]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/md/dm-thin-metadata.c
x86/speculation: Add a common function for MD_CLEAR mitigation update
[mirror_ubuntu-jammy-kernel.git] / drivers / md / dm-thin-metadata.c
1 /*
2 * Copyright (C) 2011-2012 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
19 *
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
22 *
23 * - A space map managing the metadata blocks.
24 *
25 * - A space map managing the data blocks.
26 *
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28 *
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 40
32 * bits.
33 *
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
41 *
42 * Space maps have 2 btrees:
43 *
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
47 *
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
50 *
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
55 *
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
59 *
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
65 *
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
70 *
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81
82 /*
83 * For btree insert:
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
86 * For btree remove:
87 * 2 for shadow spine +
88 * 4 for rebalance 3 child node
89 */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94
95 /*
96 * Little endian on-disk superblock and device details.
97 */
98 struct thin_disk_superblock {
99 __le32 csum; /* Checksum of superblock except for this field. */
100 __le32 flags;
101 __le64 blocknr; /* This block number, dm_block_t. */
102
103 __u8 uuid[16];
104 __le64 magic;
105 __le32 version;
106 __le32 time;
107
108 __le64 trans_id;
109
110 /*
111 * Root held by userspace transactions.
112 */
113 __le64 held_root;
114
115 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117
118 /*
119 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 */
121 __le64 data_mapping_root;
122
123 /*
124 * Device detail root mapping dev_id -> device_details
125 */
126 __le64 device_details_root;
127
128 __le32 data_block_size; /* In 512-byte sectors. */
129
130 __le32 metadata_block_size; /* In 512-byte sectors. */
131 __le64 metadata_nr_blocks;
132
133 __le32 compat_flags;
134 __le32 compat_ro_flags;
135 __le32 incompat_flags;
136 } __packed;
137
138 struct disk_device_details {
139 __le64 mapped_blocks;
140 __le64 transaction_id; /* When created. */
141 __le32 creation_time;
142 __le32 snapshotted_time;
143 } __packed;
144
145 struct dm_pool_metadata {
146 struct hlist_node hash;
147
148 struct block_device *bdev;
149 struct dm_block_manager *bm;
150 struct dm_space_map *metadata_sm;
151 struct dm_space_map *data_sm;
152 struct dm_transaction_manager *tm;
153 struct dm_transaction_manager *nb_tm;
154
155 /*
156 * Two-level btree.
157 * First level holds thin_dev_t.
158 * Second level holds mappings.
159 */
160 struct dm_btree_info info;
161
162 /*
163 * Non-blocking version of the above.
164 */
165 struct dm_btree_info nb_info;
166
167 /*
168 * Just the top level for deleting whole devices.
169 */
170 struct dm_btree_info tl_info;
171
172 /*
173 * Just the bottom level for creating new devices.
174 */
175 struct dm_btree_info bl_info;
176
177 /*
178 * Describes the device details btree.
179 */
180 struct dm_btree_info details_info;
181
182 struct rw_semaphore root_lock;
183 uint32_t time;
184 dm_block_t root;
185 dm_block_t details_root;
186 struct list_head thin_devices;
187 uint64_t trans_id;
188 unsigned long flags;
189 sector_t data_block_size;
190
191 /*
192 * Pre-commit callback.
193 *
194 * This allows the thin provisioning target to run a callback before
195 * the metadata are committed.
196 */
197 dm_pool_pre_commit_fn pre_commit_fn;
198 void *pre_commit_context;
199
200 /*
201 * We reserve a section of the metadata for commit overhead.
202 * All reported space does *not* include this.
203 */
204 dm_block_t metadata_reserve;
205
206 /*
207 * Set if a transaction has to be aborted but the attempt to roll back
208 * to the previous (good) transaction failed. The only pool metadata
209 * operation possible in this state is the closing of the device.
210 */
211 bool fail_io:1;
212
213 /*
214 * Set once a thin-pool has been accessed through one of the interfaces
215 * that imply the pool is in-service (e.g. thin devices created/deleted,
216 * thin-pool message, metadata snapshots, etc).
217 */
218 bool in_service:1;
219
220 /*
221 * Reading the space map roots can fail, so we read it into these
222 * buffers before the superblock is locked and updated.
223 */
224 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
225 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
226 };
227
228 struct dm_thin_device {
229 struct list_head list;
230 struct dm_pool_metadata *pmd;
231 dm_thin_id id;
232
233 int open_count;
234 bool changed:1;
235 bool aborted_with_changes:1;
236 uint64_t mapped_blocks;
237 uint64_t transaction_id;
238 uint32_t creation_time;
239 uint32_t snapshotted_time;
240 };
241
242 /*----------------------------------------------------------------
243 * superblock validator
244 *--------------------------------------------------------------*/
245
246 #define SUPERBLOCK_CSUM_XOR 160774
247
248 static void sb_prepare_for_write(struct dm_block_validator *v,
249 struct dm_block *b,
250 size_t block_size)
251 {
252 struct thin_disk_superblock *disk_super = dm_block_data(b);
253
254 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
255 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
256 block_size - sizeof(__le32),
257 SUPERBLOCK_CSUM_XOR));
258 }
259
260 static int sb_check(struct dm_block_validator *v,
261 struct dm_block *b,
262 size_t block_size)
263 {
264 struct thin_disk_superblock *disk_super = dm_block_data(b);
265 __le32 csum_le;
266
267 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
268 DMERR("sb_check failed: blocknr %llu: "
269 "wanted %llu", le64_to_cpu(disk_super->blocknr),
270 (unsigned long long)dm_block_location(b));
271 return -ENOTBLK;
272 }
273
274 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
275 DMERR("sb_check failed: magic %llu: "
276 "wanted %llu", le64_to_cpu(disk_super->magic),
277 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
278 return -EILSEQ;
279 }
280
281 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
282 block_size - sizeof(__le32),
283 SUPERBLOCK_CSUM_XOR));
284 if (csum_le != disk_super->csum) {
285 DMERR("sb_check failed: csum %u: wanted %u",
286 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
287 return -EILSEQ;
288 }
289
290 return 0;
291 }
292
293 static struct dm_block_validator sb_validator = {
294 .name = "superblock",
295 .prepare_for_write = sb_prepare_for_write,
296 .check = sb_check
297 };
298
299 /*----------------------------------------------------------------
300 * Methods for the btree value types
301 *--------------------------------------------------------------*/
302
303 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
304 {
305 return (b << 24) | t;
306 }
307
308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
309 {
310 *b = v >> 24;
311 *t = v & ((1 << 24) - 1);
312 }
313
314 /*
315 * It's more efficient to call dm_sm_{inc,dec}_blocks as few times as
316 * possible. 'with_runs' reads contiguous runs of blocks, and calls the
317 * given sm function.
