
1205 MISSING_CASE(port);
1206 return DP_AUX_CH_DATA(PORT_A, index);
1207 }
1208 }
1209
1210 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1211 enum port port)
1212 {
1213 switch (port) {
1214 case PORT_A:
1215 case PORT_B:
1216 case PORT_C:
1217 case PORT_D:
1218 return DP_AUX_CH_CTL(port);
1219 default:
1220 MISSING_CASE(port);
1221 return DP_AUX_CH_CTL(PORT_A);
1222 }
1223 }
1224
1225 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1226 enum port port, int index)
1227 {
1228 switch (port) {
1229 case PORT_A:
1230 case PORT_B:
1231 case PORT_C:
1232 case PORT_D:
1233 return DP_AUX_CH_DATA(port, index);
1234 default:
1235 MISSING_CASE(port);
1236 return DP_AUX_CH_DATA(PORT_A, index);
1237 }
1238 }
1239
1240 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1241 enum port port)
1242 {
1243 if (INTEL_INFO(dev_priv)->gen >= 9)
1244 return skl_aux_ctl_reg(dev_priv, port);
1245 else if (HAS_PCH_SPLIT(dev_priv))
1246 return ilk_aux_ctl_reg(dev_priv, port);
1247 else
1248 return g4x_aux_ctl_reg(dev_priv, port);
1249 }
1250
1251 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1252 enum port port, int index)
1253 {
1254 if (INTEL_INFO(dev_priv)->gen >= 9)
1255 return skl_aux_data_reg(dev_priv, port, index);
1256 else if (HAS_PCH_SPLIT(dev_priv))
1257 return ilk_aux_data_reg(dev_priv, port, index);
1258 else
1259 return g4x_aux_data_reg(dev_priv, port, index);
1260 }
1261
1262 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1263 {
1264 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1265 enum port port = intel_aux_port(dev_priv,
1266 dp_to_dig_port(intel_dp)->port);
1267 int i;
1268
1269 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1270 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1271 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1272 }
1273
1274 static void
1275 intel_dp_aux_fini(struct intel_dp *intel_dp)
1276 {
1277 kfree(intel_dp->aux.name);
1278 }
1279
1280 static void
1281 intel_dp_aux_init(struct intel_dp *intel_dp)
1282 {
1283 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1284 enum port port = intel_dig_port->port;
1285
1286 intel_aux_reg_init(intel_dp);
1287 drm_dp_aux_init(&intel_dp->aux);
1288
1289 /* Failure to allocate our preferred name is not critical */
1290 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1291 intel_dp->aux.transfer = intel_dp_aux_transfer;
1292 }
1293
1294 static int
1295 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1296 {
1297 if (intel_dp->num_sink_rates) {
1298 *sink_rates = intel_dp->sink_rates;
1299 return intel_dp->num_sink_rates;
1300 }
1301
1302 *sink_rates = default_rates;
1303
1304 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1305 }
1306
1307 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1308 {
1309 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1310 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1311
1312 if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
1313 IS_BROADWELL(dev_priv) || (INTEL_GEN(dev_priv) >= 9))
1314 return true;
1315 else
1316 return false;
1317 }
1318
1319 static int
1320 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1321 {
1322 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1323 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1324 int size;
1325
1326 if (IS_BROXTON(dev_priv)) {
1327 *source_rates = bxt_rates;
1328 size = ARRAY_SIZE(bxt_rates);
1329 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1330 *source_rates = skl_rates;
1331 size = ARRAY_SIZE(skl_rates);
1332 } else {
1333 *source_rates = default_rates;
1334 size = ARRAY_SIZE(default_rates);
1335 }
1336
1337 /* This depends on the fact that 5.4 is last value in the array */
1338 if (!intel_dp_source_supports_hbr2(intel_dp))
1339 size--;
1340
1341 return size;
1342 }
1343
1344 static void
1345 intel_dp_set_clock(struct intel_encoder *encoder,
1346 struct intel_crtc_state *pipe_config)
1347 {
1348 struct drm_device *dev = encoder->base.dev;
1349 struct drm_i915_private *dev_priv = to_i915(dev);
1350 const struct dp_link_dpll *divisor = NULL;
1351 int i, count = 0;
1352
1353 if (IS_G4X(dev_priv)) {
1354 divisor = gen4_dpll;
1355 count = ARRAY_SIZE(gen4_dpll);
1356 } else if (HAS_PCH_SPLIT(dev_priv)) {
1357 divisor = pch_dpll;
1358 count = ARRAY_SIZE(pch_dpll);
1359 } else if (IS_CHERRYVIEW(dev_priv)) {
1360 divisor = chv_dpll;
1361 count = ARRAY_SIZE(chv_dpll);
1362 } else if (IS_VALLEYVIEW(dev_priv)) {
1363 divisor = vlv_dpll;
1364 count = ARRAY_SIZE(vlv_dpll);
1365 }
1366
1367 if (divisor && count) {
1368 for (i = 0; i < count; i++) {
1369 if (pipe_config->port_clock == divisor[i].clock) {
1370 pipe_config->dpll = divisor[i].dpll;
1371 pipe_config->clock_set = true;
1372 break;
1373 }
1374 }
1375 }
1376 }
1377
1378 static int intersect_rates(const int *source_rates, int source_len,
1379 const int *sink_rates, int sink_len,
1380 int *common_rates)
1381 {
1382 int i = 0, j = 0, k = 0;
1383
1384 while (i < source_len && j < sink_len) {
1385 if (source_rates[i] == sink_rates[j]) {
1386 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1387 return k;
1388 common_rates[k] = source_rates[i];
1389 ++k;
1390 ++i;
1391 ++j;
1392 } else if (source_rates[i] < sink_rates[j]) {
1393 ++i;
1394 } else {
1395 ++j;
1396 }
1397 }
1398 return k;
1399 }
1400
1401 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1402 int *common_rates)
1403 {
1404 const int *source_rates, *sink_rates;
1405 int source_len, sink_len;
1406
1407 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1408 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1409
1410 return intersect_rates(source_rates, source_len,
1411 sink_rates, sink_len,
1412 common_rates);
1413 }
1414
1415 static void snprintf_int_array(char *str, size_t len,
1416 const int *array, int nelem)
1417 {
1418 int i;
1419
1420 str[0] = '\0';
1421
1422 for (i = 0; i < nelem; i++) {
1423 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1424 if (r >= len)
1425 return;
1426 str += r;
1427 len -= r;
1428 }
1429 }
1430
1431 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1432 {
1433 const int *source_rates, *sink_rates;
1434 int source_len, sink_len, common_len;
1435 int common_rates[DP_MAX_SUPPORTED_RATES];
1436 char str[128]; /* FIXME: too big for stack? */
1437
1438 if ((drm_debug & DRM_UT_KMS) == 0)
1439 return;
1440
1441 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1442 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1443 DRM_DEBUG_KMS("source rates: %s\n", str);
1444
1445 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1446 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1447 DRM_DEBUG_KMS("sink rates: %s\n", str);
1448
1449 common_len = intel_dp_common_rates(intel_dp, common_rates);
1450 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1451 DRM_DEBUG_KMS("common rates: %s\n", str);
1452 }
1453
1454 static void intel_dp_print_hw_revision(struct intel_dp *intel_dp)
1455 {
1456 uint8_t rev;
1457 int len;
1458
1459 if ((drm_debug & DRM_UT_KMS) == 0)
1460 return;
1461
1462 if (!drm_dp_is_branch(intel_dp->dpcd))
1463 return;
1464
1465 len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_HW_REV, &rev, 1);
1466 if (len < 0)
1467 return;
1468
1469 DRM_DEBUG_KMS("sink hw revision: %d.%d\n", (rev & 0xf0) >> 4, rev & 0xf);
1470 }
1471
1472 static void intel_dp_print_sw_revision(struct intel_dp *intel_dp)
1473 {
1474 uint8_t rev[2];
1475 int len;
1476
1477 if ((drm_debug & DRM_UT_KMS) == 0)
1478 return;
1479
1480 if (!drm_dp_is_branch(intel_dp->dpcd))
1481 return;
1482
1483 len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_SW_REV, &rev, 2);
1484 if (len < 0)
1485 return;
1486
1487 DRM_DEBUG_KMS("sink sw revision: %d.%d\n", rev[0], rev[1]);
1488 }
1489
1490 static int rate_to_index(int find, const int *rates)
1491 {
1492 int i = 0;
1493
1494 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1495 if (find == rates[i])
1496 break;
1497
1498 return i;
1499 }
1500
1501 int
1502 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1503 {
1504 int rates[DP_MAX_SUPPORTED_RATES] = {};
1505 int len;
1506
1507 len = intel_dp_common_rates(intel_dp, rates);
1508 if (WARN_ON(len <= 0))
1509 return 162000;
1510
1511 return rates[len - 1];
1512 }
1513
1514 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1515 {
1516 return rate_to_index(rate, intel_dp->sink_rates);
1517 }
1518
1519 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1520 uint8_t *link_bw, uint8_t *rate_select)
1521 {
1522 if (intel_dp->num_sink_rates) {
1523 *link_bw = 0;
1524 *rate_select =
1525 intel_dp_rate_select(intel_dp, port_clock);
1526 } else {
1527 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1528 *rate_select = 0;
1529 }
1530 }
1531
1532 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1533 struct intel_crtc_state *pipe_config)
1534 {
1535 int bpp, bpc;
1536
1537 bpp = pipe_config->pipe_bpp;
1538 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1539
1540 if (bpc > 0)
1541 bpp = min(bpp, 3*bpc);
1542
1543 return bpp;
1544 }
1545
1546 bool
1547 intel_dp_compute_config(struct intel_encoder *encoder,
1548 struct intel_crtc_state *pipe_config,
1549 struct drm_connector_state *conn_state)
1550 {
1551 struct drm_device *dev = encoder->base.dev;
1552 struct drm_i915_private *dev_priv = to_i915(dev);
1553 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1554 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1555 enum port port = dp_to_dig_port(intel_dp)->port;
1556 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1557 struct intel_connector *intel_connector = intel_dp->attached_connector;
1558 int lane_count, clock;
1559 int min_lane_count = 1;
1560 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1561 /* Conveniently, the link BW constants become indices with a shift...*/
1562 int min_clock = 0;
1563 int max_clock;
1564 int bpp, mode_rate;
1565 int link_avail, link_clock;
1566 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1567 int common_len;
1568 uint8_t link_bw, rate_select;
1569
1570 common_len = intel_dp_common_rates(intel_dp, common_rates);
1571
1572 /* No common link rates between source and sink */
1573 WARN_ON(common_len <= 0);
1574
1575 max_clock = common_len - 1;
1576
1577 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
1578 pipe_config->has_pch_encoder = true;
1579
1580 pipe_config->has_drrs = false;
1581 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1582
1583 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1584 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1585 adjusted_mode);
1586
1587 if (INTEL_INFO(dev)->gen >= 9) {
1588 int ret;
1589 ret = skl_update_scaler_crtc(pipe_config);
1590 if (ret)
1591 return ret;
1592 }
1593
1594 if (HAS_GMCH_DISPLAY(dev_priv))
1595 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1596 intel_connector->panel.fitting_mode);
1597 else
1598 intel_pch_panel_fitting(intel_crtc, pipe_config,
1599 intel_connector->panel.fitting_mode);
1600 }
1601
1602 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1603 return false;
1604
1605 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1606 "max bw %d pixel clock %iKHz\n",
1607 max_lane_count, common_rates[max_clock],
1608 adjusted_mode->crtc_clock);
1609
1610 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1611 * bpc in between. */
1612 bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1613 if (is_edp(intel_dp)) {
1614
1615 /* Get bpp from vbt only for panels that dont have bpp in edid */
1616 if (intel_connector->base.display_info.bpc == 0 &&
1617 (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1618 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1619 dev_priv->vbt.edp.bpp);
1620 bpp = dev_priv->vbt.edp.bpp;
1621 }
1622
1623 /*
1624 * Use the maximum clock and number of lanes the eDP panel
1625 * advertizes being capable of. The panels are generally
1626 * designed to support only a single clock and lane
1627 * configuration, and typically these values correspond to the
1628 * native resolution of the panel.
1629 */
1630 min_lane_count = max_lane_count;
1631 min_clock = max_clock;
1632 }
1633
1634 for (; bpp >= 6*3; bpp -= 2*3) {
1635 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1636 bpp);
1637
1638 for (clock = min_clock; clock <= max_clock; clock++) {
1639 for (lane_count = min_lane_count;
1640 lane_count <= max_lane_count;
1641 lane_count <<= 1) {
1642
1643 link_clock = common_rates[clock];
1644 link_avail = intel_dp_max_data_rate(link_clock,
1645 lane_count);
1646
1647 if (mode_rate <= link_avail) {
1648 goto found;
1649 }
1650 }
1651 }
1652 }
1653
1654 return false;
1655
1656 found:
1657 if (intel_dp->color_range_auto) {
1658 /*
1659 * See:
1660 * CEA-861-E - 5.1 Default Encoding Parameters
1661 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1662 */
1663 pipe_config->limited_color_range =
1664 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1665 } else {
1666 pipe_config->limited_color_range =
1667 intel_dp->limited_color_range;
1668 }
1669
1670 pipe_config->lane_count = lane_count;
1671
1672 pipe_config->pipe_bpp = bpp;
1673 pipe_config->port_clock = common_rates[clock];
1674
1675 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1676 &link_bw, &rate_select);
1677
1678 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1679 link_bw, rate_select, pipe_config->lane_count,
1680 pipe_config->port_clock, bpp);
1681 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1682 mode_rate, link_avail);
1683
1684 intel_link_compute_m_n(bpp, lane_count,
1685 adjusted_mode->crtc_clock,
1686 pipe_config->port_clock,
1687 &pipe_config->dp_m_n);
1688
1689 if (intel_connector->panel.downclock_mode != NULL &&
1690 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1691 pipe_config->has_drrs = true;
1692 intel_link_compute_m_n(bpp, lane_count,
1693 intel_connector->panel.downclock_mode->clock,
1694 pipe_config->port_clock,
1695 &pipe_config->dp_m2_n2);
1696 }
1697
1698 /*
1699 * DPLL0 VCO may need to be adjusted to get the correct
1700 * clock for eDP. This will affect cdclk as well.
1701 */
1702 if (is_edp(intel_dp) &&
1703 (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
1704 int vco;
1705
1706 switch (pipe_config->port_clock / 2) {
1707 case 108000:
1708 case 216000:
1709 vco = 8640000;
1710 break;
1711 default:
1712 vco = 8100000;
1713 break;
1714 }
1715
1716 to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
1717 }
1718
1719 if (!HAS_DDI(dev_priv))
1720 intel_dp_set_clock(encoder, pipe_config);
1721
1722 return true;
1723 }
1724
1725 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1726 int link_rate, uint8_t lane_count,
1727 bool link_mst)
1728 {
1729 intel_dp->link_rate = link_rate;
1730 intel_dp->lane_count = lane_count;
1731 intel_dp->link_mst = link_mst;
1732 }
1733
1734 static void intel_dp_prepare(struct intel_encoder *encoder,
1735 struct intel_crtc_state *pipe_config)
1736 {
1737 struct drm_device *dev = encoder->base.dev;
1738 struct drm_i915_private *dev_priv = to_i915(dev);
1739 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1740 enum port port = dp_to_dig_port(intel_dp)->port;
1741 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1742 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1743
1744 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1745 pipe_config->lane_count,
1746 intel_crtc_has_type(pipe_config,
1747 INTEL_OUTPUT_DP_MST));
1748
1749 /*
1750 * There are four kinds of DP registers:
1751 *
1752 * IBX PCH
1753 * SNB CPU
1754 * IVB CPU
1755 * CPT PCH
1756 *
1757 * IBX PCH and CPU are the same for almost everything,
1758 * except that the CPU DP PLL is configured in this
1759 * register
1760 *
1761 * CPT PCH is quite different, having many bits moved
1762 * to the TRANS_DP_CTL register instead. That
1763 * configuration happens (oddly) in ironlake_pch_enable
1764 */
1765
1766 /* Preserve the BIOS-computed detected bit. This is
1767 * supposed to be read-only.
