]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iommu/arm-smmu.c
Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / arm-smmu.c
1 /*
2 * IOMMU API for ARM architected SMMU implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 *
17 * Copyright (C) 2013 ARM Limited
18 *
19 * Author: Will Deacon <will.deacon@arm.com>
20 *
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - Context fault reporting
27 */
28
29 #define pr_fmt(fmt) "arm-smmu: " fmt
30
31 #include <linux/acpi.h>
32 #include <linux/acpi_iort.h>
33 #include <linux/atomic.h>
34 #include <linux/delay.h>
35 #include <linux/dma-iommu.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/err.h>
38 #include <linux/interrupt.h>
39 #include <linux/io.h>
40 #include <linux/io-64-nonatomic-hi-lo.h>
41 #include <linux/iommu.h>
42 #include <linux/iopoll.h>
43 #include <linux/module.h>
44 #include <linux/of.h>
45 #include <linux/of_address.h>
46 #include <linux/of_device.h>
47 #include <linux/of_iommu.h>
48 #include <linux/pci.h>
49 #include <linux/platform_device.h>
50 #include <linux/slab.h>
51 #include <linux/spinlock.h>
52
53 #include <linux/amba/bus.h>
54
55 #include "io-pgtable.h"
56
57 /* Maximum number of context banks per SMMU */
58 #define ARM_SMMU_MAX_CBS 128
59
60 /* SMMU global address space */
61 #define ARM_SMMU_GR0(smmu) ((smmu)->base)
62 #define ARM_SMMU_GR1(smmu) ((smmu)->base + (1 << (smmu)->pgshift))
63
64 /*
65 * SMMU global address space with conditional offset to access secure
66 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
67 * nsGFSYNR0: 0x450)
68 */
69 #define ARM_SMMU_GR0_NS(smmu) \
70 ((smmu)->base + \
71 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
72 ? 0x400 : 0))
73
74 /*
75 * Some 64-bit registers only make sense to write atomically, but in such
76 * cases all the data relevant to AArch32 formats lies within the lower word,
77 * therefore this actually makes more sense than it might first appear.
78 */
79 #ifdef CONFIG_64BIT
80 #define smmu_write_atomic_lq writeq_relaxed
81 #else
82 #define smmu_write_atomic_lq writel_relaxed
83 #endif
84
85 /* Configuration registers */
86 #define ARM_SMMU_GR0_sCR0 0x0
87 #define sCR0_CLIENTPD (1 << 0)
88 #define sCR0_GFRE (1 << 1)
89 #define sCR0_GFIE (1 << 2)
90 #define sCR0_GCFGFRE (1 << 4)
91 #define sCR0_GCFGFIE (1 << 5)
92 #define sCR0_USFCFG (1 << 10)
93 #define sCR0_VMIDPNE (1 << 11)
94 #define sCR0_PTM (1 << 12)
95 #define sCR0_FB (1 << 13)
96 #define sCR0_VMID16EN (1 << 31)
97 #define sCR0_BSU_SHIFT 14
98 #define sCR0_BSU_MASK 0x3
99
100 /* Auxiliary Configuration register */
101 #define ARM_SMMU_GR0_sACR 0x10
102
103 /* Identification registers */
104 #define ARM_SMMU_GR0_ID0 0x20
105 #define ARM_SMMU_GR0_ID1 0x24
106 #define ARM_SMMU_GR0_ID2 0x28
107 #define ARM_SMMU_GR0_ID3 0x2c
108 #define ARM_SMMU_GR0_ID4 0x30
109 #define ARM_SMMU_GR0_ID5 0x34
110 #define ARM_SMMU_GR0_ID6 0x38
111 #define ARM_SMMU_GR0_ID7 0x3c
112 #define ARM_SMMU_GR0_sGFSR 0x48
113 #define ARM_SMMU_GR0_sGFSYNR0 0x50
114 #define ARM_SMMU_GR0_sGFSYNR1 0x54
115 #define ARM_SMMU_GR0_sGFSYNR2 0x58
116
117 #define ID0_S1TS (1 << 30)
118 #define ID0_S2TS (1 << 29)
119 #define ID0_NTS (1 << 28)
120 #define ID0_SMS (1 << 27)
121 #define ID0_ATOSNS (1 << 26)
122 #define ID0_PTFS_NO_AARCH32 (1 << 25)
123 #define ID0_PTFS_NO_AARCH32S (1 << 24)
124 #define ID0_CTTW (1 << 14)
125 #define ID0_NUMIRPT_SHIFT 16
126 #define ID0_NUMIRPT_MASK 0xff
127 #define ID0_NUMSIDB_SHIFT 9
128 #define ID0_NUMSIDB_MASK 0xf
129 #define ID0_NUMSMRG_SHIFT 0
130 #define ID0_NUMSMRG_MASK 0xff
131
132 #define ID1_PAGESIZE (1 << 31)
133 #define ID1_NUMPAGENDXB_SHIFT 28
134 #define ID1_NUMPAGENDXB_MASK 7
135 #define ID1_NUMS2CB_SHIFT 16
136 #define ID1_NUMS2CB_MASK 0xff
137 #define ID1_NUMCB_SHIFT 0
138 #define ID1_NUMCB_MASK 0xff
139
140 #define ID2_OAS_SHIFT 4
141 #define ID2_OAS_MASK 0xf
142 #define ID2_IAS_SHIFT 0
143 #define ID2_IAS_MASK 0xf
144 #define ID2_UBS_SHIFT 8
145 #define ID2_UBS_MASK 0xf
146 #define ID2_PTFS_4K (1 << 12)
147 #define ID2_PTFS_16K (1 << 13)
148 #define ID2_PTFS_64K (1 << 14)
149 #define ID2_VMID16 (1 << 15)
150
151 #define ID7_MAJOR_SHIFT 4
152 #define ID7_MAJOR_MASK 0xf
153
154 /* Global TLB invalidation */
155 #define ARM_SMMU_GR0_TLBIVMID 0x64
156 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
157 #define ARM_SMMU_GR0_TLBIALLH 0x6c
158 #define ARM_SMMU_GR0_sTLBGSYNC 0x70
159 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74
160 #define sTLBGSTATUS_GSACTIVE (1 << 0)
161 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
162
163 /* Stream mapping registers */
164 #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
165 #define SMR_VALID (1 << 31)
166 #define SMR_MASK_SHIFT 16
167 #define SMR_ID_SHIFT 0
168
169 #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
170 #define S2CR_CBNDX_SHIFT 0
171 #define S2CR_CBNDX_MASK 0xff
172 #define S2CR_TYPE_SHIFT 16
173 #define S2CR_TYPE_MASK 0x3
174 enum arm_smmu_s2cr_type {
175 S2CR_TYPE_TRANS,
176 S2CR_TYPE_BYPASS,
177 S2CR_TYPE_FAULT,
178 };
179
180 #define S2CR_PRIVCFG_SHIFT 24
181 #define S2CR_PRIVCFG_MASK 0x3
182 enum arm_smmu_s2cr_privcfg {
183 S2CR_PRIVCFG_DEFAULT,
184 S2CR_PRIVCFG_DIPAN,
185 S2CR_PRIVCFG_UNPRIV,
186 S2CR_PRIVCFG_PRIV,
187 };
188
189 /* Context bank attribute registers */
190 #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
191 #define CBAR_VMID_SHIFT 0
192 #define CBAR_VMID_MASK 0xff
193 #define CBAR_S1_BPSHCFG_SHIFT 8
194 #define CBAR_S1_BPSHCFG_MASK 3
195 #define CBAR_S1_BPSHCFG_NSH 3
196 #define CBAR_S1_MEMATTR_SHIFT 12
197 #define CBAR_S1_MEMATTR_MASK 0xf
198 #define CBAR_S1_MEMATTR_WB 0xf
199 #define CBAR_TYPE_SHIFT 16
200 #define CBAR_TYPE_MASK 0x3
201 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
202 #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
203 #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
204 #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
205 #define CBAR_IRPTNDX_SHIFT 24
206 #define CBAR_IRPTNDX_MASK 0xff
207
208 #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
209 #define CBA2R_RW64_32BIT (0 << 0)
210 #define CBA2R_RW64_64BIT (1 << 0)
211 #define CBA2R_VMID_SHIFT 16
212 #define CBA2R_VMID_MASK 0xffff
213
214 /* Translation context bank */
215 #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
216 #define ARM_SMMU_CB(smmu, n) ((n) * (1 << (smmu)->pgshift))
217
218 #define ARM_SMMU_CB_SCTLR 0x0
219 #define ARM_SMMU_CB_ACTLR 0x4
220 #define ARM_SMMU_CB_RESUME 0x8
221 #define ARM_SMMU_CB_TTBCR2 0x10
222 #define ARM_SMMU_CB_TTBR0 0x20
223 #define ARM_SMMU_CB_TTBR1 0x28
224 #define ARM_SMMU_CB_TTBCR 0x30
225 #define ARM_SMMU_CB_CONTEXTIDR 0x34
226 #define ARM_SMMU_CB_S1_MAIR0 0x38
227 #define ARM_SMMU_CB_S1_MAIR1 0x3c
228 #define ARM_SMMU_CB_PAR 0x50
229 #define ARM_SMMU_CB_FSR 0x58
230 #define ARM_SMMU_CB_FAR 0x60
231 #define ARM_SMMU_CB_FSYNR0 0x68
232 #define ARM_SMMU_CB_S1_TLBIVA 0x600
233 #define ARM_SMMU_CB_S1_TLBIASID 0x610
234 #define ARM_SMMU_CB_S1_TLBIVAL 0x620
235 #define ARM_SMMU_CB_S2_TLBIIPAS2 0x630
236 #define ARM_SMMU_CB_S2_TLBIIPAS2L 0x638
237 #define ARM_SMMU_CB_ATS1PR 0x800
238 #define ARM_SMMU_CB_ATSR 0x8f0