318 */
319 typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t);
320
321 static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned count, run_fn fn)
322 {
323 uint64_t b, begin, end;
324 uint32_t t;
325 bool in_run = false;
326 unsigned i;
327
328 for (i = 0; i < count; i++, value_le++) {
329 /* We know value_le is 8 byte aligned */
330 unpack_block_time(le64_to_cpu(*value_le), &b, &t);
331
332 if (in_run) {
333 if (b == end) {
334 end++;
335 } else {
336 fn(sm, begin, end);
337 begin = b;
338 end = b + 1;
339 }
340 } else {
341 in_run = true;
342 begin = b;
343 end = b + 1;
344 }
345 }
346
347 if (in_run)
348 fn(sm, begin, end);
349 }
350
351 static void data_block_inc(void *context, const void *value_le, unsigned count)
352 {
353 with_runs((struct dm_space_map *) context,
354 (const __le64 *) value_le, count, dm_sm_inc_blocks);
355 }
356
357 static void data_block_dec(void *context, const void *value_le, unsigned count)
358 {
359 with_runs((struct dm_space_map *) context,
360 (const __le64 *) value_le, count, dm_sm_dec_blocks);
361 }
362
363 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
364 {
365 __le64 v1_le, v2_le;
366 uint64_t b1, b2;
367 uint32_t t;
368
369 memcpy(&v1_le, value1_le, sizeof(v1_le));
370 memcpy(&v2_le, value2_le, sizeof(v2_le));
371 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
372 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
373
374 return b1 == b2;
375 }
376
377 static void subtree_inc(void *context, const void *value, unsigned count)
378 {
379 struct dm_btree_info *info = context;
380 const __le64 *root_le = value;
381 unsigned i;
382
383 for (i = 0; i < count; i++, root_le++)
384 dm_tm_inc(info->tm, le64_to_cpu(*root_le));
385 }
386
387 static void subtree_dec(void *context, const void *value, unsigned count)
388 {
389 struct dm_btree_info *info = context;
390 const __le64 *root_le = value;
391 unsigned i;
392
393 for (i = 0; i < count; i++, root_le++)
394 if (dm_btree_del(info, le64_to_cpu(*root_le)))
395 DMERR("btree delete failed");
396 }
397
398 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
399 {
400 __le64 v1_le, v2_le;
401 memcpy(&v1_le, value1_le, sizeof(v1_le));
402 memcpy(&v2_le, value2_le, sizeof(v2_le));
403
404 return v1_le == v2_le;
405 }
406
407 /*----------------------------------------------------------------*/
408
409 /*
410 * Variant that is used for in-core only changes or code that
411 * shouldn't put the pool in service on its own (e.g. commit).
412 */
413 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
414 __acquires(pmd->root_lock)
415 {
416 down_write(&pmd->root_lock);
417 }
418
419 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
420 {
421 pmd_write_lock_in_core(pmd);
422 if (unlikely(!pmd->in_service))
423 pmd->in_service = true;
424 }
425
426 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
427 __releases(pmd->root_lock)
428 {
429 up_write(&pmd->root_lock);
430 }
431
432 /*----------------------------------------------------------------*/
433
434 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
435 struct dm_block **sblock)
436 {
437 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
438 &sb_validator, sblock);
439 }
440
441 static int superblock_lock(struct dm_pool_metadata *pmd,
442 struct dm_block **sblock)
443 {
444 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
445 &sb_validator, sblock);
446 }
447
448 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
449 {
450 int r;
451 unsigned i;
452 struct dm_block *b;
453 __le64 *data_le, zero = cpu_to_le64(0);
454 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
455
456 /*
457 * We can't use a validator here - it may be all zeroes.
458 */
459 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
460 if (r)
461 return r;
462
463 data_le = dm_block_data(b);
464 *result = 1;
465 for (i = 0; i < block_size; i++) {
466 if (data_le[i] != zero) {
467 *result = 0;
468 break;
469 }
470 }
471
472 dm_bm_unlock(b);
473
474 return 0;
475 }
476
477 static void __setup_btree_details(struct dm_pool_metadata *pmd)
478 {
479 pmd->info.tm = pmd->tm;
480 pmd->info.levels = 2;
481 pmd->info.value_type.context = pmd->data_sm;
482 pmd->info.value_type.size = sizeof(__le64);
483 pmd->info.value_type.inc = data_block_inc;
484 pmd->info.value_type.dec = data_block_dec;
485 pmd->info.value_type.equal = data_block_equal;
486
487 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
488 pmd->nb_info.tm = pmd->nb_tm;
489
490 pmd->tl_info.tm = pmd->tm;
491 pmd->tl_info.levels = 1;
492 pmd->tl_info.value_type.context = &pmd->bl_info;
493 pmd->tl_info.value_type.size = sizeof(__le64);
494 pmd->tl_info.value_type.inc = subtree_inc;
495 pmd->tl_info.value_type.dec = subtree_dec;
496 pmd->tl_info.value_type.equal = subtree_equal;
497
498 pmd->bl_info.tm = pmd->tm;
499 pmd->bl_info.levels = 1;
500 pmd->bl_info.value_type.context = pmd->data_sm;
501 pmd->bl_info.value_type.size = sizeof(__le64);
502 pmd->bl_info.value_type.inc = data_block_inc;
503 pmd->bl_info.value_type.dec = data_block_dec;
504 pmd->bl_info.value_type.equal = data_block_equal;
505
506 pmd->details_info.tm = pmd->tm;
507 pmd->details_info.levels = 1;
508 pmd->details_info.value_type.context = NULL;
509 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
510 pmd->details_info.value_type.inc = NULL;
511 pmd->details_info.value_type.dec = NULL;
512 pmd->details_info.value_type.equal = NULL;
513 }
514
515 static int save_sm_roots(struct dm_pool_metadata *pmd)
516 {
517 int r;
518 size_t len;
519
520 r = dm_sm_root_size(pmd->metadata_sm, &len);
521 if (r < 0)
522 return r;
523
524 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
525 if (r < 0)
526 return r;
527
528 r = dm_sm_root_size(pmd->data_sm, &len);
529 if (r < 0)
530 return r;
531
532 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
533 }
534
535 static void copy_sm_roots(struct dm_pool_metadata *pmd,
536 struct thin_disk_superblock *disk)
537 {
538 memcpy(&disk->metadata_space_map_root,
539 &pmd->metadata_space_map_root,
540 sizeof(pmd->metadata_space_map_root));
541
542 memcpy(&disk->data_space_map_root,
543 &pmd->data_space_map_root,
544 sizeof(pmd->data_space_map_root));
545 }
546
547 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
548 {
549 int r;
