]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm-crypt.c
dm crypt: use shifts instead of sector_div
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
28 #include <asm/page.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <keys/user-type.h>
38
39 #include <linux/device-mapper.h>
40
41 #define DM_MSG_PREFIX "crypt"
42
43 /*
44 * context holding the current state of a multi-part conversion
45 */
46 struct convert_context {
47 struct completion restart;
48 struct bio *bio_in;
49 struct bio *bio_out;
50 struct bvec_iter iter_in;
51 struct bvec_iter iter_out;
52 sector_t cc_sector;
53 atomic_t cc_pending;
54 union {
55 struct skcipher_request *req;
56 struct aead_request *req_aead;
57 } r;
58
59 };
60
61 /*
62 * per bio private data
63 */
64 struct dm_crypt_io {
65 struct crypt_config *cc;
66 struct bio *base_bio;
67 u8 *integrity_metadata;
68 bool integrity_metadata_from_pool;
69 struct work_struct work;
70
71 struct convert_context ctx;
72
73 atomic_t io_pending;
74 int error;
75 sector_t sector;
76
77 struct rb_node rb_node;
78 } CRYPTO_MINALIGN_ATTR;
79
80 struct dm_crypt_request {
81 struct convert_context *ctx;
82 struct scatterlist sg_in[4];
83 struct scatterlist sg_out[4];
84 sector_t iv_sector;
85 };
86
87 struct crypt_config;
88
89 struct crypt_iv_operations {
90 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
91 const char *opts);
92 void (*dtr)(struct crypt_config *cc);
93 int (*init)(struct crypt_config *cc);
94 int (*wipe)(struct crypt_config *cc);
95 int (*generator)(struct crypt_config *cc, u8 *iv,
96 struct dm_crypt_request *dmreq);
97 int (*post)(struct crypt_config *cc, u8 *iv,
98 struct dm_crypt_request *dmreq);
99 };
100
101 struct iv_essiv_private {
102 struct crypto_ahash *hash_tfm;
103 u8 *salt;
104 };
105
106 struct iv_benbi_private {
107 int shift;
108 };
109
110 #define LMK_SEED_SIZE 64 /* hash + 0 */
111 struct iv_lmk_private {
112 struct crypto_shash *hash_tfm;
113 u8 *seed;
114 };
115
116 #define TCW_WHITENING_SIZE 16
117 struct iv_tcw_private {
118 struct crypto_shash *crc32_tfm;
119 u8 *iv_seed;
120 u8 *whitening;
121 };
122
123 /*
124 * Crypt: maps a linear range of a block device
125 * and encrypts / decrypts at the same time.
126 */
127 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
128 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
129
130 enum cipher_flags {
131 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cihper */
132 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
133 };
134
135 /*
136 * The fields in here must be read only after initialization.
137 */
138 struct crypt_config {
139 struct dm_dev *dev;
140 sector_t start;
141
142 /*
143 * pool for per bio private data, crypto requests,
144 * encryption requeusts/buffer pages and integrity tags
145 */
146 mempool_t *req_pool;
147 mempool_t *page_pool;
148 mempool_t *tag_pool;
149 unsigned tag_pool_max_sectors;
150
151 struct bio_set *bs;
152 struct mutex bio_alloc_lock;
153
154 struct workqueue_struct *io_queue;
155 struct workqueue_struct *crypt_queue;
156
157 struct task_struct *write_thread;
158 wait_queue_head_t write_thread_wait;
159 struct rb_root write_tree;
160
161 char *cipher;
162 char *cipher_string;
163 char *cipher_auth;
164 char *key_string;
165
166 const struct crypt_iv_operations *iv_gen_ops;
167 union {
168 struct iv_essiv_private essiv;
169 struct iv_benbi_private benbi;
170 struct iv_lmk_private lmk;
171 struct iv_tcw_private tcw;
172 } iv_gen_private;
173 sector_t iv_offset;
174 unsigned int iv_size;
175 unsigned short int sector_size;
176 unsigned char sector_shift;
177
178 /* ESSIV: struct crypto_cipher *essiv_tfm */
179 void *iv_private;
180 union {
181 struct crypto_skcipher **tfms;
182 struct crypto_aead **tfms_aead;
183 } cipher_tfm;
184 unsigned tfms_count;
185 unsigned long cipher_flags;
186
187 /*
188 * Layout of each crypto request:
189 *
190 * struct skcipher_request
191 * context
192 * padding
193 * struct dm_crypt_request
194 * padding
195 * IV
196 *
197 * The padding is added so that dm_crypt_request and the IV are
198 * correctly aligned.
199 */
200 unsigned int dmreq_start;
201
202 unsigned int per_bio_data_size;
203
204 unsigned long flags;
205 unsigned int key_size;
206 unsigned int key_parts; /* independent parts in key buffer */
207 unsigned int key_extra_size; /* additional keys length */
208 unsigned int key_mac_size; /* MAC key size for authenc(...) */
209
210 unsigned int integrity_tag_size;
211 unsigned int integrity_iv_size;
212 unsigned int on_disk_tag_size;
213
214 u8 *authenc_key; /* space for keys in authenc() format (if used) */
215 u8 key[0];
216 };
217
218 #define MIN_IOS 64
219 #define MAX_TAG_SIZE 480
220 #define POOL_ENTRY_SIZE 512
221
222 static void clone_init(struct dm_crypt_io *, struct bio *);
223 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
224 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
225 struct scatterlist *sg);
226
227 /*
228 * Use this to access cipher attributes that are the same for each CPU.
229 */
230 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
231 {
232 return cc->cipher_tfm.tfms[0];
233 }
234
235 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
236 {
237 return cc->cipher_tfm.tfms_aead[0];
238 }
239
240 /*
241 * Different IV generation algorithms:
242 *
243 * plain: the initial vector is the 32-bit little-endian version of the sector
244 * number, padded with zeros if necessary.
245 *
246 * plain64: the initial vector is the 64-bit little-endian version of the sector
247 * number, padded with zeros if necessary.
248 *
249 * essiv: "encrypted sector|salt initial vector", the sector number is
250 * encrypted with the bulk cipher using a salt as key. The salt
251 * should be derived from the bulk cipher's key via hashing.
252 *
253 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
254 * (needed for LRW-32-AES and possible other narrow block modes)
255 *
256 * null: the initial vector is always zero. Provides compatibility with
257 * obsolete loop_fish2 devices. Do not use for new devices.
258 *
259 * lmk: Compatible implementation of the block chaining mode used
260 * by the Loop-AES block device encryption system
261 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
262 * It operates on full 512 byte sectors and uses CBC
263 * with an IV derived from the sector number, the data and
264 * optionally extra IV seed.
265 * This means that after decryption the first block
266 * of sector must be tweaked according to decrypted data.
267 * Loop-AES can use three encryption schemes:
268 * version 1: is plain aes-cbc mode
269 * version 2: uses 64 multikey scheme with lmk IV generator
270 * version 3: the same as version 2 with additional IV seed
271 * (it uses 65 keys, last key is used as IV seed)
272 *
273 * tcw: Compatible implementation of the block chaining mode used
274 * by the TrueCrypt device encryption system (prior to version 4.1).
275 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
276 * It operates on full 512 byte sectors and uses CBC
277 * with an IV derived from initial key and the sector number.
278 * In addition, whitening value is applied on every sector, whitening
279 * is calculated from initial key, sector number and mixed using CRC32.
280 * Note that this encryption scheme is vulnerable to watermarking attacks
281 * and should be used for old compatible containers access only.
