]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm-thin-metadata.c
dm space map metadata: fix missing store of apply_bops() return value
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm-thin-metadata.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
19 *
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
22 *
23 * - A space map managing the metadata blocks.
24 *
25 * - A space map managing the data blocks.
26 *
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28 *
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 48
32 * bits.
33 *
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
41 *
42 * Space maps have 2 btrees:
43 *
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
47 *
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
50 *
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
55 *
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
59 *
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
65 *
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
70 *
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81
82 /*
83 * For btree insert:
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
86 * For btree remove:
87 * 2 for shadow spine +
88 * 4 for rebalance 3 child node
89 */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94
95 /*
96 * Little endian on-disk superblock and device details.
97 */
98 struct thin_disk_superblock {
99 __le32 csum; /* Checksum of superblock except for this field. */
100 __le32 flags;
101 __le64 blocknr; /* This block number, dm_block_t. */
102
103 __u8 uuid[16];
104 __le64 magic;
105 __le32 version;
106 __le32 time;
107
108 __le64 trans_id;
109
110 /*
111 * Root held by userspace transactions.
112 */
113 __le64 held_root;
114
115 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117
118 /*
119 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 */
121 __le64 data_mapping_root;
122
123 /*
124 * Device detail root mapping dev_id -> device_details
125 */
126 __le64 device_details_root;
127
128 __le32 data_block_size; /* In 512-byte sectors. */
129
130 __le32 metadata_block_size; /* In 512-byte sectors. */
131 __le64 metadata_nr_blocks;
132
133 __le32 compat_flags;
134 __le32 compat_ro_flags;
135 __le32 incompat_flags;
136 } __packed;
137
138 struct disk_device_details {
139 __le64 mapped_blocks;
140 __le64 transaction_id; /* When created. */
141 __le32 creation_time;
142 __le32 snapshotted_time;
143 } __packed;
144
145 struct dm_pool_metadata {
146 struct hlist_node hash;
147
148 struct block_device *bdev;
149 struct dm_block_manager *bm;
150 struct dm_space_map *metadata_sm;
151 struct dm_space_map *data_sm;
152 struct dm_transaction_manager *tm;
153 struct dm_transaction_manager *nb_tm;
154
155 /*
156 * Two-level btree.
157 * First level holds thin_dev_t.
158 * Second level holds mappings.
159 */
160 struct dm_btree_info info;
161
162 /*
163 * Non-blocking version of the above.
164 */
165 struct dm_btree_info nb_info;
166
167 /*
168 * Just the top level for deleting whole devices.
169 */
170 struct dm_btree_info tl_info;
171
172 /*
173 * Just the bottom level for creating new devices.
174 */
175 struct dm_btree_info bl_info;
176
177 /*
178 * Describes the device details btree.
179 */
180 struct dm_btree_info details_info;
181
182 struct rw_semaphore root_lock;
183 uint32_t time;
184 dm_block_t root;
185 dm_block_t details_root;
186 struct list_head thin_devices;
187 uint64_t trans_id;
188 unsigned long flags;
189 sector_t data_block_size;
190
191 /*
192 * We reserve a section of the metadata for commit overhead.
193 * All reported space does *not* include this.
194 */
195 dm_block_t metadata_reserve;
196
197 /*
198 * Set if a transaction has to be aborted but the attempt to roll back
199 * to the previous (good) transaction failed. The only pool metadata
200 * operation possible in this state is the closing of the device.
201 */
202 bool fail_io:1;
203
204 /*
205 * Reading the space map roots can fail, so we read it into these
206 * buffers before the superblock is locked and updated.
207 */
208 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
209 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
210 };
211
212 struct dm_thin_device {
213 struct list_head list;
214 struct dm_pool_metadata *pmd;
215 dm_thin_id id;
216
217 int open_count;
218 bool changed:1;
219 bool aborted_with_changes:1;
220 uint64_t mapped_blocks;
221 uint64_t transaction_id;
222 uint32_t creation_time;
223 uint32_t snapshotted_time;
224 };
225
226 /*----------------------------------------------------------------
227 * superblock validator
228 *--------------------------------------------------------------*/
229
230 #define SUPERBLOCK_CSUM_XOR 160774
231
232 static void sb_prepare_for_write(struct dm_block_validator *v,
233 struct dm_block *b,
234 size_t block_size)
235 {
236 struct thin_disk_superblock *disk_super = dm_block_data(b);
237
238 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
239 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
240 block_size - sizeof(__le32),
241 SUPERBLOCK_CSUM_XOR));
242 }
243
244 static int sb_check(struct dm_block_validator *v,
245 struct dm_block *b,
246 size_t block_size)
247 {
248 struct thin_disk_superblock *disk_super = dm_block_data(b);
249 __le32 csum_le;
250
251 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
252 DMERR("sb_check failed: blocknr %llu: "
253 "wanted %llu", le64_to_cpu(disk_super->blocknr),
254 (unsigned long long)dm_block_location(b));
255 return -ENOTBLK;
256 }
257
258 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
259 DMERR("sb_check failed: magic %llu: "
260 "wanted %llu", le64_to_cpu(disk_super->magic),
261 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
262 return -EILSEQ;
263 }
264
265 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
266 block_size - sizeof(__le32),
267 SUPERBLOCK_CSUM_XOR));
268 if (csum_le != disk_super->csum) {
269 DMERR("sb_check failed: csum %u: wanted %u",
270 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
271 return -EILSEQ;
272 }
273
274 return 0;
275 }
276
277 static struct dm_block_validator sb_validator = {
278 .name = "superblock",
279 .prepare_for_write = sb_prepare_for_write,
280 .check = sb_check
281 };
282
283 /*----------------------------------------------------------------
284 * Methods for the btree value types
285 *--------------------------------------------------------------*/
286
287 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
288 {
289 return (b << 24) | t;
290 }
291
292 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
293 {
294 *b = v >> 24;
295 *t = v & ((1 << 24) - 1);
296 }
297
298 static void data_block_inc(void *context, const void *value_le)
299 {
300 struct dm_space_map *sm = context;
301 __le64 v_le;
302 uint64_t b;
303 uint32_t t;
304
305 memcpy(&v_le, value_le, sizeof(v_le));
306 unpack_block_time(le64_to_cpu(v_le), &b, &t);
307 dm_sm_inc_block(sm, b);
308 }
309
310 static void data_block_dec(void *context, const void *value_le)
311 {
312 struct dm_space_map *sm = context;
313 __le64 v_le;
314 uint64_t b;
315 uint32_t t;
316
317 memcpy(&v_le, value_le, sizeof(v_le));
318 unpack_block_time(le64_to_cpu(v_le), &b, &t);
319 dm_sm_dec_block(sm, b);
320 }
321
322 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
323 {
324 __le64 v1_le, v2_le;
