]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
b9e7f6931f4e482f465e8af3ff7dbb27500e8aff
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55 int space = head - tail;
56 if (space <= 0)
57 space += size;
58 return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 if (ringbuf->last_retired_head != -1) {
64 ringbuf->head = ringbuf->last_retired_head;
65 ringbuf->last_retired_head = -1;
66 }
67
68 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 intel_ring_update_space(ringbuf);
75 return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 struct intel_ringbuffer *ringbuf = ring->buffer;
87 ringbuf->tail &= ringbuf->size - 1;
88 if (intel_ring_stopped(ring))
89 return;
90 ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95 u32 invalidate_domains,
96 u32 flush_domains)
97 {
98 struct intel_engine_cs *ring = req->ring;
99 u32 cmd;
100 int ret;
101
102 cmd = MI_FLUSH;
103 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104 cmd |= MI_NO_WRITE_FLUSH;
105
106 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107 cmd |= MI_READ_FLUSH;
108
109 ret = intel_ring_begin(req, 2);
110 if (ret)
111 return ret;
112
113 intel_ring_emit(ring, cmd);
114 intel_ring_emit(ring, MI_NOOP);
115 intel_ring_advance(ring);
116
117 return 0;
118 }
119
120 static int
121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122 u32 invalidate_domains,
123 u32 flush_domains)
124 {
125 struct intel_engine_cs *ring = req->ring;
126 struct drm_device *dev = ring->dev;
127 u32 cmd;
128 int ret;
129
130 /*
131 * read/write caches:
132 *
133 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
135 * also flushed at 2d versus 3d pipeline switches.
136 *
137 * read-only caches:
138 *
139 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140 * MI_READ_FLUSH is set, and is always flushed on 965.
141 *
142 * I915_GEM_DOMAIN_COMMAND may not exist?
143 *
144 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145 * invalidated when MI_EXE_FLUSH is set.
146 *
147 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148 * invalidated with every MI_FLUSH.
149 *
150 * TLBs:
151 *
152 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155 * are flushed at any MI_FLUSH.
156 */
157
158 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160 cmd &= ~MI_NO_WRITE_FLUSH;
161 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162 cmd |= MI_EXE_FLUSH;
163
164 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165 (IS_G4X(dev) || IS_GEN5(dev)))
166 cmd |= MI_INVALIDATE_ISP;
167
168 ret = intel_ring_begin(req, 2);
169 if (ret)
170 return ret;
171
172 intel_ring_emit(ring, cmd);
173 intel_ring_emit(ring, MI_NOOP);
174 intel_ring_advance(ring);
175
176 return 0;
177 }
178
179 /**
180 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181 * implementing two workarounds on gen6. From section 1.4.7.1
182 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183 *
184 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185 * produced by non-pipelined state commands), software needs to first
186 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187 * 0.
188 *
189 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191 *
192 * And the workaround for these two requires this workaround first:
193 *
194 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195 * BEFORE the pipe-control with a post-sync op and no write-cache
196 * flushes.
197 *
198 * And this last workaround is tricky because of the requirements on
199 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200 * volume 2 part 1:
201 *
202 * "1 of the following must also be set:
203 * - Render Target Cache Flush Enable ([12] of DW1)
204 * - Depth Cache Flush Enable ([0] of DW1)
205 * - Stall at Pixel Scoreboard ([1] of DW1)
206 * - Depth Stall ([13] of DW1)
207 * - Post-Sync Operation ([13] of DW1)
208 * - Notify Enable ([8] of DW1)"
209 *
210 * The cache flushes require the workaround flush that triggered this
211 * one, so we can't use it. Depth stall would trigger the same.
212 * Post-sync nonzero is what triggered this second workaround, so we
213 * can't use that one either. Notify enable is IRQs, which aren't
214 * really our business. That leaves only stall at scoreboard.
215 */
216 static int
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219 struct intel_engine_cs *ring = req->ring;
220 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221 int ret;
222
223 ret = intel_ring_begin(req, 6);
224 if (ret)
225 return ret;
226
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229 PIPE_CONTROL_STALL_AT_SCOREBOARD);
230 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231 intel_ring_emit(ring, 0); /* low dword */
232 intel_ring_emit(ring, 0); /* high dword */
233 intel_ring_emit(ring, MI_NOOP);
234 intel_ring_advance(ring);
235
236 ret = intel_ring_begin(req, 6);
237 if (ret)
238 return ret;
239
240 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243 intel_ring_emit(ring, 0);
244 intel_ring_emit(ring, 0);
245 intel_ring_emit(ring, MI_NOOP);
246 intel_ring_advance(ring);
247
248 return 0;
249 }
250
251 static int
252 gen6_render_ring_flush(struct drm_i915_gem_request *req,
253 u32 invalidate_domains, u32 flush_domains)
254 {
255 struct intel_engine_cs *ring = req->ring;
256 u32 flags = 0;
257 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258 int ret;
259
260 /* Force SNB workarounds for PIPE_CONTROL flushes */
261 ret = intel_emit_post_sync_nonzero_flush(req);
262 if (ret)
263 return ret;
264
265 /* Just flush everything. Experiments have shown that reducing the
266 * number of bits based on the write domains has little performance
267 * impact.
268 */
269 if (flush_domains) {
270 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272 /*
273 * Ensure that any following seqno writes only happen
274 * when the render cache is indeed flushed.
275 */
276 flags |= PIPE_CONTROL_CS_STALL;
277 }
278 if (invalidate_domains) {
279 flags |= PIPE_CONTROL_TLB_INVALIDATE;
280 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285 /*
286 * TLB invalidate requires a post-sync write.
287 */
288 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289 }
290
291 ret = intel_ring_begin(req, 4);
292 if (ret)
293 return ret;
294
295 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296 intel_ring_emit(ring, flags);
297 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298 intel_ring_emit(ring, 0);
299 intel_ring_advance(ring);
300
301 return 0;
302 }
303
304 static int
305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306 {
307 struct intel_engine_cs *ring = req->ring;
308 int ret;
309
310 ret = intel_ring_begin(req, 4);
311 if (ret)
312 return ret;
313
314 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316 PIPE_CONTROL_STALL_AT_SCOREBOARD);
317 intel_ring_emit(ring, 0);
318 intel_ring_emit(ring, 0);
319 intel_ring_advance(ring);
320
321 return 0;
322 }
323
324 static int
325 gen7_render_ring_flush(struct drm_i915_gem_request *req,
326 u32 invalidate_domains, u32 flush_domains)
327 {
328 struct intel_engine_cs *ring = req->ring;
329 u32 flags = 0;
330 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331 int ret;
332
333 /*
334 * Ensure that any following seqno writes only happen when the render
335 * cache is indeed flushed.
336 *
337 * Workaround: 4th PIPE_CONTROL command (except the ones with only
338 * read-cache invalidate bits set) must have the CS_STALL bit set. We
339 * don't try to be clever and just set it unconditionally.
340 */
341 flags |= PIPE_CONTROL_CS_STALL;
342
343 /* Just flush everything. Experiments have shown that reducing the
344 * number of bits based on the write domains has little performance
345 * impact.
346 */
347 if (flush_domains) {
348 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350 }
351 if (invalidate_domains) {
352 flags |= PIPE_CONTROL_TLB_INVALIDATE;
353 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
354 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
355 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
356 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
357 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
358 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
359 /*
360 * TLB invalidate requires a post-sync write.
361 */
362 flags |= PIPE_CONTROL_QW_WRITE;
363 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
364
365 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
366
367 /* Workaround: we must issue a pipe_control with CS-stall bit
368 * set before a pipe_control command that has the state cache
369 * invalidate bit set. */
370 gen7_render_ring_cs_stall_wa(req);
371 }
372
373 ret = intel_ring_begin(req, 4);
374 if (ret)
375 return ret;
376
377 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
378 intel_ring_emit(ring, flags);
379 intel_ring_emit(ring, scratch_addr);
380 intel_ring_emit(ring, 0);
381 intel_ring_advance(ring);
382
383 return 0;
384 }
385
386 static int
387 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
388 u32 flags, u32 scratch_addr)
389 {
390 struct intel_engine_cs *ring = req->ring;
391 int ret;
392
393 ret = intel_ring_begin(req, 6);
394 if (ret)
395 return ret;
396
397 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
398 intel_ring_emit(ring, flags);
399 intel_ring_emit(ring, scratch_addr);
400 intel_ring_emit(ring, 0);
401 intel_ring_emit(ring, 0);
402 intel_ring_emit(ring, 0);
403 intel_ring_advance(ring);
404
405 return 0;
406 }
407
408 static int
409 gen8_render_ring_flush(struct drm_i915_gem_request *req,
410 u32 invalidate_domains, u32 flush_domains)
411 {
412 u32 flags = 0;
413 u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
414 int ret;
415
416 flags |= PIPE_CONTROL_CS_STALL;
417
418 if (flush_domains) {
419 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
420 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
421 }
422 if (invalidate_domains) {
423 flags |= PIPE_CONTROL_TLB_INVALIDATE;
424 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
425 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
426 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
427 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
428 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
429 flags |= PIPE_CONTROL_QW_WRITE;
430 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
431
432 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
433 ret = gen8_emit_pipe_control(req,
434 PIPE_CONTROL_CS_STALL |
435 PIPE_CONTROL_STALL_AT_SCOREBOARD,
436 0);
437 if (ret)
438 return ret;
439 }
440
441 return gen8_emit_pipe_control(req, flags, scratch_addr);
442 }
443
444 static void ring_write_tail(struct intel_engine_cs *ring,
445 u32 value)
446 {
447 struct drm_i915_private *dev_priv = ring->dev->dev_private;
448 I915_WRITE_TAIL(ring, value);
449 }
450
451 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
452 {
453 struct drm_i915_private *dev_priv = ring->dev->dev_private;
454 u64 acthd;
455
456 if (INTEL_INFO(ring->dev)->gen >= 8)
457 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
458 RING_ACTHD_UDW(ring->mmio_base));
459 else if (INTEL_INFO(ring->dev)->gen >= 4)
460 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
461 else
462 acthd = I915_READ(ACTHD);
463
464 return acthd;
465 }
466
467 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
468 {
469 struct drm_i915_private *dev_priv = ring->dev->dev_private;
470 u32 addr;
471
472 addr = dev_priv->status_page_dmah->busaddr;
473 if (INTEL_INFO(ring->dev)->gen >= 4)
474 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
475 I915_WRITE(HWS_PGA, addr);
476 }
477
478 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
479 {
480 struct drm_device *dev = ring->dev;
481 struct drm_i915_private *dev_priv = ring->dev->dev_private;
482 i915_reg_t mmio;
483
484 /* The ring status page addresses are no longer next to the rest of
485 * the ring registers as of gen7.
