]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
Merge tag 'for-4.15-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / vmwgfx / vmwgfx_kms.c
1 /**************************************************************************
2 *
3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33
34
35 /* Might need a hrtimer here? */
36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
37
38 void vmw_du_cleanup(struct vmw_display_unit *du)
39 {
40 drm_plane_cleanup(&du->primary);
41 drm_plane_cleanup(&du->cursor);
42
43 drm_connector_unregister(&du->connector);
44 drm_crtc_cleanup(&du->crtc);
45 drm_encoder_cleanup(&du->encoder);
46 drm_connector_cleanup(&du->connector);
47 }
48
49 /*
50 * Display Unit Cursor functions
51 */
52
53 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
54 u32 *image, u32 width, u32 height,
55 u32 hotspotX, u32 hotspotY)
56 {
57 struct {
58 u32 cmd;
59 SVGAFifoCmdDefineAlphaCursor cursor;
60 } *cmd;
61 u32 image_size = width * height * 4;
62 u32 cmd_size = sizeof(*cmd) + image_size;
63
64 if (!image)
65 return -EINVAL;
66
67 cmd = vmw_fifo_reserve(dev_priv, cmd_size);
68 if (unlikely(cmd == NULL)) {
69 DRM_ERROR("Fifo reserve failed.\n");
70 return -ENOMEM;
71 }
72
73 memset(cmd, 0, sizeof(*cmd));
74
75 memcpy(&cmd[1], image, image_size);
76
77 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
78 cmd->cursor.id = 0;
79 cmd->cursor.width = width;
80 cmd->cursor.height = height;
81 cmd->cursor.hotspotX = hotspotX;
82 cmd->cursor.hotspotY = hotspotY;
83
84 vmw_fifo_commit_flush(dev_priv, cmd_size);
85
86 return 0;
87 }
88
89 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv,
90 struct vmw_dma_buffer *dmabuf,
91 u32 width, u32 height,
92 u32 hotspotX, u32 hotspotY)
93 {
94 struct ttm_bo_kmap_obj map;
95 unsigned long kmap_offset;
96 unsigned long kmap_num;
97 void *virtual;
98 bool dummy;
99 int ret;
100
101 kmap_offset = 0;
102 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
103
104 ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL);
105 if (unlikely(ret != 0)) {
106 DRM_ERROR("reserve failed\n");
107 return -EINVAL;
108 }
109
110 ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map);
111 if (unlikely(ret != 0))
112 goto err_unreserve;
113
114 virtual = ttm_kmap_obj_virtual(&map, &dummy);
115 ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
116 hotspotX, hotspotY);
117
118 ttm_bo_kunmap(&map);
119 err_unreserve:
120 ttm_bo_unreserve(&dmabuf->base);
121
122 return ret;
123 }
124
125
126 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
127 bool show, int x, int y)
128 {
129 u32 *fifo_mem = dev_priv->mmio_virt;
130 uint32_t count;
131
132 spin_lock(&dev_priv->cursor_lock);
133 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
134 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
135 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
136 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
138 spin_unlock(&dev_priv->cursor_lock);
139 }
140
141
142 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
143 struct ttm_object_file *tfile,
144 struct ttm_buffer_object *bo,
145 SVGA3dCmdHeader *header)
146 {
147 struct ttm_bo_kmap_obj map;
148 unsigned long kmap_offset;
149 unsigned long kmap_num;
150 SVGA3dCopyBox *box;
151 unsigned box_count;
152 void *virtual;
153 bool dummy;
154 struct vmw_dma_cmd {
155 SVGA3dCmdHeader header;
156 SVGA3dCmdSurfaceDMA dma;
157 } *cmd;
158 int i, ret;
159
160 cmd = container_of(header, struct vmw_dma_cmd, header);
161
162 /* No snooper installed */
163 if (!srf->snooper.image)
164 return;
165
166 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
167 DRM_ERROR("face and mipmap for cursors should never != 0\n");
168 return;
169 }
170
171 if (cmd->header.size < 64) {
172 DRM_ERROR("at least one full copy box must be given\n");
173 return;
174 }
175
176 box = (SVGA3dCopyBox *)&cmd[1];
177 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
178 sizeof(SVGA3dCopyBox);
179
180 if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
181 box->x != 0 || box->y != 0 || box->z != 0 ||
182 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
183 box->d != 1 || box_count != 1) {
184 /* TODO handle none page aligned offsets */
185 /* TODO handle more dst & src != 0 */
186 /* TODO handle more then one copy */
187 DRM_ERROR("Cant snoop dma request for cursor!\n");
188 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
189 box->srcx, box->srcy, box->srcz,
190 box->x, box->y, box->z,
191 box->w, box->h, box->d, box_count,
192 cmd->dma.guest.ptr.offset);
193 return;
194 }
195
196 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
197 kmap_num = (64*64*4) >> PAGE_SHIFT;
198
199 ret = ttm_bo_reserve(bo, true, false, NULL);
200 if (unlikely(ret != 0)) {
201 DRM_ERROR("reserve failed\n");
202 return;
203 }
204
205 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
206 if (unlikely(ret != 0))
207 goto err_unreserve;
208
209 virtual = ttm_kmap_obj_virtual(&map, &dummy);
210
211 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
212 memcpy(srf->snooper.image, virtual, 64*64*4);
213 } else {
214 /* Image is unsigned pointer. */
215 for (i = 0; i < box->h; i++)
216 memcpy(srf->snooper.image + i * 64,
217 virtual + i * cmd->dma.guest.pitch,
218 box->w * 4);
219 }
220
221 srf->snooper.age++;
222
223 ttm_bo_kunmap(&map);
224 err_unreserve:
225 ttm_bo_unreserve(bo);
226 }
227
228 /**
229 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
230 *
231 * @dev_priv: Pointer to the device private struct.
232 *
233 * Clears all legacy hotspots.
234 */
235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
236 {
237 struct drm_device *dev = dev_priv->dev;
238 struct vmw_display_unit *du;
239 struct drm_crtc *crtc;
240
241 drm_modeset_lock_all(dev);
242 drm_for_each_crtc(crtc, dev) {
243 du = vmw_crtc_to_du(crtc);
244
245 du->hotspot_x = 0;
246 du->hotspot_y = 0;
247 }
248 drm_modeset_unlock_all(dev);
249 }
250
251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
252 {
253 struct drm_device *dev = dev_priv->dev;
254 struct vmw_display_unit *du;
255 struct drm_crtc *crtc;
256
257 mutex_lock(&dev->mode_config.mutex);
258
259 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
260 du = vmw_crtc_to_du(crtc);
261 if (!du->cursor_surface ||
262 du->cursor_age == du->cursor_surface->snooper.age)
263 continue;
264
265 du->cursor_age = du->cursor_surface->snooper.age;
266 vmw_cursor_update_image(dev_priv,
267 du->cursor_surface->snooper.image,
268 64, 64,
269 du->hotspot_x + du->core_hotspot_x,
270 du->hotspot_y + du->core_hotspot_y);
271 }
272
273 mutex_unlock(&dev->mode_config.mutex);
274 }
275
276
277 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
278 {
279 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
280
281 drm_plane_cleanup(plane);
282 }
283
284
285 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
286 {
287 drm_plane_cleanup(plane);
288
289 /* Planes are static in our case so we don't free it */
290 }
291
292
293 /**
294 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
295 *
296 * @vps: plane state associated with the display surface
297 * @unreference: true if we also want to unreference the display.
298 */
299 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
300 bool unreference)
301 {
302 if (vps->surf) {
303 if (vps->pinned) {
304 vmw_resource_unpin(&vps->surf->res);
305 vps->pinned--;
306 }
307
308 if (unreference) {
309 if (vps->pinned)
310 DRM_ERROR("Surface still pinned\n");
311 vmw_surface_unreference(&vps->surf);
312 }
313 }
314 }
315
316
317 /**
318 * vmw_du_plane_cleanup_fb - Unpins the cursor
319 *
320 * @plane: display plane
321 * @old_state: Contains the FB to clean up
322 *
323 * Unpins the framebuffer surface
324 *
325 * Returns 0 on success
326 */
327 void
328 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
329 struct drm_plane_state *old_state)
330 {
331 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
332
333 vmw_du_plane_unpin_surf(vps, false);
334 }
335
336
337 /**
338 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
339 *
340 * @plane: display plane
341 * @new_state: info on the new plane state, including the FB
342 *
343 * Returns 0 on success
344 */
345 int
346 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
347 struct drm_plane_state *new_state)
348 {
349 struct drm_framebuffer *fb = new_state->fb;
350 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
351
352
353 if (vps->surf)
354 vmw_surface_unreference(&vps->surf);
355
356 if (vps->dmabuf)
357 vmw_dmabuf_unreference(&vps->dmabuf);
358
359 if (fb) {
360 if (vmw_framebuffer_to_vfb(fb)->dmabuf) {
361 vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer;
362 vmw_dmabuf_reference(vps->dmabuf);
363 } else {
364 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
365 vmw_surface_reference(vps->surf);
366 }
367 }
368
369 return 0;
370 }
371
372
373 void
374 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
375 struct drm_plane_state *old_state)
376 {
377 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
378 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
379 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
380 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
381 s32 hotspot_x, hotspot_y;
382 int ret = 0;
383
384
385 hotspot_x = du->hotspot_x;
386 hotspot_y = du->hotspot_y;
387
388 if (plane->fb) {
389 hotspot_x += plane->fb->hot_x;
390 hotspot_y += plane->fb->hot_y;
391 }
392
393 du->cursor_surface = vps->surf;
394 du->cursor_dmabuf = vps->dmabuf;
395
396 /* setup new image */
397 if (vps->surf) {
398 du->cursor_age = du->cursor_surface->snooper.age;
399
400 ret = vmw_cursor_update_image(dev_priv,
401 vps->surf->snooper.image,
402 64, 64, hotspot_x, hotspot_y);
403 } else if (vps->dmabuf) {
404 ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf,
405 plane->state->crtc_w,
406 plane->state->crtc_h,
407 hotspot_x, hotspot_y);
408 } else {
409 vmw_cursor_update_position(dev_priv, false, 0, 0);
410 return;
411 }
412
413 if (!ret) {
414 du->cursor_x = plane->state->crtc_x + du->set_gui_x;
415 du->cursor_y = plane->state->crtc_y + du->set_gui_y;
416
417 vmw_cursor_update_position(dev_priv, true,
418 du->cursor_x + hotspot_x,
419 du->cursor_y + hotspot_y);
420
421 du->core_hotspot_x = hotspot_x - du->hotspot_x;
422 du->core_hotspot_y = hotspot_y - du->hotspot_y;
423 } else {
424 DRM_ERROR("Failed to update cursor image\n");
425 }
426 }
427
428
429 /**
430 * vmw_du_primary_plane_atomic_check - check if the new state is okay
431 *
432 * @plane: display plane
433 * @state: info on the new plane state, including the FB
434 *
435 * Check if the new state is settable given the current state. Other
436 * than what the atomic helper checks, we care about crtc fitting
437 * the FB and maintaining one active framebuffer.
