]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/input/input.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/torvalds/linux-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / input / input.c
1 /*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13 #include <linux/init.h>
14 #include <linux/input.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/major.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/poll.h>
21 #include <linux/device.h>
22 #include <linux/mutex.h>
23 #include <linux/rcupdate.h>
24
25 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
26 MODULE_DESCRIPTION("Input core");
27 MODULE_LICENSE("GPL");
28
29 #define INPUT_DEVICES 256
30
31 static LIST_HEAD(input_dev_list);
32 static LIST_HEAD(input_handler_list);
33
34 /*
35 * input_mutex protects access to both input_dev_list and input_handler_list.
36 * This also causes input_[un]register_device and input_[un]register_handler
37 * be mutually exclusive which simplifies locking in drivers implementing
38 * input handlers.
39 */
40 static DEFINE_MUTEX(input_mutex);
41
42 static struct input_handler *input_table[8];
43
44 static inline int is_event_supported(unsigned int code,
45 unsigned long *bm, unsigned int max)
46 {
47 return code <= max && test_bit(code, bm);
48 }
49
50 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
51 {
52 if (fuzz) {
53 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
54 return old_val;
55
56 if (value > old_val - fuzz && value < old_val + fuzz)
57 return (old_val * 3 + value) / 4;
58
59 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
60 return (old_val + value) / 2;
61 }
62
63 return value;
64 }
65
66 /*
67 * Pass event through all open handles. This function is called with
68 * dev->event_lock held and interrupts disabled. Because of that we
69 * do not need to use rcu_read_lock() here although we are using RCU
70 * to access handle list. Note that because of that write-side uses
71 * synchronize_sched() instead of synchronize_ru().
72 */
73 static void input_pass_event(struct input_dev *dev,
74 unsigned int type, unsigned int code, int value)
75 {
76 struct input_handle *handle = rcu_dereference(dev->grab);
77
78 if (handle)
79 handle->handler->event(handle, type, code, value);
80 else
81 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
82 if (handle->open)
83 handle->handler->event(handle,
84 type, code, value);
85 }
86
87 /*
88 * Generate software autorepeat event. Note that we take
89 * dev->event_lock here to avoid racing with input_event
90 * which may cause keys get "stuck".
91 */
92 static void input_repeat_key(unsigned long data)
93 {
94 struct input_dev *dev = (void *) data;
95 unsigned long flags;
96
97 spin_lock_irqsave(&dev->event_lock, flags);
98
99 if (test_bit(dev->repeat_key, dev->key) &&
100 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
101
102 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
103
104 if (dev->sync) {
105 /*
106 * Only send SYN_REPORT if we are not in a middle
107 * of driver parsing a new hardware packet.
108 * Otherwise assume that the driver will send
109 * SYN_REPORT once it's done.
110 */
111 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
112 }
113
114 if (dev->rep[REP_PERIOD])
115 mod_timer(&dev->timer, jiffies +
116 msecs_to_jiffies(dev->rep[REP_PERIOD]));
117 }
118
119 spin_unlock_irqrestore(&dev->event_lock, flags);
120 }
121
122 static void input_start_autorepeat(struct input_dev *dev, int code)
123 {
124 if (test_bit(EV_REP, dev->evbit) &&
125 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
126 dev->timer.data) {
127 dev->repeat_key = code;
128 mod_timer(&dev->timer,
129 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
130 }
131 }
132
133 #define INPUT_IGNORE_EVENT 0
134 #define INPUT_PASS_TO_HANDLERS 1
135 #define INPUT_PASS_TO_DEVICE 2
136 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
137
138 static void input_handle_event(struct input_dev *dev,
139 unsigned int type, unsigned int code, int value)
140 {
141 int disposition = INPUT_IGNORE_EVENT;
142
143 switch (type) {
144
145 case EV_SYN:
146 switch (code) {
147 case SYN_CONFIG:
148 disposition = INPUT_PASS_TO_ALL;
149 break;
150
151 case SYN_REPORT:
152 if (!dev->sync) {
153 dev->sync = 1;
154 disposition = INPUT_PASS_TO_HANDLERS;
155 }
156 break;
157 }
158 break;
159
160 case EV_KEY:
161 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
162 !!test_bit(code, dev->key) != value) {
163
164 if (value != 2) {
165 __change_bit(code, dev->key);
166 if (value)
167 input_start_autorepeat(dev, code);
168 }
169
170 disposition = INPUT_PASS_TO_HANDLERS;
171 }
172 break;
173
174 case EV_SW:
175 if (is_event_supported(code, dev->swbit, SW_MAX) &&
176 !!test_bit(code, dev->sw) != value) {
177
178 __change_bit(code, dev->sw);
179 disposition = INPUT_PASS_TO_HANDLERS;
180 }
181 break;
182
183 case EV_ABS:
184 if (is_event_supported(code, dev->absbit, ABS_MAX)) {
185
186 value = input_defuzz_abs_event(value,
187 dev->abs[code], dev->absfuzz[code]);
188
189 if (dev->abs[code] != value) {
190 dev->abs[code] = value;
191 disposition = INPUT_PASS_TO_HANDLERS;
192 }
193 }
194 break;
195
196 case EV_REL:
197 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
198 disposition = INPUT_PASS_TO_HANDLERS;
199
200 break;
201
202 case EV_MSC:
203 if (is_event_supported(code, dev->mscbit, MSC_MAX))
204 disposition = INPUT_PASS_TO_ALL;
205
206 break;
207
208 case EV_LED:
209 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
210 !!test_bit(code, dev->led) != value) {
211
212 __change_bit(code, dev->led);
213 disposition = INPUT_PASS_TO_ALL;
214 }
215 break;
216
217 case EV_SND:
218 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
219
220 if (!!test_bit(code, dev->snd) != !!value)
221 __change_bit(code, dev->snd);
222 disposition = INPUT_PASS_TO_ALL;
223 }
224 break;
225
226 case EV_REP:
227 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
228 dev->rep[code] = value;
229 disposition = INPUT_PASS_TO_ALL;
230 }
231 break;
232
233 case EV_FF:
234 if (value >= 0)
235 disposition = INPUT_PASS_TO_ALL;
236 break;
237 }
238
239 if (type != EV_SYN)
240 dev->sync = 0;
241
242 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
243 dev->event(dev, type, code, value);
244
245 if (disposition & INPUT_PASS_TO_HANDLERS)
246 input_pass_event(dev, type, code, value);
247 }
248
249 /**
250 * input_event() - report new input event
251 * @dev: device that generated the event
252 * @type: type of the event
253 * @code: event code
254 * @value: value of the event
255 *
256 * This function should be used by drivers implementing various input
257 * devices. See also input_inject_event().
