]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/kvm/kvm_main.c
KVM: MMU: Topup the mmu memory preallocation caches before emulating an insn
[mirror_ubuntu-bionic-kernel.git] / drivers / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "x86.h"
20 #include "x86_emulate.h"
21 #include "segment_descriptor.h"
22 #include "irq.h"
23
24 #include <linux/kvm.h>
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/percpu.h>
28 #include <linux/gfp.h>
29 #include <linux/mm.h>
30 #include <linux/miscdevice.h>
31 #include <linux/vmalloc.h>
32 #include <linux/reboot.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
36 #include <linux/sysdev.h>
37 #include <linux/cpu.h>
38 #include <linux/sched.h>
39 #include <linux/cpumask.h>
40 #include <linux/smp.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/profile.h>
43 #include <linux/kvm_para.h>
44 #include <linux/pagemap.h>
45 #include <linux/mman.h>
46
47 #include <asm/processor.h>
48 #include <asm/msr.h>
49 #include <asm/io.h>
50 #include <asm/uaccess.h>
51 #include <asm/desc.h>
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static DEFINE_SPINLOCK(kvm_lock);
57 static LIST_HEAD(vm_list);
58
59 static cpumask_t cpus_hardware_enabled;
60
61 struct kvm_x86_ops *kvm_x86_ops;
62 struct kmem_cache *kvm_vcpu_cache;
63 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
64
65 static __read_mostly struct preempt_ops kvm_preempt_ops;
66
67 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
68
69 static struct kvm_stats_debugfs_item {
70 const char *name;
71 int offset;
72 struct dentry *dentry;
73 } debugfs_entries[] = {
74 { "pf_fixed", STAT_OFFSET(pf_fixed) },
75 { "pf_guest", STAT_OFFSET(pf_guest) },
76 { "tlb_flush", STAT_OFFSET(tlb_flush) },
77 { "invlpg", STAT_OFFSET(invlpg) },
78 { "exits", STAT_OFFSET(exits) },
79 { "io_exits", STAT_OFFSET(io_exits) },
80 { "mmio_exits", STAT_OFFSET(mmio_exits) },
81 { "signal_exits", STAT_OFFSET(signal_exits) },
82 { "irq_window", STAT_OFFSET(irq_window_exits) },
83 { "halt_exits", STAT_OFFSET(halt_exits) },
84 { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
85 { "request_irq", STAT_OFFSET(request_irq_exits) },
86 { "irq_exits", STAT_OFFSET(irq_exits) },
87 { "light_exits", STAT_OFFSET(light_exits) },
88 { "efer_reload", STAT_OFFSET(efer_reload) },
89 { NULL }
90 };
91
92 static struct dentry *debugfs_dir;
93
94 #define CR0_RESERVED_BITS \
95 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
96 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
97 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
98 #define CR4_RESERVED_BITS \
99 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
100 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
101 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
102 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
103
104 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
105 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
106
107 #ifdef CONFIG_X86_64
108 /* LDT or TSS descriptor in the GDT. 16 bytes. */
109 struct segment_descriptor_64 {
110 struct segment_descriptor s;
111 u32 base_higher;
112 u32 pad_zero;
113 };
114
115 #endif
116
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119
120 unsigned long segment_base(u16 selector)
121 {
122 struct descriptor_table gdt;
123 struct segment_descriptor *d;
124 unsigned long table_base;
125 unsigned long v;
126
127 if (selector == 0)
128 return 0;
129
130 asm("sgdt %0" : "=m"(gdt));
131 table_base = gdt.base;
132
133 if (selector & 4) { /* from ldt */
134 u16 ldt_selector;
135
136 asm("sldt %0" : "=g"(ldt_selector));
137 table_base = segment_base(ldt_selector);
138 }
139 d = (struct segment_descriptor *)(table_base + (selector & ~7));
140 v = d->base_low | ((unsigned long)d->base_mid << 16) |
141 ((unsigned long)d->base_high << 24);
142 #ifdef CONFIG_X86_64
143 if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
144 v |= ((unsigned long) \
145 ((struct segment_descriptor_64 *)d)->base_higher) << 32;
146 #endif
147 return v;
148 }
149 EXPORT_SYMBOL_GPL(segment_base);
150
151 static inline int valid_vcpu(int n)
152 {
153 return likely(n >= 0 && n < KVM_MAX_VCPUS);
154 }
155
156 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
157 {
158 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
159 return;
160
161 vcpu->guest_fpu_loaded = 1;
162 fx_save(&vcpu->host_fx_image);
163 fx_restore(&vcpu->guest_fx_image);
164 }
165 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
166
167 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
168 {
169 if (!vcpu->guest_fpu_loaded)
170 return;
171
172 vcpu->guest_fpu_loaded = 0;
173 fx_save(&vcpu->guest_fx_image);
174 fx_restore(&vcpu->host_fx_image);
175 }
176 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
177
178 /*
179 * Switches to specified vcpu, until a matching vcpu_put()
180 */
181 void vcpu_load(struct kvm_vcpu *vcpu)
182 {
183 int cpu;
184
185 mutex_lock(&vcpu->mutex);
186 cpu = get_cpu();
187 preempt_notifier_register(&vcpu->preempt_notifier);
188 kvm_arch_vcpu_load(vcpu, cpu);
189 put_cpu();
190 }
191
192 void vcpu_put(struct kvm_vcpu *vcpu)
193 {
194 preempt_disable();
195 kvm_arch_vcpu_put(vcpu);
196 preempt_notifier_unregister(&vcpu->preempt_notifier);
197 preempt_enable();
198 mutex_unlock(&vcpu->mutex);
199 }
200
201 static void ack_flush(void *_completed)
202 {
203 }
204
205 void kvm_flush_remote_tlbs(struct kvm *kvm)
206 {
207 int i, cpu;
208 cpumask_t cpus;
209 struct kvm_vcpu *vcpu;
210
211 cpus_clear(cpus);
212 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
213 vcpu = kvm->vcpus[i];
214 if (!vcpu)
215 continue;
216 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
217 continue;
218 cpu = vcpu->cpu;
219 if (cpu != -1 && cpu != raw_smp_processor_id())
220 cpu_set(cpu, cpus);
221 }
222 smp_call_function_mask(cpus, ack_flush, NULL, 1);
223 }
224
225 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
226 {
227 struct page *page;
228 int r;
229
230 mutex_init(&vcpu->mutex);
231 vcpu->cpu = -1;
232 vcpu->mmu.root_hpa = INVALID_PAGE;
233 vcpu->kvm = kvm;
234 vcpu->vcpu_id = id;
235 if (!irqchip_in_kernel(kvm) || id == 0)
236 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
237 else
238 vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
239 init_waitqueue_head(&vcpu->wq);
240
241 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
242 if (!page) {
243 r = -ENOMEM;
244 goto fail;
245 }
246 vcpu->run = page_address(page);
247
248 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
249 if (!page) {
250 r = -ENOMEM;
251 goto fail_free_run;
252 }
253 vcpu->pio_data = page_address(page);
254
255 r = kvm_mmu_create(vcpu);
256 if (r < 0)
257 goto fail_free_pio_data;
258
259 if (irqchip_in_kernel(kvm)) {
260 r = kvm_create_lapic(vcpu);
261 if (r < 0)
262 goto fail_mmu_destroy;
263 }
264
265 return 0;
266
267 fail_mmu_destroy:
268 kvm_mmu_destroy(vcpu);
269 fail_free_pio_data:
270 free_page((unsigned long)vcpu->pio_data);
271 fail_free_run:
272 free_page((unsigned long)vcpu->run);
273 fail:
274 return r;
275 }
276 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
277
278 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
279 {
280 kvm_free_lapic(vcpu);
281 kvm_mmu_destroy(vcpu);
282 free_page((unsigned long)vcpu->pio_data);
283 free_page((unsigned long)vcpu->run);
284 }
285 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
286
287 static struct kvm *kvm_create_vm(void)
288 {
289 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
290
291 if (!kvm)
292 return ERR_PTR(-ENOMEM);
293
294 kvm_io_bus_init(&kvm->pio_bus);
295 mutex_init(&kvm->lock);
296 INIT_LIST_HEAD(&kvm->active_mmu_pages);
297 kvm_io_bus_init(&kvm->mmio_bus);
298 spin_lock(&kvm_lock);
299 list_add(&kvm->vm_list, &vm_list);
300 spin_unlock(&kvm_lock);
301 return kvm;
302 }
303
304 /*
305 * Free any memory in @free but not in @dont.
306 */
307 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
308 struct kvm_memory_slot *dont)
309 {
310 if (!dont || free->rmap != dont->rmap)
311 vfree(free->rmap);
312
313 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
314 vfree(free->dirty_bitmap);
315
316 free->npages = 0;
317 free->dirty_bitmap = NULL;
318 free->rmap = NULL;
319 }
320
321 static void kvm_free_physmem(struct kvm *kvm)
322 {
323 int i;
324
325 for (i = 0; i < kvm->nmemslots; ++i)
326 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
327 }
328
329 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
330 {
331 int i;
332
333 for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
334 if (vcpu->pio.guest_pages[i]) {
335 kvm_release_page(vcpu->pio.guest_pages[i]);
336 vcpu->pio.guest_pages[i] = NULL;
337 }
338 }
339
340 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
341 {
342 vcpu_load(vcpu);
343 kvm_mmu_unload(vcpu);
344 vcpu_put(vcpu);
345 }
346
347 static void kvm_free_vcpus(struct kvm *kvm)
348 {
349 unsigned int i;
350
351 /*
352 * Unpin any mmu pages first.
353 */
354 for (i = 0; i < KVM_MAX_VCPUS; ++i)
355 if (kvm->vcpus[i])
356 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
357 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
358 if (kvm->vcpus[i]) {
359 kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
360 kvm->vcpus[i] = NULL;
361 }
362 }
363
364 }
365
366 static void kvm_destroy_vm(struct kvm *kvm)
367 {
368 spin_lock(&kvm_lock);
369 list_del(&kvm->vm_list);
370 spin_unlock(&kvm_lock);
371 kvm_io_bus_destroy(&kvm->pio_bus);
372 kvm_io_bus_destroy(&kvm->mmio_bus);
373 kfree(kvm->vpic);
374 kfree(kvm->vioapic);
375 kvm_free_vcpus(kvm);
376 kvm_free_physmem(kvm);
377 kfree(kvm);
378 }
379
380 static int kvm_vm_release(struct inode *inode, struct file *filp)
381 {
382 struct kvm *kvm = filp->private_data;
383
384 kvm_destroy_vm(kvm);
385 return 0;
386 }
387
388 static void inject_gp(struct kvm_vcpu *vcpu)
389 {
390 kvm_x86_ops->inject_gp(vcpu, 0);
391 }
392
393 /*
394 * Load the pae pdptrs. Return true is they are all valid.