325 uint64_t b1, b2;
326 uint32_t t;
327
328 memcpy(&v1_le, value1_le, sizeof(v1_le));
329 memcpy(&v2_le, value2_le, sizeof(v2_le));
330 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
331 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
332
333 return b1 == b2;
334 }
335
336 static void subtree_inc(void *context, const void *value)
337 {
338 struct dm_btree_info *info = context;
339 __le64 root_le;
340 uint64_t root;
341
342 memcpy(&root_le, value, sizeof(root_le));
343 root = le64_to_cpu(root_le);
344 dm_tm_inc(info->tm, root);
345 }
346
347 static void subtree_dec(void *context, const void *value)
348 {
349 struct dm_btree_info *info = context;
350 __le64 root_le;
351 uint64_t root;
352
353 memcpy(&root_le, value, sizeof(root_le));
354 root = le64_to_cpu(root_le);
355 if (dm_btree_del(info, root))
356 DMERR("btree delete failed");
357 }
358
359 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
360 {
361 __le64 v1_le, v2_le;
362 memcpy(&v1_le, value1_le, sizeof(v1_le));
363 memcpy(&v2_le, value2_le, sizeof(v2_le));
364
365 return v1_le == v2_le;
366 }
367
368 /*----------------------------------------------------------------*/
369
370 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
371 struct dm_block **sblock)
372 {
373 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
374 &sb_validator, sblock);
375 }
376
377 static int superblock_lock(struct dm_pool_metadata *pmd,
378 struct dm_block **sblock)
379 {
380 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
381 &sb_validator, sblock);
382 }
383
384 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
385 {
386 int r;
387 unsigned i;
388 struct dm_block *b;
389 __le64 *data_le, zero = cpu_to_le64(0);
390 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
391
392 /*
393 * We can't use a validator here - it may be all zeroes.
394 */
395 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
396 if (r)
397 return r;
398
399 data_le = dm_block_data(b);
400 *result = 1;
401 for (i = 0; i < block_size; i++) {
402 if (data_le[i] != zero) {
403 *result = 0;
404 break;
405 }
406 }
407
408 dm_bm_unlock(b);
409
410 return 0;
411 }
412
413 static void __setup_btree_details(struct dm_pool_metadata *pmd)
414 {
415 pmd->info.tm = pmd->tm;
416 pmd->info.levels = 2;
417 pmd->info.value_type.context = pmd->data_sm;
418 pmd->info.value_type.size = sizeof(__le64);
419 pmd->info.value_type.inc = data_block_inc;
420 pmd->info.value_type.dec = data_block_dec;
421 pmd->info.value_type.equal = data_block_equal;
422
423 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
424 pmd->nb_info.tm = pmd->nb_tm;
425
426 pmd->tl_info.tm = pmd->tm;
427 pmd->tl_info.levels = 1;
428 pmd->tl_info.value_type.context = &pmd->bl_info;
429 pmd->tl_info.value_type.size = sizeof(__le64);
430 pmd->tl_info.value_type.inc = subtree_inc;
431 pmd->tl_info.value_type.dec = subtree_dec;
432 pmd->tl_info.value_type.equal = subtree_equal;
433
434 pmd->bl_info.tm = pmd->tm;
435 pmd->bl_info.levels = 1;
436 pmd->bl_info.value_type.context = pmd->data_sm;
437 pmd->bl_info.value_type.size = sizeof(__le64);
438 pmd->bl_info.value_type.inc = data_block_inc;
439 pmd->bl_info.value_type.dec = data_block_dec;
440 pmd->bl_info.value_type.equal = data_block_equal;
441
442 pmd->details_info.tm = pmd->tm;
443 pmd->details_info.levels = 1;
444 pmd->details_info.value_type.context = NULL;
445 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
446 pmd->details_info.value_type.inc = NULL;
447 pmd->details_info.value_type.dec = NULL;
448 pmd->details_info.value_type.equal = NULL;
449 }
450
451 static int save_sm_roots(struct dm_pool_metadata *pmd)
452 {
453 int r;
454 size_t len;
455
456 r = dm_sm_root_size(pmd->metadata_sm, &len);
457 if (r < 0)
458 return r;
459
460 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
461 if (r < 0)
462 return r;
463
464 r = dm_sm_root_size(pmd->data_sm, &len);
465 if (r < 0)
466 return r;
467
468 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
469 }
470
471 static void copy_sm_roots(struct dm_pool_metadata *pmd,
472 struct thin_disk_superblock *disk)
473 {
474 memcpy(&disk->metadata_space_map_root,
475 &pmd->metadata_space_map_root,
476 sizeof(pmd->metadata_space_map_root));
477
478 memcpy(&disk->data_space_map_root,
479 &pmd->data_space_map_root,
480 sizeof(pmd->data_space_map_root));
481 }
482
483 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
484 {
485 int r;
486 struct dm_block *sblock;
487 struct thin_disk_superblock *disk_super;
488 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
489
490 if (bdev_size > THIN_METADATA_MAX_SECTORS)
491 bdev_size = THIN_METADATA_MAX_SECTORS;
492
493 r = dm_sm_commit(pmd->data_sm);
494 if (r < 0)
495 return r;
496
497 r = dm_tm_pre_commit(pmd->tm);
498 if (r < 0)
499 return r;
500
501 r = save_sm_roots(pmd);
502 if (r < 0)
503 return r;
504
505 r = superblock_lock_zero(pmd, &sblock);
506 if (r)
507 return r;
508
509 disk_super = dm_block_data(sblock);
510 disk_super->flags = 0;
511 memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
512 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
513 disk_super->version = cpu_to_le32(THIN_VERSION);
514 disk_super->time = 0;
515 disk_super->trans_id = 0;
516 disk_super->held_root = 0;
517
518 copy_sm_roots(pmd, disk_super);
519
520 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
521 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
522 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
523 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
524 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
525
526 return dm_tm_commit(pmd->tm, sblock);
527 }
528
529 static int __format_metadata(struct dm_pool_metadata *pmd)
530 {
531 int r;
532
533 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
534 &pmd->tm, &pmd->metadata_sm);
535 if (r < 0) {
536 DMERR("tm_create_with_sm failed");
537 return r;
538 }
539
540 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
541 if (IS_ERR(pmd->data_sm)) {
542 DMERR("sm_disk_create failed");
543 r = PTR_ERR(pmd->data_sm);
544 goto bad_cleanup_tm;
545 }
546
547 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
548 if (!pmd->nb_tm) {
549 DMERR("could not create non-blocking clone tm");
550 r = -ENOMEM;
551 goto bad_cleanup_data_sm;
552 }
553
554 __setup_btree_details(pmd);
555
556 r = dm_btree_empty(&pmd->info, &pmd->root);
557 if (r < 0)
558 goto bad_cleanup_nb_tm;
559
560 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
561 if (r < 0) {
562 DMERR("couldn't create devices root");
563 goto bad_cleanup_nb_tm;
564 }
565
566 r = __write_initial_superblock(pmd);
567 if (r)
568 goto bad_cleanup_nb_tm;
569
570 return 0;
571
572 bad_cleanup_nb_tm:
573 dm_tm_destroy(pmd->nb_tm);
574 bad_cleanup_data_sm:
575 dm_sm_destroy(pmd->data_sm);
576 bad_cleanup_tm:
577 dm_tm_destroy(pmd->tm);
578 dm_sm_destroy(pmd->metadata_sm);
579
580 return r;
581 }
582
583 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
584 struct dm_pool_metadata *pmd)
585 {
586 uint32_t features;
587
588 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
589 if (features) {
590 DMERR("could not access metadata due to unsupported optional features (%lx).",
591 (unsigned long)features);
592 return -EINVAL;
593 }
594
595 /*
596 * Check for read-only metadata to skip the following RDWR checks.