258 */
259
260 void input_event(struct input_dev *dev,
261 unsigned int type, unsigned int code, int value)
262 {
263 unsigned long flags;
264
265 if (is_event_supported(type, dev->evbit, EV_MAX)) {
266
267 spin_lock_irqsave(&dev->event_lock, flags);
268 add_input_randomness(type, code, value);
269 input_handle_event(dev, type, code, value);
270 spin_unlock_irqrestore(&dev->event_lock, flags);
271 }
272 }
273 EXPORT_SYMBOL(input_event);
274
275 /**
276 * input_inject_event() - send input event from input handler
277 * @handle: input handle to send event through
278 * @type: type of the event
279 * @code: event code
280 * @value: value of the event
281 *
282 * Similar to input_event() but will ignore event if device is
283 * "grabbed" and handle injecting event is not the one that owns
284 * the device.
285 */
286 void input_inject_event(struct input_handle *handle,
287 unsigned int type, unsigned int code, int value)
288 {
289 struct input_dev *dev = handle->dev;
290 struct input_handle *grab;
291 unsigned long flags;
292
293 if (is_event_supported(type, dev->evbit, EV_MAX)) {
294 spin_lock_irqsave(&dev->event_lock, flags);
295
296 grab = rcu_dereference(dev->grab);
297 if (!grab || grab == handle)
298 input_handle_event(dev, type, code, value);
299
300 spin_unlock_irqrestore(&dev->event_lock, flags);
301 }
302 }
303 EXPORT_SYMBOL(input_inject_event);
304
305 /**
306 * input_grab_device - grabs device for exclusive use
307 * @handle: input handle that wants to own the device
308 *
309 * When a device is grabbed by an input handle all events generated by
310 * the device are delivered only to this handle. Also events injected
311 * by other input handles are ignored while device is grabbed.
312 */
313 int input_grab_device(struct input_handle *handle)
314 {
315 struct input_dev *dev = handle->dev;
316 int retval;
317
318 retval = mutex_lock_interruptible(&dev->mutex);
319 if (retval)
320 return retval;
321
322 if (dev->grab) {
323 retval = -EBUSY;
324 goto out;
325 }
326
327 rcu_assign_pointer(dev->grab, handle);
328 /*
329 * Not using synchronize_rcu() because read-side is protected
330 * by a spinlock with interrupts off instead of rcu_read_lock().
331 */
332 synchronize_sched();
333
334 out:
335 mutex_unlock(&dev->mutex);
336 return retval;
337 }
338 EXPORT_SYMBOL(input_grab_device);
339
340 static void __input_release_device(struct input_handle *handle)
341 {
342 struct input_dev *dev = handle->dev;
343
344 if (dev->grab == handle) {
345 rcu_assign_pointer(dev->grab, NULL);
346 /* Make sure input_pass_event() notices that grab is gone */
347 synchronize_sched();
348
349 list_for_each_entry(handle, &dev->h_list, d_node)
350 if (handle->open && handle->handler->start)
351 handle->handler->start(handle);
352 }
353 }
354
355 /**
356 * input_release_device - release previously grabbed device
357 * @handle: input handle that owns the device
358 *
359 * Releases previously grabbed device so that other input handles can
360 * start receiving input events. Upon release all handlers attached
361 * to the device have their start() method called so they have a change
362 * to synchronize device state with the rest of the system.
363 */
364 void input_release_device(struct input_handle *handle)
365 {
366 struct input_dev *dev = handle->dev;
367
368 mutex_lock(&dev->mutex);
369 __input_release_device(handle);
370 mutex_unlock(&dev->mutex);
371 }
372 EXPORT_SYMBOL(input_release_device);
373
374 /**
375 * input_open_device - open input device
376 * @handle: handle through which device is being accessed
377 *
378 * This function should be called by input handlers when they
379 * want to start receive events from given input device.
380 */
381 int input_open_device(struct input_handle *handle)
382 {
383 struct input_dev *dev = handle->dev;
384 int retval;
385
386 retval = mutex_lock_interruptible(&dev->mutex);
387 if (retval)
388 return retval;
389
390 if (dev->going_away) {
391 retval = -ENODEV;
392 goto out;
393 }
394
395 handle->open++;
396
397 if (!dev->users++ && dev->open)
398 retval = dev->open(dev);
399
400 if (retval) {
401 dev->users--;
402 if (!--handle->open) {
403 /*
404 * Make sure we are not delivering any more events
405 * through this handle
406 */
407 synchronize_sched();
408 }
409 }
410
411 out:
412 mutex_unlock(&dev->mutex);
413 return retval;
414 }
415 EXPORT_SYMBOL(input_open_device);
416
417 int input_flush_device(struct input_handle *handle, struct file *file)
418 {
419 struct input_dev *dev = handle->dev;
420 int retval;
421
422 retval = mutex_lock_interruptible(&dev->mutex);
423 if (retval)
424 return retval;
425
426 if (dev->flush)
427 retval = dev->flush(dev, file);
428
429 mutex_unlock(&dev->mutex);
430 return retval;
431 }
432 EXPORT_SYMBOL(input_flush_device);
433
434 /**
435 * input_close_device - close input device
436 * @handle: handle through which device is being accessed
437 *
438 * This function should be called by input handlers when they
439 * want to stop receive events from given input device.