395 */
396 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
397 {
398 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
399 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
400 int i;
401 int ret;
402 u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
403
404 mutex_lock(&vcpu->kvm->lock);
405 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
406 offset * sizeof(u64), sizeof(pdpte));
407 if (ret < 0) {
408 ret = 0;
409 goto out;
410 }
411 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
412 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
413 ret = 0;
414 goto out;
415 }
416 }
417 ret = 1;
418
419 memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
420 out:
421 mutex_unlock(&vcpu->kvm->lock);
422
423 return ret;
424 }
425
426 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
427 {
428 if (cr0 & CR0_RESERVED_BITS) {
429 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
430 cr0, vcpu->cr0);
431 inject_gp(vcpu);
432 return;
433 }
434
435 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
436 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
437 inject_gp(vcpu);
438 return;
439 }
440
441 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
442 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
443 "and a clear PE flag\n");
444 inject_gp(vcpu);
445 return;
446 }
447
448 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
449 #ifdef CONFIG_X86_64
450 if ((vcpu->shadow_efer & EFER_LME)) {
451 int cs_db, cs_l;
452
453 if (!is_pae(vcpu)) {
454 printk(KERN_DEBUG "set_cr0: #GP, start paging "
455 "in long mode while PAE is disabled\n");
456 inject_gp(vcpu);
457 return;
458 }
459 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
460 if (cs_l) {
461 printk(KERN_DEBUG "set_cr0: #GP, start paging "
462 "in long mode while CS.L == 1\n");
463 inject_gp(vcpu);
464 return;
465
466 }
467 } else
468 #endif
469 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
470 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
471 "reserved bits\n");
472 inject_gp(vcpu);
473 return;
474 }
475
476 }
477
478 kvm_x86_ops->set_cr0(vcpu, cr0);
479 vcpu->cr0 = cr0;
480
481 mutex_lock(&vcpu->kvm->lock);
482 kvm_mmu_reset_context(vcpu);
483 mutex_unlock(&vcpu->kvm->lock);
484 return;
485 }
486 EXPORT_SYMBOL_GPL(set_cr0);
487
488 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
489 {
490 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
491 }
492 EXPORT_SYMBOL_GPL(lmsw);
493
494 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
495 {
496 if (cr4 & CR4_RESERVED_BITS) {
497 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
498 inject_gp(vcpu);
499 return;
500 }
501
502 if (is_long_mode(vcpu)) {
503 if (!(cr4 & X86_CR4_PAE)) {
504 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
505 "in long mode\n");
506 inject_gp(vcpu);
507 return;
508 }
509 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
510 && !load_pdptrs(vcpu, vcpu->cr3)) {
511 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
512 inject_gp(vcpu);
513 return;
514 }
515
516 if (cr4 & X86_CR4_VMXE) {
517 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
518 inject_gp(vcpu);
519 return;
520 }
521 kvm_x86_ops->set_cr4(vcpu, cr4);
522 vcpu->cr4 = cr4;
523 mutex_lock(&vcpu->kvm->lock);
524 kvm_mmu_reset_context(vcpu);
525 mutex_unlock(&vcpu->kvm->lock);
526 }
527 EXPORT_SYMBOL_GPL(set_cr4);
528
529 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
530 {
531 if (is_long_mode(vcpu)) {
532 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
533 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
534 inject_gp(vcpu);
535 return;
536 }
537 } else {
538 if (is_pae(vcpu)) {
539 if (cr3 & CR3_PAE_RESERVED_BITS) {
540 printk(KERN_DEBUG
541 "set_cr3: #GP, reserved bits\n");
542 inject_gp(vcpu);
543 return;
544 }
545 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
546 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
547 "reserved bits\n");
548 inject_gp(vcpu);
549 return;
550 }
551 }
552 /*
553 * We don't check reserved bits in nonpae mode, because
554 * this isn't enforced, and VMware depends on this.
555 */
556 }
557
558 mutex_lock(&vcpu->kvm->lock);
559 /*
560 * Does the new cr3 value map to physical memory? (Note, we
561 * catch an invalid cr3 even in real-mode, because it would
562 * cause trouble later on when we turn on paging anyway.)
563 *
564 * A real CPU would silently accept an invalid cr3 and would
565 * attempt to use it - with largely undefined (and often hard
566 * to debug) behavior on the guest side.
567 */
568 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
569 inject_gp(vcpu);
570 else {
571 vcpu->cr3 = cr3;
572 vcpu->mmu.new_cr3(vcpu);
573 }
574 mutex_unlock(&vcpu->kvm->lock);
575 }
576 EXPORT_SYMBOL_GPL(set_cr3);
577
578 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
579 {
580 if (cr8 & CR8_RESERVED_BITS) {
581 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
582 inject_gp(vcpu);
583 return;
584 }
585 if (irqchip_in_kernel(vcpu->kvm))
586 kvm_lapic_set_tpr(vcpu, cr8);
587 else
588 vcpu->cr8 = cr8;
589 }
590 EXPORT_SYMBOL_GPL(set_cr8);
591
592 unsigned long get_cr8(struct kvm_vcpu *vcpu)
593 {
594 if (irqchip_in_kernel(vcpu->kvm))
595 return kvm_lapic_get_cr8(vcpu);
596 else
597 return vcpu->cr8;
598 }
599 EXPORT_SYMBOL_GPL(get_cr8);
600
601 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
602 {
603 if (irqchip_in_kernel(vcpu->kvm))
604 return vcpu->apic_base;
605 else
606 return vcpu->apic_base;
607 }
608 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
609
610 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
611 {
612 /* TODO: reserve bits check */
613 if (irqchip_in_kernel(vcpu->kvm))
614 kvm_lapic_set_base(vcpu, data);
615 else
616 vcpu->apic_base = data;
617 }
618 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
619
620 void fx_init(struct kvm_vcpu *vcpu)
621 {
622 unsigned after_mxcsr_mask;
623
624 /* Initialize guest FPU by resetting ours and saving into guest's */
625 preempt_disable();
626 fx_save(&vcpu->host_fx_image);
627 fpu_init();
628 fx_save(&vcpu->guest_fx_image);
629 fx_restore(&vcpu->host_fx_image);
630 preempt_enable();
631
632 vcpu->cr0 |= X86_CR0_ET;
633 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
634 vcpu->guest_fx_image.mxcsr = 0x1f80;
635 memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
636 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
637 }
638 EXPORT_SYMBOL_GPL(fx_init);
639
640 /*
641 * Allocate some memory and give it an address in the guest physical address
642 * space.
643 *
644 * Discontiguous memory is allowed, mostly for framebuffers.
645 */
646 int kvm_set_memory_region(struct kvm *kvm,
647 struct kvm_userspace_memory_region *mem,
648 int user_alloc)
649 {
650 int r;
651 gfn_t base_gfn;
652 unsigned long npages;
653 unsigned long i;
654 struct kvm_memory_slot *memslot;
655 struct kvm_memory_slot old, new;
656
657 r = -EINVAL;
658 /* General sanity checks */
659 if (mem->memory_size & (PAGE_SIZE - 1))
660 goto out;
661 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
662 goto out;
663 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
664 goto out;
665 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
666 goto out;
667
668 memslot = &kvm->memslots[mem->slot];
669 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
670 npages = mem->memory_size >> PAGE_SHIFT;
671
672 if (!npages)
673 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
674
675 mutex_lock(&kvm->lock);
676
677 new = old = *memslot;
678
679 new.base_gfn = base_gfn;
680 new.npages = npages;
681 new.flags = mem->flags;
682
683 /* Disallow changing a memory slot's size. */
684 r = -EINVAL;
685 if (npages && old.npages && npages != old.npages)
686 goto out_unlock;
687
688 /* Check for overlaps */
689 r = -EEXIST;
690 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
691 struct kvm_memory_slot *s = &kvm->memslots[i];
692
693 if (s == memslot)
694 continue;
695 if (!((base_gfn + npages <= s->base_gfn) ||
696 (base_gfn >= s->base_gfn + s->npages)))
697 goto out_unlock;
698 }
699
700 /* Free page dirty bitmap if unneeded */
701 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
702 new.dirty_bitmap = NULL;
703
704 r = -ENOMEM;
705
706 /* Allocate if a slot is being created */
707 if (npages && !new.rmap) {
708 new.rmap = vmalloc(npages * sizeof(struct page *));
709
710 if (!new.rmap)
711 goto out_unlock;
712
713 memset(new.rmap, 0, npages * sizeof(*new.rmap));
714
715 new.user_alloc = user_alloc;
716 if (user_alloc)
717 new.userspace_addr = mem->userspace_addr;
718 else {
719 down_write(&current->mm->mmap_sem);
720 new.userspace_addr = do_mmap(NULL, 0,
721 npages * PAGE_SIZE,
722 PROT_READ | PROT_WRITE,
723 MAP_SHARED | MAP_ANONYMOUS,
724 0);
725 up_write(&current->mm->mmap_sem);
726
727 if (IS_ERR((void *)new.userspace_addr))
728 goto out_unlock;
729 }
730 } else {
731 if (!old.user_alloc && old.rmap) {
732 int ret;
733
734 down_write(&current->mm->mmap_sem);
735 ret = do_munmap(current->mm, old.userspace_addr,
736 old.npages * PAGE_SIZE);
737 up_write(&current->mm->mmap_sem);
738 if (ret < 0)
739 printk(KERN_WARNING
740 "kvm_vm_ioctl_set_memory_region: "
741 "failed to munmap memory\n");
742 }
743 }
744
745 /* Allocate page dirty bitmap if needed */
746 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
747 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
748
749 new.dirty_bitmap = vmalloc(dirty_bytes);
750 if (!new.dirty_bitmap)
751 goto out_unlock;
752 memset(new.dirty_bitmap, 0, dirty_bytes);
753 }
754
755 if (mem->slot >= kvm->nmemslots)
756 kvm->nmemslots = mem->slot + 1;
757
758 if (!kvm->n_requested_mmu_pages) {
759 unsigned int n_pages;
760
761 if (npages) {
762 n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
763 kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
764 n_pages);
765 } else {
766 unsigned int nr_mmu_pages;
767
768 n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
769 nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
770 nr_mmu_pages = max(nr_mmu_pages,
771 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
772 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
773 }
774 }
775
776 *memslot = new;
777
778 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
779 kvm_flush_remote_tlbs(kvm);
780
781 mutex_unlock(&kvm->lock);
782
783 kvm_free_physmem_slot(&old, &new);
784 return 0;
785
786 out_unlock:
787 mutex_unlock(&kvm->lock);
788 kvm_free_physmem_slot(&new, &old);
789 out:
790 return r;
791
792 }
793 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
794
795 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
796 struct
797 kvm_userspace_memory_region *mem,
798 int user_alloc)
799 {
800 if (mem->slot >= KVM_MEMORY_SLOTS)
801 return -EINVAL;
802 return kvm_set_memory_region(kvm, mem, user_alloc);
803 }
804
805 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
806 u32 kvm_nr_mmu_pages)
807 {
808 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
809 return -EINVAL;
810
811 mutex_lock(&kvm->lock);
812
813 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
814 kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
815
816 mutex_unlock(&kvm->lock);
817 return 0;
818 }
819
820 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
821 {
822 return kvm->n_alloc_mmu_pages;
823 }
824
825 /*
826 * Get (and clear) the dirty memory log for a memory slot.
827 */
828 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
829 struct kvm_dirty_log *log)
830 {
831 struct kvm_memory_slot *memslot;
832 int r, i;
833 int n;
834 unsigned long any = 0;
835
836 mutex_lock(&kvm->lock);
837
838 r = -EINVAL;
839 if (log->slot >= KVM_MEMORY_SLOTS)
840 goto out;
841
842 memslot = &kvm->memslots[log->slot];
843 r = -ENOENT;
844 if (!memslot->dirty_bitmap)
845 goto out;
846
847 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
848
849 for (i = 0; !any && i < n/sizeof(long); ++i)
850 any = memslot->dirty_bitmap[i];
851
852 r = -EFAULT;
853 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
854 goto out;
855
856 /* If nothing is dirty, don't bother messing with page tables. */
857 if (any) {
858 kvm_mmu_slot_remove_write_access(kvm, log->slot);
859 kvm_flush_remote_tlbs(kvm);
860 memset(memslot->dirty_bitmap, 0, n);
861 }
862
863 r = 0;
864
865 out:
866 mutex_unlock(&kvm->lock);
867 return r;
868 }
869
870 /*
871 * Set a new alias region. Aliases map a portion of physical memory into
872 * another portion. This is useful for memory windows, for example the PC
873 * VGA region.