282 *
283 * plumb: unimplemented, see:
284 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
285 */
286
287 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
288 struct dm_crypt_request *dmreq)
289 {
290 memset(iv, 0, cc->iv_size);
291 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
292
293 return 0;
294 }
295
296 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
297 struct dm_crypt_request *dmreq)
298 {
299 memset(iv, 0, cc->iv_size);
300 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
301
302 return 0;
303 }
304
305 /* Initialise ESSIV - compute salt but no local memory allocations */
306 static int crypt_iv_essiv_init(struct crypt_config *cc)
307 {
308 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
309 AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
310 struct scatterlist sg;
311 struct crypto_cipher *essiv_tfm;
312 int err;
313
314 sg_init_one(&sg, cc->key, cc->key_size);
315 ahash_request_set_tfm(req, essiv->hash_tfm);
316 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
317 ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
318
319 err = crypto_ahash_digest(req);
320 ahash_request_zero(req);
321 if (err)
322 return err;
323
324 essiv_tfm = cc->iv_private;
325
326 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
327 crypto_ahash_digestsize(essiv->hash_tfm));
328 if (err)
329 return err;
330
331 return 0;
332 }
333
334 /* Wipe salt and reset key derived from volume key */
335 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
336 {
337 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
338 unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
339 struct crypto_cipher *essiv_tfm;
340 int r, err = 0;
341
342 memset(essiv->salt, 0, salt_size);
343
344 essiv_tfm = cc->iv_private;
345 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
346 if (r)
347 err = r;
348
349 return err;
350 }
351
352 /* Set up per cpu cipher state */
353 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
354 struct dm_target *ti,
355 u8 *salt, unsigned saltsize)
356 {
357 struct crypto_cipher *essiv_tfm;
358 int err;
359
360 /* Setup the essiv_tfm with the given salt */
361 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
362 if (IS_ERR(essiv_tfm)) {
363 ti->error = "Error allocating crypto tfm for ESSIV";
364 return essiv_tfm;
365 }
366
367 if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) {
368 ti->error = "Block size of ESSIV cipher does "
369 "not match IV size of block cipher";
370 crypto_free_cipher(essiv_tfm);
371 return ERR_PTR(-EINVAL);
372 }
373
374 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
375 if (err) {
376 ti->error = "Failed to set key for ESSIV cipher";
377 crypto_free_cipher(essiv_tfm);
378 return ERR_PTR(err);
379 }
380
381 return essiv_tfm;
382 }
383
384 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
385 {
386 struct crypto_cipher *essiv_tfm;
387 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
388
389 crypto_free_ahash(essiv->hash_tfm);
390 essiv->hash_tfm = NULL;
391
392 kzfree(essiv->salt);
393 essiv->salt = NULL;
394
395 essiv_tfm = cc->iv_private;
396
397 if (essiv_tfm)
398 crypto_free_cipher(essiv_tfm);
399
400 cc->iv_private = NULL;
401 }
402
403 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
404 const char *opts)
405 {
406 struct crypto_cipher *essiv_tfm = NULL;
407 struct crypto_ahash *hash_tfm = NULL;
408 u8 *salt = NULL;
409 int err;
410
411 if (!opts) {
412 ti->error = "Digest algorithm missing for ESSIV mode";
413 return -EINVAL;
414 }
415
416 /* Allocate hash algorithm */
417 hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
418 if (IS_ERR(hash_tfm)) {
419 ti->error = "Error initializing ESSIV hash";
420 err = PTR_ERR(hash_tfm);
421 goto bad;
422 }
423
424 salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
425 if (!salt) {
426 ti->error = "Error kmallocing salt storage in ESSIV";
427 err = -ENOMEM;
428 goto bad;
429 }
430
431 cc->iv_gen_private.essiv.salt = salt;
432 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
433
434 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
435 crypto_ahash_digestsize(hash_tfm));
436
437 if (IS_ERR(essiv_tfm)) {
438 crypt_iv_essiv_dtr(cc);
439 return PTR_ERR(essiv_tfm);
440 }
441 cc->iv_private = essiv_tfm;
442
443 return 0;
444
445 bad:
446 if (hash_tfm && !IS_ERR(hash_tfm))
447 crypto_free_ahash(hash_tfm);
448 kfree(salt);
449 return err;
450 }
451
452 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
453 struct dm_crypt_request *dmreq)
454 {
455 struct crypto_cipher *essiv_tfm = cc->iv_private;
456
457 memset(iv, 0, cc->iv_size);
458 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
459 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
460
461 return 0;
462 }
463
464 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
465 const char *opts)
466 {
467 unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
468 int log = ilog2(bs);
469
470 /* we need to calculate how far we must shift the sector count
471 * to get the cipher block count, we use this shift in _gen */
472
473 if (1 << log != bs) {
474 ti->error = "cypher blocksize is not a power of 2";
475 return -EINVAL;
476 }
477
478 if (log > 9) {
479 ti->error = "cypher blocksize is > 512";
480 return -EINVAL;
481 }
482
483 cc->iv_gen_private.benbi.shift = 9 - log;
484
485 return 0;
486 }
487
488 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
489 {
490 }
491
492 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
493 struct dm_crypt_request *dmreq)
494 {
495 __be64 val;
496
497 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
498
499 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
500 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
501
502 return 0;
503 }
504
505 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
506 struct dm_crypt_request *dmreq)
507 {
508 memset(iv, 0, cc->iv_size);
509
510 return 0;
511 }
512
513 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
514 {
515 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
516
517 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
518 crypto_free_shash(lmk->hash_tfm);
519 lmk->hash_tfm = NULL;
520
521 kzfree(lmk->seed);
522 lmk->seed = NULL;
523 }
524
525 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
526 const char *opts)
527 {
528 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
529
530 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
531 ti->error = "Unsupported sector size for LMK";
532 return -EINVAL;
533 }
534
535 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
536 if (IS_ERR(lmk->hash_tfm)) {
537 ti->error = "Error initializing LMK hash";
538 return PTR_ERR(lmk->hash_tfm);
539 }
540
541 /* No seed in LMK version 2 */
542 if (cc->key_parts == cc->tfms_count) {
543 lmk->seed = NULL;
544 return 0;
545 }
546
547 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
548 if (!lmk->seed) {
549 crypt_iv_lmk_dtr(cc);
550 ti->error = "Error kmallocing seed storage in LMK";
551 return -ENOMEM;
552 }
553
554 return 0;
555 }
556
557 static int crypt_iv_lmk_init(struct crypt_config *cc)
558 {
559 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
560 int subkey_size = cc->key_size / cc->key_parts;
561
562 /* LMK seed is on the position of LMK_KEYS + 1 key */
563 if (lmk->seed)
564 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
565 crypto_shash_digestsize(lmk->hash_tfm));
566
567 return 0;
568 }
569
570 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
571 {
572 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
573
574 if (lmk->seed)
575 memset(lmk->seed, 0, LMK_SEED_SIZE);
576
577 return 0;
578 }
579
580 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
581 struct dm_crypt_request *dmreq,
582 u8 *data)
583 {
584 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
585 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
586 struct md5_state md5state;
587 __le32 buf[4];
588 int i, r;
589
590 desc->tfm = lmk->hash_tfm;
591 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
592
593 r = crypto_shash_init(desc);
594 if (r)
595 return r;
596
597 if (lmk->seed) {
598 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
599 if (r)
600 return r;
601 }
602
603 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
604 r = crypto_shash_update(desc, data + 16, 16 * 31);
605 if (r)
606 return r;
607
608 /* Sector is cropped to 56 bits here */
609 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
610 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
611 buf[2] = cpu_to_le32(4024);
612 buf[3] = 0;
613 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
614 if (r)
615 return r;
616
617 /* No MD5 padding here */
618 r = crypto_shash_export(desc, &md5state);
619 if (r)
620 return r;
621
622 for (i = 0; i < MD5_HASH_WORDS; i++)
623 __cpu_to_le32s(&md5state.hash[i]);
624 memcpy(iv, &md5state.hash, cc->iv_size);
625
626 return 0;
627 }
628
629 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
630 struct dm_crypt_request *dmreq)
631 {
632 struct scatterlist *sg;
633 u8 *src;
634 int r = 0;
635
636 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
637 sg = crypt_get_sg_data(cc, dmreq->sg_in);
638 src = kmap_atomic(sg_page(sg));
639 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
640 kunmap_atomic(src);
641 } else
642 memset(iv, 0, cc->iv_size);
643
644 return r;
645 }
646
647 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
648 struct dm_crypt_request *dmreq)
649 {
650 struct scatterlist *sg;
651 u8 *dst;
652 int r;
653
654 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
655 return 0;
656
657 sg = crypt_get_sg_data(cc, dmreq->sg_out);
658 dst = kmap_atomic(sg_page(sg));
659 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
660
661 /* Tweak the first block of plaintext sector */
662 if (!r)
663 crypto_xor(dst + sg->offset, iv, cc->iv_size);
664
665 kunmap_atomic(dst);
666 return r;
667 }
668
669 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
670 {
671 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
672
673 kzfree(tcw->iv_seed);
674 tcw->iv_seed = NULL;
675 kzfree(tcw->whitening);
676 tcw->whitening = NULL;
677
678 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
679 crypto_free_shash(tcw->crc32_tfm);
680 tcw->crc32_tfm = NULL;
681 }
682
683 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
684 const char *opts)
685 {
686 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
687
688 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
689 ti->error = "Unsupported sector size for TCW";
690 return -EINVAL;
691 }
692
693 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
694 ti->error = "Wrong key size for TCW";
695 return -EINVAL;
696 }
697
698 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
699 if (IS_ERR(tcw->crc32_tfm)) {
700 ti->error = "Error initializing CRC32 in TCW";
701 return PTR_ERR(tcw->crc32_tfm);
702 }
703
704 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
705 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
706 if (!tcw->iv_seed || !tcw->whitening) {
707 crypt_iv_tcw_dtr(cc);
708 ti->error = "Error allocating seed storage in TCW";
709 return -ENOMEM;
710 }
711
712 return 0;
713 }
714
715 static int crypt_iv_tcw_init(struct crypt_config *cc)
716 {
717 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
718 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
719
720 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
721 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
722 TCW_WHITENING_SIZE);
723
724 return 0;
725 }
726
727 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
728 {
729 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
730
731 memset(tcw->iv_seed, 0, cc->iv_size);
732 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
733
734 return 0;
735 }
736
737 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
738 struct dm_crypt_request *dmreq,
739 u8 *data)
740 {
741 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
742 __le64 sector = cpu_to_le64(dmreq->iv_sector);
743 u8 buf[TCW_WHITENING_SIZE];
744 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
745 int i, r;
746
747 /* xor whitening with sector number */
748 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
749 crypto_xor(buf, (u8 *)&sector, 8);
750 crypto_xor(&buf[8], (u8 *)&sector, 8);
751
752 /* calculate crc32 for every 32bit part and xor it */
753 desc->tfm = tcw->crc32_tfm;
754 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
755 for (i = 0; i < 4; i++) {
756 r = crypto_shash_init(desc);
757 if (r)
758 goto out;
759 r = crypto_shash_update(desc, &buf[i * 4], 4);
760 if (r)
761 goto out;
762 r = crypto_shash_final(desc, &buf[i * 4]);
763 if (r)
764 goto out;
765 }
766 crypto_xor(&buf[0], &buf[12], 4);
767 crypto_xor(&buf[4], &buf[8], 4);
768
769 /* apply whitening (8 bytes) to whole sector */
770 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
771 crypto_xor(data + i * 8, buf, 8);
772 out:
773 memzero_explicit(buf, sizeof(buf));
774 return r;
775 }
776
777 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
778 struct dm_crypt_request *dmreq)
779 {
780 struct scatterlist *sg;
781 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
782 __le64 sector = cpu_to_le64(dmreq->iv_sector);
783 u8 *src;
784 int r = 0;
785
786 /* Remove whitening from ciphertext */
787 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
788 sg = crypt_get_sg_data(cc, dmreq->sg_in);
789 src = kmap_atomic(sg_page(sg));
790 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