550 struct dm_block *sblock;
551 struct thin_disk_superblock *disk_super;
552 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
553
554 if (bdev_size > THIN_METADATA_MAX_SECTORS)
555 bdev_size = THIN_METADATA_MAX_SECTORS;
556
557 r = dm_sm_commit(pmd->data_sm);
558 if (r < 0)
559 return r;
560
561 r = dm_tm_pre_commit(pmd->tm);
562 if (r < 0)
563 return r;
564
565 r = save_sm_roots(pmd);
566 if (r < 0)
567 return r;
568
569 r = superblock_lock_zero(pmd, &sblock);
570 if (r)
571 return r;
572
573 disk_super = dm_block_data(sblock);
574 disk_super->flags = 0;
575 memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
576 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
577 disk_super->version = cpu_to_le32(THIN_VERSION);
578 disk_super->time = 0;
579 disk_super->trans_id = 0;
580 disk_super->held_root = 0;
581
582 copy_sm_roots(pmd, disk_super);
583
584 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
585 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
586 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
587 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
588 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
589
590 return dm_tm_commit(pmd->tm, sblock);
591 }
592
593 static int __format_metadata(struct dm_pool_metadata *pmd)
594 {
595 int r;
596
597 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
598 &pmd->tm, &pmd->metadata_sm);
599 if (r < 0) {
600 DMERR("tm_create_with_sm failed");
601 return r;
602 }
603
604 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
605 if (IS_ERR(pmd->data_sm)) {
606 DMERR("sm_disk_create failed");
607 r = PTR_ERR(pmd->data_sm);
608 goto bad_cleanup_tm;
609 }
610
611 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
612 if (!pmd->nb_tm) {
613 DMERR("could not create non-blocking clone tm");
614 r = -ENOMEM;
615 goto bad_cleanup_data_sm;
616 }
617
618 __setup_btree_details(pmd);
619
620 r = dm_btree_empty(&pmd->info, &pmd->root);
621 if (r < 0)
622 goto bad_cleanup_nb_tm;
623
624 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
625 if (r < 0) {
626 DMERR("couldn't create devices root");
627 goto bad_cleanup_nb_tm;
628 }
629
630 r = __write_initial_superblock(pmd);
631 if (r)
632 goto bad_cleanup_nb_tm;
633
634 return 0;
635
636 bad_cleanup_nb_tm:
637 dm_tm_destroy(pmd->nb_tm);
638 bad_cleanup_data_sm:
639 dm_sm_destroy(pmd->data_sm);
640 bad_cleanup_tm:
641 dm_tm_destroy(pmd->tm);
642 dm_sm_destroy(pmd->metadata_sm);
643
644 return r;
645 }
646
647 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
648 struct dm_pool_metadata *pmd)
649 {
650 uint32_t features;
651
652 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
653 if (features) {
654 DMERR("could not access metadata due to unsupported optional features (%lx).",
655 (unsigned long)features);
656 return -EINVAL;
657 }
658
659 /*
660 * Check for read-only metadata to skip the following RDWR checks.
661 */
662 if (bdev_read_only(pmd->bdev))
663 return 0;
664
665 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
666 if (features) {
667 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
668 (unsigned long)features);
669 return -EINVAL;
670 }
671
672 return 0;
673 }
674
675 static int __open_metadata(struct dm_pool_metadata *pmd)
676 {
677 int r;
678 struct dm_block *sblock;
679 struct thin_disk_superblock *disk_super;
680
681 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
682 &sb_validator, &sblock);
683 if (r < 0) {
684 DMERR("couldn't read superblock");
685 return r;
686 }
687
688 disk_super = dm_block_data(sblock);
689
690 /* Verify the data block size hasn't changed */
691 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
692 DMERR("changing the data block size (from %u to %llu) is not supported",
693 le32_to_cpu(disk_super->data_block_size),
694 (unsigned long long)pmd->data_block_size);
695 r = -EINVAL;
696 goto bad_unlock_sblock;
697 }
698
699 r = __check_incompat_features(disk_super, pmd);
700 if (r < 0)
701 goto bad_unlock_sblock;
702
703 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
704 disk_super->metadata_space_map_root,
705 sizeof(disk_super->metadata_space_map_root),
706 &pmd->tm, &pmd->metadata_sm);
707 if (r < 0) {
708 DMERR("tm_open_with_sm failed");
709 goto bad_unlock_sblock;
710 }
711
712 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
713 sizeof(disk_super->data_space_map_root));
714 if (IS_ERR(pmd->data_sm)) {
715 DMERR("sm_disk_open failed");
716 r = PTR_ERR(pmd->data_sm);
717 goto bad_cleanup_tm;
718 }
719
720 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
721 if (!pmd->nb_tm) {
722 DMERR("could not create non-blocking clone tm");
723 r = -ENOMEM;
724 goto bad_cleanup_data_sm;
725 }
726
727 __setup_btree_details(pmd);
728 dm_bm_unlock(sblock);
729
730 return 0;
731
732 bad_cleanup_data_sm:
733 dm_sm_destroy(pmd->data_sm);
734 bad_cleanup_tm:
735 dm_tm_destroy(pmd->tm);
736 dm_sm_destroy(pmd->metadata_sm);
737 bad_unlock_sblock:
738 dm_bm_unlock(sblock);
739
740 return r;
741 }
742
743 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
744 {
745 int r, unformatted;
746
747 r = __superblock_all_zeroes(pmd->bm, &unformatted);
748 if (r)
749 return r;
750
751 if (unformatted)
752 return format_device ? __format_metadata(pmd) : -EPERM;
753
754 return __open_metadata(pmd);
755 }
756
757 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
758 {
759 int r;
760
761 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
762 THIN_MAX_CONCURRENT_LOCKS);
763 if (IS_ERR(pmd->bm)) {
764 DMERR("could not create block manager");
765 r = PTR_ERR(pmd->bm);
766 pmd->bm = NULL;
767 return r;
768 }
769
770 r = __open_or_format_metadata(pmd, format_device);
771 if (r) {
772 dm_block_manager_destroy(pmd->bm);
773 pmd->bm = NULL;
774 }
775
776 return r;
777 }
778
779 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
780 {
781 dm_sm_destroy(pmd->data_sm);
782 dm_sm_destroy(pmd->metadata_sm);
783 dm_tm_destroy(pmd->nb_tm);
784 dm_tm_destroy(pmd->tm);
785 dm_block_manager_destroy(pmd->bm);
786 }
787
788 static int __begin_transaction(struct dm_pool_metadata *pmd)
789 {
790 int r;
791 struct thin_disk_superblock *disk_super;
792 struct dm_block *sblock;
793
794 /*
795 * We re-read the superblock every time. Shouldn't need to do this
796 * really.
