]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/iommu/intel-iommu.c
iommu/vt-d: Implement reserved region get/put callbacks
[mirror_ubuntu-bionic-kernel.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 * Joerg Roedel <jroedel@suse.de>
19 */
20
21 #define pr_fmt(fmt) "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/cpu.h>
37 #include <linux/timer.h>
38 #include <linux/io.h>
39 #include <linux/iova.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/tboot.h>
44 #include <linux/dmi.h>
45 #include <linux/pci-ats.h>
46 #include <linux/memblock.h>
47 #include <linux/dma-contiguous.h>
48 #include <linux/crash_dump.h>
49 #include <asm/irq_remapping.h>
50 #include <asm/cacheflush.h>
51 #include <asm/iommu.h>
52
53 #include "irq_remapping.h"
54
55 #define ROOT_SIZE VTD_PAGE_SIZE
56 #define CONTEXT_SIZE VTD_PAGE_SIZE
57
58 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
59 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
60 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
61 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
62
63 #define IOAPIC_RANGE_START (0xfee00000)
64 #define IOAPIC_RANGE_END (0xfeefffff)
65 #define IOVA_START_ADDR (0x1000)
66
67 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
68
69 #define MAX_AGAW_WIDTH 64
70 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
71
72 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
73 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
74
75 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
76 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
77 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
78 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
79 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
80
81 /* IO virtual address start page frame number */
82 #define IOVA_START_PFN (1)
83
84 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
85 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
86 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
87
88 /* page table handling */
89 #define LEVEL_STRIDE (9)
90 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
91
92 /*
93 * This bitmap is used to advertise the page sizes our hardware support
94 * to the IOMMU core, which will then use this information to split
95 * physically contiguous memory regions it is mapping into page sizes
96 * that we support.
97 *
98 * Traditionally the IOMMU core just handed us the mappings directly,
99 * after making sure the size is an order of a 4KiB page and that the
100 * mapping has natural alignment.
101 *
102 * To retain this behavior, we currently advertise that we support
103 * all page sizes that are an order of 4KiB.
104 *
105 * If at some point we'd like to utilize the IOMMU core's new behavior,
106 * we could change this to advertise the real page sizes we support.
107 */
108 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
109
110 static inline int agaw_to_level(int agaw)
111 {
112 return agaw + 2;
113 }
114
115 static inline int agaw_to_width(int agaw)
116 {
117 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
118 }
119
120 static inline int width_to_agaw(int width)
121 {
122 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
123 }
124
125 static inline unsigned int level_to_offset_bits(int level)
126 {
127 return (level - 1) * LEVEL_STRIDE;
128 }
129
130 static inline int pfn_level_offset(unsigned long pfn, int level)
131 {
132 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
133 }
134
135 static inline unsigned long level_mask(int level)
136 {
137 return -1UL << level_to_offset_bits(level);
138 }
139
140 static inline unsigned long level_size(int level)
141 {
142 return 1UL << level_to_offset_bits(level);
143 }
144
145 static inline unsigned long align_to_level(unsigned long pfn, int level)
146 {
147 return (pfn + level_size(level) - 1) & level_mask(level);
148 }
149
150 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
151 {
152 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
153 }
154
155 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
156 are never going to work. */
157 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
158 {
159 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
160 }
161
162 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
163 {
164 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
165 }
166 static inline unsigned long page_to_dma_pfn(struct page *pg)
167 {
168 return mm_to_dma_pfn(page_to_pfn(pg));
169 }
170 static inline unsigned long virt_to_dma_pfn(void *p)
171 {
172 return page_to_dma_pfn(virt_to_page(p));
173 }
174
175 /* global iommu list, set NULL for ignored DMAR units */
176 static struct intel_iommu **g_iommus;
177
178 static void __init check_tylersburg_isoch(void);
179 static int rwbf_quirk;
180
181 /*
182 * set to 1 to panic kernel if can't successfully enable VT-d
183 * (used when kernel is launched w/ TXT)
184 */
185 static int force_on = 0;
186
187 /*
188 * 0: Present
189 * 1-11: Reserved
190 * 12-63: Context Ptr (12 - (haw-1))
191 * 64-127: Reserved
192 */
193 struct root_entry {
194 u64 lo;
195 u64 hi;
196 };
197 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
198
199 /*
200 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
201 * if marked present.
202 */
203 static phys_addr_t root_entry_lctp(struct root_entry *re)
204 {
205 if (!(re->lo & 1))
206 return 0;
207
208 return re->lo & VTD_PAGE_MASK;
209 }
210
211 /*
212 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
213 * if marked present.
214 */
215 static phys_addr_t root_entry_uctp(struct root_entry *re)
216 {
217 if (!(re->hi & 1))
218 return 0;
219
220 return re->hi & VTD_PAGE_MASK;
221 }
222 /*
223 * low 64 bits:
224 * 0: present
225 * 1: fault processing disable
226 * 2-3: translation type
227 * 12-63: address space root
228 * high 64 bits:
229 * 0-2: address width
230 * 3-6: aval
231 * 8-23: domain id
232 */
233 struct context_entry {
234 u64 lo;
235 u64 hi;
236 };
237
238 static inline void context_clear_pasid_enable(struct context_entry *context)
239 {
240 context->lo &= ~(1ULL << 11);
241 }
242
243 static inline bool context_pasid_enabled(struct context_entry *context)
244 {
245 return !!(context->lo & (1ULL << 11));
246 }
247
248 static inline void context_set_copied(struct context_entry *context)
249 {
250 context->hi |= (1ull << 3);
251 }
252
253 static inline bool context_copied(struct context_entry *context)
254 {
255 return !!(context->hi & (1ULL << 3));
256 }
257
258 static inline bool __context_present(struct context_entry *context)
259 {
260 return (context->lo & 1);
261 }
262
263 static inline bool context_present(struct context_entry *context)
264 {
265 return context_pasid_enabled(context) ?
266 __context_present(context) :
267 __context_present(context) && !context_copied(context);
268 }
269
270 static inline void context_set_present(struct context_entry *context)
271 {
272 context->lo |= 1;
273 }
274
275 static inline void context_set_fault_enable(struct context_entry *context)
276 {
277 context->lo &= (((u64)-1) << 2) | 1;
278 }
279
280 static inline void context_set_translation_type(struct context_entry *context,
281 unsigned long value)
282 {
283 context->lo &= (((u64)-1) << 4) | 3;
284 context->lo |= (value & 3) << 2;
285 }
286
287 static inline void context_set_address_root(struct context_entry *context,
288 unsigned long value)
289 {
290 context->lo &= ~VTD_PAGE_MASK;
291 context->lo |= value & VTD_PAGE_MASK;
292 }
293
294 static inline void context_set_address_width(struct context_entry *context,
295 unsigned long value)
296 {
297 context->hi |= value & 7;
298 }
299
300 static inline void context_set_domain_id(struct context_entry *context,
301 unsigned long value)
302 {
303 context->hi |= (value & ((1 << 16) - 1)) << 8;
304 }
305
306 static inline int context_domain_id(struct context_entry *c)
307 {
308 return((c->hi >> 8) & 0xffff);
309 }
310
311 static inline void context_clear_entry(struct context_entry *context)
312 {
313 context->lo = 0;
314 context->hi = 0;
315 }
316
317 /*
318 * 0: readable
319 * 1: writable
320 * 2-6: reserved
321 * 7: super page
322 * 8-10: available
323 * 11: snoop behavior
324 * 12-63: Host physcial address
325 */
326 struct dma_pte {
327 u64 val;
328 };
329
330 static inline void dma_clear_pte(struct dma_pte *pte)
331 {
332 pte->val = 0;
333 }
334
335 static inline u64 dma_pte_addr(struct dma_pte *pte)
336 {
337 #ifdef CONFIG_64BIT
338 return pte->val & VTD_PAGE_MASK;
339 #else
340 /* Must have a full atomic 64-bit read */
341 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
342 #endif
343 }
344
345 static inline bool dma_pte_present(struct dma_pte *pte)
346 {
347 return (pte->val & 3) != 0;
348 }
349
350 static inline bool dma_pte_superpage(struct dma_pte *pte)
351 {
352 return (pte->val & DMA_PTE_LARGE_PAGE);
353 }
354
355 static inline int first_pte_in_page(struct dma_pte *pte)
356 {
357 return !((unsigned long)pte & ~VTD_PAGE_MASK);
358 }
359
360 /*
361 * This domain is a statically identity mapping domain.
362 * 1. This domain creats a static 1:1 mapping to all usable memory.
363 * 2. It maps to each iommu if successful.
364 * 3. Each iommu mapps to this domain if successful.
365 */
366 static struct dmar_domain *si_domain;
367 static int hw_pass_through = 1;
368
369 /*
370 * Domain represents a virtual machine, more than one devices
371 * across iommus may be owned in one domain, e.g. kvm guest.
372 */
373 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
374
375 /* si_domain contains mulitple devices */
376 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
377
378 #define for_each_domain_iommu(idx, domain) \
379 for (idx = 0; idx < g_num_of_iommus; idx++) \
380 if (domain->iommu_refcnt[idx])
381
382 struct dmar_domain {
383 int nid; /* node id */
384
385 unsigned iommu_refcnt[DMAR_UNITS_SUPPORTED];
386 /* Refcount of devices per iommu */
387
388
389 u16 iommu_did[DMAR_UNITS_SUPPORTED];
390 /* Domain ids per IOMMU. Use u16 since
391 * domain ids are 16 bit wide according
392 * to VT-d spec, section 9.3 */
393
394 bool has_iotlb_device;
395 struct list_head devices; /* all devices' list */
396 struct iova_domain iovad; /* iova's that belong to this domain */
397
398 struct dma_pte *pgd; /* virtual address */
399 int gaw; /* max guest address width */
400
401 /* adjusted guest address width, 0 is level 2 30-bit */
402 int agaw;
403
404 int flags; /* flags to find out type of domain */
405
406 int iommu_coherency;/* indicate coherency of iommu access */
407 int iommu_snooping; /* indicate snooping control feature*/
408 int iommu_count; /* reference count of iommu */
409 int iommu_superpage;/* Level of superpages supported:
410 0 == 4KiB (no superpages), 1 == 2MiB,
411 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
412 u64 max_addr; /* maximum mapped address */
413
414 struct iommu_domain domain; /* generic domain data structure for
415 iommu core */
416 };
417
418 /* PCI domain-device relationship */
419 struct device_domain_info {
420 struct list_head link; /* link to domain siblings */
421 struct list_head global; /* link to global list */
422 u8 bus; /* PCI bus number */
423 u8 devfn; /* PCI devfn number */
424 u8 pasid_supported:3;
425 u8 pasid_enabled:1;
426 u8 pri_supported:1;
427 u8 pri_enabled:1;
428 u8 ats_supported:1;
429 u8 ats_enabled:1;
430 u8 ats_qdep;
431 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
432 struct intel_iommu *iommu; /* IOMMU used by this device */
433 struct dmar_domain *domain; /* pointer to domain */
434 };
435
436 struct dmar_rmrr_unit {
437 struct list_head list; /* list of rmrr units */
438 struct acpi_dmar_header *hdr; /* ACPI header */
439 u64 base_address; /* reserved base address*/
440 u64 end_address; /* reserved end address */
441 struct dmar_dev_scope *devices; /* target devices */
442 int devices_cnt; /* target device count */
443 struct iommu_resv_region *resv; /* reserved region handle */
444 };
445
446 struct dmar_atsr_unit {
447 struct list_head list; /* list of ATSR units */
448 struct acpi_dmar_header *hdr; /* ACPI header */
449 struct dmar_dev_scope *devices; /* target devices */
450 int devices_cnt; /* target device count */
451 u8 include_all:1; /* include all ports */
452 };
453
454 static LIST_HEAD(dmar_atsr_units);
455 static LIST_HEAD(dmar_rmrr_units);
456
457 #define for_each_rmrr_units(rmrr) \
458 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
459
460 static void flush_unmaps_timeout(unsigned long data);
461
462 struct deferred_flush_entry {
463 unsigned long iova_pfn;
464 unsigned long nrpages;
465 struct dmar_domain *domain;
466 struct page *freelist;
467 };
468
469 #define HIGH_WATER_MARK 250
470 struct deferred_flush_table {
471 int next;
472 struct deferred_flush_entry entries[HIGH_WATER_MARK];
473 };
474
475 struct deferred_flush_data {
476 spinlock_t lock;
477 int timer_on;
478 struct timer_list timer;
479 long size;
480 struct deferred_flush_table *tables;
481 };
482
483 DEFINE_PER_CPU(struct deferred_flush_data, deferred_flush);
484
485 /* bitmap for indexing intel_iommus */
486 static int g_num_of_iommus;
487
488 static void domain_exit(struct dmar_domain *domain);
489 static void domain_remove_dev_info(struct dmar_domain *domain);
490 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
491 struct device *dev);
492 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
493 static void domain_context_clear(struct intel_iommu *iommu,
494 struct device *dev);
495 static int domain_detach_iommu(struct dmar_domain *domain,
496 struct intel_iommu *iommu);
497
498 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
499 int dmar_disabled = 0;
500 #else
501 int dmar_disabled = 1;
502 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
503
504 int intel_iommu_enabled = 0;
505 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
506
507 static int dmar_map_gfx = 1;
508 static int dmar_forcedac;
509 static int intel_iommu_strict;
510 static int intel_iommu_superpage = 1;
511 static int intel_iommu_ecs = 1;
512 static int intel_iommu_pasid28;
513 static int iommu_identity_mapping;
514
515 #define IDENTMAP_ALL 1
516 #define IDENTMAP_GFX 2
517 #define IDENTMAP_AZALIA 4
518
519 /* Broadwell and Skylake have broken ECS support — normal so-called "second
520 * level" translation of DMA requests-without-PASID doesn't actually happen
521 * unless you also set the NESTE bit in an extended context-entry. Which of
522 * course means that SVM doesn't work because it's trying to do nested
523 * translation of the physical addresses it finds in the process page tables,
524 * through the IOVA->phys mapping found in the "second level" page tables.
525 *
526 * The VT-d specification was retroactively changed to change the definition
527 * of the capability bits and pretend that Broadwell/Skylake never happened...
528 * but unfortunately the wrong bit was changed. It's ECS which is broken, but
529 * for some reason it was the PASID capability bit which was redefined (from
530 * bit 28 on BDW/SKL to bit 40 in future).
531 *
532 * So our test for ECS needs to eschew those implementations which set the old
533 * PASID capabiity bit 28, since those are the ones on which ECS is broken.
534 * Unless we are working around the 'pasid28' limitations, that is, by putting
535 * the device into passthrough mode for normal DMA and thus masking the bug.
536 */
537 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
538 (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
539 /* PASID support is thus enabled if ECS is enabled and *either* of the old
540 * or new capability bits are set. */
541 #define pasid_enabled(iommu) (ecs_enabled(iommu) && \
542 (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
543
544 int intel_iommu_gfx_mapped;
545 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
546
547 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
548 static DEFINE_SPINLOCK(device_domain_lock);
549 static LIST_HEAD(device_domain_list);
550
551 static const struct iommu_ops intel_iommu_ops;
552
553 static bool translation_pre_enabled(struct intel_iommu *iommu)
554 {
555 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
556 }
557
558 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
559 {
560 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
561 }
562
563 static void init_translation_status(struct intel_iommu *iommu)
564 {
565 u32 gsts;
566
567 gsts = readl(iommu->reg + DMAR_GSTS_REG);
568 if (gsts & DMA_GSTS_TES)
569 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
570 }
571
572 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
573 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
574 {
575 return container_of(dom, struct dmar_domain, domain);
576 }
577
578 static int __init intel_iommu_setup(char *str)
579 {
580 if (!str)
581 return -EINVAL;
582 while (*str) {
583 if (!strncmp(str, "on", 2)) {
584 dmar_disabled = 0;
585 pr_info("IOMMU enabled\n");
586 } else if (!strncmp(str, "off", 3)) {
587 dmar_disabled = 1;
588 pr_info("IOMMU disabled\n");
589 } else if (!strncmp(str, "igfx_off", 8)) {
590 dmar_map_gfx = 0;
591 pr_info("Disable GFX device mapping\n");
592 } else if (!strncmp(str, "forcedac", 8)) {
593 pr_info("Forcing DAC for PCI devices\n");
594 dmar_forcedac = 1;
595 } else if (!strncmp(str, "strict", 6)) {
596 pr_info("Disable batched IOTLB flush\n");
597 intel_iommu_strict = 1;
598 } else if (!strncmp(str, "sp_off", 6)) {
599 pr_info("Disable supported super page\n");
600 intel_iommu_superpage = 0;
601 } else if (!strncmp(str, "ecs_off", 7)) {
602 printk(KERN_INFO
603 "Intel-IOMMU: disable extended context table support\n");
604 intel_iommu_ecs = 0;
605 } else if (!strncmp(str, "pasid28", 7)) {
606 printk(KERN_INFO
607 "Intel-IOMMU: enable pre-production PASID support\n");
608 intel_iommu_pasid28 = 1;
609 iommu_identity_mapping |= IDENTMAP_GFX;
610 }
611
612 str += strcspn(str, ",");
613 while (*str == ',')
614 str++;
615 }
616 return 0;
617 }
618 __setup("intel_iommu=", intel_iommu_setup);
619
620 static struct kmem_cache *iommu_domain_cache;
621 static struct kmem_cache *iommu_devinfo_cache;
622
623 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
624 {
625 struct dmar_domain **domains;
626 int idx = did >> 8;
627
628 domains = iommu->domains[idx];
629 if (!domains)
630 return NULL;
631
632 return domains[did & 0xff];
633 }
634
635 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
636 struct dmar_domain *domain)
637 {
638 struct dmar_domain **domains;
639 int idx = did >> 8;
640
641 if (!iommu->domains[idx]) {
642 size_t size = 256 * sizeof(struct dmar_domain *);
643 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
644 }
645
646 domains = iommu->domains[idx];
647 if (WARN_ON(!domains))
648 return;
649 else
650 domains[did & 0xff] = domain;
651 }
652
653 static inline void *alloc_pgtable_page(int node)
654 {
655 struct page *page;
656 void *vaddr = NULL;
657
658 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
659 if (page)
660 vaddr = page_address(page);
661 return vaddr;
662 }
663
664 static inline void free_pgtable_page(void *vaddr)
665 {
666 free_page((unsigned long)vaddr);
667 }
668
669 static inline void *alloc_domain_mem(void)
670 {
671 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
672 }
673
674 static void free_domain_mem(void *vaddr)
675 {
676 kmem_cache_free(iommu_domain_cache, vaddr);
677 }
678
679 static inline void * alloc_devinfo_mem(void)
680 {
681 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
682 }
683
684 static inline void free_devinfo_mem(void *vaddr)
685 {
686 kmem_cache_free(iommu_devinfo_cache, vaddr);
687 }
688
689 static inline int domain_type_is_vm(struct dmar_domain *domain)
690 {
691 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
692 }
693
694 static inline int domain_type_is_si(struct dmar_domain *domain)
695 {
696 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
697 }
698
699 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
700 {
701 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
702 DOMAIN_FLAG_STATIC_IDENTITY);
703 }
704
705 static inline int domain_pfn_supported(struct dmar_domain *domain,
706 unsigned long pfn)
707 {
708 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
709
710 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
711 }
712
713 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
714 {
715 unsigned long sagaw;
716 int agaw = -1;
717
718 sagaw = cap_sagaw(iommu->cap);
719 for (agaw = width_to_agaw(max_gaw);
720 agaw >= 0; agaw--) {
721 if (test_bit(agaw, &sagaw))
722 break;
723 }
724
725 return agaw;
726 }
727
728 /*
729 * Calculate max SAGAW for each iommu.
730 */
731 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
732 {
733 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
734 }
735
736 /*
737 * calculate agaw for each iommu.
738 * "SAGAW" may be different across iommus, use a default agaw, and
739 * get a supported less agaw for iommus that don't support the default agaw.
