]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/iommu/intel_irq_remapping.c
a190cbd76ef7113f850b3c09d8b513367d7eb496
[mirror_ubuntu-artful-kernel.git] / drivers / iommu / intel_irq_remapping.c
1
2 #define pr_fmt(fmt) "DMAR-IR: " fmt
3
4 #include <linux/interrupt.h>
5 #include <linux/dmar.h>
6 #include <linux/spinlock.h>
7 #include <linux/slab.h>
8 #include <linux/jiffies.h>
9 #include <linux/hpet.h>
10 #include <linux/pci.h>
11 #include <linux/irq.h>
12 #include <linux/intel-iommu.h>
13 #include <linux/acpi.h>
14 #include <linux/irqdomain.h>
15 #include <linux/crash_dump.h>
16 #include <asm/io_apic.h>
17 #include <asm/smp.h>
18 #include <asm/cpu.h>
19 #include <asm/irq_remapping.h>
20 #include <asm/pci-direct.h>
21 #include <asm/msidef.h>
22
23 #include "irq_remapping.h"
24
25 enum irq_mode {
26 IRQ_REMAPPING,
27 IRQ_POSTING,
28 };
29
30 struct ioapic_scope {
31 struct intel_iommu *iommu;
32 unsigned int id;
33 unsigned int bus; /* PCI bus number */
34 unsigned int devfn; /* PCI devfn number */
35 };
36
37 struct hpet_scope {
38 struct intel_iommu *iommu;
39 u8 id;
40 unsigned int bus;
41 unsigned int devfn;
42 };
43
44 struct irq_2_iommu {
45 struct intel_iommu *iommu;
46 u16 irte_index;
47 u16 sub_handle;
48 u8 irte_mask;
49 enum irq_mode mode;
50 };
51
52 struct intel_ir_data {
53 struct irq_2_iommu irq_2_iommu;
54 struct irte irte_entry;
55 union {
56 struct msi_msg msi_entry;
57 };
58 };
59
60 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
61 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
62
63 static int __read_mostly eim_mode;
64 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
65 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
66
67 /*
68 * Lock ordering:
69 * ->dmar_global_lock
70 * ->irq_2_ir_lock
71 * ->qi->q_lock
72 * ->iommu->register_lock
73 * Note:
74 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
75 * in single-threaded environment with interrupt disabled, so no need to tabke
76 * the dmar_global_lock.
77 */
78 static DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
79 static struct irq_domain_ops intel_ir_domain_ops;
80
81 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
82 static int __init parse_ioapics_under_ir(void);
83
84 static bool ir_pre_enabled(struct intel_iommu *iommu)
85 {
86 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
87 }
88
89 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
90 {
91 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
92 }
93
94 static void init_ir_status(struct intel_iommu *iommu)
95 {
96 u32 gsts;
97
98 gsts = readl(iommu->reg + DMAR_GSTS_REG);
99 if (gsts & DMA_GSTS_IRES)
100 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
101 }
102
103 static int alloc_irte(struct intel_iommu *iommu, int irq,
104 struct irq_2_iommu *irq_iommu, u16 count)
105 {
106 struct ir_table *table = iommu->ir_table;
107 unsigned int mask = 0;
108 unsigned long flags;
109 int index;
110
111 if (!count || !irq_iommu)
112 return -1;
113
114 if (count > 1) {
115 count = __roundup_pow_of_two(count);
116 mask = ilog2(count);
117 }
118
119 if (mask > ecap_max_handle_mask(iommu->ecap)) {
120 pr_err("Requested mask %x exceeds the max invalidation handle"
121 " mask value %Lx\n", mask,
122 ecap_max_handle_mask(iommu->ecap));
123 return -1;
124 }
125
126 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
127 index = bitmap_find_free_region(table->bitmap,
128 INTR_REMAP_TABLE_ENTRIES, mask);
129 if (index < 0) {
130 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
131 } else {
132 irq_iommu->iommu = iommu;
133 irq_iommu->irte_index = index;
134 irq_iommu->sub_handle = 0;
135 irq_iommu->irte_mask = mask;
136 irq_iommu->mode = IRQ_REMAPPING;
137 }
138 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
139
140 return index;
141 }
142
143 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
144 {
145 struct qi_desc desc;
146
147 desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
148 | QI_IEC_SELECTIVE;
149 desc.high = 0;
150
151 return qi_submit_sync(&desc, iommu);
152 }
153
154 static int modify_irte(struct irq_2_iommu *irq_iommu,
155 struct irte *irte_modified)
156 {
157 struct intel_iommu *iommu;
158 unsigned long flags;
159 struct irte *irte;
160 int rc, index;
161
162 if (!irq_iommu)
163 return -1;
164
165 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
166
167 iommu = irq_iommu->iommu;
168
169 index = irq_iommu->irte_index + irq_iommu->sub_handle;
170 irte = &iommu->ir_table->base[index];
171
172 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
173 if ((irte->pst == 1) || (irte_modified->pst == 1)) {
174 bool ret;
175
176 ret = cmpxchg_double(&irte->low, &irte->high,
177 irte->low, irte->high,
178 irte_modified->low, irte_modified->high);
179 /*
180 * We use cmpxchg16 to atomically update the 128-bit IRTE,
181 * and it cannot be updated by the hardware or other processors
182 * behind us, so the return value of cmpxchg16 should be the
183 * same as the old value.