597 */
598 if (get_disk_ro(pmd->bdev->bd_disk))
599 return 0;
600
601 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
602 if (features) {
603 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
604 (unsigned long)features);
605 return -EINVAL;
606 }
607
608 return 0;
609 }
610
611 static int __open_metadata(struct dm_pool_metadata *pmd)
612 {
613 int r;
614 struct dm_block *sblock;
615 struct thin_disk_superblock *disk_super;
616
617 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
618 &sb_validator, &sblock);
619 if (r < 0) {
620 DMERR("couldn't read superblock");
621 return r;
622 }
623
624 disk_super = dm_block_data(sblock);
625
626 /* Verify the data block size hasn't changed */
627 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
628 DMERR("changing the data block size (from %u to %llu) is not supported",
629 le32_to_cpu(disk_super->data_block_size),
630 (unsigned long long)pmd->data_block_size);
631 r = -EINVAL;
632 goto bad_unlock_sblock;
633 }
634
635 r = __check_incompat_features(disk_super, pmd);
636 if (r < 0)
637 goto bad_unlock_sblock;
638
639 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
640 disk_super->metadata_space_map_root,
641 sizeof(disk_super->metadata_space_map_root),
642 &pmd->tm, &pmd->metadata_sm);
643 if (r < 0) {
644 DMERR("tm_open_with_sm failed");
645 goto bad_unlock_sblock;
646 }
647
648 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
649 sizeof(disk_super->data_space_map_root));
650 if (IS_ERR(pmd->data_sm)) {
651 DMERR("sm_disk_open failed");
652 r = PTR_ERR(pmd->data_sm);
653 goto bad_cleanup_tm;
654 }
655
656 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
657 if (!pmd->nb_tm) {
658 DMERR("could not create non-blocking clone tm");
659 r = -ENOMEM;
660 goto bad_cleanup_data_sm;
661 }
662
663 __setup_btree_details(pmd);
664 dm_bm_unlock(sblock);
665
666 return 0;
667
668 bad_cleanup_data_sm:
669 dm_sm_destroy(pmd->data_sm);
670 bad_cleanup_tm:
671 dm_tm_destroy(pmd->tm);
672 dm_sm_destroy(pmd->metadata_sm);
673 bad_unlock_sblock:
674 dm_bm_unlock(sblock);
675
676 return r;
677 }
678
679 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
680 {
681 int r, unformatted;
682
683 r = __superblock_all_zeroes(pmd->bm, &unformatted);
684 if (r)
685 return r;
686
687 if (unformatted)
688 return format_device ? __format_metadata(pmd) : -EPERM;
689
690 return __open_metadata(pmd);
691 }
692
693 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
694 {
695 int r;
696
697 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
698 THIN_MAX_CONCURRENT_LOCKS);
699 if (IS_ERR(pmd->bm)) {
700 DMERR("could not create block manager");
701 return PTR_ERR(pmd->bm);
702 }
703
704 r = __open_or_format_metadata(pmd, format_device);
705 if (r)
706 dm_block_manager_destroy(pmd->bm);
707
708 return r;
709 }
710
711 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
712 {
713 dm_sm_destroy(pmd->data_sm);
714 dm_sm_destroy(pmd->metadata_sm);
715 dm_tm_destroy(pmd->nb_tm);
716 dm_tm_destroy(pmd->tm);
717 dm_block_manager_destroy(pmd->bm);
718 }
719
720 static int __begin_transaction(struct dm_pool_metadata *pmd)
721 {
722 int r;
723 struct thin_disk_superblock *disk_super;
724 struct dm_block *sblock;
725
726 /*
727 * We re-read the superblock every time. Shouldn't need to do this
728 * really.