797 */
798 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
799 &sb_validator, &sblock);
800 if (r)
801 return r;
802
803 disk_super = dm_block_data(sblock);
804 pmd->time = le32_to_cpu(disk_super->time);
805 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
806 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
807 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
808 pmd->flags = le32_to_cpu(disk_super->flags);
809 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
810
811 dm_bm_unlock(sblock);
812 return 0;
813 }
814
815 static int __write_changed_details(struct dm_pool_metadata *pmd)
816 {
817 int r;
818 struct dm_thin_device *td, *tmp;
819 struct disk_device_details details;
820 uint64_t key;
821
822 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
823 if (!td->changed)
824 continue;
825
826 key = td->id;
827
828 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
829 details.transaction_id = cpu_to_le64(td->transaction_id);
830 details.creation_time = cpu_to_le32(td->creation_time);
831 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
832 __dm_bless_for_disk(&details);
833
834 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
835 &key, &details, &pmd->details_root);
836 if (r)
837 return r;
838
839 if (td->open_count)
840 td->changed = false;
841 else {
842 list_del(&td->list);
843 kfree(td);
844 }
845 }
846
847 return 0;
848 }
849
850 static int __commit_transaction(struct dm_pool_metadata *pmd)
851 {
852 int r;
853 struct thin_disk_superblock *disk_super;
854 struct dm_block *sblock;
855
856 /*
857 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
858 */
859 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
860 BUG_ON(!rwsem_is_locked(&pmd->root_lock));
861
862 if (unlikely(!pmd->in_service))
863 return 0;
864
865 if (pmd->pre_commit_fn) {
866 r = pmd->pre_commit_fn(pmd->pre_commit_context);
867 if (r < 0) {
868 DMERR("pre-commit callback failed");
869 return r;
870 }
871 }
872
873 r = __write_changed_details(pmd);
874 if (r < 0)
875 return r;
876
877 r = dm_sm_commit(pmd->data_sm);
878 if (r < 0)
879 return r;
880
881 r = dm_tm_pre_commit(pmd->tm);
882 if (r < 0)
883 return r;
884
885 r = save_sm_roots(pmd);
886 if (r < 0)
887 return r;
888
889 r = superblock_lock(pmd, &sblock);
890 if (r)
891 return r;
892
893 disk_super = dm_block_data(sblock);
894 disk_super->time = cpu_to_le32(pmd->time);
895 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
896 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
897 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
898 disk_super->flags = cpu_to_le32(pmd->flags);
899
900 copy_sm_roots(pmd, disk_super);
901
902 return dm_tm_commit(pmd->tm, sblock);
903 }
904
905 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
906 {
907 int r;
908 dm_block_t total;
909 dm_block_t max_blocks = 4096; /* 16M */
910
911 r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
912 if (r) {
913 DMERR("could not get size of metadata device");
914 pmd->metadata_reserve = max_blocks;
915 } else
916 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
917 }
918
919 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
920 sector_t data_block_size,
921 bool format_device)
922 {
923 int r;
924 struct dm_pool_metadata *pmd;
925
926 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
927 if (!pmd) {
928 DMERR("could not allocate metadata struct");
929 return ERR_PTR(-ENOMEM);
930 }
931
932 init_rwsem(&pmd->root_lock);
933 pmd->time = 0;
934 INIT_LIST_HEAD(&pmd->thin_devices);
935 pmd->fail_io = false;
936 pmd->in_service = false;
937 pmd->bdev = bdev;
938 pmd->data_block_size = data_block_size;
939 pmd->pre_commit_fn = NULL;
940 pmd->pre_commit_context = NULL;
941
942 r = __create_persistent_data_objects(pmd, format_device);
943 if (r) {
944 kfree(pmd);
945 return ERR_PTR(r);
946 }
947
948 r = __begin_transaction(pmd);
949 if (r < 0) {
950 if (dm_pool_metadata_close(pmd) < 0)
951 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
952 return ERR_PTR(r);
953 }
954
955 __set_metadata_reserve(pmd);
956
957 return pmd;
958 }
959
960 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
961 {
962 int r;
963 unsigned open_devices = 0;
964 struct dm_thin_device *td, *tmp;
965
966 down_read(&pmd->root_lock);
967 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
968 if (td->open_count)
969 open_devices++;
970 else {
971 list_del(&td->list);
972 kfree(td);
973 }
974 }
975 up_read(&pmd->root_lock);
976
977 if (open_devices) {
978 DMERR("attempt to close pmd when %u device(s) are still open",
979 open_devices);
980 return -EBUSY;
981 }
982
983 pmd_write_lock_in_core(pmd);
984 if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
985 r = __commit_transaction(pmd);
986 if (r < 0)
987 DMWARN("%s: __commit_transaction() failed, error = %d",
988 __func__, r);
989 }
990 pmd_write_unlock(pmd);
991 if (!pmd->fail_io)
992 __destroy_persistent_data_objects(pmd);
993
994 kfree(pmd);
995 return 0;
996 }
997
998 /*
999 * __open_device: Returns @td corresponding to device with id @dev,
1000 * creating it if @create is set and incrementing @td->open_count.
1001 * On failure, @td is undefined.
1002 */
1003 static int __open_device(struct dm_pool_metadata *pmd,
1004 dm_thin_id dev, int create,
1005 struct dm_thin_device **td)
1006 {
1007 int r, changed = 0;
1008 struct dm_thin_device *td2;
1009 uint64_t key = dev;
1010 struct disk_device_details details_le;
1011
1012 /*
1013 * If the device is already open, return it.
1014 */
1015 list_for_each_entry(td2, &pmd->thin_devices, list)
1016 if (td2->id == dev) {
1017 /*
1018 * May not create an already-open device.