440 */
441 void input_close_device(struct input_handle *handle)
442 {
443 struct input_dev *dev = handle->dev;
444
445 mutex_lock(&dev->mutex);
446
447 __input_release_device(handle);
448
449 if (!--dev->users && dev->close)
450 dev->close(dev);
451
452 if (!--handle->open) {
453 /*
454 * synchronize_sched() makes sure that input_pass_event()
455 * completed and that no more input events are delivered
456 * through this handle
457 */
458 synchronize_sched();
459 }
460
461 mutex_unlock(&dev->mutex);
462 }
463 EXPORT_SYMBOL(input_close_device);
464
465 /*
466 * Prepare device for unregistering
467 */
468 static void input_disconnect_device(struct input_dev *dev)
469 {
470 struct input_handle *handle;
471 int code;
472
473 /*
474 * Mark device as going away. Note that we take dev->mutex here
475 * not to protect access to dev->going_away but rather to ensure
476 * that there are no threads in the middle of input_open_device()
477 */
478 mutex_lock(&dev->mutex);
479 dev->going_away = 1;
480 mutex_unlock(&dev->mutex);
481
482 spin_lock_irq(&dev->event_lock);
483
484 /*
485 * Simulate keyup events for all pressed keys so that handlers
486 * are not left with "stuck" keys. The driver may continue
487 * generate events even after we done here but they will not
488 * reach any handlers.
489 */
490 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
491 for (code = 0; code <= KEY_MAX; code++) {
492 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
493 test_bit(code, dev->key)) {
494 input_pass_event(dev, EV_KEY, code, 0);
495 }
496 }
497 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
498 }
499
500 list_for_each_entry(handle, &dev->h_list, d_node)
501 handle->open = 0;
502
503 spin_unlock_irq(&dev->event_lock);
504 }
505
506 static int input_fetch_keycode(struct input_dev *dev, int scancode)
507 {
508 switch (dev->keycodesize) {
509 case 1:
510 return ((u8 *)dev->keycode)[scancode];
511
512 case 2:
513 return ((u16 *)dev->keycode)[scancode];
514
515 default:
516 return ((u32 *)dev->keycode)[scancode];
517 }
518 }
519
520 static int input_default_getkeycode(struct input_dev *dev,
521 int scancode, int *keycode)
522 {
523 if (!dev->keycodesize)
524 return -EINVAL;
525
526 if (scancode < 0 || scancode >= dev->keycodemax)
527 return -EINVAL;
528
529 *keycode = input_fetch_keycode(dev, scancode);
530
531 return 0;
532 }
533
534 static int input_default_setkeycode(struct input_dev *dev,
535 int scancode, int keycode)
536 {
537 int old_keycode;
538 int i;
539
540 if (scancode < 0 || scancode >= dev->keycodemax)
541 return -EINVAL;
542
543 if (keycode < 0 || keycode > KEY_MAX)
544 return -EINVAL;
545
546 if (!dev->keycodesize)
547 return -EINVAL;
548
549 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
550 return -EINVAL;
551
552 switch (dev->keycodesize) {
553 case 1: {
554 u8 *k = (u8 *)dev->keycode;
555 old_keycode = k[scancode];
556 k[scancode] = keycode;
557 break;
558 }
559 case 2: {
560 u16 *k = (u16 *)dev->keycode;
561 old_keycode = k[scancode];
562 k[scancode] = keycode;
563 break;
564 }
565 default: {
566 u32 *k = (u32 *)dev->keycode;
567 old_keycode = k[scancode];
568 k[scancode] = keycode;
569 break;
570 }
571 }
572
573 clear_bit(old_keycode, dev->keybit);
574 set_bit(keycode, dev->keybit);
575
576 for (i = 0; i < dev->keycodemax; i++) {
577 if (input_fetch_keycode(dev, i) == old_keycode) {
578 set_bit(old_keycode, dev->keybit);
579 break; /* Setting the bit twice is useless, so break */
580 }
581 }
582
583 return 0;
584 }
585
586
587 #define MATCH_BIT(bit, max) \
588 for (i = 0; i < NBITS(max); i++) \
589 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
590 break; \
591 if (i != NBITS(max)) \
592 continue;
593
594 static const struct input_device_id *input_match_device(const struct input_device_id *id,
595 struct input_dev *dev)
596 {
597 int i;
598
599 for (; id->flags || id->driver_info; id++) {
600
601 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
602 if (id->bustype != dev->id.bustype)
603 continue;
604
605 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
606 if (id->vendor != dev->id.vendor)
607 continue;
608
609 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
610 if (id->product != dev->id.product)
611 continue;
612
613 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
614 if (id->version != dev->id.version)
615 continue;
616
617 MATCH_BIT(evbit, EV_MAX);
618 MATCH_BIT(keybit, KEY_MAX);
619 MATCH_BIT(relbit, REL_MAX);
620 MATCH_BIT(absbit, ABS_MAX);
621 MATCH_BIT(mscbit, MSC_MAX);
622 MATCH_BIT(ledbit, LED_MAX);
623 MATCH_BIT(sndbit, SND_MAX);
624 MATCH_BIT(ffbit, FF_MAX);
625 MATCH_BIT(swbit, SW_MAX);
626
627 return id;
628 }
629
630 return NULL;
631 }
632
633 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
634 {
635 const struct input_device_id *id;
636 int error;
637
638 if (handler->blacklist && input_match_device(handler->blacklist, dev))
639 return -ENODEV;
640
641 id = input_match_device(handler->id_table, dev);
642 if (!id)
643 return -ENODEV;
644
645 error = handler->connect(handler, dev, id);
646 if (error && error != -ENODEV)
647 printk(KERN_ERR
648 "input: failed to attach handler %s to device %s, "
649 "error: %d\n",
650 handler->name, kobject_name(&dev->dev.kobj), error);
651
652 return error;
653 }
654
655
656 #ifdef CONFIG_PROC_FS
657
658 static struct proc_dir_entry *proc_bus_input_dir;
659 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