729 */
730 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
731 &sb_validator, &sblock);
732 if (r)
733 return r;
734
735 disk_super = dm_block_data(sblock);
736 pmd->time = le32_to_cpu(disk_super->time);
737 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
738 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
739 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
740 pmd->flags = le32_to_cpu(disk_super->flags);
741 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
742
743 dm_bm_unlock(sblock);
744 return 0;
745 }
746
747 static int __write_changed_details(struct dm_pool_metadata *pmd)
748 {
749 int r;
750 struct dm_thin_device *td, *tmp;
751 struct disk_device_details details;
752 uint64_t key;
753
754 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
755 if (!td->changed)
756 continue;
757
758 key = td->id;
759
760 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
761 details.transaction_id = cpu_to_le64(td->transaction_id);
762 details.creation_time = cpu_to_le32(td->creation_time);
763 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
764 __dm_bless_for_disk(&details);
765
766 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
767 &key, &details, &pmd->details_root);
768 if (r)
769 return r;
770
771 if (td->open_count)
772 td->changed = 0;
773 else {
774 list_del(&td->list);
775 kfree(td);
776 }
777 }
778
779 return 0;
780 }
781
782 static int __commit_transaction(struct dm_pool_metadata *pmd)
783 {
784 int r;
785 size_t metadata_len, data_len;
786 struct thin_disk_superblock *disk_super;
787 struct dm_block *sblock;
788
789 /*
790 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
791 */
792 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
793
794 r = __write_changed_details(pmd);
795 if (r < 0)
796 return r;
797
798 r = dm_sm_commit(pmd->data_sm);
799 if (r < 0)
800 return r;
801
802 r = dm_tm_pre_commit(pmd->tm);
803 if (r < 0)
804 return r;
805
806 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
807 if (r < 0)
808 return r;
809
810 r = dm_sm_root_size(pmd->data_sm, &data_len);
811 if (r < 0)
812 return r;
813
814 r = save_sm_roots(pmd);
815 if (r < 0)
816 return r;
817
818 r = superblock_lock(pmd, &sblock);
819 if (r)
820 return r;
821
822 disk_super = dm_block_data(sblock);
823 disk_super->time = cpu_to_le32(pmd->time);
824 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
825 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
826 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
827 disk_super->flags = cpu_to_le32(pmd->flags);
828
829 copy_sm_roots(pmd, disk_super);
830
831 return dm_tm_commit(pmd->tm, sblock);
832 }
833
834 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
835 {
836 int r;
837 dm_block_t total;
838 dm_block_t max_blocks = 4096; /* 16M */
839
840 r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
841 if (r) {
842 DMERR("could not get size of metadata device");
843 pmd->metadata_reserve = max_blocks;
844 } else
845 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
846 }
847
848 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
849 sector_t data_block_size,
850 bool format_device)
851 {
852 int r;
853 struct dm_pool_metadata *pmd;
854
855 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
856 if (!pmd) {
857 DMERR("could not allocate metadata struct");
858 return ERR_PTR(-ENOMEM);
859 }
860
861 init_rwsem(&pmd->root_lock);
862 pmd->time = 0;
863 INIT_LIST_HEAD(&pmd->thin_devices);
864 pmd->fail_io = false;
865 pmd->bdev = bdev;
866 pmd->data_block_size = data_block_size;
867
868 r = __create_persistent_data_objects(pmd, format_device);
869 if (r) {
870 kfree(pmd);
871 return ERR_PTR(r);
872 }
873
874 r = __begin_transaction(pmd);
875 if (r < 0) {
876 if (dm_pool_metadata_close(pmd) < 0)
877 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
878 return ERR_PTR(r);
879 }
880
881 __set_metadata_reserve(pmd);
882
883 return pmd;
884 }
885
886 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
887 {
888 int r;
889 unsigned open_devices = 0;
890 struct dm_thin_device *td, *tmp;
891
892 down_read(&pmd->root_lock);
893 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
894 if (td->open_count)
895 open_devices++;
896 else {
897 list_del(&td->list);
898 kfree(td);
899 }
900 }
901 up_read(&pmd->root_lock);
902
903 if (open_devices) {
904 DMERR("attempt to close pmd when %u device(s) are still open",
905 open_devices);
906 return -EBUSY;
907 }
908
909 if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
910 r = __commit_transaction(pmd);
911 if (r < 0)
912 DMWARN("%s: __commit_transaction() failed, error = %d",
913 __func__, r);
914 }
915
916 if (!pmd->fail_io)
917 __destroy_persistent_data_objects(pmd);
918
919 kfree(pmd);
920 return 0;
921 }
922
923 /*
924 * __open_device: Returns @td corresponding to device with id @dev,
925 * creating it if @create is set and incrementing @td->open_count.
926 * On failure, @td is undefined.
927 */
928 static int __open_device(struct dm_pool_metadata *pmd,
929 dm_thin_id dev, int create,
930 struct dm_thin_device **td)
931 {
932 int r, changed = 0;
933 struct dm_thin_device *td2;
934 uint64_t key = dev;
935 struct disk_device_details details_le;
936
937 /*
938 * If the device is already open, return it.
939 */
940 list_for_each_entry(td2, &pmd->thin_devices, list)
941 if (td2->id == dev) {
942 /*
943 * May not create an already-open device.
944 */
945 if (create)
946 return -EEXIST;
947
948 td2->open_count++;
949 *td = td2;
950 return 0;
951 }
952
953 /*
954 * Check the device exists.
955 */
956 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
957 &key, &details_le);
958 if (r) {
959 if (r != -ENODATA || !create)
960 return r;
961
962 /*
963 * Create new device.
964 */
965 changed = 1;
966 details_le.mapped_blocks = 0;
967 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
968 details_le.creation_time = cpu_to_le32(pmd->time);
969 details_le.snapshotted_time = cpu_to_le32(pmd->time);
970 }
971
972 *td = kmalloc(sizeof(**td), GFP_NOIO);
973 if (!*td)
974 return -ENOMEM;
975
976 (*td)->pmd = pmd;
977 (*td)->id = dev;
978 (*td)->open_count = 1;
979 (*td)->changed = changed;
980 (*td)->aborted_with_changes = false;
981 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
982 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
983 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
984 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
985
986 list_add(&(*td)->list, &pmd->thin_devices);
987
988 return 0;
989 }
990
991 static void __close_device(struct dm_thin_device *td)
992 {
993 --td->open_count;
994 }
995
996 static int __create_thin(struct dm_pool_metadata *pmd,
997 dm_thin_id dev)
998 {
999 int r;
1000 dm_block_t dev_root;
1001 uint64_t key = dev;
1002 struct disk_device_details details_le;
1003 struct dm_thin_device *td;
1004 __le64 value;
1005
1006 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1007 &key, &details_le);
1008 if (!r)
1009 return -EEXIST;
1010
1011 /*
1012 * Create an empty btree for the mappings.
1013 */
1014 r = dm_btree_empty(&pmd->bl_info, &dev_root);
1015 if (r)
1016 return r;
1017
1018 /*
1019 * Insert it into the main mapping tree.