486 */
487 if (IS_GEN7(dev)) {
488 switch (ring->id) {
489 case RCS:
490 mmio = RENDER_HWS_PGA_GEN7;
491 break;
492 case BCS:
493 mmio = BLT_HWS_PGA_GEN7;
494 break;
495 /*
496 * VCS2 actually doesn't exist on Gen7. Only shut up
497 * gcc switch check warning
498 */
499 case VCS2:
500 case VCS:
501 mmio = BSD_HWS_PGA_GEN7;
502 break;
503 case VECS:
504 mmio = VEBOX_HWS_PGA_GEN7;
505 break;
506 }
507 } else if (IS_GEN6(ring->dev)) {
508 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
509 } else {
510 /* XXX: gen8 returns to sanity */
511 mmio = RING_HWS_PGA(ring->mmio_base);
512 }
513
514 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
515 POSTING_READ(mmio);
516
517 /*
518 * Flush the TLB for this page
519 *
520 * FIXME: These two bits have disappeared on gen8, so a question
521 * arises: do we still need this and if so how should we go about
522 * invalidating the TLB?
523 */
524 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
525 i915_reg_t reg = RING_INSTPM(ring->mmio_base);
526
527 /* ring should be idle before issuing a sync flush*/
528 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
529
530 I915_WRITE(reg,
531 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
532 INSTPM_SYNC_FLUSH));
533 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
534 1000))
535 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
536 ring->name);
537 }
538 }
539
540 static bool stop_ring(struct intel_engine_cs *ring)
541 {
542 struct drm_i915_private *dev_priv = to_i915(ring->dev);
543
544 if (!IS_GEN2(ring->dev)) {
545 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
546 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
547 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
548 /* Sometimes we observe that the idle flag is not
549 * set even though the ring is empty. So double
550 * check before giving up.
551 */
552 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
553 return false;
554 }
555 }
556
557 I915_WRITE_CTL(ring, 0);
558 I915_WRITE_HEAD(ring, 0);
559 ring->write_tail(ring, 0);
560
561 if (!IS_GEN2(ring->dev)) {
562 (void)I915_READ_CTL(ring);
563 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
564 }
565
566 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
567 }
568
569 static int init_ring_common(struct intel_engine_cs *ring)
570 {
571 struct drm_device *dev = ring->dev;
572 struct drm_i915_private *dev_priv = dev->dev_private;
573 struct intel_ringbuffer *ringbuf = ring->buffer;
574 struct drm_i915_gem_object *obj = ringbuf->obj;
575 int ret = 0;
576
577 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
578
579 if (!stop_ring(ring)) {
580 /* G45 ring initialization often fails to reset head to zero */
581 DRM_DEBUG_KMS("%s head not reset to zero "
582 "ctl %08x head %08x tail %08x start %08x\n",
583 ring->name,
584 I915_READ_CTL(ring),
585 I915_READ_HEAD(ring),
586 I915_READ_TAIL(ring),
587 I915_READ_START(ring));
588
589 if (!stop_ring(ring)) {
590 DRM_ERROR("failed to set %s head to zero "
591 "ctl %08x head %08x tail %08x start %08x\n",
592 ring->name,
593 I915_READ_CTL(ring),
594 I915_READ_HEAD(ring),
595 I915_READ_TAIL(ring),
596 I915_READ_START(ring));
597 ret = -EIO;
598 goto out;
599 }
600 }
601
602 if (I915_NEED_GFX_HWS(dev))
603 intel_ring_setup_status_page(ring);
604 else
605 ring_setup_phys_status_page(ring);
606
607 /* Enforce ordering by reading HEAD register back */
608 I915_READ_HEAD(ring);
609
610 /* Initialize the ring. This must happen _after_ we've cleared the ring
611 * registers with the above sequence (the readback of the HEAD registers
612 * also enforces ordering), otherwise the hw might lose the new ring
613 * register values. */
614 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
615
616 /* WaClearRingBufHeadRegAtInit:ctg,elk */
617 if (I915_READ_HEAD(ring))
618 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
619 ring->name, I915_READ_HEAD(ring));
620 I915_WRITE_HEAD(ring, 0);
621 (void)I915_READ_HEAD(ring);
622
623 I915_WRITE_CTL(ring,
624 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
625 | RING_VALID);
626
627 /* If the head is still not zero, the ring is dead */
628 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
629 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
630 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
631 DRM_ERROR("%s initialization failed "
632 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
633 ring->name,
634 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
635 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
636 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
637 ret = -EIO;
638 goto out;
639 }
640
641 ringbuf->last_retired_head = -1;
642 ringbuf->head = I915_READ_HEAD(ring);
643 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
644 intel_ring_update_space(ringbuf);
645
646 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
647
648 out:
649 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
650
651 return ret;
652 }
653
654 void
655 intel_fini_pipe_control(struct intel_engine_cs *ring)
656 {
657 struct drm_device *dev = ring->dev;
658
659 if (ring->scratch.obj == NULL)
660 return;
661
662 if (INTEL_INFO(dev)->gen >= 5) {
663 kunmap(sg_page(ring->scratch.obj->pages->sgl));
664 i915_gem_object_ggtt_unpin(ring->scratch.obj);
665 }
666
667 drm_gem_object_unreference(&ring->scratch.obj->base);
668 ring->scratch.obj = NULL;
669 }
670
671 int
672 intel_init_pipe_control(struct intel_engine_cs *ring)
673 {
674 int ret;
675
676 WARN_ON(ring->scratch.obj);
677
678 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
679 if (ring->scratch.obj == NULL) {
680 DRM_ERROR("Failed to allocate seqno page\n");
681 ret = -ENOMEM;
682 goto err;
683 }
684
685 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
686 if (ret)
687 goto err_unref;
688
689 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
690 if (ret)
691 goto err_unref;
692
693 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
694 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
695 if (ring->scratch.cpu_page == NULL) {
696 ret = -ENOMEM;
697 goto err_unpin;
698 }
699
700 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
701 ring->name, ring->scratch.gtt_offset);
702 return 0;
703
704 err_unpin:
705 i915_gem_object_ggtt_unpin(ring->scratch.obj);
706 err_unref:
707 drm_gem_object_unreference(&ring->scratch.obj->base);
708 err:
709 return ret;
710 }
711
712 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
713 {
714 int ret, i;
715 struct intel_engine_cs *ring = req->ring;
716 struct drm_device *dev = ring->dev;
717 struct drm_i915_private *dev_priv = dev->dev_private;
718 struct i915_workarounds *w = &dev_priv->workarounds;
719
720 if (w->count == 0)
721 return 0;
722
723 ring->gpu_caches_dirty = true;
724 ret = intel_ring_flush_all_caches(req);
725 if (ret)
726 return ret;
727
728 ret = intel_ring_begin(req, (w->count * 2 + 2));
729 if (ret)
730 return ret;
731
732 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
733 for (i = 0; i < w->count; i++) {
734 intel_ring_emit_reg(ring, w->reg[i].addr);
735 intel_ring_emit(ring, w->reg[i].value);
736 }
737 intel_ring_emit(ring, MI_NOOP);
738
739 intel_ring_advance(ring);
740
741 ring->gpu_caches_dirty = true;
742 ret = intel_ring_flush_all_caches(req);
743 if (ret)
744 return ret;
745
746 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
747
748 return 0;
749 }
750
751 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
752 {
753 int ret;
754
755 ret = intel_ring_workarounds_emit(req);
756 if (ret != 0)
757 return ret;
758
759 ret = i915_gem_render_state_init(req);
760 if (ret)
761 DRM_ERROR("init render state: %d\n", ret);
762
763 return ret;
764 }
765
766 static int wa_add(struct drm_i915_private *dev_priv,
767 i915_reg_t addr,
768 const u32 mask, const u32 val)
769 {
770 const u32 idx = dev_priv->workarounds.count;
771
772 if (WARN_ON(idx >= I915_MAX_WA_REGS))
773 return -ENOSPC;
774
775 dev_priv->workarounds.reg[idx].addr = addr;
776 dev_priv->workarounds.reg[idx].value = val;
777 dev_priv->workarounds.reg[idx].mask = mask;
778
779 dev_priv->workarounds.count++;
780
781 return 0;
782 }
783
784 #define WA_REG(addr, mask, val) do { \
785 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
786 if (r) \
787 return r; \
788 } while (0)
789
790 #define WA_SET_BIT_MASKED(addr, mask) \
791 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
792
793 #define WA_CLR_BIT_MASKED(addr, mask) \
794 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
795
796 #define WA_SET_FIELD_MASKED(addr, mask, value) \
797 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
798
799 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
800 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
801
802 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
803
804 static int gen8_init_workarounds(struct intel_engine_cs *ring)
805 {
806 struct drm_device *dev = ring->dev;
807 struct drm_i915_private *dev_priv = dev->dev_private;
808
809 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
810
811 /* WaDisableAsyncFlipPerfMode:bdw,chv */
812 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
813
814 /* WaDisablePartialInstShootdown:bdw,chv */
815 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
816 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
817
818 /* Use Force Non-Coherent whenever executing a 3D context. This is a
819 * workaround for for a possible hang in the unlikely event a TLB
820 * invalidation occurs during a PSD flush.
821 */
822 /* WaForceEnableNonCoherent:bdw,chv */
823 /* WaHdcDisableFetchWhenMasked:bdw,chv */
824 WA_SET_BIT_MASKED(HDC_CHICKEN0,
825 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
826 HDC_FORCE_NON_COHERENT);
827
828 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
829 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
830 * polygons in the same 8x4 pixel/sample area to be processed without
831 * stalling waiting for the earlier ones to write to Hierarchical Z
832 * buffer."
833 *
834 * This optimization is off by default for BDW and CHV; turn it on.
835 */
836 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
837
838 /* Wa4x4STCOptimizationDisable:bdw,chv */
839 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
840
841 /*
842 * BSpec recommends 8x4 when MSAA is used,
843 * however in practice 16x4 seems fastest.