438 *
439 * Returns 0 on success
440 */
441 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
442 struct drm_plane_state *state)
443 {
444 struct drm_framebuffer *new_fb = state->fb;
445 bool visible;
446
447 struct drm_rect src = {
448 .x1 = state->src_x,
449 .y1 = state->src_y,
450 .x2 = state->src_x + state->src_w,
451 .y2 = state->src_y + state->src_h,
452 };
453 struct drm_rect dest = {
454 .x1 = state->crtc_x,
455 .y1 = state->crtc_y,
456 .x2 = state->crtc_x + state->crtc_w,
457 .y2 = state->crtc_y + state->crtc_h,
458 };
459 struct drm_rect clip = dest;
460 int ret;
461
462 ret = drm_plane_helper_check_update(plane, state->crtc, new_fb,
463 &src, &dest, &clip,
464 DRM_MODE_ROTATE_0,
465 DRM_PLANE_HELPER_NO_SCALING,
466 DRM_PLANE_HELPER_NO_SCALING,
467 false, true, &visible);
468
469
470 if (!ret && new_fb) {
471 struct drm_crtc *crtc = state->crtc;
472 struct vmw_connector_state *vcs;
473 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
474 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
475 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
476
477 vcs = vmw_connector_state_to_vcs(du->connector.state);
478
479 if ((dest.x2 > new_fb->width ||
480 dest.y2 > new_fb->height)) {
481 DRM_ERROR("CRTC area outside of framebuffer\n");
482 return -EINVAL;
483 }
484
485 /* Only one active implicit framebuffer at a time. */
486 mutex_lock(&dev_priv->global_kms_state_mutex);
487 if (vcs->is_implicit && dev_priv->implicit_fb &&
488 !(dev_priv->num_implicit == 1 && du->active_implicit)
489 && dev_priv->implicit_fb != vfb) {
490 DRM_ERROR("Multiple implicit framebuffers "
491 "not supported.\n");
492 ret = -EINVAL;
493 }
494 mutex_unlock(&dev_priv->global_kms_state_mutex);
495 }
496
497
498 return ret;
499 }
500
501
502 /**
503 * vmw_du_cursor_plane_atomic_check - check if the new state is okay
504 *
505 * @plane: cursor plane
506 * @state: info on the new plane state
507 *
508 * This is a chance to fail if the new cursor state does not fit
509 * our requirements.
510 *
511 * Returns 0 on success
512 */
513 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
514 struct drm_plane_state *new_state)
515 {
516 int ret = 0;
517 struct vmw_surface *surface = NULL;
518 struct drm_framebuffer *fb = new_state->fb;
519
520
521 /* Turning off */
522 if (!fb)
523 return ret;
524
525 /* A lot of the code assumes this */
526 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
527 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
528 new_state->crtc_w, new_state->crtc_h);
529 ret = -EINVAL;
530 }
531
532 if (!vmw_framebuffer_to_vfb(fb)->dmabuf)
533 surface = vmw_framebuffer_to_vfbs(fb)->surface;
534
535 if (surface && !surface->snooper.image) {
536 DRM_ERROR("surface not suitable for cursor\n");
537 ret = -EINVAL;
538 }
539
540 return ret;
541 }
542
543
544 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
545 struct drm_crtc_state *new_state)
546 {
547 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
548 int connector_mask = 1 << drm_connector_index(&du->connector);
549 bool has_primary = new_state->plane_mask &
550 BIT(drm_plane_index(crtc->primary));
551
552 /* We always want to have an active plane with an active CRTC */
553 if (has_primary != new_state->enable)
554 return -EINVAL;
555
556
557 if (new_state->connector_mask != connector_mask &&
558 new_state->connector_mask != 0) {
559 DRM_ERROR("Invalid connectors configuration\n");
560 return -EINVAL;
561 }
562
563 /*
564 * Our virtual device does not have a dot clock, so use the logical
565 * clock value as the dot clock.
566 */
567 if (new_state->mode.crtc_clock == 0)
568 new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
569
570 return 0;
571 }
572
573
574 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
575 struct drm_crtc_state *old_crtc_state)
576 {
577 }
578
579
580 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
581 struct drm_crtc_state *old_crtc_state)
582 {
583 struct drm_pending_vblank_event *event = crtc->state->event;
584
585 if (event) {
586 crtc->state->event = NULL;
587
588 spin_lock_irq(&crtc->dev->event_lock);
589 if (drm_crtc_vblank_get(crtc) == 0)
590 drm_crtc_arm_vblank_event(crtc, event);
591 else
592 drm_crtc_send_vblank_event(crtc, event);
593 spin_unlock_irq(&crtc->dev->event_lock);
594 }
595
596 }
597
598
599 /**
600 * vmw_du_crtc_duplicate_state - duplicate crtc state
601 * @crtc: DRM crtc
602 *
603 * Allocates and returns a copy of the crtc state (both common and
604 * vmw-specific) for the specified crtc.
605 *
606 * Returns: The newly allocated crtc state, or NULL on failure.
607 */
608 struct drm_crtc_state *
609 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
610 {
611 struct drm_crtc_state *state;
612 struct vmw_crtc_state *vcs;
613
614 if (WARN_ON(!crtc->state))
615 return NULL;
616
617 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
618
619 if (!vcs)
620 return NULL;
621
622 state = &vcs->base;
623
624 __drm_atomic_helper_crtc_duplicate_state(crtc, state);
625
626 return state;
627 }
628
629
630 /**
631 * vmw_du_crtc_reset - creates a blank vmw crtc state
632 * @crtc: DRM crtc
633 *
634 * Resets the atomic state for @crtc by freeing the state pointer (which
635 * might be NULL, e.g. at driver load time) and allocating a new empty state
636 * object.
637 */
638 void vmw_du_crtc_reset(struct drm_crtc *crtc)
639 {
640 struct vmw_crtc_state *vcs;
641
642
643 if (crtc->state) {
644 __drm_atomic_helper_crtc_destroy_state(crtc->state);
645
646 kfree(vmw_crtc_state_to_vcs(crtc->state));
647 }
648
649 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
650
651 if (!vcs) {
652 DRM_ERROR("Cannot allocate vmw_crtc_state\n");
653 return;
654 }
655
656 crtc->state = &vcs->base;
657 crtc->state->crtc = crtc;
658 }
659
660
661 /**
662 * vmw_du_crtc_destroy_state - destroy crtc state
663 * @crtc: DRM crtc
664 * @state: state object to destroy
665 *
666 * Destroys the crtc state (both common and vmw-specific) for the
667 * specified plane.
668 */
669 void
670 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
671 struct drm_crtc_state *state)
672 {
673 drm_atomic_helper_crtc_destroy_state(crtc, state);
674 }
675
676
677 /**
678 * vmw_du_plane_duplicate_state - duplicate plane state
679 * @plane: drm plane
680 *
681 * Allocates and returns a copy of the plane state (both common and
682 * vmw-specific) for the specified plane.
683 *
684 * Returns: The newly allocated plane state, or NULL on failure.
685 */
686 struct drm_plane_state *
687 vmw_du_plane_duplicate_state(struct drm_plane *plane)
688 {
689 struct drm_plane_state *state;
690 struct vmw_plane_state *vps;
691
692 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
693
694 if (!vps)
695 return NULL;
696
697 vps->pinned = 0;
698
699 /* Mapping is managed by prepare_fb/cleanup_fb */
700 memset(&vps->host_map, 0, sizeof(vps->host_map));
701 vps->cpp = 0;
702
703 /* Each ref counted resource needs to be acquired again */
704 if (vps->surf)
705 (void) vmw_surface_reference(vps->surf);
706
707 if (vps->dmabuf)
708 (void) vmw_dmabuf_reference(vps->dmabuf);
709
710 state = &vps->base;
711
712 __drm_atomic_helper_plane_duplicate_state(plane, state);
713
714 return state;
715 }
716
717
718 /**
719 * vmw_du_plane_reset - creates a blank vmw plane state
720 * @plane: drm plane
721 *
722 * Resets the atomic state for @plane by freeing the state pointer (which might
723 * be NULL, e.g. at driver load time) and allocating a new empty state object.
724 */
725 void vmw_du_plane_reset(struct drm_plane *plane)
726 {
727 struct vmw_plane_state *vps;
728
729
730 if (plane->state)
731 vmw_du_plane_destroy_state(plane, plane->state);
732
733 vps = kzalloc(sizeof(*vps), GFP_KERNEL);
734
735 if (!vps) {
736 DRM_ERROR("Cannot allocate vmw_plane_state\n");
737 return;
738 }
739
740 plane->state = &vps->base;
741 plane->state->plane = plane;
742 plane->state->rotation = DRM_MODE_ROTATE_0;
743 }
744
745
746 /**
747 * vmw_du_plane_destroy_state - destroy plane state
748 * @plane: DRM plane
749 * @state: state object to destroy
750 *
751 * Destroys the plane state (both common and vmw-specific) for the
752 * specified plane.
753 */
754 void
755 vmw_du_plane_destroy_state(struct drm_plane *plane,
756 struct drm_plane_state *state)
757 {
758 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
759
760
761 /* Should have been freed by cleanup_fb */
762 if (vps->host_map.virtual) {
763 DRM_ERROR("Host mapping not freed\n");
764 ttm_bo_kunmap(&vps->host_map);
765 }
766
767 if (vps->surf)
768 vmw_surface_unreference(&vps->surf);
769
770 if (vps->dmabuf)
771 vmw_dmabuf_unreference(&vps->dmabuf);
772
773 drm_atomic_helper_plane_destroy_state(plane, state);
774 }
775
776
777 /**
778 * vmw_du_connector_duplicate_state - duplicate connector state
779 * @connector: DRM connector
780 *
781 * Allocates and returns a copy of the connector state (both common and
782 * vmw-specific) for the specified connector.
783 *
784 * Returns: The newly allocated connector state, or NULL on failure.