239
240 #define SCTLR_S1_ASIDPNE (1 << 12)
241 #define SCTLR_CFCFG (1 << 7)
242 #define SCTLR_CFIE (1 << 6)
243 #define SCTLR_CFRE (1 << 5)
244 #define SCTLR_E (1 << 4)
245 #define SCTLR_AFE (1 << 2)
246 #define SCTLR_TRE (1 << 1)
247 #define SCTLR_M (1 << 0)
248
249 #define ARM_MMU500_ACTLR_CPRE (1 << 1)
250
251 #define ARM_MMU500_ACR_CACHE_LOCK (1 << 26)
252 #define ARM_MMU500_ACR_SMTNMB_TLBEN (1 << 8)
253
254 #define CB_PAR_F (1 << 0)
255
256 #define ATSR_ACTIVE (1 << 0)
257
258 #define RESUME_RETRY (0 << 0)
259 #define RESUME_TERMINATE (1 << 0)
260
261 #define TTBCR2_SEP_SHIFT 15
262 #define TTBCR2_SEP_UPSTREAM (0x7 << TTBCR2_SEP_SHIFT)
263
264 #define TTBRn_ASID_SHIFT 48
265
266 #define FSR_MULTI (1 << 31)
267 #define FSR_SS (1 << 30)
268 #define FSR_UUT (1 << 8)
269 #define FSR_ASF (1 << 7)
270 #define FSR_TLBLKF (1 << 6)
271 #define FSR_TLBMCF (1 << 5)
272 #define FSR_EF (1 << 4)
273 #define FSR_PF (1 << 3)
274 #define FSR_AFF (1 << 2)
275 #define FSR_TF (1 << 1)
276
277 #define FSR_IGN (FSR_AFF | FSR_ASF | \
278 FSR_TLBMCF | FSR_TLBLKF)
279 #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
280 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
281
282 #define FSYNR0_WNR (1 << 4)
283
284 static int force_stage;
285 module_param(force_stage, int, S_IRUGO);
286 MODULE_PARM_DESC(force_stage,
287 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
288 static bool disable_bypass;
289 module_param(disable_bypass, bool, S_IRUGO);
290 MODULE_PARM_DESC(disable_bypass,
291 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
292
293 enum arm_smmu_arch_version {
294 ARM_SMMU_V1,
295 ARM_SMMU_V1_64K,
296 ARM_SMMU_V2,
297 };
298
299 enum arm_smmu_implementation {
300 GENERIC_SMMU,
301 ARM_MMU500,
302 CAVIUM_SMMUV2,
303 };
304
305 struct arm_smmu_s2cr {
306 struct iommu_group *group;
307 int count;
308 enum arm_smmu_s2cr_type type;
309 enum arm_smmu_s2cr_privcfg privcfg;
310 u8 cbndx;
311 };
312
313 #define s2cr_init_val (struct arm_smmu_s2cr){ \
314 .type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS, \
315 }
316
317 struct arm_smmu_smr {
318 u16 mask;
319 u16 id;
320 bool valid;
321 };
322
323 struct arm_smmu_master_cfg {
324 struct arm_smmu_device *smmu;
325 s16 smendx[];
326 };
327 #define INVALID_SMENDX -1
328 #define __fwspec_cfg(fw) ((struct arm_smmu_master_cfg *)fw->iommu_priv)
329 #define fwspec_smmu(fw) (__fwspec_cfg(fw)->smmu)
330 #define fwspec_smendx(fw, i) \
331 (i >= fw->num_ids ? INVALID_SMENDX : __fwspec_cfg(fw)->smendx[i])
332 #define for_each_cfg_sme(fw, i, idx) \
333 for (i = 0; idx = fwspec_smendx(fw, i), i < fw->num_ids; ++i)
334
335 struct arm_smmu_device {
336 struct device *dev;
337
338 void __iomem *base;
339 unsigned long size;
340 unsigned long pgshift;
341
342 #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
343 #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
344 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
345 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
346 #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
347 #define ARM_SMMU_FEAT_TRANS_OPS (1 << 5)
348 #define ARM_SMMU_FEAT_VMID16 (1 << 6)
349 #define ARM_SMMU_FEAT_FMT_AARCH64_4K (1 << 7)
350 #define ARM_SMMU_FEAT_FMT_AARCH64_16K (1 << 8)
351 #define ARM_SMMU_FEAT_FMT_AARCH64_64K (1 << 9)
352 #define ARM_SMMU_FEAT_FMT_AARCH32_L (1 << 10)
353 #define ARM_SMMU_FEAT_FMT_AARCH32_S (1 << 11)
354 u32 features;
355
356 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
357 u32 options;
358 enum arm_smmu_arch_version version;
359 enum arm_smmu_implementation model;
360
361 u32 num_context_banks;
362 u32 num_s2_context_banks;
363 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
364 atomic_t irptndx;
365
366 u32 num_mapping_groups;
367 u16 streamid_mask;
368 u16 smr_mask_mask;
369 struct arm_smmu_smr *smrs;
370 struct arm_smmu_s2cr *s2crs;
371 struct mutex stream_map_mutex;
372
373 unsigned long va_size;
374 unsigned long ipa_size;
375 unsigned long pa_size;
376 unsigned long pgsize_bitmap;
377
378 u32 num_global_irqs;
379 u32 num_context_irqs;
380 unsigned int *irqs;
381
382 u32 cavium_id_base; /* Specific to Cavium */
383 };
384
385 enum arm_smmu_context_fmt {
386 ARM_SMMU_CTX_FMT_NONE,
387 ARM_SMMU_CTX_FMT_AARCH64,
388 ARM_SMMU_CTX_FMT_AARCH32_L,
389 ARM_SMMU_CTX_FMT_AARCH32_S,
390 };
391
392 struct arm_smmu_cfg {
393 u8 cbndx;
394 u8 irptndx;
395 u32 cbar;
396 enum arm_smmu_context_fmt fmt;
397 };
398 #define INVALID_IRPTNDX 0xff
399
400 #define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
401 #define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
402
403 enum arm_smmu_domain_stage {
404 ARM_SMMU_DOMAIN_S1 = 0,
405 ARM_SMMU_DOMAIN_S2,
406 ARM_SMMU_DOMAIN_NESTED,
407 };
408
409 struct arm_smmu_domain {
410 struct arm_smmu_device *smmu;
411 struct io_pgtable_ops *pgtbl_ops;
412 spinlock_t pgtbl_lock;
413 struct arm_smmu_cfg cfg;
414 enum arm_smmu_domain_stage stage;
415 struct mutex init_mutex; /* Protects smmu pointer */
416 struct iommu_domain domain;
417 };
418
419 struct arm_smmu_option_prop {
420 u32 opt;
421 const char *prop;
422 };
423
424 static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);
425
426 static bool using_legacy_binding, using_generic_binding;
427
428 static struct arm_smmu_option_prop arm_smmu_options[] = {
429 { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
430 { 0, NULL},
431 };
432
433 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
434 {
435 return container_of(dom, struct arm_smmu_domain, domain);
436 }
437
438 static void parse_driver_options(struct arm_smmu_device *smmu)
439 {
440 int i = 0;
441
442 do {
443 if (of_property_read_bool(smmu->dev->of_node,
444 arm_smmu_options[i].prop)) {
445 smmu->options |= arm_smmu_options[i].opt;
446 dev_notice(smmu->dev, "option %s\n",
447 arm_smmu_options[i].prop);
448 }
449 } while (arm_smmu_options[++i].opt);
450 }
451
452 static struct device_node *dev_get_dev_node(struct device *dev)
453 {
454 if (dev_is_pci(dev)) {
455 struct pci_bus *bus = to_pci_dev(dev)->bus;
456
457 while (!pci_is_root_bus(bus))
458 bus = bus->parent;
459 return of_node_get(bus->bridge->parent->of_node);
460 }
461
462 return of_node_get(dev->of_node);
463 }
464
465 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
466 {
467 *((__be32 *)data) = cpu_to_be32(alias);
468 return 0; /* Continue walking */
469 }
470
471 static int __find_legacy_master_phandle(struct device *dev, void *data)
472 {
473 struct of_phandle_iterator *it = *(void **)data;
474 struct device_node *np = it->node;
475 int err;
476
477 of_for_each_phandle(it, err, dev->of_node, "mmu-masters",
478 "#stream-id-cells", 0)
479 if (it->node == np) {
480 *(void **)data = dev;
481 return 1;
482 }
483 it->node = np;
484 return err == -ENOENT ? 0 : err;
485 }
486
487 static struct platform_driver arm_smmu_driver;
488 static struct iommu_ops arm_smmu_ops;
489
490 static int arm_smmu_register_legacy_master(struct device *dev,
491 struct arm_smmu_device **smmu)
492 {
493 struct device *smmu_dev;
494 struct device_node *np;
495 struct of_phandle_iterator it;
496 void *data = &it;
497 u32 *sids;
498 __be32 pci_sid;