791 kunmap_atomic(src);
792 }
793
794 /* Calculate IV */
795 memcpy(iv, tcw->iv_seed, cc->iv_size);
796 crypto_xor(iv, (u8 *)&sector, 8);
797 if (cc->iv_size > 8)
798 crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
799
800 return r;
801 }
802
803 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
804 struct dm_crypt_request *dmreq)
805 {
806 struct scatterlist *sg;
807 u8 *dst;
808 int r;
809
810 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
811 return 0;
812
813 /* Apply whitening on ciphertext */
814 sg = crypt_get_sg_data(cc, dmreq->sg_out);
815 dst = kmap_atomic(sg_page(sg));
816 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
817 kunmap_atomic(dst);
818
819 return r;
820 }
821
822 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
823 struct dm_crypt_request *dmreq)
824 {
825 /* Used only for writes, there must be an additional space to store IV */
826 get_random_bytes(iv, cc->iv_size);
827 return 0;
828 }
829
830 static const struct crypt_iv_operations crypt_iv_plain_ops = {
831 .generator = crypt_iv_plain_gen
832 };
833
834 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
835 .generator = crypt_iv_plain64_gen
836 };
837
838 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
839 .ctr = crypt_iv_essiv_ctr,
840 .dtr = crypt_iv_essiv_dtr,
841 .init = crypt_iv_essiv_init,
842 .wipe = crypt_iv_essiv_wipe,
843 .generator = crypt_iv_essiv_gen
844 };
845
846 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
847 .ctr = crypt_iv_benbi_ctr,
848 .dtr = crypt_iv_benbi_dtr,
849 .generator = crypt_iv_benbi_gen
850 };
851
852 static const struct crypt_iv_operations crypt_iv_null_ops = {
853 .generator = crypt_iv_null_gen
854 };
855
856 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
857 .ctr = crypt_iv_lmk_ctr,
858 .dtr = crypt_iv_lmk_dtr,
859 .init = crypt_iv_lmk_init,
860 .wipe = crypt_iv_lmk_wipe,
861 .generator = crypt_iv_lmk_gen,
862 .post = crypt_iv_lmk_post
863 };
864
865 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
866 .ctr = crypt_iv_tcw_ctr,
867 .dtr = crypt_iv_tcw_dtr,
868 .init = crypt_iv_tcw_init,
869 .wipe = crypt_iv_tcw_wipe,
870 .generator = crypt_iv_tcw_gen,
871 .post = crypt_iv_tcw_post
872 };
873
874 static struct crypt_iv_operations crypt_iv_random_ops = {
875 .generator = crypt_iv_random_gen
876 };
877
878 /*
879 * Integrity extensions
880 */
881 static bool crypt_integrity_aead(struct crypt_config *cc)
882 {
883 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
884 }
885
886 static bool crypt_integrity_hmac(struct crypt_config *cc)
887 {
888 return crypt_integrity_aead(cc) && cc->key_mac_size;
889 }
890
891 /* Get sg containing data */
892 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
893 struct scatterlist *sg)
894 {
895 if (unlikely(crypt_integrity_aead(cc)))
896 return &sg[2];
897
898 return sg;
899 }
900
901 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
902 {
903 struct bio_integrity_payload *bip;
904 unsigned int tag_len;
905 int ret;
906
907 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
908 return 0;
909
910 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
911 if (IS_ERR(bip))
912 return PTR_ERR(bip);
913
914 tag_len = io->cc->on_disk_tag_size * bio_sectors(bio);
915
916 bip->bip_iter.bi_size = tag_len;
917 bip->bip_iter.bi_sector = io->cc->start + io->sector;
918
919 /* We own the metadata, do not let bio_free to release it */
920 bip->bip_flags &= ~BIP_BLOCK_INTEGRITY;
921
922 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
923 tag_len, offset_in_page(io->integrity_metadata));
924 if (unlikely(ret != tag_len))
925 return -ENOMEM;
926
927 return 0;
928 }
929
930 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
931 {
932 #ifdef CONFIG_BLK_DEV_INTEGRITY
933 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
934
935 /* From now we require underlying device with our integrity profile */
936 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
937 ti->error = "Integrity profile not supported.";
938 return -EINVAL;
939 }
940
941 if (bi->tag_size != cc->on_disk_tag_size) {
942 ti->error = "Integrity profile tag size mismatch.";
943 return -EINVAL;
944 }
945
946 if (crypt_integrity_aead(cc)) {
947 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
948 DMINFO("Integrity AEAD, tag size %u, IV size %u.",
949 cc->integrity_tag_size, cc->integrity_iv_size);
950
951 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
952 ti->error = "Integrity AEAD auth tag size is not supported.";
953 return -EINVAL;
954 }
955 } else if (cc->integrity_iv_size)
956 DMINFO("Additional per-sector space %u bytes for IV.",
957 cc->integrity_iv_size);
958
959 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
960 ti->error = "Not enough space for integrity tag in the profile.";
961 return -EINVAL;
962 }
963
964 return 0;
965 #else
966 ti->error = "Integrity profile not supported.";
967 return -EINVAL;
968 #endif
969 }
970
971 static void crypt_convert_init(struct crypt_config *cc,
972 struct convert_context *ctx,
973 struct bio *bio_out, struct bio *bio_in,
974 sector_t sector)
975 {
976 ctx->bio_in = bio_in;
977 ctx->bio_out = bio_out;
978 if (bio_in)
979 ctx->iter_in = bio_in->bi_iter;
980 if (bio_out)
981 ctx->iter_out = bio_out->bi_iter;
982 ctx->cc_sector = sector + cc->iv_offset;
983 init_completion(&ctx->restart);
984 }
985
986 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
987 void *req)
988 {
989 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
990 }
991
992 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
993 {
994 return (void *)((char *)dmreq - cc->dmreq_start);
995 }
996
997 static u8 *iv_of_dmreq(struct crypt_config *cc,
998 struct dm_crypt_request *dmreq)
999 {
1000 if (crypt_integrity_aead(cc))
1001 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1002 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1003 else
1004 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1005 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1006 }
1007
1008 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1009 struct dm_crypt_request *dmreq)
1010 {
1011 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1012 }
1013
1014 static uint64_t *org_sector_of_dmreq(struct crypt_config *cc,
1015 struct dm_crypt_request *dmreq)
1016 {
1017 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1018 return (uint64_t*) ptr;
1019 }
1020
1021 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1022 struct dm_crypt_request *dmreq)
1023 {
1024 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1025 cc->iv_size + sizeof(uint64_t);
1026 return (unsigned int*)ptr;
1027 }
1028
1029 static void *tag_from_dmreq(struct crypt_config *cc,
1030 struct dm_crypt_request *dmreq)
1031 {
1032 struct convert_context *ctx = dmreq->ctx;
1033 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1034
1035 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1036 cc->on_disk_tag_size];
1037 }
1038
1039 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1040 struct dm_crypt_request *dmreq)
1041 {
1042 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1043 }
1044
1045 static int crypt_convert_block_aead(struct crypt_config *cc,
1046 struct convert_context *ctx,
1047 struct aead_request *req,
1048 unsigned int tag_offset)
1049 {
1050 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1051 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1052 struct dm_crypt_request *dmreq;
1053 u8 *iv, *org_iv, *tag_iv, *tag;
1054 uint64_t *sector;
1055 int r = 0;
1056
1057 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1058
1059 /* Reject unexpected unaligned bio. */
1060 if (unlikely(bv_in.bv_offset & (cc->sector_size - 1)))
1061 return -EIO;
1062
1063 dmreq = dmreq_of_req(cc, req);
1064 dmreq->iv_sector = ctx->cc_sector;
1065 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1066 dmreq->iv_sector >>= cc->sector_shift;
1067 dmreq->ctx = ctx;
1068
1069 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1070
1071 sector = org_sector_of_dmreq(cc, dmreq);
1072 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1073
1074 iv = iv_of_dmreq(cc, dmreq);
1075 org_iv = org_iv_of_dmreq(cc, dmreq);
1076 tag = tag_from_dmreq(cc, dmreq);
1077 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1078
1079 /* AEAD request:
1080 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1081 * | (authenticated) | (auth+encryption) | |
1082 * | sector_LE | IV | sector in/out | tag in/out |
1083 */
1084 sg_init_table(dmreq->sg_in, 4);
1085 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1086 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1087 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1088 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1089
1090 sg_init_table(dmreq->sg_out, 4);
1091 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1092 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1093 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1094 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1095
1096 if (cc->iv_gen_ops) {
1097 /* For READs use IV stored in integrity metadata */
1098 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1099 memcpy(org_iv, tag_iv, cc->iv_size);
1100 } else {
1101 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1102 if (r < 0)
1103 return r;
1104 /* Store generated IV in integrity metadata */
1105 if (cc->integrity_iv_size)
1106 memcpy(tag_iv, org_iv, cc->iv_size);
1107 }
1108 /* Working copy of IV, to be modified in crypto API */
1109 memcpy(iv, org_iv, cc->iv_size);
1110 }
1111
1112 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1113 if (bio_data_dir(ctx->bio_in) == WRITE) {
1114 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1115 cc->sector_size, iv);
1116 r = crypto_aead_encrypt(req);
1117 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1118 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1119 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1120 } else {
1121 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1122 cc->sector_size + cc->integrity_tag_size, iv);
1123 r = crypto_aead_decrypt(req);
1124 }
1125
1126 if (r == -EBADMSG)
1127 DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1128 (unsigned long long)le64_to_cpu(*sector));
1129
1130 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1131 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1132
1133 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1134 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1135
1136 return r;
1137 }
1138
1139 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1140 struct convert_context *ctx,
1141 struct skcipher_request *req,
1142 unsigned int tag_offset)
1143 {
1144 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1145 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1146 struct scatterlist *sg_in, *sg_out;
1147 struct dm_crypt_request *dmreq;
1148 u8 *iv, *org_iv, *tag_iv;
1149 uint64_t *sector;
1150 int r = 0;
1151
1152 /* Reject unexpected unaligned bio. */
1153 if (unlikely(bv_in.bv_offset & (cc->sector_size - 1)))
1154 return -EIO;
1155
1156 dmreq = dmreq_of_req(cc, req);
1157 dmreq->iv_sector = ctx->cc_sector;
1158 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1159 dmreq->iv_sector >>= cc->sector_shift;
1160 dmreq->ctx = ctx;
1161
1162 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1163
1164 iv = iv_of_dmreq(cc, dmreq);
1165 org_iv = org_iv_of_dmreq(cc, dmreq);
1166 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1167
1168 sector = org_sector_of_dmreq(cc, dmreq);
1169 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1170
1171 /* For skcipher we use only the first sg item */
1172 sg_in = &dmreq->sg_in[0];
1173 sg_out = &dmreq->sg_out[0];
1174
1175 sg_init_table(sg_in, 1);
1176 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1177
1178 sg_init_table(sg_out, 1);
1179 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1180
1181 if (cc->iv_gen_ops) {
1182 /* For READs use IV stored in integrity metadata */
1183 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1184 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1185 } else {
1186 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1187 if (r < 0)
1188 return r;
1189 /* Store generated IV in integrity metadata */
1190 if (cc->integrity_iv_size)
1191 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1192 }
1193 /* Working copy of IV, to be modified in crypto API */
1194 memcpy(iv, org_iv, cc->iv_size);
1195 }
1196
1197 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1198
1199 if (bio_data_dir(ctx->bio_in) == WRITE)
1200 r = crypto_skcipher_encrypt(req);
1201 else
1202 r = crypto_skcipher_decrypt(req);
1203
1204 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1205 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1206
1207 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1208 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1209
1210 return r;
1211 }
1212
1213 static void kcryptd_async_done(struct crypto_async_request *async_req,
1214 int error);
1215
1216 static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1217 struct convert_context *ctx)
1218 {
1219 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1220
1221 if (!ctx->r.req)
1222 ctx->r.req = mempool_alloc(cc->req_pool, GFP_NOIO);
1223
1224 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1225
1226 /*
1227 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1228 * requests if driver request queue is full.
