]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm-table.c
Merge tag 'powerpc-4.15-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm-table.c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24
25 #define DM_MSG_PREFIX "table"
26
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32 struct dm_table {
33 struct mapped_device *md;
34 enum dm_queue_mode type;
35
36 /* btree table */
37 unsigned int depth;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
40
41 unsigned int num_targets;
42 unsigned int num_allocated;
43 sector_t *highs;
44 struct dm_target *targets;
45
46 struct target_type *immutable_target_type;
47
48 bool integrity_supported:1;
49 bool singleton:1;
50 bool all_blk_mq:1;
51 unsigned integrity_added:1;
52
53 /*
54 * Indicates the rw permissions for the new logical
55 * device. This should be a combination of FMODE_READ
56 * and FMODE_WRITE.
57 */
58 fmode_t mode;
59
60 /* a list of devices used by this table */
61 struct list_head devices;
62
63 /* events get handed up using this callback */
64 void (*event_fn)(void *);
65 void *event_context;
66
67 struct dm_md_mempools *mempools;
68
69 struct list_head target_callbacks;
70 };
71
72 /*
73 * Similar to ceiling(log_size(n))
74 */
75 static unsigned int int_log(unsigned int n, unsigned int base)
76 {
77 int result = 0;
78
79 while (n > 1) {
80 n = dm_div_up(n, base);
81 result++;
82 }
83
84 return result;
85 }
86
87 /*
88 * Calculate the index of the child node of the n'th node k'th key.
89 */
90 static inline unsigned int get_child(unsigned int n, unsigned int k)
91 {
92 return (n * CHILDREN_PER_NODE) + k;
93 }
94
95 /*
96 * Return the n'th node of level l from table t.
97 */
98 static inline sector_t *get_node(struct dm_table *t,
99 unsigned int l, unsigned int n)
100 {
101 return t->index[l] + (n * KEYS_PER_NODE);
102 }
103
104 /*
105 * Return the highest key that you could lookup from the n'th
106 * node on level l of the btree.
107 */
108 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
109 {
110 for (; l < t->depth - 1; l++)
111 n = get_child(n, CHILDREN_PER_NODE - 1);
112
113 if (n >= t->counts[l])
114 return (sector_t) - 1;
115
116 return get_node(t, l, n)[KEYS_PER_NODE - 1];
117 }
118
119 /*
120 * Fills in a level of the btree based on the highs of the level
121 * below it.
122 */
123 static int setup_btree_index(unsigned int l, struct dm_table *t)
124 {
125 unsigned int n, k;
126 sector_t *node;
127
128 for (n = 0U; n < t->counts[l]; n++) {
129 node = get_node(t, l, n);
130
131 for (k = 0U; k < KEYS_PER_NODE; k++)
132 node[k] = high(t, l + 1, get_child(n, k));
133 }
134
135 return 0;
136 }
137
138 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
139 {
140 unsigned long size;
141 void *addr;
142
143 /*
144 * Check that we're not going to overflow.
145 */
146 if (nmemb > (ULONG_MAX / elem_size))
147 return NULL;
148
149 size = nmemb * elem_size;
150 addr = vzalloc(size);
151
152 return addr;
153 }
154 EXPORT_SYMBOL(dm_vcalloc);
155
156 /*
157 * highs, and targets are managed as dynamic arrays during a
158 * table load.
159 */
160 static int alloc_targets(struct dm_table *t, unsigned int num)
161 {
162 sector_t *n_highs;
163 struct dm_target *n_targets;
164
165 /*
166 * Allocate both the target array and offset array at once.
167 * Append an empty entry to catch sectors beyond the end of
168 * the device.
169 */
170 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
171 sizeof(sector_t));
172 if (!n_highs)
173 return -ENOMEM;
174
175 n_targets = (struct dm_target *) (n_highs + num);
176
177 memset(n_highs, -1, sizeof(*n_highs) * num);
178 vfree(t->highs);
179
180 t->num_allocated = num;
181 t->highs = n_highs;
182 t->targets = n_targets;
183
184 return 0;
185 }
186
187 int dm_table_create(struct dm_table **result, fmode_t mode,
188 unsigned num_targets, struct mapped_device *md)
189 {
190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191
192 if (!t)
193 return -ENOMEM;
194
195 INIT_LIST_HEAD(&t->devices);
196 INIT_LIST_HEAD(&t->target_callbacks);
197
198 if (!num_targets)
199 num_targets = KEYS_PER_NODE;
200
201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202
203 if (!num_targets) {
204 kfree(t);
205 return -ENOMEM;
206 }
207
208 if (alloc_targets(t, num_targets)) {
209 kfree(t);
210 return -ENOMEM;
211 }
212
213 t->type = DM_TYPE_NONE;
214 t->mode = mode;
215 t->md = md;
216 *result = t;
217 return 0;
218 }
219
220 static void free_devices(struct list_head *devices, struct mapped_device *md)
221 {
222 struct list_head *tmp, *next;
223
224 list_for_each_safe(tmp, next, devices) {
225 struct dm_dev_internal *dd =
226 list_entry(tmp, struct dm_dev_internal, list);
227 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
228 dm_device_name(md), dd->dm_dev->name);
229 dm_put_table_device(md, dd->dm_dev);
230 kfree(dd);
231 }
232 }
233
234 void dm_table_destroy(struct dm_table *t)
235 {
236 unsigned int i;
237
238 if (!t)
239 return;
240
241 /* free the indexes */
242 if (t->depth >= 2)
243 vfree(t->index[t->depth - 2]);
244
245 /* free the targets */
246 for (i = 0; i < t->num_targets; i++) {
247 struct dm_target *tgt = t->targets + i;
248
249 if (tgt->type->dtr)
250 tgt->type->dtr(tgt);
251
252 dm_put_target_type(tgt->type);
253 }
254
255 vfree(t->highs);
256
257 /* free the device list */
258 free_devices(&t->devices, t->md);
259
260 dm_free_md_mempools(t->mempools);
261
262 kfree(t);
263 }
264
265 /*
266 * See if we've already got a device in the list.
267 */
268 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
269 {
270 struct dm_dev_internal *dd;
271
272 list_for_each_entry (dd, l, list)
273 if (dd->dm_dev->bdev->bd_dev == dev)
274 return dd;
275
276 return NULL;
277 }
278
279 /*
280 * If possible, this checks an area of a destination device is invalid.
281 */
282 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
283 sector_t start, sector_t len, void *data)
284 {
285 struct request_queue *q;
286 struct queue_limits *limits = data;
287 struct block_device *bdev = dev->bdev;
288 sector_t dev_size =
289 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
290 unsigned short logical_block_size_sectors =
291 limits->logical_block_size >> SECTOR_SHIFT;
292 char b[BDEVNAME_SIZE];
293
294 /*
295 * Some devices exist without request functions,
296 * such as loop devices not yet bound to backing files.