874 */
875 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
876 struct kvm_memory_alias *alias)
877 {
878 int r, n;
879 struct kvm_mem_alias *p;
880
881 r = -EINVAL;
882 /* General sanity checks */
883 if (alias->memory_size & (PAGE_SIZE - 1))
884 goto out;
885 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
886 goto out;
887 if (alias->slot >= KVM_ALIAS_SLOTS)
888 goto out;
889 if (alias->guest_phys_addr + alias->memory_size
890 < alias->guest_phys_addr)
891 goto out;
892 if (alias->target_phys_addr + alias->memory_size
893 < alias->target_phys_addr)
894 goto out;
895
896 mutex_lock(&kvm->lock);
897
898 p = &kvm->aliases[alias->slot];
899 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
900 p->npages = alias->memory_size >> PAGE_SHIFT;
901 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
902
903 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
904 if (kvm->aliases[n - 1].npages)
905 break;
906 kvm->naliases = n;
907
908 kvm_mmu_zap_all(kvm);
909
910 mutex_unlock(&kvm->lock);
911
912 return 0;
913
914 out:
915 return r;
916 }
917
918 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
919 {
920 int r;
921
922 r = 0;
923 switch (chip->chip_id) {
924 case KVM_IRQCHIP_PIC_MASTER:
925 memcpy(&chip->chip.pic,
926 &pic_irqchip(kvm)->pics[0],
927 sizeof(struct kvm_pic_state));
928 break;
929 case KVM_IRQCHIP_PIC_SLAVE:
930 memcpy(&chip->chip.pic,
931 &pic_irqchip(kvm)->pics[1],
932 sizeof(struct kvm_pic_state));
933 break;
934 case KVM_IRQCHIP_IOAPIC:
935 memcpy(&chip->chip.ioapic,
936 ioapic_irqchip(kvm),
937 sizeof(struct kvm_ioapic_state));
938 break;
939 default:
940 r = -EINVAL;
941 break;
942 }
943 return r;
944 }
945
946 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
947 {
948 int r;
949
950 r = 0;
951 switch (chip->chip_id) {
952 case KVM_IRQCHIP_PIC_MASTER:
953 memcpy(&pic_irqchip(kvm)->pics[0],
954 &chip->chip.pic,
955 sizeof(struct kvm_pic_state));
956 break;
957 case KVM_IRQCHIP_PIC_SLAVE:
958 memcpy(&pic_irqchip(kvm)->pics[1],
959 &chip->chip.pic,
960 sizeof(struct kvm_pic_state));
961 break;
962 case KVM_IRQCHIP_IOAPIC:
963 memcpy(ioapic_irqchip(kvm),
964 &chip->chip.ioapic,
965 sizeof(struct kvm_ioapic_state));
966 break;
967 default:
968 r = -EINVAL;
969 break;
970 }
971 kvm_pic_update_irq(pic_irqchip(kvm));
972 return r;
973 }
974
975 int is_error_page(struct page *page)
976 {
977 return page == bad_page;
978 }
979 EXPORT_SYMBOL_GPL(is_error_page);
980
981 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
982 {
983 int i;
984 struct kvm_mem_alias *alias;
985
986 for (i = 0; i < kvm->naliases; ++i) {
987 alias = &kvm->aliases[i];
988 if (gfn >= alias->base_gfn
989 && gfn < alias->base_gfn + alias->npages)
990 return alias->target_gfn + gfn - alias->base_gfn;
991 }
992 return gfn;
993 }
994
995 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
996 {
997 int i;
998
999 for (i = 0; i < kvm->nmemslots; ++i) {
1000 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1001
1002 if (gfn >= memslot->base_gfn
1003 && gfn < memslot->base_gfn + memslot->npages)
1004 return memslot;
1005 }
1006 return NULL;
1007 }
1008
1009 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1010 {
1011 gfn = unalias_gfn(kvm, gfn);
1012 return __gfn_to_memslot(kvm, gfn);
1013 }
1014
1015 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1016 {
1017 int i;
1018
1019 gfn = unalias_gfn(kvm, gfn);
1020 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1021 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1022
1023 if (gfn >= memslot->base_gfn
1024 && gfn < memslot->base_gfn + memslot->npages)
1025 return 1;
1026 }
1027 return 0;
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1030
1031 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1032 {
1033 struct kvm_memory_slot *slot;
1034 struct page *page[1];
1035 int npages;
1036
1037 might_sleep();
1038
1039 gfn = unalias_gfn(kvm, gfn);
1040 slot = __gfn_to_memslot(kvm, gfn);
1041 if (!slot) {
1042 get_page(bad_page);
1043 return bad_page;
1044 }
1045
1046 down_read(&current->mm->mmap_sem);
1047 npages = get_user_pages(current, current->mm,
1048 slot->userspace_addr
1049 + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
1050 1, 1, page, NULL);
1051 up_read(&current->mm->mmap_sem);
1052 if (npages != 1) {
1053 get_page(bad_page);
1054 return bad_page;
1055 }
1056
1057 return page[0];
1058 }
1059 EXPORT_SYMBOL_GPL(gfn_to_page);
1060
1061 void kvm_release_page(struct page *page)
1062 {
1063 if (!PageReserved(page))
1064 SetPageDirty(page);
1065 put_page(page);
1066 }
1067 EXPORT_SYMBOL_GPL(kvm_release_page);
1068
1069 static int next_segment(unsigned long len, int offset)
1070 {
1071 if (len > PAGE_SIZE - offset)
1072 return PAGE_SIZE - offset;
1073 else
1074 return len;
1075 }
1076
1077 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1078 int len)
1079 {
1080 void *page_virt;
1081 struct page *page;
1082
1083 page = gfn_to_page(kvm, gfn);
1084 if (is_error_page(page)) {
1085 kvm_release_page(page);
1086 return -EFAULT;
1087 }
1088 page_virt = kmap_atomic(page, KM_USER0);
1089
1090 memcpy(data, page_virt + offset, len);
1091
1092 kunmap_atomic(page_virt, KM_USER0);
1093 kvm_release_page(page);
1094 return 0;
1095 }
1096 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1097
1098 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1099 {
1100 gfn_t gfn = gpa >> PAGE_SHIFT;
1101 int seg;
1102 int offset = offset_in_page(gpa);
1103 int ret;
1104
1105 while ((seg = next_segment(len, offset)) != 0) {
1106 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1107 if (ret < 0)
1108 return ret;
1109 offset = 0;
1110 len -= seg;
1111 data += seg;
1112 ++gfn;
1113 }
1114 return 0;
1115 }
1116 EXPORT_SYMBOL_GPL(kvm_read_guest);
1117
1118 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1119 int offset, int len)
1120 {
1121 void *page_virt;
1122 struct page *page;
1123
1124 page = gfn_to_page(kvm, gfn);
1125 if (is_error_page(page)) {
1126 kvm_release_page(page);
1127 return -EFAULT;
1128 }
1129 page_virt = kmap_atomic(page, KM_USER0);
1130
1131 memcpy(page_virt + offset, data, len);
1132
1133 kunmap_atomic(page_virt, KM_USER0);
1134 mark_page_dirty(kvm, gfn);
1135 kvm_release_page(page);
1136 return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1139
1140 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1141 unsigned long len)
1142 {
1143 gfn_t gfn = gpa >> PAGE_SHIFT;
1144 int seg;
1145 int offset = offset_in_page(gpa);
1146 int ret;
1147
1148 while ((seg = next_segment(len, offset)) != 0) {
1149 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1150 if (ret < 0)
1151 return ret;
1152 offset = 0;
1153 len -= seg;
1154 data += seg;
1155 ++gfn;
1156 }
1157 return 0;
1158 }
1159
1160 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1161 {
1162 void *page_virt;
1163 struct page *page;
1164
1165 page = gfn_to_page(kvm, gfn);
1166 if (is_error_page(page)) {
1167 kvm_release_page(page);
1168 return -EFAULT;
1169 }
1170 page_virt = kmap_atomic(page, KM_USER0);
1171
1172 memset(page_virt + offset, 0, len);
1173
1174 kunmap_atomic(page_virt, KM_USER0);
1175 kvm_release_page(page);
1176 return 0;
1177 }
1178 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1179
1180 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1181 {
1182 gfn_t gfn = gpa >> PAGE_SHIFT;
1183 int seg;
1184 int offset = offset_in_page(gpa);
1185 int ret;
1186
1187 while ((seg = next_segment(len, offset)) != 0) {
1188 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1189 if (ret < 0)
1190 return ret;
1191 offset = 0;
1192 len -= seg;
1193 ++gfn;
1194 }
1195 return 0;
1196 }
1197 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1198
1199 /* WARNING: Does not work on aliased pages. */
1200 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1201 {
1202 struct kvm_memory_slot *memslot;
1203
1204 memslot = __gfn_to_memslot(kvm, gfn);
1205 if (memslot && memslot->dirty_bitmap) {
1206 unsigned long rel_gfn = gfn - memslot->base_gfn;
1207
1208 /* avoid RMW */
1209 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1210 set_bit(rel_gfn, memslot->dirty_bitmap);
1211 }
1212 }
1213
1214 int emulator_read_std(unsigned long addr,
1215 void *val,
1216 unsigned int bytes,
1217 struct kvm_vcpu *vcpu)
1218 {
1219 void *data = val;
1220
1221 while (bytes) {
1222 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1223 unsigned offset = addr & (PAGE_SIZE-1);
1224 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1225 int ret;
1226
1227 if (gpa == UNMAPPED_GVA)
1228 return X86EMUL_PROPAGATE_FAULT;
1229 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1230 if (ret < 0)
1231 return X86EMUL_UNHANDLEABLE;
1232
1233 bytes -= tocopy;
1234 data += tocopy;
1235 addr += tocopy;
1236 }
1237
1238 return X86EMUL_CONTINUE;
1239 }
1240 EXPORT_SYMBOL_GPL(emulator_read_std);
1241
1242 static int emulator_write_std(unsigned long addr,
1243 const void *val,
1244 unsigned int bytes,
1245 struct kvm_vcpu *vcpu)
1246 {
1247 pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
1248 return X86EMUL_UNHANDLEABLE;
1249 }
1250
1251 /*
1252 * Only apic need an MMIO device hook, so shortcut now..
1253 */
1254 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1255 gpa_t addr)
1256 {
1257 struct kvm_io_device *dev;
1258
1259 if (vcpu->apic) {
1260 dev = &vcpu->apic->dev;
1261 if (dev->in_range(dev, addr))
1262 return dev;
1263 }
1264 return NULL;
1265 }
1266
1267 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1268 gpa_t addr)
1269 {
1270 struct kvm_io_device *dev;
1271
1272 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1273 if (dev == NULL)
1274 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1275 return dev;
1276 }
1277
1278 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1279 gpa_t addr)
1280 {
1281 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1282 }
1283
1284 static int emulator_read_emulated(unsigned long addr,
1285 void *val,
1286 unsigned int bytes,
1287 struct kvm_vcpu *vcpu)
1288 {
1289 struct kvm_io_device *mmio_dev;
1290 gpa_t gpa;
1291
1292 if (vcpu->mmio_read_completed) {
1293 memcpy(val, vcpu->mmio_data, bytes);
1294 vcpu->mmio_read_completed = 0;
1295 return X86EMUL_CONTINUE;
1296 } else if (emulator_read_std(addr, val, bytes, vcpu)
1297 == X86EMUL_CONTINUE)
1298 return X86EMUL_CONTINUE;
1299
1300 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1301 if (gpa == UNMAPPED_GVA)
1302 return X86EMUL_PROPAGATE_FAULT;
1303
1304 /*
1305 * Is this MMIO handled locally?
1306 */
1307 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1308 if (mmio_dev) {
1309 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1310 return X86EMUL_CONTINUE;
1311 }
1312
1313 vcpu->mmio_needed = 1;
1314 vcpu->mmio_phys_addr = gpa;
1315 vcpu->mmio_size = bytes;
1316 vcpu->mmio_is_write = 0;
1317
1318 return X86EMUL_UNHANDLEABLE;
1319 }
1320
1321 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1322 const void *val, int bytes)
1323 {
1324 int ret;
1325
1326 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1327 if (ret < 0)
1328 return 0;
1329 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1330 return 1;
1331 }
1332
1333 static int emulator_write_emulated_onepage(unsigned long addr,
1334 const void *val,
1335 unsigned int bytes,
1336 struct kvm_vcpu *vcpu)
1337 {
1338 struct kvm_io_device *mmio_dev;
1339 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1340
1341 if (gpa == UNMAPPED_GVA) {
1342 kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
1343 return X86EMUL_PROPAGATE_FAULT;
1344 }
1345
1346 if (emulator_write_phys(vcpu, gpa, val, bytes))
1347 return X86EMUL_CONTINUE;
1348
1349 /*
1350 * Is this MMIO handled locally?