785 */
786 struct drm_connector_state *
787 vmw_du_connector_duplicate_state(struct drm_connector *connector)
788 {
789 struct drm_connector_state *state;
790 struct vmw_connector_state *vcs;
791
792 if (WARN_ON(!connector->state))
793 return NULL;
794
795 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
796
797 if (!vcs)
798 return NULL;
799
800 state = &vcs->base;
801
802 __drm_atomic_helper_connector_duplicate_state(connector, state);
803
804 return state;
805 }
806
807
808 /**
809 * vmw_du_connector_reset - creates a blank vmw connector state
810 * @connector: DRM connector
811 *
812 * Resets the atomic state for @connector by freeing the state pointer (which
813 * might be NULL, e.g. at driver load time) and allocating a new empty state
814 * object.
815 */
816 void vmw_du_connector_reset(struct drm_connector *connector)
817 {
818 struct vmw_connector_state *vcs;
819
820
821 if (connector->state) {
822 __drm_atomic_helper_connector_destroy_state(connector->state);
823
824 kfree(vmw_connector_state_to_vcs(connector->state));
825 }
826
827 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
828
829 if (!vcs) {
830 DRM_ERROR("Cannot allocate vmw_connector_state\n");
831 return;
832 }
833
834 __drm_atomic_helper_connector_reset(connector, &vcs->base);
835 }
836
837
838 /**
839 * vmw_du_connector_destroy_state - destroy connector state
840 * @connector: DRM connector
841 * @state: state object to destroy
842 *
843 * Destroys the connector state (both common and vmw-specific) for the
844 * specified plane.
845 */
846 void
847 vmw_du_connector_destroy_state(struct drm_connector *connector,
848 struct drm_connector_state *state)
849 {
850 drm_atomic_helper_connector_destroy_state(connector, state);
851 }
852 /*
853 * Generic framebuffer code
854 */
855
856 /*
857 * Surface framebuffer code
858 */
859
860 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
861 {
862 struct vmw_framebuffer_surface *vfbs =
863 vmw_framebuffer_to_vfbs(framebuffer);
864
865 drm_framebuffer_cleanup(framebuffer);
866 vmw_surface_unreference(&vfbs->surface);
867 if (vfbs->base.user_obj)
868 ttm_base_object_unref(&vfbs->base.user_obj);
869
870 kfree(vfbs);
871 }
872
873 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
874 struct drm_file *file_priv,
875 unsigned flags, unsigned color,
876 struct drm_clip_rect *clips,
877 unsigned num_clips)
878 {
879 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
880 struct vmw_framebuffer_surface *vfbs =
881 vmw_framebuffer_to_vfbs(framebuffer);
882 struct drm_clip_rect norect;
883 int ret, inc = 1;
884
885 /* Legacy Display Unit does not support 3D */
886 if (dev_priv->active_display_unit == vmw_du_legacy)
887 return -EINVAL;
888
889 drm_modeset_lock_all(dev_priv->dev);
890
891 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
892 if (unlikely(ret != 0)) {
893 drm_modeset_unlock_all(dev_priv->dev);
894 return ret;
895 }
896
897 if (!num_clips) {
898 num_clips = 1;
899 clips = &norect;
900 norect.x1 = norect.y1 = 0;
901 norect.x2 = framebuffer->width;
902 norect.y2 = framebuffer->height;
903 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
904 num_clips /= 2;
905 inc = 2; /* skip source rects */
906 }
907
908 if (dev_priv->active_display_unit == vmw_du_screen_object)
909 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
910 clips, NULL, NULL, 0, 0,
911 num_clips, inc, NULL);
912 else
913 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
914 clips, NULL, NULL, 0, 0,
915 num_clips, inc, NULL);
916
917 vmw_fifo_flush(dev_priv, false);
918 ttm_read_unlock(&dev_priv->reservation_sem);
919
920 drm_modeset_unlock_all(dev_priv->dev);
921
922 return 0;
923 }
924
925 /**
926 * vmw_kms_readback - Perform a readback from the screen system to
927 * a dma-buffer backed framebuffer.
928 *
929 * @dev_priv: Pointer to the device private structure.
930 * @file_priv: Pointer to a struct drm_file identifying the caller.
931 * Must be set to NULL if @user_fence_rep is NULL.
932 * @vfb: Pointer to the dma-buffer backed framebuffer.
933 * @user_fence_rep: User-space provided structure for fence information.
934 * Must be set to non-NULL if @file_priv is non-NULL.
935 * @vclips: Array of clip rects.
936 * @num_clips: Number of clip rects in @vclips.
937 *
938 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
939 * interrupted.
940 */
941 int vmw_kms_readback(struct vmw_private *dev_priv,
942 struct drm_file *file_priv,
943 struct vmw_framebuffer *vfb,
944 struct drm_vmw_fence_rep __user *user_fence_rep,
945 struct drm_vmw_rect *vclips,
946 uint32_t num_clips)
947 {
948 switch (dev_priv->active_display_unit) {
949 case vmw_du_screen_object:
950 return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
951 user_fence_rep, vclips, num_clips);
952 case vmw_du_screen_target:
953 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
954 user_fence_rep, NULL, vclips, num_clips,
955 1, false, true);
956 default:
957 WARN_ONCE(true,
958 "Readback called with invalid display system.\n");
959 }
960
961 return -ENOSYS;
962 }
963
964
965 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
966 .destroy = vmw_framebuffer_surface_destroy,
967 .dirty = vmw_framebuffer_surface_dirty,
968 };
969
970 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
971 struct vmw_surface *surface,
972 struct vmw_framebuffer **out,
973 const struct drm_mode_fb_cmd2
974 *mode_cmd,
975 bool is_dmabuf_proxy)
976
977 {
978 struct drm_device *dev = dev_priv->dev;
979 struct vmw_framebuffer_surface *vfbs;
980 enum SVGA3dSurfaceFormat format;
981 int ret;
982 struct drm_format_name_buf format_name;
983
984 /* 3D is only supported on HWv8 and newer hosts */
985 if (dev_priv->active_display_unit == vmw_du_legacy)
986 return -ENOSYS;
987
988 /*
989 * Sanity checks.
990 */
991
992 /* Surface must be marked as a scanout. */
993 if (unlikely(!surface->scanout))
994 return -EINVAL;
995
996 if (unlikely(surface->mip_levels[0] != 1 ||
997 surface->num_sizes != 1 ||
998 surface->base_size.width < mode_cmd->width ||
999 surface->base_size.height < mode_cmd->height ||
1000 surface->base_size.depth != 1)) {
1001 DRM_ERROR("Incompatible surface dimensions "
1002 "for requested mode.\n");
1003 return -EINVAL;
1004 }
1005
1006 switch (mode_cmd->pixel_format) {
1007 case DRM_FORMAT_ARGB8888:
1008 format = SVGA3D_A8R8G8B8;
1009 break;
1010 case DRM_FORMAT_XRGB8888:
1011 format = SVGA3D_X8R8G8B8;
1012 break;
1013 case DRM_FORMAT_RGB565:
1014 format = SVGA3D_R5G6B5;
1015 break;
1016 case DRM_FORMAT_XRGB1555:
1017 format = SVGA3D_A1R5G5B5;
1018 break;
1019 default:
1020 DRM_ERROR("Invalid pixel format: %s\n",
1021 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1022 return -EINVAL;
1023 }
1024
1025 /*
1026 * For DX, surface format validation is done when surface->scanout
1027 * is set.
1028 */
1029 if (!dev_priv->has_dx && format != surface->format) {
1030 DRM_ERROR("Invalid surface format for requested mode.\n");
1031 return -EINVAL;
1032 }
1033
1034 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1035 if (!vfbs) {
1036 ret = -ENOMEM;
1037 goto out_err1;
1038 }
1039
1040 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1041 vfbs->surface = vmw_surface_reference(surface);
1042 vfbs->base.user_handle = mode_cmd->handles[0];
1043 vfbs->is_dmabuf_proxy = is_dmabuf_proxy;
1044
1045 *out = &vfbs->base;
1046
1047 ret = drm_framebuffer_init(dev, &vfbs->base.base,
1048 &vmw_framebuffer_surface_funcs);
1049 if (ret)
1050 goto out_err2;
1051
1052 return 0;
1053
1054 out_err2:
1055 vmw_surface_unreference(&surface);
1056 kfree(vfbs);
1057 out_err1:
1058 return ret;
1059 }
1060
1061 /*
1062 * Dmabuf framebuffer code
1063 */
1064
1065 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer)
1066 {
1067 struct vmw_framebuffer_dmabuf *vfbd =
1068 vmw_framebuffer_to_vfbd(framebuffer);
1069
1070 drm_framebuffer_cleanup(framebuffer);
1071 vmw_dmabuf_unreference(&vfbd->buffer);
1072 if (vfbd->base.user_obj)
1073 ttm_base_object_unref(&vfbd->base.user_obj);
1074
1075 kfree(vfbd);
1076 }
1077
1078 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer,
1079 struct drm_file *file_priv,
1080 unsigned flags, unsigned color,
1081 struct drm_clip_rect *clips,
1082 unsigned num_clips)
1083 {
1084 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1085 struct vmw_framebuffer_dmabuf *vfbd =
1086 vmw_framebuffer_to_vfbd(framebuffer);
1087 struct drm_clip_rect norect;
1088 int ret, increment = 1;
1089
1090 drm_modeset_lock_all(dev_priv->dev);
1091
1092 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1093 if (unlikely(ret != 0)) {
1094 drm_modeset_unlock_all(dev_priv->dev);
1095 return ret;
1096 }
1097
1098 if (!num_clips) {
1099 num_clips = 1;
1100 clips = &norect;
1101 norect.x1 = norect.y1 = 0;
1102 norect.x2 = framebuffer->width;
1103 norect.y2 = framebuffer->height;
1104 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1105 num_clips /= 2;
1106 increment = 2;
1107 }
1108
1109 switch (dev_priv->active_display_unit) {
1110 case vmw_du_screen_target:
1111 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1112 clips, NULL, num_clips, increment,
1113 true, true);
1114 break;
1115 case vmw_du_screen_object:
1116 ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base,
1117 clips, NULL, num_clips,
1118 increment, true, NULL);
1119 break;
1120 case vmw_du_legacy:
1121 ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0,
1122 clips, num_clips, increment);
1123 break;
1124 default:
1125 ret = -EINVAL;
1126 WARN_ONCE(true, "Dirty called with invalid display system.\n");
1127 break;
1128 }
1129
1130 vmw_fifo_flush(dev_priv, false);
1131 ttm_read_unlock(&dev_priv->reservation_sem);
1132
1133 drm_modeset_unlock_all(dev_priv->dev);
1134
1135 return ret;
1136 }
1137
1138 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = {
1139 .destroy = vmw_framebuffer_dmabuf_destroy,
1140 .dirty = vmw_framebuffer_dmabuf_dirty,
1141 };
1142
1143 /**
1144 * Pin the dmabuffer to the start of vram.