740 */
741 int iommu_calculate_agaw(struct intel_iommu *iommu)
742 {
743 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
744 }
745
746 /* This functionin only returns single iommu in a domain */
747 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
748 {
749 int iommu_id;
750
751 /* si_domain and vm domain should not get here. */
752 BUG_ON(domain_type_is_vm_or_si(domain));
753 for_each_domain_iommu(iommu_id, domain)
754 break;
755
756 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
757 return NULL;
758
759 return g_iommus[iommu_id];
760 }
761
762 static void domain_update_iommu_coherency(struct dmar_domain *domain)
763 {
764 struct dmar_drhd_unit *drhd;
765 struct intel_iommu *iommu;
766 bool found = false;
767 int i;
768
769 domain->iommu_coherency = 1;
770
771 for_each_domain_iommu(i, domain) {
772 found = true;
773 if (!ecap_coherent(g_iommus[i]->ecap)) {
774 domain->iommu_coherency = 0;
775 break;
776 }
777 }
778 if (found)
779 return;
780
781 /* No hardware attached; use lowest common denominator */
782 rcu_read_lock();
783 for_each_active_iommu(iommu, drhd) {
784 if (!ecap_coherent(iommu->ecap)) {
785 domain->iommu_coherency = 0;
786 break;
787 }
788 }
789 rcu_read_unlock();
790 }
791
792 static int domain_update_iommu_snooping(struct intel_iommu *skip)
793 {
794 struct dmar_drhd_unit *drhd;
795 struct intel_iommu *iommu;
796 int ret = 1;
797
798 rcu_read_lock();
799 for_each_active_iommu(iommu, drhd) {
800 if (iommu != skip) {
801 if (!ecap_sc_support(iommu->ecap)) {
802 ret = 0;
803 break;
804 }
805 }
806 }
807 rcu_read_unlock();
808
809 return ret;
810 }
811
812 static int domain_update_iommu_superpage(struct intel_iommu *skip)
813 {
814 struct dmar_drhd_unit *drhd;
815 struct intel_iommu *iommu;
816 int mask = 0xf;
817
818 if (!intel_iommu_superpage) {
819 return 0;
820 }
821
822 /* set iommu_superpage to the smallest common denominator */
823 rcu_read_lock();
824 for_each_active_iommu(iommu, drhd) {
825 if (iommu != skip) {
826 mask &= cap_super_page_val(iommu->cap);
827 if (!mask)
828 break;
829 }
830 }
831 rcu_read_unlock();
832
833 return fls(mask);
834 }
835
836 /* Some capabilities may be different across iommus */
837 static void domain_update_iommu_cap(struct dmar_domain *domain)
838 {
839 domain_update_iommu_coherency(domain);
840 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
841 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
842 }
843
844 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
845 u8 bus, u8 devfn, int alloc)
846 {
847 struct root_entry *root = &iommu->root_entry[bus];
848 struct context_entry *context;
849 u64 *entry;
850
851 entry = &root->lo;
852 if (ecs_enabled(iommu)) {
853 if (devfn >= 0x80) {
854 devfn -= 0x80;
855 entry = &root->hi;
856 }
857 devfn *= 2;
858 }
859 if (*entry & 1)
860 context = phys_to_virt(*entry & VTD_PAGE_MASK);
861 else {
862 unsigned long phy_addr;
863 if (!alloc)
864 return NULL;
865
866 context = alloc_pgtable_page(iommu->node);
867 if (!context)
868 return NULL;
869
870 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
871 phy_addr = virt_to_phys((void *)context);
872 *entry = phy_addr | 1;
873 __iommu_flush_cache(iommu, entry, sizeof(*entry));
874 }
875 return &context[devfn];
876 }
877
878 static int iommu_dummy(struct device *dev)
879 {
880 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
881 }
882
883 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
884 {
885 struct dmar_drhd_unit *drhd = NULL;
886 struct intel_iommu *iommu;
887 struct device *tmp;
888 struct pci_dev *ptmp, *pdev = NULL;
889 u16 segment = 0;
890 int i;
891
892 if (iommu_dummy(dev))
893 return NULL;
894
895 if (dev_is_pci(dev)) {
896 struct pci_dev *pf_pdev;
897
898 pdev = to_pci_dev(dev);
899 /* VFs aren't listed in scope tables; we need to look up
900 * the PF instead to find the IOMMU. */
901 pf_pdev = pci_physfn(pdev);
902 dev = &pf_pdev->dev;
903 segment = pci_domain_nr(pdev->bus);
904 } else if (has_acpi_companion(dev))
905 dev = &ACPI_COMPANION(dev)->dev;
906
907 rcu_read_lock();
908 for_each_active_iommu(iommu, drhd) {
909 if (pdev && segment != drhd->segment)
910 continue;
911
912 for_each_active_dev_scope(drhd->devices,
913 drhd->devices_cnt, i, tmp) {
914 if (tmp == dev) {
915 /* For a VF use its original BDF# not that of the PF
916 * which we used for the IOMMU lookup. Strictly speaking
917 * we could do this for all PCI devices; we only need to
918 * get the BDF# from the scope table for ACPI matches. */
919 if (pdev->is_virtfn)
920 goto got_pdev;
921
922 *bus = drhd->devices[i].bus;
923 *devfn = drhd->devices[i].devfn;
924 goto out;
925 }
926
927 if (!pdev || !dev_is_pci(tmp))
928 continue;
929
930 ptmp = to_pci_dev(tmp);
931 if (ptmp->subordinate &&
932 ptmp->subordinate->number <= pdev->bus->number &&
933 ptmp->subordinate->busn_res.end >= pdev->bus->number)
934 goto got_pdev;
935 }
936
937 if (pdev && drhd->include_all) {
938 got_pdev:
939 *bus = pdev->bus->number;
940 *devfn = pdev->devfn;
941 goto out;
942 }
943 }
944 iommu = NULL;
945 out:
946 rcu_read_unlock();
947
948 return iommu;
949 }
950
951 static void domain_flush_cache(struct dmar_domain *domain,
952 void *addr, int size)
953 {
954 if (!domain->iommu_coherency)
955 clflush_cache_range(addr, size);
956 }
957
958 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
959 {
960 struct context_entry *context;
961 int ret = 0;
962 unsigned long flags;
963
964 spin_lock_irqsave(&iommu->lock, flags);
965 context = iommu_context_addr(iommu, bus, devfn, 0);
966 if (context)
967 ret = context_present(context);
968 spin_unlock_irqrestore(&iommu->lock, flags);
969 return ret;
970 }
971
972 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
973 {
974 struct context_entry *context;
975 unsigned long flags;
976
977 spin_lock_irqsave(&iommu->lock, flags);
978 context = iommu_context_addr(iommu, bus, devfn, 0);
979 if (context) {
980 context_clear_entry(context);
981 __iommu_flush_cache(iommu, context, sizeof(*context));
982 }
983 spin_unlock_irqrestore(&iommu->lock, flags);
984 }
985
986 static void free_context_table(struct intel_iommu *iommu)
987 {
988 int i;
989 unsigned long flags;
990 struct context_entry *context;
991
992 spin_lock_irqsave(&iommu->lock, flags);
993 if (!iommu->root_entry) {
994 goto out;
995 }
996 for (i = 0; i < ROOT_ENTRY_NR; i++) {
997 context = iommu_context_addr(iommu, i, 0, 0);
998 if (context)
999 free_pgtable_page(context);
1000
1001 if (!ecs_enabled(iommu))
1002 continue;
1003
1004 context = iommu_context_addr(iommu, i, 0x80, 0);
1005 if (context)
1006 free_pgtable_page(context);
1007
1008 }
1009 free_pgtable_page(iommu->root_entry);
1010 iommu->root_entry = NULL;
1011 out:
1012 spin_unlock_irqrestore(&iommu->lock, flags);
1013 }
1014
1015 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
1016 unsigned long pfn, int *target_level)
1017 {
1018 struct dma_pte *parent, *pte = NULL;
1019 int level = agaw_to_level(domain->agaw);
1020 int offset;
1021
1022 BUG_ON(!domain->pgd);
1023
1024 if (!domain_pfn_supported(domain, pfn))
1025 /* Address beyond IOMMU's addressing capabilities. */
1026 return NULL;
1027
1028 parent = domain->pgd;
1029
1030 while (1) {
1031 void *tmp_page;
1032
1033 offset = pfn_level_offset(pfn, level);
1034 pte = &parent[offset];
1035 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
1036 break;
1037 if (level == *target_level)
1038 break;
1039
1040 if (!dma_pte_present(pte)) {
1041 uint64_t pteval;
1042
1043 tmp_page = alloc_pgtable_page(domain->nid);
1044
1045 if (!tmp_page)
1046 return NULL;
1047
1048 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1049 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1050 if (cmpxchg64(&pte->val, 0ULL, pteval))
1051 /* Someone else set it while we were thinking; use theirs. */
1052 free_pgtable_page(tmp_page);
1053 else
1054 domain_flush_cache(domain, pte, sizeof(*pte));
1055 }
1056 if (level == 1)
1057 break;
1058
1059 parent = phys_to_virt(dma_pte_addr(pte));
1060 level--;
1061 }
1062
1063 if (!*target_level)
1064 *target_level = level;
1065
1066 return pte;
1067 }
1068
1069
1070 /* return address's pte at specific level */
1071 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1072 unsigned long pfn,
1073 int level, int *large_page)
1074 {
1075 struct dma_pte *parent, *pte = NULL;
1076 int total = agaw_to_level(domain->agaw);
1077 int offset;
1078
1079 parent = domain->pgd;
1080 while (level <= total) {
1081 offset = pfn_level_offset(pfn, total);
1082 pte = &parent[offset];
1083 if (level == total)
1084 return pte;
1085
1086 if (!dma_pte_present(pte)) {
1087 *large_page = total;
1088 break;
1089 }
1090
1091 if (dma_pte_superpage(pte)) {
1092 *large_page = total;
1093 return pte;
1094 }
1095
1096 parent = phys_to_virt(dma_pte_addr(pte));
1097 total--;
1098 }
1099 return NULL;
1100 }
1101
1102 /* clear last level pte, a tlb flush should be followed */
1103 static void dma_pte_clear_range(struct dmar_domain *domain,
1104 unsigned long start_pfn,
1105 unsigned long last_pfn)
1106 {
1107 unsigned int large_page = 1;
1108 struct dma_pte *first_pte, *pte;
1109
1110 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1111 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1112 BUG_ON(start_pfn > last_pfn);
1113
1114 /* we don't need lock here; nobody else touches the iova range */
1115 do {
1116 large_page = 1;
1117 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1118 if (!pte) {
1119 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1120 continue;
1121 }
1122 do {
1123 dma_clear_pte(pte);
1124 start_pfn += lvl_to_nr_pages(large_page);
1125 pte++;
1126 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1127
1128 domain_flush_cache(domain, first_pte,
1129 (void *)pte - (void *)first_pte);
1130
1131 } while (start_pfn && start_pfn <= last_pfn);
1132 }
1133
1134 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1135 struct dma_pte *pte, unsigned long pfn,
1136 unsigned long start_pfn, unsigned long last_pfn)
1137 {
1138 pfn = max(start_pfn, pfn);
1139 pte = &pte[pfn_level_offset(pfn, level)];
1140
1141 do {
1142 unsigned long level_pfn;
1143 struct dma_pte *level_pte;
1144
1145 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1146 goto next;
1147
1148 level_pfn = pfn & level_mask(level - 1);
1149 level_pte = phys_to_virt(dma_pte_addr(pte));
1150
1151 if (level > 2)
1152 dma_pte_free_level(domain, level - 1, level_pte,
1153 level_pfn, start_pfn, last_pfn);
1154
1155 /* If range covers entire pagetable, free it */
1156 if (!(start_pfn > level_pfn ||
1157 last_pfn < level_pfn + level_size(level) - 1)) {
1158 dma_clear_pte(pte);
1159 domain_flush_cache(domain, pte, sizeof(*pte));
1160 free_pgtable_page(level_pte);
1161 }
1162 next:
1163 pfn += level_size(level);
1164 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1165 }
1166
1167 /* clear last level (leaf) ptes and free page table pages. */
1168 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1169 unsigned long start_pfn,
1170 unsigned long last_pfn)
1171 {
1172 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1173 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1174 BUG_ON(start_pfn > last_pfn);
1175
1176 dma_pte_clear_range(domain, start_pfn, last_pfn);
1177
1178 /* We don't need lock here; nobody else touches the iova range */
1179 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1180 domain->pgd, 0, start_pfn, last_pfn);
1181
1182 /* free pgd */
1183 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1184 free_pgtable_page(domain->pgd);
1185 domain->pgd = NULL;
1186 }
1187 }
1188
1189 /* When a page at a given level is being unlinked from its parent, we don't
1190 need to *modify* it at all. All we need to do is make a list of all the
1191 pages which can be freed just as soon as we've flushed the IOTLB and we
1192 know the hardware page-walk will no longer touch them.
1193 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1194 be freed. */
1195 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1196 int level, struct dma_pte *pte,
1197 struct page *freelist)
1198 {
1199 struct page *pg;
1200
1201 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1202 pg->freelist = freelist;
1203 freelist = pg;
1204
1205 if (level == 1)
1206 return freelist;
1207
1208 pte = page_address(pg);
1209 do {
1210 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1211 freelist = dma_pte_list_pagetables(domain, level - 1,
1212 pte, freelist);
1213 pte++;
1214 } while (!first_pte_in_page(pte));
1215
1216 return freelist;
1217 }
1218
1219 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1220 struct dma_pte *pte, unsigned long pfn,
1221 unsigned long start_pfn,
1222 unsigned long last_pfn,
1223 struct page *freelist)
1224 {
1225 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1226
1227 pfn = max(start_pfn, pfn);
1228 pte = &pte[pfn_level_offset(pfn, level)];
1229
1230 do {
1231 unsigned long level_pfn;
1232
1233 if (!dma_pte_present(pte))
1234 goto next;
1235
1236 level_pfn = pfn & level_mask(level);
1237
1238 /* If range covers entire pagetable, free it */
1239 if (start_pfn <= level_pfn &&
1240 last_pfn >= level_pfn + level_size(level) - 1) {
1241 /* These suborbinate page tables are going away entirely. Don't
1242 bother to clear them; we're just going to *free* them. */
1243 if (level > 1 && !dma_pte_superpage(pte))
1244 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1245
1246 dma_clear_pte(pte);
1247 if (!first_pte)
1248 first_pte = pte;
1249 last_pte = pte;
1250 } else if (level > 1) {
1251 /* Recurse down into a level that isn't *entirely* obsolete */
1252 freelist = dma_pte_clear_level(domain, level - 1,
1253 phys_to_virt(dma_pte_addr(pte)),
1254 level_pfn, start_pfn, last_pfn,
1255 freelist);
1256 }
1257 next:
1258 pfn += level_size(level);
1259 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1260
1261 if (first_pte)
1262 domain_flush_cache(domain, first_pte,
1263 (void *)++last_pte - (void *)first_pte);
1264
1265 return freelist;
1266 }
1267
1268 /* We can't just free the pages because the IOMMU may still be walking
1269 the page tables, and may have cached the intermediate levels. The
1270 pages can only be freed after the IOTLB flush has been done. */
1271 static struct page *domain_unmap(struct dmar_domain *domain,
1272 unsigned long start_pfn,
1273 unsigned long last_pfn)
1274 {
1275 struct page *freelist = NULL;
1276
1277 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1278 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1279 BUG_ON(start_pfn > last_pfn);
1280
1281 /* we don't need lock here; nobody else touches the iova range */
1282 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1283 domain->pgd, 0, start_pfn, last_pfn, NULL);
1284
1285 /* free pgd */
1286 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1287 struct page *pgd_page = virt_to_page(domain->pgd);
1288 pgd_page->freelist = freelist;
1289 freelist = pgd_page;
1290
1291 domain->pgd = NULL;
1292 }
1293
1294 return freelist;
1295 }
1296
1297 static void dma_free_pagelist(struct page *freelist)
1298 {
1299 struct page *pg;
1300
1301 while ((pg = freelist)) {
1302 freelist = pg->freelist;
1303 free_pgtable_page(page_address(pg));
1304 }
1305 }
1306
1307 /* iommu handling */
1308 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1309 {
1310 struct root_entry *root;
1311 unsigned long flags;
1312
1313 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1314 if (!root) {
1315 pr_err("Allocating root entry for %s failed\n",
1316 iommu->name);
1317 return -ENOMEM;
1318 }
1319
1320 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1321
1322 spin_lock_irqsave(&iommu->lock, flags);
1323 iommu->root_entry = root;
1324 spin_unlock_irqrestore(&iommu->lock, flags);
1325
1326 return 0;
1327 }
1328
1329 static void iommu_set_root_entry(struct intel_iommu *iommu)
1330 {
1331 u64 addr;
1332 u32 sts;
1333 unsigned long flag;
1334
1335 addr = virt_to_phys(iommu->root_entry);
1336 if (ecs_enabled(iommu))
1337 addr |= DMA_RTADDR_RTT;
1338
1339 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1340 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1341
1342 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1343
1344 /* Make sure hardware complete it */
1345 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1346 readl, (sts & DMA_GSTS_RTPS), sts);
1347
1348 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1349 }
1350
1351 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1352 {
1353 u32 val;
1354 unsigned long flag;
1355
1356 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1357 return;
1358
1359 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1360 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1361
1362 /* Make sure hardware complete it */
1363 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1364 readl, (!(val & DMA_GSTS_WBFS)), val);
1365
1366 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1367 }
1368
1369 /* return value determine if we need a write buffer flush */
1370 static void __iommu_flush_context(struct intel_iommu *iommu,
1371 u16 did, u16 source_id, u8 function_mask,
1372 u64 type)
1373 {
1374 u64 val = 0;
1375 unsigned long flag;
1376
1377 switch (type) {
1378 case DMA_CCMD_GLOBAL_INVL:
1379 val = DMA_CCMD_GLOBAL_INVL;
1380 break;
1381 case DMA_CCMD_DOMAIN_INVL:
1382 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1383 break;
1384 case DMA_CCMD_DEVICE_INVL:
1385 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1386 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1387 break;
1388 default:
1389 BUG();
1390 }
1391 val |= DMA_CCMD_ICC;
1392
1393 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1394 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1395
1396 /* Make sure hardware complete it */
1397 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1398 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1399
1400 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1401 }
1402
1403 /* return value determine if we need a write buffer flush */
1404 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1405 u64 addr, unsigned int size_order, u64 type)
1406 {
1407 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1408 u64 val = 0, val_iva = 0;
1409 unsigned long flag;
1410
1411 switch (type) {
1412 case DMA_TLB_GLOBAL_FLUSH:
1413 /* global flush doesn't need set IVA_REG */
1414 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1415 break;
1416 case DMA_TLB_DSI_FLUSH:
1417 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1418 break;
1419 case DMA_TLB_PSI_FLUSH:
1420 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1421 /* IH bit is passed in as part of address */
1422 val_iva = size_order | addr;
1423 break;
1424 default:
1425 BUG();
1426 }
1427 /* Note: set drain read/write */
1428 #if 0
1429 /*
1430 * This is probably to be super secure.. Looks like we can
1431 * ignore it without any impact.