297 * Forbid the use of such devices.
298 */
299 q = bdev_get_queue(bdev);
300 if (!q || !q->make_request_fn) {
301 DMWARN("%s: %s is not yet initialised: "
302 "start=%llu, len=%llu, dev_size=%llu",
303 dm_device_name(ti->table->md), bdevname(bdev, b),
304 (unsigned long long)start,
305 (unsigned long long)len,
306 (unsigned long long)dev_size);
307 return 1;
308 }
309
310 if (!dev_size)
311 return 0;
312
313 if ((start >= dev_size) || (start + len > dev_size)) {
314 DMWARN("%s: %s too small for target: "
315 "start=%llu, len=%llu, dev_size=%llu",
316 dm_device_name(ti->table->md), bdevname(bdev, b),
317 (unsigned long long)start,
318 (unsigned long long)len,
319 (unsigned long long)dev_size);
320 return 1;
321 }
322
323 /*
324 * If the target is mapped to zoned block device(s), check
325 * that the zones are not partially mapped.
326 */
327 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
328 unsigned int zone_sectors = bdev_zone_sectors(bdev);
329
330 if (start & (zone_sectors - 1)) {
331 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
332 dm_device_name(ti->table->md),
333 (unsigned long long)start,
334 zone_sectors, bdevname(bdev, b));
335 return 1;
336 }
337
338 /*
339 * Note: The last zone of a zoned block device may be smaller
340 * than other zones. So for a target mapping the end of a
341 * zoned block device with such a zone, len would not be zone
342 * aligned. We do not allow such last smaller zone to be part
343 * of the mapping here to ensure that mappings with multiple
344 * devices do not end up with a smaller zone in the middle of
345 * the sector range.
346 */
347 if (len & (zone_sectors - 1)) {
348 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
349 dm_device_name(ti->table->md),
350 (unsigned long long)len,
351 zone_sectors, bdevname(bdev, b));
352 return 1;
353 }
354 }
355
356 if (logical_block_size_sectors <= 1)
357 return 0;
358
359 if (start & (logical_block_size_sectors - 1)) {
360 DMWARN("%s: start=%llu not aligned to h/w "
361 "logical block size %u of %s",
362 dm_device_name(ti->table->md),
363 (unsigned long long)start,
364 limits->logical_block_size, bdevname(bdev, b));
365 return 1;
366 }
367
368 if (len & (logical_block_size_sectors - 1)) {
369 DMWARN("%s: len=%llu not aligned to h/w "
370 "logical block size %u of %s",
371 dm_device_name(ti->table->md),
372 (unsigned long long)len,
373 limits->logical_block_size, bdevname(bdev, b));
374 return 1;
375 }
376
377 return 0;
378 }
379
380 /*
381 * This upgrades the mode on an already open dm_dev, being
382 * careful to leave things as they were if we fail to reopen the
383 * device and not to touch the existing bdev field in case
384 * it is accessed concurrently inside dm_table_any_congested().
385 */
386 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
387 struct mapped_device *md)
388 {
389 int r;
390 struct dm_dev *old_dev, *new_dev;
391
392 old_dev = dd->dm_dev;
393
394 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
395 dd->dm_dev->mode | new_mode, &new_dev);
396 if (r)
397 return r;
398
399 dd->dm_dev = new_dev;
400 dm_put_table_device(md, old_dev);
401
402 return 0;
403 }
404
405 /*
406 * Convert the path to a device
407 */
408 dev_t dm_get_dev_t(const char *path)
409 {
410 dev_t dev;
411 struct block_device *bdev;
412
413 bdev = lookup_bdev(path);
414 if (IS_ERR(bdev))
415 dev = name_to_dev_t(path);
416 else {
417 dev = bdev->bd_dev;
418 bdput(bdev);
419 }
420
421 return dev;
422 }
423 EXPORT_SYMBOL_GPL(dm_get_dev_t);
424
425 /*
426 * Add a device to the list, or just increment the usage count if
427 * it's already present.
428 */
429 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
430 struct dm_dev **result)
431 {
432 int r;
433 dev_t dev;
434 struct dm_dev_internal *dd;
435 struct dm_table *t = ti->table;
436
437 BUG_ON(!t);
438
439 dev = dm_get_dev_t(path);
440 if (!dev)
441 return -ENODEV;
442
443 dd = find_device(&t->devices, dev);
444 if (!dd) {
445 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
446 if (!dd)
447 return -ENOMEM;
448
449 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
450 kfree(dd);
451 return r;
452 }
453
454 refcount_set(&dd->count, 1);
455 list_add(&dd->list, &t->devices);
456 goto out;
457
458 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
459 r = upgrade_mode(dd, mode, t->md);
460 if (r)
461 return r;
462 }
463 refcount_inc(&dd->count);
464 out:
465 *result = dd->dm_dev;
466 return 0;
467 }
468 EXPORT_SYMBOL(dm_get_device);
469
470 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
471 sector_t start, sector_t len, void *data)
472 {
473 struct queue_limits *limits = data;
474 struct block_device *bdev = dev->bdev;
475 struct request_queue *q = bdev_get_queue(bdev);
476 char b[BDEVNAME_SIZE];
477
478 if (unlikely(!q)) {
479 DMWARN("%s: Cannot set limits for nonexistent device %s",
480 dm_device_name(ti->table->md), bdevname(bdev, b));
481 return 0;
482 }
483
484 if (bdev_stack_limits(limits, bdev, start) < 0)
485 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
486 "physical_block_size=%u, logical_block_size=%u, "
487 "alignment_offset=%u, start=%llu",
488 dm_device_name(ti->table->md), bdevname(bdev, b),
489 q->limits.physical_block_size,
490 q->limits.logical_block_size,
491 q->limits.alignment_offset,
492 (unsigned long long) start << SECTOR_SHIFT);
493
494 limits->zoned = blk_queue_zoned_model(q);
495
496 return 0;
497 }
498
499 /*
500 * Decrement a device's use count and remove it if necessary.
501 */
502 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
503 {
504 int found = 0;
505 struct list_head *devices = &ti->table->devices;
506 struct dm_dev_internal *dd;
507
508 list_for_each_entry(dd, devices, list) {
509 if (dd->dm_dev == d) {
510 found = 1;
511 break;
512 }
513 }
514 if (!found) {
515 DMWARN("%s: device %s not in table devices list",
516 dm_device_name(ti->table->md), d->name);
517 return;
518 }
519 if (refcount_dec_and_test(&dd->count)) {
520 dm_put_table_device(ti->table->md, d);
521 list_del(&dd->list);
522 kfree(dd);
523 }
524 }
525 EXPORT_SYMBOL(dm_put_device);
526
527 /*
528 * Checks to see if the target joins onto the end of the table.