844 *
845 * Note that PS/WM thread counts depend on the WIZ hashing
846 * disable bit, which we don't touch here, but it's good
847 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
848 */
849 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
850 GEN6_WIZ_HASHING_MASK,
851 GEN6_WIZ_HASHING_16x4);
852
853 return 0;
854 }
855
856 static int bdw_init_workarounds(struct intel_engine_cs *ring)
857 {
858 int ret;
859 struct drm_device *dev = ring->dev;
860 struct drm_i915_private *dev_priv = dev->dev_private;
861
862 ret = gen8_init_workarounds(ring);
863 if (ret)
864 return ret;
865
866 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
867 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
868
869 /* WaDisableDopClockGating:bdw */
870 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
871 DOP_CLOCK_GATING_DISABLE);
872
873 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
874 GEN8_SAMPLER_POWER_BYPASS_DIS);
875
876 WA_SET_BIT_MASKED(HDC_CHICKEN0,
877 /* WaForceContextSaveRestoreNonCoherent:bdw */
878 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
879 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
880 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
881
882 return 0;
883 }
884
885 static int chv_init_workarounds(struct intel_engine_cs *ring)
886 {
887 int ret;
888 struct drm_device *dev = ring->dev;
889 struct drm_i915_private *dev_priv = dev->dev_private;
890
891 ret = gen8_init_workarounds(ring);
892 if (ret)
893 return ret;
894
895 /* WaDisableThreadStallDopClockGating:chv */
896 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
897
898 /* Improve HiZ throughput on CHV. */
899 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
900
901 return 0;
902 }
903
904 static int gen9_init_workarounds(struct intel_engine_cs *ring)
905 {
906 struct drm_device *dev = ring->dev;
907 struct drm_i915_private *dev_priv = dev->dev_private;
908 uint32_t tmp;
909
910 /* WaEnableLbsSlaRetryTimerDecrement:skl */
911 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
912 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
913
914 /* WaDisableKillLogic:bxt,skl */
915 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
916 ECOCHK_DIS_TLB);
917
918 /* WaDisablePartialInstShootdown:skl,bxt */
919 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
920 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
921
922 /* Syncing dependencies between camera and graphics:skl,bxt */
923 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
924 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
925
926 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
927 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
928 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
929 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
930 GEN9_DG_MIRROR_FIX_ENABLE);
931
932 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
933 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
934 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
935 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
936 GEN9_RHWO_OPTIMIZATION_DISABLE);
937 /*
938 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
939 * but we do that in per ctx batchbuffer as there is an issue
940 * with this register not getting restored on ctx restore
941 */
942 }
943
944 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
945 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
946 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
947 GEN9_ENABLE_YV12_BUGFIX);
948
949 /* Wa4x4STCOptimizationDisable:skl,bxt */
950 /* WaDisablePartialResolveInVc:skl,bxt */
951 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
952 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
953
954 /* WaCcsTlbPrefetchDisable:skl,bxt */
955 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
956 GEN9_CCS_TLB_PREFETCH_ENABLE);
957
958 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
959 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
960 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
961 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
962 PIXEL_MASK_CAMMING_DISABLE);
963
964 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
965 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
966 if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
967 IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
968 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
969 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
970
971 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
972 if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
973 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
974 GEN8_SAMPLER_POWER_BYPASS_DIS);
975
976 /* WaDisableSTUnitPowerOptimization:skl,bxt */
977 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
978
979 return 0;
980 }
981
982 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
983 {
984 struct drm_device *dev = ring->dev;
985 struct drm_i915_private *dev_priv = dev->dev_private;
986 u8 vals[3] = { 0, 0, 0 };
987 unsigned int i;
988
989 for (i = 0; i < 3; i++) {
990 u8 ss;
991
992 /*
993 * Only consider slices where one, and only one, subslice has 7
994 * EUs
995 */
996 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
997 continue;
998
999 /*
1000 * subslice_7eu[i] != 0 (because of the check above) and
1001 * ss_max == 4 (maximum number of subslices possible per slice)
1002 *
1003 * -> 0 <= ss <= 3;
1004 */
1005 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1006 vals[i] = 3 - ss;
1007 }
1008
1009 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1010 return 0;
1011
1012 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1013 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1014 GEN9_IZ_HASHING_MASK(2) |
1015 GEN9_IZ_HASHING_MASK(1) |
1016 GEN9_IZ_HASHING_MASK(0),
1017 GEN9_IZ_HASHING(2, vals[2]) |
1018 GEN9_IZ_HASHING(1, vals[1]) |
1019 GEN9_IZ_HASHING(0, vals[0]));
1020
1021 return 0;
1022 }
1023
1024 static int skl_init_workarounds(struct intel_engine_cs *ring)
1025 {
1026 int ret;
1027 struct drm_device *dev = ring->dev;
1028 struct drm_i915_private *dev_priv = dev->dev_private;
1029
1030 ret = gen9_init_workarounds(ring);
1031 if (ret)
1032 return ret;
1033
1034 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1035 /* WaDisableHDCInvalidation:skl */
1036 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1037 BDW_DISABLE_HDC_INVALIDATION);
1038
1039 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1040 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1041 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1042 }
1043
1044 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1045 * involving this register should also be added to WA batch as required.
1046 */
1047 if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1048 /* WaDisableLSQCROPERFforOCL:skl */
1049 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1050 GEN8_LQSC_RO_PERF_DIS);
1051
1052 /* WaEnableGapsTsvCreditFix:skl */
1053 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1054 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1055 GEN9_GAPS_TSV_CREDIT_DISABLE));
1056 }
1057
1058 /* WaDisablePowerCompilerClockGating:skl */
1059 if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1060 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1061 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1062
1063 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1064 /*
1065 *Use Force Non-Coherent whenever executing a 3D context. This
1066 * is a workaround for a possible hang in the unlikely event
1067 * a TLB invalidation occurs during a PSD flush.
1068 */
1069 /* WaForceEnableNonCoherent:skl */
1070 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1071 HDC_FORCE_NON_COHERENT);
1072 }
1073
1074 /* WaBarrierPerformanceFixDisable:skl */
1075 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1076 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1077 HDC_FENCE_DEST_SLM_DISABLE |
1078 HDC_BARRIER_PERFORMANCE_DISABLE);
1079
1080 /* WaDisableSbeCacheDispatchPortSharing:skl */
1081 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1082 WA_SET_BIT_MASKED(
1083 GEN7_HALF_SLICE_CHICKEN1,
1084 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1085
1086 return skl_tune_iz_hashing(ring);
1087 }
1088
1089 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1090 {
1091 int ret;
1092 struct drm_device *dev = ring->dev;
1093 struct drm_i915_private *dev_priv = dev->dev_private;
1094
1095 ret = gen9_init_workarounds(ring);
1096 if (ret)
1097 return ret;
1098
1099 /* WaStoreMultiplePTEenable:bxt */
1100 /* This is a requirement according to Hardware specification */
1101 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1102 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1103
1104 /* WaSetClckGatingDisableMedia:bxt */
1105 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1106 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1107 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1108 }
1109
1110 /* WaDisableThreadStallDopClockGating:bxt */
1111 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1112 STALL_DOP_GATING_DISABLE);
1113
1114 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1115 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1116 WA_SET_BIT_MASKED(
1117 GEN7_HALF_SLICE_CHICKEN1,
1118 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1119 }
1120
1121 return 0;
1122 }
1123
1124 int init_workarounds_ring(struct intel_engine_cs *ring)
1125 {
1126 struct drm_device *dev = ring->dev;
1127 struct drm_i915_private *dev_priv = dev->dev_private;
1128
1129 WARN_ON(ring->id != RCS);
1130
1131 dev_priv->workarounds.count = 0;
1132
1133 if (IS_BROADWELL(dev))
1134 return bdw_init_workarounds(ring);
1135
1136 if (IS_CHERRYVIEW(dev))
1137 return chv_init_workarounds(ring);
1138
1139 if (IS_SKYLAKE(dev))
1140 return skl_init_workarounds(ring);
1141
1142 if (IS_BROXTON(dev))
1143 return bxt_init_workarounds(ring);
1144
1145 return 0;
1146 }
1147
1148 static int init_render_ring(struct intel_engine_cs *ring)
1149 {
1150 struct drm_device *dev = ring->dev;
1151 struct drm_i915_private *dev_priv = dev->dev_private;
1152 int ret = init_ring_common(ring);
1153 if (ret)
1154 return ret;
1155
1156 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1157 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1158 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1159
1160 /* We need to disable the AsyncFlip performance optimisations in order
1161 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1162 * programmed to '1' on all products.
1163 *
1164 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1165 */
1166 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1167 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1168
1169 /* Required for the hardware to program scanline values for waiting */
1170 /* WaEnableFlushTlbInvalidationMode:snb */
1171 if (INTEL_INFO(dev)->gen == 6)
1172 I915_WRITE(GFX_MODE,
1173 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1174
1175 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1176 if (IS_GEN7(dev))
1177 I915_WRITE(GFX_MODE_GEN7,
1178 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1179 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1180
1181 if (IS_GEN6(dev)) {
1182 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1183 * "If this bit is set, STCunit will have LRA as replacement
1184 * policy. [...] This bit must be reset. LRA replacement
1185 * policy is not supported."
1186 */
1187 I915_WRITE(CACHE_MODE_0,
1188 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1189 }
1190
1191 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1192 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1193
1194 if (HAS_L3_DPF(dev))
1195 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1196
1197 return init_workarounds_ring(ring);
1198 }
1199
1200 static void render_ring_cleanup(struct intel_engine_cs *ring)
1201 {
1202 struct drm_device *dev = ring->dev;
1203 struct drm_i915_private *dev_priv = dev->dev_private;
1204
1205 if (dev_priv->semaphore_obj) {
1206 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1207 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1208 dev_priv->semaphore_obj = NULL;
1209 }
1210
1211 intel_fini_pipe_control(ring);
1212 }
1213
1214 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1215 unsigned int num_dwords)
1216 {
1217 #define MBOX_UPDATE_DWORDS 8
1218 struct intel_engine_cs *signaller = signaller_req->ring;
1219 struct drm_device *dev = signaller->dev;
1220 struct drm_i915_private *dev_priv = dev->dev_private;
1221 struct intel_engine_cs *waiter;
1222 int i, ret, num_rings;
1223
1224 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1225 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1226 #undef MBOX_UPDATE_DWORDS
1227
1228 ret = intel_ring_begin(signaller_req, num_dwords);
1229 if (ret)
1230 return ret;
1231
1232 for_each_ring(waiter, dev_priv, i) {
1233 u32 seqno;
1234 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1235 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1236 continue;
1237
1238 seqno = i915_gem_request_get_seqno(signaller_req);
1239 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1240 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1241 PIPE_CONTROL_QW_WRITE |
1242 PIPE_CONTROL_FLUSH_ENABLE);
1243 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1244 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1245 intel_ring_emit(signaller, seqno);
1246 intel_ring_emit(signaller, 0);
1247 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1248 MI_SEMAPHORE_TARGET(waiter->id));
1249 intel_ring_emit(signaller, 0);
1250 }
1251
1252 return 0;
1253 }
1254
1255 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1256 unsigned int num_dwords)
1257 {
1258 #define MBOX_UPDATE_DWORDS 6
1259 struct intel_engine_cs *signaller = signaller_req->ring;
1260 struct drm_device *dev = signaller->dev;
1261 struct drm_i915_private *dev_priv = dev->dev_private;
1262 struct intel_engine_cs *waiter;
1263 int i, ret, num_rings;
1264
1265 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1266 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1267 #undef MBOX_UPDATE_DWORDS
1268
1269 ret = intel_ring_begin(signaller_req, num_dwords);
1270 if (ret)
1271 return ret;
1272
1273 for_each_ring(waiter, dev_priv, i) {
1274 u32 seqno;
1275 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1276 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1277 continue;
1278
1279 seqno = i915_gem_request_get_seqno(signaller_req);
1280 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1281 MI_FLUSH_DW_OP_STOREDW);
1282 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1283 MI_FLUSH_DW_USE_GTT);
1284 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1285 intel_ring_emit(signaller, seqno);
1286 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1287 MI_SEMAPHORE_TARGET(waiter->id));
1288 intel_ring_emit(signaller, 0);
1289 }
1290
1291 return 0;
1292 }
1293
1294 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1295 unsigned int num_dwords)
1296 {
1297 struct intel_engine_cs *signaller = signaller_req->ring;
1298 struct drm_device *dev = signaller->dev;
1299 struct drm_i915_private *dev_priv = dev->dev_private;
1300 struct intel_engine_cs *useless;
1301 int i, ret, num_rings;
1302
1303 #define MBOX_UPDATE_DWORDS 3
1304 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1305 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1306 #undef MBOX_UPDATE_DWORDS
1307
1308 ret = intel_ring_begin(signaller_req, num_dwords);
1309 if (ret)
1310 return ret;
1311
1312 for_each_ring(useless, dev_priv, i) {
1313 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1314
1315 if (i915_mmio_reg_valid(mbox_reg)) {
1316 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1317
1318 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1319 intel_ring_emit_reg(signaller, mbox_reg);
1320 intel_ring_emit(signaller, seqno);
1321 }
1322 }
1323
1324 /* If num_dwords was rounded, make sure the tail pointer is correct */
1325 if (num_rings % 2 == 0)
1326 intel_ring_emit(signaller, MI_NOOP);
1327
1328 return 0;
1329 }
1330
1331 /**
1332 * gen6_add_request - Update the semaphore mailbox registers
1333 *
1334 * @request - request to write to the ring
1335 *
1336 * Update the mailbox registers in the *other* rings with the current seqno.