1768 */
1769 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1770
1771 /* Handle DP bits in common between all three register formats */
1772 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1773 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1774
1775 /* Split out the IBX/CPU vs CPT settings */
1776
1777 if (IS_GEN7(dev_priv) && port == PORT_A) {
1778 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1779 intel_dp->DP |= DP_SYNC_HS_HIGH;
1780 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1781 intel_dp->DP |= DP_SYNC_VS_HIGH;
1782 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1783
1784 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1785 intel_dp->DP |= DP_ENHANCED_FRAMING;
1786
1787 intel_dp->DP |= crtc->pipe << 29;
1788 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
1789 u32 trans_dp;
1790
1791 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1792
1793 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1794 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1795 trans_dp |= TRANS_DP_ENH_FRAMING;
1796 else
1797 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1798 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1799 } else {
1800 if (!HAS_PCH_SPLIT(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
1801 !IS_CHERRYVIEW(dev_priv) &&
1802 pipe_config->limited_color_range)
1803 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1804
1805 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1806 intel_dp->DP |= DP_SYNC_HS_HIGH;
1807 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1808 intel_dp->DP |= DP_SYNC_VS_HIGH;
1809 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1810
1811 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1812 intel_dp->DP |= DP_ENHANCED_FRAMING;
1813
1814 if (IS_CHERRYVIEW(dev_priv))
1815 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1816 else if (crtc->pipe == PIPE_B)
1817 intel_dp->DP |= DP_PIPEB_SELECT;
1818 }
1819 }
1820
1821 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1822 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1823
1824 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1825 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1826
1827 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1828 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1829
1830 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1831 struct intel_dp *intel_dp);
1832
1833 static void wait_panel_status(struct intel_dp *intel_dp,
1834 u32 mask,
1835 u32 value)
1836 {
1837 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1838 struct drm_i915_private *dev_priv = to_i915(dev);
1839 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1840
1841 lockdep_assert_held(&dev_priv->pps_mutex);
1842
1843 intel_pps_verify_state(dev_priv, intel_dp);
1844
1845 pp_stat_reg = _pp_stat_reg(intel_dp);
1846 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1847
1848 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1849 mask, value,
1850 I915_READ(pp_stat_reg),
1851 I915_READ(pp_ctrl_reg));
1852
1853 if (intel_wait_for_register(dev_priv,
1854 pp_stat_reg, mask, value,
1855 5000))
1856 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1857 I915_READ(pp_stat_reg),
1858 I915_READ(pp_ctrl_reg));
1859
1860 DRM_DEBUG_KMS("Wait complete\n");
1861 }
1862
1863 static void wait_panel_on(struct intel_dp *intel_dp)
1864 {
1865 DRM_DEBUG_KMS("Wait for panel power on\n");
1866 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1867 }
1868
1869 static void wait_panel_off(struct intel_dp *intel_dp)
1870 {
1871 DRM_DEBUG_KMS("Wait for panel power off time\n");
1872 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1873 }
1874
1875 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1876 {
1877 ktime_t panel_power_on_time;
1878 s64 panel_power_off_duration;
1879
1880 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1881
1882 /* take the difference of currrent time and panel power off time
1883 * and then make panel wait for t11_t12 if needed. */
1884 panel_power_on_time = ktime_get_boottime();
1885 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1886
1887 /* When we disable the VDD override bit last we have to do the manual
1888 * wait. */
1889 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1890 wait_remaining_ms_from_jiffies(jiffies,
1891 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1892
1893 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1894 }
1895
1896 static void wait_backlight_on(struct intel_dp *intel_dp)
1897 {
1898 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1899 intel_dp->backlight_on_delay);
1900 }
1901
1902 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1903 {
1904 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1905 intel_dp->backlight_off_delay);
1906 }
1907
1908 /* Read the current pp_control value, unlocking the register if it
1909 * is locked
1910 */
1911
1912 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1913 {
1914 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1915 struct drm_i915_private *dev_priv = to_i915(dev);
1916 u32 control;
1917
1918 lockdep_assert_held(&dev_priv->pps_mutex);
1919
1920 control = I915_READ(_pp_ctrl_reg(intel_dp));
1921 if (WARN_ON(!HAS_DDI(dev_priv) &&
1922 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
1923 control &= ~PANEL_UNLOCK_MASK;
1924 control |= PANEL_UNLOCK_REGS;
1925 }
1926 return control;
1927 }
1928
1929 /*
1930 * Must be paired with edp_panel_vdd_off().
1931 * Must hold pps_mutex around the whole on/off sequence.
1932 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1933 */
1934 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1935 {
1936 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1937 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1938 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1939 struct drm_i915_private *dev_priv = to_i915(dev);
1940 enum intel_display_power_domain power_domain;
1941 u32 pp;
1942 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1943 bool need_to_disable = !intel_dp->want_panel_vdd;
1944
1945 lockdep_assert_held(&dev_priv->pps_mutex);
1946
1947 if (!is_edp(intel_dp))
1948 return false;
1949
1950 cancel_delayed_work(&intel_dp->panel_vdd_work);
1951 intel_dp->want_panel_vdd = true;
1952
1953 if (edp_have_panel_vdd(intel_dp))
1954 return need_to_disable;
1955
1956 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1957 intel_display_power_get(dev_priv, power_domain);
1958
1959 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1960 port_name(intel_dig_port->port));
1961
1962 if (!edp_have_panel_power(intel_dp))
1963 wait_panel_power_cycle(intel_dp);
1964
1965 pp = ironlake_get_pp_control(intel_dp);
1966 pp |= EDP_FORCE_VDD;
1967
1968 pp_stat_reg = _pp_stat_reg(intel_dp);
1969 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1970
1971 I915_WRITE(pp_ctrl_reg, pp);
1972 POSTING_READ(pp_ctrl_reg);
1973 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1974 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1975 /*
1976 * If the panel wasn't on, delay before accessing aux channel
1977 */
1978 if (!edp_have_panel_power(intel_dp)) {
1979 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1980 port_name(intel_dig_port->port));
1981 msleep(intel_dp->panel_power_up_delay);
1982 }
1983
1984 return need_to_disable;
1985 }
1986
1987 /*
1988 * Must be paired with intel_edp_panel_vdd_off() or
1989 * intel_edp_panel_off().
1990 * Nested calls to these functions are not allowed since
1991 * we drop the lock. Caller must use some higher level
1992 * locking to prevent nested calls from other threads.
1993 */
1994 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1995 {
1996 bool vdd;
1997
1998 if (!is_edp(intel_dp))
1999 return;
2000
2001 pps_lock(intel_dp);
2002 vdd = edp_panel_vdd_on(intel_dp);
2003 pps_unlock(intel_dp);
2004
2005 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2006 port_name(dp_to_dig_port(intel_dp)->port));
2007 }
2008
2009 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2010 {
2011 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2012 struct drm_i915_private *dev_priv = to_i915(dev);
2013 struct intel_digital_port *intel_dig_port =
2014 dp_to_dig_port(intel_dp);
2015 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2016 enum intel_display_power_domain power_domain;
2017 u32 pp;
2018 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2019
2020 lockdep_assert_held(&dev_priv->pps_mutex);
2021
2022 WARN_ON(intel_dp->want_panel_vdd);
2023
2024 if (!edp_have_panel_vdd(intel_dp))
2025 return;
2026
2027 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2028 port_name(intel_dig_port->port));
2029
2030 pp = ironlake_get_pp_control(intel_dp);
2031 pp &= ~EDP_FORCE_VDD;
2032
2033 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2034 pp_stat_reg = _pp_stat_reg(intel_dp);
2035
2036 I915_WRITE(pp_ctrl_reg, pp);
2037 POSTING_READ(pp_ctrl_reg);
2038
2039 /* Make sure sequencer is idle before allowing subsequent activity */
2040 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2041 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2042
2043 if ((pp & PANEL_POWER_ON) == 0)
2044 intel_dp->panel_power_off_time = ktime_get_boottime();
2045
2046 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2047 intel_display_power_put(dev_priv, power_domain);
2048 }
2049
2050 static void edp_panel_vdd_work(struct work_struct *__work)
2051 {
2052 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2053 struct intel_dp, panel_vdd_work);
2054
2055 pps_lock(intel_dp);
2056 if (!intel_dp->want_panel_vdd)
2057 edp_panel_vdd_off_sync(intel_dp);
2058 pps_unlock(intel_dp);
2059 }
2060
2061 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2062 {
2063 unsigned long delay;
2064
2065 /*
2066 * Queue the timer to fire a long time from now (relative to the power
2067 * down delay) to keep the panel power up across a sequence of
2068 * operations.
2069 */
2070 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2071 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2072 }
2073
2074 /*
2075 * Must be paired with edp_panel_vdd_on().
2076 * Must hold pps_mutex around the whole on/off sequence.
2077 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2078 */
2079 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2080 {
2081 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2082
2083 lockdep_assert_held(&dev_priv->pps_mutex);
2084
2085 if (!is_edp(intel_dp))
2086 return;
2087
2088 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2089 port_name(dp_to_dig_port(intel_dp)->port));
2090
2091 intel_dp->want_panel_vdd = false;
2092
2093 if (sync)
2094 edp_panel_vdd_off_sync(intel_dp);
2095 else
2096 edp_panel_vdd_schedule_off(intel_dp);
2097 }
2098
2099 static void edp_panel_on(struct intel_dp *intel_dp)
2100 {
2101 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2102 struct drm_i915_private *dev_priv = to_i915(dev);
2103 u32 pp;
2104 i915_reg_t pp_ctrl_reg;
2105
2106 lockdep_assert_held(&dev_priv->pps_mutex);
2107
2108 if (!is_edp(intel_dp))
2109 return;
2110
2111 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2112 port_name(dp_to_dig_port(intel_dp)->port));
2113
2114 if (WARN(edp_have_panel_power(intel_dp),
2115 "eDP port %c panel power already on\n",
2116 port_name(dp_to_dig_port(intel_dp)->port)))
2117 return;
2118
2119 wait_panel_power_cycle(intel_dp);
2120
2121 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2122 pp = ironlake_get_pp_control(intel_dp);
2123 if (IS_GEN5(dev_priv)) {
2124 /* ILK workaround: disable reset around power sequence */
2125 pp &= ~PANEL_POWER_RESET;
2126 I915_WRITE(pp_ctrl_reg, pp);
2127 POSTING_READ(pp_ctrl_reg);
2128 }
2129
2130 pp |= PANEL_POWER_ON;
2131 if (!IS_GEN5(dev_priv))
2132 pp |= PANEL_POWER_RESET;
2133
2134 I915_WRITE(pp_ctrl_reg, pp);
2135 POSTING_READ(pp_ctrl_reg);
2136
2137 wait_panel_on(intel_dp);
2138 intel_dp->last_power_on = jiffies;
2139
2140 if (IS_GEN5(dev_priv)) {
2141 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2142 I915_WRITE(pp_ctrl_reg, pp);
2143 POSTING_READ(pp_ctrl_reg);
2144 }
2145 }
2146
2147 void intel_edp_panel_on(struct intel_dp *intel_dp)
2148 {
2149 if (!is_edp(intel_dp))
2150 return;
2151
2152 pps_lock(intel_dp);
2153 edp_panel_on(intel_dp);
2154 pps_unlock(intel_dp);
2155 }
2156
2157
2158 static void edp_panel_off(struct intel_dp *intel_dp)
2159 {
2160 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2161 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2162 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2163 struct drm_i915_private *dev_priv = to_i915(dev);
2164 enum intel_display_power_domain power_domain;
2165 u32 pp;
2166 i915_reg_t pp_ctrl_reg;
2167
2168 lockdep_assert_held(&dev_priv->pps_mutex);
2169
2170 if (!is_edp(intel_dp))
2171 return;
2172
2173 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2174 port_name(dp_to_dig_port(intel_dp)->port));
2175
2176 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2177 port_name(dp_to_dig_port(intel_dp)->port));
2178
2179 pp = ironlake_get_pp_control(intel_dp);
2180 /* We need to switch off panel power _and_ force vdd, for otherwise some
2181 * panels get very unhappy and cease to work. */
2182 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2183 EDP_BLC_ENABLE);
2184
2185 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2186
2187 intel_dp->want_panel_vdd = false;
2188
2189 I915_WRITE(pp_ctrl_reg, pp);
2190 POSTING_READ(pp_ctrl_reg);
2191
2192 intel_dp->panel_power_off_time = ktime_get_boottime();
2193 wait_panel_off(intel_dp);
2194
2195 /* We got a reference when we enabled the VDD. */
2196 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2197 intel_display_power_put(dev_priv, power_domain);
2198 }
2199
2200 void intel_edp_panel_off(struct intel_dp *intel_dp)
2201 {
2202 if (!is_edp(intel_dp))
2203 return;
2204
2205 pps_lock(intel_dp);
2206 edp_panel_off(intel_dp);
2207 pps_unlock(intel_dp);
2208 }
2209
2210 /* Enable backlight in the panel power control. */
2211 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2212 {
2213 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2214 struct drm_device *dev = intel_dig_port->base.base.dev;
2215 struct drm_i915_private *dev_priv = to_i915(dev);
2216 u32 pp;
2217 i915_reg_t pp_ctrl_reg;
2218
2219 /*
2220 * If we enable the backlight right away following a panel power
2221 * on, we may see slight flicker as the panel syncs with the eDP
2222 * link. So delay a bit to make sure the image is solid before
2223 * allowing it to appear.
2224 */
2225 wait_backlight_on(intel_dp);
2226
2227 pps_lock(intel_dp);
2228
2229 pp = ironlake_get_pp_control(intel_dp);
2230 pp |= EDP_BLC_ENABLE;
2231
2232 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2233
2234 I915_WRITE(pp_ctrl_reg, pp);
2235 POSTING_READ(pp_ctrl_reg);
2236
2237 pps_unlock(intel_dp);
2238 }
2239
2240 /* Enable backlight PWM and backlight PP control. */
2241 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2242 {
2243 if (!is_edp(intel_dp))
2244 return;
2245
2246 DRM_DEBUG_KMS("\n");
2247
2248 intel_panel_enable_backlight(intel_dp->attached_connector);
2249 _intel_edp_backlight_on(intel_dp);
2250 }
2251
2252 /* Disable backlight in the panel power control. */
2253 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2254 {
2255 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2256 struct drm_i915_private *dev_priv = to_i915(dev);
2257 u32 pp;
2258 i915_reg_t pp_ctrl_reg;
2259
2260 if (!is_edp(intel_dp))
2261 return;
2262
2263 pps_lock(intel_dp);
2264
2265 pp = ironlake_get_pp_control(intel_dp);
2266 pp &= ~EDP_BLC_ENABLE;
2267
2268 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2269
2270 I915_WRITE(pp_ctrl_reg, pp);
2271 POSTING_READ(pp_ctrl_reg);
2272
2273 pps_unlock(intel_dp);
2274
2275 intel_dp->last_backlight_off = jiffies;
2276 edp_wait_backlight_off(intel_dp);
2277 }
2278
2279 /* Disable backlight PP control and backlight PWM. */
2280 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2281 {
2282 if (!is_edp(intel_dp))
2283 return;
2284
2285 DRM_DEBUG_KMS("\n");
2286
2287 _intel_edp_backlight_off(intel_dp);
2288 intel_panel_disable_backlight(intel_dp->attached_connector);
2289 }
2290
2291 /*
2292 * Hook for controlling the panel power control backlight through the bl_power
2293 * sysfs attribute. Take care to handle multiple calls.
2294 */
2295 static void intel_edp_backlight_power(struct intel_connector *connector,
2296 bool enable)
2297 {
2298 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2299 bool is_enabled;
2300
2301 pps_lock(intel_dp);
2302 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2303 pps_unlock(intel_dp);
2304
2305 if (is_enabled == enable)
2306 return;
2307
2308 DRM_DEBUG_KMS("panel power control backlight %s\n",
2309 enable ? "enable" : "disable");
2310
2311 if (enable)
2312 _intel_edp_backlight_on(intel_dp);
2313 else
2314 _intel_edp_backlight_off(intel_dp);
2315 }
2316
2317 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2318 {
2319 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2320 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2321 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2322
2323 I915_STATE_WARN(cur_state != state,
2324 "DP port %c state assertion failure (expected %s, current %s)\n",
2325 port_name(dig_port->port),
2326 onoff(state), onoff(cur_state));
2327 }
2328 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2329
2330 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2331 {
2332 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2333
2334 I915_STATE_WARN(cur_state != state,
2335 "eDP PLL state assertion failure (expected %s, current %s)\n",
2336 onoff(state), onoff(cur_state));
2337 }
2338 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2339 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2340
2341 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2342 struct intel_crtc_state *pipe_config)
2343 {
2344 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2345 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2346
2347 assert_pipe_disabled(dev_priv, crtc->pipe);
2348 assert_dp_port_disabled(intel_dp);
2349 assert_edp_pll_disabled(dev_priv);
2350
2351 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2352 pipe_config->port_clock);
2353
2354 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2355
2356 if (pipe_config->port_clock == 162000)
2357 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2358 else
2359 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2360
2361 I915_WRITE(DP_A, intel_dp->DP);
2362 POSTING_READ(DP_A);
2363 udelay(500);
2364
2365 /*
2366 * [DevILK] Work around required when enabling DP PLL
2367 * while a pipe is enabled going to FDI:
2368 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2369 * 2. Program DP PLL enable
2370 */
2371 if (IS_GEN5(dev_priv))
2372 intel_wait_for_vblank_if_active(&dev_priv->drm, !crtc->pipe);
2373
2374 intel_dp->DP |= DP_PLL_ENABLE;
2375
2376 I915_WRITE(DP_A, intel_dp->DP);
2377 POSTING_READ(DP_A);
2378 udelay(200);
2379 }
2380
2381 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2382 {
2383 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2384 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2385 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2386
2387 assert_pipe_disabled(dev_priv, crtc->pipe);
2388 assert_dp_port_disabled(intel_dp);
2389 assert_edp_pll_enabled(dev_priv);
2390
2391 DRM_DEBUG_KMS("disabling eDP PLL\n");
2392
2393 intel_dp->DP &= ~DP_PLL_ENABLE;
2394
2395 I915_WRITE(DP_A, intel_dp->DP);
2396 POSTING_READ(DP_A);
2397 udelay(200);
2398 }
2399
2400 /* If the sink supports it, try to set the power state appropriately */
2401 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2402 {
2403 int ret, i;
2404
2405 /* Should have a valid DPCD by this point */
2406 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2407 return;
2408
2409 if (mode != DRM_MODE_DPMS_ON) {
2410 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2411 DP_SET_POWER_D3);
2412 } else {
2413 /*
2414 * When turning on, we need to retry for 1ms to give the sink
2415 * time to wake up.