660 static int input_devices_state;
661
662 static inline void input_wakeup_procfs_readers(void)
663 {
664 input_devices_state++;
665 wake_up(&input_devices_poll_wait);
666 }
667
668 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
669 {
670 int state = input_devices_state;
671
672 poll_wait(file, &input_devices_poll_wait, wait);
673 if (state != input_devices_state)
674 return POLLIN | POLLRDNORM;
675
676 return 0;
677 }
678
679 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
680 {
681 if (mutex_lock_interruptible(&input_mutex))
682 return NULL;
683
684 return seq_list_start(&input_dev_list, *pos);
685 }
686
687 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
688 {
689 return seq_list_next(v, &input_dev_list, pos);
690 }
691
692 static void input_devices_seq_stop(struct seq_file *seq, void *v)
693 {
694 mutex_unlock(&input_mutex);
695 }
696
697 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
698 unsigned long *bitmap, int max)
699 {
700 int i;
701
702 for (i = NBITS(max) - 1; i > 0; i--)
703 if (bitmap[i])
704 break;
705
706 seq_printf(seq, "B: %s=", name);
707 for (; i >= 0; i--)
708 seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
709 seq_putc(seq, '\n');
710 }
711
712 static int input_devices_seq_show(struct seq_file *seq, void *v)
713 {
714 struct input_dev *dev = container_of(v, struct input_dev, node);
715 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
716 struct input_handle *handle;
717
718 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
719 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
720
721 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
722 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
723 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
724 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
725 seq_printf(seq, "H: Handlers=");
726
727 list_for_each_entry(handle, &dev->h_list, d_node)
728 seq_printf(seq, "%s ", handle->name);
729 seq_putc(seq, '\n');
730
731 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
732 if (test_bit(EV_KEY, dev->evbit))
733 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
734 if (test_bit(EV_REL, dev->evbit))
735 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
736 if (test_bit(EV_ABS, dev->evbit))
737 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
738 if (test_bit(EV_MSC, dev->evbit))
739 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
740 if (test_bit(EV_LED, dev->evbit))
741 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
742 if (test_bit(EV_SND, dev->evbit))
743 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
744 if (test_bit(EV_FF, dev->evbit))
745 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
746 if (test_bit(EV_SW, dev->evbit))
747 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
748
749 seq_putc(seq, '\n');
750
751 kfree(path);
752 return 0;
753 }
754
755 static struct seq_operations input_devices_seq_ops = {
756 .start = input_devices_seq_start,
757 .next = input_devices_seq_next,
758 .stop = input_devices_seq_stop,
759 .show = input_devices_seq_show,
760 };
761
762 static int input_proc_devices_open(struct inode *inode, struct file *file)
763 {
764 return seq_open(file, &input_devices_seq_ops);
765 }
766
767 static const struct file_operations input_devices_fileops = {
768 .owner = THIS_MODULE,
769 .open = input_proc_devices_open,
770 .poll = input_proc_devices_poll,
771 .read = seq_read,
772 .llseek = seq_lseek,
773 .release = seq_release,
774 };
775
776 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
777 {
778 if (mutex_lock_interruptible(&input_mutex))
779 return NULL;
780
781 seq->private = (void *)(unsigned long)*pos;
782 return seq_list_start(&input_handler_list, *pos);
783 }
784
785 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
786 {
787 seq->private = (void *)(unsigned long)(*pos + 1);
788 return seq_list_next(v, &input_handler_list, pos);
789 }
790
791 static void input_handlers_seq_stop(struct seq_file *seq, void *v)
792 {
793 mutex_unlock(&input_mutex);
794 }
795
796 static int input_handlers_seq_show(struct seq_file *seq, void *v)
797 {
798 struct input_handler *handler = container_of(v, struct input_handler, node);
799
800 seq_printf(seq, "N: Number=%ld Name=%s",
801 (unsigned long)seq->private, handler->name);
802 if (handler->fops)
803 seq_printf(seq, " Minor=%d", handler->minor);
804 seq_putc(seq, '\n');
805
806 return 0;
807 }
808 static struct seq_operations input_handlers_seq_ops = {
809 .start = input_handlers_seq_start,
810 .next = input_handlers_seq_next,
811 .stop = input_handlers_seq_stop,
812 .show = input_handlers_seq_show,
813 };
814
815 static int input_proc_handlers_open(struct inode *inode, struct file *file)
816 {
817 return seq_open(file, &input_handlers_seq_ops);
818 }
819
820 static const struct file_operations input_handlers_fileops = {
821 .owner = THIS_MODULE,
822 .open = input_proc_handlers_open,
823 .read = seq_read,
824 .llseek = seq_lseek,
825 .release = seq_release,
826 };
827
828 static int __init input_proc_init(void)
829 {
830 struct proc_dir_entry *entry;
831
832 proc_bus_input_dir = proc_mkdir("input", proc_bus);
833 if (!proc_bus_input_dir)
834 return -ENOMEM;
835
836 proc_bus_input_dir->owner = THIS_MODULE;
837
838 entry = create_proc_entry("devices", 0, proc_bus_input_dir);
839 if (!entry)
840 goto fail1;
841
842 entry->owner = THIS_MODULE;
843 entry->proc_fops = &input_devices_fileops;