1351 */
1352 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1353 if (mmio_dev) {
1354 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1355 return X86EMUL_CONTINUE;
1356 }
1357
1358 vcpu->mmio_needed = 1;
1359 vcpu->mmio_phys_addr = gpa;
1360 vcpu->mmio_size = bytes;
1361 vcpu->mmio_is_write = 1;
1362 memcpy(vcpu->mmio_data, val, bytes);
1363
1364 return X86EMUL_CONTINUE;
1365 }
1366
1367 int emulator_write_emulated(unsigned long addr,
1368 const void *val,
1369 unsigned int bytes,
1370 struct kvm_vcpu *vcpu)
1371 {
1372 /* Crossing a page boundary? */
1373 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1374 int rc, now;
1375
1376 now = -addr & ~PAGE_MASK;
1377 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1378 if (rc != X86EMUL_CONTINUE)
1379 return rc;
1380 addr += now;
1381 val += now;
1382 bytes -= now;
1383 }
1384 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1385 }
1386 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1387
1388 static int emulator_cmpxchg_emulated(unsigned long addr,
1389 const void *old,
1390 const void *new,
1391 unsigned int bytes,
1392 struct kvm_vcpu *vcpu)
1393 {
1394 static int reported;
1395
1396 if (!reported) {
1397 reported = 1;
1398 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1399 }
1400 return emulator_write_emulated(addr, new, bytes, vcpu);
1401 }
1402
1403 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1404 {
1405 return kvm_x86_ops->get_segment_base(vcpu, seg);
1406 }
1407
1408 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1409 {
1410 return X86EMUL_CONTINUE;
1411 }
1412
1413 int emulate_clts(struct kvm_vcpu *vcpu)
1414 {
1415 kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
1416 return X86EMUL_CONTINUE;
1417 }
1418
1419 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
1420 {
1421 struct kvm_vcpu *vcpu = ctxt->vcpu;
1422
1423 switch (dr) {
1424 case 0 ... 3:
1425 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1426 return X86EMUL_CONTINUE;
1427 default:
1428 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1429 return X86EMUL_UNHANDLEABLE;
1430 }
1431 }
1432
1433 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1434 {
1435 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1436 int exception;
1437
1438 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1439 if (exception) {
1440 /* FIXME: better handling */
1441 return X86EMUL_UNHANDLEABLE;
1442 }
1443 return X86EMUL_CONTINUE;
1444 }
1445
1446 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
1447 {
1448 static int reported;
1449 u8 opcodes[4];
1450 unsigned long rip = vcpu->rip;
1451 unsigned long rip_linear;
1452
1453 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
1454
1455 if (reported)
1456 return;
1457
1458 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
1459
1460 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1461 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1462 reported = 1;
1463 }
1464 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
1465
1466 struct x86_emulate_ops emulate_ops = {
1467 .read_std = emulator_read_std,
1468 .write_std = emulator_write_std,
1469 .read_emulated = emulator_read_emulated,
1470 .write_emulated = emulator_write_emulated,
1471 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1472 };
1473
1474 int emulate_instruction(struct kvm_vcpu *vcpu,
1475 struct kvm_run *run,
1476 unsigned long cr2,
1477 u16 error_code,
1478 int no_decode)
1479 {
1480 int r;
1481
1482 vcpu->mmio_fault_cr2 = cr2;
1483 kvm_x86_ops->cache_regs(vcpu);
1484
1485 vcpu->mmio_is_write = 0;
1486 vcpu->pio.string = 0;
1487
1488 if (!no_decode) {
1489 int cs_db, cs_l;
1490 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1491
1492 vcpu->emulate_ctxt.vcpu = vcpu;
1493 vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
1494 vcpu->emulate_ctxt.cr2 = cr2;
1495 vcpu->emulate_ctxt.mode =
1496 (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
1497 ? X86EMUL_MODE_REAL : cs_l
1498 ? X86EMUL_MODE_PROT64 : cs_db
1499 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1500
1501 if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1502 vcpu->emulate_ctxt.cs_base = 0;
1503 vcpu->emulate_ctxt.ds_base = 0;
1504 vcpu->emulate_ctxt.es_base = 0;
1505 vcpu->emulate_ctxt.ss_base = 0;
1506 } else {
1507 vcpu->emulate_ctxt.cs_base =
1508 get_segment_base(vcpu, VCPU_SREG_CS);
1509 vcpu->emulate_ctxt.ds_base =
1510 get_segment_base(vcpu, VCPU_SREG_DS);
1511 vcpu->emulate_ctxt.es_base =
1512 get_segment_base(vcpu, VCPU_SREG_ES);
1513 vcpu->emulate_ctxt.ss_base =
1514 get_segment_base(vcpu, VCPU_SREG_SS);
1515 }
1516
1517 vcpu->emulate_ctxt.gs_base =
1518 get_segment_base(vcpu, VCPU_SREG_GS);
1519 vcpu->emulate_ctxt.fs_base =
1520 get_segment_base(vcpu, VCPU_SREG_FS);
1521
1522 r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
1523 if (r) {
1524 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1525 return EMULATE_DONE;
1526 return EMULATE_FAIL;
1527 }
1528 }
1529
1530 r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
1531
1532 if (vcpu->pio.string)
1533 return EMULATE_DO_MMIO;
1534
1535 if ((r || vcpu->mmio_is_write) && run) {
1536 run->exit_reason = KVM_EXIT_MMIO;
1537 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1538 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1539 run->mmio.len = vcpu->mmio_size;
1540 run->mmio.is_write = vcpu->mmio_is_write;
1541 }
1542
1543 if (r) {
1544 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1545 return EMULATE_DONE;
1546 if (!vcpu->mmio_needed) {
1547 kvm_report_emulation_failure(vcpu, "mmio");
1548 return EMULATE_FAIL;
1549 }
1550 return EMULATE_DO_MMIO;
1551 }
1552
1553 kvm_x86_ops->decache_regs(vcpu);
1554 kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
1555
1556 if (vcpu->mmio_is_write) {
1557 vcpu->mmio_needed = 0;
1558 return EMULATE_DO_MMIO;
1559 }
1560
1561 return EMULATE_DONE;
1562 }
1563 EXPORT_SYMBOL_GPL(emulate_instruction);
1564
1565 /*
1566 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1567 */
1568 static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1569 {
1570 DECLARE_WAITQUEUE(wait, current);
1571
1572 add_wait_queue(&vcpu->wq, &wait);
1573
1574 /*
1575 * We will block until either an interrupt or a signal wakes us up
1576 */
1577 while (!kvm_cpu_has_interrupt(vcpu)
1578 && !signal_pending(current)
1579 && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
1580 && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
1581 set_current_state(TASK_INTERRUPTIBLE);
1582 vcpu_put(vcpu);
1583 schedule();
1584 vcpu_load(vcpu);
1585 }
1586
1587 __set_current_state(TASK_RUNNING);
1588 remove_wait_queue(&vcpu->wq, &wait);
1589 }
1590
1591 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1592 {
1593 ++vcpu->stat.halt_exits;
1594 if (irqchip_in_kernel(vcpu->kvm)) {
1595 vcpu->mp_state = VCPU_MP_STATE_HALTED;
1596 kvm_vcpu_block(vcpu);
1597 if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
1598 return -EINTR;
1599 return 1;
1600 } else {
1601 vcpu->run->exit_reason = KVM_EXIT_HLT;
1602 return 0;
1603 }
1604 }
1605 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1606
1607 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
1608 {
1609 unsigned long nr, a0, a1, a2, a3, ret;
1610
1611 kvm_x86_ops->cache_regs(vcpu);
1612
1613 nr = vcpu->regs[VCPU_REGS_RAX];
1614 a0 = vcpu->regs[VCPU_REGS_RBX];
1615 a1 = vcpu->regs[VCPU_REGS_RCX];
1616 a2 = vcpu->regs[VCPU_REGS_RDX];
1617 a3 = vcpu->regs[VCPU_REGS_RSI];
1618
1619 if (!is_long_mode(vcpu)) {
1620 nr &= 0xFFFFFFFF;
1621 a0 &= 0xFFFFFFFF;
1622 a1 &= 0xFFFFFFFF;
1623 a2 &= 0xFFFFFFFF;
1624 a3 &= 0xFFFFFFFF;
1625 }
1626
1627 switch (nr) {
1628 default:
1629 ret = -KVM_ENOSYS;
1630 break;
1631 }
1632 vcpu->regs[VCPU_REGS_RAX] = ret;
1633 kvm_x86_ops->decache_regs(vcpu);
1634 return 0;
1635 }
1636 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
1637
1638 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
1639 {
1640 char instruction[3];
1641 int ret = 0;
1642
1643 mutex_lock(&vcpu->kvm->lock);
1644
1645 /*
1646 * Blow out the MMU to ensure that no other VCPU has an active mapping
1647 * to ensure that the updated hypercall appears atomically across all
1648 * VCPUs.
1649 */
1650 kvm_mmu_zap_all(vcpu->kvm);
1651
1652 kvm_x86_ops->cache_regs(vcpu);
1653 kvm_x86_ops->patch_hypercall(vcpu, instruction);
1654 if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
1655 != X86EMUL_CONTINUE)
1656 ret = -EFAULT;
1657
1658 mutex_unlock(&vcpu->kvm->lock);
1659
1660 return ret;
1661 }
1662
1663 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1664 {
1665 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1666 }
1667
1668 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1669 {
1670 struct descriptor_table dt = { limit, base };
1671
1672 kvm_x86_ops->set_gdt(vcpu, &dt);
1673 }
1674
1675 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1676 {
1677 struct descriptor_table dt = { limit, base };
1678
1679 kvm_x86_ops->set_idt(vcpu, &dt);
1680 }
1681
1682 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1683 unsigned long *rflags)
1684 {
1685 lmsw(vcpu, msw);
1686 *rflags = kvm_x86_ops->get_rflags(vcpu);
1687 }
1688
1689 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1690 {
1691 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
1692 switch (cr) {
1693 case 0:
1694 return vcpu->cr0;
1695 case 2:
1696 return vcpu->cr2;
1697 case 3:
1698 return vcpu->cr3;
1699 case 4:
1700 return vcpu->cr4;
1701 default:
1702 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1703 return 0;
1704 }
1705 }
1706
1707 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1708 unsigned long *rflags)
1709 {
1710 switch (cr) {
1711 case 0:
1712 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1713 *rflags = kvm_x86_ops->get_rflags(vcpu);
1714 break;
1715 case 2:
1716 vcpu->cr2 = val;
1717 break;
1718 case 3:
1719 set_cr3(vcpu, val);
1720 break;
1721 case 4:
1722 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1723 break;
1724 default:
1725 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1726 }
1727 }
1728
1729 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1730 {
1731 u64 data;
1732
1733 switch (msr) {
1734 case 0xc0010010: /* SYSCFG */
1735 case 0xc0010015: /* HWCR */
1736 case MSR_IA32_PLATFORM_ID:
1737 case MSR_IA32_P5_MC_ADDR:
1738 case MSR_IA32_P5_MC_TYPE:
1739 case MSR_IA32_MC0_CTL:
1740 case MSR_IA32_MCG_STATUS:
1741 case MSR_IA32_MCG_CAP:
1742 case MSR_IA32_MC0_MISC:
1743 case MSR_IA32_MC0_MISC+4:
1744 case MSR_IA32_MC0_MISC+8:
1745 case MSR_IA32_MC0_MISC+12:
1746 case MSR_IA32_MC0_MISC+16:
1747 case MSR_IA32_UCODE_REV:
1748 case MSR_IA32_PERF_STATUS:
1749 case MSR_IA32_EBL_CR_POWERON:
1750 /* MTRR registers */
1751 case 0xfe:
1752 case 0x200 ... 0x2ff:
1753 data = 0;
1754 break;
1755 case 0xcd: /* fsb frequency */
1756 data = 3;
1757 break;
1758 case MSR_IA32_APICBASE:
1759 data = kvm_get_apic_base(vcpu);
1760 break;
1761 case MSR_IA32_MISC_ENABLE:
1762 data = vcpu->ia32_misc_enable_msr;
1763 break;
1764 #ifdef CONFIG_X86_64
1765 case MSR_EFER:
1766 data = vcpu->shadow_efer;
1767 break;
1768 #endif
1769 default:
1770 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1771 return 1;
1772 }
1773 *pdata = data;
1774 return 0;
1775 }
1776 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1777
1778 /*
1779 * Reads an msr value (of 'msr_index') into 'pdata'.
1780 * Returns 0 on success, non-0 otherwise.
1781 * Assumes vcpu_load() was already called.
1782 */
1783 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1784 {
1785 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1786 }
1787
1788 #ifdef CONFIG_X86_64
1789
1790 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1791 {
1792 if (efer & EFER_RESERVED_BITS) {
1793 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1794 efer);
1795 inject_gp(vcpu);
1796 return;
1797 }
1798
1799 if (is_paging(vcpu)
1800 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1801 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1802 inject_gp(vcpu);
1803 return;
1804 }
1805
1806 kvm_x86_ops->set_efer(vcpu, efer);
1807
1808 efer &= ~EFER_LMA;
1809 efer |= vcpu->shadow_efer & EFER_LMA;
1810
1811 vcpu->shadow_efer = efer;
1812 }
1813
1814 #endif
1815
1816 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1817 {
1818 switch (msr) {
1819 #ifdef CONFIG_X86_64
1820 case MSR_EFER:
1821 set_efer(vcpu, data);
1822 break;
1823 #endif
1824 case MSR_IA32_MC0_STATUS:
1825 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1826 __FUNCTION__, data);
1827 break;
1828 case MSR_IA32_MCG_STATUS:
1829 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1830 __FUNCTION__, data);
1831 break;
1832 case MSR_IA32_UCODE_REV:
1833 case MSR_IA32_UCODE_WRITE:
1834 case 0x200 ... 0x2ff: /* MTRRs */
1835 break;
1836 case MSR_IA32_APICBASE:
1837 kvm_set_apic_base(vcpu, data);
1838 break;
1839 case MSR_IA32_MISC_ENABLE:
1840 vcpu->ia32_misc_enable_msr = data;
1841 break;
1842 default:
1843 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
1844 return 1;
1845 }
1846 return 0;
1847 }
1848 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1849
1850 /*
1851 * Writes msr value into into the appropriate "register".