1020 */
1021 value = cpu_to_le64(dev_root);
1022 __dm_bless_for_disk(&value);
1023 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1024 if (r) {
1025 dm_btree_del(&pmd->bl_info, dev_root);
1026 return r;
1027 }
1028
1029 r = __open_device(pmd, dev, 1, &td);
1030 if (r) {
1031 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1032 dm_btree_del(&pmd->bl_info, dev_root);
1033 return r;
1034 }
1035 __close_device(td);
1036
1037 return r;
1038 }
1039
1040 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1041 {
1042 int r = -EINVAL;
1043
1044 down_write(&pmd->root_lock);
1045 if (!pmd->fail_io)
1046 r = __create_thin(pmd, dev);
1047 up_write(&pmd->root_lock);
1048
1049 return r;
1050 }
1051
1052 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1053 struct dm_thin_device *snap,
1054 dm_thin_id origin, uint32_t time)
1055 {
1056 int r;
1057 struct dm_thin_device *td;
1058
1059 r = __open_device(pmd, origin, 0, &td);
1060 if (r)
1061 return r;
1062
1063 td->changed = 1;
1064 td->snapshotted_time = time;
1065
1066 snap->mapped_blocks = td->mapped_blocks;
1067 snap->snapshotted_time = time;
1068 __close_device(td);
1069
1070 return 0;
1071 }
1072
1073 static int __create_snap(struct dm_pool_metadata *pmd,
1074 dm_thin_id dev, dm_thin_id origin)
1075 {
1076 int r;
1077 dm_block_t origin_root;
1078 uint64_t key = origin, dev_key = dev;
1079 struct dm_thin_device *td;
1080 struct disk_device_details details_le;
1081 __le64 value;
1082
1083 /* check this device is unused */
1084 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1085 &dev_key, &details_le);
1086 if (!r)
1087 return -EEXIST;
1088
1089 /* find the mapping tree for the origin */
1090 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1091 if (r)
1092 return r;
1093 origin_root = le64_to_cpu(value);
1094
1095 /* clone the origin, an inc will do */
1096 dm_tm_inc(pmd->tm, origin_root);
1097
1098 /* insert into the main mapping tree */
1099 value = cpu_to_le64(origin_root);
1100 __dm_bless_for_disk(&value);
1101 key = dev;
1102 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1103 if (r) {
1104 dm_tm_dec(pmd->tm, origin_root);
1105 return r;
1106 }
1107
1108 pmd->time++;
1109
1110 r = __open_device(pmd, dev, 1, &td);
1111 if (r)
1112 goto bad;
1113
1114 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1115 __close_device(td);
1116
1117 if (r)
1118 goto bad;
1119
1120 return 0;
1121
1122 bad:
1123 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1124 dm_btree_remove(&pmd->details_info, pmd->details_root,
1125 &key, &pmd->details_root);
1126 return r;
1127 }
1128
1129 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1130 dm_thin_id dev,
1131 dm_thin_id origin)
1132 {
1133 int r = -EINVAL;
1134
1135 down_write(&pmd->root_lock);
1136 if (!pmd->fail_io)
1137 r = __create_snap(pmd, dev, origin);
1138 up_write(&pmd->root_lock);
1139
1140 return r;
1141 }
1142
1143 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1144 {
1145 int r;
1146 uint64_t key = dev;
1147 struct dm_thin_device *td;
1148
1149 /* TODO: failure should mark the transaction invalid */
1150 r = __open_device(pmd, dev, 0, &td);
1151 if (r)
1152 return r;
1153
1154 if (td->open_count > 1) {
1155 __close_device(td);
1156 return -EBUSY;
1157 }
1158
1159 list_del(&td->list);
1160 kfree(td);
1161 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1162 &key, &pmd->details_root);
1163 if (r)
1164 return r;
1165
1166 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1167 if (r)
1168 return r;
1169
1170 return 0;
1171 }
1172
1173 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1174 dm_thin_id dev)
1175 {
1176 int r = -EINVAL;
1177
1178 down_write(&pmd->root_lock);
1179 if (!pmd->fail_io)
1180 r = __delete_device(pmd, dev);
1181 up_write(&pmd->root_lock);
1182
1183 return r;
1184 }
1185
1186 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1187 uint64_t current_id,
1188 uint64_t new_id)
1189 {
1190 int r = -EINVAL;
1191
1192 down_write(&pmd->root_lock);
1193
1194 if (pmd->fail_io)
1195 goto out;
1196
1197 if (pmd->trans_id != current_id) {
1198 DMERR("mismatched transaction id");
1199 goto out;
1200 }
1201
1202 pmd->trans_id = new_id;
1203 r = 0;
1204
1205 out:
1206 up_write(&pmd->root_lock);
1207
1208 return r;
1209 }
1210
1211 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1212 uint64_t *result)
1213 {
1214 int r = -EINVAL;
1215
1216 down_read(&pmd->root_lock);
1217 if (!pmd->fail_io) {
1218 *result = pmd->trans_id;
1219 r = 0;
1220 }
1221 up_read(&pmd->root_lock);
1222
1223 return r;
1224 }
1225
1226 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1227 {
1228 int r, inc;
1229 struct thin_disk_superblock *disk_super;
1230 struct dm_block *copy, *sblock;
1231 dm_block_t held_root;
1232
1233 /*
1234 * We commit to ensure the btree roots which we increment in a
1235 * moment are up to date.
1236 */
1237 __commit_transaction(pmd);
1238
1239 /*
1240 * Copy the superblock.
1241 */
1242 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1243 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1244 &sb_validator, &copy, &inc);
1245 if (r)
1246 return r;
1247
1248 BUG_ON(!inc);
1249
1250 held_root = dm_block_location(copy);
1251 disk_super = dm_block_data(copy);
1252
1253 if (le64_to_cpu(disk_super->held_root)) {
1254 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1255
1256 dm_tm_dec(pmd->tm, held_root);
1257 dm_tm_unlock(pmd->tm, copy);
1258 return -EBUSY;
1259 }
1260
1261 /*
1262 * Wipe the spacemap since we're not publishing this.
1263 */
1264 memset(&disk_super->data_space_map_root, 0,
1265 sizeof(disk_super->data_space_map_root));
1266 memset(&disk_super->metadata_space_map_root, 0,
1267 sizeof(disk_super->metadata_space_map_root));
1268
1269 /*
1270 * Increment the data structures that need to be preserved.
1271 */
1272 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1273 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1274 dm_tm_unlock(pmd->tm, copy);
1275
1276 /*
1277 * Write the held root into the superblock.