1019 */
1020 if (create)
1021 return -EEXIST;
1022
1023 td2->open_count++;
1024 *td = td2;
1025 return 0;
1026 }
1027
1028 /*
1029 * Check the device exists.
1030 */
1031 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1032 &key, &details_le);
1033 if (r) {
1034 if (r != -ENODATA || !create)
1035 return r;
1036
1037 /*
1038 * Create new device.
1039 */
1040 changed = 1;
1041 details_le.mapped_blocks = 0;
1042 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1043 details_le.creation_time = cpu_to_le32(pmd->time);
1044 details_le.snapshotted_time = cpu_to_le32(pmd->time);
1045 }
1046
1047 *td = kmalloc(sizeof(**td), GFP_NOIO);
1048 if (!*td)
1049 return -ENOMEM;
1050
1051 (*td)->pmd = pmd;
1052 (*td)->id = dev;
1053 (*td)->open_count = 1;
1054 (*td)->changed = changed;
1055 (*td)->aborted_with_changes = false;
1056 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1057 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1058 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
1059 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1060
1061 list_add(&(*td)->list, &pmd->thin_devices);
1062
1063 return 0;
1064 }
1065
1066 static void __close_device(struct dm_thin_device *td)
1067 {
1068 --td->open_count;
1069 }
1070
1071 static int __create_thin(struct dm_pool_metadata *pmd,
1072 dm_thin_id dev)
1073 {
1074 int r;
1075 dm_block_t dev_root;
1076 uint64_t key = dev;
1077 struct dm_thin_device *td;
1078 __le64 value;
1079
1080 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1081 &key, NULL);
1082 if (!r)
1083 return -EEXIST;
1084
1085 /*
1086 * Create an empty btree for the mappings.
1087 */
1088 r = dm_btree_empty(&pmd->bl_info, &dev_root);
1089 if (r)
1090 return r;
1091
1092 /*
1093 * Insert it into the main mapping tree.
1094 */
1095 value = cpu_to_le64(dev_root);
1096 __dm_bless_for_disk(&value);
1097 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1098 if (r) {
1099 dm_btree_del(&pmd->bl_info, dev_root);
1100 return r;
1101 }
1102
1103 r = __open_device(pmd, dev, 1, &td);
1104 if (r) {
1105 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1106 dm_btree_del(&pmd->bl_info, dev_root);
1107 return r;
1108 }
1109 __close_device(td);
1110
1111 return r;
1112 }
1113
1114 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1115 {
1116 int r = -EINVAL;
1117
1118 pmd_write_lock(pmd);
1119 if (!pmd->fail_io)
1120 r = __create_thin(pmd, dev);
1121 pmd_write_unlock(pmd);
1122
1123 return r;
1124 }
1125
1126 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1127 struct dm_thin_device *snap,
1128 dm_thin_id origin, uint32_t time)
1129 {
1130 int r;
1131 struct dm_thin_device *td;
1132
1133 r = __open_device(pmd, origin, 0, &td);
1134 if (r)
1135 return r;
1136
1137 td->changed = true;
1138 td->snapshotted_time = time;
1139
1140 snap->mapped_blocks = td->mapped_blocks;
1141 snap->snapshotted_time = time;
1142 __close_device(td);
1143
1144 return 0;
1145 }
1146
1147 static int __create_snap(struct dm_pool_metadata *pmd,
1148 dm_thin_id dev, dm_thin_id origin)
1149 {
1150 int r;
1151 dm_block_t origin_root;
1152 uint64_t key = origin, dev_key = dev;
1153 struct dm_thin_device *td;
1154 __le64 value;
1155
1156 /* check this device is unused */
1157 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1158 &dev_key, NULL);
1159 if (!r)
1160 return -EEXIST;
1161
1162 /* find the mapping tree for the origin */
1163 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1164 if (r)
1165 return r;
1166 origin_root = le64_to_cpu(value);
1167
1168 /* clone the origin, an inc will do */
1169 dm_tm_inc(pmd->tm, origin_root);
1170
1171 /* insert into the main mapping tree */
1172 value = cpu_to_le64(origin_root);
1173 __dm_bless_for_disk(&value);
1174 key = dev;
1175 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1176 if (r) {
1177 dm_tm_dec(pmd->tm, origin_root);
1178 return r;
1179 }
1180
1181 pmd->time++;
1182
1183 r = __open_device(pmd, dev, 1, &td);
1184 if (r)
1185 goto bad;
1186
1187 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1188 __close_device(td);
1189
1190 if (r)
1191 goto bad;
1192
1193 return 0;
1194
1195 bad:
1196 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1197 dm_btree_remove(&pmd->details_info, pmd->details_root,
1198 &key, &pmd->details_root);
1199 return r;
1200 }
1201
1202 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1203 dm_thin_id dev,
1204 dm_thin_id origin)
1205 {
1206 int r = -EINVAL;
1207
1208 pmd_write_lock(pmd);
1209 if (!pmd->fail_io)
1210 r = __create_snap(pmd, dev, origin);
1211 pmd_write_unlock(pmd);
1212
1213 return r;
1214 }
1215
1216 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1217 {
1218 int r;
1219 uint64_t key = dev;
1220 struct dm_thin_device *td;
1221
1222 /* TODO: failure should mark the transaction invalid */
1223 r = __open_device(pmd, dev, 0, &td);
1224 if (r)
1225 return r;
1226
1227 if (td->open_count > 1) {
1228 __close_device(td);
1229 return -EBUSY;
1230 }
1231
1232 list_del(&td->list);
1233 kfree(td);
1234 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1235 &key, &pmd->details_root);
1236 if (r)
1237 return r;
1238
1239 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1240 if (r)
1241 return r;
1242
1243 return 0;
1244 }
1245
1246 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1247 dm_thin_id dev)
1248 {
1249 int r = -EINVAL;
1250
1251 pmd_write_lock(pmd);
1252 if (!pmd->fail_io)
1253 r = __delete_device(pmd, dev);
1254 pmd_write_unlock(pmd);
1255
1256 return r;
1257 }
1258
1259 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1260 uint64_t current_id,
1261 uint64_t new_id)
1262 {
1263 int r = -EINVAL;
1264
1265 pmd_write_lock(pmd);
1266
1267 if (pmd->fail_io)
1268 goto out;
1269
1270 if (pmd->trans_id != current_id) {
1271 DMERR("mismatched transaction id");
1272 goto out;
1273 }
1274
1275 pmd->trans_id = new_id;
1276 r = 0;
1277
1278 out:
1279 pmd_write_unlock(pmd);
1280
1281 return r;
1282 }
1283
1284 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1285 uint64_t *result)
1286 {
1287 int r = -EINVAL;
1288
1289 down_read(&pmd->root_lock);
1290 if (!pmd->fail_io) {
1291 *result = pmd->trans_id;
1292 r = 0;
1293 }
1294 up_read(&pmd->root_lock);
1295
1296 return r;
1297 }
1298
1299 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1300 {
1301 int r, inc;
1302 struct thin_disk_superblock *disk_super;
1303 struct dm_block *copy, *sblock;
1304 dm_block_t held_root;
1305
1306 /*
1307 * We commit to ensure the btree roots which we increment in a
1308 * moment are up to date.