529 */
530 static int adjoin(struct dm_table *table, struct dm_target *ti)
531 {
532 struct dm_target *prev;
533
534 if (!table->num_targets)
535 return !ti->begin;
536
537 prev = &table->targets[table->num_targets - 1];
538 return (ti->begin == (prev->begin + prev->len));
539 }
540
541 /*
542 * Used to dynamically allocate the arg array.
543 *
544 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
545 * process messages even if some device is suspended. These messages have a
546 * small fixed number of arguments.
547 *
548 * On the other hand, dm-switch needs to process bulk data using messages and
549 * excessive use of GFP_NOIO could cause trouble.
550 */
551 static char **realloc_argv(unsigned *array_size, char **old_argv)
552 {
553 char **argv;
554 unsigned new_size;
555 gfp_t gfp;
556
557 if (*array_size) {
558 new_size = *array_size * 2;
559 gfp = GFP_KERNEL;
560 } else {
561 new_size = 8;
562 gfp = GFP_NOIO;
563 }
564 argv = kmalloc(new_size * sizeof(*argv), gfp);
565 if (argv) {
566 memcpy(argv, old_argv, *array_size * sizeof(*argv));
567 *array_size = new_size;
568 }
569
570 kfree(old_argv);
571 return argv;
572 }
573
574 /*
575 * Destructively splits up the argument list to pass to ctr.
576 */
577 int dm_split_args(int *argc, char ***argvp, char *input)
578 {
579 char *start, *end = input, *out, **argv = NULL;
580 unsigned array_size = 0;
581
582 *argc = 0;
583
584 if (!input) {
585 *argvp = NULL;
586 return 0;
587 }
588
589 argv = realloc_argv(&array_size, argv);
590 if (!argv)
591 return -ENOMEM;
592
593 while (1) {
594 /* Skip whitespace */
595 start = skip_spaces(end);
596
597 if (!*start)
598 break; /* success, we hit the end */
599
600 /* 'out' is used to remove any back-quotes */
601 end = out = start;
602 while (*end) {
603 /* Everything apart from '\0' can be quoted */
604 if (*end == '\\' && *(end + 1)) {
605 *out++ = *(end + 1);
606 end += 2;
607 continue;
608 }
609
610 if (isspace(*end))
611 break; /* end of token */
612
613 *out++ = *end++;
614 }
615
616 /* have we already filled the array ? */
617 if ((*argc + 1) > array_size) {
618 argv = realloc_argv(&array_size, argv);
619 if (!argv)
620 return -ENOMEM;
621 }
622
623 /* we know this is whitespace */
624 if (*end)
625 end++;
626
627 /* terminate the string and put it in the array */
628 *out = '\0';
629 argv[*argc] = start;
630 (*argc)++;
631 }
632
633 *argvp = argv;
634 return 0;
635 }
636
637 /*
638 * Impose necessary and sufficient conditions on a devices's table such
639 * that any incoming bio which respects its logical_block_size can be
640 * processed successfully. If it falls across the boundary between
641 * two or more targets, the size of each piece it gets split into must
642 * be compatible with the logical_block_size of the target processing it.
643 */
644 static int validate_hardware_logical_block_alignment(struct dm_table *table,
645 struct queue_limits *limits)
646 {
647 /*
648 * This function uses arithmetic modulo the logical_block_size
649 * (in units of 512-byte sectors).
650 */
651 unsigned short device_logical_block_size_sects =
652 limits->logical_block_size >> SECTOR_SHIFT;
653
654 /*
655 * Offset of the start of the next table entry, mod logical_block_size.
656 */
657 unsigned short next_target_start = 0;
658
659 /*
660 * Given an aligned bio that extends beyond the end of a
661 * target, how many sectors must the next target handle?
662 */
663 unsigned short remaining = 0;
664
665 struct dm_target *uninitialized_var(ti);
666 struct queue_limits ti_limits;
667 unsigned i;
668
669 /*
670 * Check each entry in the table in turn.
671 */
672 for (i = 0; i < dm_table_get_num_targets(table); i++) {
673 ti = dm_table_get_target(table, i);
674
675 blk_set_stacking_limits(&ti_limits);
676
677 /* combine all target devices' limits */
678 if (ti->type->iterate_devices)
679 ti->type->iterate_devices(ti, dm_set_device_limits,
680 &ti_limits);
681
682 /*
683 * If the remaining sectors fall entirely within this
684 * table entry are they compatible with its logical_block_size?
685 */
686 if (remaining < ti->len &&
687 remaining & ((ti_limits.logical_block_size >>
688 SECTOR_SHIFT) - 1))
689 break; /* Error */
690
691 next_target_start =
692 (unsigned short) ((next_target_start + ti->len) &
693 (device_logical_block_size_sects - 1));
694 remaining = next_target_start ?
695 device_logical_block_size_sects - next_target_start : 0;
696 }
697
698 if (remaining) {
699 DMWARN("%s: table line %u (start sect %llu len %llu) "
700 "not aligned to h/w logical block size %u",
701 dm_device_name(table->md), i,
702 (unsigned long long) ti->begin,
703 (unsigned long long) ti->len,
704 limits->logical_block_size);
705 return -EINVAL;
706 }
707
708 return 0;
709 }
710
711 int dm_table_add_target(struct dm_table *t, const char *type,
712 sector_t start, sector_t len, char *params)
713 {
714 int r = -EINVAL, argc;
715 char **argv;
716 struct dm_target *tgt;
717
718 if (t->singleton) {
719 DMERR("%s: target type %s must appear alone in table",
720 dm_device_name(t->md), t->targets->type->name);
721 return -EINVAL;
722 }
723
724 BUG_ON(t->num_targets >= t->num_allocated);
725
726 tgt = t->targets + t->num_targets;
727 memset(tgt, 0, sizeof(*tgt));
728
729 if (!len) {
730 DMERR("%s: zero-length target", dm_device_name(t->md));
731 return -EINVAL;
732 }
733
734 tgt->type = dm_get_target_type(type);
735 if (!tgt->type) {
736 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
737 return -EINVAL;
738 }
739
740 if (dm_target_needs_singleton(tgt->type)) {
741 if (t->num_targets) {
742 tgt->error = "singleton target type must appear alone in table";
743 goto bad;
744 }
745 t->singleton = true;
746 }
747
748 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
749 tgt->error = "target type may not be included in a read-only table";
750 goto bad;
751 }
752
753 if (t->immutable_target_type) {
754 if (t->immutable_target_type != tgt->type) {
755 tgt->error = "immutable target type cannot be mixed with other target types";
756 goto bad;
757 }
758 } else if (dm_target_is_immutable(tgt->type)) {
759 if (t->num_targets) {
760 tgt->error = "immutable target type cannot be mixed with other target types";
761 goto bad;
762 }
763 t->immutable_target_type = tgt->type;
764 }
765
766 if (dm_target_has_integrity(tgt->type))
767 t->integrity_added = 1;
768
769 tgt->table = t;
770 tgt->begin = start;
771 tgt->len = len;
772 tgt->error = "Unknown error";
773
774 /*
775 * Does this target adjoin the previous one ?