1852 * Returns 0 on success, non-0 otherwise.
1853 * Assumes vcpu_load() was already called.
1854 */
1855 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1856 {
1857 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
1858 }
1859
1860 void kvm_resched(struct kvm_vcpu *vcpu)
1861 {
1862 if (!need_resched())
1863 return;
1864 cond_resched();
1865 }
1866 EXPORT_SYMBOL_GPL(kvm_resched);
1867
1868 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1869 {
1870 int i;
1871 u32 function;
1872 struct kvm_cpuid_entry *e, *best;
1873
1874 kvm_x86_ops->cache_regs(vcpu);
1875 function = vcpu->regs[VCPU_REGS_RAX];
1876 vcpu->regs[VCPU_REGS_RAX] = 0;
1877 vcpu->regs[VCPU_REGS_RBX] = 0;
1878 vcpu->regs[VCPU_REGS_RCX] = 0;
1879 vcpu->regs[VCPU_REGS_RDX] = 0;
1880 best = NULL;
1881 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1882 e = &vcpu->cpuid_entries[i];
1883 if (e->function == function) {
1884 best = e;
1885 break;
1886 }
1887 /*
1888 * Both basic or both extended?
1889 */
1890 if (((e->function ^ function) & 0x80000000) == 0)
1891 if (!best || e->function > best->function)
1892 best = e;
1893 }
1894 if (best) {
1895 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1896 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1897 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1898 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1899 }
1900 kvm_x86_ops->decache_regs(vcpu);
1901 kvm_x86_ops->skip_emulated_instruction(vcpu);
1902 }
1903 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1904
1905 static int pio_copy_data(struct kvm_vcpu *vcpu)
1906 {
1907 void *p = vcpu->pio_data;
1908 void *q;
1909 unsigned bytes;
1910 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1911
1912 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1913 PAGE_KERNEL);
1914 if (!q) {
1915 free_pio_guest_pages(vcpu);
1916 return -ENOMEM;
1917 }
1918 q += vcpu->pio.guest_page_offset;
1919 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1920 if (vcpu->pio.in)
1921 memcpy(q, p, bytes);
1922 else
1923 memcpy(p, q, bytes);
1924 q -= vcpu->pio.guest_page_offset;
1925 vunmap(q);
1926 free_pio_guest_pages(vcpu);
1927 return 0;
1928 }
1929
1930 static int complete_pio(struct kvm_vcpu *vcpu)
1931 {
1932 struct kvm_pio_request *io = &vcpu->pio;
1933 long delta;
1934 int r;
1935
1936 kvm_x86_ops->cache_regs(vcpu);
1937
1938 if (!io->string) {
1939 if (io->in)
1940 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1941 io->size);
1942 } else {
1943 if (io->in) {
1944 r = pio_copy_data(vcpu);
1945 if (r) {
1946 kvm_x86_ops->cache_regs(vcpu);
1947 return r;
1948 }
1949 }
1950
1951 delta = 1;
1952 if (io->rep) {
1953 delta *= io->cur_count;
1954 /*
1955 * The size of the register should really depend on
1956 * current address size.
1957 */
1958 vcpu->regs[VCPU_REGS_RCX] -= delta;
1959 }
1960 if (io->down)
1961 delta = -delta;
1962 delta *= io->size;
1963 if (io->in)
1964 vcpu->regs[VCPU_REGS_RDI] += delta;
1965 else
1966 vcpu->regs[VCPU_REGS_RSI] += delta;
1967 }
1968
1969 kvm_x86_ops->decache_regs(vcpu);
1970
1971 io->count -= io->cur_count;
1972 io->cur_count = 0;
1973
1974 return 0;
1975 }
1976
1977 static void kernel_pio(struct kvm_io_device *pio_dev,
1978 struct kvm_vcpu *vcpu,
1979 void *pd)
1980 {
1981 /* TODO: String I/O for in kernel device */
1982
1983 mutex_lock(&vcpu->kvm->lock);
1984 if (vcpu->pio.in)
1985 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1986 vcpu->pio.size,
1987 pd);
1988 else
1989 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1990 vcpu->pio.size,
1991 pd);
1992 mutex_unlock(&vcpu->kvm->lock);
1993 }
1994
1995 static void pio_string_write(struct kvm_io_device *pio_dev,
1996 struct kvm_vcpu *vcpu)
1997 {
1998 struct kvm_pio_request *io = &vcpu->pio;
1999 void *pd = vcpu->pio_data;
2000 int i;
2001
2002 mutex_lock(&vcpu->kvm->lock);
2003 for (i = 0; i < io->cur_count; i++) {
2004 kvm_iodevice_write(pio_dev, io->port,
2005 io->size,
2006 pd);
2007 pd += io->size;
2008 }
2009 mutex_unlock(&vcpu->kvm->lock);
2010 }
2011
2012 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2013 int size, unsigned port)
2014 {
2015 struct kvm_io_device *pio_dev;
2016
2017 vcpu->run->exit_reason = KVM_EXIT_IO;
2018 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2019 vcpu->run->io.size = vcpu->pio.size = size;
2020 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2021 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
2022 vcpu->run->io.port = vcpu->pio.port = port;
2023 vcpu->pio.in = in;
2024 vcpu->pio.string = 0;
2025 vcpu->pio.down = 0;
2026 vcpu->pio.guest_page_offset = 0;
2027 vcpu->pio.rep = 0;
2028
2029 kvm_x86_ops->cache_regs(vcpu);
2030 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
2031 kvm_x86_ops->decache_regs(vcpu);
2032
2033 kvm_x86_ops->skip_emulated_instruction(vcpu);
2034
2035 pio_dev = vcpu_find_pio_dev(vcpu, port);
2036 if (pio_dev) {
2037 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
2038 complete_pio(vcpu);
2039 return 1;
2040 }
2041 return 0;
2042 }
2043 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2044
2045 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2046 int size, unsigned long count, int down,
2047 gva_t address, int rep, unsigned port)
2048 {
2049 unsigned now, in_page;
2050 int i, ret = 0;
2051 int nr_pages = 1;
2052 struct page *page;
2053 struct kvm_io_device *pio_dev;
2054
2055 vcpu->run->exit_reason = KVM_EXIT_IO;
2056 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2057 vcpu->run->io.size = vcpu->pio.size = size;
2058 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2059 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
2060 vcpu->run->io.port = vcpu->pio.port = port;
2061 vcpu->pio.in = in;
2062 vcpu->pio.string = 1;
2063 vcpu->pio.down = down;
2064 vcpu->pio.guest_page_offset = offset_in_page(address);
2065 vcpu->pio.rep = rep;
2066
2067 if (!count) {
2068 kvm_x86_ops->skip_emulated_instruction(vcpu);
2069 return 1;
2070 }
2071
2072 if (!down)
2073 in_page = PAGE_SIZE - offset_in_page(address);
2074 else
2075 in_page = offset_in_page(address) + size;
2076 now = min(count, (unsigned long)in_page / size);
2077 if (!now) {
2078 /*
2079 * String I/O straddles page boundary. Pin two guest pages
2080 * so that we satisfy atomicity constraints. Do just one
2081 * transaction to avoid complexity.
2082 */
2083 nr_pages = 2;
2084 now = 1;
2085 }
2086 if (down) {
2087 /*
2088 * String I/O in reverse. Yuck. Kill the guest, fix later.
2089 */
2090 pr_unimpl(vcpu, "guest string pio down\n");
2091 inject_gp(vcpu);
2092 return 1;
2093 }
2094 vcpu->run->io.count = now;
2095 vcpu->pio.cur_count = now;
2096
2097 if (vcpu->pio.cur_count == vcpu->pio.count)
2098 kvm_x86_ops->skip_emulated_instruction(vcpu);
2099
2100 for (i = 0; i < nr_pages; ++i) {
2101 mutex_lock(&vcpu->kvm->lock);
2102 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2103 vcpu->pio.guest_pages[i] = page;
2104 mutex_unlock(&vcpu->kvm->lock);
2105 if (!page) {
2106 inject_gp(vcpu);
2107 free_pio_guest_pages(vcpu);
2108 return 1;
2109 }
2110 }
2111
2112 pio_dev = vcpu_find_pio_dev(vcpu, port);
2113 if (!vcpu->pio.in) {
2114 /* string PIO write */
2115 ret = pio_copy_data(vcpu);
2116 if (ret >= 0 && pio_dev) {
2117 pio_string_write(pio_dev, vcpu);
2118 complete_pio(vcpu);
2119 if (vcpu->pio.count == 0)
2120 ret = 1;
2121 }
2122 } else if (pio_dev)
2123 pr_unimpl(vcpu, "no string pio read support yet, "
2124 "port %x size %d count %ld\n",
2125 port, size, count);
2126
2127 return ret;
2128 }
2129 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2130
2131 /*
2132 * Check if userspace requested an interrupt window, and that the
2133 * interrupt window is open.
2134 *
2135 * No need to exit to userspace if we already have an interrupt queued.
2136 */
2137 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2138 struct kvm_run *kvm_run)
2139 {
2140 return (!vcpu->irq_summary &&
2141 kvm_run->request_interrupt_window &&
2142 vcpu->interrupt_window_open &&
2143 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2144 }
2145
2146 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2147 struct kvm_run *kvm_run)
2148 {
2149 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2150 kvm_run->cr8 = get_cr8(vcpu);
2151 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2152 if (irqchip_in_kernel(vcpu->kvm))
2153 kvm_run->ready_for_interrupt_injection = 1;
2154 else
2155 kvm_run->ready_for_interrupt_injection =
2156 (vcpu->interrupt_window_open &&
2157 vcpu->irq_summary == 0);
2158 }
2159
2160 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2161 {
2162 int r;
2163
2164 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2165 pr_debug("vcpu %d received sipi with vector # %x\n",
2166 vcpu->vcpu_id, vcpu->sipi_vector);
2167 kvm_lapic_reset(vcpu);
2168 r = kvm_x86_ops->vcpu_reset(vcpu);
2169 if (r)
2170 return r;
2171 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
2172 }
2173
2174 preempted:
2175 if (vcpu->guest_debug.enabled)
2176 kvm_x86_ops->guest_debug_pre(vcpu);
2177
2178 again:
2179 r = kvm_mmu_reload(vcpu);
2180 if (unlikely(r))
2181 goto out;
2182
2183 kvm_inject_pending_timer_irqs(vcpu);
2184
2185 preempt_disable();
2186
2187 kvm_x86_ops->prepare_guest_switch(vcpu);
2188 kvm_load_guest_fpu(vcpu);
2189
2190 local_irq_disable();
2191
2192 if (signal_pending(current)) {
2193 local_irq_enable();
2194 preempt_enable();
2195 r = -EINTR;
2196 kvm_run->exit_reason = KVM_EXIT_INTR;
2197 ++vcpu->stat.signal_exits;
2198 goto out;
2199 }
2200
2201 if (irqchip_in_kernel(vcpu->kvm))
2202 kvm_x86_ops->inject_pending_irq(vcpu);
2203 else if (!vcpu->mmio_read_completed)
2204 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2205
2206 vcpu->guest_mode = 1;
2207 kvm_guest_enter();
2208
2209 if (vcpu->requests)
2210 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2211 kvm_x86_ops->tlb_flush(vcpu);
2212
2213 kvm_x86_ops->run(vcpu, kvm_run);
2214
2215 vcpu->guest_mode = 0;
2216 local_irq_enable();
2217
2218 ++vcpu->stat.exits;
2219
2220 /*
2221 * We must have an instruction between local_irq_enable() and
2222 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2223 * the interrupt shadow. The stat.exits increment will do nicely.