499 int err;
500
501 np = dev_get_dev_node(dev);
502 if (!np || !of_find_property(np, "#stream-id-cells", NULL)) {
503 of_node_put(np);
504 return -ENODEV;
505 }
506
507 it.node = np;
508 err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data,
509 __find_legacy_master_phandle);
510 smmu_dev = data;
511 of_node_put(np);
512 if (err == 0)
513 return -ENODEV;
514 if (err < 0)
515 return err;
516
517 if (dev_is_pci(dev)) {
518 /* "mmu-masters" assumes Stream ID == Requester ID */
519 pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid,
520 &pci_sid);
521 it.cur = &pci_sid;
522 it.cur_count = 1;
523 }
524
525 err = iommu_fwspec_init(dev, &smmu_dev->of_node->fwnode,
526 &arm_smmu_ops);
527 if (err)
528 return err;
529
530 sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL);
531 if (!sids)
532 return -ENOMEM;
533
534 *smmu = dev_get_drvdata(smmu_dev);
535 of_phandle_iterator_args(&it, sids, it.cur_count);
536 err = iommu_fwspec_add_ids(dev, sids, it.cur_count);
537 kfree(sids);
538 return err;
539 }
540
541 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
542 {
543 int idx;
544
545 do {
546 idx = find_next_zero_bit(map, end, start);
547 if (idx == end)
548 return -ENOSPC;
549 } while (test_and_set_bit(idx, map));
550
551 return idx;
552 }
553
554 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
555 {
556 clear_bit(idx, map);
557 }
558
559 /* Wait for any pending TLB invalidations to complete */
560 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
561 {
562 int count = 0;
563 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
564
565 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
566 while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
567 & sTLBGSTATUS_GSACTIVE) {
568 cpu_relax();
569 if (++count == TLB_LOOP_TIMEOUT) {
570 dev_err_ratelimited(smmu->dev,
571 "TLB sync timed out -- SMMU may be deadlocked\n");
572 return;
573 }
574 udelay(1);
575 }
576 }
577
578 static void arm_smmu_tlb_sync(void *cookie)
579 {
580 struct arm_smmu_domain *smmu_domain = cookie;
581 __arm_smmu_tlb_sync(smmu_domain->smmu);
582 }
583
584 static void arm_smmu_tlb_inv_context(void *cookie)
585 {
586 struct arm_smmu_domain *smmu_domain = cookie;
587 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
588 struct arm_smmu_device *smmu = smmu_domain->smmu;
589 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
590 void __iomem *base;
591
592 if (stage1) {
593 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
594 writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
595 base + ARM_SMMU_CB_S1_TLBIASID);
596 } else {
597 base = ARM_SMMU_GR0(smmu);
598 writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
599 base + ARM_SMMU_GR0_TLBIVMID);
600 }
601
602 __arm_smmu_tlb_sync(smmu);
603 }
604
605 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
606 size_t granule, bool leaf, void *cookie)
607 {
608 struct arm_smmu_domain *smmu_domain = cookie;
609 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
610 struct arm_smmu_device *smmu = smmu_domain->smmu;
611 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
612 void __iomem *reg;
613
614 if (stage1) {
615 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
616 reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
617
618 if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
619 iova &= ~12UL;
620 iova |= ARM_SMMU_CB_ASID(smmu, cfg);
621 do {
622 writel_relaxed(iova, reg);
623 iova += granule;
624 } while (size -= granule);
625 } else {
626 iova >>= 12;
627 iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
628 do {
629 writeq_relaxed(iova, reg);
630 iova += granule >> 12;
631 } while (size -= granule);
632 }
633 } else if (smmu->version == ARM_SMMU_V2) {
634 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
635 reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
636 ARM_SMMU_CB_S2_TLBIIPAS2;
637 iova >>= 12;
638 do {
639 smmu_write_atomic_lq(iova, reg);
640 iova += granule >> 12;
641 } while (size -= granule);
642 } else {
643 reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
644 writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
645 }
646 }
647
648 static const struct iommu_gather_ops arm_smmu_gather_ops = {
649 .tlb_flush_all = arm_smmu_tlb_inv_context,
650 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
651 .tlb_sync = arm_smmu_tlb_sync,
652 };
653
654 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
655 {
656 u32 fsr, fsynr;
657 unsigned long iova;
658 struct iommu_domain *domain = dev;
659 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
660 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
661 struct arm_smmu_device *smmu = smmu_domain->smmu;
662 void __iomem *cb_base;
663
664 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
665 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
666
667 if (!(fsr & FSR_FAULT))
668 return IRQ_NONE;
669
670 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
671 iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
672
673 dev_err_ratelimited(smmu->dev,
674 "Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
675 fsr, iova, fsynr, cfg->cbndx);
676
677 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
678 return IRQ_HANDLED;
679 }
680
681 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
682 {
683 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
684 struct arm_smmu_device *smmu = dev;
685 void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
686
687 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
688 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
689 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
690 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
691
692 if (!gfsr)
693 return IRQ_NONE;
694
695 dev_err_ratelimited(smmu->dev,
696 "Unexpected global fault, this could be serious\n");
697 dev_err_ratelimited(smmu->dev,
698 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
699 gfsr, gfsynr0, gfsynr1, gfsynr2);
700
701 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
702 return IRQ_HANDLED;
703 }
704
705 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
706 struct io_pgtable_cfg *pgtbl_cfg)
707 {
708 u32 reg, reg2;
709 u64 reg64;
710 bool stage1;
711 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
712 struct arm_smmu_device *smmu = smmu_domain->smmu;
713 void __iomem *cb_base, *gr1_base;
714
715 gr1_base = ARM_SMMU_GR1(smmu);
716 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
717 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
718
719 if (smmu->version > ARM_SMMU_V1) {
720 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
721 reg = CBA2R_RW64_64BIT;
722 else
723 reg = CBA2R_RW64_32BIT;
724 /* 16-bit VMIDs live in CBA2R */
725 if (smmu->features & ARM_SMMU_FEAT_VMID16)
726 reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
727
728 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
729 }
730
731 /* CBAR */
732 reg = cfg->cbar;
733 if (smmu->version < ARM_SMMU_V2)
734 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
735
736 /*
737 * Use the weakest shareability/memory types, so they are
738 * overridden by the ttbcr/pte.