1145 */
1146 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1147 {
1148 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1149 struct vmw_dma_buffer *buf;
1150 int ret;
1151
1152 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1153 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1154
1155 if (!buf)
1156 return 0;
1157
1158 switch (dev_priv->active_display_unit) {
1159 case vmw_du_legacy:
1160 vmw_overlay_pause_all(dev_priv);
1161 ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false);
1162 vmw_overlay_resume_all(dev_priv);
1163 break;
1164 case vmw_du_screen_object:
1165 case vmw_du_screen_target:
1166 if (vfb->dmabuf)
1167 return vmw_dmabuf_pin_in_vram_or_gmr(dev_priv, buf,
1168 false);
1169
1170 return vmw_dmabuf_pin_in_placement(dev_priv, buf,
1171 &vmw_mob_placement, false);
1172 default:
1173 return -EINVAL;
1174 }
1175
1176 return ret;
1177 }
1178
1179 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1180 {
1181 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1182 struct vmw_dma_buffer *buf;
1183
1184 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1185 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1186
1187 if (WARN_ON(!buf))
1188 return 0;
1189
1190 return vmw_dmabuf_unpin(dev_priv, buf, false);
1191 }
1192
1193 /**
1194 * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf
1195 *
1196 * @dev: DRM device
1197 * @mode_cmd: parameters for the new surface
1198 * @dmabuf_mob: MOB backing the DMA buf
1199 * @srf_out: newly created surface
1200 *
1201 * When the content FB is a DMA buf, we create a surface as a proxy to the
1202 * same buffer. This way we can do a surface copy rather than a surface DMA.
1203 * This is a more efficient approach
1204 *
1205 * RETURNS:
1206 * 0 on success, error code otherwise
1207 */
1208 static int vmw_create_dmabuf_proxy(struct drm_device *dev,
1209 const struct drm_mode_fb_cmd2 *mode_cmd,
1210 struct vmw_dma_buffer *dmabuf_mob,
1211 struct vmw_surface **srf_out)
1212 {
1213 uint32_t format;
1214 struct drm_vmw_size content_base_size = {0};
1215 struct vmw_resource *res;
1216 unsigned int bytes_pp;
1217 struct drm_format_name_buf format_name;
1218 int ret;
1219
1220 switch (mode_cmd->pixel_format) {
1221 case DRM_FORMAT_ARGB8888:
1222 case DRM_FORMAT_XRGB8888:
1223 format = SVGA3D_X8R8G8B8;
1224 bytes_pp = 4;
1225 break;
1226
1227 case DRM_FORMAT_RGB565:
1228 case DRM_FORMAT_XRGB1555:
1229 format = SVGA3D_R5G6B5;
1230 bytes_pp = 2;
1231 break;
1232
1233 case 8:
1234 format = SVGA3D_P8;
1235 bytes_pp = 1;
1236 break;
1237
1238 default:
1239 DRM_ERROR("Invalid framebuffer format %s\n",
1240 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1241 return -EINVAL;
1242 }
1243
1244 content_base_size.width = mode_cmd->pitches[0] / bytes_pp;
1245 content_base_size.height = mode_cmd->height;
1246 content_base_size.depth = 1;
1247
1248 ret = vmw_surface_gb_priv_define(dev,
1249 0, /* kernel visible only */
1250 0, /* flags */
1251 format,
1252 true, /* can be a scanout buffer */
1253 1, /* num of mip levels */
1254 0,
1255 0,
1256 content_base_size,
1257 srf_out);
1258 if (ret) {
1259 DRM_ERROR("Failed to allocate proxy content buffer\n");
1260 return ret;
1261 }
1262
1263 res = &(*srf_out)->res;
1264
1265 /* Reserve and switch the backing mob. */
1266 mutex_lock(&res->dev_priv->cmdbuf_mutex);
1267 (void) vmw_resource_reserve(res, false, true);
1268 vmw_dmabuf_unreference(&res->backup);
1269 res->backup = vmw_dmabuf_reference(dmabuf_mob);
1270 res->backup_offset = 0;
1271 vmw_resource_unreserve(res, false, NULL, 0);
1272 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1273
1274 return 0;
1275 }
1276
1277
1278
1279 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv,
1280 struct vmw_dma_buffer *dmabuf,
1281 struct vmw_framebuffer **out,
1282 const struct drm_mode_fb_cmd2
1283 *mode_cmd)
1284
1285 {
1286 struct drm_device *dev = dev_priv->dev;
1287 struct vmw_framebuffer_dmabuf *vfbd;
1288 unsigned int requested_size;
1289 struct drm_format_name_buf format_name;
1290 int ret;
1291
1292 requested_size = mode_cmd->height * mode_cmd->pitches[0];
1293 if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) {
1294 DRM_ERROR("Screen buffer object size is too small "
1295 "for requested mode.\n");
1296 return -EINVAL;
1297 }
1298
1299 /* Limited framebuffer color depth support for screen objects */
1300 if (dev_priv->active_display_unit == vmw_du_screen_object) {
1301 switch (mode_cmd->pixel_format) {
1302 case DRM_FORMAT_XRGB8888:
1303 case DRM_FORMAT_ARGB8888:
1304 break;
1305 case DRM_FORMAT_XRGB1555:
1306 case DRM_FORMAT_RGB565:
1307 break;
1308 default:
1309 DRM_ERROR("Invalid pixel format: %s\n",
1310 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1311 return -EINVAL;
1312 }
1313 }
1314
1315 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1316 if (!vfbd) {
1317 ret = -ENOMEM;
1318 goto out_err1;
1319 }
1320
1321 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1322 vfbd->base.dmabuf = true;
1323 vfbd->buffer = vmw_dmabuf_reference(dmabuf);
1324 vfbd->base.user_handle = mode_cmd->handles[0];
1325 *out = &vfbd->base;
1326
1327 ret = drm_framebuffer_init(dev, &vfbd->base.base,
1328 &vmw_framebuffer_dmabuf_funcs);
1329 if (ret)
1330 goto out_err2;
1331
1332 return 0;
1333
1334 out_err2:
1335 vmw_dmabuf_unreference(&dmabuf);
1336 kfree(vfbd);
1337 out_err1:
1338 return ret;
1339 }
1340
1341
1342 /**
1343 * vmw_kms_srf_ok - check if a surface can be created
1344 *
1345 * @width: requested width
1346 * @height: requested height
1347 *
1348 * Surfaces need to be less than texture size
1349 */
1350 static bool
1351 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1352 {
1353 if (width > dev_priv->texture_max_width ||
1354 height > dev_priv->texture_max_height)
1355 return false;
1356
1357 return true;
1358 }
1359
1360 /**
1361 * vmw_kms_new_framebuffer - Create a new framebuffer.
1362 *
1363 * @dev_priv: Pointer to device private struct.
1364 * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around.
1365 * Either @dmabuf or @surface must be NULL.
1366 * @surface: Pointer to a surface to wrap the kms framebuffer around.
1367 * Either @dmabuf or @surface must be NULL.
1368 * @only_2d: No presents will occur to this dma buffer based framebuffer. This
1369 * Helps the code to do some important optimizations.
1370 * @mode_cmd: Frame-buffer metadata.
1371 */
1372 struct vmw_framebuffer *
1373 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1374 struct vmw_dma_buffer *dmabuf,
1375 struct vmw_surface *surface,
1376 bool only_2d,
1377 const struct drm_mode_fb_cmd2 *mode_cmd)
1378 {
1379 struct vmw_framebuffer *vfb = NULL;
1380 bool is_dmabuf_proxy = false;
1381 int ret;
1382
1383 /*
1384 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1385 * therefore, wrap the DMA buf in a surface so we can use the
1386 * SurfaceCopy command.
1387 */
1388 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) &&
1389 dmabuf && only_2d &&
1390 mode_cmd->width > 64 && /* Don't create a proxy for cursor */
1391 dev_priv->active_display_unit == vmw_du_screen_target) {
1392 ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd,
1393 dmabuf, &surface);
1394 if (ret)
1395 return ERR_PTR(ret);
1396
1397 is_dmabuf_proxy = true;
1398 }
1399
1400 /* Create the new framebuffer depending one what we have */
1401 if (surface) {
1402 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1403 mode_cmd,
1404 is_dmabuf_proxy);
1405
1406 /*
1407 * vmw_create_dmabuf_proxy() adds a reference that is no longer
1408 * needed
1409 */
1410 if (is_dmabuf_proxy)
1411 vmw_surface_unreference(&surface);
1412 } else if (dmabuf) {
1413 ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb,
1414 mode_cmd);
1415 } else {
1416 BUG();
1417 }
1418
1419 if (ret)
1420 return ERR_PTR(ret);
1421
1422 vfb->pin = vmw_framebuffer_pin;
1423 vfb->unpin = vmw_framebuffer_unpin;
1424
1425 return vfb;
1426 }
1427
1428 /*
1429 * Generic Kernel modesetting functions
1430 */
1431
1432 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1433 struct drm_file *file_priv,
1434 const struct drm_mode_fb_cmd2 *mode_cmd)
1435 {
1436 struct vmw_private *dev_priv = vmw_priv(dev);
1437 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1438 struct vmw_framebuffer *vfb = NULL;
1439 struct vmw_surface *surface = NULL;
1440 struct vmw_dma_buffer *bo = NULL;
1441 struct ttm_base_object *user_obj;
1442 int ret;
1443
1444 /**
1445 * This code should be conditioned on Screen Objects not being used.
1446 * If screen objects are used, we can allocate a GMR to hold the
1447 * requested framebuffer.
1448 */
1449
1450 if (!vmw_kms_validate_mode_vram(dev_priv,
1451 mode_cmd->pitches[0],
1452 mode_cmd->height)) {
1453 DRM_ERROR("Requested mode exceed bounding box limit.\n");
1454 return ERR_PTR(-ENOMEM);
1455 }
1456
1457 /*
1458 * Take a reference on the user object of the resource
1459 * backing the kms fb. This ensures that user-space handle
1460 * lookups on that resource will always work as long as
1461 * it's registered with a kms framebuffer. This is important,
1462 * since vmw_execbuf_process identifies resources in the
1463 * command stream using user-space handles.