184 */
185 WARN_ON(!ret);
186 } else
187 #endif
188 {
189 set_64bit(&irte->low, irte_modified->low);
190 set_64bit(&irte->high, irte_modified->high);
191 }
192 __iommu_flush_cache(iommu, irte, sizeof(*irte));
193
194 rc = qi_flush_iec(iommu, index, 0);
195
196 /* Update iommu mode according to the IRTE mode */
197 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
198 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
199
200 return rc;
201 }
202
203 static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
204 {
205 int i;
206
207 for (i = 0; i < MAX_HPET_TBS; i++)
208 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
209 return ir_hpet[i].iommu;
210 return NULL;
211 }
212
213 static struct intel_iommu *map_ioapic_to_ir(int apic)
214 {
215 int i;
216
217 for (i = 0; i < MAX_IO_APICS; i++)
218 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
219 return ir_ioapic[i].iommu;
220 return NULL;
221 }
222
223 static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
224 {
225 struct dmar_drhd_unit *drhd;
226
227 drhd = dmar_find_matched_drhd_unit(dev);
228 if (!drhd)
229 return NULL;
230
231 return drhd->iommu;
232 }
233
234 static int clear_entries(struct irq_2_iommu *irq_iommu)
235 {
236 struct irte *start, *entry, *end;
237 struct intel_iommu *iommu;
238 int index;
239
240 if (irq_iommu->sub_handle)
241 return 0;
242
243 iommu = irq_iommu->iommu;
244 index = irq_iommu->irte_index;
245
246 start = iommu->ir_table->base + index;
247 end = start + (1 << irq_iommu->irte_mask);
248
249 for (entry = start; entry < end; entry++) {
250 set_64bit(&entry->low, 0);
251 set_64bit(&entry->high, 0);
252 }
253 bitmap_release_region(iommu->ir_table->bitmap, index,
254 irq_iommu->irte_mask);
255
256 return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
257 }
258
259 /*
260 * source validation type
261 */
262 #define SVT_NO_VERIFY 0x0 /* no verification is required */
263 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
264 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
265
266 /*
267 * source-id qualifier
268 */
269 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
270 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
271 * the third least significant bit
272 */
273 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
274 * the second and third least significant bits
275 */
276 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
277 * the least three significant bits
278 */
279
280 /*
281 * set SVT, SQ and SID fields of irte to verify
282 * source ids of interrupt requests
283 */
284 static void set_irte_sid(struct irte *irte, unsigned int svt,
285 unsigned int sq, unsigned int sid)
286 {
287 if (disable_sourceid_checking)
288 svt = SVT_NO_VERIFY;
289 irte->svt = svt;
290 irte->sq = sq;
291 irte->sid = sid;
292 }
293
294 static int set_ioapic_sid(struct irte *irte, int apic)
295 {
296 int i;
297 u16 sid = 0;
298
299 if (!irte)
300 return -1;
301
302 down_read(&dmar_global_lock);
303 for (i = 0; i < MAX_IO_APICS; i++) {
304 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
305 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
306 break;
307 }
308 }
309 up_read(&dmar_global_lock);
310
311 if (sid == 0) {
312 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
313 return -1;
314 }
315
316 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
317
318 return 0;
319 }
320
321 static int set_hpet_sid(struct irte *irte, u8 id)
322 {
323 int i;
324 u16 sid = 0;
325
326 if (!irte)
327 return -1;
328
329 down_read(&dmar_global_lock);
330 for (i = 0; i < MAX_HPET_TBS; i++) {
331 if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
332 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
333 break;
334 }
335 }
336 up_read(&dmar_global_lock);
337
338 if (sid == 0) {
339 pr_warn("Failed to set source-id of HPET block (%d)\n", id);
340 return -1;
341 }
342
343 /*
344 * Should really use SQ_ALL_16. Some platforms are broken.
345 * While we figure out the right quirks for these broken platforms, use
346 * SQ_13_IGNORE_3 for now.
347 */
348 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
349
350 return 0;
351 }
352
353 struct set_msi_sid_data {
354 struct pci_dev *pdev;
355 u16 alias;
356 };
357
358 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
359 {
360 struct set_msi_sid_data *data = opaque;
361
362 data->pdev = pdev;
363 data->alias = alias;
364
365 return 0;
366 }
367
368 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
369 {
370 struct set_msi_sid_data data;
371
372 if (!irte || !dev)
373 return -1;
374
375 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
376
377 /*
378 * DMA alias provides us with a PCI device and alias. The only case
379 * where the it will return an alias on a different bus than the
380 * device is the case of a PCIe-to-PCI bridge, where the alias is for
381 * the subordinate bus. In this case we can only verify the bus.
382 *
383 * If the alias device is on a different bus than our source device
384 * then we have a topology based alias, use it.
385 *
386 * Otherwise, the alias is for a device DMA quirk and we cannot
387 * assume that MSI uses the same requester ID. Therefore use the
388 * original device.