1432 */
1433 if (cap_read_drain(iommu->cap))
1434 val |= DMA_TLB_READ_DRAIN;
1435 #endif
1436 if (cap_write_drain(iommu->cap))
1437 val |= DMA_TLB_WRITE_DRAIN;
1438
1439 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1440 /* Note: Only uses first TLB reg currently */
1441 if (val_iva)
1442 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1443 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1444
1445 /* Make sure hardware complete it */
1446 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1447 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1448
1449 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1450
1451 /* check IOTLB invalidation granularity */
1452 if (DMA_TLB_IAIG(val) == 0)
1453 pr_err("Flush IOTLB failed\n");
1454 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1455 pr_debug("TLB flush request %Lx, actual %Lx\n",
1456 (unsigned long long)DMA_TLB_IIRG(type),
1457 (unsigned long long)DMA_TLB_IAIG(val));
1458 }
1459
1460 static struct device_domain_info *
1461 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1462 u8 bus, u8 devfn)
1463 {
1464 struct device_domain_info *info;
1465
1466 assert_spin_locked(&device_domain_lock);
1467
1468 if (!iommu->qi)
1469 return NULL;
1470
1471 list_for_each_entry(info, &domain->devices, link)
1472 if (info->iommu == iommu && info->bus == bus &&
1473 info->devfn == devfn) {
1474 if (info->ats_supported && info->dev)
1475 return info;
1476 break;
1477 }
1478
1479 return NULL;
1480 }
1481
1482 static void domain_update_iotlb(struct dmar_domain *domain)
1483 {
1484 struct device_domain_info *info;
1485 bool has_iotlb_device = false;
1486
1487 assert_spin_locked(&device_domain_lock);
1488
1489 list_for_each_entry(info, &domain->devices, link) {
1490 struct pci_dev *pdev;
1491
1492 if (!info->dev || !dev_is_pci(info->dev))
1493 continue;
1494
1495 pdev = to_pci_dev(info->dev);
1496 if (pdev->ats_enabled) {
1497 has_iotlb_device = true;
1498 break;
1499 }
1500 }
1501
1502 domain->has_iotlb_device = has_iotlb_device;
1503 }
1504
1505 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1506 {
1507 struct pci_dev *pdev;
1508
1509 assert_spin_locked(&device_domain_lock);
1510
1511 if (!info || !dev_is_pci(info->dev))
1512 return;
1513
1514 pdev = to_pci_dev(info->dev);
1515
1516 #ifdef CONFIG_INTEL_IOMMU_SVM
1517 /* The PCIe spec, in its wisdom, declares that the behaviour of
1518 the device if you enable PASID support after ATS support is
1519 undefined. So always enable PASID support on devices which
1520 have it, even if we can't yet know if we're ever going to
1521 use it. */
1522 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1523 info->pasid_enabled = 1;
1524
1525 if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1526 info->pri_enabled = 1;
1527 #endif
1528 if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1529 info->ats_enabled = 1;
1530 domain_update_iotlb(info->domain);
1531 info->ats_qdep = pci_ats_queue_depth(pdev);
1532 }
1533 }
1534
1535 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1536 {
1537 struct pci_dev *pdev;
1538
1539 assert_spin_locked(&device_domain_lock);
1540
1541 if (!dev_is_pci(info->dev))
1542 return;
1543
1544 pdev = to_pci_dev(info->dev);
1545
1546 if (info->ats_enabled) {
1547 pci_disable_ats(pdev);
1548 info->ats_enabled = 0;
1549 domain_update_iotlb(info->domain);
1550 }
1551 #ifdef CONFIG_INTEL_IOMMU_SVM
1552 if (info->pri_enabled) {
1553 pci_disable_pri(pdev);
1554 info->pri_enabled = 0;
1555 }
1556 if (info->pasid_enabled) {
1557 pci_disable_pasid(pdev);
1558 info->pasid_enabled = 0;
1559 }
1560 #endif
1561 }
1562
1563 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1564 u64 addr, unsigned mask)
1565 {
1566 u16 sid, qdep;
1567 unsigned long flags;
1568 struct device_domain_info *info;
1569
1570 if (!domain->has_iotlb_device)
1571 return;
1572
1573 spin_lock_irqsave(&device_domain_lock, flags);
1574 list_for_each_entry(info, &domain->devices, link) {
1575 if (!info->ats_enabled)
1576 continue;
1577
1578 sid = info->bus << 8 | info->devfn;
1579 qdep = info->ats_qdep;
1580 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1581 }
1582 spin_unlock_irqrestore(&device_domain_lock, flags);
1583 }
1584
1585 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1586 struct dmar_domain *domain,
1587 unsigned long pfn, unsigned int pages,
1588 int ih, int map)
1589 {
1590 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1591 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1592 u16 did = domain->iommu_did[iommu->seq_id];
1593
1594 BUG_ON(pages == 0);
1595
1596 if (ih)
1597 ih = 1 << 6;
1598 /*
1599 * Fallback to domain selective flush if no PSI support or the size is
1600 * too big.
1601 * PSI requires page size to be 2 ^ x, and the base address is naturally
1602 * aligned to the size
1603 */
1604 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1605 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1606 DMA_TLB_DSI_FLUSH);
1607 else
1608 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1609 DMA_TLB_PSI_FLUSH);
1610
1611 /*
1612 * In caching mode, changes of pages from non-present to present require
1613 * flush. However, device IOTLB doesn't need to be flushed in this case.
1614 */
1615 if (!cap_caching_mode(iommu->cap) || !map)
1616 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1617 addr, mask);
1618 }
1619
1620 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1621 {
1622 u32 pmen;
1623 unsigned long flags;
1624
1625 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1626 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1627 pmen &= ~DMA_PMEN_EPM;
1628 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1629
1630 /* wait for the protected region status bit to clear */
1631 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1632 readl, !(pmen & DMA_PMEN_PRS), pmen);
1633
1634 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1635 }
1636
1637 static void iommu_enable_translation(struct intel_iommu *iommu)
1638 {
1639 u32 sts;
1640 unsigned long flags;
1641
1642 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1643 iommu->gcmd |= DMA_GCMD_TE;
1644 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1645
1646 /* Make sure hardware complete it */
1647 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1648 readl, (sts & DMA_GSTS_TES), sts);
1649
1650 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1651 }
1652
1653 static void iommu_disable_translation(struct intel_iommu *iommu)
1654 {
1655 u32 sts;
1656 unsigned long flag;
1657
1658 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1659 iommu->gcmd &= ~DMA_GCMD_TE;
1660 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1661
1662 /* Make sure hardware complete it */
1663 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1664 readl, (!(sts & DMA_GSTS_TES)), sts);
1665
1666 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1667 }
1668
1669
1670 static int iommu_init_domains(struct intel_iommu *iommu)
1671 {
1672 u32 ndomains, nlongs;
1673 size_t size;
1674
1675 ndomains = cap_ndoms(iommu->cap);
1676 pr_debug("%s: Number of Domains supported <%d>\n",
1677 iommu->name, ndomains);
1678 nlongs = BITS_TO_LONGS(ndomains);
1679
1680 spin_lock_init(&iommu->lock);
1681
1682 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1683 if (!iommu->domain_ids) {
1684 pr_err("%s: Allocating domain id array failed\n",
1685 iommu->name);
1686 return -ENOMEM;
1687 }
1688
1689 size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1690 iommu->domains = kzalloc(size, GFP_KERNEL);
1691
1692 if (iommu->domains) {
1693 size = 256 * sizeof(struct dmar_domain *);
1694 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1695 }
1696
1697 if (!iommu->domains || !iommu->domains[0]) {
1698 pr_err("%s: Allocating domain array failed\n",
1699 iommu->name);
1700 kfree(iommu->domain_ids);
1701 kfree(iommu->domains);
1702 iommu->domain_ids = NULL;
1703 iommu->domains = NULL;
1704 return -ENOMEM;
1705 }
1706
1707
1708
1709 /*
1710 * If Caching mode is set, then invalid translations are tagged
1711 * with domain-id 0, hence we need to pre-allocate it. We also
1712 * use domain-id 0 as a marker for non-allocated domain-id, so
1713 * make sure it is not used for a real domain.
1714 */
1715 set_bit(0, iommu->domain_ids);
1716
1717 return 0;
1718 }
1719
1720 static void disable_dmar_iommu(struct intel_iommu *iommu)
1721 {
1722 struct device_domain_info *info, *tmp;
1723 unsigned long flags;
1724
1725 if (!iommu->domains || !iommu->domain_ids)
1726 return;
1727
1728 again:
1729 spin_lock_irqsave(&device_domain_lock, flags);
1730 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1731 struct dmar_domain *domain;
1732
1733 if (info->iommu != iommu)
1734 continue;
1735
1736 if (!info->dev || !info->domain)
1737 continue;
1738
1739 domain = info->domain;
1740
1741 __dmar_remove_one_dev_info(info);
1742
1743 if (!domain_type_is_vm_or_si(domain)) {
1744 /*
1745 * The domain_exit() function can't be called under
1746 * device_domain_lock, as it takes this lock itself.
1747 * So release the lock here and re-run the loop
1748 * afterwards.
1749 */
1750 spin_unlock_irqrestore(&device_domain_lock, flags);
1751 domain_exit(domain);
1752 goto again;
1753 }
1754 }
1755 spin_unlock_irqrestore(&device_domain_lock, flags);
1756
1757 if (iommu->gcmd & DMA_GCMD_TE)
1758 iommu_disable_translation(iommu);
1759 }
1760
1761 static void free_dmar_iommu(struct intel_iommu *iommu)
1762 {
1763 if ((iommu->domains) && (iommu->domain_ids)) {
1764 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1765 int i;
1766
1767 for (i = 0; i < elems; i++)
1768 kfree(iommu->domains[i]);
1769 kfree(iommu->domains);
1770 kfree(iommu->domain_ids);
1771 iommu->domains = NULL;
1772 iommu->domain_ids = NULL;
1773 }
1774
1775 g_iommus[iommu->seq_id] = NULL;
1776
1777 /* free context mapping */
1778 free_context_table(iommu);
1779
1780 #ifdef CONFIG_INTEL_IOMMU_SVM
1781 if (pasid_enabled(iommu)) {
1782 if (ecap_prs(iommu->ecap))
1783 intel_svm_finish_prq(iommu);
1784 intel_svm_free_pasid_tables(iommu);
1785 }
1786 #endif
1787 }
1788
1789 static struct dmar_domain *alloc_domain(int flags)
1790 {
1791 struct dmar_domain *domain;
1792
1793 domain = alloc_domain_mem();
1794 if (!domain)
1795 return NULL;
1796
1797 memset(domain, 0, sizeof(*domain));
1798 domain->nid = -1;
1799 domain->flags = flags;
1800 domain->has_iotlb_device = false;
1801 INIT_LIST_HEAD(&domain->devices);
1802
1803 return domain;
1804 }
1805
1806 /* Must be called with iommu->lock */
1807 static int domain_attach_iommu(struct dmar_domain *domain,
1808 struct intel_iommu *iommu)
1809 {
1810 unsigned long ndomains;
1811 int num;
1812
1813 assert_spin_locked(&device_domain_lock);
1814 assert_spin_locked(&iommu->lock);
1815
1816 domain->iommu_refcnt[iommu->seq_id] += 1;
1817 domain->iommu_count += 1;
1818 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1819 ndomains = cap_ndoms(iommu->cap);
1820 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1821
1822 if (num >= ndomains) {
1823 pr_err("%s: No free domain ids\n", iommu->name);
1824 domain->iommu_refcnt[iommu->seq_id] -= 1;
1825 domain->iommu_count -= 1;
1826 return -ENOSPC;
1827 }
1828
1829 set_bit(num, iommu->domain_ids);
1830 set_iommu_domain(iommu, num, domain);
1831
1832 domain->iommu_did[iommu->seq_id] = num;
1833 domain->nid = iommu->node;
1834
1835 domain_update_iommu_cap(domain);
1836 }
1837
1838 return 0;
1839 }
1840
1841 static int domain_detach_iommu(struct dmar_domain *domain,
1842 struct intel_iommu *iommu)
1843 {
1844 int num, count = INT_MAX;
1845
1846 assert_spin_locked(&device_domain_lock);
1847 assert_spin_locked(&iommu->lock);
1848
1849 domain->iommu_refcnt[iommu->seq_id] -= 1;
1850 count = --domain->iommu_count;
1851 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1852 num = domain->iommu_did[iommu->seq_id];
1853 clear_bit(num, iommu->domain_ids);
1854 set_iommu_domain(iommu, num, NULL);
1855
1856 domain_update_iommu_cap(domain);
1857 domain->iommu_did[iommu->seq_id] = 0;
1858 }
1859
1860 return count;
1861 }
1862
1863 static struct iova_domain reserved_iova_list;
1864 static struct lock_class_key reserved_rbtree_key;
1865
1866 static int dmar_init_reserved_ranges(void)
1867 {
1868 struct pci_dev *pdev = NULL;
1869 struct iova *iova;
1870 int i;
1871
1872 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1873 DMA_32BIT_PFN);
1874
1875 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1876 &reserved_rbtree_key);
1877
1878 /* IOAPIC ranges shouldn't be accessed by DMA */
1879 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1880 IOVA_PFN(IOAPIC_RANGE_END));
1881 if (!iova) {
1882 pr_err("Reserve IOAPIC range failed\n");
1883 return -ENODEV;
1884 }
1885
1886 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1887 for_each_pci_dev(pdev) {
1888 struct resource *r;
1889
1890 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1891 r = &pdev->resource[i];
1892 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1893 continue;
1894 iova = reserve_iova(&reserved_iova_list,
1895 IOVA_PFN(r->start),
1896 IOVA_PFN(r->end));
1897 if (!iova) {
1898 pr_err("Reserve iova failed\n");
1899 return -ENODEV;
1900 }
1901 }
1902 }
1903 return 0;
1904 }
1905
1906 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1907 {
1908 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1909 }
1910
1911 static inline int guestwidth_to_adjustwidth(int gaw)
1912 {
1913 int agaw;
1914 int r = (gaw - 12) % 9;
1915
1916 if (r == 0)
1917 agaw = gaw;
1918 else
1919 agaw = gaw + 9 - r;
1920 if (agaw > 64)
1921 agaw = 64;
1922 return agaw;
1923 }
1924
1925 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1926 int guest_width)
1927 {
1928 int adjust_width, agaw;
1929 unsigned long sagaw;
1930
1931 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1932 DMA_32BIT_PFN);
1933 domain_reserve_special_ranges(domain);
1934
1935 /* calculate AGAW */
1936 if (guest_width > cap_mgaw(iommu->cap))
1937 guest_width = cap_mgaw(iommu->cap);
1938 domain->gaw = guest_width;
1939 adjust_width = guestwidth_to_adjustwidth(guest_width);
1940 agaw = width_to_agaw(adjust_width);
1941 sagaw = cap_sagaw(iommu->cap);
1942 if (!test_bit(agaw, &sagaw)) {
1943 /* hardware doesn't support it, choose a bigger one */
1944 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1945 agaw = find_next_bit(&sagaw, 5, agaw);
1946 if (agaw >= 5)
1947 return -ENODEV;
1948 }
1949 domain->agaw = agaw;
1950
1951 if (ecap_coherent(iommu->ecap))
1952 domain->iommu_coherency = 1;
1953 else
1954 domain->iommu_coherency = 0;
1955
1956 if (ecap_sc_support(iommu->ecap))
1957 domain->iommu_snooping = 1;
1958 else
1959 domain->iommu_snooping = 0;
1960
1961 if (intel_iommu_superpage)
1962 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1963 else
1964 domain->iommu_superpage = 0;
1965
1966 domain->nid = iommu->node;
1967
1968 /* always allocate the top pgd */
1969 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1970 if (!domain->pgd)
1971 return -ENOMEM;
1972 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1973 return 0;
1974 }
1975
1976 static void domain_exit(struct dmar_domain *domain)
1977 {
1978 struct page *freelist = NULL;
1979
1980 /* Domain 0 is reserved, so dont process it */
1981 if (!domain)
1982 return;
1983
1984 /* Flush any lazy unmaps that may reference this domain */
1985 if (!intel_iommu_strict) {
1986 int cpu;
1987
1988 for_each_possible_cpu(cpu)
1989 flush_unmaps_timeout(cpu);
1990 }
1991
1992 /* Remove associated devices and clear attached or cached domains */
1993 rcu_read_lock();
1994 domain_remove_dev_info(domain);
1995 rcu_read_unlock();
1996
1997 /* destroy iovas */
1998 put_iova_domain(&domain->iovad);
1999
2000 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
2001
2002 dma_free_pagelist(freelist);
2003
2004 free_domain_mem(domain);
2005 }
2006
2007 static int domain_context_mapping_one(struct dmar_domain *domain,
2008 struct intel_iommu *iommu,
2009 u8 bus, u8 devfn)
2010 {
2011 u16 did = domain->iommu_did[iommu->seq_id];
2012 int translation = CONTEXT_TT_MULTI_LEVEL;
2013 struct device_domain_info *info = NULL;
2014 struct context_entry *context;
2015 unsigned long flags;
2016 struct dma_pte *pgd;
2017 int ret, agaw;
2018
2019 WARN_ON(did == 0);
2020
2021 if (hw_pass_through && domain_type_is_si(domain))
2022 translation = CONTEXT_TT_PASS_THROUGH;
2023
2024 pr_debug("Set context mapping for %02x:%02x.%d\n",
2025 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2026
2027 BUG_ON(!domain->pgd);
2028
2029 spin_lock_irqsave(&device_domain_lock, flags);
2030 spin_lock(&iommu->lock);
2031
2032 ret = -ENOMEM;
2033 context = iommu_context_addr(iommu, bus, devfn, 1);
2034 if (!context)
2035 goto out_unlock;
2036
2037 ret = 0;
2038 if (context_present(context))
2039 goto out_unlock;
2040
2041 /*
2042 * For kdump cases, old valid entries may be cached due to the
2043 * in-flight DMA and copied pgtable, but there is no unmapping
2044 * behaviour for them, thus we need an explicit cache flush for
2045 * the newly-mapped device. For kdump, at this point, the device
2046 * is supposed to finish reset at its driver probe stage, so no
2047 * in-flight DMA will exist, and we don't need to worry anymore
2048 * hereafter.
2049 */
2050 if (context_copied(context)) {
2051 u16 did_old = context_domain_id(context);
2052
2053 if (did_old >= 0 && did_old < cap_ndoms(iommu->cap))
2054 iommu->flush.flush_context(iommu, did_old,
2055 (((u16)bus) << 8) | devfn,
2056 DMA_CCMD_MASK_NOBIT,
2057 DMA_CCMD_DEVICE_INVL);
2058 }
2059
2060 pgd = domain->pgd;
2061
2062 context_clear_entry(context);
2063 context_set_domain_id(context, did);
2064
2065 /*
2066 * Skip top levels of page tables for iommu which has less agaw
2067 * than default. Unnecessary for PT mode.
2068 */
2069 if (translation != CONTEXT_TT_PASS_THROUGH) {
2070 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
2071 ret = -ENOMEM;
2072 pgd = phys_to_virt(dma_pte_addr(pgd));
2073 if (!dma_pte_present(pgd))
2074 goto out_unlock;
2075 }
2076
2077 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2078 if (info && info->ats_supported)
2079 translation = CONTEXT_TT_DEV_IOTLB;
2080 else
2081 translation = CONTEXT_TT_MULTI_LEVEL;
2082
2083 context_set_address_root(context, virt_to_phys(pgd));
2084 context_set_address_width(context, iommu->agaw);
2085 } else {
2086 /*
2087 * In pass through mode, AW must be programmed to
2088 * indicate the largest AGAW value supported by
2089 * hardware. And ASR is ignored by hardware.