844
845 entry = create_proc_entry("handlers", 0, proc_bus_input_dir);
846 if (!entry)
847 goto fail2;
848
849 entry->owner = THIS_MODULE;
850 entry->proc_fops = &input_handlers_fileops;
851
852 return 0;
853
854 fail2: remove_proc_entry("devices", proc_bus_input_dir);
855 fail1: remove_proc_entry("input", proc_bus);
856 return -ENOMEM;
857 }
858
859 static void input_proc_exit(void)
860 {
861 remove_proc_entry("devices", proc_bus_input_dir);
862 remove_proc_entry("handlers", proc_bus_input_dir);
863 remove_proc_entry("input", proc_bus);
864 }
865
866 #else /* !CONFIG_PROC_FS */
867 static inline void input_wakeup_procfs_readers(void) { }
868 static inline int input_proc_init(void) { return 0; }
869 static inline void input_proc_exit(void) { }
870 #endif
871
872 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
873 static ssize_t input_dev_show_##name(struct device *dev, \
874 struct device_attribute *attr, \
875 char *buf) \
876 { \
877 struct input_dev *input_dev = to_input_dev(dev); \
878 \
879 return scnprintf(buf, PAGE_SIZE, "%s\n", \
880 input_dev->name ? input_dev->name : ""); \
881 } \
882 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
883
884 INPUT_DEV_STRING_ATTR_SHOW(name);
885 INPUT_DEV_STRING_ATTR_SHOW(phys);
886 INPUT_DEV_STRING_ATTR_SHOW(uniq);
887
888 static int input_print_modalias_bits(char *buf, int size,
889 char name, unsigned long *bm,
890 unsigned int min_bit, unsigned int max_bit)
891 {
892 int len = 0, i;
893
894 len += snprintf(buf, max(size, 0), "%c", name);
895 for (i = min_bit; i < max_bit; i++)
896 if (bm[LONG(i)] & BIT(i))
897 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
898 return len;
899 }
900
901 static int input_print_modalias(char *buf, int size, struct input_dev *id,
902 int add_cr)
903 {
904 int len;
905
906 len = snprintf(buf, max(size, 0),
907 "input:b%04Xv%04Xp%04Xe%04X-",
908 id->id.bustype, id->id.vendor,
909 id->id.product, id->id.version);
910
911 len += input_print_modalias_bits(buf + len, size - len,
912 'e', id->evbit, 0, EV_MAX);
913 len += input_print_modalias_bits(buf + len, size - len,
914 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
915 len += input_print_modalias_bits(buf + len, size - len,
916 'r', id->relbit, 0, REL_MAX);
917 len += input_print_modalias_bits(buf + len, size - len,
918 'a', id->absbit, 0, ABS_MAX);
919 len += input_print_modalias_bits(buf + len, size - len,
920 'm', id->mscbit, 0, MSC_MAX);
921 len += input_print_modalias_bits(buf + len, size - len,
922 'l', id->ledbit, 0, LED_MAX);
923 len += input_print_modalias_bits(buf + len, size - len,
924 's', id->sndbit, 0, SND_MAX);
925 len += input_print_modalias_bits(buf + len, size - len,
926 'f', id->ffbit, 0, FF_MAX);
927 len += input_print_modalias_bits(buf + len, size - len,
928 'w', id->swbit, 0, SW_MAX);
929
930 if (add_cr)
931 len += snprintf(buf + len, max(size - len, 0), "\n");
932
933 return len;
934 }
935
936 static ssize_t input_dev_show_modalias(struct device *dev,
937 struct device_attribute *attr,
938 char *buf)
939 {
940 struct input_dev *id = to_input_dev(dev);
941 ssize_t len;
942
943 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
944
945 return min_t(int, len, PAGE_SIZE);
946 }
947 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
948
949 static struct attribute *input_dev_attrs[] = {
950 &dev_attr_name.attr,
951 &dev_attr_phys.attr,
952 &dev_attr_uniq.attr,
953 &dev_attr_modalias.attr,
954 NULL
955 };
956
957 static struct attribute_group input_dev_attr_group = {
958 .attrs = input_dev_attrs,
959 };
960
961 #define INPUT_DEV_ID_ATTR(name) \
962 static ssize_t input_dev_show_id_##name(struct device *dev, \
963 struct device_attribute *attr, \
964 char *buf) \
965 { \
966 struct input_dev *input_dev = to_input_dev(dev); \
967 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
968 } \
969 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
970
971 INPUT_DEV_ID_ATTR(bustype);
972 INPUT_DEV_ID_ATTR(vendor);
973 INPUT_DEV_ID_ATTR(product);
974 INPUT_DEV_ID_ATTR(version);
975
976 static struct attribute *input_dev_id_attrs[] = {
977 &dev_attr_bustype.attr,
978 &dev_attr_vendor.attr,
979 &dev_attr_product.attr,
980 &dev_attr_version.attr,
981 NULL
982 };
983
984 static struct attribute_group input_dev_id_attr_group = {
985 .name = "id",
986 .attrs = input_dev_id_attrs,
987 };
988
989 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
990 int max, int add_cr)
991 {
992 int i;
993 int len = 0;
994
995 for (i = NBITS(max) - 1; i > 0; i--)
996 if (bitmap[i])
997 break;
998
999 for (; i >= 0; i--)
1000 len += snprintf(buf + len, max(buf_size - len, 0),
1001 "%lx%s", bitmap[i], i > 0 ? " " : "");
1002
1003 if (add_cr)
1004 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1005
1006 return len;
1007 }
1008
1009 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1010 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1011 struct device_attribute *attr, \
1012 char *buf) \
1013 { \
1014 struct input_dev *input_dev = to_input_dev(dev); \
1015 int len = input_print_bitmap(buf, PAGE_SIZE, \
1016 input_dev->bm##bit, ev##_MAX, 1); \
1017 return min_t(int, len, PAGE_SIZE); \
1018 } \
1019 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1020
1021 INPUT_DEV_CAP_ATTR(EV, ev);
1022 INPUT_DEV_CAP_ATTR(KEY, key);
1023 INPUT_DEV_CAP_ATTR(REL, rel);
1024 INPUT_DEV_CAP_ATTR(ABS, abs);
1025 INPUT_DEV_CAP_ATTR(MSC, msc);