1464 */
1465
1466 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1467 if (unlikely(user_obj == NULL)) {
1468 DRM_ERROR("Could not locate requested kms frame buffer.\n");
1469 return ERR_PTR(-ENOENT);
1470 }
1471
1472 /**
1473 * End conditioned code.
1474 */
1475
1476 /* returns either a dmabuf or surface */
1477 ret = vmw_user_lookup_handle(dev_priv, tfile,
1478 mode_cmd->handles[0],
1479 &surface, &bo);
1480 if (ret)
1481 goto err_out;
1482
1483
1484 if (!bo &&
1485 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1486 DRM_ERROR("Surface size cannot exceed %dx%d",
1487 dev_priv->texture_max_width,
1488 dev_priv->texture_max_height);
1489 goto err_out;
1490 }
1491
1492
1493 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1494 !(dev_priv->capabilities & SVGA_CAP_3D),
1495 mode_cmd);
1496 if (IS_ERR(vfb)) {
1497 ret = PTR_ERR(vfb);
1498 goto err_out;
1499 }
1500
1501 err_out:
1502 /* vmw_user_lookup_handle takes one ref so does new_fb */
1503 if (bo)
1504 vmw_dmabuf_unreference(&bo);
1505 if (surface)
1506 vmw_surface_unreference(&surface);
1507
1508 if (ret) {
1509 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1510 ttm_base_object_unref(&user_obj);
1511 return ERR_PTR(ret);
1512 } else
1513 vfb->user_obj = user_obj;
1514
1515 return &vfb->base;
1516 }
1517
1518
1519
1520 /**
1521 * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1522 *
1523 * @dev: DRM device
1524 * @state: the driver state object
1525 *
1526 * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1527 * us to assign a value to mode->crtc_clock so that
1528 * drm_calc_timestamping_constants() won't throw an error message
1529 *
1530 * RETURNS
1531 * Zero for success or -errno
1532 */
1533 static int
1534 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1535 struct drm_atomic_state *state)
1536 {
1537 struct drm_crtc_state *crtc_state;
1538 struct drm_crtc *crtc;
1539 struct vmw_private *dev_priv = vmw_priv(dev);
1540 int i;
1541
1542 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1543 unsigned long requested_bb_mem = 0;
1544
1545 if (dev_priv->active_display_unit == vmw_du_screen_target) {
1546 if (crtc->primary->fb) {
1547 int cpp = crtc->primary->fb->pitches[0] /
1548 crtc->primary->fb->width;
1549
1550 requested_bb_mem += crtc->mode.hdisplay * cpp *
1551 crtc->mode.vdisplay;
1552 }
1553
1554 if (requested_bb_mem > dev_priv->prim_bb_mem)
1555 return -EINVAL;
1556 }
1557 }
1558
1559 return drm_atomic_helper_check(dev, state);
1560 }
1561
1562
1563 /**
1564 * vmw_kms_atomic_commit - Perform an atomic state commit
1565 *
1566 * @dev: DRM device
1567 * @state: the driver state object
1568 * @nonblock: Whether nonblocking behaviour is requested
1569 *
1570 * This is a simple wrapper around drm_atomic_helper_commit() for
1571 * us to clear the nonblocking value.
1572 *
1573 * Nonblocking commits currently cause synchronization issues
1574 * for vmwgfx.
1575 *
1576 * RETURNS
1577 * Zero for success or negative error code on failure.
1578 */
1579 int vmw_kms_atomic_commit(struct drm_device *dev,
1580 struct drm_atomic_state *state,
1581 bool nonblock)
1582 {
1583 return drm_atomic_helper_commit(dev, state, false);
1584 }
1585
1586
1587 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1588 .fb_create = vmw_kms_fb_create,
1589 .atomic_check = vmw_kms_atomic_check_modeset,
1590 .atomic_commit = vmw_kms_atomic_commit,
1591 };
1592
1593 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1594 struct drm_file *file_priv,
1595 struct vmw_framebuffer *vfb,
1596 struct vmw_surface *surface,
1597 uint32_t sid,
1598 int32_t destX, int32_t destY,
1599 struct drm_vmw_rect *clips,
1600 uint32_t num_clips)
1601 {
1602 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1603 &surface->res, destX, destY,
1604 num_clips, 1, NULL);
1605 }
1606
1607
1608 int vmw_kms_present(struct vmw_private *dev_priv,
1609 struct drm_file *file_priv,
1610 struct vmw_framebuffer *vfb,
1611 struct vmw_surface *surface,
1612 uint32_t sid,
1613 int32_t destX, int32_t destY,
1614 struct drm_vmw_rect *clips,
1615 uint32_t num_clips)
1616 {
1617 int ret;
1618
1619 switch (dev_priv->active_display_unit) {
1620 case vmw_du_screen_target:
1621 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1622 &surface->res, destX, destY,
1623 num_clips, 1, NULL);
1624 break;
1625 case vmw_du_screen_object:
1626 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1627 sid, destX, destY, clips,
1628 num_clips);
1629 break;
1630 default:
1631 WARN_ONCE(true,
1632 "Present called with invalid display system.\n");
1633 ret = -ENOSYS;
1634 break;
1635 }
1636 if (ret)
1637 return ret;
1638
1639 vmw_fifo_flush(dev_priv, false);
1640
1641 return 0;
1642 }
1643
1644 static void
1645 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1646 {
1647 if (dev_priv->hotplug_mode_update_property)
1648 return;
1649
1650 dev_priv->hotplug_mode_update_property =
1651 drm_property_create_range(dev_priv->dev,
1652 DRM_MODE_PROP_IMMUTABLE,
1653 "hotplug_mode_update", 0, 1);
1654
1655 if (!dev_priv->hotplug_mode_update_property)
1656 return;
1657
1658 }
1659
1660 int vmw_kms_init(struct vmw_private *dev_priv)
1661 {
1662 struct drm_device *dev = dev_priv->dev;
1663 int ret;
1664
1665 drm_mode_config_init(dev);
1666 dev->mode_config.funcs = &vmw_kms_funcs;
1667 dev->mode_config.min_width = 1;
1668 dev->mode_config.min_height = 1;
1669 dev->mode_config.max_width = dev_priv->texture_max_width;
1670 dev->mode_config.max_height = dev_priv->texture_max_height;
1671
1672 drm_mode_create_suggested_offset_properties(dev);
1673 vmw_kms_create_hotplug_mode_update_property(dev_priv);
1674
1675 ret = vmw_kms_stdu_init_display(dev_priv);
1676 if (ret) {
1677 ret = vmw_kms_sou_init_display(dev_priv);
1678 if (ret) /* Fallback */
1679 ret = vmw_kms_ldu_init_display(dev_priv);
1680 }
1681
1682 return ret;
1683 }
1684
1685 int vmw_kms_close(struct vmw_private *dev_priv)
1686 {
1687 int ret = 0;
1688
1689 /*
1690 * Docs says we should take the lock before calling this function
1691 * but since it destroys encoders and our destructor calls
1692 * drm_encoder_cleanup which takes the lock we deadlock.
1693 */
1694 drm_mode_config_cleanup(dev_priv->dev);
1695 if (dev_priv->active_display_unit == vmw_du_legacy)
1696 ret = vmw_kms_ldu_close_display(dev_priv);
1697
1698 return ret;
1699 }
1700
1701 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1702 struct drm_file *file_priv)
1703 {
1704 struct drm_vmw_cursor_bypass_arg *arg = data;
1705 struct vmw_display_unit *du;
1706 struct drm_crtc *crtc;
1707 int ret = 0;
1708
1709
1710 mutex_lock(&dev->mode_config.mutex);
1711 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1712
1713 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1714 du = vmw_crtc_to_du(crtc);
1715 du->hotspot_x = arg->xhot;
1716 du->hotspot_y = arg->yhot;
1717 }
1718
1719 mutex_unlock(&dev->mode_config.mutex);
1720 return 0;
1721 }
1722
1723 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1724 if (!crtc) {
1725 ret = -ENOENT;
1726 goto out;
1727 }
1728
1729 du = vmw_crtc_to_du(crtc);
1730
1731 du->hotspot_x = arg->xhot;
1732 du->hotspot_y = arg->yhot;
1733
1734 out:
1735 mutex_unlock(&dev->mode_config.mutex);
1736
1737 return ret;
1738 }
1739
1740 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1741 unsigned width, unsigned height, unsigned pitch,
1742 unsigned bpp, unsigned depth)
1743 {
1744 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1745 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1746 else if (vmw_fifo_have_pitchlock(vmw_priv))
1747 vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1748 SVGA_FIFO_PITCHLOCK);
1749 vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1750 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1751 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1752
1753 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1754 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1755 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1756 return -EINVAL;
1757 }
1758
1759 return 0;
1760 }
1761
1762 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1763 {
1764 struct vmw_vga_topology_state *save;
1765 uint32_t i;
1766
1767 vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1768 vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1769 vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1770 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1771 vmw_priv->vga_pitchlock =
1772 vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1773 else if (vmw_fifo_have_pitchlock(vmw_priv))
1774 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1775 SVGA_FIFO_PITCHLOCK);
1776
1777 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1778 return 0;
1779
1780 vmw_priv->num_displays = vmw_read(vmw_priv,
1781 SVGA_REG_NUM_GUEST_DISPLAYS);
1782
1783 if (vmw_priv->num_displays == 0)
1784 vmw_priv->num_displays = 1;
1785
1786 for (i = 0; i < vmw_priv->num_displays; ++i) {
1787 save = &vmw_priv->vga_save[i];
1788 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1789 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1790 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1791 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1792 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1793 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1794 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1795 if (i == 0 && vmw_priv->num_displays == 1 &&
1796 save->width == 0 && save->height == 0) {
1797
1798 /*
1799 * It should be fairly safe to assume that these
1800 * values are uninitialized.
1801 */
1802
1803 save->width = vmw_priv->vga_width - save->pos_x;
1804 save->height = vmw_priv->vga_height - save->pos_y;
1805 }
1806 }
1807
1808 return 0;
1809 }
1810
1811 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1812 {
1813 struct vmw_vga_topology_state *save;
1814 uint32_t i;
1815
1816 vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1817 vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1818 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1819 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1820 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1821 vmw_priv->vga_pitchlock);
1822 else if (vmw_fifo_have_pitchlock(vmw_priv))
1823 vmw_mmio_write(vmw_priv->vga_pitchlock,
1824 vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1825
1826 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1827 return 0;
1828
1829 for (i = 0; i < vmw_priv->num_displays; ++i) {
1830 save = &vmw_priv->vga_save[i];
1831 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1832 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1833 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1834 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1835 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1836 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1837 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1838 }
1839
1840 return 0;
1841 }
1842
1843 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1844 uint32_t pitch,
1845 uint32_t height)
1846 {
1847 return ((u64) pitch * (u64) height) < (u64)
1848 ((dev_priv->active_display_unit == vmw_du_screen_target) ?