389 */
390 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
391 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
392 PCI_DEVID(PCI_BUS_NUM(data.alias),
393 dev->bus->number));
394 else if (data.pdev->bus->number != dev->bus->number)
395 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
396 else
397 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
398 PCI_DEVID(dev->bus->number, dev->devfn));
399
400 return 0;
401 }
402
403 static int iommu_load_old_irte(struct intel_iommu *iommu)
404 {
405 struct irte *old_ir_table;
406 phys_addr_t irt_phys;
407 unsigned int i;
408 size_t size;
409 u64 irta;
410
411 /* Check whether the old ir-table has the same size as ours */
412 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
413 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
414 != INTR_REMAP_TABLE_REG_SIZE)
415 return -EINVAL;
416
417 irt_phys = irta & VTD_PAGE_MASK;
418 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
419
420 /* Map the old IR table */
421 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
422 if (!old_ir_table)
423 return -ENOMEM;
424
425 /* Copy data over */
426 memcpy(iommu->ir_table->base, old_ir_table, size);
427
428 __iommu_flush_cache(iommu, iommu->ir_table->base, size);
429
430 /*
431 * Now check the table for used entries and mark those as
432 * allocated in the bitmap
433 */
434 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
435 if (iommu->ir_table->base[i].present)
436 bitmap_set(iommu->ir_table->bitmap, i, 1);
437 }
438
439 memunmap(old_ir_table);
440
441 return 0;
442 }
443
444
445 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
446 {
447 unsigned long flags;
448 u64 addr;
449 u32 sts;
450
451 addr = virt_to_phys((void *)iommu->ir_table->base);
452
453 raw_spin_lock_irqsave(&iommu->register_lock, flags);
454
455 dmar_writeq(iommu->reg + DMAR_IRTA_REG,
456 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
457
458 /* Set interrupt-remapping table pointer */
459 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
460
461 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
462 readl, (sts & DMA_GSTS_IRTPS), sts);
463 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
464
465 /*
466 * Global invalidation of interrupt entry cache to make sure the
467 * hardware uses the new irq remapping table.
468 */
469 qi_global_iec(iommu);
470 }
471
472 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
473 {
474 unsigned long flags;
475 u32 sts;
476
477 raw_spin_lock_irqsave(&iommu->register_lock, flags);
478
479 /* Enable interrupt-remapping */
480 iommu->gcmd |= DMA_GCMD_IRE;
481 iommu->gcmd &= ~DMA_GCMD_CFI; /* Block compatibility-format MSIs */
482 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
483
484 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
485 readl, (sts & DMA_GSTS_IRES), sts);
486
487 /*
488 * With CFI clear in the Global Command register, we should be
489 * protected from dangerous (i.e. compatibility) interrupts
490 * regardless of x2apic status. Check just to be sure.
491 */
492 if (sts & DMA_GSTS_CFIS)
493 WARN(1, KERN_WARNING
494 "Compatibility-format IRQs enabled despite intr remapping;\n"
495 "you are vulnerable to IRQ injection.\n");
496
497 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
498 }
499
500 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
501 {
502 struct ir_table *ir_table;
503 struct page *pages;
504 unsigned long *bitmap;
505
506 if (iommu->ir_table)
507 return 0;
508
509 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
510 if (!ir_table)
511 return -ENOMEM;
512
513 pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
514 INTR_REMAP_PAGE_ORDER);
515 if (!pages) {
516 pr_err("IR%d: failed to allocate pages of order %d\n",
517 iommu->seq_id, INTR_REMAP_PAGE_ORDER);
518 goto out_free_table;
519 }
520
521 bitmap = kcalloc(BITS_TO_LONGS(INTR_REMAP_TABLE_ENTRIES),
522 sizeof(long), GFP_ATOMIC);
523 if (bitmap == NULL) {
524 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
525 goto out_free_pages;
526 }
527
528 iommu->ir_domain = irq_domain_add_hierarchy(arch_get_ir_parent_domain(),
529 0, INTR_REMAP_TABLE_ENTRIES,
530 NULL, &intel_ir_domain_ops,
531 iommu);
532 if (!iommu->ir_domain) {
533 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
534 goto out_free_bitmap;
535 }
536 iommu->ir_msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
537
538 ir_table->base = page_address(pages);
539 ir_table->bitmap = bitmap;
540 iommu->ir_table = ir_table;
541
542 /*
543 * If the queued invalidation is already initialized,
544 * shouldn't disable it.
545 */
546 if (!iommu->qi) {
547 /*
548 * Clear previous faults.
549 */
550 dmar_fault(-1, iommu);
551 dmar_disable_qi(iommu);
552
553 if (dmar_enable_qi(iommu)) {
554 pr_err("Failed to enable queued invalidation\n");
555 goto out_free_bitmap;
556 }
557 }
558
559 init_ir_status(iommu);
560
561 if (ir_pre_enabled(iommu)) {
562 if (!is_kdump_kernel()) {
563 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
564 iommu->name);
565 clear_ir_pre_enabled(iommu);
566 iommu_disable_irq_remapping(iommu);
567 } else if (iommu_load_old_irte(iommu))
568 pr_err("Failed to copy IR table for %s from previous kernel\n",
569 iommu->name);
570 else
571 pr_info("Copied IR table for %s from previous kernel\n",
572 iommu->name);
573 }
574
575 iommu_set_irq_remapping(iommu, eim_mode);
576
577 return 0;
578
579 out_free_bitmap:
580 kfree(bitmap);
581 out_free_pages:
582 __free_pages(pages, INTR_REMAP_PAGE_ORDER);
583 out_free_table:
584 kfree(ir_table);
585
586 iommu->ir_table = NULL;
587
588 return -ENOMEM;
589 }
590
591 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
592 {
593 if (iommu && iommu->ir_table) {
594 if (iommu->ir_msi_domain) {
595 irq_domain_remove(iommu->ir_msi_domain);
596 iommu->ir_msi_domain = NULL;
597 }
598 if (iommu->ir_domain) {
599 irq_domain_remove(iommu->ir_domain);
600 iommu->ir_domain = NULL;
601 }
602 free_pages((unsigned long)iommu->ir_table->base,
603 INTR_REMAP_PAGE_ORDER);
604 kfree(iommu->ir_table->bitmap);
605 kfree(iommu->ir_table);
606 iommu->ir_table = NULL;
607 }
608 }
609
610 /*
611 * Disable Interrupt Remapping.