1229 */
1230 skcipher_request_set_callback(ctx->r.req,
1231 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1232 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1233 }
1234
1235 static void crypt_alloc_req_aead(struct crypt_config *cc,
1236 struct convert_context *ctx)
1237 {
1238 if (!ctx->r.req_aead)
1239 ctx->r.req_aead = mempool_alloc(cc->req_pool, GFP_NOIO);
1240
1241 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1242
1243 /*
1244 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1245 * requests if driver request queue is full.
1246 */
1247 aead_request_set_callback(ctx->r.req_aead,
1248 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1249 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1250 }
1251
1252 static void crypt_alloc_req(struct crypt_config *cc,
1253 struct convert_context *ctx)
1254 {
1255 if (crypt_integrity_aead(cc))
1256 crypt_alloc_req_aead(cc, ctx);
1257 else
1258 crypt_alloc_req_skcipher(cc, ctx);
1259 }
1260
1261 static void crypt_free_req_skcipher(struct crypt_config *cc,
1262 struct skcipher_request *req, struct bio *base_bio)
1263 {
1264 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1265
1266 if ((struct skcipher_request *)(io + 1) != req)
1267 mempool_free(req, cc->req_pool);
1268 }
1269
1270 static void crypt_free_req_aead(struct crypt_config *cc,
1271 struct aead_request *req, struct bio *base_bio)
1272 {
1273 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1274
1275 if ((struct aead_request *)(io + 1) != req)
1276 mempool_free(req, cc->req_pool);
1277 }
1278
1279 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1280 {
1281 if (crypt_integrity_aead(cc))
1282 crypt_free_req_aead(cc, req, base_bio);
1283 else
1284 crypt_free_req_skcipher(cc, req, base_bio);
1285 }
1286
1287 /*
1288 * Encrypt / decrypt data from one bio to another one (can be the same one)
1289 */
1290 static int crypt_convert(struct crypt_config *cc,
1291 struct convert_context *ctx)
1292 {
1293 unsigned int tag_offset = 0;
1294 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1295 int r;
1296
1297 atomic_set(&ctx->cc_pending, 1);
1298
1299 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1300
1301 crypt_alloc_req(cc, ctx);
1302 atomic_inc(&ctx->cc_pending);
1303
1304 if (crypt_integrity_aead(cc))
1305 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1306 else
1307 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1308
1309 switch (r) {
1310 /*
1311 * The request was queued by a crypto driver
1312 * but the driver request queue is full, let's wait.
1313 */
1314 case -EBUSY:
1315 wait_for_completion(&ctx->restart);
1316 reinit_completion(&ctx->restart);
1317 /* fall through */
1318 /*
1319 * The request is queued and processed asynchronously,
1320 * completion function kcryptd_async_done() will be called.
1321 */
1322 case -EINPROGRESS:
1323 ctx->r.req = NULL;
1324 ctx->cc_sector += sector_step;
1325 tag_offset += sector_step;
1326 continue;
1327 /*
1328 * The request was already processed (synchronously).
1329 */
1330 case 0:
1331 atomic_dec(&ctx->cc_pending);
1332 ctx->cc_sector += sector_step;
1333 tag_offset += sector_step;
1334 cond_resched();
1335 continue;
1336 /*
1337 * There was a data integrity error.
1338 */
1339 case -EBADMSG:
1340 atomic_dec(&ctx->cc_pending);
1341 return -EILSEQ;
1342 /*
1343 * There was an error while processing the request.
1344 */
1345 default:
1346 atomic_dec(&ctx->cc_pending);
1347 return -EIO;
1348 }
1349 }
1350
1351 return 0;
1352 }
1353
1354 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1355
1356 /*
1357 * Generate a new unfragmented bio with the given size
1358 * This should never violate the device limitations (but only because
1359 * max_segment_size is being constrained to PAGE_SIZE).
1360 *
1361 * This function may be called concurrently. If we allocate from the mempool
1362 * concurrently, there is a possibility of deadlock. For example, if we have
1363 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1364 * the mempool concurrently, it may deadlock in a situation where both processes
1365 * have allocated 128 pages and the mempool is exhausted.
1366 *
1367 * In order to avoid this scenario we allocate the pages under a mutex.
1368 *
1369 * In order to not degrade performance with excessive locking, we try
1370 * non-blocking allocations without a mutex first but on failure we fallback
1371 * to blocking allocations with a mutex.
1372 */
1373 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1374 {
1375 struct crypt_config *cc = io->cc;
1376 struct bio *clone;
1377 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1378 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1379 unsigned i, len, remaining_size;
1380 struct page *page;
1381
1382 retry:
1383 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1384 mutex_lock(&cc->bio_alloc_lock);
1385
1386 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1387 if (!clone)
1388 goto out;
1389
1390 clone_init(io, clone);
1391
1392 remaining_size = size;
1393
1394 for (i = 0; i < nr_iovecs; i++) {
1395 page = mempool_alloc(cc->page_pool, gfp_mask);
1396 if (!page) {
1397 crypt_free_buffer_pages(cc, clone);
1398 bio_put(clone);
1399 gfp_mask |= __GFP_DIRECT_RECLAIM;
1400 goto retry;
1401 }
1402
1403 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1404
1405 bio_add_page(clone, page, len, 0);
1406
1407 remaining_size -= len;
1408 }
1409
1410 /* Allocate space for integrity tags */
1411 if (dm_crypt_integrity_io_alloc(io, clone)) {
1412 crypt_free_buffer_pages(cc, clone);
1413 bio_put(clone);
1414 clone = NULL;
1415 }
1416 out:
1417 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1418 mutex_unlock(&cc->bio_alloc_lock);
1419
1420 return clone;
1421 }
1422
1423 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1424 {
1425 unsigned int i;
1426 struct bio_vec *bv;
1427
1428 bio_for_each_segment_all(bv, clone, i) {
1429 BUG_ON(!bv->bv_page);
1430 mempool_free(bv->bv_page, cc->page_pool);
1431 bv->bv_page = NULL;
1432 }
1433 }
1434
1435 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1436 struct bio *bio, sector_t sector)
1437 {
1438 io->cc = cc;
1439 io->base_bio = bio;
1440 io->sector = sector;
1441 io->error = 0;
1442 io->ctx.r.req = NULL;
1443 io->integrity_metadata = NULL;
1444 io->integrity_metadata_from_pool = false;
1445 atomic_set(&io->io_pending, 0);
1446 }
1447
1448 static void crypt_inc_pending(struct dm_crypt_io *io)
1449 {
1450 atomic_inc(&io->io_pending);
1451 }
1452
1453 /*
1454 * One of the bios was finished. Check for completion of
1455 * the whole request and correctly clean up the buffer.
1456 */
1457 static void crypt_dec_pending(struct dm_crypt_io *io)
1458 {
1459 struct crypt_config *cc = io->cc;
1460 struct bio *base_bio = io->base_bio;
1461 int error = io->error;
1462
1463 if (!atomic_dec_and_test(&io->io_pending))
1464 return;
1465
1466 if (io->ctx.r.req)
1467 crypt_free_req(cc, io->ctx.r.req, base_bio);
1468
1469 if (unlikely(io->integrity_metadata_from_pool))
1470 mempool_free(io->integrity_metadata, io->cc->tag_pool);
1471 else
1472 kfree(io->integrity_metadata);
1473
1474 base_bio->bi_error = error;
1475 bio_endio(base_bio);
1476 }
1477
1478 /*
1479 * kcryptd/kcryptd_io:
1480 *
1481 * Needed because it would be very unwise to do decryption in an
1482 * interrupt context.
1483 *
1484 * kcryptd performs the actual encryption or decryption.
1485 *
1486 * kcryptd_io performs the IO submission.
1487 *
1488 * They must be separated as otherwise the final stages could be
1489 * starved by new requests which can block in the first stages due
1490 * to memory allocation.
1491 *
1492 * The work is done per CPU global for all dm-crypt instances.
1493 * They should not depend on each other and do not block.
1494 */
1495 static void crypt_endio(struct bio *clone)
1496 {
1497 struct dm_crypt_io *io = clone->bi_private;
1498 struct crypt_config *cc = io->cc;
1499 unsigned rw = bio_data_dir(clone);
1500 int error;
1501
1502 /*
1503 * free the processed pages
1504 */
1505 if (rw == WRITE)
1506 crypt_free_buffer_pages(cc, clone);
1507
1508 error = clone->bi_error;
1509 bio_put(clone);
1510
1511 if (rw == READ && !error) {
1512 kcryptd_queue_crypt(io);
1513 return;
1514 }
1515
1516 if (unlikely(error))
1517 io->error = error;
1518
1519 crypt_dec_pending(io);
1520 }
1521
1522 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1523 {
1524 struct crypt_config *cc = io->cc;
1525
1526 clone->bi_private = io;
1527 clone->bi_end_io = crypt_endio;
1528 clone->bi_bdev = cc->dev->bdev;
1529 clone->bi_opf = io->base_bio->bi_opf;
1530 }
1531
1532 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1533 {
1534 struct crypt_config *cc = io->cc;
1535 struct bio *clone;
1536
1537 /*
1538 * We need the original biovec array in order to decrypt
1539 * the whole bio data *afterwards* -- thanks to immutable
1540 * biovecs we don't need to worry about the block layer
1541 * modifying the biovec array; so leverage bio_clone_fast().