2416 */
2417 for (i = 0; i < 3; i++) {
2418 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2419 DP_SET_POWER_D0);
2420 if (ret == 1)
2421 break;
2422 msleep(1);
2423 }
2424 }
2425
2426 if (ret != 1)
2427 DRM_DEBUG_KMS("failed to %s sink power state\n",
2428 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2429 }
2430
2431 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2432 enum pipe *pipe)
2433 {
2434 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2435 enum port port = dp_to_dig_port(intel_dp)->port;
2436 struct drm_device *dev = encoder->base.dev;
2437 struct drm_i915_private *dev_priv = to_i915(dev);
2438 enum intel_display_power_domain power_domain;
2439 u32 tmp;
2440 bool ret;
2441
2442 power_domain = intel_display_port_power_domain(encoder);
2443 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2444 return false;
2445
2446 ret = false;
2447
2448 tmp = I915_READ(intel_dp->output_reg);
2449
2450 if (!(tmp & DP_PORT_EN))
2451 goto out;
2452
2453 if (IS_GEN7(dev_priv) && port == PORT_A) {
2454 *pipe = PORT_TO_PIPE_CPT(tmp);
2455 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2456 enum pipe p;
2457
2458 for_each_pipe(dev_priv, p) {
2459 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2460 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2461 *pipe = p;
2462 ret = true;
2463
2464 goto out;
2465 }
2466 }
2467
2468 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2469 i915_mmio_reg_offset(intel_dp->output_reg));
2470 } else if (IS_CHERRYVIEW(dev_priv)) {
2471 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2472 } else {
2473 *pipe = PORT_TO_PIPE(tmp);
2474 }
2475
2476 ret = true;
2477
2478 out:
2479 intel_display_power_put(dev_priv, power_domain);
2480
2481 return ret;
2482 }
2483
2484 static void intel_dp_get_config(struct intel_encoder *encoder,
2485 struct intel_crtc_state *pipe_config)
2486 {
2487 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2488 u32 tmp, flags = 0;
2489 struct drm_device *dev = encoder->base.dev;
2490 struct drm_i915_private *dev_priv = to_i915(dev);
2491 enum port port = dp_to_dig_port(intel_dp)->port;
2492 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2493
2494 tmp = I915_READ(intel_dp->output_reg);
2495
2496 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2497
2498 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2499 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2500
2501 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2502 flags |= DRM_MODE_FLAG_PHSYNC;
2503 else
2504 flags |= DRM_MODE_FLAG_NHSYNC;
2505
2506 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2507 flags |= DRM_MODE_FLAG_PVSYNC;
2508 else
2509 flags |= DRM_MODE_FLAG_NVSYNC;
2510 } else {
2511 if (tmp & DP_SYNC_HS_HIGH)
2512 flags |= DRM_MODE_FLAG_PHSYNC;
2513 else
2514 flags |= DRM_MODE_FLAG_NHSYNC;
2515
2516 if (tmp & DP_SYNC_VS_HIGH)
2517 flags |= DRM_MODE_FLAG_PVSYNC;
2518 else
2519 flags |= DRM_MODE_FLAG_NVSYNC;
2520 }
2521
2522 pipe_config->base.adjusted_mode.flags |= flags;
2523
2524 if (!HAS_PCH_SPLIT(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
2525 !IS_CHERRYVIEW(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2526 pipe_config->limited_color_range = true;
2527
2528 pipe_config->lane_count =
2529 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2530
2531 intel_dp_get_m_n(crtc, pipe_config);
2532
2533 if (port == PORT_A) {
2534 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2535 pipe_config->port_clock = 162000;
2536 else
2537 pipe_config->port_clock = 270000;
2538 }
2539
2540 pipe_config->base.adjusted_mode.crtc_clock =
2541 intel_dotclock_calculate(pipe_config->port_clock,
2542 &pipe_config->dp_m_n);
2543
2544 if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2545 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2546 /*
2547 * This is a big fat ugly hack.
2548 *
2549 * Some machines in UEFI boot mode provide us a VBT that has 18
2550 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2551 * unknown we fail to light up. Yet the same BIOS boots up with
2552 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2553 * max, not what it tells us to use.
2554 *
2555 * Note: This will still be broken if the eDP panel is not lit
2556 * up by the BIOS, and thus we can't get the mode at module
2557 * load.
2558 */
2559 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2560 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2561 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2562 }
2563 }
2564
2565 static void intel_disable_dp(struct intel_encoder *encoder,
2566 struct intel_crtc_state *old_crtc_state,
2567 struct drm_connector_state *old_conn_state)
2568 {
2569 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2570 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2571
2572 if (old_crtc_state->has_audio)
2573 intel_audio_codec_disable(encoder);
2574
2575 if (HAS_PSR(dev_priv) && !HAS_DDI(dev_priv))
2576 intel_psr_disable(intel_dp);
2577
2578 /* Make sure the panel is off before trying to change the mode. But also
2579 * ensure that we have vdd while we switch off the panel. */
2580 intel_edp_panel_vdd_on(intel_dp);
2581 intel_edp_backlight_off(intel_dp);
2582 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2583 intel_edp_panel_off(intel_dp);
2584
2585 /* disable the port before the pipe on g4x */
2586 if (INTEL_GEN(dev_priv) < 5)
2587 intel_dp_link_down(intel_dp);
2588 }
2589
2590 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2591 struct intel_crtc_state *old_crtc_state,
2592 struct drm_connector_state *old_conn_state)
2593 {
2594 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2595 enum port port = dp_to_dig_port(intel_dp)->port;
2596
2597 intel_dp_link_down(intel_dp);
2598
2599 /* Only ilk+ has port A */
2600 if (port == PORT_A)
2601 ironlake_edp_pll_off(intel_dp);
2602 }
2603
2604 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2605 struct intel_crtc_state *old_crtc_state,
2606 struct drm_connector_state *old_conn_state)
2607 {
2608 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2609
2610 intel_dp_link_down(intel_dp);
2611 }
2612
2613 static void chv_post_disable_dp(struct intel_encoder *encoder,
2614 struct intel_crtc_state *old_crtc_state,
2615 struct drm_connector_state *old_conn_state)
2616 {
2617 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2618 struct drm_device *dev = encoder->base.dev;
2619 struct drm_i915_private *dev_priv = to_i915(dev);
2620
2621 intel_dp_link_down(intel_dp);
2622
2623 mutex_lock(&dev_priv->sb_lock);
2624
2625 /* Assert data lane reset */
2626 chv_data_lane_soft_reset(encoder, true);
2627
2628 mutex_unlock(&dev_priv->sb_lock);
2629 }
2630
2631 static void
2632 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2633 uint32_t *DP,
2634 uint8_t dp_train_pat)
2635 {
2636 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2637 struct drm_device *dev = intel_dig_port->base.base.dev;
2638 struct drm_i915_private *dev_priv = to_i915(dev);
2639 enum port port = intel_dig_port->port;
2640
2641 if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2642 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2643 dp_train_pat & DP_TRAINING_PATTERN_MASK);
2644
2645 if (HAS_DDI(dev_priv)) {
2646 uint32_t temp = I915_READ(DP_TP_CTL(port));
2647
2648 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2649 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2650 else
2651 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2652
2653 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2654 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2655 case DP_TRAINING_PATTERN_DISABLE:
2656 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2657
2658 break;
2659 case DP_TRAINING_PATTERN_1:
2660 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2661 break;
2662 case DP_TRAINING_PATTERN_2:
2663 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2664 break;
2665 case DP_TRAINING_PATTERN_3:
2666 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2667 break;
2668 }
2669 I915_WRITE(DP_TP_CTL(port), temp);
2670
2671 } else if ((IS_GEN7(dev_priv) && port == PORT_A) ||
2672 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
2673 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2674
2675 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2676 case DP_TRAINING_PATTERN_DISABLE:
2677 *DP |= DP_LINK_TRAIN_OFF_CPT;
2678 break;
2679 case DP_TRAINING_PATTERN_1:
2680 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2681 break;
2682 case DP_TRAINING_PATTERN_2:
2683 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2684 break;
2685 case DP_TRAINING_PATTERN_3:
2686 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2687 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2688 break;
2689 }
2690
2691 } else {
2692 if (IS_CHERRYVIEW(dev_priv))
2693 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2694 else
2695 *DP &= ~DP_LINK_TRAIN_MASK;
2696
2697 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2698 case DP_TRAINING_PATTERN_DISABLE:
2699 *DP |= DP_LINK_TRAIN_OFF;
2700 break;
2701 case DP_TRAINING_PATTERN_1:
2702 *DP |= DP_LINK_TRAIN_PAT_1;
2703 break;
2704 case DP_TRAINING_PATTERN_2:
2705 *DP |= DP_LINK_TRAIN_PAT_2;
2706 break;
2707 case DP_TRAINING_PATTERN_3:
2708 if (IS_CHERRYVIEW(dev_priv)) {
2709 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2710 } else {
2711 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2712 *DP |= DP_LINK_TRAIN_PAT_2;
2713 }
2714 break;
2715 }
2716 }
2717 }
2718
2719 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2720 struct intel_crtc_state *old_crtc_state)
2721 {
2722 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2723 struct drm_i915_private *dev_priv = to_i915(dev);
2724
2725 /* enable with pattern 1 (as per spec) */
2726
2727 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2728
2729 /*
2730 * Magic for VLV/CHV. We _must_ first set up the register
2731 * without actually enabling the port, and then do another
2732 * write to enable the port. Otherwise link training will
2733 * fail when the power sequencer is freshly used for this port.
2734 */
2735 intel_dp->DP |= DP_PORT_EN;
2736 if (old_crtc_state->has_audio)
2737 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2738
2739 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2740 POSTING_READ(intel_dp->output_reg);
2741 }
2742
2743 static void intel_enable_dp(struct intel_encoder *encoder,
2744 struct intel_crtc_state *pipe_config)
2745 {
2746 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2747 struct drm_device *dev = encoder->base.dev;
2748 struct drm_i915_private *dev_priv = to_i915(dev);
2749 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2750 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2751 enum pipe pipe = crtc->pipe;
2752
2753 if (WARN_ON(dp_reg & DP_PORT_EN))
2754 return;
2755
2756 pps_lock(intel_dp);
2757
2758 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2759 vlv_init_panel_power_sequencer(intel_dp);
2760
2761 intel_dp_enable_port(intel_dp, pipe_config);
2762
2763 edp_panel_vdd_on(intel_dp);
2764 edp_panel_on(intel_dp);
2765 edp_panel_vdd_off(intel_dp, true);
2766
2767 pps_unlock(intel_dp);
2768
2769 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2770 unsigned int lane_mask = 0x0;
2771
2772 if (IS_CHERRYVIEW(dev_priv))
2773 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2774
2775 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2776 lane_mask);
2777 }
2778
2779 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2780 intel_dp_start_link_train(intel_dp);
2781 intel_dp_stop_link_train(intel_dp);
2782
2783 if (pipe_config->has_audio) {
2784 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2785 pipe_name(pipe));
2786 intel_audio_codec_enable(encoder);
2787 }
2788 }
2789
2790 static void g4x_enable_dp(struct intel_encoder *encoder,
2791 struct intel_crtc_state *pipe_config,
2792 struct drm_connector_state *conn_state)
2793 {
2794 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2795
2796 intel_enable_dp(encoder, pipe_config);
2797 intel_edp_backlight_on(intel_dp);
2798 }
2799
2800 static void vlv_enable_dp(struct intel_encoder *encoder,
2801 struct intel_crtc_state *pipe_config,
2802 struct drm_connector_state *conn_state)
2803 {
2804 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2805
2806 intel_edp_backlight_on(intel_dp);
2807 intel_psr_enable(intel_dp);
2808 }
2809
2810 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
2811 struct intel_crtc_state *pipe_config,
2812 struct drm_connector_state *conn_state)
2813 {
2814 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2815 enum port port = dp_to_dig_port(intel_dp)->port;
2816
2817 intel_dp_prepare(encoder, pipe_config);
2818
2819 /* Only ilk+ has port A */
2820 if (port == PORT_A)
2821 ironlake_edp_pll_on(intel_dp, pipe_config);
2822 }
2823
2824 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2825 {
2826 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2827 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2828 enum pipe pipe = intel_dp->pps_pipe;
2829 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2830
2831 edp_panel_vdd_off_sync(intel_dp);
2832
2833 /*
2834 * VLV seems to get confused when multiple power seqeuencers
2835 * have the same port selected (even if only one has power/vdd
2836 * enabled). The failure manifests as vlv_wait_port_ready() failing
2837 * CHV on the other hand doesn't seem to mind having the same port
2838 * selected in multiple power seqeuencers, but let's clear the
2839 * port select always when logically disconnecting a power sequencer
2840 * from a port.
2841 */
2842 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2843 pipe_name(pipe), port_name(intel_dig_port->port));
2844 I915_WRITE(pp_on_reg, 0);
2845 POSTING_READ(pp_on_reg);
2846
2847 intel_dp->pps_pipe = INVALID_PIPE;
2848 }
2849
2850 static void vlv_steal_power_sequencer(struct drm_device *dev,
2851 enum pipe pipe)
2852 {
2853 struct drm_i915_private *dev_priv = to_i915(dev);
2854 struct intel_encoder *encoder;
2855
2856 lockdep_assert_held(&dev_priv->pps_mutex);
2857
2858 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2859 return;
2860
2861 for_each_intel_encoder(dev, encoder) {
2862 struct intel_dp *intel_dp;
2863 enum port port;
2864
2865 if (encoder->type != INTEL_OUTPUT_EDP)
2866 continue;
2867
2868 intel_dp = enc_to_intel_dp(&encoder->base);
2869 port = dp_to_dig_port(intel_dp)->port;
2870
2871 if (intel_dp->pps_pipe != pipe)
2872 continue;
2873
2874 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2875 pipe_name(pipe), port_name(port));
2876
2877 WARN(encoder->base.crtc,
2878 "stealing pipe %c power sequencer from active eDP port %c\n",
2879 pipe_name(pipe), port_name(port));
2880
2881 /* make sure vdd is off before we steal it */
2882 vlv_detach_power_sequencer(intel_dp);
2883 }
2884 }
2885
2886 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2887 {
2888 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2889 struct intel_encoder *encoder = &intel_dig_port->base;
2890 struct drm_device *dev = encoder->base.dev;
2891 struct drm_i915_private *dev_priv = to_i915(dev);
2892 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2893
2894 lockdep_assert_held(&dev_priv->pps_mutex);
2895
2896 if (!is_edp(intel_dp))
2897 return;
2898
2899 if (intel_dp->pps_pipe == crtc->pipe)
2900 return;
2901
2902 /*
2903 * If another power sequencer was being used on this
2904 * port previously make sure to turn off vdd there while
2905 * we still have control of it.
2906 */
2907 if (intel_dp->pps_pipe != INVALID_PIPE)
2908 vlv_detach_power_sequencer(intel_dp);
2909
2910 /*
2911 * We may be stealing the power
2912 * sequencer from another port.