1309 */
1310 r = __commit_transaction(pmd);
1311 if (r < 0) {
1312 DMWARN("%s: __commit_transaction() failed, error = %d",
1313 __func__, r);
1314 return r;
1315 }
1316
1317 /*
1318 * Copy the superblock.
1319 */
1320 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1321 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1322 &sb_validator, &copy, &inc);
1323 if (r)
1324 return r;
1325
1326 BUG_ON(!inc);
1327
1328 held_root = dm_block_location(copy);
1329 disk_super = dm_block_data(copy);
1330
1331 if (le64_to_cpu(disk_super->held_root)) {
1332 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1333
1334 dm_tm_dec(pmd->tm, held_root);
1335 dm_tm_unlock(pmd->tm, copy);
1336 return -EBUSY;
1337 }
1338
1339 /*
1340 * Wipe the spacemap since we're not publishing this.
1341 */
1342 memset(&disk_super->data_space_map_root, 0,
1343 sizeof(disk_super->data_space_map_root));
1344 memset(&disk_super->metadata_space_map_root, 0,
1345 sizeof(disk_super->metadata_space_map_root));
1346
1347 /*
1348 * Increment the data structures that need to be preserved.
1349 */
1350 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1351 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1352 dm_tm_unlock(pmd->tm, copy);
1353
1354 /*
1355 * Write the held root into the superblock.
1356 */
1357 r = superblock_lock(pmd, &sblock);
1358 if (r) {
1359 dm_tm_dec(pmd->tm, held_root);
1360 return r;
1361 }
1362
1363 disk_super = dm_block_data(sblock);
1364 disk_super->held_root = cpu_to_le64(held_root);
1365 dm_bm_unlock(sblock);
1366 return 0;
1367 }
1368
1369 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1370 {
1371 int r = -EINVAL;
1372
1373 pmd_write_lock(pmd);
1374 if (!pmd->fail_io)
1375 r = __reserve_metadata_snap(pmd);
1376 pmd_write_unlock(pmd);
1377
1378 return r;
1379 }
1380
1381 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1382 {
1383 int r;
1384 struct thin_disk_superblock *disk_super;
1385 struct dm_block *sblock, *copy;
1386 dm_block_t held_root;
1387
1388 r = superblock_lock(pmd, &sblock);
1389 if (r)
1390 return r;
1391
1392 disk_super = dm_block_data(sblock);
1393 held_root = le64_to_cpu(disk_super->held_root);
1394 disk_super->held_root = cpu_to_le64(0);
1395
1396 dm_bm_unlock(sblock);
1397
1398 if (!held_root) {
1399 DMWARN("No pool metadata snapshot found: nothing to release.");
1400 return -EINVAL;
1401 }
1402
1403 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1404 if (r)
1405 return r;
1406
1407 disk_super = dm_block_data(copy);
1408 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1409 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1410 dm_sm_dec_block(pmd->metadata_sm, held_root);
1411
1412 dm_tm_unlock(pmd->tm, copy);
1413
1414 return 0;
1415 }
1416
1417 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1418 {
1419 int r = -EINVAL;
1420
1421 pmd_write_lock(pmd);
1422 if (!pmd->fail_io)
1423 r = __release_metadata_snap(pmd);
1424 pmd_write_unlock(pmd);
1425
1426 return r;
1427 }
1428
1429 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1430 dm_block_t *result)
1431 {
1432 int r;
1433 struct thin_disk_superblock *disk_super;
1434 struct dm_block *sblock;
1435
1436 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1437 &sb_validator, &sblock);
1438 if (r)
1439 return r;
1440
1441 disk_super = dm_block_data(sblock);
1442 *result = le64_to_cpu(disk_super->held_root);
1443
1444 dm_bm_unlock(sblock);
1445
1446 return 0;
1447 }
1448
1449 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1450 dm_block_t *result)
1451 {
1452 int r = -EINVAL;
1453
1454 down_read(&pmd->root_lock);
1455 if (!pmd->fail_io)
1456 r = __get_metadata_snap(pmd, result);
1457 up_read(&pmd->root_lock);
1458
1459 return r;
1460 }
1461
1462 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1463 struct dm_thin_device **td)
1464 {
1465 int r = -EINVAL;
1466
1467 pmd_write_lock_in_core(pmd);
1468 if (!pmd->fail_io)
1469 r = __open_device(pmd, dev, 0, td);
1470 pmd_write_unlock(pmd);
1471
1472 return r;
1473 }
1474
1475 int dm_pool_close_thin_device(struct dm_thin_device *td)
1476 {
1477 pmd_write_lock_in_core(td->pmd);
1478 __close_device(td);
1479 pmd_write_unlock(td->pmd);
1480
1481 return 0;
1482 }
1483
1484 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1485 {
1486 return td->id;
1487 }
1488
1489 /*
1490 * Check whether @time (of block creation) is older than @td's last snapshot.
1491 * If so then the associated block is shared with the last snapshot device.
1492 * Any block on a device created *after* the device last got snapshotted is
1493 * necessarily not shared.