612 */
613 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
614 {
615 unsigned long flags;
616 u32 sts;
617
618 if (!ecap_ir_support(iommu->ecap))
619 return;
620
621 /*
622 * global invalidation of interrupt entry cache before disabling
623 * interrupt-remapping.
624 */
625 qi_global_iec(iommu);
626
627 raw_spin_lock_irqsave(&iommu->register_lock, flags);
628
629 sts = readl(iommu->reg + DMAR_GSTS_REG);
630 if (!(sts & DMA_GSTS_IRES))
631 goto end;
632
633 iommu->gcmd &= ~DMA_GCMD_IRE;
634 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
635
636 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
637 readl, !(sts & DMA_GSTS_IRES), sts);
638
639 end:
640 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
641 }
642
643 static int __init dmar_x2apic_optout(void)
644 {
645 struct acpi_table_dmar *dmar;
646 dmar = (struct acpi_table_dmar *)dmar_tbl;
647 if (!dmar || no_x2apic_optout)
648 return 0;
649 return dmar->flags & DMAR_X2APIC_OPT_OUT;
650 }
651
652 static void __init intel_cleanup_irq_remapping(void)
653 {
654 struct dmar_drhd_unit *drhd;
655 struct intel_iommu *iommu;
656
657 for_each_iommu(iommu, drhd) {
658 if (ecap_ir_support(iommu->ecap)) {
659 iommu_disable_irq_remapping(iommu);
660 intel_teardown_irq_remapping(iommu);
661 }
662 }
663
664 if (x2apic_supported())
665 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
666 }
667
668 static int __init intel_prepare_irq_remapping(void)
669 {
670 struct dmar_drhd_unit *drhd;
671 struct intel_iommu *iommu;
672 int eim = 0;
673
674 if (irq_remap_broken) {
675 pr_warn("This system BIOS has enabled interrupt remapping\n"
676 "on a chipset that contains an erratum making that\n"
677 "feature unstable. To maintain system stability\n"
678 "interrupt remapping is being disabled. Please\n"
679 "contact your BIOS vendor for an update\n");
680 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
681 return -ENODEV;
682 }
683
684 if (dmar_table_init() < 0)
685 return -ENODEV;
686
687 if (!dmar_ir_support())
688 return -ENODEV;
689
690 if (parse_ioapics_under_ir()) {
691 pr_info("Not enabling interrupt remapping\n");
692 goto error;
693 }
694
695 /* First make sure all IOMMUs support IRQ remapping */
696 for_each_iommu(iommu, drhd)
697 if (!ecap_ir_support(iommu->ecap))
698 goto error;
699
700 /* Detect remapping mode: lapic or x2apic */
701 if (x2apic_supported()) {
702 eim = !dmar_x2apic_optout();
703 if (!eim) {
704 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
705 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
706 }
707 }
708
709 for_each_iommu(iommu, drhd) {
710 if (eim && !ecap_eim_support(iommu->ecap)) {
711 pr_info("%s does not support EIM\n", iommu->name);
712 eim = 0;
713 }
714 }
715
716 eim_mode = eim;
717 if (eim)
718 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
719
720 /* Do the initializations early */
721 for_each_iommu(iommu, drhd) {
722 if (intel_setup_irq_remapping(iommu)) {
723 pr_err("Failed to setup irq remapping for %s\n",
724 iommu->name);
725 goto error;
726 }
727 }
728
729 return 0;
730
731 error:
732 intel_cleanup_irq_remapping();
733 return -ENODEV;
734 }
735
736 /*
737 * Set Posted-Interrupts capability.
738 */
739 static inline void set_irq_posting_cap(void)
740 {
741 struct dmar_drhd_unit *drhd;
742 struct intel_iommu *iommu;
743
744 if (!disable_irq_post) {
745 /*
746 * If IRTE is in posted format, the 'pda' field goes across the
747 * 64-bit boundary, we need use cmpxchg16b to atomically update
748 * it. We only expose posted-interrupt when X86_FEATURE_CX16
749 * is supported. Actually, hardware platforms supporting PI
750 * should have X86_FEATURE_CX16 support, this has been confirmed
751 * with Intel hardware guys.
752 */
753 if (boot_cpu_has(X86_FEATURE_CX16))
754 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
755
756 for_each_iommu(iommu, drhd)
757 if (!cap_pi_support(iommu->cap)) {
758 intel_irq_remap_ops.capability &=
759 ~(1 << IRQ_POSTING_CAP);
760 break;
761 }
762 }
763 }
764
765 static int __init intel_enable_irq_remapping(void)
766 {
767 struct dmar_drhd_unit *drhd;
768 struct intel_iommu *iommu;
769 bool setup = false;
770
771 /*
772 * Setup Interrupt-remapping for all the DRHD's now.