2913 */
2914 vlv_steal_power_sequencer(dev, crtc->pipe);
2915
2916 /* now it's all ours */
2917 intel_dp->pps_pipe = crtc->pipe;
2918
2919 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2920 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2921
2922 /* init power sequencer on this pipe and port */
2923 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2924 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2925 }
2926
2927 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
2928 struct intel_crtc_state *pipe_config,
2929 struct drm_connector_state *conn_state)
2930 {
2931 vlv_phy_pre_encoder_enable(encoder);
2932
2933 intel_enable_dp(encoder, pipe_config);
2934 }
2935
2936 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
2937 struct intel_crtc_state *pipe_config,
2938 struct drm_connector_state *conn_state)
2939 {
2940 intel_dp_prepare(encoder, pipe_config);
2941
2942 vlv_phy_pre_pll_enable(encoder);
2943 }
2944
2945 static void chv_pre_enable_dp(struct intel_encoder *encoder,
2946 struct intel_crtc_state *pipe_config,
2947 struct drm_connector_state *conn_state)
2948 {
2949 chv_phy_pre_encoder_enable(encoder);
2950
2951 intel_enable_dp(encoder, pipe_config);
2952
2953 /* Second common lane will stay alive on its own now */
2954 chv_phy_release_cl2_override(encoder);
2955 }
2956
2957 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
2958 struct intel_crtc_state *pipe_config,
2959 struct drm_connector_state *conn_state)
2960 {
2961 intel_dp_prepare(encoder, pipe_config);
2962
2963 chv_phy_pre_pll_enable(encoder);
2964 }
2965
2966 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
2967 struct intel_crtc_state *pipe_config,
2968 struct drm_connector_state *conn_state)
2969 {
2970 chv_phy_post_pll_disable(encoder);
2971 }
2972
2973 /*
2974 * Fetch AUX CH registers 0x202 - 0x207 which contain
2975 * link status information
2976 */
2977 bool
2978 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2979 {
2980 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
2981 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2982 }
2983
2984 /* These are source-specific values. */
2985 uint8_t
2986 intel_dp_voltage_max(struct intel_dp *intel_dp)
2987 {
2988 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2989 struct drm_i915_private *dev_priv = to_i915(dev);
2990 enum port port = dp_to_dig_port(intel_dp)->port;
2991
2992 if (IS_BROXTON(dev_priv))
2993 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2994 else if (INTEL_INFO(dev)->gen >= 9) {
2995 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
2996 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2997 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2998 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2999 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3000 else if (IS_GEN7(dev_priv) && port == PORT_A)
3001 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3002 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3003 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3004 else
3005 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3006 }
3007
3008 uint8_t
3009 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3010 {
3011 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3012 enum port port = dp_to_dig_port(intel_dp)->port;
3013
3014 if (INTEL_GEN(dev_priv) >= 9) {
3015 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3016 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3017 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3018 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3019 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3020 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3021 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3022 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3023 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3024 default:
3025 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3026 }
3027 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3028 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3029 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3030 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3031 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3032 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3033 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3034 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3035 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3036 default:
3037 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3038 }
3039 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3040 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3041 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3042 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3043 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3044 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3045 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3046 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3047 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3048 default:
3049 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3050 }
3051 } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3052 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3053 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3054 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3055 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3056 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3057 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3058 default:
3059 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3060 }
3061 } else {
3062 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3063 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3064 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3065 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3066 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3067 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3068 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3069 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3070 default:
3071 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3072 }
3073 }
3074 }
3075
3076 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3077 {
3078 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3079 unsigned long demph_reg_value, preemph_reg_value,
3080 uniqtranscale_reg_value;
3081 uint8_t train_set = intel_dp->train_set[0];
3082
3083 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3084 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3085 preemph_reg_value = 0x0004000;
3086 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3087 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3088 demph_reg_value = 0x2B405555;
3089 uniqtranscale_reg_value = 0x552AB83A;
3090 break;
3091 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3092 demph_reg_value = 0x2B404040;
3093 uniqtranscale_reg_value = 0x5548B83A;
3094 break;
3095 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3096 demph_reg_value = 0x2B245555;
3097 uniqtranscale_reg_value = 0x5560B83A;
3098 break;
3099 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3100 demph_reg_value = 0x2B405555;
3101 uniqtranscale_reg_value = 0x5598DA3A;
3102 break;
3103 default:
3104 return 0;
3105 }
3106 break;
3107 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3108 preemph_reg_value = 0x0002000;
3109 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3110 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3111 demph_reg_value = 0x2B404040;
3112 uniqtranscale_reg_value = 0x5552B83A;
3113 break;
3114 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3115 demph_reg_value = 0x2B404848;
3116 uniqtranscale_reg_value = 0x5580B83A;
3117 break;
3118 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3119 demph_reg_value = 0x2B404040;
3120 uniqtranscale_reg_value = 0x55ADDA3A;
3121 break;
3122 default:
3123 return 0;
3124 }
3125 break;
3126 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3127 preemph_reg_value = 0x0000000;
3128 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3129 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3130 demph_reg_value = 0x2B305555;
3131 uniqtranscale_reg_value = 0x5570B83A;
3132 break;
3133 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3134 demph_reg_value = 0x2B2B4040;
3135 uniqtranscale_reg_value = 0x55ADDA3A;
3136 break;
3137 default:
3138 return 0;
3139 }
3140 break;
3141 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3142 preemph_reg_value = 0x0006000;
3143 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3144 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3145 demph_reg_value = 0x1B405555;
3146 uniqtranscale_reg_value = 0x55ADDA3A;
3147 break;
3148 default:
3149 return 0;
3150 }
3151 break;
3152 default:
3153 return 0;
3154 }
3155
3156 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3157 uniqtranscale_reg_value, 0);
3158
3159 return 0;
3160 }
3161
3162 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3163 {
3164 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3165 u32 deemph_reg_value, margin_reg_value;
3166 bool uniq_trans_scale = false;
3167 uint8_t train_set = intel_dp->train_set[0];
3168
3169 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3170 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3171 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3172 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3173 deemph_reg_value = 128;
3174 margin_reg_value = 52;
3175 break;
3176 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3177 deemph_reg_value = 128;
3178 margin_reg_value = 77;
3179 break;
3180 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3181 deemph_reg_value = 128;
3182 margin_reg_value = 102;
3183 break;
3184 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3185 deemph_reg_value = 128;
3186 margin_reg_value = 154;
3187 uniq_trans_scale = true;
3188 break;
3189 default:
3190 return 0;
3191 }
3192 break;
3193 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3194 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3195 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3196 deemph_reg_value = 85;
3197 margin_reg_value = 78;
3198 break;
3199 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3200 deemph_reg_value = 85;
3201 margin_reg_value = 116;
3202 break;
3203 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3204 deemph_reg_value = 85;
3205 margin_reg_value = 154;
3206 break;
3207 default:
3208 return 0;
3209 }
3210 break;
3211 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3212 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3213 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3214 deemph_reg_value = 64;
3215 margin_reg_value = 104;
3216 break;
3217 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3218 deemph_reg_value = 64;
3219 margin_reg_value = 154;
3220 break;
3221 default:
3222 return 0;
3223 }
3224 break;
3225 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3226 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3227 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3228 deemph_reg_value = 43;
3229 margin_reg_value = 154;
3230 break;
3231 default:
3232 return 0;
3233 }
3234 break;
3235 default:
3236 return 0;
3237 }
3238
3239 chv_set_phy_signal_level(encoder, deemph_reg_value,
3240 margin_reg_value, uniq_trans_scale);
3241
3242 return 0;
3243 }
3244
3245 static uint32_t
3246 gen4_signal_levels(uint8_t train_set)
3247 {
3248 uint32_t signal_levels = 0;
3249
3250 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3251 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3252 default:
3253 signal_levels |= DP_VOLTAGE_0_4;
3254 break;
3255 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3256 signal_levels |= DP_VOLTAGE_0_6;
3257 break;
3258 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3259 signal_levels |= DP_VOLTAGE_0_8;
3260 break;
3261 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3262 signal_levels |= DP_VOLTAGE_1_2;
3263 break;
3264 }
3265 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3266 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3267 default:
3268 signal_levels |= DP_PRE_EMPHASIS_0;
3269 break;
3270 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3271 signal_levels |= DP_PRE_EMPHASIS_3_5;
3272 break;
3273 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3274 signal_levels |= DP_PRE_EMPHASIS_6;
3275 break;
3276 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3277 signal_levels |= DP_PRE_EMPHASIS_9_5;
3278 break;
3279 }
3280 return signal_levels;
3281 }
3282
3283 /* Gen6's DP voltage swing and pre-emphasis control */
3284 static uint32_t
3285 gen6_edp_signal_levels(uint8_t train_set)
3286 {
3287 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3288 DP_TRAIN_PRE_EMPHASIS_MASK);
3289 switch (signal_levels) {
3290 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3291 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3292 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3293 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3294 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3295 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3296 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3297 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3298 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3299 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3300 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3301 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3302 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3303 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3304 default:
3305 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3306 "0x%x\n", signal_levels);
3307 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3308 }
3309 }
3310
3311 /* Gen7's DP voltage swing and pre-emphasis control */
3312 static uint32_t
3313 gen7_edp_signal_levels(uint8_t train_set)
3314 {
3315 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3316 DP_TRAIN_PRE_EMPHASIS_MASK);
3317 switch (signal_levels) {
3318 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3319 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3320 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3321 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3322 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3323 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3324
3325 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3326 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3327 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3328 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3329
3330 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3331 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3332 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3333 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3334
3335 default:
3336 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3337 "0x%x\n", signal_levels);
3338 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3339 }
3340 }
3341
3342 void
3343 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3344 {
3345 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3346 enum port port = intel_dig_port->port;
3347 struct drm_device *dev = intel_dig_port->base.base.dev;
3348 struct drm_i915_private *dev_priv = to_i915(dev);
3349 uint32_t signal_levels, mask = 0;
3350 uint8_t train_set = intel_dp->train_set[0];
3351
3352 if (HAS_DDI(dev_priv)) {
3353 signal_levels = ddi_signal_levels(intel_dp);
3354
3355 if (IS_BROXTON(dev_priv))
3356 signal_levels = 0;
3357 else
3358 mask = DDI_BUF_EMP_MASK;
3359 } else if (IS_CHERRYVIEW(dev_priv)) {
3360 signal_levels = chv_signal_levels(intel_dp);
3361 } else if (IS_VALLEYVIEW(dev_priv)) {
3362 signal_levels = vlv_signal_levels(intel_dp);
3363 } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3364 signal_levels = gen7_edp_signal_levels(train_set);
3365 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3366 } else if (IS_GEN6(dev_priv) && port == PORT_A) {
3367 signal_levels = gen6_edp_signal_levels(train_set);
3368 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3369 } else {
3370 signal_levels = gen4_signal_levels(train_set);
3371 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3372 }
3373
3374 if (mask)
3375 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3376
3377 DRM_DEBUG_KMS("Using vswing level %d\n",
3378 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3379 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3380 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3381 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3382
3383 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3384
3385 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3386 POSTING_READ(intel_dp->output_reg);
3387 }
3388
3389 void
3390 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3391 uint8_t dp_train_pat)
3392 {
3393 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3394 struct drm_i915_private *dev_priv =
3395 to_i915(intel_dig_port->base.base.dev);
3396
3397 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3398
3399 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3400 POSTING_READ(intel_dp->output_reg);
3401 }
3402
3403 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3404 {
3405 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3406 struct drm_device *dev = intel_dig_port->base.base.dev;
3407 struct drm_i915_private *dev_priv = to_i915(dev);
3408 enum port port = intel_dig_port->port;
3409 uint32_t val;
3410
3411 if (!HAS_DDI(dev_priv))
3412 return;
3413
3414 val = I915_READ(DP_TP_CTL(port));
3415 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3416 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3417 I915_WRITE(DP_TP_CTL(port), val);
3418
3419 /*
3420 * On PORT_A we can have only eDP in SST mode. There the only reason
3421 * we need to set idle transmission mode is to work around a HW issue
3422 * where we enable the pipe while not in idle link-training mode.
3423 * In this case there is requirement to wait for a minimum number of
3424 * idle patterns to be sent.
3425 */
3426 if (port == PORT_A)
3427 return;
3428
3429 if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3430 DP_TP_STATUS_IDLE_DONE,
3431 DP_TP_STATUS_IDLE_DONE,
3432 1))
3433 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3434 }
3435
3436 static void
3437 intel_dp_link_down(struct intel_dp *intel_dp)
3438 {
3439 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3440 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3441 enum port port = intel_dig_port->port;
3442 struct drm_device *dev = intel_dig_port->base.base.dev;
3443 struct drm_i915_private *dev_priv = to_i915(dev);
3444 uint32_t DP = intel_dp->DP;
3445
3446 if (WARN_ON(HAS_DDI(dev_priv)))
3447 return;
3448
3449 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3450 return;
3451
3452 DRM_DEBUG_KMS("\n");
3453
3454 if ((IS_GEN7(dev_priv) && port == PORT_A) ||
3455 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3456 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3457 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3458 } else {
3459 if (IS_CHERRYVIEW(dev_priv))
3460 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3461 else
3462 DP &= ~DP_LINK_TRAIN_MASK;
3463 DP |= DP_LINK_TRAIN_PAT_IDLE;
3464 }
3465 I915_WRITE(intel_dp->output_reg, DP);
3466 POSTING_READ(intel_dp->output_reg);
3467
3468 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3469 I915_WRITE(intel_dp->output_reg, DP);
3470 POSTING_READ(intel_dp->output_reg);
3471
3472 /*
3473 * HW workaround for IBX, we need to move the port
3474 * to transcoder A after disabling it to allow the
3475 * matching HDMI port to be enabled on transcoder A.
3476 */
3477 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3478 /*
3479 * We get CPU/PCH FIFO underruns on the other pipe when
3480 * doing the workaround. Sweep them under the rug.
3481 */
3482 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3483 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3484
3485 /* always enable with pattern 1 (as per spec) */
3486 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3487 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3488 I915_WRITE(intel_dp->output_reg, DP);
3489 POSTING_READ(intel_dp->output_reg);
3490
3491 DP &= ~DP_PORT_EN;
3492 I915_WRITE(intel_dp->output_reg, DP);
3493 POSTING_READ(intel_dp->output_reg);
3494
3495 intel_wait_for_vblank_if_active(&dev_priv->drm, PIPE_A);
3496 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3497 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3498 }
3499
3500 msleep(intel_dp->panel_power_down_delay);
3501
3502 intel_dp->DP = DP;
3503 }
3504
3505 static bool
3506 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3507 {
3508 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3509 sizeof(intel_dp->dpcd)) < 0)
3510 return false; /* aux transfer failed */
3511
3512 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3513
3514 return intel_dp->dpcd[DP_DPCD_REV] != 0;
3515 }
3516
3517 static bool
3518 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3519 {
3520 struct drm_i915_private *dev_priv =
3521 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3522
3523 /* this function is meant to be called only once */
3524 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3525
3526 if (!intel_dp_read_dpcd(intel_dp))
3527 return false;
3528
3529 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3530 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3531 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3532
3533 /* Check if the panel supports PSR */
3534 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3535 intel_dp->psr_dpcd,
3536 sizeof(intel_dp->psr_dpcd));
3537 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3538 dev_priv->psr.sink_support = true;
3539 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3540 }
3541
3542 if (INTEL_GEN(dev_priv) >= 9 &&
3543 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3544 uint8_t frame_sync_cap;
3545
3546 dev_priv->psr.sink_support = true;
3547 drm_dp_dpcd_read(&intel_dp->aux,
3548 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3549 &frame_sync_cap, 1);
3550 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3551 /* PSR2 needs frame sync as well */
3552 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3553 DRM_DEBUG_KMS("PSR2 %s on sink",
3554 dev_priv->psr.psr2_support ? "supported" : "not supported");
3555 }
3556
3557 /* Read the eDP Display control capabilities registers */
3558 if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3559 drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3560 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3561 sizeof(intel_dp->edp_dpcd))
3562 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3563 intel_dp->edp_dpcd);
3564
3565 /* Intermediate frequency support */
3566 if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3567 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3568 int i;
3569
3570 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3571 sink_rates, sizeof(sink_rates));
3572
3573 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3574 int val = le16_to_cpu(sink_rates[i]);
3575
3576 if (val == 0)
3577 break;
3578
3579 /* Value read is in kHz while drm clock is saved in deca-kHz */
3580 intel_dp->sink_rates[i] = (val * 200) / 10;
3581 }
3582 intel_dp->num_sink_rates = i;
3583 }
3584
3585 return true;
3586 }
3587
3588
3589 static bool
3590 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3591 {
3592 if (!intel_dp_read_dpcd(intel_dp))
3593 return false;
3594
3595 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3596 &intel_dp->sink_count, 1) < 0)
3597 return false;
3598
3599 /*
3600 * Sink count can change between short pulse hpd hence
3601 * a member variable in intel_dp will track any changes
3602 * between short pulse interrupts.
3603 */
3604 intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3605
3606 /*
3607 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3608 * a dongle is present but no display. Unless we require to know
3609 * if a dongle is present or not, we don't need to update
3610 * downstream port information. So, an early return here saves
3611 * time from performing other operations which are not required.