1849 dev_priv->prim_bb_mem : dev_priv->vram_size);
1850 }
1851
1852
1853 /**
1854 * Function called by DRM code called with vbl_lock held.
1855 */
1856 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1857 {
1858 return 0;
1859 }
1860
1861 /**
1862 * Function called by DRM code called with vbl_lock held.
1863 */
1864 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1865 {
1866 return -EINVAL;
1867 }
1868
1869 /**
1870 * Function called by DRM code called with vbl_lock held.
1871 */
1872 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1873 {
1874 }
1875
1876
1877 /*
1878 * Small shared kms functions.
1879 */
1880
1881 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num,
1882 struct drm_vmw_rect *rects)
1883 {
1884 struct drm_device *dev = dev_priv->dev;
1885 struct vmw_display_unit *du;
1886 struct drm_connector *con;
1887
1888 mutex_lock(&dev->mode_config.mutex);
1889
1890 #if 0
1891 {
1892 unsigned int i;
1893
1894 DRM_INFO("%s: new layout ", __func__);
1895 for (i = 0; i < num; i++)
1896 DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y,
1897 rects[i].w, rects[i].h);
1898 DRM_INFO("\n");
1899 }
1900 #endif
1901
1902 list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1903 du = vmw_connector_to_du(con);
1904 if (num > du->unit) {
1905 du->pref_width = rects[du->unit].w;
1906 du->pref_height = rects[du->unit].h;
1907 du->pref_active = true;
1908 du->gui_x = rects[du->unit].x;
1909 du->gui_y = rects[du->unit].y;
1910 drm_object_property_set_value
1911 (&con->base, dev->mode_config.suggested_x_property,
1912 du->gui_x);
1913 drm_object_property_set_value
1914 (&con->base, dev->mode_config.suggested_y_property,
1915 du->gui_y);
1916 } else {
1917 du->pref_width = 800;
1918 du->pref_height = 600;
1919 du->pref_active = false;
1920 drm_object_property_set_value
1921 (&con->base, dev->mode_config.suggested_x_property,
1922 0);
1923 drm_object_property_set_value
1924 (&con->base, dev->mode_config.suggested_y_property,
1925 0);
1926 }
1927 con->status = vmw_du_connector_detect(con, true);
1928 }
1929
1930 mutex_unlock(&dev->mode_config.mutex);
1931 drm_sysfs_hotplug_event(dev);
1932
1933 return 0;
1934 }
1935
1936 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
1937 u16 *r, u16 *g, u16 *b,
1938 uint32_t size,
1939 struct drm_modeset_acquire_ctx *ctx)
1940 {
1941 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
1942 int i;
1943
1944 for (i = 0; i < size; i++) {
1945 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
1946 r[i], g[i], b[i]);
1947 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
1948 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
1949 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
1950 }
1951
1952 return 0;
1953 }
1954
1955 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
1956 {
1957 return 0;
1958 }
1959
1960 enum drm_connector_status
1961 vmw_du_connector_detect(struct drm_connector *connector, bool force)
1962 {
1963 uint32_t num_displays;
1964 struct drm_device *dev = connector->dev;
1965 struct vmw_private *dev_priv = vmw_priv(dev);
1966 struct vmw_display_unit *du = vmw_connector_to_du(connector);
1967
1968 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
1969
1970 return ((vmw_connector_to_du(connector)->unit < num_displays &&
1971 du->pref_active) ?
1972 connector_status_connected : connector_status_disconnected);
1973 }
1974
1975 static struct drm_display_mode vmw_kms_connector_builtin[] = {
1976 /* 640x480@60Hz */
1977 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1978 752, 800, 0, 480, 489, 492, 525, 0,
1979 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1980 /* 800x600@60Hz */
1981 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1982 968, 1056, 0, 600, 601, 605, 628, 0,
1983 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1984 /* 1024x768@60Hz */
1985 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1986 1184, 1344, 0, 768, 771, 777, 806, 0,
1987 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1988 /* 1152x864@75Hz */
1989 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1990 1344, 1600, 0, 864, 865, 868, 900, 0,
1991 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1992 /* 1280x768@60Hz */
1993 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
1994 1472, 1664, 0, 768, 771, 778, 798, 0,
1995 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1996 /* 1280x800@60Hz */
1997 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
1998 1480, 1680, 0, 800, 803, 809, 831, 0,
1999 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2000 /* 1280x960@60Hz */
2001 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2002 1488, 1800, 0, 960, 961, 964, 1000, 0,
2003 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2004 /* 1280x1024@60Hz */
2005 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2006 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2007 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2008 /* 1360x768@60Hz */
2009 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2010 1536, 1792, 0, 768, 771, 777, 795, 0,
2011 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2012 /* 1440x1050@60Hz */
2013 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2014 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2015 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2016 /* 1440x900@60Hz */
2017 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2018 1672, 1904, 0, 900, 903, 909, 934, 0,
2019 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2020 /* 1600x1200@60Hz */
2021 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2022 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2023 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2024 /* 1680x1050@60Hz */
2025 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2026 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2027 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2028 /* 1792x1344@60Hz */
2029 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2030 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2031 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2032 /* 1853x1392@60Hz */
2033 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2034 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2035 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2036 /* 1920x1200@60Hz */
2037 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2038 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2039 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2040 /* 1920x1440@60Hz */
2041 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2042 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2043 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2044 /* 2560x1600@60Hz */
2045 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2046 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2047 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2048 /* Terminate */
2049 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2050 };
2051
2052 /**
2053 * vmw_guess_mode_timing - Provide fake timings for a
2054 * 60Hz vrefresh mode.
2055 *
2056 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2057 * members filled in.
2058 */
2059 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2060 {
2061 mode->hsync_start = mode->hdisplay + 50;
2062 mode->hsync_end = mode->hsync_start + 50;
2063 mode->htotal = mode->hsync_end + 50;
2064
2065 mode->vsync_start = mode->vdisplay + 50;
2066 mode->vsync_end = mode->vsync_start + 50;
2067 mode->vtotal = mode->vsync_end + 50;
2068
2069 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2070 mode->vrefresh = drm_mode_vrefresh(mode);
2071 }
2072
2073
2074 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2075 uint32_t max_width, uint32_t max_height)
2076 {
2077 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2078 struct drm_device *dev = connector->dev;
2079 struct vmw_private *dev_priv = vmw_priv(dev);
2080 struct drm_display_mode *mode = NULL;
2081 struct drm_display_mode *bmode;
2082 struct drm_display_mode prefmode = { DRM_MODE("preferred",
2083 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2084 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2085 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2086 };
2087 int i;
2088 u32 assumed_bpp = 4;
2089
2090 if (dev_priv->assume_16bpp)
2091 assumed_bpp = 2;
2092
2093 if (dev_priv->active_display_unit == vmw_du_screen_target) {
2094 max_width = min(max_width, dev_priv->stdu_max_width);
2095 max_width = min(max_width, dev_priv->texture_max_width);
2096
2097 max_height = min(max_height, dev_priv->stdu_max_height);
2098 max_height = min(max_height, dev_priv->texture_max_height);
2099 }
2100
2101 /* Add preferred mode */
2102 mode = drm_mode_duplicate(dev, &prefmode);
2103 if (!mode)
2104 return 0;
2105 mode->hdisplay = du->pref_width;
2106 mode->vdisplay = du->pref_height;
2107 vmw_guess_mode_timing(mode);
2108
2109 if (vmw_kms_validate_mode_vram(dev_priv,
2110 mode->hdisplay * assumed_bpp,
2111 mode->vdisplay)) {
2112 drm_mode_probed_add(connector, mode);
2113 } else {
2114 drm_mode_destroy(dev, mode);
2115 mode = NULL;
2116 }
2117
2118 if (du->pref_mode) {
2119 list_del_init(&du->pref_mode->head);
2120 drm_mode_destroy(dev, du->pref_mode);
2121 }
2122
2123 /* mode might be null here, this is intended */
2124 du->pref_mode = mode;
2125
2126 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2127 bmode = &vmw_kms_connector_builtin[i];
2128 if (bmode->hdisplay > max_width ||
2129 bmode->vdisplay > max_height)
2130 continue;
2131
2132 if (!vmw_kms_validate_mode_vram(dev_priv,
2133 bmode->hdisplay * assumed_bpp,
2134 bmode->vdisplay))
2135 continue;
2136
2137 mode = drm_mode_duplicate(dev, bmode);
2138 if (!mode)
2139 return 0;
2140 mode->vrefresh = drm_mode_vrefresh(mode);
2141
2142 drm_mode_probed_add(connector, mode);
2143 }
2144
2145 drm_mode_connector_list_update(connector);
2146 /* Move the prefered mode first, help apps pick the right mode. */
2147 drm_mode_sort(&connector->modes);
2148
2149 return 1;
2150 }
2151
2152 int vmw_du_connector_set_property(struct drm_connector *connector,
2153 struct drm_property *property,
2154 uint64_t val)
2155 {
2156 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2157 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2158
2159 if (property == dev_priv->implicit_placement_property)
2160 du->is_implicit = val;
2161
2162 return 0;
2163 }
2164
2165
2166
2167 /**
2168 * vmw_du_connector_atomic_set_property - Atomic version of get property
2169 *
2170 * @crtc - crtc the property is associated with
2171 *
2172 * Returns:
2173 * Zero on success, negative errno on failure.
2174 */
2175 int
2176 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2177 struct drm_connector_state *state,
2178 struct drm_property *property,
2179 uint64_t val)
2180 {
2181 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2182 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2183 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2184
2185
2186 if (property == dev_priv->implicit_placement_property) {
2187 vcs->is_implicit = val;
2188
2189 /*
2190 * We should really be doing a drm_atomic_commit() to
2191 * commit the new state, but since this doesn't cause
2192 * an immedate state change, this is probably ok
2193 */
2194 du->is_implicit = vcs->is_implicit;
2195 } else {
2196 return -EINVAL;
2197 }
2198
2199 return 0;
2200 }
2201
2202
2203 /**
2204 * vmw_du_connector_atomic_get_property - Atomic version of get property
2205 *
2206 * @connector - connector the property is associated with
2207 *
2208 * Returns:
2209 * Zero on success, negative errno on failure.