1278 */
1279 r = superblock_lock(pmd, &sblock);
1280 if (r) {
1281 dm_tm_dec(pmd->tm, held_root);
1282 return r;
1283 }
1284
1285 disk_super = dm_block_data(sblock);
1286 disk_super->held_root = cpu_to_le64(held_root);
1287 dm_bm_unlock(sblock);
1288 return 0;
1289 }
1290
1291 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1292 {
1293 int r = -EINVAL;
1294
1295 down_write(&pmd->root_lock);
1296 if (!pmd->fail_io)
1297 r = __reserve_metadata_snap(pmd);
1298 up_write(&pmd->root_lock);
1299
1300 return r;
1301 }
1302
1303 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1304 {
1305 int r;
1306 struct thin_disk_superblock *disk_super;
1307 struct dm_block *sblock, *copy;
1308 dm_block_t held_root;
1309
1310 r = superblock_lock(pmd, &sblock);
1311 if (r)
1312 return r;
1313
1314 disk_super = dm_block_data(sblock);
1315 held_root = le64_to_cpu(disk_super->held_root);
1316 disk_super->held_root = cpu_to_le64(0);
1317
1318 dm_bm_unlock(sblock);
1319
1320 if (!held_root) {
1321 DMWARN("No pool metadata snapshot found: nothing to release.");
1322 return -EINVAL;
1323 }
1324
1325 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1326 if (r)
1327 return r;
1328
1329 disk_super = dm_block_data(copy);
1330 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1331 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1332 dm_sm_dec_block(pmd->metadata_sm, held_root);
1333
1334 dm_tm_unlock(pmd->tm, copy);
1335
1336 return 0;
1337 }
1338
1339 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1340 {
1341 int r = -EINVAL;
1342
1343 down_write(&pmd->root_lock);
1344 if (!pmd->fail_io)
1345 r = __release_metadata_snap(pmd);
1346 up_write(&pmd->root_lock);
1347
1348 return r;
1349 }
1350
1351 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1352 dm_block_t *result)
1353 {
1354 int r;
1355 struct thin_disk_superblock *disk_super;
1356 struct dm_block *sblock;
1357
1358 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1359 &sb_validator, &sblock);
1360 if (r)
1361 return r;
1362
1363 disk_super = dm_block_data(sblock);
1364 *result = le64_to_cpu(disk_super->held_root);
1365
1366 dm_bm_unlock(sblock);
1367
1368 return 0;
1369 }
1370
1371 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1372 dm_block_t *result)
1373 {
1374 int r = -EINVAL;
1375
1376 down_read(&pmd->root_lock);
1377 if (!pmd->fail_io)
1378 r = __get_metadata_snap(pmd, result);
1379 up_read(&pmd->root_lock);
1380
1381 return r;
1382 }
1383
1384 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1385 struct dm_thin_device **td)
1386 {
1387 int r = -EINVAL;
1388
1389 down_write(&pmd->root_lock);
1390 if (!pmd->fail_io)
1391 r = __open_device(pmd, dev, 0, td);
1392 up_write(&pmd->root_lock);
1393
1394 return r;
1395 }
1396
1397 int dm_pool_close_thin_device(struct dm_thin_device *td)
1398 {
1399 down_write(&td->pmd->root_lock);
1400 __close_device(td);
1401 up_write(&td->pmd->root_lock);
1402
1403 return 0;
1404 }
1405
1406 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1407 {
1408 return td->id;
1409 }
1410
1411 /*
1412 * Check whether @time (of block creation) is older than @td's last snapshot.
1413 * If so then the associated block is shared with the last snapshot device.
1414 * Any block on a device created *after* the device last got snapshotted is
1415 * necessarily not shared.
1416 */
1417 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1418 {
1419 return td->snapshotted_time > time;
1420 }
1421
1422 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1423 struct dm_thin_lookup_result *result)
1424 {
1425 uint64_t block_time = 0;
1426 dm_block_t exception_block;
1427 uint32_t exception_time;
1428
1429 block_time = le64_to_cpu(value);
1430 unpack_block_time(block_time, &exception_block, &exception_time);
1431 result->block = exception_block;
1432 result->shared = __snapshotted_since(td, exception_time);
1433 }
1434
1435 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1436 int can_issue_io, struct dm_thin_lookup_result *result)
1437 {
1438 int r;
1439 __le64 value;
1440 struct dm_pool_metadata *pmd = td->pmd;
1441 dm_block_t keys[2] = { td->id, block };
1442 struct dm_btree_info *info;
1443
1444 if (can_issue_io) {
1445 info = &pmd->info;
1446 } else
1447 info = &pmd->nb_info;
1448
1449 r = dm_btree_lookup(info, pmd->root, keys, &value);
1450 if (!r)
1451 unpack_lookup_result(td, value, result);
1452
1453 return r;
1454 }
1455
1456 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1457 int can_issue_io, struct dm_thin_lookup_result *result)
1458 {
1459 int r;
1460 struct dm_pool_metadata *pmd = td->pmd;
1461
1462 down_read(&pmd->root_lock);
1463 if (pmd->fail_io) {
1464 up_read(&pmd->root_lock);
1465 return -EINVAL;
1466 }
1467
1468 r = __find_block(td, block, can_issue_io, result);
1469
1470 up_read(&pmd->root_lock);
1471 return r;
1472 }
1473
1474 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1475 dm_block_t *vblock,
1476 struct dm_thin_lookup_result *result)
1477 {
1478 int r;
1479 __le64 value;
1480 struct dm_pool_metadata *pmd = td->pmd;
1481 dm_block_t keys[2] = { td->id, block };
1482
1483 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1484 if (!r)
1485 unpack_lookup_result(td, value, result);
1486
1487 return r;
1488 }
1489
1490 static int __find_mapped_range(struct dm_thin_device *td,
1491 dm_block_t begin, dm_block_t end,
1492 dm_block_t *thin_begin, dm_block_t *thin_end,
1493 dm_block_t *pool_begin, bool *maybe_shared)
1494 {
1495 int r;
1496 dm_block_t pool_end;
1497 struct dm_thin_lookup_result lookup;
1498
1499 if (end < begin)
1500 return -ENODATA;
1501
1502 r = __find_next_mapped_block(td, begin, &begin, &lookup);
1503 if (r)
1504 return r;
1505
1506 if (begin >= end)
1507 return -ENODATA;
1508
1509 *thin_begin = begin;
1510 *pool_begin = lookup.block;
1511 *maybe_shared = lookup.shared;
1512
1513 begin++;
1514 pool_end = *pool_begin + 1;
1515 while (begin != end) {
1516 r = __find_block(td, begin, true, &lookup);
1517 if (r) {
1518 if (r == -ENODATA)
1519 break;
1520 else
1521 return r;
1522 }
1523