1542 */
1543 clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1544 if (!clone)
1545 return 1;
1546
1547 crypt_inc_pending(io);
1548
1549 clone_init(io, clone);
1550 clone->bi_iter.bi_sector = cc->start + io->sector;
1551
1552 if (dm_crypt_integrity_io_alloc(io, clone)) {
1553 crypt_dec_pending(io);
1554 bio_put(clone);
1555 return 1;
1556 }
1557
1558 generic_make_request(clone);
1559 return 0;
1560 }
1561
1562 static void kcryptd_io_read_work(struct work_struct *work)
1563 {
1564 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1565
1566 crypt_inc_pending(io);
1567 if (kcryptd_io_read(io, GFP_NOIO))
1568 io->error = -ENOMEM;
1569 crypt_dec_pending(io);
1570 }
1571
1572 static void kcryptd_queue_read(struct dm_crypt_io *io)
1573 {
1574 struct crypt_config *cc = io->cc;
1575
1576 INIT_WORK(&io->work, kcryptd_io_read_work);
1577 queue_work(cc->io_queue, &io->work);
1578 }
1579
1580 static void kcryptd_io_write(struct dm_crypt_io *io)
1581 {
1582 struct bio *clone = io->ctx.bio_out;
1583
1584 generic_make_request(clone);
1585 }
1586
1587 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1588
1589 static int dmcrypt_write(void *data)
1590 {
1591 struct crypt_config *cc = data;
1592 struct dm_crypt_io *io;
1593
1594 while (1) {
1595 struct rb_root write_tree;
1596 struct blk_plug plug;
1597
1598 DECLARE_WAITQUEUE(wait, current);
1599
1600 spin_lock_irq(&cc->write_thread_wait.lock);
1601 continue_locked:
1602
1603 if (!RB_EMPTY_ROOT(&cc->write_tree))
1604 goto pop_from_list;
1605
1606 set_current_state(TASK_INTERRUPTIBLE);
1607 __add_wait_queue(&cc->write_thread_wait, &wait);
1608
1609 spin_unlock_irq(&cc->write_thread_wait.lock);
1610
1611 if (unlikely(kthread_should_stop())) {
1612 set_current_state(TASK_RUNNING);
1613 remove_wait_queue(&cc->write_thread_wait, &wait);
1614 break;
1615 }
1616
1617 schedule();
1618
1619 set_current_state(TASK_RUNNING);
1620 spin_lock_irq(&cc->write_thread_wait.lock);
1621 __remove_wait_queue(&cc->write_thread_wait, &wait);
1622 goto continue_locked;
1623
1624 pop_from_list:
1625 write_tree = cc->write_tree;
1626 cc->write_tree = RB_ROOT;
1627 spin_unlock_irq(&cc->write_thread_wait.lock);
1628
1629 BUG_ON(rb_parent(write_tree.rb_node));
1630
1631 /*
1632 * Note: we cannot walk the tree here with rb_next because
1633 * the structures may be freed when kcryptd_io_write is called.
1634 */
1635 blk_start_plug(&plug);
1636 do {
1637 io = crypt_io_from_node(rb_first(&write_tree));
1638 rb_erase(&io->rb_node, &write_tree);
1639 kcryptd_io_write(io);
1640 } while (!RB_EMPTY_ROOT(&write_tree));
1641 blk_finish_plug(&plug);
1642 }
1643 return 0;
1644 }
1645
1646 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1647 {
1648 struct bio *clone = io->ctx.bio_out;
1649 struct crypt_config *cc = io->cc;
1650 unsigned long flags;
1651 sector_t sector;
1652 struct rb_node **rbp, *parent;
1653
1654 if (unlikely(io->error < 0)) {
1655 crypt_free_buffer_pages(cc, clone);
1656 bio_put(clone);
1657 crypt_dec_pending(io);
1658 return;
1659 }
1660
1661 /* crypt_convert should have filled the clone bio */
1662 BUG_ON(io->ctx.iter_out.bi_size);
1663
1664 clone->bi_iter.bi_sector = cc->start + io->sector;
1665
1666 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1667 generic_make_request(clone);
1668 return;
1669 }
1670
1671 spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1672 rbp = &cc->write_tree.rb_node;
1673 parent = NULL;
1674 sector = io->sector;
1675 while (*rbp) {
1676 parent = *rbp;
1677 if (sector < crypt_io_from_node(parent)->sector)
1678 rbp = &(*rbp)->rb_left;
1679 else
1680 rbp = &(*rbp)->rb_right;
1681 }
1682 rb_link_node(&io->rb_node, parent, rbp);
1683 rb_insert_color(&io->rb_node, &cc->write_tree);
1684
1685 wake_up_locked(&cc->write_thread_wait);
1686 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1687 }
1688
1689 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1690 {
1691 struct crypt_config *cc = io->cc;
1692 struct bio *clone;
1693 int crypt_finished;
1694 sector_t sector = io->sector;
1695 int r;
1696
1697 /*
1698 * Prevent io from disappearing until this function completes.
1699 */
1700 crypt_inc_pending(io);
1701 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1702
1703 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1704 if (unlikely(!clone)) {
1705 io->error = -EIO;
1706 goto dec;
1707 }
1708
1709 io->ctx.bio_out = clone;
1710 io->ctx.iter_out = clone->bi_iter;
1711
1712 sector += bio_sectors(clone);
1713
1714 crypt_inc_pending(io);
1715 r = crypt_convert(cc, &io->ctx);
1716 if (r < 0)
1717 io->error = r;
1718 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1719
1720 /* Encryption was already finished, submit io now */
1721 if (crypt_finished) {
1722 kcryptd_crypt_write_io_submit(io, 0);
1723 io->sector = sector;
1724 }
1725
1726 dec:
1727 crypt_dec_pending(io);
1728 }
1729
1730 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1731 {
1732 crypt_dec_pending(io);
1733 }
1734
1735 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1736 {
1737 struct crypt_config *cc = io->cc;
1738 int r = 0;
1739
1740 crypt_inc_pending(io);
1741
1742 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1743 io->sector);
1744
1745 r = crypt_convert(cc, &io->ctx);
1746 if (r < 0)
1747 io->error = r;
1748
1749 if (atomic_dec_and_test(&io->ctx.cc_pending))
1750 kcryptd_crypt_read_done(io);
1751
1752 crypt_dec_pending(io);
1753 }
1754
1755 static void kcryptd_async_done(struct crypto_async_request *async_req,
1756 int error)
1757 {
1758 struct dm_crypt_request *dmreq = async_req->data;
1759 struct convert_context *ctx = dmreq->ctx;
1760 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1761 struct crypt_config *cc = io->cc;
1762
1763 /*
1764 * A request from crypto driver backlog is going to be processed now,
1765 * finish the completion and continue in crypt_convert().
1766 * (Callback will be called for the second time for this request.)
1767 */
1768 if (error == -EINPROGRESS) {
1769 complete(&ctx->restart);
1770 return;
1771 }
1772
1773 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1774 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1775
1776 if (error == -EBADMSG) {
1777 DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1778 (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1779 io->error = -EILSEQ;
1780 } else if (error < 0)
1781 io->error = -EIO;
1782
1783 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1784
1785 if (!atomic_dec_and_test(&ctx->cc_pending))
1786 return;
1787
1788 if (bio_data_dir(io->base_bio) == READ)
1789 kcryptd_crypt_read_done(io);
1790 else
1791 kcryptd_crypt_write_io_submit(io, 1);
1792 }
1793
1794 static void kcryptd_crypt(struct work_struct *work)
1795 {
1796 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1797
1798 if (bio_data_dir(io->base_bio) == READ)
1799 kcryptd_crypt_read_convert(io);
1800 else
1801 kcryptd_crypt_write_convert(io);
1802 }
1803
1804 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1805 {
1806 struct crypt_config *cc = io->cc;
1807
1808 INIT_WORK(&io->work, kcryptd_crypt);
1809 queue_work(cc->crypt_queue, &io->work);
1810 }
1811
1812 /*
1813 * Decode key from its hex representation
1814 */
1815 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1816 {
1817 char buffer[3];
1818 unsigned int i;
1819
1820 buffer[2] = '\0';
1821
1822 for (i = 0; i < size; i++) {
1823 buffer[0] = *hex++;
1824 buffer[1] = *hex++;
1825
1826 if (kstrtou8(buffer, 16, &key[i]))
1827 return -EINVAL;
1828 }
1829
1830 if (*hex != '\0')
1831 return -EINVAL;
1832
1833 return 0;
1834 }
1835
1836 static void crypt_free_tfms_aead(struct crypt_config *cc)
1837 {
1838 if (!cc->cipher_tfm.tfms_aead)
1839 return;
1840
1841 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1842 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1843 cc->cipher_tfm.tfms_aead[0] = NULL;
1844 }
1845
1846 kfree(cc->cipher_tfm.tfms_aead);
1847 cc->cipher_tfm.tfms_aead = NULL;
1848 }
1849
1850 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1851 {
1852 unsigned i;
1853
1854 if (!cc->cipher_tfm.tfms)
1855 return;
1856
1857 for (i = 0; i < cc->tfms_count; i++)
1858 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1859 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1860 cc->cipher_tfm.tfms[i] = NULL;
1861 }
1862
1863 kfree(cc->cipher_tfm.tfms);
1864 cc->cipher_tfm.tfms = NULL;
1865 }
1866
1867 static void crypt_free_tfms(struct crypt_config *cc)
1868 {
1869 if (crypt_integrity_aead(cc))
1870 crypt_free_tfms_aead(cc);
1871 else
1872 crypt_free_tfms_skcipher(cc);
1873 }
1874
1875 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1876 {
1877 unsigned i;
1878 int err;
1879
1880 cc->cipher_tfm.tfms = kzalloc(cc->tfms_count *
1881 sizeof(struct crypto_skcipher *), GFP_KERNEL);
1882 if (!cc->cipher_tfm.tfms)
1883 return -ENOMEM;
1884
1885 for (i = 0; i < cc->tfms_count; i++) {
1886 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1887 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1888 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1889 crypt_free_tfms(cc);
1890 return err;
1891 }
1892 }
1893
1894 return 0;
1895 }
1896
1897 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1898 {
1899 int err;
1900
1901 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1902 if (!cc->cipher_tfm.tfms)
1903 return -ENOMEM;
1904
1905 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1906 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1907 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1908 crypt_free_tfms(cc);
1909 return err;
1910 }
1911
1912 return 0;
1913 }
1914
1915 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1916 {
1917 if (crypt_integrity_aead(cc))
1918 return crypt_alloc_tfms_aead(cc, ciphermode);
1919 else
1920 return crypt_alloc_tfms_skcipher(cc, ciphermode);
1921 }
1922
1923 static unsigned crypt_subkey_size(struct crypt_config *cc)
1924 {
1925 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1926 }
1927
1928 static unsigned crypt_authenckey_size(struct crypt_config *cc)
1929 {
1930 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1931 }
1932
1933 /*
1934 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1935 * the key must be for some reason in special format.
1936 * This funcion converts cc->key to this special format.