773 */
774 for_each_iommu(iommu, drhd) {
775 if (!ir_pre_enabled(iommu))
776 iommu_enable_irq_remapping(iommu);
777 setup = true;
778 }
779
780 if (!setup)
781 goto error;
782
783 irq_remapping_enabled = 1;
784
785 set_irq_posting_cap();
786
787 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
788
789 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
790
791 error:
792 intel_cleanup_irq_remapping();
793 return -1;
794 }
795
796 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
797 struct intel_iommu *iommu,
798 struct acpi_dmar_hardware_unit *drhd)
799 {
800 struct acpi_dmar_pci_path *path;
801 u8 bus;
802 int count, free = -1;
803
804 bus = scope->bus;
805 path = (struct acpi_dmar_pci_path *)(scope + 1);
806 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
807 / sizeof(struct acpi_dmar_pci_path);
808
809 while (--count > 0) {
810 /*
811 * Access PCI directly due to the PCI
812 * subsystem isn't initialized yet.
813 */
814 bus = read_pci_config_byte(bus, path->device, path->function,
815 PCI_SECONDARY_BUS);
816 path++;
817 }
818
819 for (count = 0; count < MAX_HPET_TBS; count++) {
820 if (ir_hpet[count].iommu == iommu &&
821 ir_hpet[count].id == scope->enumeration_id)
822 return 0;
823 else if (ir_hpet[count].iommu == NULL && free == -1)
824 free = count;
825 }
826 if (free == -1) {
827 pr_warn("Exceeded Max HPET blocks\n");
828 return -ENOSPC;
829 }
830
831 ir_hpet[free].iommu = iommu;
832 ir_hpet[free].id = scope->enumeration_id;
833 ir_hpet[free].bus = bus;
834 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
835 pr_info("HPET id %d under DRHD base 0x%Lx\n",
836 scope->enumeration_id, drhd->address);
837
838 return 0;
839 }
840
841 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
842 struct intel_iommu *iommu,
843 struct acpi_dmar_hardware_unit *drhd)
844 {
845 struct acpi_dmar_pci_path *path;
846 u8 bus;
847 int count, free = -1;
848
849 bus = scope->bus;
850 path = (struct acpi_dmar_pci_path *)(scope + 1);
851 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
852 / sizeof(struct acpi_dmar_pci_path);
853
854 while (--count > 0) {
855 /*
856 * Access PCI directly due to the PCI
857 * subsystem isn't initialized yet.
858 */
859 bus = read_pci_config_byte(bus, path->device, path->function,
860 PCI_SECONDARY_BUS);
861 path++;
862 }
863
864 for (count = 0; count < MAX_IO_APICS; count++) {
865 if (ir_ioapic[count].iommu == iommu &&
866 ir_ioapic[count].id == scope->enumeration_id)
867 return 0;
868 else if (ir_ioapic[count].iommu == NULL && free == -1)
869 free = count;
870 }
871 if (free == -1) {
872 pr_warn("Exceeded Max IO APICS\n");
873 return -ENOSPC;
874 }
875
876 ir_ioapic[free].bus = bus;
877 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
878 ir_ioapic[free].iommu = iommu;
879 ir_ioapic[free].id = scope->enumeration_id;
880 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n",
881 scope->enumeration_id, drhd->address, iommu->seq_id);
882
883 return 0;
884 }
885
886 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
887 struct intel_iommu *iommu)
888 {
889 int ret = 0;
890 struct acpi_dmar_hardware_unit *drhd;
891 struct acpi_dmar_device_scope *scope;
892 void *start, *end;
893
894 drhd = (struct acpi_dmar_hardware_unit *)header;
895 start = (void *)(drhd + 1);
896 end = ((void *)drhd) + header->length;
897
898 while (start < end && ret == 0) {
899 scope = start;
900 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
901 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
902 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
903 ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
904 start += scope->length;
905 }
906
907 return ret;
908 }
909
910 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
911 {
912 int i;
913
914 for (i = 0; i < MAX_HPET_TBS; i++)
915 if (ir_hpet[i].iommu == iommu)
916 ir_hpet[i].iommu = NULL;
917
918 for (i = 0; i < MAX_IO_APICS; i++)
919 if (ir_ioapic[i].iommu == iommu)
920 ir_ioapic[i].iommu = NULL;
921 }
922
923 /*
924 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
925 * hardware unit.
926 */
927 static int __init parse_ioapics_under_ir(void)
928 {
929 struct dmar_drhd_unit *drhd;
930 struct intel_iommu *iommu;
931 bool ir_supported = false;
932 int ioapic_idx;
933
934 for_each_iommu(iommu, drhd) {
935 int ret;
936
937 if (!ecap_ir_support(iommu->ecap))
938 continue;
939
940 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
941 if (ret)
942 return ret;
943
944 ir_supported = true;
945 }
946
947 if (!ir_supported)
948 return -ENODEV;
949
950 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
951 int ioapic_id = mpc_ioapic_id(ioapic_idx);
952 if (!map_ioapic_to_ir(ioapic_id)) {
953 pr_err(FW_BUG "ioapic %d has no mapping iommu, "
954 "interrupt remapping will be disabled\n",
955 ioapic_id);
956 return -1;
957 }
958 }
959
960 return 0;
961 }
962
963 static int __init ir_dev_scope_init(void)
964 {
965 int ret;
966
967 if (!irq_remapping_enabled)
968 return 0;
969
970 down_write(&dmar_global_lock);
971 ret = dmar_dev_scope_init();
972 up_write(&dmar_global_lock);
973
974 return ret;
975 }
976 rootfs_initcall(ir_dev_scope_init);
977
978 static void disable_irq_remapping(void)
979 {
980 struct dmar_drhd_unit *drhd;
981 struct intel_iommu *iommu = NULL;
982
983 /*
984 * Disable Interrupt-remapping for all the DRHD's now.