2090 */
2091 context_set_address_width(context, iommu->msagaw);
2092 }
2093
2094 context_set_translation_type(context, translation);
2095 context_set_fault_enable(context);
2096 context_set_present(context);
2097 domain_flush_cache(domain, context, sizeof(*context));
2098
2099 /*
2100 * It's a non-present to present mapping. If hardware doesn't cache
2101 * non-present entry we only need to flush the write-buffer. If the
2102 * _does_ cache non-present entries, then it does so in the special
2103 * domain #0, which we have to flush:
2104 */
2105 if (cap_caching_mode(iommu->cap)) {
2106 iommu->flush.flush_context(iommu, 0,
2107 (((u16)bus) << 8) | devfn,
2108 DMA_CCMD_MASK_NOBIT,
2109 DMA_CCMD_DEVICE_INVL);
2110 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2111 } else {
2112 iommu_flush_write_buffer(iommu);
2113 }
2114 iommu_enable_dev_iotlb(info);
2115
2116 ret = 0;
2117
2118 out_unlock:
2119 spin_unlock(&iommu->lock);
2120 spin_unlock_irqrestore(&device_domain_lock, flags);
2121
2122 return ret;
2123 }
2124
2125 struct domain_context_mapping_data {
2126 struct dmar_domain *domain;
2127 struct intel_iommu *iommu;
2128 };
2129
2130 static int domain_context_mapping_cb(struct pci_dev *pdev,
2131 u16 alias, void *opaque)
2132 {
2133 struct domain_context_mapping_data *data = opaque;
2134
2135 return domain_context_mapping_one(data->domain, data->iommu,
2136 PCI_BUS_NUM(alias), alias & 0xff);
2137 }
2138
2139 static int
2140 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2141 {
2142 struct intel_iommu *iommu;
2143 u8 bus, devfn;
2144 struct domain_context_mapping_data data;
2145
2146 iommu = device_to_iommu(dev, &bus, &devfn);
2147 if (!iommu)
2148 return -ENODEV;
2149
2150 if (!dev_is_pci(dev))
2151 return domain_context_mapping_one(domain, iommu, bus, devfn);
2152
2153 data.domain = domain;
2154 data.iommu = iommu;
2155
2156 return pci_for_each_dma_alias(to_pci_dev(dev),
2157 &domain_context_mapping_cb, &data);
2158 }
2159
2160 static int domain_context_mapped_cb(struct pci_dev *pdev,
2161 u16 alias, void *opaque)
2162 {
2163 struct intel_iommu *iommu = opaque;
2164
2165 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2166 }
2167
2168 static int domain_context_mapped(struct device *dev)
2169 {
2170 struct intel_iommu *iommu;
2171 u8 bus, devfn;
2172
2173 iommu = device_to_iommu(dev, &bus, &devfn);
2174 if (!iommu)
2175 return -ENODEV;
2176
2177 if (!dev_is_pci(dev))
2178 return device_context_mapped(iommu, bus, devfn);
2179
2180 return !pci_for_each_dma_alias(to_pci_dev(dev),
2181 domain_context_mapped_cb, iommu);
2182 }
2183
2184 /* Returns a number of VTD pages, but aligned to MM page size */
2185 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2186 size_t size)
2187 {
2188 host_addr &= ~PAGE_MASK;
2189 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2190 }
2191
2192 /* Return largest possible superpage level for a given mapping */
2193 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2194 unsigned long iov_pfn,
2195 unsigned long phy_pfn,
2196 unsigned long pages)
2197 {
2198 int support, level = 1;
2199 unsigned long pfnmerge;
2200
2201 support = domain->iommu_superpage;
2202
2203 /* To use a large page, the virtual *and* physical addresses
2204 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2205 of them will mean we have to use smaller pages. So just
2206 merge them and check both at once. */
2207 pfnmerge = iov_pfn | phy_pfn;
2208
2209 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2210 pages >>= VTD_STRIDE_SHIFT;
2211 if (!pages)
2212 break;
2213 pfnmerge >>= VTD_STRIDE_SHIFT;
2214 level++;
2215 support--;
2216 }
2217 return level;
2218 }
2219
2220 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2221 struct scatterlist *sg, unsigned long phys_pfn,
2222 unsigned long nr_pages, int prot)
2223 {
2224 struct dma_pte *first_pte = NULL, *pte = NULL;
2225 phys_addr_t uninitialized_var(pteval);
2226 unsigned long sg_res = 0;
2227 unsigned int largepage_lvl = 0;
2228 unsigned long lvl_pages = 0;
2229
2230 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2231
2232 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2233 return -EINVAL;
2234
2235 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2236
2237 if (!sg) {
2238 sg_res = nr_pages;
2239 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2240 }
2241
2242 while (nr_pages > 0) {
2243 uint64_t tmp;
2244
2245 if (!sg_res) {
2246 sg_res = aligned_nrpages(sg->offset, sg->length);
2247 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2248 sg->dma_length = sg->length;
2249 pteval = page_to_phys(sg_page(sg)) | prot;
2250 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2251 }
2252
2253 if (!pte) {
2254 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2255
2256 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2257 if (!pte)
2258 return -ENOMEM;
2259 /* It is large page*/
2260 if (largepage_lvl > 1) {
2261 unsigned long nr_superpages, end_pfn;
2262
2263 pteval |= DMA_PTE_LARGE_PAGE;
2264 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2265
2266 nr_superpages = sg_res / lvl_pages;
2267 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2268
2269 /*
2270 * Ensure that old small page tables are
2271 * removed to make room for superpage(s).
2272 */
2273 dma_pte_free_pagetable(domain, iov_pfn, end_pfn);
2274 } else {
2275 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2276 }
2277
2278 }
2279 /* We don't need lock here, nobody else
2280 * touches the iova range
2281 */
2282 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2283 if (tmp) {
2284 static int dumps = 5;
2285 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2286 iov_pfn, tmp, (unsigned long long)pteval);
2287 if (dumps) {
2288 dumps--;
2289 debug_dma_dump_mappings(NULL);
2290 }
2291 WARN_ON(1);
2292 }
2293
2294 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2295
2296 BUG_ON(nr_pages < lvl_pages);
2297 BUG_ON(sg_res < lvl_pages);
2298
2299 nr_pages -= lvl_pages;
2300 iov_pfn += lvl_pages;
2301 phys_pfn += lvl_pages;
2302 pteval += lvl_pages * VTD_PAGE_SIZE;
2303 sg_res -= lvl_pages;
2304
2305 /* If the next PTE would be the first in a new page, then we
2306 need to flush the cache on the entries we've just written.
2307 And then we'll need to recalculate 'pte', so clear it and
2308 let it get set again in the if (!pte) block above.
2309
2310 If we're done (!nr_pages) we need to flush the cache too.
2311
2312 Also if we've been setting superpages, we may need to
2313 recalculate 'pte' and switch back to smaller pages for the
2314 end of the mapping, if the trailing size is not enough to
2315 use another superpage (i.e. sg_res < lvl_pages). */
2316 pte++;
2317 if (!nr_pages || first_pte_in_page(pte) ||
2318 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2319 domain_flush_cache(domain, first_pte,
2320 (void *)pte - (void *)first_pte);
2321 pte = NULL;
2322 }
2323
2324 if (!sg_res && nr_pages)
2325 sg = sg_next(sg);
2326 }
2327 return 0;
2328 }
2329
2330 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2331 struct scatterlist *sg, unsigned long nr_pages,
2332 int prot)
2333 {
2334 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2335 }
2336
2337 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2338 unsigned long phys_pfn, unsigned long nr_pages,
2339 int prot)
2340 {
2341 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2342 }
2343
2344 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2345 {
2346 if (!iommu)
2347 return;
2348
2349 clear_context_table(iommu, bus, devfn);
2350 iommu->flush.flush_context(iommu, 0, 0, 0,
2351 DMA_CCMD_GLOBAL_INVL);
2352 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2353 }
2354
2355 static inline void unlink_domain_info(struct device_domain_info *info)
2356 {
2357 assert_spin_locked(&device_domain_lock);
2358 list_del(&info->link);
2359 list_del(&info->global);
2360 if (info->dev)
2361 info->dev->archdata.iommu = NULL;
2362 }
2363
2364 static void domain_remove_dev_info(struct dmar_domain *domain)
2365 {
2366 struct device_domain_info *info, *tmp;
2367 unsigned long flags;
2368
2369 spin_lock_irqsave(&device_domain_lock, flags);
2370 list_for_each_entry_safe(info, tmp, &domain->devices, link)
2371 __dmar_remove_one_dev_info(info);
2372 spin_unlock_irqrestore(&device_domain_lock, flags);
2373 }
2374
2375 /*
2376 * find_domain
2377 * Note: we use struct device->archdata.iommu stores the info
2378 */
2379 static struct dmar_domain *find_domain(struct device *dev)
2380 {
2381 struct device_domain_info *info;
2382
2383 /* No lock here, assumes no domain exit in normal case */
2384 info = dev->archdata.iommu;
2385 if (info)
2386 return info->domain;
2387 return NULL;
2388 }
2389
2390 static inline struct device_domain_info *
2391 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2392 {
2393 struct device_domain_info *info;
2394
2395 list_for_each_entry(info, &device_domain_list, global)
2396 if (info->iommu->segment == segment && info->bus == bus &&
2397 info->devfn == devfn)
2398 return info;
2399
2400 return NULL;
2401 }
2402
2403 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2404 int bus, int devfn,
2405 struct device *dev,
2406 struct dmar_domain *domain)
2407 {
2408 struct dmar_domain *found = NULL;
2409 struct device_domain_info *info;
2410 unsigned long flags;
2411 int ret;
2412
2413 info = alloc_devinfo_mem();
2414 if (!info)
2415 return NULL;
2416
2417 info->bus = bus;
2418 info->devfn = devfn;
2419 info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2420 info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2421 info->ats_qdep = 0;
2422 info->dev = dev;
2423 info->domain = domain;
2424 info->iommu = iommu;
2425
2426 if (dev && dev_is_pci(dev)) {
2427 struct pci_dev *pdev = to_pci_dev(info->dev);
2428
2429 if (ecap_dev_iotlb_support(iommu->ecap) &&
2430 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2431 dmar_find_matched_atsr_unit(pdev))
2432 info->ats_supported = 1;
2433
2434 if (ecs_enabled(iommu)) {
2435 if (pasid_enabled(iommu)) {
2436 int features = pci_pasid_features(pdev);
2437 if (features >= 0)
2438 info->pasid_supported = features | 1;
2439 }
2440
2441 if (info->ats_supported && ecap_prs(iommu->ecap) &&
2442 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2443 info->pri_supported = 1;
2444 }
2445 }
2446
2447 spin_lock_irqsave(&device_domain_lock, flags);
2448 if (dev)
2449 found = find_domain(dev);
2450
2451 if (!found) {
2452 struct device_domain_info *info2;
2453 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2454 if (info2) {
2455 found = info2->domain;
2456 info2->dev = dev;
2457 }
2458 }
2459
2460 if (found) {
2461 spin_unlock_irqrestore(&device_domain_lock, flags);
2462 free_devinfo_mem(info);
2463 /* Caller must free the original domain */
2464 return found;
2465 }
2466
2467 spin_lock(&iommu->lock);
2468 ret = domain_attach_iommu(domain, iommu);
2469 spin_unlock(&iommu->lock);
2470
2471 if (ret) {
2472 spin_unlock_irqrestore(&device_domain_lock, flags);
2473 free_devinfo_mem(info);
2474 return NULL;
2475 }
2476
2477 list_add(&info->link, &domain->devices);
2478 list_add(&info->global, &device_domain_list);
2479 if (dev)
2480 dev->archdata.iommu = info;
2481 spin_unlock_irqrestore(&device_domain_lock, flags);
2482
2483 if (dev && domain_context_mapping(domain, dev)) {
2484 pr_err("Domain context map for %s failed\n", dev_name(dev));
2485 dmar_remove_one_dev_info(domain, dev);
2486 return NULL;
2487 }
2488
2489 return domain;
2490 }
2491
2492 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2493 {
2494 *(u16 *)opaque = alias;
2495 return 0;
2496 }
2497
2498 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2499 {
2500 struct device_domain_info *info = NULL;
2501 struct dmar_domain *domain = NULL;
2502 struct intel_iommu *iommu;
2503 u16 req_id, dma_alias;
2504 unsigned long flags;
2505 u8 bus, devfn;
2506
2507 iommu = device_to_iommu(dev, &bus, &devfn);
2508 if (!iommu)
2509 return NULL;
2510
2511 req_id = ((u16)bus << 8) | devfn;
2512
2513 if (dev_is_pci(dev)) {
2514 struct pci_dev *pdev = to_pci_dev(dev);
2515
2516 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2517
2518 spin_lock_irqsave(&device_domain_lock, flags);
2519 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2520 PCI_BUS_NUM(dma_alias),
2521 dma_alias & 0xff);
2522 if (info) {
2523 iommu = info->iommu;
2524 domain = info->domain;
2525 }
2526 spin_unlock_irqrestore(&device_domain_lock, flags);
2527
2528 /* DMA alias already has a domain, use it */
2529 if (info)
2530 goto out;
2531 }
2532
2533 /* Allocate and initialize new domain for the device */
2534 domain = alloc_domain(0);
2535 if (!domain)
2536 return NULL;
2537 if (domain_init(domain, iommu, gaw)) {
2538 domain_exit(domain);
2539 return NULL;
2540 }
2541
2542 out:
2543
2544 return domain;
2545 }
2546
2547 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2548 struct dmar_domain *domain)
2549 {
2550 struct intel_iommu *iommu;
2551 struct dmar_domain *tmp;
2552 u16 req_id, dma_alias;
2553 u8 bus, devfn;
2554
2555 iommu = device_to_iommu(dev, &bus, &devfn);
2556 if (!iommu)
2557 return NULL;
2558
2559 req_id = ((u16)bus << 8) | devfn;
2560
2561 if (dev_is_pci(dev)) {
2562 struct pci_dev *pdev = to_pci_dev(dev);
2563
2564 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2565
2566 /* register PCI DMA alias device */
2567 if (req_id != dma_alias) {
2568 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2569 dma_alias & 0xff, NULL, domain);
2570
2571 if (!tmp || tmp != domain)
2572 return tmp;
2573 }
2574 }
2575
2576 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2577 if (!tmp || tmp != domain)
2578 return tmp;
2579
2580 return domain;
2581 }
2582
2583 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2584 {
2585 struct dmar_domain *domain, *tmp;
2586
2587 domain = find_domain(dev);
2588 if (domain)
2589 goto out;
2590
2591 domain = find_or_alloc_domain(dev, gaw);
2592 if (!domain)
2593 goto out;
2594
2595 tmp = set_domain_for_dev(dev, domain);
2596 if (!tmp || domain != tmp) {
2597 domain_exit(domain);
2598 domain = tmp;
2599 }
2600
2601 out:
2602
2603 return domain;
2604 }
2605
2606 static int iommu_domain_identity_map(struct dmar_domain *domain,
2607 unsigned long long start,
2608 unsigned long long end)
2609 {
2610 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2611 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2612
2613 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2614 dma_to_mm_pfn(last_vpfn))) {
2615 pr_err("Reserving iova failed\n");
2616 return -ENOMEM;
2617 }
2618
2619 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2620 /*
2621 * RMRR range might have overlap with physical memory range,
2622 * clear it first
2623 */
2624 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2625
2626 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2627 last_vpfn - first_vpfn + 1,
2628 DMA_PTE_READ|DMA_PTE_WRITE);
2629 }
2630
2631 static int domain_prepare_identity_map(struct device *dev,
2632 struct dmar_domain *domain,
2633 unsigned long long start,
2634 unsigned long long end)
2635 {
2636 /* For _hardware_ passthrough, don't bother. But for software
2637 passthrough, we do it anyway -- it may indicate a memory
2638 range which is reserved in E820, so which didn't get set
2639 up to start with in si_domain */
2640 if (domain == si_domain && hw_pass_through) {
2641 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2642 dev_name(dev), start, end);
2643 return 0;
2644 }
2645
2646 pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2647 dev_name(dev), start, end);
2648
2649 if (end < start) {
2650 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2651 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2652 dmi_get_system_info(DMI_BIOS_VENDOR),
2653 dmi_get_system_info(DMI_BIOS_VERSION),
2654 dmi_get_system_info(DMI_PRODUCT_VERSION));
2655 return -EIO;
2656 }
2657
2658 if (end >> agaw_to_width(domain->agaw)) {
2659 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2660 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2661 agaw_to_width(domain->agaw),
2662 dmi_get_system_info(DMI_BIOS_VENDOR),
2663 dmi_get_system_info(DMI_BIOS_VERSION),
2664 dmi_get_system_info(DMI_PRODUCT_VERSION));
2665 return -EIO;
2666 }
2667
2668 return iommu_domain_identity_map(domain, start, end);
2669 }
2670
2671 static int iommu_prepare_identity_map(struct device *dev,
2672 unsigned long long start,
2673 unsigned long long end)
2674 {
2675 struct dmar_domain *domain;
2676 int ret;
2677
2678 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2679 if (!domain)
2680 return -ENOMEM;
2681
2682 ret = domain_prepare_identity_map(dev, domain, start, end);
2683 if (ret)
2684 domain_exit(domain);
2685
2686 return ret;
2687 }
2688
2689 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2690 struct device *dev)
2691 {
2692 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2693 return 0;
2694 return iommu_prepare_identity_map(dev, rmrr->base_address,
2695 rmrr->end_address);
2696 }
2697
2698 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2699 static inline void iommu_prepare_isa(void)
2700 {
2701 struct pci_dev *pdev;
2702 int ret;
2703
2704 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2705 if (!pdev)
2706 return;
2707
2708 pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2709 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2710
2711 if (ret)
2712 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2713
2714 pci_dev_put(pdev);
2715 }
2716 #else
2717 static inline void iommu_prepare_isa(void)
2718 {
2719 return;
2720 }
2721 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2722
2723 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2724
2725 static int __init si_domain_init(int hw)
2726 {
2727 int nid, ret = 0;
2728
2729 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2730 if (!si_domain)
2731 return -EFAULT;
2732
2733 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2734 domain_exit(si_domain);
2735 return -EFAULT;
2736 }
2737
2738 pr_debug("Identity mapping domain allocated\n");
2739
2740 if (hw)
2741 return 0;
2742
2743 for_each_online_node(nid) {
2744 unsigned long start_pfn, end_pfn;
2745 int i;
2746
2747 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2748 ret = iommu_domain_identity_map(si_domain,
2749 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2750 if (ret)
2751 return ret;
2752 }
2753 }
2754
2755 return 0;
2756 }
2757
2758 static int identity_mapping(struct device *dev)
2759 {
2760 struct device_domain_info *info;
2761
2762 if (likely(!iommu_identity_mapping))
2763 return 0;
2764
2765 info = dev->archdata.iommu;
2766 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2767 return (info->domain == si_domain);
2768
2769 return 0;
2770 }
2771
2772 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2773 {
2774 struct dmar_domain *ndomain;
2775 struct intel_iommu *iommu;
2776 u8 bus, devfn;
2777
2778 iommu = device_to_iommu(dev, &bus, &devfn);
2779 if (!iommu)
2780 return -ENODEV;
2781
2782 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2783 if (ndomain != domain)
2784 return -EBUSY;
2785
2786 return 0;
2787 }
2788
2789 static bool device_has_rmrr(struct device *dev)
2790 {
2791 struct dmar_rmrr_unit *rmrr;
2792 struct device *tmp;
2793 int i;
2794
2795 rcu_read_lock();
2796 for_each_rmrr_units(rmrr) {
2797 /*
2798 * Return TRUE if this RMRR contains the device that
2799 * is passed in.
2800 */
2801 for_each_active_dev_scope(rmrr->devices,
2802 rmrr->devices_cnt, i, tmp)
2803 if (tmp == dev) {
2804 rcu_read_unlock();
2805 return true;
2806 }
2807 }
2808 rcu_read_unlock();
2809 return false;
2810 }
2811
2812 /*
2813 * There are a couple cases where we need to restrict the functionality of
2814 * devices associated with RMRRs. The first is when evaluating a device for
2815 * identity mapping because problems exist when devices are moved in and out
2816 * of domains and their respective RMRR information is lost. This means that
2817 * a device with associated RMRRs will never be in a "passthrough" domain.
2818 * The second is use of the device through the IOMMU API. This interface
2819 * expects to have full control of the IOVA space for the device. We cannot
2820 * satisfy both the requirement that RMRR access is maintained and have an
2821 * unencumbered IOVA space. We also have no ability to quiesce the device's
2822 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2823 * We therefore prevent devices associated with an RMRR from participating in
2824 * the IOMMU API, which eliminates them from device assignment.
2825 *
2826 * In both cases we assume that PCI USB devices with RMRRs have them largely
2827 * for historical reasons and that the RMRR space is not actively used post
2828 * boot. This exclusion may change if vendors begin to abuse it.
2829 *
2830 * The same exception is made for graphics devices, with the requirement that
2831 * any use of the RMRR regions will be torn down before assigning the device
2832 * to a guest.