1494 */
1495 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1496 {
1497 return td->snapshotted_time > time;
1498 }
1499
1500 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1501 struct dm_thin_lookup_result *result)
1502 {
1503 uint64_t block_time = 0;
1504 dm_block_t exception_block;
1505 uint32_t exception_time;
1506
1507 block_time = le64_to_cpu(value);
1508 unpack_block_time(block_time, &exception_block, &exception_time);
1509 result->block = exception_block;
1510 result->shared = __snapshotted_since(td, exception_time);
1511 }
1512
1513 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1514 int can_issue_io, struct dm_thin_lookup_result *result)
1515 {
1516 int r;
1517 __le64 value;
1518 struct dm_pool_metadata *pmd = td->pmd;
1519 dm_block_t keys[2] = { td->id, block };
1520 struct dm_btree_info *info;
1521
1522 if (can_issue_io) {
1523 info = &pmd->info;
1524 } else
1525 info = &pmd->nb_info;
1526
1527 r = dm_btree_lookup(info, pmd->root, keys, &value);
1528 if (!r)
1529 unpack_lookup_result(td, value, result);
1530
1531 return r;
1532 }
1533
1534 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1535 int can_issue_io, struct dm_thin_lookup_result *result)
1536 {
1537 int r;
1538 struct dm_pool_metadata *pmd = td->pmd;
1539
1540 down_read(&pmd->root_lock);
1541 if (pmd->fail_io) {
1542 up_read(&pmd->root_lock);
1543 return -EINVAL;
1544 }
1545
1546 r = __find_block(td, block, can_issue_io, result);
1547
1548 up_read(&pmd->root_lock);
1549 return r;
1550 }
1551
1552 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1553 dm_block_t *vblock,
1554 struct dm_thin_lookup_result *result)
1555 {
1556 int r;
1557 __le64 value;
1558 struct dm_pool_metadata *pmd = td->pmd;
1559 dm_block_t keys[2] = { td->id, block };
1560
1561 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1562 if (!r)
1563 unpack_lookup_result(td, value, result);
1564
1565 return r;
1566 }
1567
1568 static int __find_mapped_range(struct dm_thin_device *td,
1569 dm_block_t begin, dm_block_t end,
1570 dm_block_t *thin_begin, dm_block_t *thin_end,
1571 dm_block_t *pool_begin, bool *maybe_shared)
1572 {
1573 int r;
1574 dm_block_t pool_end;
1575 struct dm_thin_lookup_result lookup;
1576
1577 if (end < begin)
1578 return -ENODATA;
1579
1580 r = __find_next_mapped_block(td, begin, &begin, &lookup);
1581 if (r)
1582 return r;
1583
1584 if (begin >= end)
1585 return -ENODATA;
1586
1587 *thin_begin = begin;
1588 *pool_begin = lookup.block;
1589 *maybe_shared = lookup.shared;
1590
1591 begin++;
1592 pool_end = *pool_begin + 1;
1593 while (begin != end) {
1594 r = __find_block(td, begin, true, &lookup);
1595 if (r) {
1596 if (r == -ENODATA)
1597 break;
1598 else
1599 return r;
1600 }
1601
1602 if ((lookup.block != pool_end) ||
1603 (lookup.shared != *maybe_shared))
1604 break;
1605
1606 pool_end++;
1607 begin++;
1608 }
1609
1610 *thin_end = begin;
1611 return 0;
1612 }
1613
1614 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1615 dm_block_t begin, dm_block_t end,
1616 dm_block_t *thin_begin, dm_block_t *thin_end,
1617 dm_block_t *pool_begin, bool *maybe_shared)
1618 {
1619 int r = -EINVAL;
1620 struct dm_pool_metadata *pmd = td->pmd;
1621
1622 down_read(&pmd->root_lock);
1623 if (!pmd->fail_io) {
1624 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1625 pool_begin, maybe_shared);
1626 }
1627 up_read(&pmd->root_lock);
1628
1629 return r;
1630 }
1631
1632 static int __insert(struct dm_thin_device *td, dm_block_t block,
1633 dm_block_t data_block)
1634 {
1635 int r, inserted;
1636 __le64 value;
1637 struct dm_pool_metadata *pmd = td->pmd;
1638 dm_block_t keys[2] = { td->id, block };
1639
1640 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1641 __dm_bless_for_disk(&value);
1642
1643 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1644 &pmd->root, &inserted);
1645 if (r)
1646 return r;
1647
1648 td->changed = true;
1649 if (inserted)
1650 td->mapped_blocks++;
1651
1652 return 0;
1653 }
1654
1655 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1656 dm_block_t data_block)
1657 {
1658 int r = -EINVAL;
1659
1660 pmd_write_lock(td->pmd);
1661 if (!td->pmd->fail_io)
1662 r = __insert(td, block, data_block);
1663 pmd_write_unlock(td->pmd);
1664
1665 return r;
1666 }
1667
1668 static int __remove(struct dm_thin_device *td, dm_block_t block)
1669 {
1670 int r;
1671 struct dm_pool_metadata *pmd = td->pmd;
1672 dm_block_t keys[2] = { td->id, block };
1673
1674 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1675 if (r)
1676 return r;
1677
1678 td->mapped_blocks--;
1679 td->changed = true;
1680
1681 return 0;
1682 }
1683
1684 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1685 {
1686 int r;
1687 unsigned count, total_count = 0;
1688 struct dm_pool_metadata *pmd = td->pmd;
1689 dm_block_t keys[1] = { td->id };
1690 __le64 value;
1691 dm_block_t mapping_root;
1692
1693 /*
1694 * Find the mapping tree
1695 */
1696 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1697 if (r)
1698 return r;
1699
1700 /*
1701 * Remove from the mapping tree, taking care to inc the
1702 * ref count so it doesn't get deleted.
1703 */
1704 mapping_root = le64_to_cpu(value);
1705 dm_tm_inc(pmd->tm, mapping_root);
1706 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1707 if (r)
1708 return r;
1709
1710 /*
1711 * Remove leaves stops at the first unmapped entry, so we have to
1712 * loop round finding mapped ranges.
1713 */
1714 while (begin < end) {
1715 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1716 if (r == -ENODATA)
1717 break;
1718
1719 if (r)
1720 return r;
1721
1722 if (begin >= end)
1723 break;
1724
1725 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1726 if (r)
1727 return r;
1728
1729 total_count += count;
1730 }
1731
1732 td->mapped_blocks -= total_count;
1733 td->changed = true;
1734
1735 /*
1736 * Reinsert the mapping tree.