1026 INPUT_DEV_CAP_ATTR(LED, led);
1027 INPUT_DEV_CAP_ATTR(SND, snd);
1028 INPUT_DEV_CAP_ATTR(FF, ff);
1029 INPUT_DEV_CAP_ATTR(SW, sw);
1030
1031 static struct attribute *input_dev_caps_attrs[] = {
1032 &dev_attr_ev.attr,
1033 &dev_attr_key.attr,
1034 &dev_attr_rel.attr,
1035 &dev_attr_abs.attr,
1036 &dev_attr_msc.attr,
1037 &dev_attr_led.attr,
1038 &dev_attr_snd.attr,
1039 &dev_attr_ff.attr,
1040 &dev_attr_sw.attr,
1041 NULL
1042 };
1043
1044 static struct attribute_group input_dev_caps_attr_group = {
1045 .name = "capabilities",
1046 .attrs = input_dev_caps_attrs,
1047 };
1048
1049 static struct attribute_group *input_dev_attr_groups[] = {
1050 &input_dev_attr_group,
1051 &input_dev_id_attr_group,
1052 &input_dev_caps_attr_group,
1053 NULL
1054 };
1055
1056 static void input_dev_release(struct device *device)
1057 {
1058 struct input_dev *dev = to_input_dev(device);
1059
1060 input_ff_destroy(dev);
1061 kfree(dev);
1062
1063 module_put(THIS_MODULE);
1064 }
1065
1066 /*
1067 * Input uevent interface - loading event handlers based on
1068 * device bitfields.
1069 */
1070 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1071 const char *name, unsigned long *bitmap, int max)
1072 {
1073 int len;
1074
1075 if (add_uevent_var(env, "%s=", name))
1076 return -ENOMEM;
1077
1078 len = input_print_bitmap(&env->buf[env->buflen - 1],
1079 sizeof(env->buf) - env->buflen,
1080 bitmap, max, 0);
1081 if (len >= (sizeof(env->buf) - env->buflen))
1082 return -ENOMEM;
1083
1084 env->buflen += len;
1085 return 0;
1086 }
1087
1088 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1089 struct input_dev *dev)
1090 {
1091 int len;
1092
1093 if (add_uevent_var(env, "MODALIAS="))
1094 return -ENOMEM;
1095
1096 len = input_print_modalias(&env->buf[env->buflen - 1],
1097 sizeof(env->buf) - env->buflen,
1098 dev, 0);
1099 if (len >= (sizeof(env->buf) - env->buflen))
1100 return -ENOMEM;
1101
1102 env->buflen += len;
1103 return 0;
1104 }
1105
1106 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1107 do { \
1108 int err = add_uevent_var(env, fmt, val); \
1109 if (err) \
1110 return err; \
1111 } while (0)
1112
1113 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1114 do { \
1115 int err = input_add_uevent_bm_var(env, name, bm, max); \
1116 if (err) \
1117 return err; \
1118 } while (0)
1119
1120 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1121 do { \
1122 int err = input_add_uevent_modalias_var(env, dev); \
1123 if (err) \
1124 return err; \
1125 } while (0)
1126
1127 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1128 {
1129 struct input_dev *dev = to_input_dev(device);
1130
1131 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1132 dev->id.bustype, dev->id.vendor,
1133 dev->id.product, dev->id.version);
1134 if (dev->name)
1135 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1136 if (dev->phys)
1137 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1138 if (dev->uniq)
1139 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1140
1141 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1142 if (test_bit(EV_KEY, dev->evbit))
1143 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1144 if (test_bit(EV_REL, dev->evbit))
1145 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1146 if (test_bit(EV_ABS, dev->evbit))
1147 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1148 if (test_bit(EV_MSC, dev->evbit))
1149 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1150 if (test_bit(EV_LED, dev->evbit))
1151 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1152 if (test_bit(EV_SND, dev->evbit))
1153 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1154 if (test_bit(EV_FF, dev->evbit))
1155 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1156 if (test_bit(EV_SW, dev->evbit))
1157 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1158
1159 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1160
1161 return 0;
1162 }
1163
1164 static struct device_type input_dev_type = {
1165 .groups = input_dev_attr_groups,
1166 .release = input_dev_release,
1167 .uevent = input_dev_uevent,
1168 };
1169
1170 struct class input_class = {
1171 .name = "input",
1172 };
1173 EXPORT_SYMBOL_GPL(input_class);
1174
1175 /**
1176 * input_allocate_device - allocate memory for new input device
1177 *
1178 * Returns prepared struct input_dev or NULL.
1179 *
1180 * NOTE: Use input_free_device() to free devices that have not been
1181 * registered; input_unregister_device() should be used for already
1182 * registered devices.
1183 */
1184 struct input_dev *input_allocate_device(void)
1185 {
1186 struct input_dev *dev;
1187
1188 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1189 if (dev) {
1190 dev->dev.type = &input_dev_type;
1191 dev->dev.class = &input_class;
1192 device_initialize(&dev->dev);
1193 mutex_init(&dev->mutex);
1194 spin_lock_init(&dev->event_lock);
1195 INIT_LIST_HEAD(&dev->h_list);
1196 INIT_LIST_HEAD(&dev->node);
1197
1198 __module_get(THIS_MODULE);
1199 }
1200
1201 return dev;
1202 }
1203 EXPORT_SYMBOL(input_allocate_device);
1204
1205 /**
1206 * input_free_device - free memory occupied by input_dev structure
1207 * @dev: input device to free
1208 *
1209 * This function should only be used if input_register_device()
1210 * was not called yet or if it failed. Once device was registered
1211 * use input_unregister_device() and memory will be freed once last
1212 * reference to the device is dropped.