3612 */
3613 if (!is_edp(intel_dp) && !intel_dp->sink_count)
3614 return false;
3615
3616 if (!drm_dp_is_branch(intel_dp->dpcd))
3617 return true; /* native DP sink */
3618
3619 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3620 return true; /* no per-port downstream info */
3621
3622 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3623 intel_dp->downstream_ports,
3624 DP_MAX_DOWNSTREAM_PORTS) < 0)
3625 return false; /* downstream port status fetch failed */
3626
3627 return true;
3628 }
3629
3630 static void
3631 intel_dp_probe_oui(struct intel_dp *intel_dp)
3632 {
3633 u8 buf[3];
3634
3635 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3636 return;
3637
3638 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3639 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3640 buf[0], buf[1], buf[2]);
3641
3642 if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3643 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3644 buf[0], buf[1], buf[2]);
3645 }
3646
3647 static bool
3648 intel_dp_can_mst(struct intel_dp *intel_dp)
3649 {
3650 u8 buf[1];
3651
3652 if (!i915.enable_dp_mst)
3653 return false;
3654
3655 if (!intel_dp->can_mst)
3656 return false;
3657
3658 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3659 return false;
3660
3661 if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1) != 1)
3662 return false;
3663
3664 return buf[0] & DP_MST_CAP;
3665 }
3666
3667 static void
3668 intel_dp_configure_mst(struct intel_dp *intel_dp)
3669 {
3670 if (!i915.enable_dp_mst)
3671 return;
3672
3673 if (!intel_dp->can_mst)
3674 return;
3675
3676 intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3677
3678 if (intel_dp->is_mst)
3679 DRM_DEBUG_KMS("Sink is MST capable\n");
3680 else
3681 DRM_DEBUG_KMS("Sink is not MST capable\n");
3682
3683 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3684 intel_dp->is_mst);
3685 }
3686
3687 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3688 {
3689 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3690 struct drm_device *dev = dig_port->base.base.dev;
3691 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3692 u8 buf;
3693 int ret = 0;
3694 int count = 0;
3695 int attempts = 10;
3696
3697 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3698 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3699 ret = -EIO;
3700 goto out;
3701 }
3702
3703 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3704 buf & ~DP_TEST_SINK_START) < 0) {
3705 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3706 ret = -EIO;
3707 goto out;
3708 }
3709
3710 do {
3711 intel_wait_for_vblank(dev, intel_crtc->pipe);
3712
3713 if (drm_dp_dpcd_readb(&intel_dp->aux,
3714 DP_TEST_SINK_MISC, &buf) < 0) {
3715 ret = -EIO;
3716 goto out;
3717 }
3718 count = buf & DP_TEST_COUNT_MASK;
3719 } while (--attempts && count);
3720
3721 if (attempts == 0) {
3722 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3723 ret = -ETIMEDOUT;
3724 }
3725
3726 out:
3727 hsw_enable_ips(intel_crtc);
3728 return ret;
3729 }
3730
3731 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3732 {
3733 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3734 struct drm_device *dev = dig_port->base.base.dev;
3735 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3736 u8 buf;
3737 int ret;
3738
3739 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3740 return -EIO;
3741
3742 if (!(buf & DP_TEST_CRC_SUPPORTED))
3743 return -ENOTTY;
3744
3745 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3746 return -EIO;
3747
3748 if (buf & DP_TEST_SINK_START) {
3749 ret = intel_dp_sink_crc_stop(intel_dp);
3750 if (ret)
3751 return ret;
3752 }
3753
3754 hsw_disable_ips(intel_crtc);
3755
3756 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3757 buf | DP_TEST_SINK_START) < 0) {
3758 hsw_enable_ips(intel_crtc);
3759 return -EIO;
3760 }
3761
3762 intel_wait_for_vblank(dev, intel_crtc->pipe);
3763 return 0;
3764 }
3765
3766 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3767 {
3768 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3769 struct drm_device *dev = dig_port->base.base.dev;
3770 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3771 u8 buf;
3772 int count, ret;
3773 int attempts = 6;
3774
3775 ret = intel_dp_sink_crc_start(intel_dp);
3776 if (ret)
3777 return ret;
3778
3779 do {
3780 intel_wait_for_vblank(dev, intel_crtc->pipe);
3781
3782 if (drm_dp_dpcd_readb(&intel_dp->aux,
3783 DP_TEST_SINK_MISC, &buf) < 0) {
3784 ret = -EIO;
3785 goto stop;
3786 }
3787 count = buf & DP_TEST_COUNT_MASK;
3788
3789 } while (--attempts && count == 0);
3790
3791 if (attempts == 0) {
3792 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3793 ret = -ETIMEDOUT;
3794 goto stop;
3795 }
3796
3797 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3798 ret = -EIO;
3799 goto stop;
3800 }
3801
3802 stop:
3803 intel_dp_sink_crc_stop(intel_dp);
3804 return ret;
3805 }
3806
3807 static bool
3808 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3809 {
3810 return drm_dp_dpcd_read(&intel_dp->aux,
3811 DP_DEVICE_SERVICE_IRQ_VECTOR,
3812 sink_irq_vector, 1) == 1;
3813 }
3814
3815 static bool
3816 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3817 {
3818 int ret;
3819
3820 ret = drm_dp_dpcd_read(&intel_dp->aux,
3821 DP_SINK_COUNT_ESI,
3822 sink_irq_vector, 14);
3823 if (ret != 14)
3824 return false;
3825
3826 return true;
3827 }
3828
3829 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3830 {
3831 uint8_t test_result = DP_TEST_ACK;
3832 return test_result;
3833 }
3834
3835 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3836 {
3837 uint8_t test_result = DP_TEST_NAK;
3838 return test_result;
3839 }
3840
3841 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3842 {
3843 uint8_t test_result = DP_TEST_NAK;
3844 struct intel_connector *intel_connector = intel_dp->attached_connector;
3845 struct drm_connector *connector = &intel_connector->base;
3846
3847 if (intel_connector->detect_edid == NULL ||
3848 connector->edid_corrupt ||
3849 intel_dp->aux.i2c_defer_count > 6) {
3850 /* Check EDID read for NACKs, DEFERs and corruption
3851 * (DP CTS 1.2 Core r1.1)
3852 * 4.2.2.4 : Failed EDID read, I2C_NAK
3853 * 4.2.2.5 : Failed EDID read, I2C_DEFER
3854 * 4.2.2.6 : EDID corruption detected
3855 * Use failsafe mode for all cases
3856 */
3857 if (intel_dp->aux.i2c_nack_count > 0 ||
3858 intel_dp->aux.i2c_defer_count > 0)
3859 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3860 intel_dp->aux.i2c_nack_count,
3861 intel_dp->aux.i2c_defer_count);
3862 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3863 } else {
3864 struct edid *block = intel_connector->detect_edid;
3865
3866 /* We have to write the checksum
3867 * of the last block read
3868 */
3869 block += intel_connector->detect_edid->extensions;
3870
3871 if (!drm_dp_dpcd_write(&intel_dp->aux,
3872 DP_TEST_EDID_CHECKSUM,
3873 &block->checksum,
3874 1))
3875 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3876
3877 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3878 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3879 }
3880
3881 /* Set test active flag here so userspace doesn't interrupt things */
3882 intel_dp->compliance_test_active = 1;
3883
3884 return test_result;
3885 }
3886
3887 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3888 {
3889 uint8_t test_result = DP_TEST_NAK;
3890 return test_result;
3891 }
3892
3893 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3894 {
3895 uint8_t response = DP_TEST_NAK;
3896 uint8_t rxdata = 0;
3897 int status = 0;
3898
3899 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3900 if (status <= 0) {
3901 DRM_DEBUG_KMS("Could not read test request from sink\n");
3902 goto update_status;
3903 }
3904
3905 switch (rxdata) {
3906 case DP_TEST_LINK_TRAINING:
3907 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3908 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3909 response = intel_dp_autotest_link_training(intel_dp);
3910 break;
3911 case DP_TEST_LINK_VIDEO_PATTERN:
3912 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3913 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3914 response = intel_dp_autotest_video_pattern(intel_dp);
3915 break;
3916 case DP_TEST_LINK_EDID_READ:
3917 DRM_DEBUG_KMS("EDID test requested\n");
3918 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3919 response = intel_dp_autotest_edid(intel_dp);
3920 break;
3921 case DP_TEST_LINK_PHY_TEST_PATTERN:
3922 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3923 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3924 response = intel_dp_autotest_phy_pattern(intel_dp);
3925 break;
3926 default:
3927 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3928 break;
3929 }
3930
3931 update_status:
3932 status = drm_dp_dpcd_write(&intel_dp->aux,
3933 DP_TEST_RESPONSE,
3934 &response, 1);
3935 if (status <= 0)
3936 DRM_DEBUG_KMS("Could not write test response to sink\n");
3937 }
3938
3939 static int
3940 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3941 {
3942 bool bret;
3943
3944 if (intel_dp->is_mst) {
3945 u8 esi[16] = { 0 };
3946 int ret = 0;
3947 int retry;
3948 bool handled;
3949 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3950 go_again:
3951 if (bret == true) {
3952
3953 /* check link status - esi[10] = 0x200c */
3954 if (intel_dp->active_mst_links &&
3955 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3956 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3957 intel_dp_start_link_train(intel_dp);
3958 intel_dp_stop_link_train(intel_dp);
3959 }
3960
3961 DRM_DEBUG_KMS("got esi %3ph\n", esi);
3962 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3963
3964 if (handled) {
3965 for (retry = 0; retry < 3; retry++) {
3966 int wret;
3967 wret = drm_dp_dpcd_write(&intel_dp->aux,
3968 DP_SINK_COUNT_ESI+1,
3969 &esi[1], 3);
3970 if (wret == 3) {
3971 break;
3972 }
3973 }
3974
3975 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3976 if (bret == true) {
3977 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3978 goto go_again;
3979 }
3980 } else
3981 ret = 0;
3982
3983 return ret;
3984 } else {
3985 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3986 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3987 intel_dp->is_mst = false;
3988 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3989 /* send a hotplug event */
3990 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3991 }
3992 }
3993 return -EINVAL;
3994 }
3995
3996 static void
3997 intel_dp_retrain_link(struct intel_dp *intel_dp)
3998 {
3999 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4000 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4001 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
4002
4003 /* Suppress underruns caused by re-training */
4004 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4005 if (crtc->config->has_pch_encoder)
4006 intel_set_pch_fifo_underrun_reporting(dev_priv,
4007 intel_crtc_pch_transcoder(crtc), false);
4008
4009 intel_dp_start_link_train(intel_dp);
4010 intel_dp_stop_link_train(intel_dp);
4011
4012 /* Keep underrun reporting disabled until things are stable */
4013 intel_wait_for_vblank(&dev_priv->drm, crtc->pipe);
4014
4015 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4016 if (crtc->config->has_pch_encoder)
4017 intel_set_pch_fifo_underrun_reporting(dev_priv,
4018 intel_crtc_pch_transcoder(crtc), true);
4019 }
4020
4021 static void
4022 intel_dp_check_link_status(struct intel_dp *intel_dp)
4023 {
4024 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4025 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4026 u8 link_status[DP_LINK_STATUS_SIZE];
4027
4028 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4029
4030 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4031 DRM_ERROR("Failed to get link status\n");
4032 return;
4033 }
4034
4035 if (!intel_encoder->base.crtc)
4036 return;
4037
4038 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4039 return;
4040
4041 /* FIXME: we need to synchronize this sort of stuff with hardware
4042 * readout */
4043 if (WARN_ON_ONCE(!intel_dp->lane_count))
4044 return;
4045
4046 /* if link training is requested we should perform it always */
4047 if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4048 (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4049 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4050 intel_encoder->base.name);
4051
4052 intel_dp_retrain_link(intel_dp);
4053 }
4054 }
4055
4056 /*
4057 * According to DP spec
4058 * 5.1.2:
4059 * 1. Read DPCD
4060 * 2. Configure link according to Receiver Capabilities
4061 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4062 * 4. Check link status on receipt of hot-plug interrupt
4063 *
4064 * intel_dp_short_pulse - handles short pulse interrupts
4065 * when full detection is not required.
4066 * Returns %true if short pulse is handled and full detection
4067 * is NOT required and %false otherwise.
4068 */
4069 static bool
4070 intel_dp_short_pulse(struct intel_dp *intel_dp)
4071 {
4072 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4073 u8 sink_irq_vector = 0;
4074 u8 old_sink_count = intel_dp->sink_count;
4075 bool ret;
4076
4077 /*
4078 * Clearing compliance test variables to allow capturing
4079 * of values for next automated test request.
4080 */
4081 intel_dp->compliance_test_active = 0;
4082 intel_dp->compliance_test_type = 0;
4083 intel_dp->compliance_test_data = 0;
4084
4085 /*
4086 * Now read the DPCD to see if it's actually running
4087 * If the current value of sink count doesn't match with
4088 * the value that was stored earlier or dpcd read failed
4089 * we need to do full detection
4090 */
4091 ret = intel_dp_get_dpcd(intel_dp);
4092
4093 if ((old_sink_count != intel_dp->sink_count) || !ret) {
4094 /* No need to proceed if we are going to do full detect */
4095 return false;
4096 }
4097
4098 /* Try to read the source of the interrupt */
4099 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4100 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4101 sink_irq_vector != 0) {
4102 /* Clear interrupt source */
4103 drm_dp_dpcd_writeb(&intel_dp->aux,
4104 DP_DEVICE_SERVICE_IRQ_VECTOR,
4105 sink_irq_vector);
4106
4107 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4108 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4109 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4110 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4111 }
4112
4113 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4114 intel_dp_check_link_status(intel_dp);
4115 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4116
4117 return true;
4118 }
4119
4120 /* XXX this is probably wrong for multiple downstream ports */
4121 static enum drm_connector_status
4122 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4123 {
4124 uint8_t *dpcd = intel_dp->dpcd;
4125 uint8_t type;
4126
4127 if (!intel_dp_get_dpcd(intel_dp))
4128 return connector_status_disconnected;
4129
4130 if (is_edp(intel_dp))
4131 return connector_status_connected;
4132
4133 /* if there's no downstream port, we're done */
4134 if (!drm_dp_is_branch(dpcd))
4135 return connector_status_connected;
4136
4137 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4138 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4139 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4140
4141 return intel_dp->sink_count ?
4142 connector_status_connected : connector_status_disconnected;
4143 }
4144
4145 if (intel_dp_can_mst(intel_dp))
4146 return connector_status_connected;
4147
4148 /* If no HPD, poke DDC gently */
4149 if (drm_probe_ddc(&intel_dp->aux.ddc))
4150 return connector_status_connected;
4151
4152 /* Well we tried, say unknown for unreliable port types */
4153 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4154 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4155 if (type == DP_DS_PORT_TYPE_VGA ||
4156 type == DP_DS_PORT_TYPE_NON_EDID)
4157 return connector_status_unknown;
4158 } else {
4159 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4160 DP_DWN_STRM_PORT_TYPE_MASK;
4161 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4162 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4163 return connector_status_unknown;
4164 }
4165
4166 /* Anything else is out of spec, warn and ignore */
4167 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4168 return connector_status_disconnected;
4169 }
4170
4171 static enum drm_connector_status
4172 edp_detect(struct intel_dp *intel_dp)
4173 {
4174 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4175 enum drm_connector_status status;
4176
4177 status = intel_panel_detect(dev);
4178 if (status == connector_status_unknown)
4179 status = connector_status_connected;
4180
4181 return status;
4182 }
4183
4184 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4185 struct intel_digital_port *port)
4186 {
4187 u32 bit;
4188
4189 switch (port->port) {
4190 case PORT_A:
4191 return true;
4192 case PORT_B:
4193 bit = SDE_PORTB_HOTPLUG;
4194 break;
4195 case PORT_C:
4196 bit = SDE_PORTC_HOTPLUG;
4197 break;
4198 case PORT_D:
4199 bit = SDE_PORTD_HOTPLUG;
4200 break;
4201 default:
4202 MISSING_CASE(port->port);
4203 return false;
4204 }
4205
4206 return I915_READ(SDEISR) & bit;
4207 }
4208
4209 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4210 struct intel_digital_port *port)
4211 {
4212 u32 bit;
4213
4214 switch (port->port) {
4215 case PORT_A:
4216 return true;
4217 case PORT_B:
4218 bit = SDE_PORTB_HOTPLUG_CPT;
4219 break;
4220 case PORT_C:
4221 bit = SDE_PORTC_HOTPLUG_CPT;
4222 break;
4223 case PORT_D:
4224 bit = SDE_PORTD_HOTPLUG_CPT;
4225 break;
4226 case PORT_E:
4227 bit = SDE_PORTE_HOTPLUG_SPT;
4228 break;
4229 default:
4230 MISSING_CASE(port->port);
4231 return false;
4232 }
4233
4234 return I915_READ(SDEISR) & bit;
4235 }
4236
4237 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4238 struct intel_digital_port *port)
4239 {
4240 u32 bit;
4241
4242 switch (port->port) {
4243 case PORT_B:
4244 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4245 break;
4246 case PORT_C:
4247 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4248 break;
4249 case PORT_D:
4250 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4251 break;
4252 default:
4253 MISSING_CASE(port->port);
4254 return false;
4255 }
4256
4257 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4258 }
4259
4260 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4261 struct intel_digital_port *port)
4262 {
4263 u32 bit;
4264
4265 switch (port->port) {
4266 case PORT_B:
4267 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4268 break;
4269 case PORT_C:
4270 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4271 break;
4272 case PORT_D:
4273 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4274 break;
4275 default:
4276 MISSING_CASE(port->port);
4277 return false;
4278 }
4279
4280 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4281 }
4282
4283 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4284 struct intel_digital_port *intel_dig_port)
4285 {
4286 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4287 enum port port;
4288 u32 bit;
4289
4290 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4291 switch (port) {
4292 case PORT_A:
4293 bit = BXT_DE_PORT_HP_DDIA;
4294 break;
4295 case PORT_B:
4296 bit = BXT_DE_PORT_HP_DDIB;
4297 break;
4298 case PORT_C:
4299 bit = BXT_DE_PORT_HP_DDIC;
4300 break;
4301 default:
4302 MISSING_CASE(port);
4303 return false;
4304 }
4305
4306 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4307 }
4308
4309 /*
4310 * intel_digital_port_connected - is the specified port connected?