2210 */
2211 int
2212 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2213 const struct drm_connector_state *state,
2214 struct drm_property *property,
2215 uint64_t *val)
2216 {
2217 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2218 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2219
2220 if (property == dev_priv->implicit_placement_property)
2221 *val = vcs->is_implicit;
2222 else {
2223 DRM_ERROR("Invalid Property %s\n", property->name);
2224 return -EINVAL;
2225 }
2226
2227 return 0;
2228 }
2229
2230
2231 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2232 struct drm_file *file_priv)
2233 {
2234 struct vmw_private *dev_priv = vmw_priv(dev);
2235 struct drm_vmw_update_layout_arg *arg =
2236 (struct drm_vmw_update_layout_arg *)data;
2237 void __user *user_rects;
2238 struct drm_vmw_rect *rects;
2239 unsigned rects_size;
2240 int ret;
2241 int i;
2242 u64 total_pixels = 0;
2243 struct drm_mode_config *mode_config = &dev->mode_config;
2244 struct drm_vmw_rect bounding_box = {0};
2245
2246 if (!arg->num_outputs) {
2247 struct drm_vmw_rect def_rect = {0, 0, 800, 600};
2248 vmw_du_update_layout(dev_priv, 1, &def_rect);
2249 return 0;
2250 }
2251
2252 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2253 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2254 GFP_KERNEL);
2255 if (unlikely(!rects))
2256 return -ENOMEM;
2257
2258 user_rects = (void __user *)(unsigned long)arg->rects;
2259 ret = copy_from_user(rects, user_rects, rects_size);
2260 if (unlikely(ret != 0)) {
2261 DRM_ERROR("Failed to get rects.\n");
2262 ret = -EFAULT;
2263 goto out_free;
2264 }
2265
2266 for (i = 0; i < arg->num_outputs; ++i) {
2267 if (rects[i].x < 0 ||
2268 rects[i].y < 0 ||
2269 rects[i].x + rects[i].w > mode_config->max_width ||
2270 rects[i].y + rects[i].h > mode_config->max_height) {
2271 DRM_ERROR("Invalid GUI layout.\n");
2272 ret = -EINVAL;
2273 goto out_free;
2274 }
2275
2276 /*
2277 * bounding_box.w and bunding_box.h are used as
2278 * lower-right coordinates
2279 */
2280 if (rects[i].x + rects[i].w > bounding_box.w)
2281 bounding_box.w = rects[i].x + rects[i].w;
2282
2283 if (rects[i].y + rects[i].h > bounding_box.h)
2284 bounding_box.h = rects[i].y + rects[i].h;
2285
2286 total_pixels += (u64) rects[i].w * (u64) rects[i].h;
2287 }
2288
2289 if (dev_priv->active_display_unit == vmw_du_screen_target) {
2290 /*
2291 * For Screen Targets, the limits for a toplogy are:
2292 * 1. Bounding box (assuming 32bpp) must be < prim_bb_mem
2293 * 2. Total pixels (assuming 32bpp) must be < prim_bb_mem
2294 */
2295 u64 bb_mem = (u64) bounding_box.w * bounding_box.h * 4;
2296 u64 pixel_mem = total_pixels * 4;
2297
2298 if (bb_mem > dev_priv->prim_bb_mem) {
2299 DRM_ERROR("Topology is beyond supported limits.\n");
2300 ret = -EINVAL;
2301 goto out_free;
2302 }
2303
2304 if (pixel_mem > dev_priv->prim_bb_mem) {
2305 DRM_ERROR("Combined output size too large\n");
2306 ret = -EINVAL;
2307 goto out_free;
2308 }
2309 }
2310
2311 vmw_du_update_layout(dev_priv, arg->num_outputs, rects);
2312
2313 out_free:
2314 kfree(rects);
2315 return ret;
2316 }
2317
2318 /**
2319 * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2320 * on a set of cliprects and a set of display units.
2321 *
2322 * @dev_priv: Pointer to a device private structure.
2323 * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2324 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2325 * Cliprects are given in framebuffer coordinates.
2326 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2327 * be NULL. Cliprects are given in source coordinates.
2328 * @dest_x: X coordinate offset for the crtc / destination clip rects.
2329 * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2330 * @num_clips: Number of cliprects in the @clips or @vclips array.
2331 * @increment: Integer with which to increment the clip counter when looping.
2332 * Used to skip a predetermined number of clip rects.
2333 * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2334 */
2335 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2336 struct vmw_framebuffer *framebuffer,
2337 const struct drm_clip_rect *clips,
2338 const struct drm_vmw_rect *vclips,
2339 s32 dest_x, s32 dest_y,
2340 int num_clips,
2341 int increment,
2342 struct vmw_kms_dirty *dirty)
2343 {
2344 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2345 struct drm_crtc *crtc;
2346 u32 num_units = 0;
2347 u32 i, k;
2348
2349 dirty->dev_priv = dev_priv;
2350
2351 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, head) {
2352 if (crtc->primary->fb != &framebuffer->base)
2353 continue;
2354 units[num_units++] = vmw_crtc_to_du(crtc);
2355 }
2356
2357 for (k = 0; k < num_units; k++) {
2358 struct vmw_display_unit *unit = units[k];
2359 s32 crtc_x = unit->crtc.x;
2360 s32 crtc_y = unit->crtc.y;
2361 s32 crtc_width = unit->crtc.mode.hdisplay;
2362 s32 crtc_height = unit->crtc.mode.vdisplay;
2363 const struct drm_clip_rect *clips_ptr = clips;
2364 const struct drm_vmw_rect *vclips_ptr = vclips;
2365
2366 dirty->unit = unit;
2367 if (dirty->fifo_reserve_size > 0) {
2368 dirty->cmd = vmw_fifo_reserve(dev_priv,
2369 dirty->fifo_reserve_size);
2370 if (!dirty->cmd) {
2371 DRM_ERROR("Couldn't reserve fifo space "
2372 "for dirty blits.\n");
2373 return -ENOMEM;
2374 }
2375 memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2376 }
2377 dirty->num_hits = 0;
2378 for (i = 0; i < num_clips; i++, clips_ptr += increment,
2379 vclips_ptr += increment) {
2380 s32 clip_left;
2381 s32 clip_top;
2382
2383 /*
2384 * Select clip array type. Note that integer type
2385 * in @clips is unsigned short, whereas in @vclips
2386 * it's 32-bit.
2387 */
2388 if (clips) {
2389 dirty->fb_x = (s32) clips_ptr->x1;
2390 dirty->fb_y = (s32) clips_ptr->y1;
2391 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2392 crtc_x;
2393 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2394 crtc_y;
2395 } else {
2396 dirty->fb_x = vclips_ptr->x;
2397 dirty->fb_y = vclips_ptr->y;
2398 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2399 dest_x - crtc_x;
2400 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2401 dest_y - crtc_y;
2402 }
2403
2404 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2405 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2406
2407 /* Skip this clip if it's outside the crtc region */
2408 if (dirty->unit_x1 >= crtc_width ||
2409 dirty->unit_y1 >= crtc_height ||
2410 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2411 continue;
2412
2413 /* Clip right and bottom to crtc limits */
2414 dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2415 crtc_width);
2416 dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2417 crtc_height);
2418
2419 /* Clip left and top to crtc limits */
2420 clip_left = min_t(s32, dirty->unit_x1, 0);
2421 clip_top = min_t(s32, dirty->unit_y1, 0);
2422 dirty->unit_x1 -= clip_left;
2423 dirty->unit_y1 -= clip_top;
2424 dirty->fb_x -= clip_left;
2425 dirty->fb_y -= clip_top;
2426
2427 dirty->clip(dirty);
2428 }
2429
2430 dirty->fifo_commit(dirty);
2431 }
2432
2433 return 0;
2434 }
2435
2436 /**
2437 * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2438 * command submission.
2439 *
2440 * @dev_priv. Pointer to a device private structure.
2441 * @buf: The buffer object
2442 * @interruptible: Whether to perform waits as interruptible.
2443 * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2444 * The buffer will be validated as a GMR. Already pinned buffers will not be
2445 * validated.
2446 *
2447 * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2448 * interrupted by a signal.
2449 */
2450 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2451 struct vmw_dma_buffer *buf,
2452 bool interruptible,
2453 bool validate_as_mob)
2454 {
2455 struct ttm_buffer_object *bo = &buf->base;
2456 int ret;
2457
2458 ttm_bo_reserve(bo, false, false, NULL);
2459 ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2460 validate_as_mob);
2461 if (ret)
2462 ttm_bo_unreserve(bo);
2463
2464 return ret;
2465 }
2466
2467 /**
2468 * vmw_kms_helper_buffer_revert - Undo the actions of
2469 * vmw_kms_helper_buffer_prepare.
2470 *
2471 * @res: Pointer to the buffer object.
2472 *
2473 * Helper to be used if an error forces the caller to undo the actions of
2474 * vmw_kms_helper_buffer_prepare.
2475 */
2476 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf)
2477 {
2478 if (buf)
2479 ttm_bo_unreserve(&buf->base);
2480 }
2481
2482 /**
2483 * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2484 * kms command submission.
2485 *
2486 * @dev_priv: Pointer to a device private structure.
2487 * @file_priv: Pointer to a struct drm_file representing the caller's
2488 * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2489 * if non-NULL, @user_fence_rep must be non-NULL.
2490 * @buf: The buffer object.
2491 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2492 * ref-counted fence pointer is returned here.
2493 * @user_fence_rep: Optional pointer to a user-space provided struct
2494 * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2495 * function copies fence data to user-space in a fail-safe manner.
2496 */
2497 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2498 struct drm_file *file_priv,
2499 struct vmw_dma_buffer *buf,
2500 struct vmw_fence_obj **out_fence,
2501 struct drm_vmw_fence_rep __user *
2502 user_fence_rep)
2503 {
2504 struct vmw_fence_obj *fence;
2505 uint32_t handle;
2506 int ret;
2507
2508 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2509 file_priv ? &handle : NULL);
2510 if (buf)
2511 vmw_fence_single_bo(&buf->base, fence);
2512 if (file_priv)
2513 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2514 ret, user_fence_rep, fence,
2515 handle, -1, NULL);
2516 if (out_fence)
2517 *out_fence = fence;
2518 else
2519 vmw_fence_obj_unreference(&fence);
2520
2521 vmw_kms_helper_buffer_revert(buf);
2522 }
2523
2524
2525 /**
2526 * vmw_kms_helper_resource_revert - Undo the actions of
2527 * vmw_kms_helper_resource_prepare.