1937 */
1938 static void crypt_copy_authenckey(char *p, const void *key,
1939 unsigned enckeylen, unsigned authkeylen)
1940 {
1941 struct crypto_authenc_key_param *param;
1942 struct rtattr *rta;
1943
1944 rta = (struct rtattr *)p;
1945 param = RTA_DATA(rta);
1946 param->enckeylen = cpu_to_be32(enckeylen);
1947 rta->rta_len = RTA_LENGTH(sizeof(*param));
1948 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1949 p += RTA_SPACE(sizeof(*param));
1950 memcpy(p, key + enckeylen, authkeylen);
1951 p += authkeylen;
1952 memcpy(p, key, enckeylen);
1953 }
1954
1955 static int crypt_setkey(struct crypt_config *cc)
1956 {
1957 unsigned subkey_size;
1958 int err = 0, i, r;
1959
1960 /* Ignore extra keys (which are used for IV etc) */
1961 subkey_size = crypt_subkey_size(cc);
1962
1963 if (crypt_integrity_hmac(cc))
1964 crypt_copy_authenckey(cc->authenc_key, cc->key,
1965 subkey_size - cc->key_mac_size,
1966 cc->key_mac_size);
1967 for (i = 0; i < cc->tfms_count; i++) {
1968 if (crypt_integrity_hmac(cc))
1969 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1970 cc->authenc_key, crypt_authenckey_size(cc));
1971 else if (crypt_integrity_aead(cc))
1972 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1973 cc->key + (i * subkey_size),
1974 subkey_size);
1975 else
1976 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1977 cc->key + (i * subkey_size),
1978 subkey_size);
1979 if (r)
1980 err = r;
1981 }
1982
1983 if (crypt_integrity_hmac(cc))
1984 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1985
1986 return err;
1987 }
1988
1989 #ifdef CONFIG_KEYS
1990
1991 static bool contains_whitespace(const char *str)
1992 {
1993 while (*str)
1994 if (isspace(*str++))
1995 return true;
1996 return false;
1997 }
1998
1999 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2000 {
2001 char *new_key_string, *key_desc;
2002 int ret;
2003 struct key *key;
2004 const struct user_key_payload *ukp;
2005
2006 /*
2007 * Reject key_string with whitespace. dm core currently lacks code for
2008 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2009 */
2010 if (contains_whitespace(key_string)) {
2011 DMERR("whitespace chars not allowed in key string");
2012 return -EINVAL;
2013 }
2014
2015 /* look for next ':' separating key_type from key_description */
2016 key_desc = strpbrk(key_string, ":");
2017 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2018 return -EINVAL;
2019
2020 if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2021 strncmp(key_string, "user:", key_desc - key_string + 1))
2022 return -EINVAL;
2023
2024 new_key_string = kstrdup(key_string, GFP_KERNEL);
2025 if (!new_key_string)
2026 return -ENOMEM;
2027
2028 key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2029 key_desc + 1, NULL);
2030 if (IS_ERR(key)) {
2031 kzfree(new_key_string);
2032 return PTR_ERR(key);
2033 }
2034
2035 down_read(&key->sem);
2036
2037 ukp = user_key_payload_locked(key);
2038 if (!ukp) {
2039 up_read(&key->sem);
2040 key_put(key);
2041 kzfree(new_key_string);
2042 return -EKEYREVOKED;
2043 }
2044
2045 if (cc->key_size != ukp->datalen) {
2046 up_read(&key->sem);
2047 key_put(key);
2048 kzfree(new_key_string);
2049 return -EINVAL;
2050 }
2051
2052 memcpy(cc->key, ukp->data, cc->key_size);
2053
2054 up_read(&key->sem);
2055 key_put(key);
2056
2057 /* clear the flag since following operations may invalidate previously valid key */
2058 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2059
2060 ret = crypt_setkey(cc);
2061
2062 /* wipe the kernel key payload copy in each case */
2063 memset(cc->key, 0, cc->key_size * sizeof(u8));
2064
2065 if (!ret) {
2066 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2067 kzfree(cc->key_string);
2068 cc->key_string = new_key_string;
2069 } else
2070 kzfree(new_key_string);
2071
2072 return ret;
2073 }
2074
2075 static int get_key_size(char **key_string)
2076 {
2077 char *colon, dummy;
2078 int ret;
2079
2080 if (*key_string[0] != ':')
2081 return strlen(*key_string) >> 1;
2082
2083 /* look for next ':' in key string */
2084 colon = strpbrk(*key_string + 1, ":");
2085 if (!colon)
2086 return -EINVAL;
2087
2088 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2089 return -EINVAL;
2090
2091 *key_string = colon;
2092
2093 /* remaining key string should be :<logon|user>:<key_desc> */
2094
2095 return ret;
2096 }
2097
2098 #else
2099
2100 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2101 {
2102 return -EINVAL;
2103 }
2104
2105 static int get_key_size(char **key_string)
2106 {
2107 return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2108 }
2109
2110 #endif
2111
2112 static int crypt_set_key(struct crypt_config *cc, char *key)
2113 {
2114 int r = -EINVAL;
2115 int key_string_len = strlen(key);
2116
2117 /* Hyphen (which gives a key_size of zero) means there is no key. */
2118 if (!cc->key_size && strcmp(key, "-"))
2119 goto out;
2120
2121 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2122 if (key[0] == ':') {
2123 r = crypt_set_keyring_key(cc, key + 1);
2124 goto out;
2125 }
2126
2127 /* clear the flag since following operations may invalidate previously valid key */
2128 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2129
2130 /* wipe references to any kernel keyring key */
2131 kzfree(cc->key_string);
2132 cc->key_string = NULL;
2133
2134 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
2135 goto out;
2136
2137 r = crypt_setkey(cc);
2138 if (!r)
2139 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2140
2141 out:
2142 /* Hex key string not needed after here, so wipe it. */
2143 memset(key, '0', key_string_len);
2144
2145 return r;
2146 }
2147
2148 static int crypt_wipe_key(struct crypt_config *cc)
2149 {
2150 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2151 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2152 kzfree(cc->key_string);
2153 cc->key_string = NULL;
2154
2155 return crypt_setkey(cc);
2156 }
2157
2158 static void crypt_dtr(struct dm_target *ti)
2159 {
2160 struct crypt_config *cc = ti->private;
2161
2162 ti->private = NULL;
2163
2164 if (!cc)
2165 return;
2166
2167 if (cc->write_thread)
2168 kthread_stop(cc->write_thread);
2169
2170 if (cc->io_queue)
2171 destroy_workqueue(cc->io_queue);
2172 if (cc->crypt_queue)
2173 destroy_workqueue(cc->crypt_queue);
2174
2175 crypt_free_tfms(cc);
2176
2177 if (cc->bs)
2178 bioset_free(cc->bs);
2179
2180 mempool_destroy(cc->page_pool);
2181 mempool_destroy(cc->req_pool);
2182 mempool_destroy(cc->tag_pool);
2183
2184 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2185 cc->iv_gen_ops->dtr(cc);
2186
2187 if (cc->dev)
2188 dm_put_device(ti, cc->dev);
2189
2190 kzfree(cc->cipher);
2191 kzfree(cc->cipher_string);
2192 kzfree(cc->key_string);
2193 kzfree(cc->cipher_auth);
2194 kzfree(cc->authenc_key);
2195
2196 /* Must zero key material before freeing */
2197 kzfree(cc);
2198 }
2199
2200 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2201 {
2202 struct crypt_config *cc = ti->private;
2203
2204 if (crypt_integrity_aead(cc))
2205 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2206 else
2207 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2208
2209 if (cc->iv_size)
2210 /* at least a 64 bit sector number should fit in our buffer */
2211 cc->iv_size = max(cc->iv_size,
2212 (unsigned int)(sizeof(u64) / sizeof(u8)));
2213 else if (ivmode) {
2214 DMWARN("Selected cipher does not support IVs");
2215 ivmode = NULL;
2216 }
2217
2218 /* Choose ivmode, see comments at iv code. */
2219 if (ivmode == NULL)
2220 cc->iv_gen_ops = NULL;
2221 else if (strcmp(ivmode, "plain") == 0)
2222 cc->iv_gen_ops = &crypt_iv_plain_ops;
2223 else if (strcmp(ivmode, "plain64") == 0)
2224 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2225 else if (strcmp(ivmode, "essiv") == 0)
2226 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2227 else if (strcmp(ivmode, "benbi") == 0)
2228 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2229 else if (strcmp(ivmode, "null") == 0)
2230 cc->iv_gen_ops = &crypt_iv_null_ops;
2231 else if (strcmp(ivmode, "lmk") == 0) {
2232 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2233 /*
2234 * Version 2 and 3 is recognised according
2235 * to length of provided multi-key string.
2236 * If present (version 3), last key is used as IV seed.
2237 * All keys (including IV seed) are always the same size.
2238 */
2239 if (cc->key_size % cc->key_parts) {
2240 cc->key_parts++;
2241 cc->key_extra_size = cc->key_size / cc->key_parts;
2242 }
2243 } else if (strcmp(ivmode, "tcw") == 0) {
2244 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2245 cc->key_parts += 2; /* IV + whitening */
2246 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2247 } else if (strcmp(ivmode, "random") == 0) {
2248 cc->iv_gen_ops = &crypt_iv_random_ops;
2249 /* Need storage space in integrity fields. */
2250 cc->integrity_iv_size = cc->iv_size;
2251 } else {
2252 ti->error = "Invalid IV mode";
2253 return -EINVAL;
2254 }
2255
2256 return 0;
2257 }
2258
2259 /*
2260 * Workaround to parse cipher algorithm from crypto API spec.
2261 * The cc->cipher is currently used only in ESSIV.
2262 * This should be probably done by crypto-api calls (once available...)
2263 */
2264 static int crypt_ctr_blkdev_cipher(struct crypt_config *cc)
2265 {
2266 const char *alg_name = NULL;
2267 char *start, *end;
2268
2269 if (crypt_integrity_aead(cc)) {
2270 alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc)));
2271 if (!alg_name)
2272 return -EINVAL;
2273 if (crypt_integrity_hmac(cc)) {
2274 alg_name = strchr(alg_name, ',');
2275 if (!alg_name)
2276 return -EINVAL;
2277 }
2278 alg_name++;
2279 } else {
2280 alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc)));
2281 if (!alg_name)
2282 return -EINVAL;
2283 }
2284
2285 start = strchr(alg_name, '(');
2286 end = strchr(alg_name, ')');
2287
2288 if (!start && !end) {
2289 cc->cipher = kstrdup(alg_name, GFP_KERNEL);
2290 return cc->cipher ? 0 : -ENOMEM;
2291 }
2292
2293 if (!start || !end || ++start >= end)
2294 return -EINVAL;
2295
2296 cc->cipher = kzalloc(end - start + 1, GFP_KERNEL);
2297 if (!cc->cipher)
2298 return -ENOMEM;
2299
2300 strncpy(cc->cipher, start, end - start);
2301
2302 return 0;
2303 }
2304
2305 /*
2306 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2307 * The HMAC is needed to calculate tag size (HMAC digest size).