4311 * @dev_priv: i915 private structure
4312 * @port: the port to test
4313 *
4314 * Return %true if @port is connected, %false otherwise.
4315 */
4316 static bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4317 struct intel_digital_port *port)
4318 {
4319 if (HAS_PCH_IBX(dev_priv))
4320 return ibx_digital_port_connected(dev_priv, port);
4321 else if (HAS_PCH_SPLIT(dev_priv))
4322 return cpt_digital_port_connected(dev_priv, port);
4323 else if (IS_BROXTON(dev_priv))
4324 return bxt_digital_port_connected(dev_priv, port);
4325 else if (IS_GM45(dev_priv))
4326 return gm45_digital_port_connected(dev_priv, port);
4327 else
4328 return g4x_digital_port_connected(dev_priv, port);
4329 }
4330
4331 static struct edid *
4332 intel_dp_get_edid(struct intel_dp *intel_dp)
4333 {
4334 struct intel_connector *intel_connector = intel_dp->attached_connector;
4335
4336 /* use cached edid if we have one */
4337 if (intel_connector->edid) {
4338 /* invalid edid */
4339 if (IS_ERR(intel_connector->edid))
4340 return NULL;
4341
4342 return drm_edid_duplicate(intel_connector->edid);
4343 } else
4344 return drm_get_edid(&intel_connector->base,
4345 &intel_dp->aux.ddc);
4346 }
4347
4348 static void
4349 intel_dp_set_edid(struct intel_dp *intel_dp)
4350 {
4351 struct intel_connector *intel_connector = intel_dp->attached_connector;
4352 struct edid *edid;
4353
4354 intel_dp_unset_edid(intel_dp);
4355 edid = intel_dp_get_edid(intel_dp);
4356 intel_connector->detect_edid = edid;
4357
4358 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4359 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4360 else
4361 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4362 }
4363
4364 static void
4365 intel_dp_unset_edid(struct intel_dp *intel_dp)
4366 {
4367 struct intel_connector *intel_connector = intel_dp->attached_connector;
4368
4369 kfree(intel_connector->detect_edid);
4370 intel_connector->detect_edid = NULL;
4371
4372 intel_dp->has_audio = false;
4373 }
4374
4375 static enum drm_connector_status
4376 intel_dp_long_pulse(struct intel_connector *intel_connector)
4377 {
4378 struct drm_connector *connector = &intel_connector->base;
4379 struct intel_dp *intel_dp = intel_attached_dp(connector);
4380 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4381 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4382 struct drm_device *dev = connector->dev;
4383 enum drm_connector_status status;
4384 enum intel_display_power_domain power_domain;
4385 u8 sink_irq_vector = 0;
4386
4387 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4388 intel_display_power_get(to_i915(dev), power_domain);
4389
4390 /* Can't disconnect eDP, but you can close the lid... */
4391 if (is_edp(intel_dp))
4392 status = edp_detect(intel_dp);
4393 else if (intel_digital_port_connected(to_i915(dev),
4394 dp_to_dig_port(intel_dp)))
4395 status = intel_dp_detect_dpcd(intel_dp);
4396 else
4397 status = connector_status_disconnected;
4398
4399 if (status == connector_status_disconnected) {
4400 intel_dp->compliance_test_active = 0;
4401 intel_dp->compliance_test_type = 0;
4402 intel_dp->compliance_test_data = 0;
4403
4404 if (intel_dp->is_mst) {
4405 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4406 intel_dp->is_mst,
4407 intel_dp->mst_mgr.mst_state);
4408 intel_dp->is_mst = false;
4409 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4410 intel_dp->is_mst);
4411 }
4412
4413 goto out;
4414 }
4415
4416 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4417 intel_encoder->type = INTEL_OUTPUT_DP;
4418
4419 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4420 yesno(intel_dp_source_supports_hbr2(intel_dp)),
4421 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4422
4423 intel_dp_print_rates(intel_dp);
4424
4425 intel_dp_probe_oui(intel_dp);
4426
4427 intel_dp_print_hw_revision(intel_dp);
4428 intel_dp_print_sw_revision(intel_dp);
4429
4430 intel_dp_configure_mst(intel_dp);
4431
4432 if (intel_dp->is_mst) {
4433 /*
4434 * If we are in MST mode then this connector
4435 * won't appear connected or have anything
4436 * with EDID on it
4437 */
4438 status = connector_status_disconnected;
4439 goto out;
4440 } else if (connector->status == connector_status_connected) {
4441 /*
4442 * If display was connected already and is still connected
4443 * check links status, there has been known issues of
4444 * link loss triggerring long pulse!!!!
4445 */
4446 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4447 intel_dp_check_link_status(intel_dp);
4448 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4449 goto out;
4450 }
4451
4452 /*
4453 * Clearing NACK and defer counts to get their exact values
4454 * while reading EDID which are required by Compliance tests
4455 * 4.2.2.4 and 4.2.2.5
4456 */
4457 intel_dp->aux.i2c_nack_count = 0;
4458 intel_dp->aux.i2c_defer_count = 0;
4459
4460 intel_dp_set_edid(intel_dp);
4461 if (is_edp(intel_dp) || intel_connector->detect_edid)
4462 status = connector_status_connected;
4463 intel_dp->detect_done = true;
4464
4465 /* Try to read the source of the interrupt */
4466 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4467 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4468 sink_irq_vector != 0) {
4469 /* Clear interrupt source */
4470 drm_dp_dpcd_writeb(&intel_dp->aux,
4471 DP_DEVICE_SERVICE_IRQ_VECTOR,
4472 sink_irq_vector);
4473
4474 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4475 intel_dp_handle_test_request(intel_dp);
4476 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4477 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4478 }
4479
4480 out:
4481 if (status != connector_status_connected && !intel_dp->is_mst)
4482 intel_dp_unset_edid(intel_dp);
4483
4484 intel_display_power_put(to_i915(dev), power_domain);
4485 return status;
4486 }
4487
4488 static enum drm_connector_status
4489 intel_dp_detect(struct drm_connector *connector, bool force)
4490 {
4491 struct intel_dp *intel_dp = intel_attached_dp(connector);
4492 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4493 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4494 enum drm_connector_status status = connector->status;
4495
4496 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4497 connector->base.id, connector->name);
4498
4499 if (intel_dp->is_mst) {
4500 /* MST devices are disconnected from a monitor POV */
4501 intel_dp_unset_edid(intel_dp);
4502 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4503 intel_encoder->type = INTEL_OUTPUT_DP;
4504 return connector_status_disconnected;
4505 }
4506
4507 /* If full detect is not performed yet, do a full detect */
4508 if (!intel_dp->detect_done)
4509 status = intel_dp_long_pulse(intel_dp->attached_connector);
4510
4511 intel_dp->detect_done = false;
4512
4513 return status;
4514 }
4515
4516 static void
4517 intel_dp_force(struct drm_connector *connector)
4518 {
4519 struct intel_dp *intel_dp = intel_attached_dp(connector);
4520 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4521 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4522 enum intel_display_power_domain power_domain;
4523
4524 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4525 connector->base.id, connector->name);
4526 intel_dp_unset_edid(intel_dp);
4527
4528 if (connector->status != connector_status_connected)
4529 return;
4530
4531 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4532 intel_display_power_get(dev_priv, power_domain);
4533
4534 intel_dp_set_edid(intel_dp);
4535
4536 intel_display_power_put(dev_priv, power_domain);
4537
4538 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4539 intel_encoder->type = INTEL_OUTPUT_DP;
4540 }
4541
4542 static int intel_dp_get_modes(struct drm_connector *connector)
4543 {
4544 struct intel_connector *intel_connector = to_intel_connector(connector);
4545 struct edid *edid;
4546
4547 edid = intel_connector->detect_edid;
4548 if (edid) {
4549 int ret = intel_connector_update_modes(connector, edid);
4550 if (ret)
4551 return ret;
4552 }
4553
4554 /* if eDP has no EDID, fall back to fixed mode */
4555 if (is_edp(intel_attached_dp(connector)) &&
4556 intel_connector->panel.fixed_mode) {
4557 struct drm_display_mode *mode;
4558
4559 mode = drm_mode_duplicate(connector->dev,
4560 intel_connector->panel.fixed_mode);
4561 if (mode) {
4562 drm_mode_probed_add(connector, mode);
4563 return 1;
4564 }
4565 }
4566
4567 return 0;
4568 }
4569
4570 static bool
4571 intel_dp_detect_audio(struct drm_connector *connector)
4572 {
4573 bool has_audio = false;
4574 struct edid *edid;
4575
4576 edid = to_intel_connector(connector)->detect_edid;
4577 if (edid)
4578 has_audio = drm_detect_monitor_audio(edid);
4579
4580 return has_audio;
4581 }
4582
4583 static int
4584 intel_dp_set_property(struct drm_connector *connector,
4585 struct drm_property *property,
4586 uint64_t val)
4587 {
4588 struct drm_i915_private *dev_priv = to_i915(connector->dev);
4589 struct intel_connector *intel_connector = to_intel_connector(connector);
4590 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4591 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4592 int ret;
4593
4594 ret = drm_object_property_set_value(&connector->base, property, val);
4595 if (ret)
4596 return ret;
4597
4598 if (property == dev_priv->force_audio_property) {
4599 int i = val;
4600 bool has_audio;
4601
4602 if (i == intel_dp->force_audio)
4603 return 0;
4604
4605 intel_dp->force_audio = i;
4606
4607 if (i == HDMI_AUDIO_AUTO)
4608 has_audio = intel_dp_detect_audio(connector);
4609 else
4610 has_audio = (i == HDMI_AUDIO_ON);
4611
4612 if (has_audio == intel_dp->has_audio)
4613 return 0;
4614
4615 intel_dp->has_audio = has_audio;
4616 goto done;
4617 }
4618
4619 if (property == dev_priv->broadcast_rgb_property) {
4620 bool old_auto = intel_dp->color_range_auto;
4621 bool old_range = intel_dp->limited_color_range;
4622
4623 switch (val) {
4624 case INTEL_BROADCAST_RGB_AUTO:
4625 intel_dp->color_range_auto = true;
4626 break;
4627 case INTEL_BROADCAST_RGB_FULL:
4628 intel_dp->color_range_auto = false;
4629 intel_dp->limited_color_range = false;
4630 break;
4631 case INTEL_BROADCAST_RGB_LIMITED:
4632 intel_dp->color_range_auto = false;
4633 intel_dp->limited_color_range = true;
4634 break;
4635 default:
4636 return -EINVAL;
4637 }
4638
4639 if (old_auto == intel_dp->color_range_auto &&
4640 old_range == intel_dp->limited_color_range)
4641 return 0;
4642
4643 goto done;
4644 }
4645
4646 if (is_edp(intel_dp) &&
4647 property == connector->dev->mode_config.scaling_mode_property) {
4648 if (val == DRM_MODE_SCALE_NONE) {
4649 DRM_DEBUG_KMS("no scaling not supported\n");
4650 return -EINVAL;
4651 }
4652 if (HAS_GMCH_DISPLAY(dev_priv) &&
4653 val == DRM_MODE_SCALE_CENTER) {
4654 DRM_DEBUG_KMS("centering not supported\n");
4655 return -EINVAL;
4656 }
4657
4658 if (intel_connector->panel.fitting_mode == val) {
4659 /* the eDP scaling property is not changed */
4660 return 0;
4661 }
4662 intel_connector->panel.fitting_mode = val;
4663
4664 goto done;
4665 }
4666
4667 return -EINVAL;
4668
4669 done:
4670 if (intel_encoder->base.crtc)
4671 intel_crtc_restore_mode(intel_encoder->base.crtc);
4672
4673 return 0;
4674 }
4675
4676 static int
4677 intel_dp_connector_register(struct drm_connector *connector)
4678 {
4679 struct intel_dp *intel_dp = intel_attached_dp(connector);
4680 int ret;
4681
4682 ret = intel_connector_register(connector);
4683 if (ret)
4684 return ret;
4685
4686 i915_debugfs_connector_add(connector);
4687
4688 DRM_DEBUG_KMS("registering %s bus for %s\n",
4689 intel_dp->aux.name, connector->kdev->kobj.name);
4690
4691 intel_dp->aux.dev = connector->kdev;
4692 return drm_dp_aux_register(&intel_dp->aux);
4693 }
4694
4695 static void
4696 intel_dp_connector_unregister(struct drm_connector *connector)
4697 {
4698 drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4699 intel_connector_unregister(connector);
4700 }
4701
4702 static void
4703 intel_dp_connector_destroy(struct drm_connector *connector)
4704 {
4705 struct intel_connector *intel_connector = to_intel_connector(connector);
4706
4707 kfree(intel_connector->detect_edid);
4708
4709 if (!IS_ERR_OR_NULL(intel_connector->edid))
4710 kfree(intel_connector->edid);
4711
4712 /* Can't call is_edp() since the encoder may have been destroyed
4713 * already. */
4714 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4715 intel_panel_fini(&intel_connector->panel);
4716
4717 drm_connector_cleanup(connector);
4718 kfree(connector);
4719 }
4720
4721 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4722 {
4723 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4724 struct intel_dp *intel_dp = &intel_dig_port->dp;
4725
4726 intel_dp_mst_encoder_cleanup(intel_dig_port);
4727 if (is_edp(intel_dp)) {
4728 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4729 /*
4730 * vdd might still be enabled do to the delayed vdd off.
4731 * Make sure vdd is actually turned off here.
4732 */
4733 pps_lock(intel_dp);
4734 edp_panel_vdd_off_sync(intel_dp);
4735 pps_unlock(intel_dp);
4736
4737 if (intel_dp->edp_notifier.notifier_call) {
4738 unregister_reboot_notifier(&intel_dp->edp_notifier);
4739 intel_dp->edp_notifier.notifier_call = NULL;
4740 }
4741 }
4742
4743 intel_dp_aux_fini(intel_dp);
4744
4745 drm_encoder_cleanup(encoder);
4746 kfree(intel_dig_port);
4747 }
4748
4749 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4750 {
4751 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4752
4753 if (!is_edp(intel_dp))
4754 return;
4755
4756 /*
4757 * vdd might still be enabled do to the delayed vdd off.
4758 * Make sure vdd is actually turned off here.
4759 */
4760 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4761 pps_lock(intel_dp);
4762 edp_panel_vdd_off_sync(intel_dp);
4763 pps_unlock(intel_dp);
4764 }
4765
4766 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4767 {
4768 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4769 struct drm_device *dev = intel_dig_port->base.base.dev;
4770 struct drm_i915_private *dev_priv = to_i915(dev);
4771 enum intel_display_power_domain power_domain;
4772
4773 lockdep_assert_held(&dev_priv->pps_mutex);
4774
4775 if (!edp_have_panel_vdd(intel_dp))
4776 return;
4777
4778 /*
4779 * The VDD bit needs a power domain reference, so if the bit is
4780 * already enabled when we boot or resume, grab this reference and
4781 * schedule a vdd off, so we don't hold on to the reference
4782 * indefinitely.