2528 *
2529 * @res: Pointer to the resource. Typically a surface.
2530 *
2531 * Helper to be used if an error forces the caller to undo the actions of
2532 * vmw_kms_helper_resource_prepare.
2533 */
2534 void vmw_kms_helper_resource_revert(struct vmw_resource *res)
2535 {
2536 vmw_kms_helper_buffer_revert(res->backup);
2537 vmw_resource_unreserve(res, false, NULL, 0);
2538 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2539 }
2540
2541 /**
2542 * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2543 * command submission.
2544 *
2545 * @res: Pointer to the resource. Typically a surface.
2546 * @interruptible: Whether to perform waits as interruptible.
2547 *
2548 * Reserves and validates also the backup buffer if a guest-backed resource.
2549 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2550 * interrupted by a signal.
2551 */
2552 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2553 bool interruptible)
2554 {
2555 int ret = 0;
2556
2557 if (interruptible)
2558 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2559 else
2560 mutex_lock(&res->dev_priv->cmdbuf_mutex);
2561
2562 if (unlikely(ret != 0))
2563 return -ERESTARTSYS;
2564
2565 ret = vmw_resource_reserve(res, interruptible, false);
2566 if (ret)
2567 goto out_unlock;
2568
2569 if (res->backup) {
2570 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2571 interruptible,
2572 res->dev_priv->has_mob);
2573 if (ret)
2574 goto out_unreserve;
2575 }
2576 ret = vmw_resource_validate(res);
2577 if (ret)
2578 goto out_revert;
2579 return 0;
2580
2581 out_revert:
2582 vmw_kms_helper_buffer_revert(res->backup);
2583 out_unreserve:
2584 vmw_resource_unreserve(res, false, NULL, 0);
2585 out_unlock:
2586 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2587 return ret;
2588 }
2589
2590 /**
2591 * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2592 * kms command submission.
2593 *
2594 * @res: Pointer to the resource. Typically a surface.
2595 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2596 * ref-counted fence pointer is returned here.
2597 */
2598 void vmw_kms_helper_resource_finish(struct vmw_resource *res,
2599 struct vmw_fence_obj **out_fence)
2600 {
2601 if (res->backup || out_fence)
2602 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, res->backup,
2603 out_fence, NULL);
2604
2605 vmw_resource_unreserve(res, false, NULL, 0);
2606 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2607 }
2608
2609 /**
2610 * vmw_kms_update_proxy - Helper function to update a proxy surface from
2611 * its backing MOB.
2612 *
2613 * @res: Pointer to the surface resource
2614 * @clips: Clip rects in framebuffer (surface) space.
2615 * @num_clips: Number of clips in @clips.
2616 * @increment: Integer with which to increment the clip counter when looping.
2617 * Used to skip a predetermined number of clip rects.
2618 *
2619 * This function makes sure the proxy surface is updated from its backing MOB
2620 * using the region given by @clips. The surface resource @res and its backing
2621 * MOB needs to be reserved and validated on call.
2622 */
2623 int vmw_kms_update_proxy(struct vmw_resource *res,
2624 const struct drm_clip_rect *clips,
2625 unsigned num_clips,
2626 int increment)
2627 {
2628 struct vmw_private *dev_priv = res->dev_priv;
2629 struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2630 struct {
2631 SVGA3dCmdHeader header;
2632 SVGA3dCmdUpdateGBImage body;
2633 } *cmd;
2634 SVGA3dBox *box;
2635 size_t copy_size = 0;
2636 int i;
2637
2638 if (!clips)
2639 return 0;
2640
2641 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2642 if (!cmd) {
2643 DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2644 "update.\n");
2645 return -ENOMEM;
2646 }
2647
2648 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2649 box = &cmd->body.box;
2650
2651 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2652 cmd->header.size = sizeof(cmd->body);
2653 cmd->body.image.sid = res->id;
2654 cmd->body.image.face = 0;
2655 cmd->body.image.mipmap = 0;
2656
2657 if (clips->x1 > size->width || clips->x2 > size->width ||
2658 clips->y1 > size->height || clips->y2 > size->height) {
2659 DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2660 return -EINVAL;
2661 }
2662
2663 box->x = clips->x1;
2664 box->y = clips->y1;
2665 box->z = 0;
2666 box->w = clips->x2 - clips->x1;
2667 box->h = clips->y2 - clips->y1;
2668 box->d = 1;
2669
2670 copy_size += sizeof(*cmd);
2671 }
2672
2673 vmw_fifo_commit(dev_priv, copy_size);
2674
2675 return 0;
2676 }
2677
2678 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2679 unsigned unit,
2680 u32 max_width,
2681 u32 max_height,
2682 struct drm_connector **p_con,
2683 struct drm_crtc **p_crtc,
2684 struct drm_display_mode **p_mode)
2685 {
2686 struct drm_connector *con;
2687 struct vmw_display_unit *du;
2688 struct drm_display_mode *mode;
2689 int i = 0;
2690
2691 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2692 head) {
2693 if (i == unit)
2694 break;
2695
2696 ++i;
2697 }
2698
2699 if (i != unit) {
2700 DRM_ERROR("Could not find initial display unit.\n");
2701 return -EINVAL;
2702 }
2703
2704 if (list_empty(&con->modes))
2705 (void) vmw_du_connector_fill_modes(con, max_width, max_height);
2706
2707 if (list_empty(&con->modes)) {
2708 DRM_ERROR("Could not find initial display mode.\n");
2709 return -EINVAL;
2710 }
2711
2712 du = vmw_connector_to_du(con);
2713 *p_con = con;
2714 *p_crtc = &du->crtc;
2715
2716 list_for_each_entry(mode, &con->modes, head) {
2717 if (mode->type & DRM_MODE_TYPE_PREFERRED)
2718 break;
2719 }
2720
2721 if (mode->type & DRM_MODE_TYPE_PREFERRED)
2722 *p_mode = mode;
2723 else {
2724 WARN_ONCE(true, "Could not find initial preferred mode.\n");
2725 *p_mode = list_first_entry(&con->modes,
2726 struct drm_display_mode,
2727 head);
2728 }
2729
2730 return 0;
2731 }
2732
2733 /**
2734 * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2735 *
2736 * @dev_priv: Pointer to a device private struct.
2737 * @du: The display unit of the crtc.
2738 */
2739 void vmw_kms_del_active(struct vmw_private *dev_priv,
2740 struct vmw_display_unit *du)
2741 {
2742 mutex_lock(&dev_priv->global_kms_state_mutex);
2743 if (du->active_implicit) {
2744 if (--(dev_priv->num_implicit) == 0)
2745 dev_priv->implicit_fb = NULL;
2746 du->active_implicit = false;
2747 }
2748 mutex_unlock(&dev_priv->global_kms_state_mutex);
2749 }
2750
2751 /**
2752 * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2753 *
2754 * @vmw_priv: Pointer to a device private struct.
2755 * @du: The display unit of the crtc.
2756 * @vfb: The implicit framebuffer
2757 *
2758 * Registers a binding to an implicit framebuffer.
2759 */
2760 void vmw_kms_add_active(struct vmw_private *dev_priv,
2761 struct vmw_display_unit *du,
2762 struct vmw_framebuffer *vfb)
2763 {
2764 mutex_lock(&dev_priv->global_kms_state_mutex);
2765 WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2766
2767 if (!du->active_implicit && du->is_implicit) {
2768 dev_priv->implicit_fb = vfb;
2769 du->active_implicit = true;
2770 dev_priv->num_implicit++;
2771 }
2772 mutex_unlock(&dev_priv->global_kms_state_mutex);
2773 }
2774
2775 /**
2776 * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2777 *
2778 * @dev_priv: Pointer to device-private struct.
2779 * @crtc: The crtc we want to flip.
2780 *
2781 * Returns true or false depending whether it's OK to flip this crtc
2782 * based on the criterion that we must not have more than one implicit
2783 * frame-buffer at any one time.
2784 */
2785 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2786 struct drm_crtc *crtc)
2787 {
2788 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2789 bool ret;
2790
2791 mutex_lock(&dev_priv->global_kms_state_mutex);
2792 ret = !du->is_implicit || dev_priv->num_implicit == 1;
2793 mutex_unlock(&dev_priv->global_kms_state_mutex);
2794
2795 return ret;
2796 }
2797
2798 /**
2799 * vmw_kms_update_implicit_fb - Update the implicit fb.
2800 *
2801 * @dev_priv: Pointer to device-private struct.
2802 * @crtc: The crtc the new implicit frame-buffer is bound to.
2803 */
2804 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2805 struct drm_crtc *crtc)
2806 {
2807 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2808 struct vmw_framebuffer *vfb;
2809
2810 mutex_lock(&dev_priv->global_kms_state_mutex);
2811
2812 if (!du->is_implicit)
2813 goto out_unlock;
2814
2815 vfb = vmw_framebuffer_to_vfb(crtc->primary->fb);
2816 WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2817 dev_priv->implicit_fb != vfb);
2818
2819 dev_priv->implicit_fb = vfb;
2820 out_unlock:
2821 mutex_unlock(&dev_priv->global_kms_state_mutex);
2822 }
2823
2824 /**
2825 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2826 * property.
2827 *
2828 * @dev_priv: Pointer to a device private struct.
2829 * @immutable: Whether the property is immutable.
2830 *
2831 * Sets up the implicit placement property unless it's already set up.
2832 */
2833 void
2834 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
2835 bool immutable)
2836 {
2837 if (dev_priv->implicit_placement_property)
2838 return;
2839
2840 dev_priv->implicit_placement_property =
2841 drm_property_create_range(dev_priv->dev,
2842 immutable ?
2843 DRM_MODE_PROP_IMMUTABLE : 0,
2844 "implicit_placement", 0, 1);
2845
2846 }
2847
2848
2849 /**
2850 * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
2851 *
2852 * @set: The configuration to set.
2853 *
2854 * The vmwgfx Xorg driver doesn't assign the mode::type member, which
2855 * when drm_mode_set_crtcinfo is called as part of the configuration setting
2856 * causes it to return incorrect crtc dimensions causing severe problems in
2857 * the vmwgfx modesetting. So explicitly clear that member before calling
2858 * into drm_atomic_helper_set_config.
2859 */
2860 int vmw_kms_set_config(struct drm_mode_set *set,
2861 struct drm_modeset_acquire_ctx *ctx)
2862 {
2863 if (set && set->mode)
2864 set->mode->type = 0;
2865
2866 return drm_atomic_helper_set_config(set, ctx);
2867 }