1213 *
1214 * Device should be allocated by input_allocate_device().
1215 *
1216 * NOTE: If there are references to the input device then memory
1217 * will not be freed until last reference is dropped.
1218 */
1219 void input_free_device(struct input_dev *dev)
1220 {
1221 if (dev)
1222 input_put_device(dev);
1223 }
1224 EXPORT_SYMBOL(input_free_device);
1225
1226 /**
1227 * input_set_capability - mark device as capable of a certain event
1228 * @dev: device that is capable of emitting or accepting event
1229 * @type: type of the event (EV_KEY, EV_REL, etc...)
1230 * @code: event code
1231 *
1232 * In addition to setting up corresponding bit in appropriate capability
1233 * bitmap the function also adjusts dev->evbit.
1234 */
1235 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1236 {
1237 switch (type) {
1238 case EV_KEY:
1239 __set_bit(code, dev->keybit);
1240 break;
1241
1242 case EV_REL:
1243 __set_bit(code, dev->relbit);
1244 break;
1245
1246 case EV_ABS:
1247 __set_bit(code, dev->absbit);
1248 break;
1249
1250 case EV_MSC:
1251 __set_bit(code, dev->mscbit);
1252 break;
1253
1254 case EV_SW:
1255 __set_bit(code, dev->swbit);
1256 break;
1257
1258 case EV_LED:
1259 __set_bit(code, dev->ledbit);
1260 break;
1261
1262 case EV_SND:
1263 __set_bit(code, dev->sndbit);
1264 break;
1265
1266 case EV_FF:
1267 __set_bit(code, dev->ffbit);
1268 break;
1269
1270 default:
1271 printk(KERN_ERR
1272 "input_set_capability: unknown type %u (code %u)\n",
1273 type, code);
1274 dump_stack();
1275 return;
1276 }
1277
1278 __set_bit(type, dev->evbit);
1279 }
1280 EXPORT_SYMBOL(input_set_capability);
1281
1282 /**
1283 * input_register_device - register device with input core
1284 * @dev: device to be registered
1285 *
1286 * This function registers device with input core. The device must be
1287 * allocated with input_allocate_device() and all it's capabilities
1288 * set up before registering.
1289 * If function fails the device must be freed with input_free_device().
1290 * Once device has been successfully registered it can be unregistered
1291 * with input_unregister_device(); input_free_device() should not be
1292 * called in this case.
1293 */
1294 int input_register_device(struct input_dev *dev)
1295 {
1296 static atomic_t input_no = ATOMIC_INIT(0);
1297 struct input_handler *handler;
1298 const char *path;
1299 int error;
1300
1301 __set_bit(EV_SYN, dev->evbit);
1302
1303 /*
1304 * If delay and period are pre-set by the driver, then autorepeating
1305 * is handled by the driver itself and we don't do it in input.c.
1306 */
1307
1308 init_timer(&dev->timer);
1309 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1310 dev->timer.data = (long) dev;
1311 dev->timer.function = input_repeat_key;
1312 dev->rep[REP_DELAY] = 250;
1313 dev->rep[REP_PERIOD] = 33;
1314 }
1315
1316 if (!dev->getkeycode)
1317 dev->getkeycode = input_default_getkeycode;
1318
1319 if (!dev->setkeycode)
1320 dev->setkeycode = input_default_setkeycode;
1321
1322 snprintf(dev->dev.bus_id, sizeof(dev->dev.bus_id),
1323 "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);
1324
1325 if (dev->cdev.dev)
1326 dev->dev.parent = dev->cdev.dev;
1327
1328 error = device_add(&dev->dev);
1329 if (error)
1330 return error;
1331
1332 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1333 printk(KERN_INFO "input: %s as %s\n",
1334 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1335 kfree(path);
1336
1337 error = mutex_lock_interruptible(&input_mutex);
1338 if (error) {
1339 device_del(&dev->dev);
1340 return error;
1341 }
1342
1343 list_add_tail(&dev->node, &input_dev_list);
1344
1345 list_for_each_entry(handler, &input_handler_list, node)
1346 input_attach_handler(dev, handler);
1347
1348 input_wakeup_procfs_readers();
1349
1350 mutex_unlock(&input_mutex);
1351
1352 return 0;
1353 }
1354 EXPORT_SYMBOL(input_register_device);
1355
1356 /**
1357 * input_unregister_device - unregister previously registered device
1358 * @dev: device to be unregistered
1359 *
1360 * This function unregisters an input device. Once device is unregistered
1361 * the caller should not try to access it as it may get freed at any moment.
1362 */
1363 void input_unregister_device(struct input_dev *dev)
1364 {
1365 struct input_handle *handle, *next;
1366
1367 input_disconnect_device(dev);
1368
1369 mutex_lock(&input_mutex);
1370
1371 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1372 handle->handler->disconnect(handle);
1373 WARN_ON(!list_empty(&dev->h_list));
1374
1375 del_timer_sync(&dev->timer);
1376 list_del_init(&dev->node);
1377
1378 input_wakeup_procfs_readers();
1379
1380 mutex_unlock(&input_mutex);
1381
1382 device_unregister(&dev->dev);
1383 }
1384 EXPORT_SYMBOL(input_unregister_device);
1385
1386 /**
1387 * input_register_handler - register a new input handler
1388 * @handler: handler to be registered
1389 *
1390 * This function registers a new input handler (interface) for input
1391 * devices in the system and attaches it to all input devices that
1392 * are compatible with the handler.