739 */
740 if (stage1) {
741 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
742 (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
743 } else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
744 /* 8-bit VMIDs live in CBAR */
745 reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
746 }
747 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
748
749 /* TTBRs */
750 if (stage1) {
751 u16 asid = ARM_SMMU_CB_ASID(smmu, cfg);
752
753 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
754 reg = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
755 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0);
756 reg = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
757 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1);
758 writel_relaxed(asid, cb_base + ARM_SMMU_CB_CONTEXTIDR);
759 } else {
760 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
761 reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
762 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
763 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
764 reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
765 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
766 }
767 } else {
768 reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
769 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
770 }
771
772 /* TTBCR */
773 if (stage1) {
774 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
775 reg = pgtbl_cfg->arm_v7s_cfg.tcr;
776 reg2 = 0;
777 } else {
778 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
779 reg2 = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
780 reg2 |= TTBCR2_SEP_UPSTREAM;
781 }
782 if (smmu->version > ARM_SMMU_V1)
783 writel_relaxed(reg2, cb_base + ARM_SMMU_CB_TTBCR2);
784 } else {
785 reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
786 }
787 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
788
789 /* MAIRs (stage-1 only) */
790 if (stage1) {
791 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
792 reg = pgtbl_cfg->arm_v7s_cfg.prrr;
793 reg2 = pgtbl_cfg->arm_v7s_cfg.nmrr;
794 } else {
795 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
796 reg2 = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
797 }
798 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
799 writel_relaxed(reg2, cb_base + ARM_SMMU_CB_S1_MAIR1);
800 }
801
802 /* SCTLR */
803 reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
804 if (stage1)
805 reg |= SCTLR_S1_ASIDPNE;
806 #ifdef __BIG_ENDIAN
807 reg |= SCTLR_E;
808 #endif
809 writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
810 }
811
812 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
813 struct arm_smmu_device *smmu)
814 {
815 int irq, start, ret = 0;
816 unsigned long ias, oas;
817 struct io_pgtable_ops *pgtbl_ops;
818 struct io_pgtable_cfg pgtbl_cfg;
819 enum io_pgtable_fmt fmt;
820 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
821 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
822
823 mutex_lock(&smmu_domain->init_mutex);
824 if (smmu_domain->smmu)
825 goto out_unlock;
826
827 /*
828 * Mapping the requested stage onto what we support is surprisingly
829 * complicated, mainly because the spec allows S1+S2 SMMUs without
830 * support for nested translation. That means we end up with the
831 * following table:
832 *
833 * Requested Supported Actual
834 * S1 N S1
835 * S1 S1+S2 S1
836 * S1 S2 S2
837 * S1 S1 S1
838 * N N N
839 * N S1+S2 S2
840 * N S2 S2
841 * N S1 S1
842 *
843 * Note that you can't actually request stage-2 mappings.
844 */
845 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
846 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
847 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
848 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
849
850 /*
851 * Choosing a suitable context format is even more fiddly. Until we
852 * grow some way for the caller to express a preference, and/or move
853 * the decision into the io-pgtable code where it arguably belongs,
854 * just aim for the closest thing to the rest of the system, and hope
855 * that the hardware isn't esoteric enough that we can't assume AArch64
856 * support to be a superset of AArch32 support...
857 */
858 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
859 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
860 if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
861 !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
862 (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
863 (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
864 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
865 if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
866 (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
867 ARM_SMMU_FEAT_FMT_AARCH64_16K |
868 ARM_SMMU_FEAT_FMT_AARCH64_4K)))
869 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;
870
871 if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
872 ret = -EINVAL;
873 goto out_unlock;
874 }
875
876 switch (smmu_domain->stage) {
877 case ARM_SMMU_DOMAIN_S1:
878 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
879 start = smmu->num_s2_context_banks;
880 ias = smmu->va_size;
881 oas = smmu->ipa_size;
882 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
883 fmt = ARM_64_LPAE_S1;
884 } else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
885 fmt = ARM_32_LPAE_S1;
886 ias = min(ias, 32UL);
887 oas = min(oas, 40UL);
888 } else {
889 fmt = ARM_V7S;
890 ias = min(ias, 32UL);
891 oas = min(oas, 32UL);
892 }
893 break;
894 case ARM_SMMU_DOMAIN_NESTED:
895 /*
896 * We will likely want to change this if/when KVM gets
897 * involved.
898 */
899 case ARM_SMMU_DOMAIN_S2:
900 cfg->cbar = CBAR_TYPE_S2_TRANS;
901 start = 0;
902 ias = smmu->ipa_size;
903 oas = smmu->pa_size;
904 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
905 fmt = ARM_64_LPAE_S2;
906 } else {
907 fmt = ARM_32_LPAE_S2;
908 ias = min(ias, 40UL);
909 oas = min(oas, 40UL);
910 }
911 break;
912 default:
913 ret = -EINVAL;
914 goto out_unlock;
915 }
916
917 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
918 smmu->num_context_banks);
919 if (ret < 0)
920 goto out_unlock;
921
922 cfg->cbndx = ret;
923 if (smmu->version < ARM_SMMU_V2) {
924 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
925 cfg->irptndx %= smmu->num_context_irqs;
926 } else {
927 cfg->irptndx = cfg->cbndx;
928 }
929
930 pgtbl_cfg = (struct io_pgtable_cfg) {
931 .pgsize_bitmap = smmu->pgsize_bitmap,
932 .ias = ias,
933 .oas = oas,
934 .tlb = &arm_smmu_gather_ops,
935 .iommu_dev = smmu->dev,
936 };
937
938 smmu_domain->smmu = smmu;
939 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
940 if (!pgtbl_ops) {
941 ret = -ENOMEM;
942 goto out_clear_smmu;
943 }
944
945 /* Update the domain's page sizes to reflect the page table format */
946 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
947 domain->geometry.aperture_end = (1UL << ias) - 1;
948 domain->geometry.force_aperture = true;
949
950 /* Initialise the context bank with our page table cfg */
951 arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
952
953 /*
954 * Request context fault interrupt. Do this last to avoid the
955 * handler seeing a half-initialised domain state.
956 */
957 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
958 ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
959 IRQF_SHARED, "arm-smmu-context-fault", domain);
960 if (ret < 0) {
961 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
962 cfg->irptndx, irq);
963 cfg->irptndx = INVALID_IRPTNDX;
964 }
965
966 mutex_unlock(&smmu_domain->init_mutex);
967
968 /* Publish page table ops for map/unmap */
969 smmu_domain->pgtbl_ops = pgtbl_ops;
970 return 0;
971
972 out_clear_smmu:
973 smmu_domain->smmu = NULL;
974 out_unlock:
975 mutex_unlock(&smmu_domain->init_mutex);
976 return ret;
977 }
978
979 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
980 {
981 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
982 struct arm_smmu_device *smmu = smmu_domain->smmu;
983 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
984 void __iomem *cb_base;
985 int irq;
986
987 if (!smmu)
988 return;
989
990 /*
991 * Disable the context bank and free the page tables before freeing
992 * it.
993 */
994 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
995 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
996
997 if (cfg->irptndx != INVALID_IRPTNDX) {
998 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
999 devm_free_irq(smmu->dev, irq, domain);
1000 }
1001
1002 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1003 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1004 }
1005
1006 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1007 {
1008 struct arm_smmu_domain *smmu_domain;
1009
1010 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1011 return NULL;
1012 /*
1013 * Allocate the domain and initialise some of its data structures.
1014 * We can't really do anything meaningful until we've added a
1015 * master.
1016 */
1017 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1018 if (!smmu_domain)
1019 return NULL;
1020
1021 if (type == IOMMU_DOMAIN_DMA && (using_legacy_binding ||
1022 iommu_get_dma_cookie(&smmu_domain->domain))) {
1023 kfree(smmu_domain);
1024 return NULL;
1025 }
1026
1027 mutex_init(&smmu_domain->init_mutex);
1028 spin_lock_init(&smmu_domain->pgtbl_lock);
1029
1030 return &smmu_domain->domain;
1031 }
1032
1033 static void arm_smmu_domain_free(struct iommu_domain *domain)
1034 {
1035 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1036
1037 /*
1038 * Free the domain resources. We assume that all devices have
1039 * already been detached.
1040 */
1041 iommu_put_dma_cookie(domain);
1042 arm_smmu_destroy_domain_context(domain);
1043 kfree(smmu_domain);
1044 }
1045
1046 static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
1047 {
1048 struct arm_smmu_smr *smr = smmu->smrs + idx;
1049 u32 reg = smr->id << SMR_ID_SHIFT | smr->mask << SMR_MASK_SHIFT;
1050
1051 if (smr->valid)
1052 reg |= SMR_VALID;
1053 writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
1054 }
1055
1056 static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
1057 {
1058 struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
1059 u32 reg = (s2cr->type & S2CR_TYPE_MASK) << S2CR_TYPE_SHIFT |
1060 (s2cr->cbndx & S2CR_CBNDX_MASK) << S2CR_CBNDX_SHIFT |
1061 (s2cr->privcfg & S2CR_PRIVCFG_MASK) << S2CR_PRIVCFG_SHIFT;
1062
1063 writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_S2CR(idx));
1064 }
1065
1066 static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
1067 {
1068 arm_smmu_write_s2cr(smmu, idx);
1069 if (smmu->smrs)
1070 arm_smmu_write_smr(smmu, idx);
1071 }
1072
1073 static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask)
1074 {
1075 struct arm_smmu_smr *smrs = smmu->smrs;
1076 int i, free_idx = -ENOSPC;
1077
1078 /* Stream indexing is blissfully easy */
1079 if (!smrs)
1080 return id;
1081
1082 /* Validating SMRs is... less so */
1083 for (i = 0; i < smmu->num_mapping_groups; ++i) {
1084 if (!smrs[i].valid) {
1085 /*
1086 * Note the first free entry we come across, which
1087 * we'll claim in the end if nothing else matches.