2833 */
2834 static bool device_is_rmrr_locked(struct device *dev)
2835 {
2836 if (!device_has_rmrr(dev))
2837 return false;
2838
2839 if (dev_is_pci(dev)) {
2840 struct pci_dev *pdev = to_pci_dev(dev);
2841
2842 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2843 return false;
2844 }
2845
2846 return true;
2847 }
2848
2849 static int iommu_should_identity_map(struct device *dev, int startup)
2850 {
2851
2852 if (dev_is_pci(dev)) {
2853 struct pci_dev *pdev = to_pci_dev(dev);
2854
2855 if (device_is_rmrr_locked(dev))
2856 return 0;
2857
2858 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2859 return 1;
2860
2861 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2862 return 1;
2863
2864 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2865 return 0;
2866
2867 /*
2868 * We want to start off with all devices in the 1:1 domain, and
2869 * take them out later if we find they can't access all of memory.
2870 *
2871 * However, we can't do this for PCI devices behind bridges,
2872 * because all PCI devices behind the same bridge will end up
2873 * with the same source-id on their transactions.
2874 *
2875 * Practically speaking, we can't change things around for these
2876 * devices at run-time, because we can't be sure there'll be no
2877 * DMA transactions in flight for any of their siblings.
2878 *
2879 * So PCI devices (unless they're on the root bus) as well as
2880 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2881 * the 1:1 domain, just in _case_ one of their siblings turns out
2882 * not to be able to map all of memory.
2883 */
2884 if (!pci_is_pcie(pdev)) {
2885 if (!pci_is_root_bus(pdev->bus))
2886 return 0;
2887 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2888 return 0;
2889 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2890 return 0;
2891 } else {
2892 if (device_has_rmrr(dev))
2893 return 0;
2894 }
2895
2896 /*
2897 * At boot time, we don't yet know if devices will be 64-bit capable.
2898 * Assume that they will — if they turn out not to be, then we can
2899 * take them out of the 1:1 domain later.
2900 */
2901 if (!startup) {
2902 /*
2903 * If the device's dma_mask is less than the system's memory
2904 * size then this is not a candidate for identity mapping.
2905 */
2906 u64 dma_mask = *dev->dma_mask;
2907
2908 if (dev->coherent_dma_mask &&
2909 dev->coherent_dma_mask < dma_mask)
2910 dma_mask = dev->coherent_dma_mask;
2911
2912 return dma_mask >= dma_get_required_mask(dev);
2913 }
2914
2915 return 1;
2916 }
2917
2918 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2919 {
2920 int ret;
2921
2922 if (!iommu_should_identity_map(dev, 1))
2923 return 0;
2924
2925 ret = domain_add_dev_info(si_domain, dev);
2926 if (!ret)
2927 pr_info("%s identity mapping for device %s\n",
2928 hw ? "Hardware" : "Software", dev_name(dev));
2929 else if (ret == -ENODEV)
2930 /* device not associated with an iommu */
2931 ret = 0;
2932
2933 return ret;
2934 }
2935
2936
2937 static int __init iommu_prepare_static_identity_mapping(int hw)
2938 {
2939 struct pci_dev *pdev = NULL;
2940 struct dmar_drhd_unit *drhd;
2941 struct intel_iommu *iommu;
2942 struct device *dev;
2943 int i;
2944 int ret = 0;
2945
2946 for_each_pci_dev(pdev) {
2947 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2948 if (ret)
2949 return ret;
2950 }
2951
2952 for_each_active_iommu(iommu, drhd)
2953 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2954 struct acpi_device_physical_node *pn;
2955 struct acpi_device *adev;
2956
2957 if (dev->bus != &acpi_bus_type)
2958 continue;
2959
2960 adev= to_acpi_device(dev);
2961 mutex_lock(&adev->physical_node_lock);
2962 list_for_each_entry(pn, &adev->physical_node_list, node) {
2963 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2964 if (ret)
2965 break;
2966 }
2967 mutex_unlock(&adev->physical_node_lock);
2968 if (ret)
2969 return ret;
2970 }
2971
2972 return 0;
2973 }
2974
2975 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2976 {
2977 /*
2978 * Start from the sane iommu hardware state.
2979 * If the queued invalidation is already initialized by us
2980 * (for example, while enabling interrupt-remapping) then
2981 * we got the things already rolling from a sane state.
2982 */
2983 if (!iommu->qi) {
2984 /*
2985 * Clear any previous faults.
2986 */
2987 dmar_fault(-1, iommu);
2988 /*
2989 * Disable queued invalidation if supported and already enabled
2990 * before OS handover.
2991 */
2992 dmar_disable_qi(iommu);
2993 }
2994
2995 if (dmar_enable_qi(iommu)) {
2996 /*
2997 * Queued Invalidate not enabled, use Register Based Invalidate
2998 */
2999 iommu->flush.flush_context = __iommu_flush_context;
3000 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
3001 pr_info("%s: Using Register based invalidation\n",
3002 iommu->name);
3003 } else {
3004 iommu->flush.flush_context = qi_flush_context;
3005 iommu->flush.flush_iotlb = qi_flush_iotlb;
3006 pr_info("%s: Using Queued invalidation\n", iommu->name);
3007 }
3008 }
3009
3010 static int copy_context_table(struct intel_iommu *iommu,
3011 struct root_entry *old_re,
3012 struct context_entry **tbl,
3013 int bus, bool ext)
3014 {
3015 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3016 struct context_entry *new_ce = NULL, ce;
3017 struct context_entry *old_ce = NULL;
3018 struct root_entry re;
3019 phys_addr_t old_ce_phys;
3020
3021 tbl_idx = ext ? bus * 2 : bus;
3022 memcpy(&re, old_re, sizeof(re));
3023
3024 for (devfn = 0; devfn < 256; devfn++) {
3025 /* First calculate the correct index */
3026 idx = (ext ? devfn * 2 : devfn) % 256;
3027
3028 if (idx == 0) {
3029 /* First save what we may have and clean up */
3030 if (new_ce) {
3031 tbl[tbl_idx] = new_ce;
3032 __iommu_flush_cache(iommu, new_ce,
3033 VTD_PAGE_SIZE);
3034 pos = 1;
3035 }
3036
3037 if (old_ce)
3038 iounmap(old_ce);
3039
3040 ret = 0;
3041 if (devfn < 0x80)
3042 old_ce_phys = root_entry_lctp(&re);
3043 else
3044 old_ce_phys = root_entry_uctp(&re);
3045
3046 if (!old_ce_phys) {
3047 if (ext && devfn == 0) {
3048 /* No LCTP, try UCTP */
3049 devfn = 0x7f;
3050 continue;
3051 } else {
3052 goto out;
3053 }
3054 }
3055
3056 ret = -ENOMEM;
3057 old_ce = memremap(old_ce_phys, PAGE_SIZE,
3058 MEMREMAP_WB);
3059 if (!old_ce)
3060 goto out;
3061
3062 new_ce = alloc_pgtable_page(iommu->node);
3063 if (!new_ce)
3064 goto out_unmap;
3065
3066 ret = 0;
3067 }
3068
3069 /* Now copy the context entry */
3070 memcpy(&ce, old_ce + idx, sizeof(ce));
3071
3072 if (!__context_present(&ce))
3073 continue;
3074
3075 did = context_domain_id(&ce);
3076 if (did >= 0 && did < cap_ndoms(iommu->cap))
3077 set_bit(did, iommu->domain_ids);
3078
3079 /*
3080 * We need a marker for copied context entries. This
3081 * marker needs to work for the old format as well as
3082 * for extended context entries.
3083 *
3084 * Bit 67 of the context entry is used. In the old
3085 * format this bit is available to software, in the
3086 * extended format it is the PGE bit, but PGE is ignored
3087 * by HW if PASIDs are disabled (and thus still
3088 * available).
3089 *
3090 * So disable PASIDs first and then mark the entry
3091 * copied. This means that we don't copy PASID
3092 * translations from the old kernel, but this is fine as
3093 * faults there are not fatal.
3094 */
3095 context_clear_pasid_enable(&ce);
3096 context_set_copied(&ce);
3097
3098 new_ce[idx] = ce;
3099 }
3100
3101 tbl[tbl_idx + pos] = new_ce;
3102
3103 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3104
3105 out_unmap:
3106 memunmap(old_ce);
3107
3108 out:
3109 return ret;
3110 }
3111
3112 static int copy_translation_tables(struct intel_iommu *iommu)
3113 {
3114 struct context_entry **ctxt_tbls;
3115 struct root_entry *old_rt;
3116 phys_addr_t old_rt_phys;
3117 int ctxt_table_entries;
3118 unsigned long flags;
3119 u64 rtaddr_reg;
3120 int bus, ret;
3121 bool new_ext, ext;
3122
3123 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3124 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
3125 new_ext = !!ecap_ecs(iommu->ecap);
3126
3127 /*
3128 * The RTT bit can only be changed when translation is disabled,
3129 * but disabling translation means to open a window for data
3130 * corruption. So bail out and don't copy anything if we would
3131 * have to change the bit.
3132 */
3133 if (new_ext != ext)
3134 return -EINVAL;
3135
3136 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3137 if (!old_rt_phys)
3138 return -EINVAL;
3139
3140 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3141 if (!old_rt)
3142 return -ENOMEM;
3143
3144 /* This is too big for the stack - allocate it from slab */
3145 ctxt_table_entries = ext ? 512 : 256;
3146 ret = -ENOMEM;
3147 ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
3148 if (!ctxt_tbls)
3149 goto out_unmap;
3150
3151 for (bus = 0; bus < 256; bus++) {
3152 ret = copy_context_table(iommu, &old_rt[bus],
3153 ctxt_tbls, bus, ext);
3154 if (ret) {
3155 pr_err("%s: Failed to copy context table for bus %d\n",
3156 iommu->name, bus);
3157 continue;
3158 }
3159 }
3160
3161 spin_lock_irqsave(&iommu->lock, flags);
3162
3163 /* Context tables are copied, now write them to the root_entry table */
3164 for (bus = 0; bus < 256; bus++) {
3165 int idx = ext ? bus * 2 : bus;
3166 u64 val;
3167
3168 if (ctxt_tbls[idx]) {
3169 val = virt_to_phys(ctxt_tbls[idx]) | 1;
3170 iommu->root_entry[bus].lo = val;
3171 }
3172
3173 if (!ext || !ctxt_tbls[idx + 1])
3174 continue;
3175
3176 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3177 iommu->root_entry[bus].hi = val;
3178 }
3179
3180 spin_unlock_irqrestore(&iommu->lock, flags);
3181
3182 kfree(ctxt_tbls);
3183
3184 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3185
3186 ret = 0;
3187
3188 out_unmap:
3189 memunmap(old_rt);
3190
3191 return ret;
3192 }
3193
3194 static int __init init_dmars(void)
3195 {
3196 struct dmar_drhd_unit *drhd;
3197 struct dmar_rmrr_unit *rmrr;
3198 bool copied_tables = false;
3199 struct device *dev;
3200 struct intel_iommu *iommu;
3201 int i, ret, cpu;
3202
3203 /*
3204 * for each drhd
3205 * allocate root
3206 * initialize and program root entry to not present
3207 * endfor
3208 */
3209 for_each_drhd_unit(drhd) {
3210 /*
3211 * lock not needed as this is only incremented in the single
3212 * threaded kernel __init code path all other access are read
3213 * only
3214 */
3215 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3216 g_num_of_iommus++;
3217 continue;
3218 }
3219 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3220 }
3221
3222 /* Preallocate enough resources for IOMMU hot-addition */
3223 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3224 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3225
3226 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3227 GFP_KERNEL);
3228 if (!g_iommus) {
3229 pr_err("Allocating global iommu array failed\n");
3230 ret = -ENOMEM;
3231 goto error;
3232 }
3233
3234 for_each_possible_cpu(cpu) {
3235 struct deferred_flush_data *dfd = per_cpu_ptr(&deferred_flush,
3236 cpu);
3237
3238 dfd->tables = kzalloc(g_num_of_iommus *
3239 sizeof(struct deferred_flush_table),
3240 GFP_KERNEL);
3241 if (!dfd->tables) {
3242 ret = -ENOMEM;
3243 goto free_g_iommus;
3244 }
3245
3246 spin_lock_init(&dfd->lock);
3247 setup_timer(&dfd->timer, flush_unmaps_timeout, cpu);
3248 }
3249
3250 for_each_active_iommu(iommu, drhd) {
3251 g_iommus[iommu->seq_id] = iommu;
3252
3253 intel_iommu_init_qi(iommu);
3254
3255 ret = iommu_init_domains(iommu);
3256 if (ret)
3257 goto free_iommu;
3258
3259 init_translation_status(iommu);
3260
3261 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3262 iommu_disable_translation(iommu);
3263 clear_translation_pre_enabled(iommu);
3264 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3265 iommu->name);
3266 }
3267
3268 /*
3269 * TBD:
3270 * we could share the same root & context tables
3271 * among all IOMMU's. Need to Split it later.
3272 */
3273 ret = iommu_alloc_root_entry(iommu);
3274 if (ret)
3275 goto free_iommu;
3276
3277 if (translation_pre_enabled(iommu)) {
3278 pr_info("Translation already enabled - trying to copy translation structures\n");
3279
3280 ret = copy_translation_tables(iommu);
3281 if (ret) {
3282 /*
3283 * We found the IOMMU with translation
3284 * enabled - but failed to copy over the
3285 * old root-entry table. Try to proceed
3286 * by disabling translation now and
3287 * allocating a clean root-entry table.
3288 * This might cause DMAR faults, but
3289 * probably the dump will still succeed.
3290 */
3291 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3292 iommu->name);
3293 iommu_disable_translation(iommu);
3294 clear_translation_pre_enabled(iommu);
3295 } else {
3296 pr_info("Copied translation tables from previous kernel for %s\n",
3297 iommu->name);
3298 copied_tables = true;
3299 }
3300 }
3301
3302 if (!ecap_pass_through(iommu->ecap))
3303 hw_pass_through = 0;
3304 #ifdef CONFIG_INTEL_IOMMU_SVM
3305 if (pasid_enabled(iommu))
3306 intel_svm_alloc_pasid_tables(iommu);
3307 #endif
3308 }
3309
3310 /*
3311 * Now that qi is enabled on all iommus, set the root entry and flush
3312 * caches. This is required on some Intel X58 chipsets, otherwise the
3313 * flush_context function will loop forever and the boot hangs.
3314 */
3315 for_each_active_iommu(iommu, drhd) {
3316 iommu_flush_write_buffer(iommu);
3317 iommu_set_root_entry(iommu);
3318 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3319 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3320 }
3321
3322 if (iommu_pass_through)
3323 iommu_identity_mapping |= IDENTMAP_ALL;
3324
3325 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3326 iommu_identity_mapping |= IDENTMAP_GFX;
3327 #endif
3328
3329 if (iommu_identity_mapping) {
3330 ret = si_domain_init(hw_pass_through);
3331 if (ret)
3332 goto free_iommu;
3333 }
3334
3335 check_tylersburg_isoch();
3336
3337 /*
3338 * If we copied translations from a previous kernel in the kdump
3339 * case, we can not assign the devices to domains now, as that
3340 * would eliminate the old mappings. So skip this part and defer
3341 * the assignment to device driver initialization time.
3342 */
3343 if (copied_tables)
3344 goto domains_done;
3345
3346 /*
3347 * If pass through is not set or not enabled, setup context entries for
3348 * identity mappings for rmrr, gfx, and isa and may fall back to static
3349 * identity mapping if iommu_identity_mapping is set.
3350 */
3351 if (iommu_identity_mapping) {
3352 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3353 if (ret) {
3354 pr_crit("Failed to setup IOMMU pass-through\n");
3355 goto free_iommu;
3356 }
3357 }
3358 /*
3359 * For each rmrr
3360 * for each dev attached to rmrr
3361 * do
3362 * locate drhd for dev, alloc domain for dev
3363 * allocate free domain
3364 * allocate page table entries for rmrr
3365 * if context not allocated for bus
3366 * allocate and init context
3367 * set present in root table for this bus
3368 * init context with domain, translation etc
3369 * endfor
3370 * endfor
3371 */
3372 pr_info("Setting RMRR:\n");
3373 for_each_rmrr_units(rmrr) {
3374 /* some BIOS lists non-exist devices in DMAR table. */
3375 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3376 i, dev) {
3377 ret = iommu_prepare_rmrr_dev(rmrr, dev);
3378 if (ret)
3379 pr_err("Mapping reserved region failed\n");
3380 }
3381 }
3382
3383 iommu_prepare_isa();
3384
3385 domains_done:
3386
3387 /*
3388 * for each drhd
3389 * enable fault log
3390 * global invalidate context cache
3391 * global invalidate iotlb
3392 * enable translation
3393 */
3394 for_each_iommu(iommu, drhd) {
3395 if (drhd->ignored) {
3396 /*
3397 * we always have to disable PMRs or DMA may fail on
3398 * this device
3399 */
3400 if (force_on)
3401 iommu_disable_protect_mem_regions(iommu);
3402 continue;
3403 }
3404
3405 iommu_flush_write_buffer(iommu);
3406
3407 #ifdef CONFIG_INTEL_IOMMU_SVM
3408 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3409 ret = intel_svm_enable_prq(iommu);
3410 if (ret)
3411 goto free_iommu;
3412 }
3413 #endif
3414 ret = dmar_set_interrupt(iommu);
3415 if (ret)
3416 goto free_iommu;
3417
3418 if (!translation_pre_enabled(iommu))
3419 iommu_enable_translation(iommu);
3420
3421 iommu_disable_protect_mem_regions(iommu);
3422 }
3423
3424 return 0;
3425
3426 free_iommu:
3427 for_each_active_iommu(iommu, drhd) {
3428 disable_dmar_iommu(iommu);
3429 free_dmar_iommu(iommu);
3430 }
3431 free_g_iommus:
3432 for_each_possible_cpu(cpu)
3433 kfree(per_cpu_ptr(&deferred_flush, cpu)->tables);
3434 kfree(g_iommus);
3435 error:
3436 return ret;
3437 }
3438
3439 /* This takes a number of _MM_ pages, not VTD pages */
3440 static unsigned long intel_alloc_iova(struct device *dev,
3441 struct dmar_domain *domain,
3442 unsigned long nrpages, uint64_t dma_mask)
3443 {
3444 unsigned long iova_pfn = 0;
3445
3446 /* Restrict dma_mask to the width that the iommu can handle */
3447 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3448 /* Ensure we reserve the whole size-aligned region */
3449 nrpages = __roundup_pow_of_two(nrpages);
3450
3451 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3452 /*
3453 * First try to allocate an io virtual address in
3454 * DMA_BIT_MASK(32) and if that fails then try allocating
3455 * from higher range
3456 */
3457 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3458 IOVA_PFN(DMA_BIT_MASK(32)));
3459 if (iova_pfn)
3460 return iova_pfn;
3461 }
3462 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, IOVA_PFN(dma_mask));
3463 if (unlikely(!iova_pfn)) {
3464 pr_err("Allocating %ld-page iova for %s failed",
3465 nrpages, dev_name(dev));
3466 return 0;
3467 }
3468
3469 return iova_pfn;
3470 }
3471
3472 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
3473 {
3474 struct dmar_domain *domain, *tmp;
3475 struct dmar_rmrr_unit *rmrr;
3476 struct device *i_dev;
3477 int i, ret;
3478
3479 domain = find_domain(dev);
3480 if (domain)
3481 goto out;
3482
3483 domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3484 if (!domain)
3485 goto out;
3486
3487 /* We have a new domain - setup possible RMRRs for the device */
3488 rcu_read_lock();
3489 for_each_rmrr_units(rmrr) {
3490 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3491 i, i_dev) {
3492 if (i_dev != dev)
3493 continue;
3494
3495 ret = domain_prepare_identity_map(dev, domain,
3496 rmrr->base_address,
3497 rmrr->end_address);
3498 if (ret)
3499 dev_err(dev, "Mapping reserved region failed\n");
3500 }
3501 }
3502 rcu_read_unlock();
3503
3504 tmp = set_domain_for_dev(dev, domain);
3505 if (!tmp || domain != tmp) {
3506 domain_exit(domain);
3507 domain = tmp;
3508 }
3509
3510 out:
3511
3512 if (!domain)
3513 pr_err("Allocating domain for %s failed\n", dev_name(dev));
3514
3515
3516 return domain;
3517 }
3518
3519 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3520 {
3521 struct device_domain_info *info;
3522
3523 /* No lock here, assumes no domain exit in normal case */
3524 info = dev->archdata.iommu;
3525 if (likely(info))
3526 return info->domain;
3527
3528 return __get_valid_domain_for_dev(dev);
3529 }
3530
3531 /* Check if the dev needs to go through non-identity map and unmap process.*/
3532 static int iommu_no_mapping(struct device *dev)
3533 {
3534 int found;
3535
3536 if (iommu_dummy(dev))
3537 return 1;
3538
3539 if (!iommu_identity_mapping)
3540 return 0;
3541
3542 found = identity_mapping(dev);
3543 if (found) {
3544 if (iommu_should_identity_map(dev, 0))
3545 return 1;
3546 else {
3547 /*
3548 * 32 bit DMA is removed from si_domain and fall back
3549 * to non-identity mapping.