776 */
777 if (!adjoin(t, tgt)) {
778 tgt->error = "Gap in table";
779 goto bad;
780 }
781
782 r = dm_split_args(&argc, &argv, params);
783 if (r) {
784 tgt->error = "couldn't split parameters (insufficient memory)";
785 goto bad;
786 }
787
788 r = tgt->type->ctr(tgt, argc, argv);
789 kfree(argv);
790 if (r)
791 goto bad;
792
793 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
794
795 if (!tgt->num_discard_bios && tgt->discards_supported)
796 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
797 dm_device_name(t->md), type);
798
799 return 0;
800
801 bad:
802 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
803 dm_put_target_type(tgt->type);
804 return r;
805 }
806
807 /*
808 * Target argument parsing helpers.
809 */
810 static int validate_next_arg(const struct dm_arg *arg,
811 struct dm_arg_set *arg_set,
812 unsigned *value, char **error, unsigned grouped)
813 {
814 const char *arg_str = dm_shift_arg(arg_set);
815 char dummy;
816
817 if (!arg_str ||
818 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
819 (*value < arg->min) ||
820 (*value > arg->max) ||
821 (grouped && arg_set->argc < *value)) {
822 *error = arg->error;
823 return -EINVAL;
824 }
825
826 return 0;
827 }
828
829 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
830 unsigned *value, char **error)
831 {
832 return validate_next_arg(arg, arg_set, value, error, 0);
833 }
834 EXPORT_SYMBOL(dm_read_arg);
835
836 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
837 unsigned *value, char **error)
838 {
839 return validate_next_arg(arg, arg_set, value, error, 1);
840 }
841 EXPORT_SYMBOL(dm_read_arg_group);
842
843 const char *dm_shift_arg(struct dm_arg_set *as)
844 {
845 char *r;
846
847 if (as->argc) {
848 as->argc--;
849 r = *as->argv;
850 as->argv++;
851 return r;
852 }
853
854 return NULL;
855 }
856 EXPORT_SYMBOL(dm_shift_arg);
857
858 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
859 {
860 BUG_ON(as->argc < num_args);
861 as->argc -= num_args;
862 as->argv += num_args;
863 }
864 EXPORT_SYMBOL(dm_consume_args);
865
866 static bool __table_type_bio_based(enum dm_queue_mode table_type)
867 {
868 return (table_type == DM_TYPE_BIO_BASED ||
869 table_type == DM_TYPE_DAX_BIO_BASED);
870 }
871
872 static bool __table_type_request_based(enum dm_queue_mode table_type)
873 {
874 return (table_type == DM_TYPE_REQUEST_BASED ||
875 table_type == DM_TYPE_MQ_REQUEST_BASED);
876 }
877
878 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
879 {
880 t->type = type;
881 }
882 EXPORT_SYMBOL_GPL(dm_table_set_type);
883
884 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
885 sector_t start, sector_t len, void *data)
886 {
887 struct request_queue *q = bdev_get_queue(dev->bdev);
888
889 return q && blk_queue_dax(q);
890 }
891
892 static bool dm_table_supports_dax(struct dm_table *t)
893 {
894 struct dm_target *ti;
895 unsigned i;
896
897 /* Ensure that all targets support DAX. */
898 for (i = 0; i < dm_table_get_num_targets(t); i++) {
899 ti = dm_table_get_target(t, i);
900
901 if (!ti->type->direct_access)
902 return false;
903
904 if (!ti->type->iterate_devices ||
905 !ti->type->iterate_devices(ti, device_supports_dax, NULL))
906 return false;
907 }
908
909 return true;
910 }
911
912 static int dm_table_determine_type(struct dm_table *t)
913 {
914 unsigned i;
915 unsigned bio_based = 0, request_based = 0, hybrid = 0;
916 unsigned sq_count = 0, mq_count = 0;
917 struct dm_target *tgt;
918 struct dm_dev_internal *dd;
919 struct list_head *devices = dm_table_get_devices(t);
920 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
921
922 if (t->type != DM_TYPE_NONE) {
923 /* target already set the table's type */
924 if (t->type == DM_TYPE_BIO_BASED)
925 return 0;
926 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
927 goto verify_rq_based;
928 }
929
930 for (i = 0; i < t->num_targets; i++) {
931 tgt = t->targets + i;
932 if (dm_target_hybrid(tgt))
933 hybrid = 1;
934 else if (dm_target_request_based(tgt))
935 request_based = 1;
936 else
937 bio_based = 1;
938
939 if (bio_based && request_based) {
940 DMWARN("Inconsistent table: different target types"
941 " can't be mixed up");
942 return -EINVAL;
943 }
944 }
945
946 if (hybrid && !bio_based && !request_based) {
947 /*
948 * The targets can work either way.
949 * Determine the type from the live device.
950 * Default to bio-based if device is new.
951 */
952 if (__table_type_request_based(live_md_type))
953 request_based = 1;
954 else
955 bio_based = 1;
956 }
957
958 if (bio_based) {
959 /* We must use this table as bio-based */
960 t->type = DM_TYPE_BIO_BASED;
961 if (dm_table_supports_dax(t) ||
962 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
963 t->type = DM_TYPE_DAX_BIO_BASED;
964 return 0;
965 }
966
967 BUG_ON(!request_based); /* No targets in this table */
968
969 /*
970 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
971 * having a compatible target use dm_table_set_type.
972 */
973 t->type = DM_TYPE_REQUEST_BASED;
974
975 verify_rq_based:
976 /*
977 * Request-based dm supports only tables that have a single target now.
978 * To support multiple targets, request splitting support is needed,
979 * and that needs lots of changes in the block-layer.
980 * (e.g. request completion process for partial completion.)