1524 if ((lookup.block != pool_end) ||
1525 (lookup.shared != *maybe_shared))
1526 break;
1527
1528 pool_end++;
1529 begin++;
1530 }
1531
1532 *thin_end = begin;
1533 return 0;
1534 }
1535
1536 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1537 dm_block_t begin, dm_block_t end,
1538 dm_block_t *thin_begin, dm_block_t *thin_end,
1539 dm_block_t *pool_begin, bool *maybe_shared)
1540 {
1541 int r = -EINVAL;
1542 struct dm_pool_metadata *pmd = td->pmd;
1543
1544 down_read(&pmd->root_lock);
1545 if (!pmd->fail_io) {
1546 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1547 pool_begin, maybe_shared);
1548 }
1549 up_read(&pmd->root_lock);
1550
1551 return r;
1552 }
1553
1554 static int __insert(struct dm_thin_device *td, dm_block_t block,
1555 dm_block_t data_block)
1556 {
1557 int r, inserted;
1558 __le64 value;
1559 struct dm_pool_metadata *pmd = td->pmd;
1560 dm_block_t keys[2] = { td->id, block };
1561
1562 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1563 __dm_bless_for_disk(&value);
1564
1565 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1566 &pmd->root, &inserted);
1567 if (r)
1568 return r;
1569
1570 td->changed = 1;
1571 if (inserted)
1572 td->mapped_blocks++;
1573
1574 return 0;
1575 }
1576
1577 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1578 dm_block_t data_block)
1579 {
1580 int r = -EINVAL;
1581
1582 down_write(&td->pmd->root_lock);
1583 if (!td->pmd->fail_io)
1584 r = __insert(td, block, data_block);
1585 up_write(&td->pmd->root_lock);
1586
1587 return r;
1588 }
1589
1590 static int __remove(struct dm_thin_device *td, dm_block_t block)
1591 {
1592 int r;
1593 struct dm_pool_metadata *pmd = td->pmd;
1594 dm_block_t keys[2] = { td->id, block };
1595
1596 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1597 if (r)
1598 return r;
1599
1600 td->mapped_blocks--;
1601 td->changed = 1;
1602
1603 return 0;
1604 }
1605
1606 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1607 {
1608 int r;
1609 unsigned count, total_count = 0;
1610 struct dm_pool_metadata *pmd = td->pmd;
1611 dm_block_t keys[1] = { td->id };
1612 __le64 value;
1613 dm_block_t mapping_root;
1614
1615 /*
1616 * Find the mapping tree
1617 */
1618 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1619 if (r)
1620 return r;
1621
1622 /*
1623 * Remove from the mapping tree, taking care to inc the
1624 * ref count so it doesn't get deleted.
1625 */
1626 mapping_root = le64_to_cpu(value);
1627 dm_tm_inc(pmd->tm, mapping_root);
1628 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1629 if (r)
1630 return r;
1631
1632 /*
1633 * Remove leaves stops at the first unmapped entry, so we have to
1634 * loop round finding mapped ranges.
1635 */
1636 while (begin < end) {
1637 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1638 if (r == -ENODATA)
1639 break;
1640
1641 if (r)
1642 return r;
1643
1644 if (begin >= end)
1645 break;
1646
1647 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1648 if (r)
1649 return r;
1650
1651 total_count += count;
1652 }
1653
1654 td->mapped_blocks -= total_count;
1655 td->changed = 1;
1656
1657 /*
1658 * Reinsert the mapping tree.
1659 */
1660 value = cpu_to_le64(mapping_root);
1661 __dm_bless_for_disk(&value);
1662 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1663 }
1664
1665 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1666 {
1667 int r = -EINVAL;
1668
1669 down_write(&td->pmd->root_lock);
1670 if (!td->pmd->fail_io)
1671 r = __remove(td, block);
1672 up_write(&td->pmd->root_lock);
1673
1674 return r;
1675 }
1676
1677 int dm_thin_remove_range(struct dm_thin_device *td,
1678 dm_block_t begin, dm_block_t end)
1679 {
1680 int r = -EINVAL;
1681
1682 down_write(&td->pmd->root_lock);
1683 if (!td->pmd->fail_io)
1684 r = __remove_range(td, begin, end);
1685 up_write(&td->pmd->root_lock);
1686
1687 return r;
1688 }
1689
1690 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1691 {
1692 int r;
1693 uint32_t ref_count;
1694
1695 down_read(&pmd->root_lock);
1696 r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1697 if (!r)
1698 *result = (ref_count > 1);
1699 up_read(&pmd->root_lock);
1700
1701 return r;
1702 }
1703
1704 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1705 {
1706 int r = 0;
1707
1708 down_write(&pmd->root_lock);
1709 for (; b != e; b++) {
1710 r = dm_sm_inc_block(pmd->data_sm, b);
1711 if (r)
1712 break;
1713 }
1714 up_write(&pmd->root_lock);
1715
1716 return r;
1717 }
1718
1719 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1720 {
1721 int r = 0;
1722
1723 down_write(&pmd->root_lock);
1724 for (; b != e; b++) {
1725 r = dm_sm_dec_block(pmd->data_sm, b);
1726 if (r)
1727 break;
1728 }
1729 up_write(&pmd->root_lock);
1730
1731 return r;
1732 }
1733
1734 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1735 {
1736 int r;
1737
1738 down_read(&td->pmd->root_lock);
1739 r = td->changed;
1740 up_read(&td->pmd->root_lock);
1741
1742 return r;
1743 }
1744
1745 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1746 {
1747 bool r = false;
1748 struct dm_thin_device *td, *tmp;
1749
1750 down_read(&pmd->root_lock);
1751 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1752 if (td->changed) {
1753 r = td->changed;
1754 break;
1755 }
1756 }
1757 up_read(&pmd->root_lock);
1758
1759 return r;
1760 }
1761
1762 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1763 {
1764 bool r;
1765
1766 down_read(&td->pmd->root_lock);
1767 r = td->aborted_with_changes;
1768 up_read(&td->pmd->root_lock);
1769
1770 return r;
1771 }
1772
1773 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1774 {
1775 int r = -EINVAL;
1776
1777 down_write(&pmd->root_lock);
1778 if (!pmd->fail_io)
1779 r = dm_sm_new_block(pmd->data_sm, result);
1780 up_write(&pmd->root_lock);
1781
1782 return r;
1783 }
1784
1785 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1786 {
1787 int r = -EINVAL;
1788
1789 down_write(&pmd->root_lock);
1790 if (pmd->fail_io)
1791 goto out;
1792
1793 r = __commit_transaction(pmd);
1794 if (r <= 0)
1795 goto out;
1796
1797 /*
1798 * Open the next transaction.