2308 * This should be probably done by crypto-api calls (once available...)
2309 */
2310 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2311 {
2312 char *start, *end, *mac_alg = NULL;
2313 struct crypto_ahash *mac;
2314
2315 if (!strstarts(cipher_api, "authenc("))
2316 return 0;
2317
2318 start = strchr(cipher_api, '(');
2319 end = strchr(cipher_api, ',');
2320 if (!start || !end || ++start > end)
2321 return -EINVAL;
2322
2323 mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2324 if (!mac_alg)
2325 return -ENOMEM;
2326 strncpy(mac_alg, start, end - start);
2327
2328 mac = crypto_alloc_ahash(mac_alg, 0, 0);
2329 kfree(mac_alg);
2330
2331 if (IS_ERR(mac))
2332 return PTR_ERR(mac);
2333
2334 cc->key_mac_size = crypto_ahash_digestsize(mac);
2335 crypto_free_ahash(mac);
2336
2337 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2338 if (!cc->authenc_key)
2339 return -ENOMEM;
2340
2341 return 0;
2342 }
2343
2344 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2345 char **ivmode, char **ivopts)
2346 {
2347 struct crypt_config *cc = ti->private;
2348 char *tmp, *cipher_api;
2349 int ret = -EINVAL;
2350
2351 cc->tfms_count = 1;
2352
2353 /*
2354 * New format (capi: prefix)
2355 * capi:cipher_api_spec-iv:ivopts
2356 */
2357 tmp = &cipher_in[strlen("capi:")];
2358 cipher_api = strsep(&tmp, "-");
2359 *ivmode = strsep(&tmp, ":");
2360 *ivopts = tmp;
2361
2362 if (*ivmode && !strcmp(*ivmode, "lmk"))
2363 cc->tfms_count = 64;
2364
2365 cc->key_parts = cc->tfms_count;
2366
2367 /* Allocate cipher */
2368 ret = crypt_alloc_tfms(cc, cipher_api);
2369 if (ret < 0) {
2370 ti->error = "Error allocating crypto tfm";
2371 return ret;
2372 }
2373
2374 /* Alloc AEAD, can be used only in new format. */
2375 if (crypt_integrity_aead(cc)) {
2376 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2377 if (ret < 0) {
2378 ti->error = "Invalid AEAD cipher spec";
2379 return -ENOMEM;
2380 }
2381 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2382 } else
2383 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2384
2385 ret = crypt_ctr_blkdev_cipher(cc);
2386 if (ret < 0) {
2387 ti->error = "Cannot allocate cipher string";
2388 return -ENOMEM;
2389 }
2390
2391 return 0;
2392 }
2393
2394 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2395 char **ivmode, char **ivopts)
2396 {
2397 struct crypt_config *cc = ti->private;
2398 char *tmp, *cipher, *chainmode, *keycount;
2399 char *cipher_api = NULL;
2400 int ret = -EINVAL;
2401 char dummy;
2402
2403 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2404 ti->error = "Bad cipher specification";
2405 return -EINVAL;
2406 }
2407
2408 /*
2409 * Legacy dm-crypt cipher specification
2410 * cipher[:keycount]-mode-iv:ivopts
2411 */
2412 tmp = cipher_in;
2413 keycount = strsep(&tmp, "-");
2414 cipher = strsep(&keycount, ":");
2415
2416 if (!keycount)
2417 cc->tfms_count = 1;
2418 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2419 !is_power_of_2(cc->tfms_count)) {
2420 ti->error = "Bad cipher key count specification";
2421 return -EINVAL;
2422 }
2423 cc->key_parts = cc->tfms_count;
2424
2425 cc->cipher = kstrdup(cipher, GFP_KERNEL);
2426 if (!cc->cipher)
2427 goto bad_mem;
2428
2429 chainmode = strsep(&tmp, "-");
2430 *ivopts = strsep(&tmp, "-");
2431 *ivmode = strsep(&*ivopts, ":");
2432
2433 if (tmp)
2434 DMWARN("Ignoring unexpected additional cipher options");
2435
2436 /*
2437 * For compatibility with the original dm-crypt mapping format, if
2438 * only the cipher name is supplied, use cbc-plain.
2439 */
2440 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2441 chainmode = "cbc";
2442 *ivmode = "plain";
2443 }
2444
2445 if (strcmp(chainmode, "ecb") && !*ivmode) {
2446 ti->error = "IV mechanism required";
2447 return -EINVAL;
2448 }
2449
2450 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2451 if (!cipher_api)
2452 goto bad_mem;
2453
2454 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2455 "%s(%s)", chainmode, cipher);
2456 if (ret < 0) {
2457 kfree(cipher_api);
2458 goto bad_mem;
2459 }
2460
2461 /* Allocate cipher */
2462 ret = crypt_alloc_tfms(cc, cipher_api);
2463 if (ret < 0) {
2464 ti->error = "Error allocating crypto tfm";
2465 kfree(cipher_api);
2466 return ret;
2467 }
2468
2469 return 0;
2470 bad_mem:
2471 ti->error = "Cannot allocate cipher strings";
2472 return -ENOMEM;
2473 }
2474
2475 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2476 {
2477 struct crypt_config *cc = ti->private;
2478 char *ivmode = NULL, *ivopts = NULL;
2479 int ret;
2480
2481 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2482 if (!cc->cipher_string) {
2483 ti->error = "Cannot allocate cipher strings";
2484 return -ENOMEM;
2485 }
2486
2487 if (strstarts(cipher_in, "capi:"))
2488 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2489 else
2490 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2491 if (ret)
2492 return ret;
2493
2494 /* Initialize IV */
2495 ret = crypt_ctr_ivmode(ti, ivmode);
2496 if (ret < 0)
2497 return ret;
2498
2499 /* Initialize and set key */
2500 ret = crypt_set_key(cc, key);
2501 if (ret < 0) {
2502 ti->error = "Error decoding and setting key";
2503 return ret;
2504 }
2505
2506 /* Allocate IV */
2507 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2508 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2509 if (ret < 0) {
2510 ti->error = "Error creating IV";
2511 return ret;
2512 }
2513 }
2514
2515 /* Initialize IV (set keys for ESSIV etc) */
2516 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2517 ret = cc->iv_gen_ops->init(cc);
2518 if (ret < 0) {
2519 ti->error = "Error initialising IV";
2520 return ret;
2521 }
2522 }
2523
2524 return ret;
2525 }
2526
2527 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2528 {
2529 struct crypt_config *cc = ti->private;
2530 struct dm_arg_set as;
2531 static struct dm_arg _args[] = {
2532 {0, 6, "Invalid number of feature args"},
2533 };
2534 unsigned int opt_params, val;
2535 const char *opt_string, *sval;
2536 char dummy;
2537 int ret;
2538
2539 /* Optional parameters */
2540 as.argc = argc;
2541 as.argv = argv;
2542
2543 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2544 if (ret)
2545 return ret;
2546
2547 while (opt_params--) {
2548 opt_string = dm_shift_arg(&as);
2549 if (!opt_string) {
2550 ti->error = "Not enough feature arguments";
2551 return -EINVAL;
2552 }
2553
2554 if (!strcasecmp(opt_string, "allow_discards"))
2555 ti->num_discard_bios = 1;
2556
2557 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2558 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2559
2560 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2561 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2562 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2563 if (val == 0 || val > MAX_TAG_SIZE) {
2564 ti->error = "Invalid integrity arguments";
2565 return -EINVAL;
2566 }
2567 cc->on_disk_tag_size = val;
2568 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2569 if (!strcasecmp(sval, "aead")) {
2570 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2571 } else if (strcasecmp(sval, "none")) {
2572 ti->error = "Unknown integrity profile";
2573 return -EINVAL;
2574 }
2575
2576 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2577 if (!cc->cipher_auth)
2578 return -ENOMEM;
2579 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2580 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2581 cc->sector_size > 4096 ||
2582 (cc->sector_size & (cc->sector_size - 1))) {
2583 ti->error = "Invalid feature value for sector_size";
2584 return -EINVAL;
2585 }
2586 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2587 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
2588 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2589 else {
2590 ti->error = "Invalid feature arguments";
2591 return -EINVAL;
2592 }
2593 }
2594
2595 return 0;
2596 }
2597
2598 /*
2599 * Construct an encryption mapping:
2600 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2601 */
2602 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2603 {
2604 struct crypt_config *cc;
2605 int key_size;
2606 unsigned int align_mask;
2607 unsigned long long tmpll;
2608 int ret;
2609 size_t iv_size_padding, additional_req_size;
2610 char dummy;
2611
2612 if (argc < 5) {
2613 ti->error = "Not enough arguments";
2614 return -EINVAL;
2615 }
2616
2617 key_size = get_key_size(&argv[1]);
2618 if (key_size < 0) {
2619 ti->error = "Cannot parse key size";
2620 return -EINVAL;
2621 }
2622
2623 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
2624 if (!cc) {
2625 ti->error = "Cannot allocate encryption context";
2626 return -ENOMEM;
2627 }
2628 cc->key_size = key_size;
2629 cc->sector_size = (1 << SECTOR_SHIFT);
2630 cc->sector_shift = 0;
2631
2632 ti->private = cc;
2633
2634 /* Optional parameters need to be read before cipher constructor */
2635 if (argc > 5) {
2636 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2637 if (ret)
2638 goto bad;
2639 }
2640
2641 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2642 if (ret < 0)
2643 goto bad;
2644
2645 if (crypt_integrity_aead(cc)) {
2646 cc->dmreq_start = sizeof(struct aead_request);
2647 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2648 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2649 } else {
2650 cc->dmreq_start = sizeof(struct skcipher_request);
2651 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2652 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2653 }
2654 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2655
2656 if (align_mask < CRYPTO_MINALIGN) {
2657 /* Allocate the padding exactly */
2658 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2659 & align_mask;
2660 } else {
2661 /*
2662 * If the cipher requires greater alignment than kmalloc
2663 * alignment, we don't know the exact position of the
2664 * initialization vector. We must assume worst case.