2224 * But we need to prevent reordering, hence this barrier():
2225 */
2226 barrier();
2227
2228 kvm_guest_exit();
2229
2230 preempt_enable();
2231
2232 /*
2233 * Profile KVM exit RIPs:
2234 */
2235 if (unlikely(prof_on == KVM_PROFILING)) {
2236 kvm_x86_ops->cache_regs(vcpu);
2237 profile_hit(KVM_PROFILING, (void *)vcpu->rip);
2238 }
2239
2240 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2241
2242 if (r > 0) {
2243 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2244 r = -EINTR;
2245 kvm_run->exit_reason = KVM_EXIT_INTR;
2246 ++vcpu->stat.request_irq_exits;
2247 goto out;
2248 }
2249 if (!need_resched()) {
2250 ++vcpu->stat.light_exits;
2251 goto again;
2252 }
2253 }
2254
2255 out:
2256 if (r > 0) {
2257 kvm_resched(vcpu);
2258 goto preempted;
2259 }
2260
2261 post_kvm_run_save(vcpu, kvm_run);
2262
2263 return r;
2264 }
2265
2266
2267 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2268 {
2269 int r;
2270 sigset_t sigsaved;
2271
2272 vcpu_load(vcpu);
2273
2274 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2275 kvm_vcpu_block(vcpu);
2276 vcpu_put(vcpu);
2277 return -EAGAIN;
2278 }
2279
2280 if (vcpu->sigset_active)
2281 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2282
2283 /* re-sync apic's tpr */
2284 if (!irqchip_in_kernel(vcpu->kvm))
2285 set_cr8(vcpu, kvm_run->cr8);
2286
2287 if (vcpu->pio.cur_count) {
2288 r = complete_pio(vcpu);
2289 if (r)
2290 goto out;
2291 }
2292 #if CONFIG_HAS_IOMEM
2293 if (vcpu->mmio_needed) {
2294 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2295 vcpu->mmio_read_completed = 1;
2296 vcpu->mmio_needed = 0;
2297 r = emulate_instruction(vcpu, kvm_run,
2298 vcpu->mmio_fault_cr2, 0, 1);
2299 if (r == EMULATE_DO_MMIO) {
2300 /*
2301 * Read-modify-write. Back to userspace.
2302 */
2303 r = 0;
2304 goto out;
2305 }
2306 }
2307 #endif
2308 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2309 kvm_x86_ops->cache_regs(vcpu);
2310 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2311 kvm_x86_ops->decache_regs(vcpu);
2312 }
2313
2314 r = __vcpu_run(vcpu, kvm_run);
2315
2316 out:
2317 if (vcpu->sigset_active)
2318 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2319
2320 vcpu_put(vcpu);
2321 return r;
2322 }
2323
2324 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
2325 struct kvm_regs *regs)
2326 {
2327 vcpu_load(vcpu);
2328
2329 kvm_x86_ops->cache_regs(vcpu);
2330
2331 regs->rax = vcpu->regs[VCPU_REGS_RAX];
2332 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
2333 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
2334 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
2335 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
2336 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
2337 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
2338 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
2339 #ifdef CONFIG_X86_64
2340 regs->r8 = vcpu->regs[VCPU_REGS_R8];
2341 regs->r9 = vcpu->regs[VCPU_REGS_R9];
2342 regs->r10 = vcpu->regs[VCPU_REGS_R10];
2343 regs->r11 = vcpu->regs[VCPU_REGS_R11];
2344 regs->r12 = vcpu->regs[VCPU_REGS_R12];
2345 regs->r13 = vcpu->regs[VCPU_REGS_R13];
2346 regs->r14 = vcpu->regs[VCPU_REGS_R14];
2347 regs->r15 = vcpu->regs[VCPU_REGS_R15];
2348 #endif
2349
2350 regs->rip = vcpu->rip;
2351 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2352
2353 /*
2354 * Don't leak debug flags in case they were set for guest debugging
2355 */
2356 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2357 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2358
2359 vcpu_put(vcpu);
2360
2361 return 0;
2362 }
2363
2364 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
2365 struct kvm_regs *regs)
2366 {
2367 vcpu_load(vcpu);
2368
2369 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2370 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2371 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2372 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2373 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2374 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2375 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2376 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2377 #ifdef CONFIG_X86_64
2378 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2379 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2380 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2381 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2382 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2383 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2384 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2385 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2386 #endif
2387
2388 vcpu->rip = regs->rip;
2389 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2390
2391 kvm_x86_ops->decache_regs(vcpu);
2392
2393 vcpu_put(vcpu);
2394
2395 return 0;
2396 }
2397
2398 static void get_segment(struct kvm_vcpu *vcpu,
2399 struct kvm_segment *var, int seg)
2400 {
2401 return kvm_x86_ops->get_segment(vcpu, var, seg);
2402 }
2403
2404 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2405 struct kvm_sregs *sregs)
2406 {
2407 struct descriptor_table dt;
2408 int pending_vec;
2409
2410 vcpu_load(vcpu);
2411
2412 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2413 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2414 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2415 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2416 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2417 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2418
2419 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2420 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2421
2422 kvm_x86_ops->get_idt(vcpu, &dt);
2423 sregs->idt.limit = dt.limit;
2424 sregs->idt.base = dt.base;
2425 kvm_x86_ops->get_gdt(vcpu, &dt);
2426 sregs->gdt.limit = dt.limit;
2427 sregs->gdt.base = dt.base;
2428
2429 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2430 sregs->cr0 = vcpu->cr0;
2431 sregs->cr2 = vcpu->cr2;
2432 sregs->cr3 = vcpu->cr3;
2433 sregs->cr4 = vcpu->cr4;
2434 sregs->cr8 = get_cr8(vcpu);
2435 sregs->efer = vcpu->shadow_efer;
2436 sregs->apic_base = kvm_get_apic_base(vcpu);
2437
2438 if (irqchip_in_kernel(vcpu->kvm)) {
2439 memset(sregs->interrupt_bitmap, 0,
2440 sizeof sregs->interrupt_bitmap);
2441 pending_vec = kvm_x86_ops->get_irq(vcpu);
2442 if (pending_vec >= 0)
2443 set_bit(pending_vec,
2444 (unsigned long *)sregs->interrupt_bitmap);
2445 } else
2446 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2447 sizeof sregs->interrupt_bitmap);
2448
2449 vcpu_put(vcpu);
2450
2451 return 0;
2452 }
2453
2454 static void set_segment(struct kvm_vcpu *vcpu,
2455 struct kvm_segment *var, int seg)
2456 {
2457 return kvm_x86_ops->set_segment(vcpu, var, seg);
2458 }
2459
2460 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2461 struct kvm_sregs *sregs)
2462 {
2463 int mmu_reset_needed = 0;
2464 int i, pending_vec, max_bits;
2465 struct descriptor_table dt;
2466
2467 vcpu_load(vcpu);
2468
2469 dt.limit = sregs->idt.limit;
2470 dt.base = sregs->idt.base;
2471 kvm_x86_ops->set_idt(vcpu, &dt);
2472 dt.limit = sregs->gdt.limit;
2473 dt.base = sregs->gdt.base;
2474 kvm_x86_ops->set_gdt(vcpu, &dt);
2475
2476 vcpu->cr2 = sregs->cr2;
2477 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2478 vcpu->cr3 = sregs->cr3;
2479
2480 set_cr8(vcpu, sregs->cr8);
2481
2482 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2483 #ifdef CONFIG_X86_64
2484 kvm_x86_ops->set_efer(vcpu, sregs->efer);
2485 #endif
2486 kvm_set_apic_base(vcpu, sregs->apic_base);
2487
2488 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2489
2490 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2491 vcpu->cr0 = sregs->cr0;
2492 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
2493
2494 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2495 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
2496 if (!is_long_mode(vcpu) && is_pae(vcpu))
2497 load_pdptrs(vcpu, vcpu->cr3);
2498
2499 if (mmu_reset_needed)
2500 kvm_mmu_reset_context(vcpu);
2501
2502 if (!irqchip_in_kernel(vcpu->kvm)) {
2503 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2504 sizeof vcpu->irq_pending);
2505 vcpu->irq_summary = 0;
2506 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2507 if (vcpu->irq_pending[i])
2508 __set_bit(i, &vcpu->irq_summary);
2509 } else {
2510 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
2511 pending_vec = find_first_bit(
2512 (const unsigned long *)sregs->interrupt_bitmap,
2513 max_bits);
2514 /* Only pending external irq is handled here */
2515 if (pending_vec < max_bits) {
2516 kvm_x86_ops->set_irq(vcpu, pending_vec);
2517 pr_debug("Set back pending irq %d\n",
2518 pending_vec);
2519 }
2520 }
2521
2522 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2523 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2524 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2525 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2526 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2527 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2528
2529 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2530 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2531
2532 vcpu_put(vcpu);
2533
2534 return 0;
2535 }
2536
2537 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2538 {
2539 struct kvm_segment cs;
2540
2541 get_segment(vcpu, &cs, VCPU_SREG_CS);
2542 *db = cs.db;
2543 *l = cs.l;
2544 }
2545 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2546
2547 /*
2548 * Translate a guest virtual address to a guest physical address.
2549 */
2550 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2551 struct kvm_translation *tr)
2552 {
2553 unsigned long vaddr = tr->linear_address;
2554 gpa_t gpa;
2555
2556 vcpu_load(vcpu);
2557 mutex_lock(&vcpu->kvm->lock);
2558 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2559 tr->physical_address = gpa;
2560 tr->valid = gpa != UNMAPPED_GVA;
2561 tr->writeable = 1;
2562 tr->usermode = 0;
2563 mutex_unlock(&vcpu->kvm->lock);
2564 vcpu_put(vcpu);
2565
2566 return 0;
2567 }
2568
2569 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2570 struct kvm_interrupt *irq)
2571 {
2572 if (irq->irq < 0 || irq->irq >= 256)
2573 return -EINVAL;
2574 if (irqchip_in_kernel(vcpu->kvm))
2575 return -ENXIO;
2576 vcpu_load(vcpu);
2577
2578 set_bit(irq->irq, vcpu->irq_pending);
2579 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2580
2581 vcpu_put(vcpu);
2582
2583 return 0;
2584 }
2585
2586 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2587 struct kvm_debug_guest *dbg)
2588 {
2589 int r;
2590
2591 vcpu_load(vcpu);
2592
2593 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
2594
2595 vcpu_put(vcpu);
2596
2597 return r;
2598 }
2599
2600 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2601 unsigned long address,
2602 int *type)
2603 {
2604 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2605 unsigned long pgoff;
2606 struct page *page;
2607
2608 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2609 if (pgoff == 0)
2610 page = virt_to_page(vcpu->run);
2611 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2612 page = virt_to_page(vcpu->pio_data);
2613 else
2614 return NOPAGE_SIGBUS;
2615 get_page(page);
2616 if (type != NULL)
2617 *type = VM_FAULT_MINOR;
2618
2619 return page;
2620 }
2621
2622 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2623 .nopage = kvm_vcpu_nopage,
2624 };
2625
2626 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2627 {
2628 vma->vm_ops = &kvm_vcpu_vm_ops;
2629 return 0;
2630 }
2631
2632 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2633 {
2634 struct kvm_vcpu *vcpu = filp->private_data;
2635
2636 fput(vcpu->kvm->filp);
2637 return 0;
2638 }
2639
2640 static struct file_operations kvm_vcpu_fops = {
2641 .release = kvm_vcpu_release,
2642 .unlocked_ioctl = kvm_vcpu_ioctl,
2643 .compat_ioctl = kvm_vcpu_ioctl,
2644 .mmap = kvm_vcpu_mmap,
2645 };
2646
2647 /*
2648 * Allocates an inode for the vcpu.
2649 */
2650 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2651 {
2652 int fd, r;
2653 struct inode *inode;
2654 struct file *file;
2655
2656 r = anon_inode_getfd(&fd, &inode, &file,
2657 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2658 if (r)
2659 return r;
2660 atomic_inc(&vcpu->kvm->filp->f_count);
2661 return fd;
2662 }
2663
2664 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2665 {
2666 int ret;
2667
2668 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2669 return -1;
2670 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2671 return ret;
2672 }
2673
2674 /*
2675 * Creates some virtual cpus. Good luck creating more than one.