1337 * This acts like a signal in the canonical semaphore.
1338 */
1339 static int
1340 gen6_add_request(struct drm_i915_gem_request *req)
1341 {
1342 struct intel_engine_cs *ring = req->ring;
1343 int ret;
1344
1345 if (ring->semaphore.signal)
1346 ret = ring->semaphore.signal(req, 4);
1347 else
1348 ret = intel_ring_begin(req, 4);
1349
1350 if (ret)
1351 return ret;
1352
1353 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1354 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1355 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1356 intel_ring_emit(ring, MI_USER_INTERRUPT);
1357 __intel_ring_advance(ring);
1358
1359 return 0;
1360 }
1361
1362 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1363 u32 seqno)
1364 {
1365 struct drm_i915_private *dev_priv = dev->dev_private;
1366 return dev_priv->last_seqno < seqno;
1367 }
1368
1369 /**
1370 * intel_ring_sync - sync the waiter to the signaller on seqno
1371 *
1372 * @waiter - ring that is waiting
1373 * @signaller - ring which has, or will signal
1374 * @seqno - seqno which the waiter will block on
1375 */
1376
1377 static int
1378 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1379 struct intel_engine_cs *signaller,
1380 u32 seqno)
1381 {
1382 struct intel_engine_cs *waiter = waiter_req->ring;
1383 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1384 int ret;
1385
1386 ret = intel_ring_begin(waiter_req, 4);
1387 if (ret)
1388 return ret;
1389
1390 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1391 MI_SEMAPHORE_GLOBAL_GTT |
1392 MI_SEMAPHORE_POLL |
1393 MI_SEMAPHORE_SAD_GTE_SDD);
1394 intel_ring_emit(waiter, seqno);
1395 intel_ring_emit(waiter,
1396 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1397 intel_ring_emit(waiter,
1398 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1399 intel_ring_advance(waiter);
1400 return 0;
1401 }
1402
1403 static int
1404 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1405 struct intel_engine_cs *signaller,
1406 u32 seqno)
1407 {
1408 struct intel_engine_cs *waiter = waiter_req->ring;
1409 u32 dw1 = MI_SEMAPHORE_MBOX |
1410 MI_SEMAPHORE_COMPARE |
1411 MI_SEMAPHORE_REGISTER;
1412 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1413 int ret;
1414
1415 /* Throughout all of the GEM code, seqno passed implies our current
1416 * seqno is >= the last seqno executed. However for hardware the
1417 * comparison is strictly greater than.
1418 */
1419 seqno -= 1;
1420
1421 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1422
1423 ret = intel_ring_begin(waiter_req, 4);
1424 if (ret)
1425 return ret;
1426
1427 /* If seqno wrap happened, omit the wait with no-ops */
1428 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1429 intel_ring_emit(waiter, dw1 | wait_mbox);
1430 intel_ring_emit(waiter, seqno);
1431 intel_ring_emit(waiter, 0);
1432 intel_ring_emit(waiter, MI_NOOP);
1433 } else {
1434 intel_ring_emit(waiter, MI_NOOP);
1435 intel_ring_emit(waiter, MI_NOOP);
1436 intel_ring_emit(waiter, MI_NOOP);
1437 intel_ring_emit(waiter, MI_NOOP);
1438 }
1439 intel_ring_advance(waiter);
1440
1441 return 0;
1442 }
1443
1444 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1445 do { \
1446 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1447 PIPE_CONTROL_DEPTH_STALL); \
1448 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1449 intel_ring_emit(ring__, 0); \
1450 intel_ring_emit(ring__, 0); \
1451 } while (0)
1452
1453 static int
1454 pc_render_add_request(struct drm_i915_gem_request *req)
1455 {
1456 struct intel_engine_cs *ring = req->ring;
1457 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1458 int ret;
1459
1460 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1461 * incoherent with writes to memory, i.e. completely fubar,
1462 * so we need to use PIPE_NOTIFY instead.
1463 *
1464 * However, we also need to workaround the qword write
1465 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1466 * memory before requesting an interrupt.
1467 */
1468 ret = intel_ring_begin(req, 32);
1469 if (ret)
1470 return ret;
1471
1472 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1473 PIPE_CONTROL_WRITE_FLUSH |
1474 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1475 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1476 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1477 intel_ring_emit(ring, 0);
1478 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1479 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1480 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1481 scratch_addr += 2 * CACHELINE_BYTES;
1482 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1483 scratch_addr += 2 * CACHELINE_BYTES;
1484 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1485 scratch_addr += 2 * CACHELINE_BYTES;
1486 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1487 scratch_addr += 2 * CACHELINE_BYTES;
1488 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1489
1490 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1491 PIPE_CONTROL_WRITE_FLUSH |
1492 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1493 PIPE_CONTROL_NOTIFY);
1494 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1495 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1496 intel_ring_emit(ring, 0);
1497 __intel_ring_advance(ring);
1498
1499 return 0;
1500 }
1501
1502 static u32
1503 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1504 {
1505 /* Workaround to force correct ordering between irq and seqno writes on
1506 * ivb (and maybe also on snb) by reading from a CS register (like
1507 * ACTHD) before reading the status page. */
1508 if (!lazy_coherency) {
1509 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1510 POSTING_READ(RING_ACTHD(ring->mmio_base));
1511 }
1512
1513 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1514 }
1515
1516 static u32
1517 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1518 {
1519 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1520 }
1521
1522 static void
1523 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1524 {
1525 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1526 }
1527
1528 static u32
1529 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1530 {
1531 return ring->scratch.cpu_page[0];
1532 }
1533
1534 static void
1535 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1536 {
1537 ring->scratch.cpu_page[0] = seqno;
1538 }
1539
1540 static bool
1541 gen5_ring_get_irq(struct intel_engine_cs *ring)
1542 {
1543 struct drm_device *dev = ring->dev;
1544 struct drm_i915_private *dev_priv = dev->dev_private;
1545 unsigned long flags;
1546
1547 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1548 return false;
1549
1550 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1551 if (ring->irq_refcount++ == 0)
1552 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1553 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1554
1555 return true;
1556 }
1557
1558 static void
1559 gen5_ring_put_irq(struct intel_engine_cs *ring)
1560 {
1561 struct drm_device *dev = ring->dev;
1562 struct drm_i915_private *dev_priv = dev->dev_private;
1563 unsigned long flags;
1564
1565 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1566 if (--ring->irq_refcount == 0)
1567 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1568 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1569 }
1570
1571 static bool
1572 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1573 {
1574 struct drm_device *dev = ring->dev;
1575 struct drm_i915_private *dev_priv = dev->dev_private;
1576 unsigned long flags;
1577
1578 if (!intel_irqs_enabled(dev_priv))
1579 return false;
1580
1581 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1582 if (ring->irq_refcount++ == 0) {
1583 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1584 I915_WRITE(IMR, dev_priv->irq_mask);
1585 POSTING_READ(IMR);
1586 }
1587 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1588
1589 return true;
1590 }
1591
1592 static void
1593 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1594 {
1595 struct drm_device *dev = ring->dev;
1596 struct drm_i915_private *dev_priv = dev->dev_private;
1597 unsigned long flags;
1598
1599 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1600 if (--ring->irq_refcount == 0) {
1601 dev_priv->irq_mask |= ring->irq_enable_mask;
1602 I915_WRITE(IMR, dev_priv->irq_mask);
1603 POSTING_READ(IMR);
1604 }
1605 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1606 }
1607
1608 static bool
1609 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1610 {
1611 struct drm_device *dev = ring->dev;
1612 struct drm_i915_private *dev_priv = dev->dev_private;
1613 unsigned long flags;
1614
1615 if (!intel_irqs_enabled(dev_priv))
1616 return false;
1617
1618 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1619 if (ring->irq_refcount++ == 0) {
1620 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1621 I915_WRITE16(IMR, dev_priv->irq_mask);
1622 POSTING_READ16(IMR);
1623 }
1624 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1625
1626 return true;
1627 }
1628
1629 static void
1630 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1631 {
1632 struct drm_device *dev = ring->dev;
1633 struct drm_i915_private *dev_priv = dev->dev_private;
1634 unsigned long flags;
1635
1636 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1637 if (--ring->irq_refcount == 0) {
1638 dev_priv->irq_mask |= ring->irq_enable_mask;
1639 I915_WRITE16(IMR, dev_priv->irq_mask);
1640 POSTING_READ16(IMR);
1641 }
1642 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1643 }
1644
1645 static int
1646 bsd_ring_flush(struct drm_i915_gem_request *req,
1647 u32 invalidate_domains,
1648 u32 flush_domains)
1649 {
1650 struct intel_engine_cs *ring = req->ring;
1651 int ret;
1652
1653 ret = intel_ring_begin(req, 2);
1654 if (ret)
1655 return ret;
1656
1657 intel_ring_emit(ring, MI_FLUSH);
1658 intel_ring_emit(ring, MI_NOOP);
1659 intel_ring_advance(ring);
1660 return 0;
1661 }
1662
1663 static int
1664 i9xx_add_request(struct drm_i915_gem_request *req)
1665 {
1666 struct intel_engine_cs *ring = req->ring;
1667 int ret;
1668
1669 ret = intel_ring_begin(req, 4);
1670 if (ret)
1671 return ret;
1672
1673 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1674 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1675 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1676 intel_ring_emit(ring, MI_USER_INTERRUPT);
1677 __intel_ring_advance(ring);
1678
1679 return 0;
1680 }
1681
1682 static bool
1683 gen6_ring_get_irq(struct intel_engine_cs *ring)
1684 {
1685 struct drm_device *dev = ring->dev;
1686 struct drm_i915_private *dev_priv = dev->dev_private;
1687 unsigned long flags;
1688
1689 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1690 return false;
1691
1692 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1693 if (ring->irq_refcount++ == 0) {
1694 if (HAS_L3_DPF(dev) && ring->id == RCS)
1695 I915_WRITE_IMR(ring,
1696 ~(ring->irq_enable_mask |
1697 GT_PARITY_ERROR(dev)));
1698 else
1699 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1700 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1701 }
1702 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1703
1704 return true;
1705 }
1706
1707 static void
1708 gen6_ring_put_irq(struct intel_engine_cs *ring)
1709 {
1710 struct drm_device *dev = ring->dev;
1711 struct drm_i915_private *dev_priv = dev->dev_private;
1712 unsigned long flags;
1713
1714 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1715 if (--ring->irq_refcount == 0) {