981 */
982 if (t->num_targets > 1) {
983 DMWARN("Request-based dm doesn't support multiple targets yet");
984 return -EINVAL;
985 }
986
987 if (list_empty(devices)) {
988 int srcu_idx;
989 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
990
991 /* inherit live table's type and all_blk_mq */
992 if (live_table) {
993 t->type = live_table->type;
994 t->all_blk_mq = live_table->all_blk_mq;
995 }
996 dm_put_live_table(t->md, srcu_idx);
997 return 0;
998 }
999
1000 /* Non-request-stackable devices can't be used for request-based dm */
1001 list_for_each_entry(dd, devices, list) {
1002 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1003
1004 if (!queue_is_rq_based(q)) {
1005 DMERR("table load rejected: including"
1006 " non-request-stackable devices");
1007 return -EINVAL;
1008 }
1009
1010 if (q->mq_ops)
1011 mq_count++;
1012 else
1013 sq_count++;
1014 }
1015 if (sq_count && mq_count) {
1016 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1017 return -EINVAL;
1018 }
1019 t->all_blk_mq = mq_count > 0;
1020
1021 if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) {
1022 DMERR("table load rejected: all devices are not blk-mq request-stackable");
1023 return -EINVAL;
1024 }
1025
1026 return 0;
1027 }
1028
1029 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1030 {
1031 return t->type;
1032 }
1033
1034 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1035 {
1036 return t->immutable_target_type;
1037 }
1038
1039 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1040 {
1041 /* Immutable target is implicitly a singleton */
1042 if (t->num_targets > 1 ||
1043 !dm_target_is_immutable(t->targets[0].type))
1044 return NULL;
1045
1046 return t->targets;
1047 }
1048
1049 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1050 {
1051 struct dm_target *ti;
1052 unsigned i;
1053
1054 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1055 ti = dm_table_get_target(t, i);
1056 if (dm_target_is_wildcard(ti->type))
1057 return ti;
1058 }
1059
1060 return NULL;
1061 }
1062
1063 bool dm_table_bio_based(struct dm_table *t)
1064 {
1065 return __table_type_bio_based(dm_table_get_type(t));
1066 }
1067
1068 bool dm_table_request_based(struct dm_table *t)
1069 {
1070 return __table_type_request_based(dm_table_get_type(t));
1071 }
1072
1073 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1074 {
1075 return t->all_blk_mq;
1076 }
1077
1078 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1079 {
1080 enum dm_queue_mode type = dm_table_get_type(t);
1081 unsigned per_io_data_size = 0;
1082 struct dm_target *tgt;
1083 unsigned i;
1084
1085 if (unlikely(type == DM_TYPE_NONE)) {
1086 DMWARN("no table type is set, can't allocate mempools");
1087 return -EINVAL;
1088 }
1089
1090 if (__table_type_bio_based(type))
1091 for (i = 0; i < t->num_targets; i++) {
1092 tgt = t->targets + i;
1093 per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1094 }
1095
1096 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1097 if (!t->mempools)
1098 return -ENOMEM;
1099
1100 return 0;
1101 }
1102
1103 void dm_table_free_md_mempools(struct dm_table *t)
1104 {
1105 dm_free_md_mempools(t->mempools);
1106 t->mempools = NULL;
1107 }
1108
1109 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1110 {
1111 return t->mempools;
1112 }
1113
1114 static int setup_indexes(struct dm_table *t)
1115 {
1116 int i;
1117 unsigned int total = 0;
1118 sector_t *indexes;
1119
1120 /* allocate the space for *all* the indexes */
1121 for (i = t->depth - 2; i >= 0; i--) {
1122 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1123 total += t->counts[i];
1124 }
1125
1126 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1127 if (!indexes)
1128 return -ENOMEM;
1129
1130 /* set up internal nodes, bottom-up */
1131 for (i = t->depth - 2; i >= 0; i--) {
1132 t->index[i] = indexes;
1133 indexes += (KEYS_PER_NODE * t->counts[i]);
1134 setup_btree_index(i, t);
1135 }
1136
1137 return 0;
1138 }
1139
1140 /*
1141 * Builds the btree to index the map.
1142 */
1143 static int dm_table_build_index(struct dm_table *t)
1144 {
1145 int r = 0;
1146 unsigned int leaf_nodes;
1147
1148 /* how many indexes will the btree have ? */
1149 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1150 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1151
1152 /* leaf layer has already been set up */
1153 t->counts[t->depth - 1] = leaf_nodes;
1154 t->index[t->depth - 1] = t->highs;
1155
1156 if (t->depth >= 2)
1157 r = setup_indexes(t);
1158
1159 return r;
1160 }
1161
1162 static bool integrity_profile_exists(struct gendisk *disk)
1163 {
1164 return !!blk_get_integrity(disk);
1165 }
1166
1167 /*
1168 * Get a disk whose integrity profile reflects the table's profile.
1169 * Returns NULL if integrity support was inconsistent or unavailable.
1170 */
1171 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1172 {
1173 struct list_head *devices = dm_table_get_devices(t);
1174 struct dm_dev_internal *dd = NULL;
1175 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1176 unsigned i;
1177
1178 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1179 struct dm_target *ti = dm_table_get_target(t, i);
1180 if (!dm_target_passes_integrity(ti->type))
1181 goto no_integrity;
1182 }
1183
1184 list_for_each_entry(dd, devices, list) {
1185 template_disk = dd->dm_dev->bdev->bd_disk;
1186 if (!integrity_profile_exists(template_disk))
1187 goto no_integrity;
1188 else if (prev_disk &&
1189 blk_integrity_compare(prev_disk, template_disk) < 0)
1190 goto no_integrity;
1191 prev_disk = template_disk;
1192 }
1193
1194 return template_disk;
1195
1196 no_integrity:
1197 if (prev_disk)
1198 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1199 dm_device_name(t->md),
1200 prev_disk->disk_name,
1201 template_disk->disk_name);
1202 return NULL;
1203 }
1204
1205 /*
1206 * Register the mapped device for blk_integrity support if the
1207 * underlying devices have an integrity profile. But all devices may
1208 * not have matching profiles (checking all devices isn't reliable
1209 * during table load because this table may use other DM device(s) which
1210 * must be resumed before they will have an initialized integity
1211 * profile). Consequently, stacked DM devices force a 2 stage integrity
1212 * profile validation: First pass during table load, final pass during
1213 * resume.
1214 */
1215 static int dm_table_register_integrity(struct dm_table *t)
1216 {
1217 struct mapped_device *md = t->md;
1218 struct gendisk *template_disk = NULL;
1219
1220 /* If target handles integrity itself do not register it here. */
1221 if (t->integrity_added)
1222 return 0;
1223
1224 template_disk = dm_table_get_integrity_disk(t);
1225 if (!template_disk)
1226 return 0;
1227
1228 if (!integrity_profile_exists(dm_disk(md))) {
1229 t->integrity_supported = true;
1230 /*
1231 * Register integrity profile during table load; we can do
1232 * this because the final profile must match during resume.
1233 */
1234 blk_integrity_register(dm_disk(md),
1235 blk_get_integrity(template_disk));
1236 return 0;
1237 }
1238
1239 /*
1240 * If DM device already has an initialized integrity
1241 * profile the new profile should not conflict.
1242 */
1243 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1244 DMWARN("%s: conflict with existing integrity profile: "
1245 "%s profile mismatch",
1246 dm_device_name(t->md),
1247 template_disk->disk_name);
1248 return 1;
1249 }
1250
1251 /* Preserve existing integrity profile */
1252 t->integrity_supported = true;
1253 return 0;
1254 }
1255
1256 /*
1257 * Prepares the table for use by building the indices,
1258 * setting the type, and allocating mempools.