1088 */
1089 if (free_idx < 0)
1090 free_idx = i;
1091 continue;
1092 }
1093 /*
1094 * If the new entry is _entirely_ matched by an existing entry,
1095 * then reuse that, with the guarantee that there also cannot
1096 * be any subsequent conflicting entries. In normal use we'd
1097 * expect simply identical entries for this case, but there's
1098 * no harm in accommodating the generalisation.
1099 */
1100 if ((mask & smrs[i].mask) == mask &&
1101 !((id ^ smrs[i].id) & ~smrs[i].mask))
1102 return i;
1103 /*
1104 * If the new entry has any other overlap with an existing one,
1105 * though, then there always exists at least one stream ID
1106 * which would cause a conflict, and we can't allow that risk.
1107 */
1108 if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask)))
1109 return -EINVAL;
1110 }
1111
1112 return free_idx;
1113 }
1114
1115 static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx)
1116 {
1117 if (--smmu->s2crs[idx].count)
1118 return false;
1119
1120 smmu->s2crs[idx] = s2cr_init_val;
1121 if (smmu->smrs)
1122 smmu->smrs[idx].valid = false;
1123
1124 return true;
1125 }
1126
1127 static int arm_smmu_master_alloc_smes(struct device *dev)
1128 {
1129 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1130 struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1131 struct arm_smmu_device *smmu = cfg->smmu;
1132 struct arm_smmu_smr *smrs = smmu->smrs;
1133 struct iommu_group *group;
1134 int i, idx, ret;
1135
1136 mutex_lock(&smmu->stream_map_mutex);
1137 /* Figure out a viable stream map entry allocation */
1138 for_each_cfg_sme(fwspec, i, idx) {
1139 u16 sid = fwspec->ids[i];
1140 u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1141
1142 if (idx != INVALID_SMENDX) {
1143 ret = -EEXIST;
1144 goto out_err;
1145 }
1146
1147 ret = arm_smmu_find_sme(smmu, sid, mask);
1148 if (ret < 0)
1149 goto out_err;
1150
1151 idx = ret;
1152 if (smrs && smmu->s2crs[idx].count == 0) {
1153 smrs[idx].id = sid;
1154 smrs[idx].mask = mask;
1155 smrs[idx].valid = true;
1156 }
1157 smmu->s2crs[idx].count++;
1158 cfg->smendx[i] = (s16)idx;
1159 }
1160
1161 group = iommu_group_get_for_dev(dev);
1162 if (!group)
1163 group = ERR_PTR(-ENOMEM);
1164 if (IS_ERR(group)) {
1165 ret = PTR_ERR(group);
1166 goto out_err;
1167 }
1168 iommu_group_put(group);
1169
1170 /* It worked! Now, poke the actual hardware */
1171 for_each_cfg_sme(fwspec, i, idx) {
1172 arm_smmu_write_sme(smmu, idx);
1173 smmu->s2crs[idx].group = group;
1174 }
1175
1176 mutex_unlock(&smmu->stream_map_mutex);
1177 return 0;
1178
1179 out_err:
1180 while (i--) {
1181 arm_smmu_free_sme(smmu, cfg->smendx[i]);
1182 cfg->smendx[i] = INVALID_SMENDX;
1183 }
1184 mutex_unlock(&smmu->stream_map_mutex);
1185 return ret;
1186 }
1187
1188 static void arm_smmu_master_free_smes(struct iommu_fwspec *fwspec)
1189 {
1190 struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1191 struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1192 int i, idx;
1193
1194 mutex_lock(&smmu->stream_map_mutex);
1195 for_each_cfg_sme(fwspec, i, idx) {
1196 if (arm_smmu_free_sme(smmu, idx))
1197 arm_smmu_write_sme(smmu, idx);
1198 cfg->smendx[i] = INVALID_SMENDX;
1199 }
1200 mutex_unlock(&smmu->stream_map_mutex);
1201 }
1202
1203 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1204 struct iommu_fwspec *fwspec)
1205 {
1206 struct arm_smmu_device *smmu = smmu_domain->smmu;
1207 struct arm_smmu_s2cr *s2cr = smmu->s2crs;
1208 enum arm_smmu_s2cr_type type = S2CR_TYPE_TRANS;
1209 u8 cbndx = smmu_domain->cfg.cbndx;
1210 int i, idx;
1211
1212 for_each_cfg_sme(fwspec, i, idx) {
1213 if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
1214 continue;
1215
1216 s2cr[idx].type = type;
1217 s2cr[idx].privcfg = S2CR_PRIVCFG_UNPRIV;
1218 s2cr[idx].cbndx = cbndx;
1219 arm_smmu_write_s2cr(smmu, idx);
1220 }
1221 return 0;
1222 }
1223
1224 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1225 {
1226 int ret;
1227 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1228 struct arm_smmu_device *smmu;
1229 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1230
1231 if (!fwspec || fwspec->ops != &arm_smmu_ops) {
1232 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1233 return -ENXIO;
1234 }
1235
1236 /*
1237 * FIXME: The arch/arm DMA API code tries to attach devices to its own
1238 * domains between of_xlate() and add_device() - we have no way to cope
1239 * with that, so until ARM gets converted to rely on groups and default
1240 * domains, just say no (but more politely than by dereferencing NULL).
1241 * This should be at least a WARN_ON once that's sorted.
1242 */
1243 if (!fwspec->iommu_priv)
1244 return -ENODEV;
1245
1246 smmu = fwspec_smmu(fwspec);
1247 /* Ensure that the domain is finalised */
1248 ret = arm_smmu_init_domain_context(domain, smmu);
1249 if (ret < 0)
1250 return ret;
1251
1252 /*
1253 * Sanity check the domain. We don't support domains across
1254 * different SMMUs.
1255 */
1256 if (smmu_domain->smmu != smmu) {
1257 dev_err(dev,
1258 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1259 dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1260 return -EINVAL;
1261 }
1262
1263 /* Looks ok, so add the device to the domain */
1264 return arm_smmu_domain_add_master(smmu_domain, fwspec);
1265 }
1266
1267 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1268 phys_addr_t paddr, size_t size, int prot)
1269 {
1270 int ret;
1271 unsigned long flags;
1272 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1273 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1274
1275 if (!ops)
1276 return -ENODEV;
1277
1278 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1279 ret = ops->map(ops, iova, paddr, size, prot);
1280 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1281 return ret;
1282 }
1283
1284 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1285 size_t size)
1286 {
1287 size_t ret;
1288 unsigned long flags;
1289 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1290 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1291
1292 if (!ops)
1293 return 0;
1294
1295 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1296 ret = ops->unmap(ops, iova, size);
1297 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1298 return ret;
1299 }
1300
1301 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1302 dma_addr_t iova)
1303 {
1304 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1305 struct arm_smmu_device *smmu = smmu_domain->smmu;
1306 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1307 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1308 struct device *dev = smmu->dev;
1309 void __iomem *cb_base;
1310 u32 tmp;
1311 u64 phys;
1312 unsigned long va;
1313
1314 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1315
1316 /* ATS1 registers can only be written atomically */
1317 va = iova & ~0xfffUL;
1318 if (smmu->version == ARM_SMMU_V2)
1319 smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1320 else /* Register is only 32-bit in v1 */
1321 writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1322
1323 if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1324 !(tmp & ATSR_ACTIVE), 5, 50)) {
1325 dev_err(dev,
1326 "iova to phys timed out on %pad. Falling back to software table walk.\n",
1327 &iova);
1328 return ops->iova_to_phys(ops, iova);
1329 }
1330
1331 phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1332 if (phys & CB_PAR_F) {
1333 dev_err(dev, "translation fault!\n");
1334 dev_err(dev, "PAR = 0x%llx\n", phys);
1335 return 0;
1336 }
1337
1338 return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1339 }
1340
1341 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1342 dma_addr_t iova)
1343 {
1344 phys_addr_t ret;
1345 unsigned long flags;
1346 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1347 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1348
1349 if (!ops)
1350 return 0;
1351
1352 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1353 if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1354 smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1355 ret = arm_smmu_iova_to_phys_hard(domain, iova);
1356 } else {
1357 ret = ops->iova_to_phys(ops, iova);
1358 }
1359
1360 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1361
1362 return ret;
1363 }
1364
1365 static bool arm_smmu_capable(enum iommu_cap cap)
1366 {
1367 switch (cap) {
1368 case IOMMU_CAP_CACHE_COHERENCY:
1369 /*
1370 * Return true here as the SMMU can always send out coherent
1371 * requests.