2665 */
2666 iv_size_padding = align_mask;
2667 }
2668
2669 ret = -ENOMEM;
2670
2671 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
2672 additional_req_size = sizeof(struct dm_crypt_request) +
2673 iv_size_padding + cc->iv_size +
2674 cc->iv_size +
2675 sizeof(uint64_t) +
2676 sizeof(unsigned int);
2677
2678 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + additional_req_size);
2679 if (!cc->req_pool) {
2680 ti->error = "Cannot allocate crypt request mempool";
2681 goto bad;
2682 }
2683
2684 cc->per_bio_data_size = ti->per_io_data_size =
2685 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2686 ARCH_KMALLOC_MINALIGN);
2687
2688 cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
2689 if (!cc->page_pool) {
2690 ti->error = "Cannot allocate page mempool";
2691 goto bad;
2692 }
2693
2694 cc->bs = bioset_create(MIN_IOS, 0);
2695 if (!cc->bs) {
2696 ti->error = "Cannot allocate crypt bioset";
2697 goto bad;
2698 }
2699
2700 mutex_init(&cc->bio_alloc_lock);
2701
2702 ret = -EINVAL;
2703 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2704 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2705 ti->error = "Invalid iv_offset sector";
2706 goto bad;
2707 }
2708 cc->iv_offset = tmpll;
2709
2710 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2711 if (ret) {
2712 ti->error = "Device lookup failed";
2713 goto bad;
2714 }
2715
2716 ret = -EINVAL;
2717 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
2718 ti->error = "Invalid device sector";
2719 goto bad;
2720 }
2721 cc->start = tmpll;
2722
2723 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2724 ret = crypt_integrity_ctr(cc, ti);
2725 if (ret)
2726 goto bad;
2727
2728 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2729 if (!cc->tag_pool_max_sectors)
2730 cc->tag_pool_max_sectors = 1;
2731
2732 cc->tag_pool = mempool_create_kmalloc_pool(MIN_IOS,
2733 cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2734 if (!cc->tag_pool) {
2735 ti->error = "Cannot allocate integrity tags mempool";
2736 goto bad;
2737 }
2738 }
2739
2740 ret = -ENOMEM;
2741 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
2742 if (!cc->io_queue) {
2743 ti->error = "Couldn't create kcryptd io queue";
2744 goto bad;
2745 }
2746
2747 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2748 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2749 else
2750 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2751 num_online_cpus());
2752 if (!cc->crypt_queue) {
2753 ti->error = "Couldn't create kcryptd queue";
2754 goto bad;
2755 }
2756
2757 init_waitqueue_head(&cc->write_thread_wait);
2758 cc->write_tree = RB_ROOT;
2759
2760 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2761 if (IS_ERR(cc->write_thread)) {
2762 ret = PTR_ERR(cc->write_thread);
2763 cc->write_thread = NULL;
2764 ti->error = "Couldn't spawn write thread";
2765 goto bad;
2766 }
2767 wake_up_process(cc->write_thread);
2768
2769 ti->num_flush_bios = 1;
2770 ti->discard_zeroes_data_unsupported = true;
2771
2772 return 0;
2773
2774 bad:
2775 crypt_dtr(ti);
2776 return ret;
2777 }
2778
2779 static int crypt_map(struct dm_target *ti, struct bio *bio)
2780 {
2781 struct dm_crypt_io *io;
2782 struct crypt_config *cc = ti->private;
2783
2784 /*
2785 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2786 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2787 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2788 */
2789 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2790 bio_op(bio) == REQ_OP_DISCARD)) {
2791 bio->bi_bdev = cc->dev->bdev;
2792 if (bio_sectors(bio))
2793 bio->bi_iter.bi_sector = cc->start +
2794 dm_target_offset(ti, bio->bi_iter.bi_sector);
2795 return DM_MAPIO_REMAPPED;
2796 }
2797
2798 /*
2799 * Check if bio is too large, split as needed.
2800 */
2801 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2802 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2803 dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2804
2805 /*
2806 * Ensure that bio is a multiple of internal sector encryption size
2807 * and is aligned to this size as defined in IO hints.
2808 */
2809 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2810 return -EIO;
2811
2812 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2813 return -EIO;
2814
2815 io = dm_per_bio_data(bio, cc->per_bio_data_size);
2816 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2817
2818 if (cc->on_disk_tag_size) {
2819 unsigned tag_len = cc->on_disk_tag_size * bio_sectors(bio);
2820
2821 if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2822 unlikely(!(io->integrity_metadata = kzalloc(tag_len,
2823 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2824 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2825 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2826 io->integrity_metadata = mempool_alloc(cc->tag_pool, GFP_NOIO);
2827 io->integrity_metadata_from_pool = true;
2828 memset(io->integrity_metadata, 0, cc->tag_pool_max_sectors * (1 << SECTOR_SHIFT));
2829 }
2830 }
2831
2832 if (crypt_integrity_aead(cc))
2833 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2834 else
2835 io->ctx.r.req = (struct skcipher_request *)(io + 1);
2836
2837 if (bio_data_dir(io->base_bio) == READ) {
2838 if (kcryptd_io_read(io, GFP_NOWAIT))
2839 kcryptd_queue_read(io);
2840 } else
2841 kcryptd_queue_crypt(io);
2842
2843 return DM_MAPIO_SUBMITTED;
2844 }
2845
2846 static void crypt_status(struct dm_target *ti, status_type_t type,
2847 unsigned status_flags, char *result, unsigned maxlen)
2848 {
2849 struct crypt_config *cc = ti->private;
2850 unsigned i, sz = 0;
2851 int num_feature_args = 0;
2852
2853 switch (type) {
2854 case STATUSTYPE_INFO:
2855 result[0] = '\0';
2856 break;
2857
2858 case STATUSTYPE_TABLE:
2859 DMEMIT("%s ", cc->cipher_string);
2860
2861 if (cc->key_size > 0) {
2862 if (cc->key_string)
2863 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2864 else
2865 for (i = 0; i < cc->key_size; i++)
2866 DMEMIT("%02x", cc->key[i]);
2867 } else
2868 DMEMIT("-");
2869
2870 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2871 cc->dev->name, (unsigned long long)cc->start);
2872
2873 num_feature_args += !!ti->num_discard_bios;
2874 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2875 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2876 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2877 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2878 if (cc->on_disk_tag_size)
2879 num_feature_args++;
2880 if (num_feature_args) {
2881 DMEMIT(" %d", num_feature_args);
2882 if (ti->num_discard_bios)
2883 DMEMIT(" allow_discards");
2884 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2885 DMEMIT(" same_cpu_crypt");
2886 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2887 DMEMIT(" submit_from_crypt_cpus");
2888 if (cc->on_disk_tag_size)
2889 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2890 if (cc->sector_size != (1 << SECTOR_SHIFT))
2891 DMEMIT(" sector_size:%d", cc->sector_size);
2892 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2893 DMEMIT(" iv_large_sectors");
2894 }
2895
2896 break;
2897 }
2898 }
2899
2900 static void crypt_postsuspend(struct dm_target *ti)
2901 {
2902 struct crypt_config *cc = ti->private;
2903
2904 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2905 }
2906
2907 static int crypt_preresume(struct dm_target *ti)
2908 {
2909 struct crypt_config *cc = ti->private;
2910
2911 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2912 DMERR("aborting resume - crypt key is not set.");
2913 return -EAGAIN;
2914 }
2915
2916 return 0;
2917 }
2918
2919 static void crypt_resume(struct dm_target *ti)
2920 {
2921 struct crypt_config *cc = ti->private;
2922
2923 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2924 }
2925
2926 /* Message interface
2927 * key set <key>
2928 * key wipe
2929 */
2930 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2931 {
2932 struct crypt_config *cc = ti->private;
2933 int key_size, ret = -EINVAL;
2934
2935 if (argc < 2)
2936 goto error;
2937
2938 if (!strcasecmp(argv[0], "key")) {
2939 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2940 DMWARN("not suspended during key manipulation.");
2941 return -EINVAL;
2942 }
2943 if (argc == 3 && !strcasecmp(argv[1], "set")) {
2944 /* The key size may not be changed. */
2945 key_size = get_key_size(&argv[2]);
2946 if (key_size < 0 || cc->key_size != key_size) {
2947 memset(argv[2], '0', strlen(argv[2]));
2948 return -EINVAL;
2949 }
2950
2951 ret = crypt_set_key(cc, argv[2]);
2952 if (ret)
2953 return ret;
2954 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2955 ret = cc->iv_gen_ops->init(cc);
2956 return ret;
2957 }
2958 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2959 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2960 ret = cc->iv_gen_ops->wipe(cc);
2961 if (ret)
2962 return ret;
2963 }
2964 return crypt_wipe_key(cc);
2965 }
2966 }
2967
2968 error:
2969 DMWARN("unrecognised message received.");
2970 return -EINVAL;
2971 }
2972
2973 static int crypt_iterate_devices(struct dm_target *ti,
2974 iterate_devices_callout_fn fn, void *data)
2975 {
2976 struct crypt_config *cc = ti->private;
2977
2978 return fn(ti, cc->dev, cc->start, ti->len, data);
2979 }
2980
2981 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2982 {
2983 struct crypt_config *cc = ti->private;
2984
2985 /*
2986 * Unfortunate constraint that is required to avoid the potential
2987 * for exceeding underlying device's max_segments limits -- due to
2988 * crypt_alloc_buffer() possibly allocating pages for the encryption
2989 * bio that are not as physically contiguous as the original bio.
2990 */
2991 limits->max_segment_size = PAGE_SIZE;
2992
2993 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
2994 limits->logical_block_size = cc->sector_size;
2995 limits->physical_block_size = cc->sector_size;
2996 blk_limits_io_min(limits, cc->sector_size);
2997 }
2998 }
2999
3000 static struct target_type crypt_target = {
3001 .name = "crypt",
3002 .version = {1, 17, 0},
3003 .module = THIS_MODULE,
3004 .ctr = crypt_ctr,
3005 .dtr = crypt_dtr,
3006 .map = crypt_map,
3007 .status = crypt_status,
3008 .postsuspend = crypt_postsuspend,
3009 .preresume = crypt_preresume,
3010 .resume = crypt_resume,
3011 .message = crypt_message,
3012 .iterate_devices = crypt_iterate_devices,
3013 .io_hints = crypt_io_hints,
3014 };
3015
3016 static int __init dm_crypt_init(void)
3017 {
3018 int r;
3019
3020 r = dm_register_target(&crypt_target);
3021 if (r < 0)
3022 DMERR("register failed %d", r);
3023
3024 return r;
3025 }
3026
3027 static void __exit dm_crypt_exit(void)
3028 {
3029 dm_unregister_target(&crypt_target);
3030 }
3031
3032 module_init(dm_crypt_init);
3033 module_exit(dm_crypt_exit);
3034
3035 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3036 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3037 MODULE_LICENSE("GPL");