2676 */
2677 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2678 {
2679 int r;
2680 struct kvm_vcpu *vcpu;
2681
2682 if (!valid_vcpu(n))
2683 return -EINVAL;
2684
2685 vcpu = kvm_x86_ops->vcpu_create(kvm, n);
2686 if (IS_ERR(vcpu))
2687 return PTR_ERR(vcpu);
2688
2689 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2690
2691 /* We do fxsave: this must be aligned. */
2692 BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2693
2694 vcpu_load(vcpu);
2695 r = kvm_x86_ops->vcpu_reset(vcpu);
2696 if (r == 0)
2697 r = kvm_mmu_setup(vcpu);
2698 vcpu_put(vcpu);
2699 if (r < 0)
2700 goto free_vcpu;
2701
2702 mutex_lock(&kvm->lock);
2703 if (kvm->vcpus[n]) {
2704 r = -EEXIST;
2705 mutex_unlock(&kvm->lock);
2706 goto mmu_unload;
2707 }
2708 kvm->vcpus[n] = vcpu;
2709 mutex_unlock(&kvm->lock);
2710
2711 /* Now it's all set up, let userspace reach it */
2712 r = create_vcpu_fd(vcpu);
2713 if (r < 0)
2714 goto unlink;
2715 return r;
2716
2717 unlink:
2718 mutex_lock(&kvm->lock);
2719 kvm->vcpus[n] = NULL;
2720 mutex_unlock(&kvm->lock);
2721
2722 mmu_unload:
2723 vcpu_load(vcpu);
2724 kvm_mmu_unload(vcpu);
2725 vcpu_put(vcpu);
2726
2727 free_vcpu:
2728 kvm_x86_ops->vcpu_free(vcpu);
2729 return r;
2730 }
2731
2732 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2733 {
2734 if (sigset) {
2735 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2736 vcpu->sigset_active = 1;
2737 vcpu->sigset = *sigset;
2738 } else
2739 vcpu->sigset_active = 0;
2740 return 0;
2741 }
2742
2743 /*
2744 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2745 * we have asm/x86/processor.h
2746 */
2747 struct fxsave {
2748 u16 cwd;
2749 u16 swd;
2750 u16 twd;
2751 u16 fop;
2752 u64 rip;
2753 u64 rdp;
2754 u32 mxcsr;
2755 u32 mxcsr_mask;
2756 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2757 #ifdef CONFIG_X86_64
2758 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2759 #else
2760 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2761 #endif
2762 };
2763
2764 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2765 {
2766 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2767
2768 vcpu_load(vcpu);
2769
2770 memcpy(fpu->fpr, fxsave->st_space, 128);
2771 fpu->fcw = fxsave->cwd;
2772 fpu->fsw = fxsave->swd;
2773 fpu->ftwx = fxsave->twd;
2774 fpu->last_opcode = fxsave->fop;
2775 fpu->last_ip = fxsave->rip;
2776 fpu->last_dp = fxsave->rdp;
2777 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2778
2779 vcpu_put(vcpu);
2780
2781 return 0;
2782 }
2783
2784 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2785 {
2786 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2787
2788 vcpu_load(vcpu);
2789
2790 memcpy(fxsave->st_space, fpu->fpr, 128);
2791 fxsave->cwd = fpu->fcw;
2792 fxsave->swd = fpu->fsw;
2793 fxsave->twd = fpu->ftwx;
2794 fxsave->fop = fpu->last_opcode;
2795 fxsave->rip = fpu->last_ip;
2796 fxsave->rdp = fpu->last_dp;
2797 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2798
2799 vcpu_put(vcpu);
2800
2801 return 0;
2802 }
2803
2804 static long kvm_vcpu_ioctl(struct file *filp,
2805 unsigned int ioctl, unsigned long arg)
2806 {
2807 struct kvm_vcpu *vcpu = filp->private_data;
2808 void __user *argp = (void __user *)arg;
2809 int r;
2810
2811 switch (ioctl) {
2812 case KVM_RUN:
2813 r = -EINVAL;
2814 if (arg)
2815 goto out;
2816 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2817 break;
2818 case KVM_GET_REGS: {
2819 struct kvm_regs kvm_regs;
2820
2821 memset(&kvm_regs, 0, sizeof kvm_regs);
2822 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2823 if (r)
2824 goto out;
2825 r = -EFAULT;
2826 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2827 goto out;
2828 r = 0;
2829 break;
2830 }
2831 case KVM_SET_REGS: {
2832 struct kvm_regs kvm_regs;
2833
2834 r = -EFAULT;
2835 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2836 goto out;
2837 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2838 if (r)
2839 goto out;
2840 r = 0;
2841 break;
2842 }
2843 case KVM_GET_SREGS: {
2844 struct kvm_sregs kvm_sregs;
2845
2846 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2847 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2848 if (r)
2849 goto out;
2850 r = -EFAULT;
2851 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2852 goto out;
2853 r = 0;
2854 break;
2855 }
2856 case KVM_SET_SREGS: {
2857 struct kvm_sregs kvm_sregs;
2858
2859 r = -EFAULT;
2860 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2861 goto out;
2862 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2863 if (r)
2864 goto out;
2865 r = 0;
2866 break;
2867 }
2868 case KVM_TRANSLATE: {
2869 struct kvm_translation tr;
2870
2871 r = -EFAULT;
2872 if (copy_from_user(&tr, argp, sizeof tr))
2873 goto out;
2874 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2875 if (r)
2876 goto out;
2877 r = -EFAULT;
2878 if (copy_to_user(argp, &tr, sizeof tr))
2879 goto out;
2880 r = 0;
2881 break;
2882 }
2883 case KVM_INTERRUPT: {
2884 struct kvm_interrupt irq;
2885
2886 r = -EFAULT;
2887 if (copy_from_user(&irq, argp, sizeof irq))
2888 goto out;
2889 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2890 if (r)
2891 goto out;
2892 r = 0;
2893 break;
2894 }
2895 case KVM_DEBUG_GUEST: {
2896 struct kvm_debug_guest dbg;
2897
2898 r = -EFAULT;
2899 if (copy_from_user(&dbg, argp, sizeof dbg))
2900 goto out;
2901 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2902 if (r)
2903 goto out;
2904 r = 0;
2905 break;
2906 }
2907 case KVM_SET_SIGNAL_MASK: {
2908 struct kvm_signal_mask __user *sigmask_arg = argp;
2909 struct kvm_signal_mask kvm_sigmask;
2910 sigset_t sigset, *p;
2911
2912 p = NULL;
2913 if (argp) {
2914 r = -EFAULT;
2915 if (copy_from_user(&kvm_sigmask, argp,
2916 sizeof kvm_sigmask))
2917 goto out;
2918 r = -EINVAL;
2919 if (kvm_sigmask.len != sizeof sigset)
2920 goto out;
2921 r = -EFAULT;
2922 if (copy_from_user(&sigset, sigmask_arg->sigset,
2923 sizeof sigset))
2924 goto out;
2925 p = &sigset;
2926 }
2927 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2928 break;
2929 }
2930 case KVM_GET_FPU: {
2931 struct kvm_fpu fpu;
2932
2933 memset(&fpu, 0, sizeof fpu);
2934 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2935 if (r)
2936 goto out;
2937 r = -EFAULT;
2938 if (copy_to_user(argp, &fpu, sizeof fpu))
2939 goto out;
2940 r = 0;
2941 break;
2942 }
2943 case KVM_SET_FPU: {
2944 struct kvm_fpu fpu;
2945
2946 r = -EFAULT;
2947 if (copy_from_user(&fpu, argp, sizeof fpu))
2948 goto out;
2949 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2950 if (r)
2951 goto out;
2952 r = 0;
2953 break;
2954 }
2955 default:
2956 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2957 }
2958 out:
2959 return r;
2960 }
2961
2962 static long kvm_vm_ioctl(struct file *filp,
2963 unsigned int ioctl, unsigned long arg)
2964 {
2965 struct kvm *kvm = filp->private_data;
2966 void __user *argp = (void __user *)arg;
2967 int r = -EINVAL;
2968
2969 switch (ioctl) {
2970 case KVM_SET_TSS_ADDR:
2971 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2972 if (r < 0)
2973 goto out;
2974 break;
2975 case KVM_CREATE_VCPU:
2976 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2977 if (r < 0)
2978 goto out;
2979 break;
2980 case KVM_SET_MEMORY_REGION: {
2981 struct kvm_memory_region kvm_mem;
2982 struct kvm_userspace_memory_region kvm_userspace_mem;
2983
2984 r = -EFAULT;
2985 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2986 goto out;
2987 kvm_userspace_mem.slot = kvm_mem.slot;
2988 kvm_userspace_mem.flags = kvm_mem.flags;
2989 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2990 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2991 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2992 if (r)
2993 goto out;
2994 break;
2995 }
2996 case KVM_SET_USER_MEMORY_REGION: {
2997 struct kvm_userspace_memory_region kvm_userspace_mem;
2998
2999 r = -EFAULT;
3000 if (copy_from_user(&kvm_userspace_mem, argp,
3001 sizeof kvm_userspace_mem))
3002 goto out;
3003
3004 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
3005 if (r)
3006 goto out;
3007 break;
3008 }
3009 case KVM_SET_NR_MMU_PAGES:
3010 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3011 if (r)
3012 goto out;
3013 break;
3014 case KVM_GET_NR_MMU_PAGES:
3015 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3016 break;
3017 case KVM_GET_DIRTY_LOG: {
3018 struct kvm_dirty_log log;
3019
3020 r = -EFAULT;
3021 if (copy_from_user(&log, argp, sizeof log))
3022 goto out;
3023 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3024 if (r)
3025 goto out;
3026 break;
3027 }
3028 case KVM_SET_MEMORY_ALIAS: {
3029 struct kvm_memory_alias alias;
3030
3031 r = -EFAULT;
3032 if (copy_from_user(&alias, argp, sizeof alias))
3033 goto out;
3034 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
3035 if (r)
3036 goto out;
3037 break;
3038 }
3039 case KVM_CREATE_IRQCHIP:
3040 r = -ENOMEM;
3041 kvm->vpic = kvm_create_pic(kvm);
3042 if (kvm->vpic) {
3043 r = kvm_ioapic_init(kvm);
3044 if (r) {
3045 kfree(kvm->vpic);
3046 kvm->vpic = NULL;
3047 goto out;
3048 }
3049 } else
3050 goto out;
3051 break;
3052 case KVM_IRQ_LINE: {
3053 struct kvm_irq_level irq_event;
3054
3055 r = -EFAULT;
3056 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3057 goto out;
3058 if (irqchip_in_kernel(kvm)) {
3059 mutex_lock(&kvm->lock);
3060 if (irq_event.irq < 16)
3061 kvm_pic_set_irq(pic_irqchip(kvm),
3062 irq_event.irq,
3063 irq_event.level);
3064 kvm_ioapic_set_irq(kvm->vioapic,
3065 irq_event.irq,
3066 irq_event.level);
3067 mutex_unlock(&kvm->lock);
3068 r = 0;
3069 }
3070 break;
3071 }
3072 case KVM_GET_IRQCHIP: {
3073 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3074 struct kvm_irqchip chip;
3075
3076 r = -EFAULT;
3077 if (copy_from_user(&chip, argp, sizeof chip))
3078 goto out;
3079 r = -ENXIO;
3080 if (!irqchip_in_kernel(kvm))
3081 goto out;
3082 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
3083 if (r)
3084 goto out;
3085 r = -EFAULT;
3086 if (copy_to_user(argp, &chip, sizeof chip))
3087 goto out;
3088 r = 0;
3089 break;
3090 }
3091 case KVM_SET_IRQCHIP: {
3092 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3093 struct kvm_irqchip chip;
3094
3095 r = -EFAULT;
3096 if (copy_from_user(&chip, argp, sizeof chip))
3097 goto out;
3098 r = -ENXIO;
3099 if (!irqchip_in_kernel(kvm))
3100 goto out;
3101 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
3102 if (r)
3103 goto out;
3104 r = 0;
3105 break;
3106 }
3107 default:
3108 ;
3109 }
3110 out:
3111 return r;
3112 }
3113
3114 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
3115 unsigned long address,
3116 int *type)
3117 {
3118 struct kvm *kvm = vma->vm_file->private_data;
3119 unsigned long pgoff;
3120 struct page *page;
3121
3122 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3123 if (!kvm_is_visible_gfn(kvm, pgoff))
3124 return NOPAGE_SIGBUS;
3125 page = gfn_to_page(kvm, pgoff);
3126 if (is_error_page(page)) {
3127 kvm_release_page(page);
3128 return NOPAGE_SIGBUS;
3129 }
3130 if (type != NULL)
3131 *type = VM_FAULT_MINOR;
3132
3133 return page;
3134 }
3135
3136 static struct vm_operations_struct kvm_vm_vm_ops = {
3137 .nopage = kvm_vm_nopage,
3138 };
3139
3140 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
3141 {
3142 vma->vm_ops = &kvm_vm_vm_ops;
3143 return 0;
3144 }
3145
3146 static struct file_operations kvm_vm_fops = {
3147 .release = kvm_vm_release,
3148 .unlocked_ioctl = kvm_vm_ioctl,
3149 .compat_ioctl = kvm_vm_ioctl,
3150 .mmap = kvm_vm_mmap,
3151 };
3152
3153 static int kvm_dev_ioctl_create_vm(void)
3154 {
3155 int fd, r;
3156 struct inode *inode;
3157 struct file *file;
3158 struct kvm *kvm;
3159
3160 kvm = kvm_create_vm();
3161 if (IS_ERR(kvm))
3162 return PTR_ERR(kvm);
3163 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
3164 if (r) {
3165 kvm_destroy_vm(kvm);
3166 return r;
3167 }
3168
3169 kvm->filp = file;
3170
3171 return fd;
3172 }
3173
3174 static long kvm_dev_ioctl(struct file *filp,
3175 unsigned int ioctl, unsigned long arg)
3176 {
3177 void __user *argp = (void __user *)arg;
3178 long r = -EINVAL;
3179
3180 switch (ioctl) {
3181 case KVM_GET_API_VERSION:
3182 r = -EINVAL;
3183 if (arg)
3184 goto out;
3185 r = KVM_API_VERSION;
3186 break;
3187 case KVM_CREATE_VM:
3188 r = -EINVAL;
3189 if (arg)
3190 goto out;
3191 r = kvm_dev_ioctl_create_vm();
3192 break;
3193 case KVM_CHECK_EXTENSION: {
3194 int ext = (long)argp;
3195
3196 switch (ext) {
3197 case KVM_CAP_IRQCHIP:
3198 case KVM_CAP_HLT:
3199 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3200 case KVM_CAP_USER_MEMORY:
3201 case KVM_CAP_SET_TSS_ADDR:
3202 r = 1;
3203 break;
3204 default:
3205 r = 0;
3206 break;
3207 }
3208 break;
3209 }
3210 case KVM_GET_VCPU_MMAP_SIZE:
3211 r = -EINVAL;
3212 if (arg)
3213 goto out;
3214 r = 2 * PAGE_SIZE;
3215 break;
3216 default:
3217 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3218 }
3219 out:
3220 return r;
3221 }
3222
3223 static struct file_operations kvm_chardev_ops = {
3224 .unlocked_ioctl = kvm_dev_ioctl,
3225 .compat_ioctl = kvm_dev_ioctl,
3226 };
3227
3228 static struct miscdevice kvm_dev = {
3229 KVM_MINOR,
3230 "kvm",
3231 &kvm_chardev_ops,
3232 };
3233
3234 /*
3235 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
3236 * cached on it.