1372 */
1373 return true;
1374 case IOMMU_CAP_INTR_REMAP:
1375 return true; /* MSIs are just memory writes */
1376 case IOMMU_CAP_NOEXEC:
1377 return true;
1378 default:
1379 return false;
1380 }
1381 }
1382
1383 static int arm_smmu_match_node(struct device *dev, void *data)
1384 {
1385 return dev->fwnode == data;
1386 }
1387
1388 static
1389 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1390 {
1391 struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1392 fwnode, arm_smmu_match_node);
1393 put_device(dev);
1394 return dev ? dev_get_drvdata(dev) : NULL;
1395 }
1396
1397 static int arm_smmu_add_device(struct device *dev)
1398 {
1399 struct arm_smmu_device *smmu;
1400 struct arm_smmu_master_cfg *cfg;
1401 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1402 int i, ret;
1403
1404 if (using_legacy_binding) {
1405 ret = arm_smmu_register_legacy_master(dev, &smmu);
1406 fwspec = dev->iommu_fwspec;
1407 if (ret)
1408 goto out_free;
1409 } else if (fwspec && fwspec->ops == &arm_smmu_ops) {
1410 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1411 } else {
1412 return -ENODEV;
1413 }
1414
1415 ret = -EINVAL;
1416 for (i = 0; i < fwspec->num_ids; i++) {
1417 u16 sid = fwspec->ids[i];
1418 u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1419
1420 if (sid & ~smmu->streamid_mask) {
1421 dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n",
1422 sid, smmu->streamid_mask);
1423 goto out_free;
1424 }
1425 if (mask & ~smmu->smr_mask_mask) {
1426 dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n",
1427 sid, smmu->smr_mask_mask);
1428 goto out_free;
1429 }
1430 }
1431
1432 ret = -ENOMEM;
1433 cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]),
1434 GFP_KERNEL);
1435 if (!cfg)
1436 goto out_free;
1437
1438 cfg->smmu = smmu;
1439 fwspec->iommu_priv = cfg;
1440 while (i--)
1441 cfg->smendx[i] = INVALID_SMENDX;
1442
1443 ret = arm_smmu_master_alloc_smes(dev);
1444 if (ret)
1445 goto out_free;
1446
1447 return 0;
1448
1449 out_free:
1450 if (fwspec)
1451 kfree(fwspec->iommu_priv);
1452 iommu_fwspec_free(dev);
1453 return ret;
1454 }
1455
1456 static void arm_smmu_remove_device(struct device *dev)
1457 {
1458 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1459
1460 if (!fwspec || fwspec->ops != &arm_smmu_ops)
1461 return;
1462
1463 arm_smmu_master_free_smes(fwspec);
1464 iommu_group_remove_device(dev);
1465 kfree(fwspec->iommu_priv);
1466 iommu_fwspec_free(dev);
1467 }
1468
1469 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1470 {
1471 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1472 struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1473 struct iommu_group *group = NULL;
1474 int i, idx;
1475
1476 for_each_cfg_sme(fwspec, i, idx) {
1477 if (group && smmu->s2crs[idx].group &&
1478 group != smmu->s2crs[idx].group)
1479 return ERR_PTR(-EINVAL);
1480
1481 group = smmu->s2crs[idx].group;
1482 }
1483
1484 if (group)
1485 return iommu_group_ref_get(group);
1486
1487 if (dev_is_pci(dev))
1488 group = pci_device_group(dev);
1489 else
1490 group = generic_device_group(dev);
1491
1492 return group;
1493 }
1494
1495 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1496 enum iommu_attr attr, void *data)
1497 {
1498 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1499
1500 switch (attr) {
1501 case DOMAIN_ATTR_NESTING:
1502 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1503 return 0;
1504 default:
1505 return -ENODEV;
1506 }
1507 }
1508
1509 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1510 enum iommu_attr attr, void *data)
1511 {
1512 int ret = 0;
1513 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1514
1515 mutex_lock(&smmu_domain->init_mutex);
1516
1517 switch (attr) {
1518 case DOMAIN_ATTR_NESTING:
1519 if (smmu_domain->smmu) {
1520 ret = -EPERM;
1521 goto out_unlock;
1522 }
1523
1524 if (*(int *)data)
1525 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1526 else
1527 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1528
1529 break;
1530 default:
1531 ret = -ENODEV;
1532 }
1533
1534 out_unlock:
1535 mutex_unlock(&smmu_domain->init_mutex);
1536 return ret;
1537 }
1538
1539 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1540 {
1541 u32 fwid = 0;
1542
1543 if (args->args_count > 0)
1544 fwid |= (u16)args->args[0];
1545
1546 if (args->args_count > 1)
1547 fwid |= (u16)args->args[1] << SMR_MASK_SHIFT;
1548
1549 return iommu_fwspec_add_ids(dev, &fwid, 1);
1550 }
1551
1552 static struct iommu_ops arm_smmu_ops = {
1553 .capable = arm_smmu_capable,
1554 .domain_alloc = arm_smmu_domain_alloc,
1555 .domain_free = arm_smmu_domain_free,
1556 .attach_dev = arm_smmu_attach_dev,
1557 .map = arm_smmu_map,
1558 .unmap = arm_smmu_unmap,
1559 .map_sg = default_iommu_map_sg,
1560 .iova_to_phys = arm_smmu_iova_to_phys,
1561 .add_device = arm_smmu_add_device,
1562 .remove_device = arm_smmu_remove_device,
1563 .device_group = arm_smmu_device_group,
1564 .domain_get_attr = arm_smmu_domain_get_attr,
1565 .domain_set_attr = arm_smmu_domain_set_attr,
1566 .of_xlate = arm_smmu_of_xlate,
1567 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1568 };
1569
1570 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1571 {
1572 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1573 void __iomem *cb_base;
1574 int i;
1575 u32 reg, major;
1576
1577 /* clear global FSR */
1578 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1579 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1580
1581 /*
1582 * Reset stream mapping groups: Initial values mark all SMRn as
1583 * invalid and all S2CRn as bypass unless overridden.
1584 */
1585 for (i = 0; i < smmu->num_mapping_groups; ++i)
1586 arm_smmu_write_sme(smmu, i);
1587
1588 if (smmu->model == ARM_MMU500) {
1589 /*
1590 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
1591 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
1592 * bit is only present in MMU-500r2 onwards.
1593 */
1594 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
1595 major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
1596 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
1597 if (major >= 2)
1598 reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
1599 /*
1600 * Allow unmatched Stream IDs to allocate bypass
1601 * TLB entries for reduced latency.
1602 */
1603 reg |= ARM_MMU500_ACR_SMTNMB_TLBEN;
1604 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
1605 }
1606
1607 /* Make sure all context banks are disabled and clear CB_FSR */
1608 for (i = 0; i < smmu->num_context_banks; ++i) {
1609 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1610 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1611 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1612 /*
1613 * Disable MMU-500's not-particularly-beneficial next-page
1614 * prefetcher for the sake of errata #841119 and #826419.