1393 */
1394 int input_register_handler(struct input_handler *handler)
1395 {
1396 struct input_dev *dev;
1397 int retval;
1398
1399 retval = mutex_lock_interruptible(&input_mutex);
1400 if (retval)
1401 return retval;
1402
1403 INIT_LIST_HEAD(&handler->h_list);
1404
1405 if (handler->fops != NULL) {
1406 if (input_table[handler->minor >> 5]) {
1407 retval = -EBUSY;
1408 goto out;
1409 }
1410 input_table[handler->minor >> 5] = handler;
1411 }
1412
1413 list_add_tail(&handler->node, &input_handler_list);
1414
1415 list_for_each_entry(dev, &input_dev_list, node)
1416 input_attach_handler(dev, handler);
1417
1418 input_wakeup_procfs_readers();
1419
1420 out:
1421 mutex_unlock(&input_mutex);
1422 return retval;
1423 }
1424 EXPORT_SYMBOL(input_register_handler);
1425
1426 /**
1427 * input_unregister_handler - unregisters an input handler
1428 * @handler: handler to be unregistered
1429 *
1430 * This function disconnects a handler from its input devices and
1431 * removes it from lists of known handlers.
1432 */
1433 void input_unregister_handler(struct input_handler *handler)
1434 {
1435 struct input_handle *handle, *next;
1436
1437 mutex_lock(&input_mutex);
1438
1439 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1440 handler->disconnect(handle);
1441 WARN_ON(!list_empty(&handler->h_list));
1442
1443 list_del_init(&handler->node);
1444
1445 if (handler->fops != NULL)
1446 input_table[handler->minor >> 5] = NULL;
1447
1448 input_wakeup_procfs_readers();
1449
1450 mutex_unlock(&input_mutex);
1451 }
1452 EXPORT_SYMBOL(input_unregister_handler);
1453
1454 /**
1455 * input_register_handle - register a new input handle
1456 * @handle: handle to register
1457 *
1458 * This function puts a new input handle onto device's
1459 * and handler's lists so that events can flow through
1460 * it once it is opened using input_open_device().
1461 *
1462 * This function is supposed to be called from handler's
1463 * connect() method.
1464 */
1465 int input_register_handle(struct input_handle *handle)
1466 {
1467 struct input_handler *handler = handle->handler;
1468 struct input_dev *dev = handle->dev;
1469 int error;
1470
1471 /*
1472 * We take dev->mutex here to prevent race with
1473 * input_release_device().
1474 */
1475 error = mutex_lock_interruptible(&dev->mutex);
1476 if (error)
1477 return error;
1478 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1479 mutex_unlock(&dev->mutex);
1480 /*
1481 * We don't use synchronize_rcu() here because we rely
1482 * on dev->event_lock to protect read-side critical
1483 * section in input_pass_event().
1484 */
1485 synchronize_sched();
1486
1487 /*
1488 * Since we are supposed to be called from ->connect()
1489 * which is mutually exclusive with ->disconnect()
1490 * we can't be racing with input_unregister_handle()
1491 * and so separate lock is not needed here.
1492 */
1493 list_add_tail(&handle->h_node, &handler->h_list);
1494
1495 if (handler->start)
1496 handler->start(handle);
1497
1498 return 0;
1499 }
1500 EXPORT_SYMBOL(input_register_handle);
1501
1502 /**
1503 * input_unregister_handle - unregister an input handle
1504 * @handle: handle to unregister
1505 *
1506 * This function removes input handle from device's
1507 * and handler's lists.
1508 *
1509 * This function is supposed to be called from handler's
1510 * disconnect() method.
1511 */
1512 void input_unregister_handle(struct input_handle *handle)
1513 {
1514 struct input_dev *dev = handle->dev;
1515
1516 list_del_init(&handle->h_node);
1517
1518 /*
1519 * Take dev->mutex to prevent race with input_release_device().
1520 */
1521 mutex_lock(&dev->mutex);
1522 list_del_rcu(&handle->d_node);
1523 mutex_unlock(&dev->mutex);
1524 synchronize_sched();
1525 }
1526 EXPORT_SYMBOL(input_unregister_handle);
1527
1528 static int input_open_file(struct inode *inode, struct file *file)
1529 {
1530 struct input_handler *handler = input_table[iminor(inode) >> 5];
1531 const struct file_operations *old_fops, *new_fops = NULL;
1532 int err;
1533
1534 /* No load-on-demand here? */
1535 if (!handler || !(new_fops = fops_get(handler->fops)))
1536 return -ENODEV;
1537
1538 /*
1539 * That's _really_ odd. Usually NULL ->open means "nothing special",
1540 * not "no device". Oh, well...
1541 */
1542 if (!new_fops->open) {
1543 fops_put(new_fops);
1544 return -ENODEV;
1545 }
1546 old_fops = file->f_op;
1547 file->f_op = new_fops;
1548
1549 err = new_fops->open(inode, file);
1550
1551 if (err) {
1552 fops_put(file->f_op);
1553 file->f_op = fops_get(old_fops);
1554 }
1555 fops_put(old_fops);
1556 return err;
1557 }
1558
1559 static const struct file_operations input_fops = {
1560 .owner = THIS_MODULE,
1561 .open = input_open_file,
1562 };
1563
1564 static int __init input_init(void)
1565 {
1566 int err;
1567
1568 err = class_register(&input_class);
1569 if (err) {
1570 printk(KERN_ERR "input: unable to register input_dev class\n");
1571 return err;
1572 }
1573
1574 err = input_proc_init();
1575 if (err)
1576 goto fail1;
1577
1578 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1579 if (err) {
1580 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1581 goto fail2;
1582 }
1583
1584 return 0;
1585
1586 fail2: input_proc_exit();
1587 fail1: class_unregister(&input_class);
1588 return err;
1589 }
1590
1591 static void __exit input_exit(void)
1592 {
1593 input_proc_exit();
1594 unregister_chrdev(INPUT_MAJOR, "input");
1595 class_unregister(&input_class);
1596 }
1597
1598 subsys_initcall(input_init);
1599 module_exit(input_exit);