1259 */
1260 int dm_table_complete(struct dm_table *t)
1261 {
1262 int r;
1263
1264 r = dm_table_determine_type(t);
1265 if (r) {
1266 DMERR("unable to determine table type");
1267 return r;
1268 }
1269
1270 r = dm_table_build_index(t);
1271 if (r) {
1272 DMERR("unable to build btrees");
1273 return r;
1274 }
1275
1276 r = dm_table_register_integrity(t);
1277 if (r) {
1278 DMERR("could not register integrity profile.");
1279 return r;
1280 }
1281
1282 r = dm_table_alloc_md_mempools(t, t->md);
1283 if (r)
1284 DMERR("unable to allocate mempools");
1285
1286 return r;
1287 }
1288
1289 static DEFINE_MUTEX(_event_lock);
1290 void dm_table_event_callback(struct dm_table *t,
1291 void (*fn)(void *), void *context)
1292 {
1293 mutex_lock(&_event_lock);
1294 t->event_fn = fn;
1295 t->event_context = context;
1296 mutex_unlock(&_event_lock);
1297 }
1298
1299 void dm_table_event(struct dm_table *t)
1300 {
1301 /*
1302 * You can no longer call dm_table_event() from interrupt
1303 * context, use a bottom half instead.
1304 */
1305 BUG_ON(in_interrupt());
1306
1307 mutex_lock(&_event_lock);
1308 if (t->event_fn)
1309 t->event_fn(t->event_context);
1310 mutex_unlock(&_event_lock);
1311 }
1312 EXPORT_SYMBOL(dm_table_event);
1313
1314 sector_t dm_table_get_size(struct dm_table *t)
1315 {
1316 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1317 }
1318 EXPORT_SYMBOL(dm_table_get_size);
1319
1320 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1321 {
1322 if (index >= t->num_targets)
1323 return NULL;
1324
1325 return t->targets + index;
1326 }
1327
1328 /*
1329 * Search the btree for the correct target.
1330 *
1331 * Caller should check returned pointer with dm_target_is_valid()
1332 * to trap I/O beyond end of device.
1333 */
1334 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1335 {
1336 unsigned int l, n = 0, k = 0;
1337 sector_t *node;
1338
1339 for (l = 0; l < t->depth; l++) {
1340 n = get_child(n, k);
1341 node = get_node(t, l, n);
1342
1343 for (k = 0; k < KEYS_PER_NODE; k++)
1344 if (node[k] >= sector)
1345 break;
1346 }
1347
1348 return &t->targets[(KEYS_PER_NODE * n) + k];
1349 }
1350
1351 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1352 sector_t start, sector_t len, void *data)
1353 {
1354 unsigned *num_devices = data;
1355
1356 (*num_devices)++;
1357
1358 return 0;
1359 }
1360
1361 /*
1362 * Check whether a table has no data devices attached using each
1363 * target's iterate_devices method.
1364 * Returns false if the result is unknown because a target doesn't
1365 * support iterate_devices.
1366 */
1367 bool dm_table_has_no_data_devices(struct dm_table *table)
1368 {
1369 struct dm_target *ti;
1370 unsigned i, num_devices;
1371
1372 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1373 ti = dm_table_get_target(table, i);
1374
1375 if (!ti->type->iterate_devices)
1376 return false;
1377
1378 num_devices = 0;
1379 ti->type->iterate_devices(ti, count_device, &num_devices);
1380 if (num_devices)
1381 return false;
1382 }
1383
1384 return true;
1385 }
1386
1387 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1388 sector_t start, sector_t len, void *data)
1389 {
1390 struct request_queue *q = bdev_get_queue(dev->bdev);
1391 enum blk_zoned_model *zoned_model = data;
1392
1393 return q && blk_queue_zoned_model(q) == *zoned_model;
1394 }
1395
1396 static bool dm_table_supports_zoned_model(struct dm_table *t,
1397 enum blk_zoned_model zoned_model)
1398 {
1399 struct dm_target *ti;
1400 unsigned i;
1401
1402 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1403 ti = dm_table_get_target(t, i);
1404
1405 if (zoned_model == BLK_ZONED_HM &&
1406 !dm_target_supports_zoned_hm(ti->type))
1407 return false;
1408
1409 if (!ti->type->iterate_devices ||
1410 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1411 return false;
1412 }
1413
1414 return true;
1415 }
1416
1417 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1418 sector_t start, sector_t len, void *data)
1419 {
1420 struct request_queue *q = bdev_get_queue(dev->bdev);
1421 unsigned int *zone_sectors = data;
1422
1423 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1424 }
1425
1426 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1427 unsigned int zone_sectors)
1428 {
1429 struct dm_target *ti;
1430 unsigned i;
1431
1432 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1433 ti = dm_table_get_target(t, i);
1434
1435 if (!ti->type->iterate_devices ||
1436 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1437 return false;
1438 }
1439
1440 return true;
1441 }
1442
1443 static int validate_hardware_zoned_model(struct dm_table *table,
1444 enum blk_zoned_model zoned_model,
1445 unsigned int zone_sectors)
1446 {
1447 if (zoned_model == BLK_ZONED_NONE)
1448 return 0;
1449
1450 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1451 DMERR("%s: zoned model is not consistent across all devices",
1452 dm_device_name(table->md));
1453 return -EINVAL;
1454 }
1455
1456 /* Check zone size validity and compatibility */
1457 if (!zone_sectors || !is_power_of_2(zone_sectors))
1458 return -EINVAL;
1459
1460 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1461 DMERR("%s: zone sectors is not consistent across all devices",
1462 dm_device_name(table->md));
1463 return -EINVAL;
1464 }
1465
1466 return 0;
1467 }
1468
1469 /*
1470 * Establish the new table's queue_limits and validate them.
1471 */
1472 int dm_calculate_queue_limits(struct dm_table *table,
1473 struct queue_limits *limits)
1474 {
1475 struct dm_target *ti;
1476 struct queue_limits ti_limits;
1477 unsigned i;
1478 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1479 unsigned int zone_sectors = 0;
1480
1481 blk_set_stacking_limits(limits);
1482
1483 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1484 blk_set_stacking_limits(&ti_limits);
1485
1486 ti = dm_table_get_target(table, i);
1487
1488 if (!ti->type->iterate_devices)
1489 goto combine_limits;
1490
1491 /*
1492 * Combine queue limits of all the devices this target uses.
1493 */
1494 ti->type->iterate_devices(ti, dm_set_device_limits,
1495 &ti_limits);
1496
1497 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1498 /*
1499 * After stacking all limits, validate all devices
1500 * in table support this zoned model and zone sectors.
1501 */
1502 zoned_model = ti_limits.zoned;
1503 zone_sectors = ti_limits.chunk_sectors;
1504 }
1505
1506 /* Set I/O hints portion of queue limits */
1507 if (ti->type->io_hints)
1508 ti->type->io_hints(ti, &ti_limits);
1509
1510 /*
1511 * Check each device area is consistent with the target's
1512 * overall queue limits.