1615 */
1616 if (smmu->model == ARM_MMU500) {
1617 reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
1618 reg &= ~ARM_MMU500_ACTLR_CPRE;
1619 writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
1620 }
1621 }
1622
1623 /* Invalidate the TLB, just in case */
1624 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1625 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1626
1627 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1628
1629 /* Enable fault reporting */
1630 reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1631
1632 /* Disable TLB broadcasting. */
1633 reg |= (sCR0_VMIDPNE | sCR0_PTM);
1634
1635 /* Enable client access, handling unmatched streams as appropriate */
1636 reg &= ~sCR0_CLIENTPD;
1637 if (disable_bypass)
1638 reg |= sCR0_USFCFG;
1639 else
1640 reg &= ~sCR0_USFCFG;
1641
1642 /* Disable forced broadcasting */
1643 reg &= ~sCR0_FB;
1644
1645 /* Don't upgrade barriers */
1646 reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1647
1648 if (smmu->features & ARM_SMMU_FEAT_VMID16)
1649 reg |= sCR0_VMID16EN;
1650
1651 /* Push the button */
1652 __arm_smmu_tlb_sync(smmu);
1653 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1654 }
1655
1656 static int arm_smmu_id_size_to_bits(int size)
1657 {
1658 switch (size) {
1659 case 0:
1660 return 32;
1661 case 1:
1662 return 36;
1663 case 2:
1664 return 40;
1665 case 3:
1666 return 42;
1667 case 4:
1668 return 44;
1669 case 5:
1670 default:
1671 return 48;
1672 }
1673 }
1674
1675 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1676 {
1677 unsigned long size;
1678 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1679 u32 id;
1680 bool cttw_reg, cttw_fw = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK;
1681 int i;
1682
1683 dev_notice(smmu->dev, "probing hardware configuration...\n");
1684 dev_notice(smmu->dev, "SMMUv%d with:\n",
1685 smmu->version == ARM_SMMU_V2 ? 2 : 1);
1686
1687 /* ID0 */
1688 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1689
1690 /* Restrict available stages based on module parameter */
1691 if (force_stage == 1)
1692 id &= ~(ID0_S2TS | ID0_NTS);
1693 else if (force_stage == 2)
1694 id &= ~(ID0_S1TS | ID0_NTS);
1695
1696 if (id & ID0_S1TS) {
1697 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1698 dev_notice(smmu->dev, "\tstage 1 translation\n");
1699 }
1700
1701 if (id & ID0_S2TS) {
1702 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1703 dev_notice(smmu->dev, "\tstage 2 translation\n");
1704 }
1705
1706 if (id & ID0_NTS) {
1707 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1708 dev_notice(smmu->dev, "\tnested translation\n");
1709 }
1710
1711 if (!(smmu->features &
1712 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1713 dev_err(smmu->dev, "\tno translation support!\n");
1714 return -ENODEV;
1715 }
1716
1717 if ((id & ID0_S1TS) &&
1718 ((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1719 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1720 dev_notice(smmu->dev, "\taddress translation ops\n");
1721 }
1722
1723 /*
1724 * In order for DMA API calls to work properly, we must defer to what
1725 * the FW says about coherency, regardless of what the hardware claims.
1726 * Fortunately, this also opens up a workaround for systems where the
1727 * ID register value has ended up configured incorrectly.
1728 */
1729 cttw_reg = !!(id & ID0_CTTW);
1730 if (cttw_fw || cttw_reg)
1731 dev_notice(smmu->dev, "\t%scoherent table walk\n",
1732 cttw_fw ? "" : "non-");
1733 if (cttw_fw != cttw_reg)
1734 dev_notice(smmu->dev,
1735 "\t(IDR0.CTTW overridden by FW configuration)\n");
1736
1737 /* Max. number of entries we have for stream matching/indexing */
1738 size = 1 << ((id >> ID0_NUMSIDB_SHIFT) & ID0_NUMSIDB_MASK);
1739 smmu->streamid_mask = size - 1;
1740 if (id & ID0_SMS) {
1741 u32 smr;
1742
1743 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1744 size = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK;
1745 if (size == 0) {
1746 dev_err(smmu->dev,
1747 "stream-matching supported, but no SMRs present!\n");
1748 return -ENODEV;
1749 }
1750
1751 /*
1752 * SMR.ID bits may not be preserved if the corresponding MASK
1753 * bits are set, so check each one separately. We can reject
1754 * masters later if they try to claim IDs outside these masks.
1755 */
1756 smr = smmu->streamid_mask << SMR_ID_SHIFT;
1757 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1758 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1759 smmu->streamid_mask = smr >> SMR_ID_SHIFT;
1760
1761 smr = smmu->streamid_mask << SMR_MASK_SHIFT;
1762 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1763 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1764 smmu->smr_mask_mask = smr >> SMR_MASK_SHIFT;
1765
1766 /* Zero-initialised to mark as invalid */
1767 smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
1768 GFP_KERNEL);
1769 if (!smmu->smrs)
1770 return -ENOMEM;
1771
1772 dev_notice(smmu->dev,
1773 "\tstream matching with %lu register groups, mask 0x%x",
1774 size, smmu->smr_mask_mask);
1775 }
1776 /* s2cr->type == 0 means translation, so initialise explicitly */
1777 smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
1778 GFP_KERNEL);
1779 if (!smmu->s2crs)
1780 return -ENOMEM;
1781 for (i = 0; i < size; i++)
1782 smmu->s2crs[i] = s2cr_init_val;
1783
1784 smmu->num_mapping_groups = size;
1785 mutex_init(&smmu->stream_map_mutex);
1786
1787 if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
1788 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
1789 if (!(id & ID0_PTFS_NO_AARCH32S))
1790 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
1791 }
1792
1793 /* ID1 */
1794 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1795 smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1796
1797 /* Check for size mismatch of SMMU address space from mapped region */
1798 size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1799 size *= 2 << smmu->pgshift;
1800 if (smmu->size != size)
1801 dev_warn(smmu->dev,
1802 "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1803 size, smmu->size);
1804
1805 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1806 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1807 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1808 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1809 return -ENODEV;
1810 }
1811 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1812 smmu->num_context_banks, smmu->num_s2_context_banks);
1813 /*
1814 * Cavium CN88xx erratum #27704.
1815 * Ensure ASID and VMID allocation is unique across all SMMUs in
1816 * the system.
1817 */
1818 if (smmu->model == CAVIUM_SMMUV2) {
1819 smmu->cavium_id_base =
1820 atomic_add_return(smmu->num_context_banks,
1821 &cavium_smmu_context_count);
1822 smmu->cavium_id_base -= smmu->num_context_banks;
1823 }
1824
1825 /* ID2 */
1826 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1827 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1828 smmu->ipa_size = size;
1829
1830 /* The output mask is also applied for bypass */
1831 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1832 smmu->pa_size = size;
1833
1834 if (id & ID2_VMID16)
1835 smmu->features |= ARM_SMMU_FEAT_VMID16;
1836
1837 /*
1838 * What the page table walker can address actually depends on which
1839 * descriptor format is in use, but since a) we don't know that yet,
1840 * and b) it can vary per context bank, this will have to do...