985 */
986 for_each_iommu(iommu, drhd) {
987 if (!ecap_ir_support(iommu->ecap))
988 continue;
989
990 iommu_disable_irq_remapping(iommu);
991 }
992
993 /*
994 * Clear Posted-Interrupts capability.
995 */
996 if (!disable_irq_post)
997 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
998 }
999
1000 static int reenable_irq_remapping(int eim)
1001 {
1002 struct dmar_drhd_unit *drhd;
1003 bool setup = false;
1004 struct intel_iommu *iommu = NULL;
1005
1006 for_each_iommu(iommu, drhd)
1007 if (iommu->qi)
1008 dmar_reenable_qi(iommu);
1009
1010 /*
1011 * Setup Interrupt-remapping for all the DRHD's now.
1012 */
1013 for_each_iommu(iommu, drhd) {
1014 if (!ecap_ir_support(iommu->ecap))
1015 continue;
1016
1017 /* Set up interrupt remapping for iommu.*/
1018 iommu_set_irq_remapping(iommu, eim);
1019 iommu_enable_irq_remapping(iommu);
1020 setup = true;
1021 }
1022
1023 if (!setup)
1024 goto error;
1025
1026 set_irq_posting_cap();
1027
1028 return 0;
1029
1030 error:
1031 /*
1032 * handle error condition gracefully here!
1033 */
1034 return -1;
1035 }
1036
1037 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1038 {
1039 memset(irte, 0, sizeof(*irte));
1040
1041 irte->present = 1;
1042 irte->dst_mode = apic->irq_dest_mode;
1043 /*
1044 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1045 * actual level or edge trigger will be setup in the IO-APIC
1046 * RTE. This will help simplify level triggered irq migration.
1047 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1048 * irq migration in the presence of interrupt-remapping.
1049 */
1050 irte->trigger_mode = 0;
1051 irte->dlvry_mode = apic->irq_delivery_mode;
1052 irte->vector = vector;
1053 irte->dest_id = IRTE_DEST(dest);
1054 irte->redir_hint = 1;
1055 }
1056
1057 static struct irq_domain *intel_get_ir_irq_domain(struct irq_alloc_info *info)
1058 {
1059 struct intel_iommu *iommu = NULL;
1060
1061 if (!info)
1062 return NULL;
1063
1064 switch (info->type) {
1065 case X86_IRQ_ALLOC_TYPE_IOAPIC:
1066 iommu = map_ioapic_to_ir(info->ioapic_id);
1067 break;
1068 case X86_IRQ_ALLOC_TYPE_HPET:
1069 iommu = map_hpet_to_ir(info->hpet_id);
1070 break;
1071 case X86_IRQ_ALLOC_TYPE_MSI:
1072 case X86_IRQ_ALLOC_TYPE_MSIX:
1073 iommu = map_dev_to_ir(info->msi_dev);
1074 break;
1075 default:
1076 BUG_ON(1);
1077 break;
1078 }
1079
1080 return iommu ? iommu->ir_domain : NULL;
1081 }
1082
1083 static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info)
1084 {
1085 struct intel_iommu *iommu;
1086
1087 if (!info)
1088 return NULL;
1089
1090 switch (info->type) {
1091 case X86_IRQ_ALLOC_TYPE_MSI:
1092 case X86_IRQ_ALLOC_TYPE_MSIX:
1093 iommu = map_dev_to_ir(info->msi_dev);
1094 if (iommu)
1095 return iommu->ir_msi_domain;
1096 break;
1097 default:
1098 break;
1099 }
1100
1101 return NULL;
1102 }
1103
1104 struct irq_remap_ops intel_irq_remap_ops = {
1105 .prepare = intel_prepare_irq_remapping,
1106 .enable = intel_enable_irq_remapping,
1107 .disable = disable_irq_remapping,
1108 .reenable = reenable_irq_remapping,
1109 .enable_faulting = enable_drhd_fault_handling,
1110 .get_ir_irq_domain = intel_get_ir_irq_domain,
1111 .get_irq_domain = intel_get_irq_domain,
1112 };
1113
1114 /*
1115 * Migrate the IO-APIC irq in the presence of intr-remapping.
1116 *
1117 * For both level and edge triggered, irq migration is a simple atomic
1118 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1119 *
1120 * For level triggered, we eliminate the io-apic RTE modification (with the
1121 * updated vector information), by using a virtual vector (io-apic pin number).
1122 * Real vector that is used for interrupting cpu will be coming from
1123 * the interrupt-remapping table entry.
1124 *
1125 * As the migration is a simple atomic update of IRTE, the same mechanism
1126 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1127 */
1128 static int
1129 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1130 bool force)
1131 {
1132 struct intel_ir_data *ir_data = data->chip_data;
1133 struct irte *irte = &ir_data->irte_entry;
1134 struct irq_cfg *cfg = irqd_cfg(data);
1135 struct irq_data *parent = data->parent_data;
1136 int ret;
1137
1138 ret = parent->chip->irq_set_affinity(parent, mask, force);
1139 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1140 return ret;
1141
1142 /*
1143 * Atomically updates the IRTE with the new destination, vector
1144 * and flushes the interrupt entry cache.