1513 */
1514 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1515 &ti_limits))
1516 return -EINVAL;
1517
1518 combine_limits:
1519 /*
1520 * Merge this target's queue limits into the overall limits
1521 * for the table.
1522 */
1523 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1524 DMWARN("%s: adding target device "
1525 "(start sect %llu len %llu) "
1526 "caused an alignment inconsistency",
1527 dm_device_name(table->md),
1528 (unsigned long long) ti->begin,
1529 (unsigned long long) ti->len);
1530
1531 /*
1532 * FIXME: this should likely be moved to blk_stack_limits(), would
1533 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1534 */
1535 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1536 /*
1537 * By default, the stacked limits zoned model is set to
1538 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1539 * this model using the first target model reported
1540 * that is not BLK_ZONED_NONE. This will be either the
1541 * first target device zoned model or the model reported
1542 * by the target .io_hints.
1543 */
1544 limits->zoned = ti_limits.zoned;
1545 }
1546 }
1547
1548 /*
1549 * Verify that the zoned model and zone sectors, as determined before
1550 * any .io_hints override, are the same across all devices in the table.
1551 * - this is especially relevant if .io_hints is emulating a disk-managed
1552 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1553 * BUT...
1554 */
1555 if (limits->zoned != BLK_ZONED_NONE) {
1556 /*
1557 * ...IF the above limits stacking determined a zoned model
1558 * validate that all of the table's devices conform to it.
1559 */
1560 zoned_model = limits->zoned;
1561 zone_sectors = limits->chunk_sectors;
1562 }
1563 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1564 return -EINVAL;
1565
1566 return validate_hardware_logical_block_alignment(table, limits);
1567 }
1568
1569 /*
1570 * Verify that all devices have an integrity profile that matches the
1571 * DM device's registered integrity profile. If the profiles don't
1572 * match then unregister the DM device's integrity profile.
1573 */
1574 static void dm_table_verify_integrity(struct dm_table *t)
1575 {
1576 struct gendisk *template_disk = NULL;
1577
1578 if (t->integrity_added)
1579 return;
1580
1581 if (t->integrity_supported) {
1582 /*
1583 * Verify that the original integrity profile
1584 * matches all the devices in this table.
1585 */
1586 template_disk = dm_table_get_integrity_disk(t);
1587 if (template_disk &&
1588 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1589 return;
1590 }
1591
1592 if (integrity_profile_exists(dm_disk(t->md))) {
1593 DMWARN("%s: unable to establish an integrity profile",
1594 dm_device_name(t->md));
1595 blk_integrity_unregister(dm_disk(t->md));
1596 }
1597 }
1598
1599 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1600 sector_t start, sector_t len, void *data)
1601 {
1602 unsigned long flush = (unsigned long) data;
1603 struct request_queue *q = bdev_get_queue(dev->bdev);
1604
1605 return q && (q->queue_flags & flush);
1606 }
1607
1608 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1609 {
1610 struct dm_target *ti;
1611 unsigned i;
1612
1613 /*
1614 * Require at least one underlying device to support flushes.
1615 * t->devices includes internal dm devices such as mirror logs
1616 * so we need to use iterate_devices here, which targets
1617 * supporting flushes must provide.
1618 */
1619 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1620 ti = dm_table_get_target(t, i);
1621
1622 if (!ti->num_flush_bios)
1623 continue;
1624
1625 if (ti->flush_supported)
1626 return true;
1627
1628 if (ti->type->iterate_devices &&
1629 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1630 return true;
1631 }
1632
1633 return false;
1634 }
1635
1636 static int device_dax_write_cache_enabled(struct dm_target *ti,
1637 struct dm_dev *dev, sector_t start,
1638 sector_t len, void *data)
1639 {
1640 struct dax_device *dax_dev = dev->dax_dev;
1641
1642 if (!dax_dev)
1643 return false;
1644
1645 if (dax_write_cache_enabled(dax_dev))
1646 return true;
1647 return false;
1648 }
1649
1650 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1651 {
1652 struct dm_target *ti;
1653 unsigned i;
1654
1655 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1656 ti = dm_table_get_target(t, i);
1657
1658 if (ti->type->iterate_devices &&
1659 ti->type->iterate_devices(ti,
1660 device_dax_write_cache_enabled, NULL))
1661 return true;
1662 }
1663
1664 return false;
1665 }
1666
1667 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1668 sector_t start, sector_t len, void *data)
1669 {
1670 struct request_queue *q = bdev_get_queue(dev->bdev);
1671
1672 return q && blk_queue_nonrot(q);
1673 }
1674
1675 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1676 sector_t start, sector_t len, void *data)
1677 {
1678 struct request_queue *q = bdev_get_queue(dev->bdev);
1679
1680 return q && !blk_queue_add_random(q);
1681 }
1682
1683 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1684 sector_t start, sector_t len, void *data)
1685 {
1686 struct request_queue *q = bdev_get_queue(dev->bdev);
1687
1688 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1689 }
1690
1691 static bool dm_table_all_devices_attribute(struct dm_table *t,
1692 iterate_devices_callout_fn func)
1693 {
1694 struct dm_target *ti;
1695 unsigned i;
1696
1697 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1698 ti = dm_table_get_target(t, i);
1699
1700 if (!ti->type->iterate_devices ||
1701 !ti->type->iterate_devices(ti, func, NULL))
1702 return false;
1703 }
1704
1705 return true;
1706 }
1707
1708 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1709 sector_t start, sector_t len, void *data)
1710 {
1711 struct request_queue *q = bdev_get_queue(dev->bdev);
1712
1713 return q && !q->limits.max_write_same_sectors;
1714 }
1715
1716 static bool dm_table_supports_write_same(struct dm_table *t)
1717 {
1718 struct dm_target *ti;
1719 unsigned i;
1720
1721 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1722 ti = dm_table_get_target(t, i);
1723
1724 if (!ti->num_write_same_bios)
1725 return false;
1726
1727 if (!ti->type->iterate_devices ||
1728 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1729 return false;
1730 }
1731
1732 return true;
1733 }
1734
1735 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1736 sector_t start, sector_t len, void *data)
1737 {
1738 struct request_queue *q = bdev_get_queue(dev->bdev);
1739
1740 return q && !q->limits.max_write_zeroes_sectors;
1741 }
1742
1743 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1744 {
1745 struct dm_target *ti;
1746 unsigned i = 0;
1747
1748 while (i < dm_table_get_num_targets(t)) {
1749 ti = dm_table_get_target(t, i++);
1750
1751 if (!ti->num_write_zeroes_bios)
1752 return false;
1753
1754 if (!ti->type->iterate_devices ||
1755 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1756 return false;
1757 }
1758
1759 return true;
1760 }
1761
1762 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1763 sector_t start, sector_t len, void *data)
1764 {
1765 struct request_queue *q = bdev_get_queue(dev->bdev);
1766
1767 return q && !blk_queue_discard(q);
1768 }
1769
1770 static bool dm_table_supports_discards(struct dm_table *t)
1771 {
1772 struct dm_target *ti;
1773 unsigned i;
1774
1775 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1776 ti = dm_table_get_target(t, i);
1777
1778 if (!ti->num_discard_bios)
1779 return false;
1780
1781 /*
1782 * Either the target provides discard support (as implied by setting
1783 * 'discards_supported') or it relies on _all_ data devices having
1784 * discard support.