4783 */
4784 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4785 power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4786 intel_display_power_get(dev_priv, power_domain);
4787
4788 edp_panel_vdd_schedule_off(intel_dp);
4789 }
4790
4791 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4792 {
4793 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4794 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4795 struct intel_lspcon *lspcon = &intel_dig_port->lspcon;
4796 struct intel_dp *intel_dp = &intel_dig_port->dp;
4797
4798 if (!HAS_DDI(dev_priv))
4799 intel_dp->DP = I915_READ(intel_dp->output_reg);
4800
4801 if (IS_GEN9(dev_priv) && lspcon->active)
4802 lspcon_resume(lspcon);
4803
4804 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4805 return;
4806
4807 pps_lock(intel_dp);
4808
4809 /* Reinit the power sequencer, in case BIOS did something with it. */
4810 intel_dp_pps_init(encoder->dev, intel_dp);
4811 intel_edp_panel_vdd_sanitize(intel_dp);
4812
4813 pps_unlock(intel_dp);
4814 }
4815
4816 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4817 .dpms = drm_atomic_helper_connector_dpms,
4818 .detect = intel_dp_detect,
4819 .force = intel_dp_force,
4820 .fill_modes = drm_helper_probe_single_connector_modes,
4821 .set_property = intel_dp_set_property,
4822 .atomic_get_property = intel_connector_atomic_get_property,
4823 .late_register = intel_dp_connector_register,
4824 .early_unregister = intel_dp_connector_unregister,
4825 .destroy = intel_dp_connector_destroy,
4826 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4827 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4828 };
4829
4830 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4831 .get_modes = intel_dp_get_modes,
4832 .mode_valid = intel_dp_mode_valid,
4833 };
4834
4835 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4836 .reset = intel_dp_encoder_reset,
4837 .destroy = intel_dp_encoder_destroy,
4838 };
4839
4840 enum irqreturn
4841 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4842 {
4843 struct intel_dp *intel_dp = &intel_dig_port->dp;
4844 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4845 struct drm_device *dev = intel_dig_port->base.base.dev;
4846 struct drm_i915_private *dev_priv = to_i915(dev);
4847 enum intel_display_power_domain power_domain;
4848 enum irqreturn ret = IRQ_NONE;
4849
4850 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4851 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4852 intel_dig_port->base.type = INTEL_OUTPUT_DP;
4853
4854 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4855 /*
4856 * vdd off can generate a long pulse on eDP which
4857 * would require vdd on to handle it, and thus we
4858 * would end up in an endless cycle of
4859 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4860 */
4861 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4862 port_name(intel_dig_port->port));
4863 return IRQ_HANDLED;
4864 }
4865
4866 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4867 port_name(intel_dig_port->port),
4868 long_hpd ? "long" : "short");
4869
4870 if (long_hpd) {
4871 intel_dp->detect_done = false;
4872 return IRQ_NONE;
4873 }
4874
4875 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4876 intel_display_power_get(dev_priv, power_domain);
4877
4878 if (intel_dp->is_mst) {
4879 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4880 /*
4881 * If we were in MST mode, and device is not
4882 * there, get out of MST mode
4883 */
4884 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4885 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4886 intel_dp->is_mst = false;
4887 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4888 intel_dp->is_mst);
4889 intel_dp->detect_done = false;
4890 goto put_power;
4891 }
4892 }
4893
4894 if (!intel_dp->is_mst) {
4895 if (!intel_dp_short_pulse(intel_dp)) {
4896 intel_dp->detect_done = false;
4897 goto put_power;
4898 }
4899 }
4900
4901 ret = IRQ_HANDLED;
4902
4903 put_power:
4904 intel_display_power_put(dev_priv, power_domain);
4905
4906 return ret;
4907 }
4908
4909 /* check the VBT to see whether the eDP is on another port */
4910 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4911 {
4912 struct drm_i915_private *dev_priv = to_i915(dev);
4913
4914 /*
4915 * eDP not supported on g4x. so bail out early just
4916 * for a bit extra safety in case the VBT is bonkers.
4917 */
4918 if (INTEL_INFO(dev)->gen < 5)
4919 return false;
4920
4921 if (port == PORT_A)
4922 return true;
4923
4924 return intel_bios_is_port_edp(dev_priv, port);
4925 }
4926
4927 void
4928 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4929 {
4930 struct intel_connector *intel_connector = to_intel_connector(connector);
4931
4932 intel_attach_force_audio_property(connector);
4933 intel_attach_broadcast_rgb_property(connector);
4934 intel_dp->color_range_auto = true;
4935
4936 if (is_edp(intel_dp)) {
4937 drm_mode_create_scaling_mode_property(connector->dev);
4938 drm_object_attach_property(
4939 &connector->base,
4940 connector->dev->mode_config.scaling_mode_property,
4941 DRM_MODE_SCALE_ASPECT);
4942 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4943 }
4944 }
4945
4946 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4947 {
4948 intel_dp->panel_power_off_time = ktime_get_boottime();
4949 intel_dp->last_power_on = jiffies;
4950 intel_dp->last_backlight_off = jiffies;
4951 }
4952
4953 static void
4954 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
4955 struct intel_dp *intel_dp, struct edp_power_seq *seq)
4956 {
4957 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4958 struct pps_registers regs;
4959
4960 intel_pps_get_registers(dev_priv, intel_dp, &regs);
4961
4962 /* Workaround: Need to write PP_CONTROL with the unlock key as
4963 * the very first thing. */
4964 pp_ctl = ironlake_get_pp_control(intel_dp);
4965
4966 pp_on = I915_READ(regs.pp_on);
4967 pp_off = I915_READ(regs.pp_off);
4968 if (!IS_BROXTON(dev_priv)) {
4969 I915_WRITE(regs.pp_ctrl, pp_ctl);
4970 pp_div = I915_READ(regs.pp_div);
4971 }
4972
4973 /* Pull timing values out of registers */
4974 seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4975 PANEL_POWER_UP_DELAY_SHIFT;
4976
4977 seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4978 PANEL_LIGHT_ON_DELAY_SHIFT;
4979
4980 seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4981 PANEL_LIGHT_OFF_DELAY_SHIFT;
4982
4983 seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4984 PANEL_POWER_DOWN_DELAY_SHIFT;
4985
4986 if (IS_BROXTON(dev_priv)) {
4987 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4988 BXT_POWER_CYCLE_DELAY_SHIFT;
4989 if (tmp > 0)
4990 seq->t11_t12 = (tmp - 1) * 1000;
4991 else
4992 seq->t11_t12 = 0;
4993 } else {
4994 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4995 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4996 }
4997 }
4998
4999 static void
5000 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
5001 {
5002 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5003 state_name,
5004 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
5005 }
5006
5007 static void
5008 intel_pps_verify_state(struct drm_i915_private *dev_priv,
5009 struct intel_dp *intel_dp)
5010 {
5011 struct edp_power_seq hw;
5012 struct edp_power_seq *sw = &intel_dp->pps_delays;
5013
5014 intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
5015
5016 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
5017 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
5018 DRM_ERROR("PPS state mismatch\n");
5019 intel_pps_dump_state("sw", sw);
5020 intel_pps_dump_state("hw", &hw);
5021 }
5022 }
5023
5024 static void
5025 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5026 struct intel_dp *intel_dp)
5027 {
5028 struct drm_i915_private *dev_priv = to_i915(dev);
5029 struct edp_power_seq cur, vbt, spec,
5030 *final = &intel_dp->pps_delays;
5031
5032 lockdep_assert_held(&dev_priv->pps_mutex);
5033
5034 /* already initialized? */
5035 if (final->t11_t12 != 0)
5036 return;
5037
5038 intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
5039
5040 intel_pps_dump_state("cur", &cur);
5041
5042 vbt = dev_priv->vbt.edp.pps;
5043
5044 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5045 * our hw here, which are all in 100usec. */
5046 spec.t1_t3 = 210 * 10;
5047 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5048 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5049 spec.t10 = 500 * 10;
5050 /* This one is special and actually in units of 100ms, but zero
5051 * based in the hw (so we need to add 100 ms). But the sw vbt
5052 * table multiplies it with 1000 to make it in units of 100usec,
5053 * too. */
5054 spec.t11_t12 = (510 + 100) * 10;
5055
5056 intel_pps_dump_state("vbt", &vbt);
5057
5058 /* Use the max of the register settings and vbt. If both are
5059 * unset, fall back to the spec limits. */
5060 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5061 spec.field : \
5062 max(cur.field, vbt.field))
5063 assign_final(t1_t3);
5064 assign_final(t8);
5065 assign_final(t9);
5066 assign_final(t10);
5067 assign_final(t11_t12);
5068 #undef assign_final
5069
5070 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5071 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5072 intel_dp->backlight_on_delay = get_delay(t8);
5073 intel_dp->backlight_off_delay = get_delay(t9);
5074 intel_dp->panel_power_down_delay = get_delay(t10);
5075 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5076 #undef get_delay
5077
5078 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5079 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5080 intel_dp->panel_power_cycle_delay);
5081
5082 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5083 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5084
5085 /*
5086 * We override the HW backlight delays to 1 because we do manual waits
5087 * on them. For T8, even BSpec recommends doing it. For T9, if we
5088 * don't do this, we'll end up waiting for the backlight off delay
5089 * twice: once when we do the manual sleep, and once when we disable
5090 * the panel and wait for the PP_STATUS bit to become zero.
5091 */
5092 final->t8 = 1;
5093 final->t9 = 1;
5094 }
5095
5096 static void
5097 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5098 struct intel_dp *intel_dp)
5099 {
5100 struct drm_i915_private *dev_priv = to_i915(dev);
5101 u32 pp_on, pp_off, pp_div, port_sel = 0;
5102 int div = dev_priv->rawclk_freq / 1000;
5103 struct pps_registers regs;
5104 enum port port = dp_to_dig_port(intel_dp)->port;
5105 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5106
5107 lockdep_assert_held(&dev_priv->pps_mutex);
5108
5109 intel_pps_get_registers(dev_priv, intel_dp, &regs);
5110
5111 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5112 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5113 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5114 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5115 /* Compute the divisor for the pp clock, simply match the Bspec
5116 * formula. */
5117 if (IS_BROXTON(dev_priv)) {
5118 pp_div = I915_READ(regs.pp_ctrl);
5119 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5120 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5121 << BXT_POWER_CYCLE_DELAY_SHIFT);
5122 } else {
5123 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5124 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5125 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5126 }
5127
5128 /* Haswell doesn't have any port selection bits for the panel
5129 * power sequencer any more. */
5130 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5131 port_sel = PANEL_PORT_SELECT_VLV(port);
5132 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5133 if (port == PORT_A)
5134 port_sel = PANEL_PORT_SELECT_DPA;
5135 else
5136 port_sel = PANEL_PORT_SELECT_DPD;
5137 }
5138
5139 pp_on |= port_sel;
5140
5141 I915_WRITE(regs.pp_on, pp_on);
5142 I915_WRITE(regs.pp_off, pp_off);
5143 if (IS_BROXTON(dev_priv))
5144 I915_WRITE(regs.pp_ctrl, pp_div);
5145 else
5146 I915_WRITE(regs.pp_div, pp_div);
5147
5148 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5149 I915_READ(regs.pp_on),
5150 I915_READ(regs.pp_off),
5151 IS_BROXTON(dev_priv) ?
5152 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5153 I915_READ(regs.pp_div));
5154 }
5155
5156 static void intel_dp_pps_init(struct drm_device *dev,
5157 struct intel_dp *intel_dp)
5158 {
5159 struct drm_i915_private *dev_priv = to_i915(dev);
5160
5161 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5162 vlv_initial_power_sequencer_setup(intel_dp);
5163 } else {
5164 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5165 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5166 }
5167 }
5168
5169 /**
5170 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5171 * @dev_priv: i915 device
5172 * @crtc_state: a pointer to the active intel_crtc_state
5173 * @refresh_rate: RR to be programmed
5174 *
5175 * This function gets called when refresh rate (RR) has to be changed from
5176 * one frequency to another. Switches can be between high and low RR
5177 * supported by the panel or to any other RR based on media playback (in
5178 * this case, RR value needs to be passed from user space).
5179 *
5180 * The caller of this function needs to take a lock on dev_priv->drrs.
5181 */
5182 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5183 struct intel_crtc_state *crtc_state,
5184 int refresh_rate)
5185 {
5186 struct intel_encoder *encoder;
5187 struct intel_digital_port *dig_port = NULL;
5188 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5189 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5190 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5191
5192 if (refresh_rate <= 0) {
5193 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5194 return;
5195 }
5196
5197 if (intel_dp == NULL) {
5198 DRM_DEBUG_KMS("DRRS not supported.\n");
5199 return;
5200 }
5201
5202 /*
5203 * FIXME: This needs proper synchronization with psr state for some
5204 * platforms that cannot have PSR and DRRS enabled at the same time.
5205 */
5206
5207 dig_port = dp_to_dig_port(intel_dp);
5208 encoder = &dig_port->base;
5209 intel_crtc = to_intel_crtc(encoder->base.crtc);
5210
5211 if (!intel_crtc) {
5212 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5213 return;
5214 }
5215
5216 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5217 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5218 return;
5219 }
5220
5221 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5222 refresh_rate)
5223 index = DRRS_LOW_RR;
5224
5225 if (index == dev_priv->drrs.refresh_rate_type) {
5226 DRM_DEBUG_KMS(
5227 "DRRS requested for previously set RR...ignoring\n");
5228 return;
5229 }
5230
5231 if (!crtc_state->base.active) {
5232 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5233 return;
5234 }
5235
5236 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5237 switch (index) {
5238 case DRRS_HIGH_RR:
5239 intel_dp_set_m_n(intel_crtc, M1_N1);
5240 break;
5241 case DRRS_LOW_RR:
5242 intel_dp_set_m_n(intel_crtc, M2_N2);
5243 break;
5244 case DRRS_MAX_RR:
5245 default:
5246 DRM_ERROR("Unsupported refreshrate type\n");
5247 }
5248 } else if (INTEL_GEN(dev_priv) > 6) {
5249 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5250 u32 val;
5251
5252 val = I915_READ(reg);
5253 if (index > DRRS_HIGH_RR) {
5254 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5255 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5256 else
5257 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5258 } else {
5259 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5260 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5261 else
5262 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5263 }
5264 I915_WRITE(reg, val);
5265 }
5266
5267 dev_priv->drrs.refresh_rate_type = index;
5268
5269 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5270 }
5271
5272 /**
5273 * intel_edp_drrs_enable - init drrs struct if supported
5274 * @intel_dp: DP struct
5275 * @crtc_state: A pointer to the active crtc state.
5276 *
5277 * Initializes frontbuffer_bits and drrs.dp
5278 */
5279 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5280 struct intel_crtc_state *crtc_state)
5281 {
5282 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5283 struct drm_i915_private *dev_priv = to_i915(dev);
5284
5285 if (!crtc_state->has_drrs) {
5286 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5287 return;
5288 }
5289
5290 mutex_lock(&dev_priv->drrs.mutex);
5291 if (WARN_ON(dev_priv->drrs.dp)) {
5292 DRM_ERROR("DRRS already enabled\n");
5293 goto unlock;
5294 }
5295
5296 dev_priv->drrs.busy_frontbuffer_bits = 0;
5297
5298 dev_priv->drrs.dp = intel_dp;
5299
5300 unlock:
5301 mutex_unlock(&dev_priv->drrs.mutex);
5302 }
5303
5304 /**
5305 * intel_edp_drrs_disable - Disable DRRS
5306 * @intel_dp: DP struct
5307 * @old_crtc_state: Pointer to old crtc_state.
5308 *
5309 */
5310 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5311 struct intel_crtc_state *old_crtc_state)
5312 {
5313 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5314 struct drm_i915_private *dev_priv = to_i915(dev);
5315
5316 if (!old_crtc_state->has_drrs)
5317 return;
5318
5319 mutex_lock(&dev_priv->drrs.mutex);
5320 if (!dev_priv->drrs.dp) {
5321 mutex_unlock(&dev_priv->drrs.mutex);
5322 return;
5323 }
5324
5325 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5326 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5327 intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5328
5329 dev_priv->drrs.dp = NULL;
5330 mutex_unlock(&dev_priv->drrs.mutex);
5331
5332 cancel_delayed_work_sync(&dev_priv->drrs.work);
5333 }
5334
5335 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5336 {
5337 struct drm_i915_private *dev_priv =
5338 container_of(work, typeof(*dev_priv), drrs.work.work);
5339 struct intel_dp *intel_dp;
5340
5341 mutex_lock(&dev_priv->drrs.mutex);
5342
5343 intel_dp = dev_priv->drrs.dp;
5344
5345 if (!intel_dp)
5346 goto unlock;
5347
5348 /*
5349 * The delayed work can race with an invalidate hence we need to
5350 * recheck.
5351 */
5352
5353 if (dev_priv->drrs.busy_frontbuffer_bits)
5354 goto unlock;
5355
5356 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5357 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5358
5359 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5360 intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5361 }
5362
5363 unlock:
5364 mutex_unlock(&dev_priv->drrs.mutex);
5365 }
5366
5367 /**
5368 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5369 * @dev_priv: i915 device
5370 * @frontbuffer_bits: frontbuffer plane tracking bits
5371 *
5372 * This function gets called everytime rendering on the given planes start.