1799 */
1800 r = __begin_transaction(pmd);
1801 out:
1802 up_write(&pmd->root_lock);
1803 return r;
1804 }
1805
1806 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1807 {
1808 struct dm_thin_device *td;
1809
1810 list_for_each_entry(td, &pmd->thin_devices, list)
1811 td->aborted_with_changes = td->changed;
1812 }
1813
1814 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1815 {
1816 int r = -EINVAL;
1817
1818 down_write(&pmd->root_lock);
1819 if (pmd->fail_io)
1820 goto out;
1821
1822 __set_abort_with_changes_flags(pmd);
1823 __destroy_persistent_data_objects(pmd);
1824 r = __create_persistent_data_objects(pmd, false);
1825 if (r)
1826 pmd->fail_io = true;
1827
1828 out:
1829 up_write(&pmd->root_lock);
1830
1831 return r;
1832 }
1833
1834 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1835 {
1836 int r = -EINVAL;
1837
1838 down_read(&pmd->root_lock);
1839 if (!pmd->fail_io)
1840 r = dm_sm_get_nr_free(pmd->data_sm, result);
1841 up_read(&pmd->root_lock);
1842
1843 return r;
1844 }
1845
1846 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1847 dm_block_t *result)
1848 {
1849 int r = -EINVAL;
1850
1851 down_read(&pmd->root_lock);
1852 if (!pmd->fail_io)
1853 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1854
1855 if (!r) {
1856 if (*result < pmd->metadata_reserve)
1857 *result = 0;
1858 else
1859 *result -= pmd->metadata_reserve;
1860 }
1861 up_read(&pmd->root_lock);
1862
1863 return r;
1864 }
1865
1866 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1867 dm_block_t *result)
1868 {
1869 int r = -EINVAL;
1870
1871 down_read(&pmd->root_lock);
1872 if (!pmd->fail_io)
1873 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1874 up_read(&pmd->root_lock);
1875
1876 return r;
1877 }
1878
1879 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1880 {
1881 int r = -EINVAL;
1882
1883 down_read(&pmd->root_lock);
1884 if (!pmd->fail_io)
1885 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1886 up_read(&pmd->root_lock);
1887
1888 return r;
1889 }
1890
1891 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1892 {
1893 int r = -EINVAL;
1894 struct dm_pool_metadata *pmd = td->pmd;
1895
1896 down_read(&pmd->root_lock);
1897 if (!pmd->fail_io) {
1898 *result = td->mapped_blocks;
1899 r = 0;
1900 }
1901 up_read(&pmd->root_lock);
1902
1903 return r;
1904 }
1905
1906 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1907 {
1908 int r;
1909 __le64 value_le;
1910 dm_block_t thin_root;
1911 struct dm_pool_metadata *pmd = td->pmd;
1912
1913 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1914 if (r)
1915 return r;
1916
1917 thin_root = le64_to_cpu(value_le);
1918
1919 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1920 }
1921
1922 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1923 dm_block_t *result)
1924 {
1925 int r = -EINVAL;
1926 struct dm_pool_metadata *pmd = td->pmd;
1927
1928 down_read(&pmd->root_lock);
1929 if (!pmd->fail_io)
1930 r = __highest_block(td, result);
1931 up_read(&pmd->root_lock);
1932
1933 return r;
1934 }
1935
1936 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1937 {
1938 int r;
1939 dm_block_t old_count;
1940
1941 r = dm_sm_get_nr_blocks(sm, &old_count);
1942 if (r)
1943 return r;
1944
1945 if (new_count == old_count)
1946 return 0;
1947
1948 if (new_count < old_count) {
1949 DMERR("cannot reduce size of space map");
1950 return -EINVAL;
1951 }
1952
1953 return dm_sm_extend(sm, new_count - old_count);
1954 }
1955
1956 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1957 {
1958 int r = -EINVAL;
1959
1960 down_write(&pmd->root_lock);
1961 if (!pmd->fail_io)
1962 r = __resize_space_map(pmd->data_sm, new_count);
1963 up_write(&pmd->root_lock);
1964
1965 return r;
1966 }
1967
1968 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1969 {
1970 int r = -EINVAL;
1971
1972 down_write(&pmd->root_lock);
1973 if (!pmd->fail_io) {
1974 r = __resize_space_map(pmd->metadata_sm, new_count);
1975 if (!r)
1976 __set_metadata_reserve(pmd);
1977 }
1978 up_write(&pmd->root_lock);
1979
1980 return r;
1981 }
1982
1983 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1984 {
1985 down_write(&pmd->root_lock);
1986 dm_bm_set_read_only(pmd->bm);
1987 up_write(&pmd->root_lock);
1988 }
1989
1990 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1991 {
1992 down_write(&pmd->root_lock);
1993 dm_bm_set_read_write(pmd->bm);
1994 up_write(&pmd->root_lock);
1995 }
1996
1997 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1998 dm_block_t threshold,
1999 dm_sm_threshold_fn fn,
2000 void *context)
2001 {
2002 int r;
2003
2004 down_write(&pmd->root_lock);
2005 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2006 up_write(&pmd->root_lock);
2007
2008 return r;
2009 }
2010
2011 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2012 {
2013 int r;
2014 struct dm_block *sblock;
2015 struct thin_disk_superblock *disk_super;
2016
2017 down_write(&pmd->root_lock);
2018 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2019
2020 r = superblock_lock(pmd, &sblock);
2021 if (r) {
2022 DMERR("couldn't read superblock");
2023 goto out;
2024 }
2025
2026 disk_super = dm_block_data(sblock);
2027 disk_super->flags = cpu_to_le32(pmd->flags);
2028
2029 dm_bm_unlock(sblock);
2030 out:
2031 up_write(&pmd->root_lock);
2032 return r;
2033 }
2034
2035 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2036 {
2037 bool needs_check;
2038
2039 down_read(&pmd->root_lock);
2040 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2041 up_read(&pmd->root_lock);
2042
2043 return needs_check;
2044 }
2045
2046 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2047 {
2048 down_read(&pmd->root_lock);
2049 if (!pmd->fail_io)
2050 dm_tm_issue_prefetches(pmd->tm);
2051 up_read(&pmd->root_lock);
2052 }