1716 if (HAS_L3_DPF(dev) && ring->id == RCS)
1717 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1718 else
1719 I915_WRITE_IMR(ring, ~0);
1720 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1721 }
1722 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1723 }
1724
1725 static bool
1726 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1727 {
1728 struct drm_device *dev = ring->dev;
1729 struct drm_i915_private *dev_priv = dev->dev_private;
1730 unsigned long flags;
1731
1732 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1733 return false;
1734
1735 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1736 if (ring->irq_refcount++ == 0) {
1737 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1738 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1739 }
1740 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1741
1742 return true;
1743 }
1744
1745 static void
1746 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1747 {
1748 struct drm_device *dev = ring->dev;
1749 struct drm_i915_private *dev_priv = dev->dev_private;
1750 unsigned long flags;
1751
1752 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1753 if (--ring->irq_refcount == 0) {
1754 I915_WRITE_IMR(ring, ~0);
1755 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1756 }
1757 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1758 }
1759
1760 static bool
1761 gen8_ring_get_irq(struct intel_engine_cs *ring)
1762 {
1763 struct drm_device *dev = ring->dev;
1764 struct drm_i915_private *dev_priv = dev->dev_private;
1765 unsigned long flags;
1766
1767 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1768 return false;
1769
1770 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1771 if (ring->irq_refcount++ == 0) {
1772 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1773 I915_WRITE_IMR(ring,
1774 ~(ring->irq_enable_mask |
1775 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1776 } else {
1777 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1778 }
1779 POSTING_READ(RING_IMR(ring->mmio_base));
1780 }
1781 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1782
1783 return true;
1784 }
1785
1786 static void
1787 gen8_ring_put_irq(struct intel_engine_cs *ring)
1788 {
1789 struct drm_device *dev = ring->dev;
1790 struct drm_i915_private *dev_priv = dev->dev_private;
1791 unsigned long flags;
1792
1793 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1794 if (--ring->irq_refcount == 0) {
1795 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1796 I915_WRITE_IMR(ring,
1797 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1798 } else {
1799 I915_WRITE_IMR(ring, ~0);
1800 }
1801 POSTING_READ(RING_IMR(ring->mmio_base));
1802 }
1803 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1804 }
1805
1806 static int
1807 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1808 u64 offset, u32 length,
1809 unsigned dispatch_flags)
1810 {
1811 struct intel_engine_cs *ring = req->ring;
1812 int ret;
1813
1814 ret = intel_ring_begin(req, 2);
1815 if (ret)
1816 return ret;
1817
1818 intel_ring_emit(ring,
1819 MI_BATCH_BUFFER_START |
1820 MI_BATCH_GTT |
1821 (dispatch_flags & I915_DISPATCH_SECURE ?
1822 0 : MI_BATCH_NON_SECURE_I965));
1823 intel_ring_emit(ring, offset);
1824 intel_ring_advance(ring);
1825
1826 return 0;
1827 }
1828
1829 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1830 #define I830_BATCH_LIMIT (256*1024)
1831 #define I830_TLB_ENTRIES (2)
1832 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1833 static int
1834 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1835 u64 offset, u32 len,
1836 unsigned dispatch_flags)
1837 {
1838 struct intel_engine_cs *ring = req->ring;
1839 u32 cs_offset = ring->scratch.gtt_offset;
1840 int ret;
1841
1842 ret = intel_ring_begin(req, 6);
1843 if (ret)
1844 return ret;
1845
1846 /* Evict the invalid PTE TLBs */
1847 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1848 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1849 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1850 intel_ring_emit(ring, cs_offset);
1851 intel_ring_emit(ring, 0xdeadbeef);
1852 intel_ring_emit(ring, MI_NOOP);
1853 intel_ring_advance(ring);
1854
1855 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1856 if (len > I830_BATCH_LIMIT)
1857 return -ENOSPC;
1858
1859 ret = intel_ring_begin(req, 6 + 2);
1860 if (ret)
1861 return ret;
1862
1863 /* Blit the batch (which has now all relocs applied) to the
1864 * stable batch scratch bo area (so that the CS never
1865 * stumbles over its tlb invalidation bug) ...
1866 */
1867 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1868 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1869 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1870 intel_ring_emit(ring, cs_offset);
1871 intel_ring_emit(ring, 4096);
1872 intel_ring_emit(ring, offset);
1873
1874 intel_ring_emit(ring, MI_FLUSH);
1875 intel_ring_emit(ring, MI_NOOP);
1876 intel_ring_advance(ring);
1877
1878 /* ... and execute it. */
1879 offset = cs_offset;
1880 }
1881
1882 ret = intel_ring_begin(req, 4);
1883 if (ret)
1884 return ret;
1885
1886 intel_ring_emit(ring, MI_BATCH_BUFFER);
1887 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1888 0 : MI_BATCH_NON_SECURE));
1889 intel_ring_emit(ring, offset + len - 8);
1890 intel_ring_emit(ring, MI_NOOP);
1891 intel_ring_advance(ring);
1892
1893 return 0;
1894 }
1895
1896 static int
1897 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1898 u64 offset, u32 len,
1899 unsigned dispatch_flags)
1900 {
1901 struct intel_engine_cs *ring = req->ring;
1902 int ret;
1903
1904 ret = intel_ring_begin(req, 2);
1905 if (ret)
1906 return ret;
1907
1908 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1909 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1910 0 : MI_BATCH_NON_SECURE));
1911 intel_ring_advance(ring);
1912
1913 return 0;
1914 }
1915
1916 static void cleanup_status_page(struct intel_engine_cs *ring)
1917 {
1918 struct drm_i915_gem_object *obj;
1919
1920 obj = ring->status_page.obj;
1921 if (obj == NULL)
1922 return;
1923
1924 kunmap(sg_page(obj->pages->sgl));
1925 i915_gem_object_ggtt_unpin(obj);
1926 drm_gem_object_unreference(&obj->base);
1927 ring->status_page.obj = NULL;
1928 }
1929
1930 static int init_status_page(struct intel_engine_cs *ring)
1931 {
1932 struct drm_i915_gem_object *obj;
1933
1934 if ((obj = ring->status_page.obj) == NULL) {
1935 unsigned flags;
1936 int ret;
1937
1938 obj = i915_gem_alloc_object(ring->dev, 4096);
1939 if (obj == NULL) {
1940 DRM_ERROR("Failed to allocate status page\n");
1941 return -ENOMEM;
1942 }
1943
1944 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1945 if (ret)
1946 goto err_unref;
1947
1948 flags = 0;
1949 if (!HAS_LLC(ring->dev))
1950 /* On g33, we cannot place HWS above 256MiB, so
1951 * restrict its pinning to the low mappable arena.
1952 * Though this restriction is not documented for
1953 * gen4, gen5, or byt, they also behave similarly
1954 * and hang if the HWS is placed at the top of the
1955 * GTT. To generalise, it appears that all !llc
1956 * platforms have issues with us placing the HWS
1957 * above the mappable region (even though we never
1958 * actualy map it).
1959 */
1960 flags |= PIN_MAPPABLE;
1961 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1962 if (ret) {
1963 err_unref:
1964 drm_gem_object_unreference(&obj->base);
1965 return ret;
1966 }
1967
1968 ring->status_page.obj = obj;
1969 }
1970
1971 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1972 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1973 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1974
1975 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1976 ring->name, ring->status_page.gfx_addr);
1977
1978 return 0;
1979 }
1980
1981 static int init_phys_status_page(struct intel_engine_cs *ring)
1982 {
1983 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1984
1985 if (!dev_priv->status_page_dmah) {
1986 dev_priv->status_page_dmah =
1987 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1988 if (!dev_priv->status_page_dmah)
1989 return -ENOMEM;
1990 }
1991
1992 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1993 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1994
1995 return 0;
1996 }
1997
1998 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1999 {
2000 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2001 vunmap(ringbuf->virtual_start);
2002 else
2003 iounmap(ringbuf->virtual_start);
2004 ringbuf->virtual_start = NULL;
2005 i915_gem_object_ggtt_unpin(ringbuf->obj);
2006 }
2007
2008 static u32 *vmap_obj(struct drm_i915_gem_object *obj)
2009 {
2010 struct sg_page_iter sg_iter;
2011 struct page **pages;
2012 void *addr;
2013 int i;
2014
2015 pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
2016 if (pages == NULL)
2017 return NULL;
2018
2019 i = 0;
2020 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
2021 pages[i++] = sg_page_iter_page(&sg_iter);
2022
2023 addr = vmap(pages, i, 0, PAGE_KERNEL);
2024 drm_free_large(pages);
2025
2026 return addr;
2027 }
2028
2029 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2030 struct intel_ringbuffer *ringbuf)
2031 {
2032 struct drm_i915_private *dev_priv = to_i915(dev);
2033 struct drm_i915_gem_object *obj = ringbuf->obj;
2034 int ret;
2035
2036 if (HAS_LLC(dev_priv) && !obj->stolen) {
2037 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
2038 if (ret)
2039 return ret;
2040
2041 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2042 if (ret) {
2043 i915_gem_object_ggtt_unpin(obj);
2044 return ret;
2045 }
2046
2047 ringbuf->virtual_start = vmap_obj(obj);
2048 if (ringbuf->virtual_start == NULL) {
2049 i915_gem_object_ggtt_unpin(obj);
2050 return -ENOMEM;
2051 }
2052 } else {
2053 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2054 if (ret)
2055 return ret;
2056
2057 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2058 if (ret) {
2059 i915_gem_object_ggtt_unpin(obj);
2060 return ret;
2061 }
2062
2063 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2064 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2065 if (ringbuf->virtual_start == NULL) {
2066 i915_gem_object_ggtt_unpin(obj);
2067 return -EINVAL;
2068 }
2069 }
2070
2071 return 0;
2072 }
2073
2074 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2075 {
2076 drm_gem_object_unreference(&ringbuf->obj->base);
2077 ringbuf->obj = NULL;
2078 }
2079
2080 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2081 struct intel_ringbuffer *ringbuf)
2082 {
2083 struct drm_i915_gem_object *obj;
2084
2085 obj = NULL;
2086 if (!HAS_LLC(dev))
2087 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2088 if (obj == NULL)
2089 obj = i915_gem_alloc_object(dev, ringbuf->size);
2090 if (obj == NULL)
2091 return -ENOMEM;
2092
2093 /* mark ring buffers as read-only from GPU side by default */
2094 obj->gt_ro = 1;
2095
2096 ringbuf->obj = obj;
2097
2098 return 0;
2099 }
2100
2101 struct intel_ringbuffer *
2102 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2103 {
2104 struct intel_ringbuffer *ring;
2105 int ret;
2106
2107 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2108 if (ring == NULL) {
2109 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2110 engine->name);
2111 return ERR_PTR(-ENOMEM);
2112 }
2113
2114 ring->ring = engine;
2115 list_add(&ring->link, &engine->buffers);
2116
2117 ring->size = size;
2118 /* Workaround an erratum on the i830 which causes a hang if
2119 * the TAIL pointer points to within the last 2 cachelines
2120 * of the buffer.