1145 */
1146 irte->vector = cfg->vector;
1147 irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1148
1149 /* Update the hardware only if the interrupt is in remapped mode. */
1150 if (ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1151 modify_irte(&ir_data->irq_2_iommu, irte);
1152
1153 /*
1154 * After this point, all the interrupts will start arriving
1155 * at the new destination. So, time to cleanup the previous
1156 * vector allocation.
1157 */
1158 send_cleanup_vector(cfg);
1159
1160 return IRQ_SET_MASK_OK_DONE;
1161 }
1162
1163 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1164 struct msi_msg *msg)
1165 {
1166 struct intel_ir_data *ir_data = irq_data->chip_data;
1167
1168 *msg = ir_data->msi_entry;
1169 }
1170
1171 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1172 {
1173 struct intel_ir_data *ir_data = data->chip_data;
1174 struct vcpu_data *vcpu_pi_info = info;
1175
1176 /* stop posting interrupts, back to remapping mode */
1177 if (!vcpu_pi_info) {
1178 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1179 } else {
1180 struct irte irte_pi;
1181
1182 /*
1183 * We are not caching the posted interrupt entry. We
1184 * copy the data from the remapped entry and modify
1185 * the fields which are relevant for posted mode. The
1186 * cached remapped entry is used for switching back to
1187 * remapped mode.
1188 */
1189 memset(&irte_pi, 0, sizeof(irte_pi));
1190 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1191
1192 /* Update the posted mode fields */
1193 irte_pi.p_pst = 1;
1194 irte_pi.p_urgent = 0;
1195 irte_pi.p_vector = vcpu_pi_info->vector;
1196 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1197 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1198 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1199 ~(-1UL << PDA_HIGH_BIT);
1200
1201 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1202 }
1203
1204 return 0;
1205 }
1206
1207 static struct irq_chip intel_ir_chip = {
1208 .irq_ack = ir_ack_apic_edge,
1209 .irq_set_affinity = intel_ir_set_affinity,
1210 .irq_compose_msi_msg = intel_ir_compose_msi_msg,
1211 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1212 };
1213
1214 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1215 struct irq_cfg *irq_cfg,
1216 struct irq_alloc_info *info,
1217 int index, int sub_handle)
1218 {
1219 struct IR_IO_APIC_route_entry *entry;
1220 struct irte *irte = &data->irte_entry;
1221 struct msi_msg *msg = &data->msi_entry;
1222
1223 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1224 switch (info->type) {
1225 case X86_IRQ_ALLOC_TYPE_IOAPIC:
1226 /* Set source-id of interrupt request */
1227 set_ioapic_sid(irte, info->ioapic_id);
1228 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1229 info->ioapic_id, irte->present, irte->fpd,
1230 irte->dst_mode, irte->redir_hint,
1231 irte->trigger_mode, irte->dlvry_mode,
1232 irte->avail, irte->vector, irte->dest_id,
1233 irte->sid, irte->sq, irte->svt);
1234
1235 entry = (struct IR_IO_APIC_route_entry *)info->ioapic_entry;
1236 info->ioapic_entry = NULL;
1237 memset(entry, 0, sizeof(*entry));
1238 entry->index2 = (index >> 15) & 0x1;
1239 entry->zero = 0;
1240 entry->format = 1;
1241 entry->index = (index & 0x7fff);
1242 /*
1243 * IO-APIC RTE will be configured with virtual vector.
1244 * irq handler will do the explicit EOI to the io-apic.
1245 */
1246 entry->vector = info->ioapic_pin;
1247 entry->mask = 0; /* enable IRQ */
1248 entry->trigger = info->ioapic_trigger;
1249 entry->polarity = info->ioapic_polarity;
1250 if (info->ioapic_trigger)
1251 entry->mask = 1; /* Mask level triggered irqs. */
1252 break;
1253
1254 case X86_IRQ_ALLOC_TYPE_HPET:
1255 case X86_IRQ_ALLOC_TYPE_MSI:
1256 case X86_IRQ_ALLOC_TYPE_MSIX:
1257 if (info->type == X86_IRQ_ALLOC_TYPE_HPET)
1258 set_hpet_sid(irte, info->hpet_id);
1259 else
1260 set_msi_sid(irte, info->msi_dev);
1261
1262 msg->address_hi = MSI_ADDR_BASE_HI;
1263 msg->data = sub_handle;
1264 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
1265 MSI_ADDR_IR_SHV |
1266 MSI_ADDR_IR_INDEX1(index) |
1267 MSI_ADDR_IR_INDEX2(index);
1268 break;
1269
1270 default:
1271 BUG_ON(1);
1272 break;
1273 }
1274 }
1275
1276 static void intel_free_irq_resources(struct irq_domain *domain,
1277 unsigned int virq, unsigned int nr_irqs)
1278 {
1279 struct irq_data *irq_data;
1280 struct intel_ir_data *data;
1281 struct irq_2_iommu *irq_iommu;
1282 unsigned long flags;
1283 int i;
1284 for (i = 0; i < nr_irqs; i++) {
1285 irq_data = irq_domain_get_irq_data(domain, virq + i);
1286 if (irq_data && irq_data->chip_data) {
1287 data = irq_data->chip_data;
1288 irq_iommu = &data->irq_2_iommu;
1289 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1290 clear_entries(irq_iommu);
1291 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1292 irq_domain_reset_irq_data(irq_data);
1293 kfree(data);
1294 }
1295 }
1296 }
1297
1298 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1299 unsigned int virq, unsigned int nr_irqs,
1300 void *arg)
1301 {
1302 struct intel_iommu *iommu = domain->host_data;
1303 struct irq_alloc_info *info = arg;
1304 struct intel_ir_data *data, *ird;
1305 struct irq_data *irq_data;
1306 struct irq_cfg *irq_cfg;
1307 int i, ret, index;
1308
1309 if (!info || !iommu)
1310 return -EINVAL;
1311 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
1312 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
1313 return -EINVAL;
1314
1315 /*
1316 * With IRQ remapping enabled, don't need contiguous CPU vectors
1317 * to support multiple MSI interrupts.