3237 */
3238 static void decache_vcpus_on_cpu(int cpu)
3239 {
3240 struct kvm *vm;
3241 struct kvm_vcpu *vcpu;
3242 int i;
3243
3244 spin_lock(&kvm_lock);
3245 list_for_each_entry(vm, &vm_list, vm_list)
3246 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3247 vcpu = vm->vcpus[i];
3248 if (!vcpu)
3249 continue;
3250 /*
3251 * If the vcpu is locked, then it is running on some
3252 * other cpu and therefore it is not cached on the
3253 * cpu in question.
3254 *
3255 * If it's not locked, check the last cpu it executed
3256 * on.
3257 */
3258 if (mutex_trylock(&vcpu->mutex)) {
3259 if (vcpu->cpu == cpu) {
3260 kvm_x86_ops->vcpu_decache(vcpu);
3261 vcpu->cpu = -1;
3262 }
3263 mutex_unlock(&vcpu->mutex);
3264 }
3265 }
3266 spin_unlock(&kvm_lock);
3267 }
3268
3269 static void hardware_enable(void *junk)
3270 {
3271 int cpu = raw_smp_processor_id();
3272
3273 if (cpu_isset(cpu, cpus_hardware_enabled))
3274 return;
3275 cpu_set(cpu, cpus_hardware_enabled);
3276 kvm_x86_ops->hardware_enable(NULL);
3277 }
3278
3279 static void hardware_disable(void *junk)
3280 {
3281 int cpu = raw_smp_processor_id();
3282
3283 if (!cpu_isset(cpu, cpus_hardware_enabled))
3284 return;
3285 cpu_clear(cpu, cpus_hardware_enabled);
3286 decache_vcpus_on_cpu(cpu);
3287 kvm_x86_ops->hardware_disable(NULL);
3288 }
3289
3290 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3291 void *v)
3292 {
3293 int cpu = (long)v;
3294
3295 switch (val) {
3296 case CPU_DYING:
3297 case CPU_DYING_FROZEN:
3298 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3299 cpu);
3300 hardware_disable(NULL);
3301 break;
3302 case CPU_UP_CANCELED:
3303 case CPU_UP_CANCELED_FROZEN:
3304 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3305 cpu);
3306 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3307 break;
3308 case CPU_ONLINE:
3309 case CPU_ONLINE_FROZEN:
3310 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3311 cpu);
3312 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3313 break;
3314 }
3315 return NOTIFY_OK;
3316 }
3317
3318 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3319 void *v)
3320 {
3321 if (val == SYS_RESTART) {
3322 /*
3323 * Some (well, at least mine) BIOSes hang on reboot if
3324 * in vmx root mode.
3325 */
3326 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3327 on_each_cpu(hardware_disable, NULL, 0, 1);
3328 }
3329 return NOTIFY_OK;
3330 }
3331
3332 static struct notifier_block kvm_reboot_notifier = {
3333 .notifier_call = kvm_reboot,
3334 .priority = 0,
3335 };
3336
3337 void kvm_io_bus_init(struct kvm_io_bus *bus)
3338 {
3339 memset(bus, 0, sizeof(*bus));
3340 }
3341
3342 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3343 {
3344 int i;
3345
3346 for (i = 0; i < bus->dev_count; i++) {
3347 struct kvm_io_device *pos = bus->devs[i];
3348
3349 kvm_iodevice_destructor(pos);
3350 }
3351 }
3352
3353 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3354 {
3355 int i;
3356
3357 for (i = 0; i < bus->dev_count; i++) {
3358 struct kvm_io_device *pos = bus->devs[i];
3359
3360 if (pos->in_range(pos, addr))
3361 return pos;
3362 }
3363
3364 return NULL;
3365 }
3366
3367 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3368 {
3369 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3370
3371 bus->devs[bus->dev_count++] = dev;
3372 }
3373
3374 static struct notifier_block kvm_cpu_notifier = {
3375 .notifier_call = kvm_cpu_hotplug,
3376 .priority = 20, /* must be > scheduler priority */
3377 };
3378
3379 static u64 stat_get(void *_offset)
3380 {
3381 unsigned offset = (long)_offset;
3382 u64 total = 0;
3383 struct kvm *kvm;
3384 struct kvm_vcpu *vcpu;
3385 int i;
3386
3387 spin_lock(&kvm_lock);
3388 list_for_each_entry(kvm, &vm_list, vm_list)
3389 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3390 vcpu = kvm->vcpus[i];
3391 if (vcpu)
3392 total += *(u32 *)((void *)vcpu + offset);
3393 }
3394 spin_unlock(&kvm_lock);
3395 return total;
3396 }
3397
3398 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
3399
3400 static __init void kvm_init_debug(void)
3401 {
3402 struct kvm_stats_debugfs_item *p;
3403
3404 debugfs_dir = debugfs_create_dir("kvm", NULL);
3405 for (p = debugfs_entries; p->name; ++p)
3406 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3407 (void *)(long)p->offset,
3408 &stat_fops);
3409 }
3410
3411 static void kvm_exit_debug(void)
3412 {
3413 struct kvm_stats_debugfs_item *p;
3414
3415 for (p = debugfs_entries; p->name; ++p)
3416 debugfs_remove(p->dentry);
3417 debugfs_remove(debugfs_dir);
3418 }
3419
3420 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3421 {
3422 hardware_disable(NULL);
3423 return 0;
3424 }
3425
3426 static int kvm_resume(struct sys_device *dev)
3427 {
3428 hardware_enable(NULL);
3429 return 0;
3430 }
3431
3432 static struct sysdev_class kvm_sysdev_class = {
3433 .name = "kvm",
3434 .suspend = kvm_suspend,
3435 .resume = kvm_resume,
3436 };
3437
3438 static struct sys_device kvm_sysdev = {
3439 .id = 0,
3440 .cls = &kvm_sysdev_class,
3441 };
3442
3443 struct page *bad_page;
3444
3445 static inline
3446 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3447 {
3448 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3449 }
3450
3451 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3452 {
3453 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3454
3455 kvm_x86_ops->vcpu_load(vcpu, cpu);
3456 }
3457
3458 static void kvm_sched_out(struct preempt_notifier *pn,
3459 struct task_struct *next)
3460 {
3461 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3462
3463 kvm_x86_ops->vcpu_put(vcpu);
3464 }
3465
3466 int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
3467 struct module *module)
3468 {
3469 int r;
3470 int cpu;
3471
3472 if (kvm_x86_ops) {
3473 printk(KERN_ERR "kvm: already loaded the other module\n");
3474 return -EEXIST;
3475 }
3476
3477 if (!ops->cpu_has_kvm_support()) {
3478 printk(KERN_ERR "kvm: no hardware support\n");
3479 return -EOPNOTSUPP;
3480 }
3481 if (ops->disabled_by_bios()) {
3482 printk(KERN_ERR "kvm: disabled by bios\n");
3483 return -EOPNOTSUPP;
3484 }
3485
3486 kvm_x86_ops = ops;
3487
3488 r = kvm_x86_ops->hardware_setup();
3489 if (r < 0)
3490 goto out;
3491
3492 for_each_online_cpu(cpu) {
3493 smp_call_function_single(cpu,
3494 kvm_x86_ops->check_processor_compatibility,
3495 &r, 0, 1);
3496 if (r < 0)
3497 goto out_free_0;
3498 }
3499
3500 on_each_cpu(hardware_enable, NULL, 0, 1);
3501 r = register_cpu_notifier(&kvm_cpu_notifier);
3502 if (r)
3503 goto out_free_1;
3504 register_reboot_notifier(&kvm_reboot_notifier);
3505
3506 r = sysdev_class_register(&kvm_sysdev_class);
3507 if (r)
3508 goto out_free_2;
3509
3510 r = sysdev_register(&kvm_sysdev);
3511 if (r)
3512 goto out_free_3;
3513
3514 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3515 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
3516 __alignof__(struct kvm_vcpu), 0, 0);
3517 if (!kvm_vcpu_cache) {
3518 r = -ENOMEM;
3519 goto out_free_4;
3520 }
3521
3522 kvm_chardev_ops.owner = module;
3523
3524 r = misc_register(&kvm_dev);
3525 if (r) {
3526 printk(KERN_ERR "kvm: misc device register failed\n");
3527 goto out_free;
3528 }
3529
3530 kvm_preempt_ops.sched_in = kvm_sched_in;
3531 kvm_preempt_ops.sched_out = kvm_sched_out;
3532
3533 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3534
3535 return 0;
3536
3537 out_free:
3538 kmem_cache_destroy(kvm_vcpu_cache);
3539 out_free_4:
3540 sysdev_unregister(&kvm_sysdev);
3541 out_free_3:
3542 sysdev_class_unregister(&kvm_sysdev_class);
3543 out_free_2:
3544 unregister_reboot_notifier(&kvm_reboot_notifier);
3545 unregister_cpu_notifier(&kvm_cpu_notifier);
3546 out_free_1:
3547 on_each_cpu(hardware_disable, NULL, 0, 1);
3548 out_free_0:
3549 kvm_x86_ops->hardware_unsetup();
3550 out:
3551 kvm_x86_ops = NULL;
3552 return r;
3553 }
3554 EXPORT_SYMBOL_GPL(kvm_init_x86);
3555
3556 void kvm_exit_x86(void)
3557 {
3558 misc_deregister(&kvm_dev);
3559 kmem_cache_destroy(kvm_vcpu_cache);
3560 sysdev_unregister(&kvm_sysdev);
3561 sysdev_class_unregister(&kvm_sysdev_class);
3562 unregister_reboot_notifier(&kvm_reboot_notifier);
3563 unregister_cpu_notifier(&kvm_cpu_notifier);
3564 on_each_cpu(hardware_disable, NULL, 0, 1);
3565 kvm_x86_ops->hardware_unsetup();
3566 kvm_x86_ops = NULL;
3567 }
3568 EXPORT_SYMBOL_GPL(kvm_exit_x86);
3569
3570 static __init int kvm_init(void)
3571 {
3572 int r;
3573
3574 r = kvm_mmu_module_init();
3575 if (r)
3576 goto out4;
3577
3578 kvm_init_debug();
3579
3580 kvm_arch_init();
3581
3582 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3583
3584 if (bad_page == NULL) {
3585 r = -ENOMEM;
3586 goto out;
3587 }
3588
3589 return 0;
3590
3591 out:
3592 kvm_exit_debug();
3593 kvm_mmu_module_exit();
3594 out4:
3595 return r;
3596 }
3597
3598 static __exit void kvm_exit(void)
3599 {
3600 kvm_exit_debug();
3601 __free_page(bad_page);
3602 kvm_mmu_module_exit();
3603 }
3604
3605 module_init(kvm_init)
3606 module_exit(kvm_exit)