2121 */
2122 ring->effective_size = size;
2123 if (IS_I830(engine->dev) || IS_845G(engine->dev))
2124 ring->effective_size -= 2 * CACHELINE_BYTES;
2125
2126 ring->last_retired_head = -1;
2127 intel_ring_update_space(ring);
2128
2129 ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2130 if (ret) {
2131 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2132 engine->name, ret);
2133 list_del(&ring->link);
2134 kfree(ring);
2135 return ERR_PTR(ret);
2136 }
2137
2138 return ring;
2139 }
2140
2141 void
2142 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2143 {
2144 intel_destroy_ringbuffer_obj(ring);
2145 list_del(&ring->link);
2146 kfree(ring);
2147 }
2148
2149 static int intel_init_ring_buffer(struct drm_device *dev,
2150 struct intel_engine_cs *ring)
2151 {
2152 struct intel_ringbuffer *ringbuf;
2153 int ret;
2154
2155 WARN_ON(ring->buffer);
2156
2157 ring->dev = dev;
2158 INIT_LIST_HEAD(&ring->active_list);
2159 INIT_LIST_HEAD(&ring->request_list);
2160 INIT_LIST_HEAD(&ring->execlist_queue);
2161 INIT_LIST_HEAD(&ring->buffers);
2162 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2163 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2164
2165 init_waitqueue_head(&ring->irq_queue);
2166
2167 ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2168 if (IS_ERR(ringbuf))
2169 return PTR_ERR(ringbuf);
2170 ring->buffer = ringbuf;
2171
2172 if (I915_NEED_GFX_HWS(dev)) {
2173 ret = init_status_page(ring);
2174 if (ret)
2175 goto error;
2176 } else {
2177 BUG_ON(ring->id != RCS);
2178 ret = init_phys_status_page(ring);
2179 if (ret)
2180 goto error;
2181 }
2182
2183 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2184 if (ret) {
2185 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2186 ring->name, ret);
2187 intel_destroy_ringbuffer_obj(ringbuf);
2188 goto error;
2189 }
2190
2191 ret = i915_cmd_parser_init_ring(ring);
2192 if (ret)
2193 goto error;
2194
2195 return 0;
2196
2197 error:
2198 intel_ringbuffer_free(ringbuf);
2199 ring->buffer = NULL;
2200 return ret;
2201 }
2202
2203 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2204 {
2205 struct drm_i915_private *dev_priv;
2206
2207 if (!intel_ring_initialized(ring))
2208 return;
2209
2210 dev_priv = to_i915(ring->dev);
2211
2212 intel_stop_ring_buffer(ring);
2213 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2214
2215 intel_unpin_ringbuffer_obj(ring->buffer);
2216 intel_ringbuffer_free(ring->buffer);
2217 ring->buffer = NULL;
2218
2219 if (ring->cleanup)
2220 ring->cleanup(ring);
2221
2222 cleanup_status_page(ring);
2223
2224 i915_cmd_parser_fini_ring(ring);
2225 i915_gem_batch_pool_fini(&ring->batch_pool);
2226 }
2227
2228 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2229 {
2230 struct intel_ringbuffer *ringbuf = ring->buffer;
2231 struct drm_i915_gem_request *request;
2232 unsigned space;
2233 int ret;
2234
2235 if (intel_ring_space(ringbuf) >= n)
2236 return 0;
2237
2238 /* The whole point of reserving space is to not wait! */
2239 WARN_ON(ringbuf->reserved_in_use);
2240
2241 list_for_each_entry(request, &ring->request_list, list) {
2242 space = __intel_ring_space(request->postfix, ringbuf->tail,
2243 ringbuf->size);
2244 if (space >= n)
2245 break;
2246 }
2247
2248 if (WARN_ON(&request->list == &ring->request_list))
2249 return -ENOSPC;
2250
2251 ret = i915_wait_request(request);
2252 if (ret)
2253 return ret;
2254
2255 ringbuf->space = space;
2256 return 0;
2257 }
2258
2259 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2260 {
2261 uint32_t __iomem *virt;
2262 int rem = ringbuf->size - ringbuf->tail;
2263
2264 virt = ringbuf->virtual_start + ringbuf->tail;
2265 rem /= 4;
2266 while (rem--)
2267 iowrite32(MI_NOOP, virt++);
2268
2269 ringbuf->tail = 0;
2270 intel_ring_update_space(ringbuf);
2271 }
2272
2273 int intel_ring_idle(struct intel_engine_cs *ring)
2274 {
2275 struct drm_i915_gem_request *req;
2276
2277 /* Wait upon the last request to be completed */
2278 if (list_empty(&ring->request_list))
2279 return 0;
2280
2281 req = list_entry(ring->request_list.prev,
2282 struct drm_i915_gem_request,
2283 list);
2284
2285 /* Make sure we do not trigger any retires */
2286 return __i915_wait_request(req,
2287 atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2288 to_i915(ring->dev)->mm.interruptible,
2289 NULL, NULL);
2290 }
2291
2292 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2293 {
2294 request->ringbuf = request->ring->buffer;
2295 return 0;
2296 }
2297
2298 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2299 {
2300 /*
2301 * The first call merely notes the reserve request and is common for
2302 * all back ends. The subsequent localised _begin() call actually
2303 * ensures that the reservation is available. Without the begin, if
2304 * the request creator immediately submitted the request without
2305 * adding any commands to it then there might not actually be
2306 * sufficient room for the submission commands.
2307 */
2308 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2309
2310 return intel_ring_begin(request, 0);
2311 }
2312
2313 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2314 {
2315 WARN_ON(ringbuf->reserved_size);
2316 WARN_ON(ringbuf->reserved_in_use);
2317
2318 ringbuf->reserved_size = size;
2319 }
2320
2321 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2322 {
2323 WARN_ON(ringbuf->reserved_in_use);
2324
2325 ringbuf->reserved_size = 0;
2326 ringbuf->reserved_in_use = false;
2327 }
2328
2329 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2330 {
2331 WARN_ON(ringbuf->reserved_in_use);
2332
2333 ringbuf->reserved_in_use = true;
2334 ringbuf->reserved_tail = ringbuf->tail;
2335 }
2336
2337 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2338 {
2339 WARN_ON(!ringbuf->reserved_in_use);
2340 if (ringbuf->tail > ringbuf->reserved_tail) {
2341 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2342 "request reserved size too small: %d vs %d!\n",
2343 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2344 } else {
2345 /*
2346 * The ring was wrapped while the reserved space was in use.
2347 * That means that some unknown amount of the ring tail was
2348 * no-op filled and skipped. Thus simply adding the ring size
2349 * to the tail and doing the above space check will not work.
2350 * Rather than attempt to track how much tail was skipped,
2351 * it is much simpler to say that also skipping the sanity
2352 * check every once in a while is not a big issue.
2353 */
2354 }
2355
2356 ringbuf->reserved_size = 0;
2357 ringbuf->reserved_in_use = false;
2358 }
2359
2360 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2361 {
2362 struct intel_ringbuffer *ringbuf = ring->buffer;
2363 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2364 int remain_actual = ringbuf->size - ringbuf->tail;
2365 int ret, total_bytes, wait_bytes = 0;
2366 bool need_wrap = false;
2367
2368 if (ringbuf->reserved_in_use)
2369 total_bytes = bytes;
2370 else
2371 total_bytes = bytes + ringbuf->reserved_size;
2372
2373 if (unlikely(bytes > remain_usable)) {
2374 /*
2375 * Not enough space for the basic request. So need to flush
2376 * out the remainder and then wait for base + reserved.
2377 */
2378 wait_bytes = remain_actual + total_bytes;
2379 need_wrap = true;
2380 } else {
2381 if (unlikely(total_bytes > remain_usable)) {
2382 /*
2383 * The base request will fit but the reserved space
2384 * falls off the end. So only need to to wait for the
2385 * reserved size after flushing out the remainder.