5373 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5374 *
5375 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5376 */
5377 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5378 unsigned int frontbuffer_bits)
5379 {
5380 struct drm_crtc *crtc;
5381 enum pipe pipe;
5382
5383 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5384 return;
5385
5386 cancel_delayed_work(&dev_priv->drrs.work);
5387
5388 mutex_lock(&dev_priv->drrs.mutex);
5389 if (!dev_priv->drrs.dp) {
5390 mutex_unlock(&dev_priv->drrs.mutex);
5391 return;
5392 }
5393
5394 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5395 pipe = to_intel_crtc(crtc)->pipe;
5396
5397 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5398 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5399
5400 /* invalidate means busy screen hence upclock */
5401 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5402 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5403 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5404
5405 mutex_unlock(&dev_priv->drrs.mutex);
5406 }
5407
5408 /**
5409 * intel_edp_drrs_flush - Restart Idleness DRRS
5410 * @dev_priv: i915 device
5411 * @frontbuffer_bits: frontbuffer plane tracking bits
5412 *
5413 * This function gets called every time rendering on the given planes has
5414 * completed or flip on a crtc is completed. So DRRS should be upclocked
5415 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5416 * if no other planes are dirty.
5417 *
5418 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5419 */
5420 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5421 unsigned int frontbuffer_bits)
5422 {
5423 struct drm_crtc *crtc;
5424 enum pipe pipe;
5425
5426 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5427 return;
5428
5429 cancel_delayed_work(&dev_priv->drrs.work);
5430
5431 mutex_lock(&dev_priv->drrs.mutex);
5432 if (!dev_priv->drrs.dp) {
5433 mutex_unlock(&dev_priv->drrs.mutex);
5434 return;
5435 }
5436
5437 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5438 pipe = to_intel_crtc(crtc)->pipe;
5439
5440 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5441 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5442
5443 /* flush means busy screen hence upclock */
5444 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5445 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5446 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5447
5448 /*
5449 * flush also means no more activity hence schedule downclock, if all
5450 * other fbs are quiescent too
5451 */
5452 if (!dev_priv->drrs.busy_frontbuffer_bits)
5453 schedule_delayed_work(&dev_priv->drrs.work,
5454 msecs_to_jiffies(1000));
5455 mutex_unlock(&dev_priv->drrs.mutex);
5456 }
5457
5458 /**
5459 * DOC: Display Refresh Rate Switching (DRRS)
5460 *
5461 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5462 * which enables swtching between low and high refresh rates,
5463 * dynamically, based on the usage scenario. This feature is applicable
5464 * for internal panels.
5465 *
5466 * Indication that the panel supports DRRS is given by the panel EDID, which
5467 * would list multiple refresh rates for one resolution.
5468 *
5469 * DRRS is of 2 types - static and seamless.
5470 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5471 * (may appear as a blink on screen) and is used in dock-undock scenario.
5472 * Seamless DRRS involves changing RR without any visual effect to the user
5473 * and can be used during normal system usage. This is done by programming
5474 * certain registers.
5475 *
5476 * Support for static/seamless DRRS may be indicated in the VBT based on
5477 * inputs from the panel spec.
5478 *
5479 * DRRS saves power by switching to low RR based on usage scenarios.
5480 *
5481 * The implementation is based on frontbuffer tracking implementation. When
5482 * there is a disturbance on the screen triggered by user activity or a periodic
5483 * system activity, DRRS is disabled (RR is changed to high RR). When there is
5484 * no movement on screen, after a timeout of 1 second, a switch to low RR is
5485 * made.
5486 *
5487 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5488 * and intel_edp_drrs_flush() are called.
5489 *
5490 * DRRS can be further extended to support other internal panels and also
5491 * the scenario of video playback wherein RR is set based on the rate
5492 * requested by userspace.
5493 */
5494
5495 /**
5496 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5497 * @intel_connector: eDP connector
5498 * @fixed_mode: preferred mode of panel
5499 *
5500 * This function is called only once at driver load to initialize basic
5501 * DRRS stuff.
5502 *
5503 * Returns:
5504 * Downclock mode if panel supports it, else return NULL.
5505 * DRRS support is determined by the presence of downclock mode (apart
5506 * from VBT setting).
5507 */
5508 static struct drm_display_mode *
5509 intel_dp_drrs_init(struct intel_connector *intel_connector,
5510 struct drm_display_mode *fixed_mode)
5511 {
5512 struct drm_connector *connector = &intel_connector->base;
5513 struct drm_device *dev = connector->dev;
5514 struct drm_i915_private *dev_priv = to_i915(dev);
5515 struct drm_display_mode *downclock_mode = NULL;
5516
5517 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5518 mutex_init(&dev_priv->drrs.mutex);
5519
5520 if (INTEL_INFO(dev)->gen <= 6) {
5521 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5522 return NULL;
5523 }
5524
5525 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5526 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5527 return NULL;
5528 }
5529
5530 downclock_mode = intel_find_panel_downclock
5531 (dev, fixed_mode, connector);
5532
5533 if (!downclock_mode) {
5534 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5535 return NULL;
5536 }
5537
5538 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5539
5540 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5541 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5542 return downclock_mode;
5543 }
5544
5545 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5546 struct intel_connector *intel_connector)
5547 {
5548 struct drm_connector *connector = &intel_connector->base;
5549 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5550 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5551 struct drm_device *dev = intel_encoder->base.dev;
5552 struct drm_i915_private *dev_priv = to_i915(dev);
5553 struct drm_display_mode *fixed_mode = NULL;
5554 struct drm_display_mode *downclock_mode = NULL;
5555 bool has_dpcd;
5556 struct drm_display_mode *scan;
5557 struct edid *edid;
5558 enum pipe pipe = INVALID_PIPE;
5559
5560 if (!is_edp(intel_dp))
5561 return true;
5562
5563 /*
5564 * On IBX/CPT we may get here with LVDS already registered. Since the
5565 * driver uses the only internal power sequencer available for both
5566 * eDP and LVDS bail out early in this case to prevent interfering
5567 * with an already powered-on LVDS power sequencer.
5568 */
5569 if (intel_get_lvds_encoder(dev)) {
5570 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5571 DRM_INFO("LVDS was detected, not registering eDP\n");
5572
5573 return false;
5574 }
5575
5576 pps_lock(intel_dp);
5577
5578 intel_dp_init_panel_power_timestamps(intel_dp);
5579 intel_dp_pps_init(dev, intel_dp);
5580 intel_edp_panel_vdd_sanitize(intel_dp);
5581
5582 pps_unlock(intel_dp);
5583
5584 /* Cache DPCD and EDID for edp. */
5585 has_dpcd = intel_edp_init_dpcd(intel_dp);
5586
5587 if (!has_dpcd) {
5588 /* if this fails, presume the device is a ghost */
5589 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5590 goto out_vdd_off;
5591 }
5592
5593 mutex_lock(&dev->mode_config.mutex);
5594 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5595 if (edid) {
5596 if (drm_add_edid_modes(connector, edid)) {
5597 drm_mode_connector_update_edid_property(connector,
5598 edid);
5599 drm_edid_to_eld(connector, edid);
5600 } else {
5601 kfree(edid);
5602 edid = ERR_PTR(-EINVAL);
5603 }
5604 } else {
5605 edid = ERR_PTR(-ENOENT);
5606 }
5607 intel_connector->edid = edid;
5608
5609 /* prefer fixed mode from EDID if available */
5610 list_for_each_entry(scan, &connector->probed_modes, head) {
5611 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5612 fixed_mode = drm_mode_duplicate(dev, scan);
5613 downclock_mode = intel_dp_drrs_init(
5614 intel_connector, fixed_mode);
5615 break;
5616 }
5617 }
5618
5619 /* fallback to VBT if available for eDP */
5620 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5621 fixed_mode = drm_mode_duplicate(dev,
5622 dev_priv->vbt.lfp_lvds_vbt_mode);
5623 if (fixed_mode) {
5624 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5625 connector->display_info.width_mm = fixed_mode->width_mm;
5626 connector->display_info.height_mm = fixed_mode->height_mm;
5627 }
5628 }
5629 mutex_unlock(&dev->mode_config.mutex);
5630
5631 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5632 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5633 register_reboot_notifier(&intel_dp->edp_notifier);
5634
5635 /*
5636 * Figure out the current pipe for the initial backlight setup.
5637 * If the current pipe isn't valid, try the PPS pipe, and if that
5638 * fails just assume pipe A.
5639 */
5640 if (IS_CHERRYVIEW(dev_priv))
5641 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5642 else
5643 pipe = PORT_TO_PIPE(intel_dp->DP);
5644
5645 if (pipe != PIPE_A && pipe != PIPE_B)
5646 pipe = intel_dp->pps_pipe;
5647
5648 if (pipe != PIPE_A && pipe != PIPE_B)
5649 pipe = PIPE_A;
5650
5651 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5652 pipe_name(pipe));
5653 }
5654
5655 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5656 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5657 intel_panel_setup_backlight(connector, pipe);
5658
5659 return true;
5660
5661 out_vdd_off:
5662 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5663 /*
5664 * vdd might still be enabled do to the delayed vdd off.
5665 * Make sure vdd is actually turned off here.
5666 */
5667 pps_lock(intel_dp);
5668 edp_panel_vdd_off_sync(intel_dp);
5669 pps_unlock(intel_dp);
5670
5671 return false;
5672 }
5673
5674 bool
5675 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5676 struct intel_connector *intel_connector)
5677 {
5678 struct drm_connector *connector = &intel_connector->base;
5679 struct intel_dp *intel_dp = &intel_dig_port->dp;
5680 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5681 struct drm_device *dev = intel_encoder->base.dev;
5682 struct drm_i915_private *dev_priv = to_i915(dev);
5683 enum port port = intel_dig_port->port;
5684 int type;
5685
5686 if (WARN(intel_dig_port->max_lanes < 1,
5687 "Not enough lanes (%d) for DP on port %c\n",
5688 intel_dig_port->max_lanes, port_name(port)))
5689 return false;
5690
5691 intel_dp->pps_pipe = INVALID_PIPE;
5692
5693 /* intel_dp vfuncs */
5694 if (INTEL_INFO(dev)->gen >= 9)
5695 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5696 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5697 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5698 else if (HAS_PCH_SPLIT(dev_priv))
5699 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5700 else
5701 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5702
5703 if (INTEL_INFO(dev)->gen >= 9)
5704 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5705 else
5706 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5707
5708 if (HAS_DDI(dev_priv))
5709 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5710
5711 /* Preserve the current hw state. */
5712 intel_dp->DP = I915_READ(intel_dp->output_reg);
5713 intel_dp->attached_connector = intel_connector;
5714
5715 if (intel_dp_is_edp(dev, port))
5716 type = DRM_MODE_CONNECTOR_eDP;
5717 else
5718 type = DRM_MODE_CONNECTOR_DisplayPort;
5719
5720 /*
5721 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5722 * for DP the encoder type can be set by the caller to
5723 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5724 */
5725 if (type == DRM_MODE_CONNECTOR_eDP)
5726 intel_encoder->type = INTEL_OUTPUT_EDP;
5727
5728 /* eDP only on port B and/or C on vlv/chv */
5729 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
5730 is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5731 return false;
5732
5733 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5734 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5735 port_name(port));
5736
5737 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5738 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5739
5740 connector->interlace_allowed = true;
5741 connector->doublescan_allowed = 0;
5742
5743 intel_dp_aux_init(intel_dp);
5744
5745 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5746 edp_panel_vdd_work);
5747
5748 intel_connector_attach_encoder(intel_connector, intel_encoder);
5749
5750 if (HAS_DDI(dev_priv))
5751 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5752 else
5753 intel_connector->get_hw_state = intel_connector_get_hw_state;
5754
5755 /* Set up the hotplug pin. */
5756 switch (port) {
5757 case PORT_A:
5758 intel_encoder->hpd_pin = HPD_PORT_A;
5759 break;
5760 case PORT_B:
5761 intel_encoder->hpd_pin = HPD_PORT_B;
5762 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
5763 intel_encoder->hpd_pin = HPD_PORT_A;
5764 break;
5765 case PORT_C:
5766 intel_encoder->hpd_pin = HPD_PORT_C;
5767 break;
5768 case PORT_D:
5769 intel_encoder->hpd_pin = HPD_PORT_D;
5770 break;
5771 case PORT_E:
5772 intel_encoder->hpd_pin = HPD_PORT_E;
5773 break;
5774 default:
5775 BUG();
5776 }
5777
5778 /* init MST on ports that can support it */
5779 if (HAS_DP_MST(dev) && !is_edp(intel_dp) &&
5780 (port == PORT_B || port == PORT_C || port == PORT_D))
5781 intel_dp_mst_encoder_init(intel_dig_port,
5782 intel_connector->base.base.id);
5783
5784 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5785 intel_dp_aux_fini(intel_dp);
5786 intel_dp_mst_encoder_cleanup(intel_dig_port);
5787 goto fail;
5788 }
5789
5790 intel_dp_add_properties(intel_dp, connector);
5791
5792 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5793 * 0xd. Failure to do so will result in spurious interrupts being
5794 * generated on the port when a cable is not attached.
5795 */
5796 if (IS_G4X(dev_priv) && !IS_GM45(dev_priv)) {
5797 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5798 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5799 }
5800
5801 return true;
5802
5803 fail:
5804 drm_connector_cleanup(connector);
5805
5806 return false;
5807 }
5808
5809 bool intel_dp_init(struct drm_device *dev,
5810 i915_reg_t output_reg,
5811 enum port port)
5812 {
5813 struct drm_i915_private *dev_priv = to_i915(dev);
5814 struct intel_digital_port *intel_dig_port;
5815 struct intel_encoder *intel_encoder;
5816 struct drm_encoder *encoder;
5817 struct intel_connector *intel_connector;
5818
5819 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5820 if (!intel_dig_port)
5821 return false;
5822
5823 intel_connector = intel_connector_alloc();
5824 if (!intel_connector)
5825 goto err_connector_alloc;
5826
5827 intel_encoder = &intel_dig_port->base;
5828 encoder = &intel_encoder->base;
5829
5830 if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5831 DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
5832 goto err_encoder_init;
5833
5834 intel_encoder->compute_config = intel_dp_compute_config;
5835 intel_encoder->disable = intel_disable_dp;
5836 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5837 intel_encoder->get_config = intel_dp_get_config;
5838 intel_encoder->suspend = intel_dp_encoder_suspend;
5839 if (IS_CHERRYVIEW(dev_priv)) {
5840 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5841 intel_encoder->pre_enable = chv_pre_enable_dp;
5842 intel_encoder->enable = vlv_enable_dp;
5843 intel_encoder->post_disable = chv_post_disable_dp;
5844 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5845 } else if (IS_VALLEYVIEW(dev_priv)) {
5846 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5847 intel_encoder->pre_enable = vlv_pre_enable_dp;
5848 intel_encoder->enable = vlv_enable_dp;
5849 intel_encoder->post_disable = vlv_post_disable_dp;
5850 } else {
5851 intel_encoder->pre_enable = g4x_pre_enable_dp;
5852 intel_encoder->enable = g4x_enable_dp;
5853 if (INTEL_INFO(dev)->gen >= 5)
5854 intel_encoder->post_disable = ilk_post_disable_dp;
5855 }
5856
5857 intel_dig_port->port = port;
5858 intel_dig_port->dp.output_reg = output_reg;
5859 intel_dig_port->max_lanes = 4;
5860
5861 intel_encoder->type = INTEL_OUTPUT_DP;
5862 if (IS_CHERRYVIEW(dev_priv)) {
5863 if (port == PORT_D)
5864 intel_encoder->crtc_mask = 1 << 2;
5865 else
5866 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5867 } else {
5868 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5869 }
5870 intel_encoder->cloneable = 0;
5871 intel_encoder->port = port;
5872
5873 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5874 dev_priv->hotplug.irq_port[port] = intel_dig_port;
5875
5876 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5877 goto err_init_connector;
5878
5879 return true;
5880
5881 err_init_connector:
5882 drm_encoder_cleanup(encoder);
5883 err_encoder_init:
5884 kfree(intel_connector);
5885 err_connector_alloc:
5886 kfree(intel_dig_port);
5887 return false;
5888 }
5889
5890 void intel_dp_mst_suspend(struct drm_device *dev)
5891 {
5892 struct drm_i915_private *dev_priv = to_i915(dev);
5893 int i;
5894
5895 /* disable MST */
5896 for (i = 0; i < I915_MAX_PORTS; i++) {
5897 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5898
5899 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5900 continue;
5901
5902 if (intel_dig_port->dp.is_mst)
5903 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5904 }
5905 }
5906
5907 void intel_dp_mst_resume(struct drm_device *dev)
5908 {
5909 struct drm_i915_private *dev_priv = to_i915(dev);
5910 int i;
5911
5912 for (i = 0; i < I915_MAX_PORTS; i++) {
5913 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5914 int ret;
5915
5916 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5917 continue;
5918
5919 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5920 if (ret)
5921 intel_dp_check_mst_status(&intel_dig_port->dp);
5922 }
5923 }