3550 */
3551 dmar_remove_one_dev_info(si_domain, dev);
3552 pr_info("32bit %s uses non-identity mapping\n",
3553 dev_name(dev));
3554 return 0;
3555 }
3556 } else {
3557 /*
3558 * In case of a detached 64 bit DMA device from vm, the device
3559 * is put into si_domain for identity mapping.
3560 */
3561 if (iommu_should_identity_map(dev, 0)) {
3562 int ret;
3563 ret = domain_add_dev_info(si_domain, dev);
3564 if (!ret) {
3565 pr_info("64bit %s uses identity mapping\n",
3566 dev_name(dev));
3567 return 1;
3568 }
3569 }
3570 }
3571
3572 return 0;
3573 }
3574
3575 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3576 size_t size, int dir, u64 dma_mask)
3577 {
3578 struct dmar_domain *domain;
3579 phys_addr_t start_paddr;
3580 unsigned long iova_pfn;
3581 int prot = 0;
3582 int ret;
3583 struct intel_iommu *iommu;
3584 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3585
3586 BUG_ON(dir == DMA_NONE);
3587
3588 if (iommu_no_mapping(dev))
3589 return paddr;
3590
3591 domain = get_valid_domain_for_dev(dev);
3592 if (!domain)
3593 return 0;
3594
3595 iommu = domain_get_iommu(domain);
3596 size = aligned_nrpages(paddr, size);
3597
3598 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3599 if (!iova_pfn)
3600 goto error;
3601
3602 /*
3603 * Check if DMAR supports zero-length reads on write only
3604 * mappings..
3605 */
3606 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3607 !cap_zlr(iommu->cap))
3608 prot |= DMA_PTE_READ;
3609 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3610 prot |= DMA_PTE_WRITE;
3611 /*
3612 * paddr - (paddr + size) might be partial page, we should map the whole
3613 * page. Note: if two part of one page are separately mapped, we
3614 * might have two guest_addr mapping to the same host paddr, but this
3615 * is not a big problem
3616 */
3617 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3618 mm_to_dma_pfn(paddr_pfn), size, prot);
3619 if (ret)
3620 goto error;
3621
3622 /* it's a non-present to present mapping. Only flush if caching mode */
3623 if (cap_caching_mode(iommu->cap))
3624 iommu_flush_iotlb_psi(iommu, domain,
3625 mm_to_dma_pfn(iova_pfn),
3626 size, 0, 1);
3627 else
3628 iommu_flush_write_buffer(iommu);
3629
3630 start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3631 start_paddr += paddr & ~PAGE_MASK;
3632 return start_paddr;
3633
3634 error:
3635 if (iova_pfn)
3636 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3637 pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3638 dev_name(dev), size, (unsigned long long)paddr, dir);
3639 return 0;
3640 }
3641
3642 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3643 unsigned long offset, size_t size,
3644 enum dma_data_direction dir,
3645 unsigned long attrs)
3646 {
3647 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3648 dir, *dev->dma_mask);
3649 }
3650
3651 static void flush_unmaps(struct deferred_flush_data *flush_data)
3652 {
3653 int i, j;
3654
3655 flush_data->timer_on = 0;
3656
3657 /* just flush them all */
3658 for (i = 0; i < g_num_of_iommus; i++) {
3659 struct intel_iommu *iommu = g_iommus[i];
3660 struct deferred_flush_table *flush_table =
3661 &flush_data->tables[i];
3662 if (!iommu)
3663 continue;
3664
3665 if (!flush_table->next)
3666 continue;
3667
3668 /* In caching mode, global flushes turn emulation expensive */
3669 if (!cap_caching_mode(iommu->cap))
3670 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3671 DMA_TLB_GLOBAL_FLUSH);
3672 for (j = 0; j < flush_table->next; j++) {
3673 unsigned long mask;
3674 struct deferred_flush_entry *entry =
3675 &flush_table->entries[j];
3676 unsigned long iova_pfn = entry->iova_pfn;
3677 unsigned long nrpages = entry->nrpages;
3678 struct dmar_domain *domain = entry->domain;
3679 struct page *freelist = entry->freelist;
3680
3681 /* On real hardware multiple invalidations are expensive */
3682 if (cap_caching_mode(iommu->cap))
3683 iommu_flush_iotlb_psi(iommu, domain,
3684 mm_to_dma_pfn(iova_pfn),
3685 nrpages, !freelist, 0);
3686 else {
3687 mask = ilog2(nrpages);
3688 iommu_flush_dev_iotlb(domain,
3689 (uint64_t)iova_pfn << PAGE_SHIFT, mask);
3690 }
3691 free_iova_fast(&domain->iovad, iova_pfn, nrpages);
3692 if (freelist)
3693 dma_free_pagelist(freelist);
3694 }
3695 flush_table->next = 0;
3696 }
3697
3698 flush_data->size = 0;
3699 }
3700
3701 static void flush_unmaps_timeout(unsigned long cpuid)
3702 {
3703 struct deferred_flush_data *flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3704 unsigned long flags;
3705
3706 spin_lock_irqsave(&flush_data->lock, flags);
3707 flush_unmaps(flush_data);
3708 spin_unlock_irqrestore(&flush_data->lock, flags);
3709 }
3710
3711 static void add_unmap(struct dmar_domain *dom, unsigned long iova_pfn,
3712 unsigned long nrpages, struct page *freelist)
3713 {
3714 unsigned long flags;
3715 int entry_id, iommu_id;
3716 struct intel_iommu *iommu;
3717 struct deferred_flush_entry *entry;
3718 struct deferred_flush_data *flush_data;
3719 unsigned int cpuid;
3720
3721 cpuid = get_cpu();
3722 flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3723
3724 /* Flush all CPUs' entries to avoid deferring too much. If
3725 * this becomes a bottleneck, can just flush us, and rely on
3726 * flush timer for the rest.
3727 */
3728 if (flush_data->size == HIGH_WATER_MARK) {
3729 int cpu;
3730
3731 for_each_online_cpu(cpu)
3732 flush_unmaps_timeout(cpu);
3733 }
3734
3735 spin_lock_irqsave(&flush_data->lock, flags);
3736
3737 iommu = domain_get_iommu(dom);
3738 iommu_id = iommu->seq_id;
3739
3740 entry_id = flush_data->tables[iommu_id].next;
3741 ++(flush_data->tables[iommu_id].next);
3742
3743 entry = &flush_data->tables[iommu_id].entries[entry_id];
3744 entry->domain = dom;
3745 entry->iova_pfn = iova_pfn;
3746 entry->nrpages = nrpages;
3747 entry->freelist = freelist;
3748
3749 if (!flush_data->timer_on) {
3750 mod_timer(&flush_data->timer, jiffies + msecs_to_jiffies(10));
3751 flush_data->timer_on = 1;
3752 }
3753 flush_data->size++;
3754 spin_unlock_irqrestore(&flush_data->lock, flags);
3755
3756 put_cpu();
3757 }
3758
3759 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3760 {
3761 struct dmar_domain *domain;
3762 unsigned long start_pfn, last_pfn;
3763 unsigned long nrpages;
3764 unsigned long iova_pfn;
3765 struct intel_iommu *iommu;
3766 struct page *freelist;
3767
3768 if (iommu_no_mapping(dev))
3769 return;
3770
3771 domain = find_domain(dev);
3772 BUG_ON(!domain);
3773
3774 iommu = domain_get_iommu(domain);
3775
3776 iova_pfn = IOVA_PFN(dev_addr);
3777
3778 nrpages = aligned_nrpages(dev_addr, size);
3779 start_pfn = mm_to_dma_pfn(iova_pfn);
3780 last_pfn = start_pfn + nrpages - 1;
3781
3782 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3783 dev_name(dev), start_pfn, last_pfn);
3784
3785 freelist = domain_unmap(domain, start_pfn, last_pfn);
3786
3787 if (intel_iommu_strict) {
3788 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3789 nrpages, !freelist, 0);
3790 /* free iova */
3791 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3792 dma_free_pagelist(freelist);
3793 } else {
3794 add_unmap(domain, iova_pfn, nrpages, freelist);
3795 /*
3796 * queue up the release of the unmap to save the 1/6th of the
3797 * cpu used up by the iotlb flush operation...
3798 */
3799 }
3800 }
3801
3802 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3803 size_t size, enum dma_data_direction dir,
3804 unsigned long attrs)
3805 {
3806 intel_unmap(dev, dev_addr, size);
3807 }
3808
3809 static void *intel_alloc_coherent(struct device *dev, size_t size,
3810 dma_addr_t *dma_handle, gfp_t flags,
3811 unsigned long attrs)
3812 {
3813 struct page *page = NULL;
3814 int order;
3815
3816 size = PAGE_ALIGN(size);
3817 order = get_order(size);
3818
3819 if (!iommu_no_mapping(dev))
3820 flags &= ~(GFP_DMA | GFP_DMA32);
3821 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3822 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3823 flags |= GFP_DMA;
3824 else
3825 flags |= GFP_DMA32;
3826 }
3827
3828 if (gfpflags_allow_blocking(flags)) {
3829 unsigned int count = size >> PAGE_SHIFT;
3830
3831 page = dma_alloc_from_contiguous(dev, count, order);
3832 if (page && iommu_no_mapping(dev) &&
3833 page_to_phys(page) + size > dev->coherent_dma_mask) {
3834 dma_release_from_contiguous(dev, page, count);
3835 page = NULL;
3836 }
3837 }
3838
3839 if (!page)
3840 page = alloc_pages(flags, order);
3841 if (!page)
3842 return NULL;
3843 memset(page_address(page), 0, size);
3844
3845 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3846 DMA_BIDIRECTIONAL,
3847 dev->coherent_dma_mask);
3848 if (*dma_handle)
3849 return page_address(page);
3850 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3851 __free_pages(page, order);
3852
3853 return NULL;
3854 }
3855
3856 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3857 dma_addr_t dma_handle, unsigned long attrs)
3858 {
3859 int order;
3860 struct page *page = virt_to_page(vaddr);
3861
3862 size = PAGE_ALIGN(size);
3863 order = get_order(size);
3864
3865 intel_unmap(dev, dma_handle, size);
3866 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3867 __free_pages(page, order);
3868 }
3869
3870 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3871 int nelems, enum dma_data_direction dir,
3872 unsigned long attrs)
3873 {
3874 dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3875 unsigned long nrpages = 0;
3876 struct scatterlist *sg;
3877 int i;
3878
3879 for_each_sg(sglist, sg, nelems, i) {
3880 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3881 }
3882
3883 intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3884 }
3885
3886 static int intel_nontranslate_map_sg(struct device *hddev,
3887 struct scatterlist *sglist, int nelems, int dir)
3888 {
3889 int i;
3890 struct scatterlist *sg;
3891
3892 for_each_sg(sglist, sg, nelems, i) {
3893 BUG_ON(!sg_page(sg));
3894 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3895 sg->dma_length = sg->length;
3896 }
3897 return nelems;
3898 }
3899
3900 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3901 enum dma_data_direction dir, unsigned long attrs)
3902 {
3903 int i;
3904 struct dmar_domain *domain;
3905 size_t size = 0;
3906 int prot = 0;
3907 unsigned long iova_pfn;
3908 int ret;
3909 struct scatterlist *sg;
3910 unsigned long start_vpfn;
3911 struct intel_iommu *iommu;
3912
3913 BUG_ON(dir == DMA_NONE);
3914 if (iommu_no_mapping(dev))
3915 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3916
3917 domain = get_valid_domain_for_dev(dev);
3918 if (!domain)
3919 return 0;
3920
3921 iommu = domain_get_iommu(domain);
3922
3923 for_each_sg(sglist, sg, nelems, i)
3924 size += aligned_nrpages(sg->offset, sg->length);
3925
3926 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3927 *dev->dma_mask);
3928 if (!iova_pfn) {
3929 sglist->dma_length = 0;
3930 return 0;
3931 }
3932
3933 /*
3934 * Check if DMAR supports zero-length reads on write only
3935 * mappings..
3936 */
3937 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3938 !cap_zlr(iommu->cap))
3939 prot |= DMA_PTE_READ;
3940 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3941 prot |= DMA_PTE_WRITE;
3942
3943 start_vpfn = mm_to_dma_pfn(iova_pfn);
3944
3945 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3946 if (unlikely(ret)) {
3947 dma_pte_free_pagetable(domain, start_vpfn,
3948 start_vpfn + size - 1);
3949 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3950 return 0;
3951 }
3952
3953 /* it's a non-present to present mapping. Only flush if caching mode */
3954 if (cap_caching_mode(iommu->cap))
3955 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3956 else
3957 iommu_flush_write_buffer(iommu);
3958
3959 return nelems;
3960 }
3961
3962 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3963 {
3964 return !dma_addr;
3965 }
3966
3967 struct dma_map_ops intel_dma_ops = {
3968 .alloc = intel_alloc_coherent,
3969 .free = intel_free_coherent,
3970 .map_sg = intel_map_sg,
3971 .unmap_sg = intel_unmap_sg,
3972 .map_page = intel_map_page,
3973 .unmap_page = intel_unmap_page,
3974 .mapping_error = intel_mapping_error,
3975 };
3976
3977 static inline int iommu_domain_cache_init(void)
3978 {
3979 int ret = 0;
3980
3981 iommu_domain_cache = kmem_cache_create("iommu_domain",
3982 sizeof(struct dmar_domain),
3983 0,
3984 SLAB_HWCACHE_ALIGN,
3985
3986 NULL);
3987 if (!iommu_domain_cache) {
3988 pr_err("Couldn't create iommu_domain cache\n");
3989 ret = -ENOMEM;
3990 }
3991
3992 return ret;
3993 }
3994
3995 static inline int iommu_devinfo_cache_init(void)
3996 {
3997 int ret = 0;
3998
3999 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
4000 sizeof(struct device_domain_info),
4001 0,
4002 SLAB_HWCACHE_ALIGN,
4003 NULL);
4004 if (!iommu_devinfo_cache) {
4005 pr_err("Couldn't create devinfo cache\n");
4006 ret = -ENOMEM;
4007 }
4008
4009 return ret;
4010 }
4011
4012 static int __init iommu_init_mempool(void)
4013 {
4014 int ret;
4015 ret = iova_cache_get();
4016 if (ret)
4017 return ret;
4018
4019 ret = iommu_domain_cache_init();
4020 if (ret)
4021 goto domain_error;
4022
4023 ret = iommu_devinfo_cache_init();
4024 if (!ret)
4025 return ret;
4026
4027 kmem_cache_destroy(iommu_domain_cache);
4028 domain_error:
4029 iova_cache_put();
4030
4031 return -ENOMEM;
4032 }
4033
4034 static void __init iommu_exit_mempool(void)
4035 {
4036 kmem_cache_destroy(iommu_devinfo_cache);
4037 kmem_cache_destroy(iommu_domain_cache);
4038 iova_cache_put();
4039 }
4040
4041 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
4042 {
4043 struct dmar_drhd_unit *drhd;
4044 u32 vtbar;
4045 int rc;
4046
4047 /* We know that this device on this chipset has its own IOMMU.
4048 * If we find it under a different IOMMU, then the BIOS is lying
4049 * to us. Hope that the IOMMU for this device is actually
4050 * disabled, and it needs no translation...