2386 */
2387 wait_bytes = remain_actual + ringbuf->reserved_size;
2388 need_wrap = true;
2389 } else if (total_bytes > ringbuf->space) {
2390 /* No wrapping required, just waiting. */
2391 wait_bytes = total_bytes;
2392 }
2393 }
2394
2395 if (wait_bytes) {
2396 ret = ring_wait_for_space(ring, wait_bytes);
2397 if (unlikely(ret))
2398 return ret;
2399
2400 if (need_wrap)
2401 __wrap_ring_buffer(ringbuf);
2402 }
2403
2404 return 0;
2405 }
2406
2407 int intel_ring_begin(struct drm_i915_gem_request *req,
2408 int num_dwords)
2409 {
2410 struct intel_engine_cs *ring;
2411 struct drm_i915_private *dev_priv;
2412 int ret;
2413
2414 WARN_ON(req == NULL);
2415 ring = req->ring;
2416 dev_priv = ring->dev->dev_private;
2417
2418 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2419 dev_priv->mm.interruptible);
2420 if (ret)
2421 return ret;
2422
2423 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2424 if (ret)
2425 return ret;
2426
2427 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2428 return 0;
2429 }
2430
2431 /* Align the ring tail to a cacheline boundary */
2432 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2433 {
2434 struct intel_engine_cs *ring = req->ring;
2435 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2436 int ret;
2437
2438 if (num_dwords == 0)
2439 return 0;
2440
2441 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2442 ret = intel_ring_begin(req, num_dwords);
2443 if (ret)
2444 return ret;
2445
2446 while (num_dwords--)
2447 intel_ring_emit(ring, MI_NOOP);
2448
2449 intel_ring_advance(ring);
2450
2451 return 0;
2452 }
2453
2454 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2455 {
2456 struct drm_device *dev = ring->dev;
2457 struct drm_i915_private *dev_priv = dev->dev_private;
2458
2459 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2460 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2461 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2462 if (HAS_VEBOX(dev))
2463 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2464 }
2465
2466 ring->set_seqno(ring, seqno);
2467 ring->hangcheck.seqno = seqno;
2468 }
2469
2470 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2471 u32 value)
2472 {
2473 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2474
2475 /* Every tail move must follow the sequence below */
2476
2477 /* Disable notification that the ring is IDLE. The GT
2478 * will then assume that it is busy and bring it out of rc6.
2479 */
2480 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2481 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2482
2483 /* Clear the context id. Here be magic! */
2484 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2485
2486 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2487 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2488 GEN6_BSD_SLEEP_INDICATOR) == 0,
2489 50))
2490 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2491
2492 /* Now that the ring is fully powered up, update the tail */
2493 I915_WRITE_TAIL(ring, value);
2494 POSTING_READ(RING_TAIL(ring->mmio_base));
2495
2496 /* Let the ring send IDLE messages to the GT again,
2497 * and so let it sleep to conserve power when idle.
2498 */
2499 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2500 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2501 }
2502
2503 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2504 u32 invalidate, u32 flush)
2505 {
2506 struct intel_engine_cs *ring = req->ring;
2507 uint32_t cmd;
2508 int ret;
2509
2510 ret = intel_ring_begin(req, 4);
2511 if (ret)
2512 return ret;
2513
2514 cmd = MI_FLUSH_DW;
2515 if (INTEL_INFO(ring->dev)->gen >= 8)
2516 cmd += 1;
2517
2518 /* We always require a command barrier so that subsequent
2519 * commands, such as breadcrumb interrupts, are strictly ordered
2520 * wrt the contents of the write cache being flushed to memory
2521 * (and thus being coherent from the CPU).
2522 */
2523 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2524
2525 /*
2526 * Bspec vol 1c.5 - video engine command streamer:
2527 * "If ENABLED, all TLBs will be invalidated once the flush
2528 * operation is complete. This bit is only valid when the
2529 * Post-Sync Operation field is a value of 1h or 3h."
2530 */
2531 if (invalidate & I915_GEM_GPU_DOMAINS)
2532 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2533
2534 intel_ring_emit(ring, cmd);
2535 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2536 if (INTEL_INFO(ring->dev)->gen >= 8) {
2537 intel_ring_emit(ring, 0); /* upper addr */
2538 intel_ring_emit(ring, 0); /* value */
2539 } else {
2540 intel_ring_emit(ring, 0);
2541 intel_ring_emit(ring, MI_NOOP);
2542 }
2543 intel_ring_advance(ring);
2544 return 0;
2545 }
2546
2547 static int
2548 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2549 u64 offset, u32 len,
2550 unsigned dispatch_flags)
2551 {
2552 struct intel_engine_cs *ring = req->ring;
2553 bool ppgtt = USES_PPGTT(ring->dev) &&
2554 !(dispatch_flags & I915_DISPATCH_SECURE);
2555 int ret;
2556
2557 ret = intel_ring_begin(req, 4);
2558 if (ret)
2559 return ret;
2560
2561 /* FIXME(BDW): Address space and security selectors. */
2562 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2563 (dispatch_flags & I915_DISPATCH_RS ?
2564 MI_BATCH_RESOURCE_STREAMER : 0));
2565 intel_ring_emit(ring, lower_32_bits(offset));
2566 intel_ring_emit(ring, upper_32_bits(offset));
2567 intel_ring_emit(ring, MI_NOOP);
2568 intel_ring_advance(ring);
2569
2570 return 0;
2571 }
2572
2573 static int
2574 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2575 u64 offset, u32 len,
2576 unsigned dispatch_flags)
2577 {
2578 struct intel_engine_cs *ring = req->ring;
2579 int ret;
2580
2581 ret = intel_ring_begin(req, 2);
2582 if (ret)
2583 return ret;
2584
2585 intel_ring_emit(ring,
2586 MI_BATCH_BUFFER_START |
2587 (dispatch_flags & I915_DISPATCH_SECURE ?
2588 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2589 (dispatch_flags & I915_DISPATCH_RS ?
2590 MI_BATCH_RESOURCE_STREAMER : 0));
2591 /* bit0-7 is the length on GEN6+ */
2592 intel_ring_emit(ring, offset);
2593 intel_ring_advance(ring);
2594
2595 return 0;
2596 }
2597
2598 static int
2599 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2600 u64 offset, u32 len,
2601 unsigned dispatch_flags)
2602 {
2603 struct intel_engine_cs *ring = req->ring;
2604 int ret;
2605
2606 ret = intel_ring_begin(req, 2);
2607 if (ret)
2608 return ret;
2609
2610 intel_ring_emit(ring,
2611 MI_BATCH_BUFFER_START |
2612 (dispatch_flags & I915_DISPATCH_SECURE ?
2613 0 : MI_BATCH_NON_SECURE_I965));
2614 /* bit0-7 is the length on GEN6+ */
2615 intel_ring_emit(ring, offset);
2616 intel_ring_advance(ring);
2617
2618 return 0;
2619 }
2620
2621 /* Blitter support (SandyBridge+) */
2622
2623 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2624 u32 invalidate, u32 flush)
2625 {
2626 struct intel_engine_cs *ring = req->ring;
2627 struct drm_device *dev = ring->dev;
2628 uint32_t cmd;
2629 int ret;
2630
2631 ret = intel_ring_begin(req, 4);
2632 if (ret)
2633 return ret;
2634
2635 cmd = MI_FLUSH_DW;
2636 if (INTEL_INFO(dev)->gen >= 8)
2637 cmd += 1;
2638
2639 /* We always require a command barrier so that subsequent
2640 * commands, such as breadcrumb interrupts, are strictly ordered
2641 * wrt the contents of the write cache being flushed to memory
2642 * (and thus being coherent from the CPU).
2643 */
2644 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2645
2646 /*
2647 * Bspec vol 1c.3 - blitter engine command streamer:
2648 * "If ENABLED, all TLBs will be invalidated once the flush
2649 * operation is complete. This bit is only valid when the
2650 * Post-Sync Operation field is a value of 1h or 3h."
2651 */
2652 if (invalidate & I915_GEM_DOMAIN_RENDER)
2653 cmd |= MI_INVALIDATE_TLB;
2654 intel_ring_emit(ring, cmd);
2655 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2656 if (INTEL_INFO(dev)->gen >= 8) {
2657 intel_ring_emit(ring, 0); /* upper addr */
2658 intel_ring_emit(ring, 0); /* value */
2659 } else {
2660 intel_ring_emit(ring, 0);
2661 intel_ring_emit(ring, MI_NOOP);
2662 }
2663 intel_ring_advance(ring);
2664
2665 return 0;
2666 }
2667
2668 int intel_init_render_ring_buffer(struct drm_device *dev)
2669 {
2670 struct drm_i915_private *dev_priv = dev->dev_private;
2671 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2672 struct drm_i915_gem_object *obj;
2673 int ret;
2674
2675 ring->name = "render ring";
2676 ring->id = RCS;
2677 ring->mmio_base = RENDER_RING_BASE;
2678
2679 if (INTEL_INFO(dev)->gen >= 8) {
2680 if (i915_semaphore_is_enabled(dev)) {
2681 obj = i915_gem_alloc_object(dev, 4096);
2682 if (obj == NULL) {
2683 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2684 i915.semaphores = 0;
2685 } else {
2686 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2687 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2688 if (ret != 0) {
2689 drm_gem_object_unreference(&obj->base);
2690 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2691 i915.semaphores = 0;
2692 } else
2693 dev_priv->semaphore_obj = obj;
2694 }
2695 }
2696
2697 ring->init_context = intel_rcs_ctx_init;
2698 ring->add_request = gen6_add_request;
2699 ring->flush = gen8_render_ring_flush;
2700 ring->irq_get = gen8_ring_get_irq;
2701 ring->irq_put = gen8_ring_put_irq;
2702 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2703 ring->get_seqno = gen6_ring_get_seqno;
2704 ring->set_seqno = ring_set_seqno;
2705 if (i915_semaphore_is_enabled(dev)) {
2706 WARN_ON(!dev_priv->semaphore_obj);
2707 ring->semaphore.sync_to = gen8_ring_sync;
2708 ring->semaphore.signal = gen8_rcs_signal;
2709 GEN8_RING_SEMAPHORE_INIT;
2710 }
2711 } else if (INTEL_INFO(dev)->gen >= 6) {
2712 ring->init_context = intel_rcs_ctx_init;
2713 ring->add_request = gen6_add_request;
2714 ring->flush = gen7_render_ring_flush;
2715 if (INTEL_INFO(dev)->gen == 6)
2716 ring->flush = gen6_render_ring_flush;
2717 ring->irq_get = gen6_ring_get_irq;
2718 ring->irq_put = gen6_ring_put_irq;
2719 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2720 ring->get_seqno = gen6_ring_get_seqno;
2721 ring->set_seqno = ring_set_seqno;
2722 if (i915_semaphore_is_enabled(dev)) {
2723 ring->semaphore.sync_to = gen6_ring_sync;
2724 ring->semaphore.signal = gen6_signal;
2725 /*
2726 * The current semaphore is only applied on pre-gen8
2727 * platform. And there is no VCS2 ring on the pre-gen8
2728 * platform. So the semaphore between RCS and VCS2 is
2729 * initialized as INVALID. Gen8 will initialize the
2730 * sema between VCS2 and RCS later.