1785 */
1786 if (!ti->discards_supported &&
1787 (!ti->type->iterate_devices ||
1788 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1789 return false;
1790 }
1791
1792 return true;
1793 }
1794
1795 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1796 struct queue_limits *limits)
1797 {
1798 bool wc = false, fua = false;
1799
1800 /*
1801 * Copy table's limits to the DM device's request_queue
1802 */
1803 q->limits = *limits;
1804
1805 if (!dm_table_supports_discards(t)) {
1806 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1807 /* Must also clear discard limits... */
1808 q->limits.max_discard_sectors = 0;
1809 q->limits.max_hw_discard_sectors = 0;
1810 q->limits.discard_granularity = 0;
1811 q->limits.discard_alignment = 0;
1812 q->limits.discard_misaligned = 0;
1813 } else
1814 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1815
1816 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1817 wc = true;
1818 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1819 fua = true;
1820 }
1821 blk_queue_write_cache(q, wc, fua);
1822
1823 if (dm_table_supports_dax_write_cache(t))
1824 dax_write_cache(t->md->dax_dev, true);
1825
1826 /* Ensure that all underlying devices are non-rotational. */
1827 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1828 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1829 else
1830 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1831
1832 if (!dm_table_supports_write_same(t))
1833 q->limits.max_write_same_sectors = 0;
1834 if (!dm_table_supports_write_zeroes(t))
1835 q->limits.max_write_zeroes_sectors = 0;
1836
1837 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1838 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1839 else
1840 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1841
1842 dm_table_verify_integrity(t);
1843
1844 /*
1845 * Determine whether or not this queue's I/O timings contribute
1846 * to the entropy pool, Only request-based targets use this.
1847 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1848 * have it set.
1849 */
1850 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1851 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1852 }
1853
1854 unsigned int dm_table_get_num_targets(struct dm_table *t)
1855 {
1856 return t->num_targets;
1857 }
1858
1859 struct list_head *dm_table_get_devices(struct dm_table *t)
1860 {
1861 return &t->devices;
1862 }
1863
1864 fmode_t dm_table_get_mode(struct dm_table *t)
1865 {
1866 return t->mode;
1867 }
1868 EXPORT_SYMBOL(dm_table_get_mode);
1869
1870 enum suspend_mode {
1871 PRESUSPEND,
1872 PRESUSPEND_UNDO,
1873 POSTSUSPEND,
1874 };
1875
1876 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1877 {
1878 int i = t->num_targets;
1879 struct dm_target *ti = t->targets;
1880
1881 lockdep_assert_held(&t->md->suspend_lock);
1882
1883 while (i--) {
1884 switch (mode) {
1885 case PRESUSPEND:
1886 if (ti->type->presuspend)
1887 ti->type->presuspend(ti);
1888 break;
1889 case PRESUSPEND_UNDO:
1890 if (ti->type->presuspend_undo)
1891 ti->type->presuspend_undo(ti);
1892 break;
1893 case POSTSUSPEND:
1894 if (ti->type->postsuspend)
1895 ti->type->postsuspend(ti);
1896 break;
1897 }
1898 ti++;
1899 }
1900 }
1901
1902 void dm_table_presuspend_targets(struct dm_table *t)
1903 {
1904 if (!t)
1905 return;
1906
1907 suspend_targets(t, PRESUSPEND);
1908 }
1909
1910 void dm_table_presuspend_undo_targets(struct dm_table *t)
1911 {
1912 if (!t)
1913 return;
1914
1915 suspend_targets(t, PRESUSPEND_UNDO);
1916 }
1917
1918 void dm_table_postsuspend_targets(struct dm_table *t)
1919 {
1920 if (!t)
1921 return;
1922
1923 suspend_targets(t, POSTSUSPEND);
1924 }
1925
1926 int dm_table_resume_targets(struct dm_table *t)
1927 {
1928 int i, r = 0;
1929
1930 lockdep_assert_held(&t->md->suspend_lock);
1931
1932 for (i = 0; i < t->num_targets; i++) {
1933 struct dm_target *ti = t->targets + i;
1934
1935 if (!ti->type->preresume)
1936 continue;
1937
1938 r = ti->type->preresume(ti);
1939 if (r) {
1940 DMERR("%s: %s: preresume failed, error = %d",
1941 dm_device_name(t->md), ti->type->name, r);
1942 return r;
1943 }
1944 }
1945
1946 for (i = 0; i < t->num_targets; i++) {
1947 struct dm_target *ti = t->targets + i;
1948
1949 if (ti->type->resume)
1950 ti->type->resume(ti);
1951 }
1952
1953 return 0;
1954 }
1955
1956 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1957 {
1958 list_add(&cb->list, &t->target_callbacks);
1959 }
1960 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1961
1962 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1963 {
1964 struct dm_dev_internal *dd;
1965 struct list_head *devices = dm_table_get_devices(t);
1966 struct dm_target_callbacks *cb;
1967 int r = 0;
1968
1969 list_for_each_entry(dd, devices, list) {
1970 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1971 char b[BDEVNAME_SIZE];
1972
1973 if (likely(q))
1974 r |= bdi_congested(q->backing_dev_info, bdi_bits);
1975 else
1976 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1977 dm_device_name(t->md),
1978 bdevname(dd->dm_dev->bdev, b));
1979 }
1980
1981 list_for_each_entry(cb, &t->target_callbacks, list)
1982 if (cb->congested_fn)
1983 r |= cb->congested_fn(cb, bdi_bits);
1984
1985 return r;
1986 }
1987
1988 struct mapped_device *dm_table_get_md(struct dm_table *t)
1989 {
1990 return t->md;
1991 }
1992 EXPORT_SYMBOL(dm_table_get_md);
1993
1994 void dm_table_run_md_queue_async(struct dm_table *t)
1995 {
1996 struct mapped_device *md;
1997 struct request_queue *queue;
1998 unsigned long flags;
1999
2000 if (!dm_table_request_based(t))
2001 return;
2002
2003 md = dm_table_get_md(t);
2004 queue = dm_get_md_queue(md);
2005 if (queue) {
2006 if (queue->mq_ops)
2007 blk_mq_run_hw_queues(queue, true);
2008 else {
2009 spin_lock_irqsave(queue->queue_lock, flags);
2010 blk_run_queue_async(queue);
2011 spin_unlock_irqrestore(queue->queue_lock, flags);
2012 }
2013 }
2014 }
2015 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2016