4051 */
4052 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4053 if (rc) {
4054 /* "can't" happen */
4055 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4056 return;
4057 }
4058 vtbar &= 0xffff0000;
4059
4060 /* we know that the this iommu should be at offset 0xa000 from vtbar */
4061 drhd = dmar_find_matched_drhd_unit(pdev);
4062 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
4063 TAINT_FIRMWARE_WORKAROUND,
4064 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4065 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4066 }
4067 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4068
4069 static void __init init_no_remapping_devices(void)
4070 {
4071 struct dmar_drhd_unit *drhd;
4072 struct device *dev;
4073 int i;
4074
4075 for_each_drhd_unit(drhd) {
4076 if (!drhd->include_all) {
4077 for_each_active_dev_scope(drhd->devices,
4078 drhd->devices_cnt, i, dev)
4079 break;
4080 /* ignore DMAR unit if no devices exist */
4081 if (i == drhd->devices_cnt)
4082 drhd->ignored = 1;
4083 }
4084 }
4085
4086 for_each_active_drhd_unit(drhd) {
4087 if (drhd->include_all)
4088 continue;
4089
4090 for_each_active_dev_scope(drhd->devices,
4091 drhd->devices_cnt, i, dev)
4092 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4093 break;
4094 if (i < drhd->devices_cnt)
4095 continue;
4096
4097 /* This IOMMU has *only* gfx devices. Either bypass it or
4098 set the gfx_mapped flag, as appropriate */
4099 if (dmar_map_gfx) {
4100 intel_iommu_gfx_mapped = 1;
4101 } else {
4102 drhd->ignored = 1;
4103 for_each_active_dev_scope(drhd->devices,
4104 drhd->devices_cnt, i, dev)
4105 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4106 }
4107 }
4108 }
4109
4110 #ifdef CONFIG_SUSPEND
4111 static int init_iommu_hw(void)
4112 {
4113 struct dmar_drhd_unit *drhd;
4114 struct intel_iommu *iommu = NULL;
4115
4116 for_each_active_iommu(iommu, drhd)
4117 if (iommu->qi)
4118 dmar_reenable_qi(iommu);
4119
4120 for_each_iommu(iommu, drhd) {
4121 if (drhd->ignored) {
4122 /*
4123 * we always have to disable PMRs or DMA may fail on
4124 * this device
4125 */
4126 if (force_on)
4127 iommu_disable_protect_mem_regions(iommu);
4128 continue;
4129 }
4130
4131 iommu_flush_write_buffer(iommu);
4132
4133 iommu_set_root_entry(iommu);
4134
4135 iommu->flush.flush_context(iommu, 0, 0, 0,
4136 DMA_CCMD_GLOBAL_INVL);
4137 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4138 iommu_enable_translation(iommu);
4139 iommu_disable_protect_mem_regions(iommu);
4140 }
4141
4142 return 0;
4143 }
4144
4145 static void iommu_flush_all(void)
4146 {
4147 struct dmar_drhd_unit *drhd;
4148 struct intel_iommu *iommu;
4149
4150 for_each_active_iommu(iommu, drhd) {
4151 iommu->flush.flush_context(iommu, 0, 0, 0,
4152 DMA_CCMD_GLOBAL_INVL);
4153 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4154 DMA_TLB_GLOBAL_FLUSH);
4155 }
4156 }
4157
4158 static int iommu_suspend(void)
4159 {
4160 struct dmar_drhd_unit *drhd;
4161 struct intel_iommu *iommu = NULL;
4162 unsigned long flag;
4163
4164 for_each_active_iommu(iommu, drhd) {
4165 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
4166 GFP_ATOMIC);
4167 if (!iommu->iommu_state)
4168 goto nomem;
4169 }
4170
4171 iommu_flush_all();
4172
4173 for_each_active_iommu(iommu, drhd) {
4174 iommu_disable_translation(iommu);
4175
4176 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4177
4178 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4179 readl(iommu->reg + DMAR_FECTL_REG);
4180 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4181 readl(iommu->reg + DMAR_FEDATA_REG);
4182 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4183 readl(iommu->reg + DMAR_FEADDR_REG);
4184 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4185 readl(iommu->reg + DMAR_FEUADDR_REG);
4186
4187 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4188 }
4189 return 0;
4190
4191 nomem:
4192 for_each_active_iommu(iommu, drhd)
4193 kfree(iommu->iommu_state);
4194
4195 return -ENOMEM;
4196 }
4197
4198 static void iommu_resume(void)
4199 {
4200 struct dmar_drhd_unit *drhd;
4201 struct intel_iommu *iommu = NULL;
4202 unsigned long flag;
4203
4204 if (init_iommu_hw()) {
4205 if (force_on)
4206 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4207 else
4208 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4209 return;
4210 }
4211
4212 for_each_active_iommu(iommu, drhd) {
4213
4214 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4215
4216 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4217 iommu->reg + DMAR_FECTL_REG);
4218 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4219 iommu->reg + DMAR_FEDATA_REG);
4220 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4221 iommu->reg + DMAR_FEADDR_REG);
4222 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4223 iommu->reg + DMAR_FEUADDR_REG);
4224
4225 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4226 }
4227
4228 for_each_active_iommu(iommu, drhd)
4229 kfree(iommu->iommu_state);
4230 }
4231
4232 static struct syscore_ops iommu_syscore_ops = {
4233 .resume = iommu_resume,
4234 .suspend = iommu_suspend,
4235 };
4236
4237 static void __init init_iommu_pm_ops(void)
4238 {
4239 register_syscore_ops(&iommu_syscore_ops);
4240 }
4241
4242 #else
4243 static inline void init_iommu_pm_ops(void) {}
4244 #endif /* CONFIG_PM */
4245
4246
4247 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4248 {
4249 struct acpi_dmar_reserved_memory *rmrr;
4250 int prot = DMA_PTE_READ|DMA_PTE_WRITE;
4251 struct dmar_rmrr_unit *rmrru;
4252 size_t length;
4253
4254 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4255 if (!rmrru)
4256 goto out;
4257
4258 rmrru->hdr = header;
4259 rmrr = (struct acpi_dmar_reserved_memory *)header;
4260 rmrru->base_address = rmrr->base_address;
4261 rmrru->end_address = rmrr->end_address;
4262
4263 length = rmrr->end_address - rmrr->base_address + 1;
4264 rmrru->resv = iommu_alloc_resv_region(rmrr->base_address, length, prot,
4265 IOMMU_RESV_DIRECT);
4266 if (!rmrru->resv)
4267 goto free_rmrru;
4268
4269 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4270 ((void *)rmrr) + rmrr->header.length,
4271 &rmrru->devices_cnt);
4272 if (rmrru->devices_cnt && rmrru->devices == NULL)
4273 goto free_all;
4274
4275 list_add(&rmrru->list, &dmar_rmrr_units);
4276
4277 return 0;
4278 free_all:
4279 kfree(rmrru->resv);
4280 free_rmrru:
4281 kfree(rmrru);
4282 out:
4283 return -ENOMEM;
4284 }
4285
4286 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4287 {
4288 struct dmar_atsr_unit *atsru;
4289 struct acpi_dmar_atsr *tmp;
4290
4291 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4292 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4293 if (atsr->segment != tmp->segment)
4294 continue;
4295 if (atsr->header.length != tmp->header.length)
4296 continue;
4297 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4298 return atsru;
4299 }
4300
4301 return NULL;
4302 }
4303
4304 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4305 {
4306 struct acpi_dmar_atsr *atsr;
4307 struct dmar_atsr_unit *atsru;
4308
4309 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4310 return 0;
4311
4312 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4313 atsru = dmar_find_atsr(atsr);
4314 if (atsru)
4315 return 0;
4316
4317 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4318 if (!atsru)
4319 return -ENOMEM;
4320
4321 /*
4322 * If memory is allocated from slab by ACPI _DSM method, we need to
4323 * copy the memory content because the memory buffer will be freed
4324 * on return.
4325 */
4326 atsru->hdr = (void *)(atsru + 1);
4327 memcpy(atsru->hdr, hdr, hdr->length);
4328 atsru->include_all = atsr->flags & 0x1;
4329 if (!atsru->include_all) {
4330 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4331 (void *)atsr + atsr->header.length,
4332 &atsru->devices_cnt);
4333 if (atsru->devices_cnt && atsru->devices == NULL) {
4334 kfree(atsru);
4335 return -ENOMEM;
4336 }
4337 }
4338
4339 list_add_rcu(&atsru->list, &dmar_atsr_units);
4340
4341 return 0;
4342 }
4343
4344 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4345 {
4346 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4347 kfree(atsru);
4348 }
4349
4350 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4351 {
4352 struct acpi_dmar_atsr *atsr;
4353 struct dmar_atsr_unit *atsru;
4354
4355 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4356 atsru = dmar_find_atsr(atsr);
4357 if (atsru) {
4358 list_del_rcu(&atsru->list);
4359 synchronize_rcu();
4360 intel_iommu_free_atsr(atsru);
4361 }
4362
4363 return 0;
4364 }
4365
4366 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4367 {
4368 int i;
4369 struct device *dev;
4370 struct acpi_dmar_atsr *atsr;
4371 struct dmar_atsr_unit *atsru;
4372
4373 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4374 atsru = dmar_find_atsr(atsr);
4375 if (!atsru)
4376 return 0;
4377
4378 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4379 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4380 i, dev)
4381 return -EBUSY;
4382 }
4383
4384 return 0;
4385 }
4386
4387 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4388 {
4389 int sp, ret = 0;
4390 struct intel_iommu *iommu = dmaru->iommu;
4391
4392 if (g_iommus[iommu->seq_id])
4393 return 0;
4394
4395 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4396 pr_warn("%s: Doesn't support hardware pass through.\n",
4397 iommu->name);
4398 return -ENXIO;
4399 }
4400 if (!ecap_sc_support(iommu->ecap) &&
4401 domain_update_iommu_snooping(iommu)) {
4402 pr_warn("%s: Doesn't support snooping.\n",
4403 iommu->name);
4404 return -ENXIO;
4405 }
4406 sp = domain_update_iommu_superpage(iommu) - 1;
4407 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4408 pr_warn("%s: Doesn't support large page.\n",
4409 iommu->name);
4410 return -ENXIO;
4411 }
4412
4413 /*
4414 * Disable translation if already enabled prior to OS handover.
4415 */
4416 if (iommu->gcmd & DMA_GCMD_TE)
4417 iommu_disable_translation(iommu);
4418
4419 g_iommus[iommu->seq_id] = iommu;
4420 ret = iommu_init_domains(iommu);
4421 if (ret == 0)
4422 ret = iommu_alloc_root_entry(iommu);
4423 if (ret)
4424 goto out;
4425
4426 #ifdef CONFIG_INTEL_IOMMU_SVM
4427 if (pasid_enabled(iommu))
4428 intel_svm_alloc_pasid_tables(iommu);
4429 #endif
4430
4431 if (dmaru->ignored) {
4432 /*
4433 * we always have to disable PMRs or DMA may fail on this device
4434 */
4435 if (force_on)
4436 iommu_disable_protect_mem_regions(iommu);
4437 return 0;
4438 }
4439
4440 intel_iommu_init_qi(iommu);
4441 iommu_flush_write_buffer(iommu);
4442
4443 #ifdef CONFIG_INTEL_IOMMU_SVM
4444 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4445 ret = intel_svm_enable_prq(iommu);
4446 if (ret)
4447 goto disable_iommu;
4448 }
4449 #endif
4450 ret = dmar_set_interrupt(iommu);
4451 if (ret)
4452 goto disable_iommu;
4453
4454 iommu_set_root_entry(iommu);
4455 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4456 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4457 iommu_enable_translation(iommu);
4458
4459 iommu_disable_protect_mem_regions(iommu);
4460 return 0;
4461
4462 disable_iommu:
4463 disable_dmar_iommu(iommu);
4464 out:
4465 free_dmar_iommu(iommu);
4466 return ret;
4467 }
4468
4469 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4470 {
4471 int ret = 0;
4472 struct intel_iommu *iommu = dmaru->iommu;
4473
4474 if (!intel_iommu_enabled)
4475 return 0;
4476 if (iommu == NULL)
4477 return -EINVAL;
4478
4479 if (insert) {
4480 ret = intel_iommu_add(dmaru);
4481 } else {
4482 disable_dmar_iommu(iommu);
4483 free_dmar_iommu(iommu);
4484 }
4485
4486 return ret;
4487 }
4488
4489 static void intel_iommu_free_dmars(void)
4490 {
4491 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4492 struct dmar_atsr_unit *atsru, *atsr_n;
4493
4494 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4495 list_del(&rmrru->list);
4496 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4497 kfree(rmrru->resv);
4498 kfree(rmrru);
4499 }
4500
4501 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4502 list_del(&atsru->list);
4503 intel_iommu_free_atsr(atsru);
4504 }
4505 }
4506
4507 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4508 {
4509 int i, ret = 1;
4510 struct pci_bus *bus;
4511 struct pci_dev *bridge = NULL;
4512 struct device *tmp;
4513 struct acpi_dmar_atsr *atsr;
4514 struct dmar_atsr_unit *atsru;
4515
4516 dev = pci_physfn(dev);
4517 for (bus = dev->bus; bus; bus = bus->parent) {
4518 bridge = bus->self;
4519 /* If it's an integrated device, allow ATS */
4520 if (!bridge)
4521 return 1;
4522 /* Connected via non-PCIe: no ATS */
4523 if (!pci_is_pcie(bridge) ||
4524 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4525 return 0;
4526 /* If we found the root port, look it up in the ATSR */
4527 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4528 break;
4529 }
4530
4531 rcu_read_lock();
4532 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4533 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4534 if (atsr->segment != pci_domain_nr(dev->bus))
4535 continue;
4536
4537 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4538 if (tmp == &bridge->dev)
4539 goto out;
4540
4541 if (atsru->include_all)
4542 goto out;
4543 }
4544 ret = 0;
4545 out:
4546 rcu_read_unlock();
4547
4548 return ret;
4549 }
4550
4551 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4552 {
4553 int ret = 0;
4554 struct dmar_rmrr_unit *rmrru;
4555 struct dmar_atsr_unit *atsru;
4556 struct acpi_dmar_atsr *atsr;
4557 struct acpi_dmar_reserved_memory *rmrr;
4558
4559 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4560 return 0;
4561
4562 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4563 rmrr = container_of(rmrru->hdr,
4564 struct acpi_dmar_reserved_memory, header);
4565 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4566 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4567 ((void *)rmrr) + rmrr->header.length,
4568 rmrr->segment, rmrru->devices,
4569 rmrru->devices_cnt);
4570 if(ret < 0)
4571 return ret;
4572 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4573 dmar_remove_dev_scope(info, rmrr->segment,
4574 rmrru->devices, rmrru->devices_cnt);
4575 }
4576 }
4577
4578 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4579 if (atsru->include_all)
4580 continue;
4581
4582 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4583 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4584 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4585 (void *)atsr + atsr->header.length,
4586 atsr->segment, atsru->devices,
4587 atsru->devices_cnt);
4588 if (ret > 0)
4589 break;
4590 else if(ret < 0)
4591 return ret;
4592 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4593 if (dmar_remove_dev_scope(info, atsr->segment,
4594 atsru->devices, atsru->devices_cnt))
4595 break;
4596 }
4597 }
4598
4599 return 0;
4600 }
4601
4602 /*
4603 * Here we only respond to action of unbound device from driver.
4604 *
4605 * Added device is not attached to its DMAR domain here yet. That will happen
4606 * when mapping the device to iova.
4607 */
4608 static int device_notifier(struct notifier_block *nb,
4609 unsigned long action, void *data)
4610 {
4611 struct device *dev = data;
4612 struct dmar_domain *domain;
4613
4614 if (iommu_dummy(dev))
4615 return 0;
4616
4617 if (action != BUS_NOTIFY_REMOVED_DEVICE)
4618 return 0;
4619
4620 domain = find_domain(dev);
4621 if (!domain)
4622 return 0;
4623
4624 dmar_remove_one_dev_info(domain, dev);
4625 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4626 domain_exit(domain);
4627
4628 return 0;
4629 }
4630
4631 static struct notifier_block device_nb = {
4632 .notifier_call = device_notifier,
4633 };
4634
4635 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4636 unsigned long val, void *v)
4637 {
4638 struct memory_notify *mhp = v;
4639 unsigned long long start, end;
4640 unsigned long start_vpfn, last_vpfn;
4641
4642 switch (val) {
4643 case MEM_GOING_ONLINE:
4644 start = mhp->start_pfn << PAGE_SHIFT;
4645 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4646 if (iommu_domain_identity_map(si_domain, start, end)) {
4647 pr_warn("Failed to build identity map for [%llx-%llx]\n",
4648 start, end);
4649 return NOTIFY_BAD;
4650 }
4651 break;
4652
4653 case MEM_OFFLINE:
4654 case MEM_CANCEL_ONLINE:
4655 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4656 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4657 while (start_vpfn <= last_vpfn) {
4658 struct iova *iova;
4659 struct dmar_drhd_unit *drhd;
4660 struct intel_iommu *iommu;
4661 struct page *freelist;
4662
4663 iova = find_iova(&si_domain->iovad, start_vpfn);
4664 if (iova == NULL) {
4665 pr_debug("Failed get IOVA for PFN %lx\n",
4666 start_vpfn);
4667 break;
4668 }
4669
4670 iova = split_and_remove_iova(&si_domain->iovad, iova,
4671 start_vpfn, last_vpfn);
4672 if (iova == NULL) {
4673 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4674 start_vpfn, last_vpfn);
4675 return NOTIFY_BAD;
4676 }
4677
4678 freelist = domain_unmap(si_domain, iova->pfn_lo,
4679 iova->pfn_hi);
4680
4681 rcu_read_lock();
4682 for_each_active_iommu(iommu, drhd)
4683 iommu_flush_iotlb_psi(iommu, si_domain,
4684 iova->pfn_lo, iova_size(iova),
4685 !freelist, 0);
4686 rcu_read_unlock();
4687 dma_free_pagelist(freelist);
4688
4689 start_vpfn = iova->pfn_hi + 1;
4690 free_iova_mem(iova);
4691 }
4692 break;
4693 }
4694
4695 return NOTIFY_OK;
4696 }
4697
4698 static struct notifier_block intel_iommu_memory_nb = {
4699 .notifier_call = intel_iommu_memory_notifier,
4700 .priority = 0
4701 };
4702
4703 static void free_all_cpu_cached_iovas(unsigned int cpu)
4704 {
4705 int i;
4706
4707 for (i = 0; i < g_num_of_iommus; i++) {
4708 struct intel_iommu *iommu = g_iommus[i];
4709 struct dmar_domain *domain;
4710 int did;
4711
4712 if (!iommu)
4713 continue;
4714
4715 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4716 domain = get_iommu_domain(iommu, (u16)did);
4717
4718 if (!domain)
4719 continue;
4720 free_cpu_cached_iovas(cpu, &domain->iovad);
4721 }
4722 }
4723 }
4724
4725 static int intel_iommu_cpu_dead(unsigned int cpu)
4726 {
4727 free_all_cpu_cached_iovas(cpu);
4728 flush_unmaps_timeout(cpu);
4729 return 0;
4730 }
4731
4732 static ssize_t intel_iommu_show_version(struct device *dev,
4733 struct device_attribute *attr,
4734 char *buf)
4735 {
4736 struct intel_iommu *iommu = dev_get_drvdata(dev);
4737 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4738 return sprintf(buf, "%d:%d\n",
4739 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4740 }
4741 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4742
4743 static ssize_t intel_iommu_show_address(struct device *dev,
4744 struct device_attribute *attr,
4745 char *buf)
4746 {
4747 struct intel_iommu *iommu = dev_get_drvdata(dev);
4748 return sprintf(buf, "%llx\n", iommu->reg_phys);
4749 }
4750 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4751
4752 static ssize_t intel_iommu_show_cap(struct device *dev,
4753 struct device_attribute *attr,
4754 char *buf)
4755 {
4756 struct intel_iommu *iommu = dev_get_drvdata(dev);
4757 return sprintf(buf, "%llx\n", iommu->cap);
4758 }
4759 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4760
4761 static ssize_t intel_iommu_show_ecap(struct device *dev,
4762 struct device_attribute *attr,
4763 char *buf)
4764 {
4765 struct intel_iommu *iommu = dev_get_drvdata(dev);
4766 return sprintf(buf, "%llx\n", iommu->ecap);
4767 }
4768 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4769
4770 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4771 struct device_attribute *attr,
4772 char *buf)
4773 {
4774 struct intel_iommu *iommu = dev_get_drvdata(dev);
4775 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4776 }
4777 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4778
4779 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4780 struct device_attribute *attr,
4781 char *buf)
4782 {
4783 struct intel_iommu *iommu = dev_get_drvdata(dev);
4784 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4785 cap_ndoms(iommu->cap)));
4786 }
4787 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4788
4789 static struct attribute *intel_iommu_attrs[] = {
4790 &dev_attr_version.attr,
4791 &dev_attr_address.attr,
4792 &dev_attr_cap.attr,
4793 &dev_attr_ecap.attr,
4794 &dev_attr_domains_supported.attr,
4795 &dev_attr_domains_used.attr,
4796 NULL,
4797 };
4798
4799 static struct attribute_group intel_iommu_group = {
4800 .name = "intel-iommu",
4801 .attrs = intel_iommu_attrs,
4802 };
4803
4804 const struct attribute_group *intel_iommu_groups[] = {
4805 &intel_iommu_group,
4806 NULL,
4807 };
4808
4809 int __init intel_iommu_init(void)
4810 {
4811 int ret = -ENODEV;
4812 struct dmar_drhd_unit *drhd;
4813 struct intel_iommu *iommu;
4814
4815 /* VT-d is required for a TXT/tboot launch, so enforce that */
4816 force_on = tboot_force_iommu();
4817
4818 if (iommu_init_mempool()) {
4819 if (force_on)
4820 panic("tboot: Failed to initialize iommu memory\n");
4821 return -ENOMEM;
4822 }
4823
4824 down_write(&dmar_global_lock);
4825 if (dmar_table_init()) {
4826 if (force_on)
4827 panic("tboot: Failed to initialize DMAR table\n");
4828 goto out_free_dmar;
4829 }
4830
4831 if (dmar_dev_scope_init() < 0) {
4832 if (force_on)
4833 panic("tboot: Failed to initialize DMAR device scope\n");
4834 goto out_free_dmar;
4835 }
4836
4837 if (no_iommu || dmar_disabled)
4838 goto out_free_dmar;
4839
4840 if (list_empty(&dmar_rmrr_units))
4841 pr_info("No RMRR found\n");
4842
4843 if (list_empty(&dmar_atsr_units))
4844 pr_info("No ATSR found\n");
4845
4846 if (dmar_init_reserved_ranges()) {
4847 if (force_on)
4848 panic("tboot: Failed to reserve iommu ranges\n");
4849 goto out_free_reserved_range;
4850 }
4851
4852 init_no_remapping_devices();
4853
4854 ret = init_dmars();
4855 if (ret) {
4856 if (force_on)
4857 panic("tboot: Failed to initialize DMARs\n");
4858 pr_err("Initialization failed\n");
4859 goto out_free_reserved_range;
4860 }
4861 up_write(&dmar_global_lock);
4862 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4863
4864 #ifdef CONFIG_SWIOTLB
4865 swiotlb = 0;
4866 #endif
4867 dma_ops = &intel_dma_ops;
4868
4869 init_iommu_pm_ops();
4870
4871 for_each_active_iommu(iommu, drhd)
4872 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4873 intel_iommu_groups,
4874 "%s", iommu->name);
4875
4876 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4877 bus_register_notifier(&pci_bus_type, &device_nb);
4878 if (si_domain && !hw_pass_through)
4879 register_memory_notifier(&intel_iommu_memory_nb);
4880 cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4881 intel_iommu_cpu_dead);
4882 intel_iommu_enabled = 1;
4883
4884 return 0;
4885
4886 out_free_reserved_range:
4887 put_iova_domain(&reserved_iova_list);
4888 out_free_dmar:
4889 intel_iommu_free_dmars();
4890 up_write(&dmar_global_lock);
4891 iommu_exit_mempool();
4892 return ret;
4893 }
4894
4895 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4896 {
4897 struct intel_iommu *iommu = opaque;
4898
4899 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4900 return 0;
4901 }
4902
4903 /*
4904 * NB - intel-iommu lacks any sort of reference counting for the users of
4905 * dependent devices. If multiple endpoints have intersecting dependent
4906 * devices, unbinding the driver from any one of them will possibly leave
4907 * the others unable to operate.