2731 */
2732 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2733 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2734 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2735 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2736 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2737 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2738 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2739 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2740 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2741 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2742 }
2743 } else if (IS_GEN5(dev)) {
2744 ring->add_request = pc_render_add_request;
2745 ring->flush = gen4_render_ring_flush;
2746 ring->get_seqno = pc_render_get_seqno;
2747 ring->set_seqno = pc_render_set_seqno;
2748 ring->irq_get = gen5_ring_get_irq;
2749 ring->irq_put = gen5_ring_put_irq;
2750 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2751 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2752 } else {
2753 ring->add_request = i9xx_add_request;
2754 if (INTEL_INFO(dev)->gen < 4)
2755 ring->flush = gen2_render_ring_flush;
2756 else
2757 ring->flush = gen4_render_ring_flush;
2758 ring->get_seqno = ring_get_seqno;
2759 ring->set_seqno = ring_set_seqno;
2760 if (IS_GEN2(dev)) {
2761 ring->irq_get = i8xx_ring_get_irq;
2762 ring->irq_put = i8xx_ring_put_irq;
2763 } else {
2764 ring->irq_get = i9xx_ring_get_irq;
2765 ring->irq_put = i9xx_ring_put_irq;
2766 }
2767 ring->irq_enable_mask = I915_USER_INTERRUPT;
2768 }
2769 ring->write_tail = ring_write_tail;
2770
2771 if (IS_HASWELL(dev))
2772 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2773 else if (IS_GEN8(dev))
2774 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2775 else if (INTEL_INFO(dev)->gen >= 6)
2776 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2777 else if (INTEL_INFO(dev)->gen >= 4)
2778 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2779 else if (IS_I830(dev) || IS_845G(dev))
2780 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2781 else
2782 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2783 ring->init_hw = init_render_ring;
2784 ring->cleanup = render_ring_cleanup;
2785
2786 /* Workaround batchbuffer to combat CS tlb bug. */
2787 if (HAS_BROKEN_CS_TLB(dev)) {
2788 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2789 if (obj == NULL) {
2790 DRM_ERROR("Failed to allocate batch bo\n");
2791 return -ENOMEM;
2792 }
2793
2794 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2795 if (ret != 0) {
2796 drm_gem_object_unreference(&obj->base);
2797 DRM_ERROR("Failed to ping batch bo\n");
2798 return ret;
2799 }
2800
2801 ring->scratch.obj = obj;
2802 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2803 }
2804
2805 ret = intel_init_ring_buffer(dev, ring);
2806 if (ret)
2807 return ret;
2808
2809 if (INTEL_INFO(dev)->gen >= 5) {
2810 ret = intel_init_pipe_control(ring);
2811 if (ret)
2812 return ret;
2813 }
2814
2815 return 0;
2816 }
2817
2818 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2819 {
2820 struct drm_i915_private *dev_priv = dev->dev_private;
2821 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2822
2823 ring->name = "bsd ring";
2824 ring->id = VCS;
2825
2826 ring->write_tail = ring_write_tail;
2827 if (INTEL_INFO(dev)->gen >= 6) {
2828 ring->mmio_base = GEN6_BSD_RING_BASE;
2829 /* gen6 bsd needs a special wa for tail updates */
2830 if (IS_GEN6(dev))
2831 ring->write_tail = gen6_bsd_ring_write_tail;
2832 ring->flush = gen6_bsd_ring_flush;
2833 ring->add_request = gen6_add_request;
2834 ring->get_seqno = gen6_ring_get_seqno;
2835 ring->set_seqno = ring_set_seqno;
2836 if (INTEL_INFO(dev)->gen >= 8) {
2837 ring->irq_enable_mask =
2838 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2839 ring->irq_get = gen8_ring_get_irq;
2840 ring->irq_put = gen8_ring_put_irq;
2841 ring->dispatch_execbuffer =
2842 gen8_ring_dispatch_execbuffer;
2843 if (i915_semaphore_is_enabled(dev)) {
2844 ring->semaphore.sync_to = gen8_ring_sync;
2845 ring->semaphore.signal = gen8_xcs_signal;
2846 GEN8_RING_SEMAPHORE_INIT;
2847 }
2848 } else {
2849 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2850 ring->irq_get = gen6_ring_get_irq;
2851 ring->irq_put = gen6_ring_put_irq;
2852 ring->dispatch_execbuffer =
2853 gen6_ring_dispatch_execbuffer;
2854 if (i915_semaphore_is_enabled(dev)) {
2855 ring->semaphore.sync_to = gen6_ring_sync;
2856 ring->semaphore.signal = gen6_signal;
2857 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2858 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2859 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2860 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2861 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2862 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2863 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2864 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2865 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2866 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2867 }
2868 }
2869 } else {
2870 ring->mmio_base = BSD_RING_BASE;
2871 ring->flush = bsd_ring_flush;
2872 ring->add_request = i9xx_add_request;
2873 ring->get_seqno = ring_get_seqno;
2874 ring->set_seqno = ring_set_seqno;
2875 if (IS_GEN5(dev)) {
2876 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2877 ring->irq_get = gen5_ring_get_irq;
2878 ring->irq_put = gen5_ring_put_irq;
2879 } else {
2880 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2881 ring->irq_get = i9xx_ring_get_irq;
2882 ring->irq_put = i9xx_ring_put_irq;
2883 }
2884 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2885 }
2886 ring->init_hw = init_ring_common;
2887
2888 return intel_init_ring_buffer(dev, ring);
2889 }
2890
2891 /**
2892 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2893 */
2894 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2895 {
2896 struct drm_i915_private *dev_priv = dev->dev_private;
2897 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2898
2899 ring->name = "bsd2 ring";
2900 ring->id = VCS2;
2901
2902 ring->write_tail = ring_write_tail;
2903 ring->mmio_base = GEN8_BSD2_RING_BASE;
2904 ring->flush = gen6_bsd_ring_flush;
2905 ring->add_request = gen6_add_request;
2906 ring->get_seqno = gen6_ring_get_seqno;
2907 ring->set_seqno = ring_set_seqno;
2908 ring->irq_enable_mask =
2909 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2910 ring->irq_get = gen8_ring_get_irq;
2911 ring->irq_put = gen8_ring_put_irq;
2912 ring->dispatch_execbuffer =
2913 gen8_ring_dispatch_execbuffer;
2914 if (i915_semaphore_is_enabled(dev)) {
2915 ring->semaphore.sync_to = gen8_ring_sync;
2916 ring->semaphore.signal = gen8_xcs_signal;
2917 GEN8_RING_SEMAPHORE_INIT;
2918 }
2919 ring->init_hw = init_ring_common;
2920
2921 return intel_init_ring_buffer(dev, ring);
2922 }
2923
2924 int intel_init_blt_ring_buffer(struct drm_device *dev)
2925 {
2926 struct drm_i915_private *dev_priv = dev->dev_private;
2927 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2928
2929 ring->name = "blitter ring";
2930 ring->id = BCS;
2931
2932 ring->mmio_base = BLT_RING_BASE;
2933 ring->write_tail = ring_write_tail;
2934 ring->flush = gen6_ring_flush;
2935 ring->add_request = gen6_add_request;
2936 ring->get_seqno = gen6_ring_get_seqno;
2937 ring->set_seqno = ring_set_seqno;
2938 if (INTEL_INFO(dev)->gen >= 8) {
2939 ring->irq_enable_mask =
2940 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2941 ring->irq_get = gen8_ring_get_irq;
2942 ring->irq_put = gen8_ring_put_irq;
2943 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2944 if (i915_semaphore_is_enabled(dev)) {
2945 ring->semaphore.sync_to = gen8_ring_sync;
2946 ring->semaphore.signal = gen8_xcs_signal;
2947 GEN8_RING_SEMAPHORE_INIT;
2948 }
2949 } else {
2950 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2951 ring->irq_get = gen6_ring_get_irq;
2952 ring->irq_put = gen6_ring_put_irq;
2953 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2954 if (i915_semaphore_is_enabled(dev)) {
2955 ring->semaphore.signal = gen6_signal;
2956 ring->semaphore.sync_to = gen6_ring_sync;
2957 /*
2958 * The current semaphore is only applied on pre-gen8
2959 * platform. And there is no VCS2 ring on the pre-gen8
2960 * platform. So the semaphore between BCS and VCS2 is
2961 * initialized as INVALID. Gen8 will initialize the
2962 * sema between BCS and VCS2 later.
2963 */
2964 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2965 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2966 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2967 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2968 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2969 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2970 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2971 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2972 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2973 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2974 }
2975 }
2976 ring->init_hw = init_ring_common;
2977
2978 return intel_init_ring_buffer(dev, ring);
2979 }
2980
2981 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2982 {
2983 struct drm_i915_private *dev_priv = dev->dev_private;
2984 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2985
2986 ring->name = "video enhancement ring";
2987 ring->id = VECS;
2988
2989 ring->mmio_base = VEBOX_RING_BASE;
2990 ring->write_tail = ring_write_tail;
2991 ring->flush = gen6_ring_flush;
2992 ring->add_request = gen6_add_request;
2993 ring->get_seqno = gen6_ring_get_seqno;
2994 ring->set_seqno = ring_set_seqno;
2995
2996 if (INTEL_INFO(dev)->gen >= 8) {
2997 ring->irq_enable_mask =
2998 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2999 ring->irq_get = gen8_ring_get_irq;
3000 ring->irq_put = gen8_ring_put_irq;
3001 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3002 if (i915_semaphore_is_enabled(dev)) {
3003 ring->semaphore.sync_to = gen8_ring_sync;
3004 ring->semaphore.signal = gen8_xcs_signal;
3005 GEN8_RING_SEMAPHORE_INIT;
3006 }
3007 } else {
3008 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3009 ring->irq_get = hsw_vebox_get_irq;
3010 ring->irq_put = hsw_vebox_put_irq;
3011 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3012 if (i915_semaphore_is_enabled(dev)) {
3013 ring->semaphore.sync_to = gen6_ring_sync;
3014 ring->semaphore.signal = gen6_signal;
3015 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3016 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3017 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3018 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3019 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3020 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3021 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3022 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3023 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3024 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3025 }
3026 }
3027 ring->init_hw = init_ring_common;
3028
3029 return intel_init_ring_buffer(dev, ring);
3030 }
3031
3032 int
3033 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3034 {
3035 struct intel_engine_cs *ring = req->ring;
3036 int ret;
3037
3038 if (!ring->gpu_caches_dirty)
3039 return 0;
3040
3041 ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3042 if (ret)
3043 return ret;
3044
3045 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3046
3047 ring->gpu_caches_dirty = false;
3048 return 0;
3049 }
3050
3051 int
3052 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3053 {
3054 struct intel_engine_cs *ring = req->ring;
3055 uint32_t flush_domains;
3056 int ret;
3057
3058 flush_domains = 0;
3059 if (ring->gpu_caches_dirty)
3060 flush_domains = I915_GEM_GPU_DOMAINS;
3061
3062 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3063 if (ret)
3064 return ret;
3065
3066 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3067
3068 ring->gpu_caches_dirty = false;
3069 return 0;
3070 }
3071
3072 void
3073 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3074 {
3075 int ret;
3076
3077 if (!intel_ring_initialized(ring))
3078 return;
3079
3080 ret = intel_ring_idle(ring);
3081 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3082 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3083 ring->name, ret);
3084
3085 stop_ring(ring);
3086 }