1318 */
1319 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
1320 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1321
1322 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1323 if (ret < 0)
1324 return ret;
1325
1326 ret = -ENOMEM;
1327 data = kzalloc(sizeof(*data), GFP_KERNEL);
1328 if (!data)
1329 goto out_free_parent;
1330
1331 down_read(&dmar_global_lock);
1332 index = alloc_irte(iommu, virq, &data->irq_2_iommu, nr_irqs);
1333 up_read(&dmar_global_lock);
1334 if (index < 0) {
1335 pr_warn("Failed to allocate IRTE\n");
1336 kfree(data);
1337 goto out_free_parent;
1338 }
1339
1340 for (i = 0; i < nr_irqs; i++) {
1341 irq_data = irq_domain_get_irq_data(domain, virq + i);
1342 irq_cfg = irqd_cfg(irq_data);
1343 if (!irq_data || !irq_cfg) {
1344 ret = -EINVAL;
1345 goto out_free_data;
1346 }
1347
1348 if (i > 0) {
1349 ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1350 if (!ird)
1351 goto out_free_data;
1352 /* Initialize the common data */
1353 ird->irq_2_iommu = data->irq_2_iommu;
1354 ird->irq_2_iommu.sub_handle = i;
1355 } else {
1356 ird = data;
1357 }
1358
1359 irq_data->hwirq = (index << 16) + i;
1360 irq_data->chip_data = ird;
1361 irq_data->chip = &intel_ir_chip;
1362 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1363 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1364 }
1365 return 0;
1366
1367 out_free_data:
1368 intel_free_irq_resources(domain, virq, i);
1369 out_free_parent:
1370 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1371 return ret;
1372 }
1373
1374 static void intel_irq_remapping_free(struct irq_domain *domain,
1375 unsigned int virq, unsigned int nr_irqs)
1376 {
1377 intel_free_irq_resources(domain, virq, nr_irqs);
1378 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1379 }
1380
1381 static void intel_irq_remapping_activate(struct irq_domain *domain,
1382 struct irq_data *irq_data)
1383 {
1384 struct intel_ir_data *data = irq_data->chip_data;
1385
1386 modify_irte(&data->irq_2_iommu, &data->irte_entry);
1387 }
1388
1389 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1390 struct irq_data *irq_data)
1391 {
1392 struct intel_ir_data *data = irq_data->chip_data;
1393 struct irte entry;
1394
1395 memset(&entry, 0, sizeof(entry));
1396 modify_irte(&data->irq_2_iommu, &entry);
1397 }
1398
1399 static struct irq_domain_ops intel_ir_domain_ops = {
1400 .alloc = intel_irq_remapping_alloc,
1401 .free = intel_irq_remapping_free,
1402 .activate = intel_irq_remapping_activate,
1403 .deactivate = intel_irq_remapping_deactivate,
1404 };
1405
1406 /*
1407 * Support of Interrupt Remapping Unit Hotplug
1408 */
1409 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1410 {
1411 int ret;
1412 int eim = x2apic_enabled();
1413
1414 if (eim && !ecap_eim_support(iommu->ecap)) {
1415 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1416 iommu->reg_phys, iommu->ecap);
1417 return -ENODEV;
1418 }
1419
1420 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1421 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1422 iommu->reg_phys);
1423 return -ENODEV;
1424 }
1425
1426 /* TODO: check all IOAPICs are covered by IOMMU */
1427
1428 /* Setup Interrupt-remapping now. */
1429 ret = intel_setup_irq_remapping(iommu);
1430 if (ret) {
1431 pr_err("Failed to setup irq remapping for %s\n",
1432 iommu->name);
1433 intel_teardown_irq_remapping(iommu);
1434 ir_remove_ioapic_hpet_scope(iommu);
1435 } else {
1436 iommu_enable_irq_remapping(iommu);
1437 }
1438
1439 return ret;
1440 }
1441
1442 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1443 {
1444 int ret = 0;
1445 struct intel_iommu *iommu = dmaru->iommu;
1446
1447 if (!irq_remapping_enabled)
1448 return 0;
1449 if (iommu == NULL)
1450 return -EINVAL;
1451 if (!ecap_ir_support(iommu->ecap))
1452 return 0;
1453 if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1454 !cap_pi_support(iommu->cap))
1455 return -EBUSY;
1456
1457 if (insert) {
1458 if (!iommu->ir_table)
1459 ret = dmar_ir_add(dmaru, iommu);
1460 } else {
1461 if (iommu->ir_table) {
1462 if (!bitmap_empty(iommu->ir_table->bitmap,
1463 INTR_REMAP_TABLE_ENTRIES)) {
1464 ret = -EBUSY;
1465 } else {
1466 iommu_disable_irq_remapping(iommu);
1467 intel_teardown_irq_remapping(iommu);
1468 ir_remove_ioapic_hpet_scope(iommu);
1469 }
1470 }
1471 }
1472
1473 return ret;
1474 }