4908 */
4909 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4910 {
4911 if (!iommu || !dev || !dev_is_pci(dev))
4912 return;
4913
4914 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4915 }
4916
4917 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4918 {
4919 struct intel_iommu *iommu;
4920 unsigned long flags;
4921
4922 assert_spin_locked(&device_domain_lock);
4923
4924 if (WARN_ON(!info))
4925 return;
4926
4927 iommu = info->iommu;
4928
4929 if (info->dev) {
4930 iommu_disable_dev_iotlb(info);
4931 domain_context_clear(iommu, info->dev);
4932 }
4933
4934 unlink_domain_info(info);
4935
4936 spin_lock_irqsave(&iommu->lock, flags);
4937 domain_detach_iommu(info->domain, iommu);
4938 spin_unlock_irqrestore(&iommu->lock, flags);
4939
4940 free_devinfo_mem(info);
4941 }
4942
4943 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4944 struct device *dev)
4945 {
4946 struct device_domain_info *info;
4947 unsigned long flags;
4948
4949 spin_lock_irqsave(&device_domain_lock, flags);
4950 info = dev->archdata.iommu;
4951 __dmar_remove_one_dev_info(info);
4952 spin_unlock_irqrestore(&device_domain_lock, flags);
4953 }
4954
4955 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4956 {
4957 int adjust_width;
4958
4959 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4960 DMA_32BIT_PFN);
4961 domain_reserve_special_ranges(domain);
4962
4963 /* calculate AGAW */
4964 domain->gaw = guest_width;
4965 adjust_width = guestwidth_to_adjustwidth(guest_width);
4966 domain->agaw = width_to_agaw(adjust_width);
4967
4968 domain->iommu_coherency = 0;
4969 domain->iommu_snooping = 0;
4970 domain->iommu_superpage = 0;
4971 domain->max_addr = 0;
4972
4973 /* always allocate the top pgd */
4974 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4975 if (!domain->pgd)
4976 return -ENOMEM;
4977 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4978 return 0;
4979 }
4980
4981 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4982 {
4983 struct dmar_domain *dmar_domain;
4984 struct iommu_domain *domain;
4985
4986 if (type != IOMMU_DOMAIN_UNMANAGED)
4987 return NULL;
4988
4989 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4990 if (!dmar_domain) {
4991 pr_err("Can't allocate dmar_domain\n");
4992 return NULL;
4993 }
4994 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4995 pr_err("Domain initialization failed\n");
4996 domain_exit(dmar_domain);
4997 return NULL;
4998 }
4999 domain_update_iommu_cap(dmar_domain);
5000
5001 domain = &dmar_domain->domain;
5002 domain->geometry.aperture_start = 0;
5003 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
5004 domain->geometry.force_aperture = true;
5005
5006 return domain;
5007 }
5008
5009 static void intel_iommu_domain_free(struct iommu_domain *domain)
5010 {
5011 domain_exit(to_dmar_domain(domain));
5012 }
5013
5014 static int intel_iommu_attach_device(struct iommu_domain *domain,
5015 struct device *dev)
5016 {
5017 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5018 struct intel_iommu *iommu;
5019 int addr_width;
5020 u8 bus, devfn;
5021
5022 if (device_is_rmrr_locked(dev)) {
5023 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
5024 return -EPERM;
5025 }
5026
5027 /* normally dev is not mapped */
5028 if (unlikely(domain_context_mapped(dev))) {
5029 struct dmar_domain *old_domain;
5030
5031 old_domain = find_domain(dev);
5032 if (old_domain) {
5033 rcu_read_lock();
5034 dmar_remove_one_dev_info(old_domain, dev);
5035 rcu_read_unlock();
5036
5037 if (!domain_type_is_vm_or_si(old_domain) &&
5038 list_empty(&old_domain->devices))
5039 domain_exit(old_domain);
5040 }
5041 }
5042
5043 iommu = device_to_iommu(dev, &bus, &devfn);
5044 if (!iommu)
5045 return -ENODEV;
5046
5047 /* check if this iommu agaw is sufficient for max mapped address */
5048 addr_width = agaw_to_width(iommu->agaw);
5049 if (addr_width > cap_mgaw(iommu->cap))
5050 addr_width = cap_mgaw(iommu->cap);
5051
5052 if (dmar_domain->max_addr > (1LL << addr_width)) {
5053 pr_err("%s: iommu width (%d) is not "
5054 "sufficient for the mapped address (%llx)\n",
5055 __func__, addr_width, dmar_domain->max_addr);
5056 return -EFAULT;
5057 }
5058 dmar_domain->gaw = addr_width;
5059
5060 /*
5061 * Knock out extra levels of page tables if necessary
5062 */
5063 while (iommu->agaw < dmar_domain->agaw) {
5064 struct dma_pte *pte;
5065
5066 pte = dmar_domain->pgd;
5067 if (dma_pte_present(pte)) {
5068 dmar_domain->pgd = (struct dma_pte *)
5069 phys_to_virt(dma_pte_addr(pte));
5070 free_pgtable_page(pte);
5071 }
5072 dmar_domain->agaw--;
5073 }
5074
5075 return domain_add_dev_info(dmar_domain, dev);
5076 }
5077
5078 static void intel_iommu_detach_device(struct iommu_domain *domain,
5079 struct device *dev)
5080 {
5081 dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
5082 }
5083
5084 static int intel_iommu_map(struct iommu_domain *domain,
5085 unsigned long iova, phys_addr_t hpa,
5086 size_t size, int iommu_prot)
5087 {
5088 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5089 u64 max_addr;
5090 int prot = 0;
5091 int ret;
5092
5093 if (iommu_prot & IOMMU_READ)
5094 prot |= DMA_PTE_READ;
5095 if (iommu_prot & IOMMU_WRITE)
5096 prot |= DMA_PTE_WRITE;
5097 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5098 prot |= DMA_PTE_SNP;
5099
5100 max_addr = iova + size;
5101 if (dmar_domain->max_addr < max_addr) {
5102 u64 end;
5103
5104 /* check if minimum agaw is sufficient for mapped address */
5105 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5106 if (end < max_addr) {
5107 pr_err("%s: iommu width (%d) is not "
5108 "sufficient for the mapped address (%llx)\n",
5109 __func__, dmar_domain->gaw, max_addr);
5110 return -EFAULT;
5111 }
5112 dmar_domain->max_addr = max_addr;
5113 }
5114 /* Round up size to next multiple of PAGE_SIZE, if it and
5115 the low bits of hpa would take us onto the next page */
5116 size = aligned_nrpages(hpa, size);
5117 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5118 hpa >> VTD_PAGE_SHIFT, size, prot);
5119 return ret;
5120 }
5121
5122 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5123 unsigned long iova, size_t size)
5124 {
5125 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5126 struct page *freelist = NULL;
5127 struct intel_iommu *iommu;
5128 unsigned long start_pfn, last_pfn;
5129 unsigned int npages;
5130 int iommu_id, level = 0;
5131
5132 /* Cope with horrid API which requires us to unmap more than the
5133 size argument if it happens to be a large-page mapping. */
5134 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5135
5136 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5137 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5138
5139 start_pfn = iova >> VTD_PAGE_SHIFT;
5140 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5141
5142 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5143
5144 npages = last_pfn - start_pfn + 1;
5145
5146 for_each_domain_iommu(iommu_id, dmar_domain) {
5147 iommu = g_iommus[iommu_id];
5148
5149 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5150 start_pfn, npages, !freelist, 0);
5151 }
5152
5153 dma_free_pagelist(freelist);
5154
5155 if (dmar_domain->max_addr == iova + size)
5156 dmar_domain->max_addr = iova;
5157
5158 return size;
5159 }
5160
5161 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5162 dma_addr_t iova)
5163 {
5164 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5165 struct dma_pte *pte;
5166 int level = 0;
5167 u64 phys = 0;
5168
5169 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5170 if (pte)
5171 phys = dma_pte_addr(pte);
5172
5173 return phys;
5174 }
5175
5176 static bool intel_iommu_capable(enum iommu_cap cap)
5177 {
5178 if (cap == IOMMU_CAP_CACHE_COHERENCY)
5179 return domain_update_iommu_snooping(NULL) == 1;
5180 if (cap == IOMMU_CAP_INTR_REMAP)
5181 return irq_remapping_enabled == 1;
5182
5183 return false;
5184 }
5185
5186 static int intel_iommu_add_device(struct device *dev)
5187 {
5188 struct intel_iommu *iommu;
5189 struct iommu_group *group;
5190 u8 bus, devfn;
5191
5192 iommu = device_to_iommu(dev, &bus, &devfn);
5193 if (!iommu)
5194 return -ENODEV;
5195
5196 iommu_device_link(iommu->iommu_dev, dev);
5197
5198 group = iommu_group_get_for_dev(dev);
5199
5200 if (IS_ERR(group))
5201 return PTR_ERR(group);
5202
5203 iommu_group_put(group);
5204 return 0;
5205 }
5206
5207 static void intel_iommu_remove_device(struct device *dev)
5208 {
5209 struct intel_iommu *iommu;
5210 u8 bus, devfn;
5211
5212 iommu = device_to_iommu(dev, &bus, &devfn);
5213 if (!iommu)
5214 return;
5215
5216 iommu_group_remove_device(dev);
5217
5218 iommu_device_unlink(iommu->iommu_dev, dev);
5219 }
5220
5221 static void intel_iommu_get_resv_regions(struct device *device,
5222 struct list_head *head)
5223 {
5224 struct iommu_resv_region *reg;
5225 struct dmar_rmrr_unit *rmrr;
5226 struct device *i_dev;
5227 int i;
5228
5229 rcu_read_lock();
5230 for_each_rmrr_units(rmrr) {
5231 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5232 i, i_dev) {
5233 if (i_dev != device)
5234 continue;
5235
5236 list_add_tail(&rmrr->resv->list, head);
5237 }
5238 }
5239 rcu_read_unlock();
5240
5241 reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5242 IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5243 0, IOMMU_RESV_RESERVED);
5244 if (!reg)
5245 return;
5246 list_add_tail(&reg->list, head);
5247 }
5248
5249 static void intel_iommu_put_resv_regions(struct device *dev,
5250 struct list_head *head)
5251 {
5252 struct iommu_resv_region *entry, *next;
5253
5254 list_for_each_entry_safe(entry, next, head, list) {
5255 if (entry->type == IOMMU_RESV_RESERVED)
5256 kfree(entry);
5257 }
5258 }
5259
5260 #ifdef CONFIG_INTEL_IOMMU_SVM
5261 #define MAX_NR_PASID_BITS (20)
5262 static inline unsigned long intel_iommu_get_pts(struct intel_iommu *iommu)
5263 {
5264 /*
5265 * Convert ecap_pss to extend context entry pts encoding, also
5266 * respect the soft pasid_max value set by the iommu.
5267 * - number of PASID bits = ecap_pss + 1
5268 * - number of PASID table entries = 2^(pts + 5)
5269 * Therefore, pts = ecap_pss - 4
5270 * e.g. KBL ecap_pss = 0x13, PASID has 20 bits, pts = 15
5271 */
5272 if (ecap_pss(iommu->ecap) < 5)
5273 return 0;
5274
5275 /* pasid_max is encoded as actual number of entries not the bits */
5276 return find_first_bit((unsigned long *)&iommu->pasid_max,
5277 MAX_NR_PASID_BITS) - 5;
5278 }
5279
5280 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5281 {
5282 struct device_domain_info *info;
5283 struct context_entry *context;
5284 struct dmar_domain *domain;
5285 unsigned long flags;
5286 u64 ctx_lo;
5287 int ret;
5288
5289 domain = get_valid_domain_for_dev(sdev->dev);
5290 if (!domain)
5291 return -EINVAL;
5292
5293 spin_lock_irqsave(&device_domain_lock, flags);
5294 spin_lock(&iommu->lock);
5295
5296 ret = -EINVAL;
5297 info = sdev->dev->archdata.iommu;
5298 if (!info || !info->pasid_supported)
5299 goto out;
5300
5301 context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5302 if (WARN_ON(!context))
5303 goto out;
5304
5305 ctx_lo = context[0].lo;
5306
5307 sdev->did = domain->iommu_did[iommu->seq_id];
5308 sdev->sid = PCI_DEVID(info->bus, info->devfn);
5309
5310 if (!(ctx_lo & CONTEXT_PASIDE)) {
5311 context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5312 context[1].lo = (u64)virt_to_phys(iommu->pasid_table) |
5313 intel_iommu_get_pts(iommu);
5314
5315 wmb();
5316 /* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5317 * extended to permit requests-with-PASID if the PASIDE bit
5318 * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5319 * however, the PASIDE bit is ignored and requests-with-PASID
5320 * are unconditionally blocked. Which makes less sense.
5321 * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5322 * "guest mode" translation types depending on whether ATS
5323 * is available or not. Annoyingly, we can't use the new
5324 * modes *unless* PASIDE is set. */
5325 if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5326 ctx_lo &= ~CONTEXT_TT_MASK;
5327 if (info->ats_supported)
5328 ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5329 else
5330 ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5331 }
5332 ctx_lo |= CONTEXT_PASIDE;
5333 if (iommu->pasid_state_table)
5334 ctx_lo |= CONTEXT_DINVE;
5335 if (info->pri_supported)
5336 ctx_lo |= CONTEXT_PRS;
5337 context[0].lo = ctx_lo;
5338 wmb();
5339 iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5340 DMA_CCMD_MASK_NOBIT,
5341 DMA_CCMD_DEVICE_INVL);
5342 }
5343
5344 /* Enable PASID support in the device, if it wasn't already */
5345 if (!info->pasid_enabled)
5346 iommu_enable_dev_iotlb(info);
5347
5348 if (info->ats_enabled) {
5349 sdev->dev_iotlb = 1;
5350 sdev->qdep = info->ats_qdep;
5351 if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5352 sdev->qdep = 0;
5353 }
5354 ret = 0;
5355
5356 out:
5357 spin_unlock(&iommu->lock);
5358 spin_unlock_irqrestore(&device_domain_lock, flags);
5359
5360 return ret;
5361 }
5362
5363 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5364 {
5365 struct intel_iommu *iommu;
5366 u8 bus, devfn;
5367
5368 if (iommu_dummy(dev)) {
5369 dev_warn(dev,
5370 "No IOMMU translation for device; cannot enable SVM\n");
5371 return NULL;
5372 }
5373
5374 iommu = device_to_iommu(dev, &bus, &devfn);
5375 if ((!iommu)) {
5376 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5377 return NULL;
5378 }
5379
5380 if (!iommu->pasid_table) {
5381 dev_err(dev, "PASID not enabled on IOMMU; cannot enable SVM\n");
5382 return NULL;
5383 }
5384
5385 return iommu;
5386 }
5387 #endif /* CONFIG_INTEL_IOMMU_SVM */
5388
5389 static const struct iommu_ops intel_iommu_ops = {
5390 .capable = intel_iommu_capable,
5391 .domain_alloc = intel_iommu_domain_alloc,
5392 .domain_free = intel_iommu_domain_free,
5393 .attach_dev = intel_iommu_attach_device,
5394 .detach_dev = intel_iommu_detach_device,
5395 .map = intel_iommu_map,
5396 .unmap = intel_iommu_unmap,
5397 .map_sg = default_iommu_map_sg,
5398 .iova_to_phys = intel_iommu_iova_to_phys,
5399 .add_device = intel_iommu_add_device,
5400 .remove_device = intel_iommu_remove_device,
5401 .get_resv_regions = intel_iommu_get_resv_regions,
5402 .put_resv_regions = intel_iommu_put_resv_regions,
5403 .device_group = pci_device_group,
5404 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
5405 };
5406
5407 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5408 {
5409 /* G4x/GM45 integrated gfx dmar support is totally busted. */
5410 pr_info("Disabling IOMMU for graphics on this chipset\n");
5411 dmar_map_gfx = 0;
5412 }
5413
5414 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5415 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5416 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5417 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5418 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5419 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5420 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5421
5422 static void quirk_iommu_rwbf(struct pci_dev *dev)
5423 {
5424 /*
5425 * Mobile 4 Series Chipset neglects to set RWBF capability,
5426 * but needs it. Same seems to hold for the desktop versions.
5427 */
5428 pr_info("Forcing write-buffer flush capability\n");
5429 rwbf_quirk = 1;
5430 }
5431
5432 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5433 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5434 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5435 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5436 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5437 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5438 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5439
5440 #define GGC 0x52
5441 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
5442 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
5443 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
5444 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
5445 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
5446 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
5447 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
5448 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
5449
5450 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5451 {
5452 unsigned short ggc;
5453
5454 if (pci_read_config_word(dev, GGC, &ggc))
5455 return;
5456
5457 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5458 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5459 dmar_map_gfx = 0;
5460 } else if (dmar_map_gfx) {
5461 /* we have to ensure the gfx device is idle before we flush */
5462 pr_info("Disabling batched IOTLB flush on Ironlake\n");
5463 intel_iommu_strict = 1;
5464 }
5465 }
5466 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5467 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5468 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5469 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5470
5471 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5472 ISOCH DMAR unit for the Azalia sound device, but not give it any
5473 TLB entries, which causes it to deadlock. Check for that. We do
5474 this in a function called from init_dmars(), instead of in a PCI
5475 quirk, because we don't want to print the obnoxious "BIOS broken"
5476 message if VT-d is actually disabled.
5477 */
5478 static void __init check_tylersburg_isoch(void)
5479 {
5480 struct pci_dev *pdev;
5481 uint32_t vtisochctrl;
5482
5483 /* If there's no Azalia in the system anyway, forget it. */
5484 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5485 if (!pdev)
5486 return;
5487 pci_dev_put(pdev);
5488
5489 /* System Management Registers. Might be hidden, in which case
5490 we can't do the sanity check. But that's OK, because the
5491 known-broken BIOSes _don't_ actually hide it, so far. */
5492 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5493 if (!pdev)
5494 return;
5495
5496 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5497 pci_dev_put(pdev);
5498 return;
5499 }
5500
5501 pci_dev_put(pdev);
5502
5503 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5504 if (vtisochctrl & 1)
5505 return;
5506
5507 /* Drop all bits other than the number of TLB entries */
5508 vtisochctrl &= 0x1c;
5509
5510 /* If we have the recommended number of TLB entries (16), fine. */
5511 if (vtisochctrl == 0x10)
5512 return;
5513
5514 /* Zero TLB entries? You get to ride the short bus to school. */
5515 if (!vtisochctrl) {
5516 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5517 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5518 dmi_get_system_info(DMI_BIOS_VENDOR),
5519 dmi_get_system_info(DMI_BIOS_VERSION),
5520 dmi_get_system_info(DMI_PRODUCT_VERSION));
5521 iommu_identity_mapping |= IDENTMAP_AZALIA;
5522 return;
5523 }
5524
5525 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5526 vtisochctrl);
5527 }