1841 */
1842 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1843 dev_warn(smmu->dev,
1844 "failed to set DMA mask for table walker\n");
1845
1846 if (smmu->version < ARM_SMMU_V2) {
1847 smmu->va_size = smmu->ipa_size;
1848 if (smmu->version == ARM_SMMU_V1_64K)
1849 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1850 } else {
1851 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1852 smmu->va_size = arm_smmu_id_size_to_bits(size);
1853 if (id & ID2_PTFS_4K)
1854 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1855 if (id & ID2_PTFS_16K)
1856 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1857 if (id & ID2_PTFS_64K)
1858 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1859 }
1860
1861 /* Now we've corralled the various formats, what'll it do? */
1862 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
1863 smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
1864 if (smmu->features &
1865 (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
1866 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
1867 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
1868 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
1869 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
1870 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
1871
1872 if (arm_smmu_ops.pgsize_bitmap == -1UL)
1873 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
1874 else
1875 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
1876 dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
1877 smmu->pgsize_bitmap);
1878
1879
1880 if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1881 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1882 smmu->va_size, smmu->ipa_size);
1883
1884 if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1885 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1886 smmu->ipa_size, smmu->pa_size);
1887
1888 return 0;
1889 }
1890
1891 struct arm_smmu_match_data {
1892 enum arm_smmu_arch_version version;
1893 enum arm_smmu_implementation model;
1894 };
1895
1896 #define ARM_SMMU_MATCH_DATA(name, ver, imp) \
1897 static struct arm_smmu_match_data name = { .version = ver, .model = imp }
1898
1899 ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
1900 ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1901 ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1902 ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1903 ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1904
1905 static const struct of_device_id arm_smmu_of_match[] = {
1906 { .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
1907 { .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
1908 { .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1909 { .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1910 { .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1911 { .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1912 { },
1913 };
1914 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1915
1916 #ifdef CONFIG_ACPI
1917 static int acpi_smmu_get_data(u32 model, struct arm_smmu_device *smmu)
1918 {
1919 int ret = 0;
1920
1921 switch (model) {
1922 case ACPI_IORT_SMMU_V1:
1923 case ACPI_IORT_SMMU_CORELINK_MMU400:
1924 smmu->version = ARM_SMMU_V1;
1925 smmu->model = GENERIC_SMMU;
1926 break;
1927 case ACPI_IORT_SMMU_V2:
1928 smmu->version = ARM_SMMU_V2;
1929 smmu->model = GENERIC_SMMU;
1930 break;
1931 case ACPI_IORT_SMMU_CORELINK_MMU500:
1932 smmu->version = ARM_SMMU_V2;
1933 smmu->model = ARM_MMU500;
1934 break;
1935 default:
1936 ret = -ENODEV;
1937 }
1938
1939 return ret;
1940 }
1941
1942 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
1943 struct arm_smmu_device *smmu)
1944 {
1945 struct device *dev = smmu->dev;
1946 struct acpi_iort_node *node =
1947 *(struct acpi_iort_node **)dev_get_platdata(dev);
1948 struct acpi_iort_smmu *iort_smmu;
1949 int ret;
1950
1951 /* Retrieve SMMU1/2 specific data */
1952 iort_smmu = (struct acpi_iort_smmu *)node->node_data;
1953
1954 ret = acpi_smmu_get_data(iort_smmu->model, smmu);
1955 if (ret < 0)
1956 return ret;
1957
1958 /* Ignore the configuration access interrupt */
1959 smmu->num_global_irqs = 1;
1960
1961 if (iort_smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK)
1962 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1963
1964 return 0;
1965 }
1966 #else
1967 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
1968 struct arm_smmu_device *smmu)
1969 {
1970 return -ENODEV;
1971 }
1972 #endif
1973
1974 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
1975 struct arm_smmu_device *smmu)
1976 {
1977 const struct arm_smmu_match_data *data;
1978 struct device *dev = &pdev->dev;
1979 bool legacy_binding;
1980
1981 if (of_property_read_u32(dev->of_node, "#global-interrupts",
1982 &smmu->num_global_irqs)) {
1983 dev_err(dev, "missing #global-interrupts property\n");
1984 return -ENODEV;
1985 }
1986
1987 data = of_device_get_match_data(dev);
1988 smmu->version = data->version;
1989 smmu->model = data->model;
1990
1991 parse_driver_options(smmu);
1992
1993 legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL);
1994 if (legacy_binding && !using_generic_binding) {
1995 if (!using_legacy_binding)
1996 pr_notice("deprecated \"mmu-masters\" DT property in use; DMA API support unavailable\n");
1997 using_legacy_binding = true;
1998 } else if (!legacy_binding && !using_legacy_binding) {
1999 using_generic_binding = true;
2000 } else {
2001 dev_err(dev, "not probing due to mismatched DT properties\n");
2002 return -ENODEV;
2003 }
2004
2005 if (of_dma_is_coherent(dev->of_node))
2006 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
2007
2008 return 0;
2009 }
2010
2011 static int arm_smmu_device_probe(struct platform_device *pdev)
2012 {
2013 struct resource *res;
2014 struct arm_smmu_device *smmu;
2015 struct device *dev = &pdev->dev;
2016 int num_irqs, i, err;
2017
2018 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2019 if (!smmu) {
2020 dev_err(dev, "failed to allocate arm_smmu_device\n");
2021 return -ENOMEM;
2022 }
2023 smmu->dev = dev;
2024
2025 if (dev->of_node)
2026 err = arm_smmu_device_dt_probe(pdev, smmu);
2027 else
2028 err = arm_smmu_device_acpi_probe(pdev, smmu);
2029
2030 if (err)
2031 return err;
2032
2033 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2034 smmu->base = devm_ioremap_resource(dev, res);
2035 if (IS_ERR(smmu->base))
2036 return PTR_ERR(smmu->base);
2037 smmu->size = resource_size(res);
2038
2039 num_irqs = 0;
2040 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
2041 num_irqs++;
2042 if (num_irqs > smmu->num_global_irqs)
2043 smmu->num_context_irqs++;
2044 }
2045
2046 if (!smmu->num_context_irqs) {
2047 dev_err(dev, "found %d interrupts but expected at least %d\n",
2048 num_irqs, smmu->num_global_irqs + 1);
2049 return -ENODEV;
2050 }
2051
2052 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
2053 GFP_KERNEL);
2054 if (!smmu->irqs) {
2055 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
2056 return -ENOMEM;
2057 }
2058
2059 for (i = 0; i < num_irqs; ++i) {
2060 int irq = platform_get_irq(pdev, i);
2061
2062 if (irq < 0) {
2063 dev_err(dev, "failed to get irq index %d\n", i);
2064 return -ENODEV;
2065 }
2066 smmu->irqs[i] = irq;
2067 }
2068
2069 err = arm_smmu_device_cfg_probe(smmu);
2070 if (err)
2071 return err;
2072
2073 if (smmu->version == ARM_SMMU_V2 &&
2074 smmu->num_context_banks != smmu->num_context_irqs) {
2075 dev_err(dev,
2076 "found only %d context interrupt(s) but %d required\n",
2077 smmu->num_context_irqs, smmu->num_context_banks);
2078 return -ENODEV;
2079 }
2080
2081 for (i = 0; i < smmu->num_global_irqs; ++i) {
2082 err = devm_request_irq(smmu->dev, smmu->irqs[i],
2083 arm_smmu_global_fault,
2084 IRQF_SHARED,
2085 "arm-smmu global fault",
2086 smmu);
2087 if (err) {
2088 dev_err(dev, "failed to request global IRQ %d (%u)\n",
2089 i, smmu->irqs[i]);
2090 return err;
2091 }
2092 }
2093
2094 iommu_register_instance(dev->fwnode, &arm_smmu_ops);
2095 platform_set_drvdata(pdev, smmu);
2096 arm_smmu_device_reset(smmu);
2097
2098 /* Oh, for a proper bus abstraction */
2099 if (!iommu_present(&platform_bus_type))
2100 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2101 #ifdef CONFIG_ARM_AMBA
2102 if (!iommu_present(&amba_bustype))
2103 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2104 #endif
2105 #ifdef CONFIG_PCI
2106 if (!iommu_present(&pci_bus_type)) {
2107 pci_request_acs();
2108 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2109 }
2110 #endif
2111 return 0;
2112 }
2113
2114 static int arm_smmu_device_remove(struct platform_device *pdev)
2115 {
2116 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2117
2118 if (!smmu)
2119 return -ENODEV;
2120
2121 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2122 dev_err(&pdev->dev, "removing device with active domains!\n");
2123
2124 /* Turn the thing off */
2125 writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2126 return 0;
2127 }
2128
2129 static struct platform_driver arm_smmu_driver = {
2130 .driver = {
2131 .name = "arm-smmu",
2132 .of_match_table = of_match_ptr(arm_smmu_of_match),
2133 },
2134 .probe = arm_smmu_device_probe,
2135 .remove = arm_smmu_device_remove,
2136 };
2137
2138 static int __init arm_smmu_init(void)
2139 {
2140 static bool registered;
2141 int ret = 0;
2142
2143 if (!registered) {
2144 ret = platform_driver_register(&arm_smmu_driver);
2145 registered = !ret;
2146 }
2147 return ret;
2148 }
2149
2150 static void __exit arm_smmu_exit(void)
2151 {
2152 return platform_driver_unregister(&arm_smmu_driver);
2153 }
2154
2155 subsys_initcall(arm_smmu_init);
2156 module_exit(arm_smmu_exit);
2157
2158 static int __init arm_smmu_of_init(struct device_node *np)
2159 {
2160 int ret = arm_smmu_init();
2161
2162 if (ret)
2163 return ret;
2164
2165 if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2166 return -ENODEV;
2167
2168 return 0;
2169 }
2170 IOMMU_OF_DECLARE(arm_smmuv1, "arm,smmu-v1", arm_smmu_of_init);
2171 IOMMU_OF_DECLARE(arm_smmuv2, "arm,smmu-v2", arm_smmu_of_init);
2172 IOMMU_OF_DECLARE(arm_mmu400, "arm,mmu-400", arm_smmu_of_init);
2173 IOMMU_OF_DECLARE(arm_mmu401, "arm,mmu-401", arm_smmu_of_init);
2174 IOMMU_OF_DECLARE(arm_mmu500, "arm,mmu-500", arm_smmu_of_init);
2175 IOMMU_OF_DECLARE(cavium_smmuv2, "cavium,smmu-v2", arm_smmu_of_init);
2176
2177 #ifdef CONFIG_ACPI
2178 static int __init arm_smmu_acpi_init(struct acpi_table_header *table)
2179 {
2180 if (iort_node_match(ACPI_IORT_NODE_SMMU))
2181 return arm_smmu_init();
2182
2183 return 0;
2184 }
2185 IORT_ACPI_DECLARE(arm_smmu, ACPI_SIG_IORT, arm_smmu_acpi_init);
2186 #endif
2187
2188 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2189 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2190 MODULE_LICENSE("GPL v2");