1737 */
1738 value = cpu_to_le64(mapping_root);
1739 __dm_bless_for_disk(&value);
1740 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1741 }
1742
1743 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1744 {
1745 int r = -EINVAL;
1746
1747 pmd_write_lock(td->pmd);
1748 if (!td->pmd->fail_io)
1749 r = __remove(td, block);
1750 pmd_write_unlock(td->pmd);
1751
1752 return r;
1753 }
1754
1755 int dm_thin_remove_range(struct dm_thin_device *td,
1756 dm_block_t begin, dm_block_t end)
1757 {
1758 int r = -EINVAL;
1759
1760 pmd_write_lock(td->pmd);
1761 if (!td->pmd->fail_io)
1762 r = __remove_range(td, begin, end);
1763 pmd_write_unlock(td->pmd);
1764
1765 return r;
1766 }
1767
1768 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1769 {
1770 int r;
1771 uint32_t ref_count;
1772
1773 down_read(&pmd->root_lock);
1774 r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1775 if (!r)
1776 *result = (ref_count > 1);
1777 up_read(&pmd->root_lock);
1778
1779 return r;
1780 }
1781
1782 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1783 {
1784 int r = 0;
1785
1786 pmd_write_lock(pmd);
1787 r = dm_sm_inc_blocks(pmd->data_sm, b, e);
1788 pmd_write_unlock(pmd);
1789
1790 return r;
1791 }
1792
1793 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1794 {
1795 int r = 0;
1796
1797 pmd_write_lock(pmd);
1798 r = dm_sm_dec_blocks(pmd->data_sm, b, e);
1799 pmd_write_unlock(pmd);
1800
1801 return r;
1802 }
1803
1804 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1805 {
1806 int r;
1807
1808 down_read(&td->pmd->root_lock);
1809 r = td->changed;
1810 up_read(&td->pmd->root_lock);
1811
1812 return r;
1813 }
1814
1815 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1816 {
1817 bool r = false;
1818 struct dm_thin_device *td, *tmp;
1819
1820 down_read(&pmd->root_lock);
1821 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1822 if (td->changed) {
1823 r = td->changed;
1824 break;
1825 }
1826 }
1827 up_read(&pmd->root_lock);
1828
1829 return r;
1830 }
1831
1832 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1833 {
1834 bool r;
1835
1836 down_read(&td->pmd->root_lock);
1837 r = td->aborted_with_changes;
1838 up_read(&td->pmd->root_lock);
1839
1840 return r;
1841 }
1842
1843 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1844 {
1845 int r = -EINVAL;
1846
1847 pmd_write_lock(pmd);
1848 if (!pmd->fail_io)
1849 r = dm_sm_new_block(pmd->data_sm, result);
1850 pmd_write_unlock(pmd);
1851
1852 return r;
1853 }
1854
1855 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1856 {
1857 int r = -EINVAL;
1858
1859 /*
1860 * Care is taken to not have commit be what
1861 * triggers putting the thin-pool in-service.
1862 */
1863 pmd_write_lock_in_core(pmd);
1864 if (pmd->fail_io)
1865 goto out;
1866
1867 r = __commit_transaction(pmd);
1868 if (r < 0)
1869 goto out;
1870
1871 /*
1872 * Open the next transaction.
1873 */
1874 r = __begin_transaction(pmd);
1875 out:
1876 pmd_write_unlock(pmd);
1877 return r;
1878 }
1879
1880 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1881 {
1882 struct dm_thin_device *td;
1883
1884 list_for_each_entry(td, &pmd->thin_devices, list)
1885 td->aborted_with_changes = td->changed;
1886 }
1887
1888 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1889 {
1890 int r = -EINVAL;
1891
1892 pmd_write_lock(pmd);
1893 if (pmd->fail_io)
1894 goto out;
1895
1896 __set_abort_with_changes_flags(pmd);
1897 __destroy_persistent_data_objects(pmd);
1898 r = __create_persistent_data_objects(pmd, false);
1899 if (r)
1900 pmd->fail_io = true;
1901
1902 out:
1903 pmd_write_unlock(pmd);
1904
1905 return r;
1906 }
1907
1908 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1909 {
1910 int r = -EINVAL;
1911
1912 down_read(&pmd->root_lock);
1913 if (!pmd->fail_io)
1914 r = dm_sm_get_nr_free(pmd->data_sm, result);
1915 up_read(&pmd->root_lock);
1916
1917 return r;
1918 }
1919
1920 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1921 dm_block_t *result)
1922 {
1923 int r = -EINVAL;
1924
1925 down_read(&pmd->root_lock);
1926 if (!pmd->fail_io)
1927 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1928
1929 if (!r) {
1930 if (*result < pmd->metadata_reserve)
1931 *result = 0;
1932 else
1933 *result -= pmd->metadata_reserve;
1934 }
1935 up_read(&pmd->root_lock);
1936
1937 return r;
1938 }
1939
1940 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1941 dm_block_t *result)
1942 {
1943 int r = -EINVAL;
1944
1945 down_read(&pmd->root_lock);
1946 if (!pmd->fail_io)
1947 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1948 up_read(&pmd->root_lock);
1949
1950 return r;
1951 }
1952
1953 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1954 {
1955 int r = -EINVAL;
1956
1957 down_read(&pmd->root_lock);
1958 if (!pmd->fail_io)
1959 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1960 up_read(&pmd->root_lock);
1961
1962 return r;
1963 }
1964
1965 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1966 {
1967 int r = -EINVAL;
1968 struct dm_pool_metadata *pmd = td->pmd;
1969
1970 down_read(&pmd->root_lock);
1971 if (!pmd->fail_io) {
1972 *result = td->mapped_blocks;
1973 r = 0;
1974 }
1975 up_read(&pmd->root_lock);
1976
1977 return r;
1978 }
1979
1980 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1981 {
1982 int r;
1983 __le64 value_le;
1984 dm_block_t thin_root;
1985 struct dm_pool_metadata *pmd = td->pmd;
1986
1987 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1988 if (r)
1989 return r;
1990
1991 thin_root = le64_to_cpu(value_le);
1992
1993 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1994 }
1995
1996 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1997 dm_block_t *result)
1998 {
1999 int r = -EINVAL;
2000 struct dm_pool_metadata *pmd = td->pmd;
2001
2002 down_read(&pmd->root_lock);
2003 if (!pmd->fail_io)
2004 r = __highest_block(td, result);
2005 up_read(&pmd->root_lock);
2006
2007 return r;
2008 }
2009
2010 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
2011 {
2012 int r;
2013 dm_block_t old_count;
2014
2015 r = dm_sm_get_nr_blocks(sm, &old_count);
2016 if (r)
2017 return r;
2018
2019 if (new_count == old_count)
2020 return 0;
2021
2022 if (new_count < old_count) {
2023 DMERR("cannot reduce size of space map");
2024 return -EINVAL;
2025 }
2026
2027 return dm_sm_extend(sm, new_count - old_count);
2028 }
2029
2030 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2031 {
2032 int r = -EINVAL;
2033
2034 pmd_write_lock(pmd);
2035 if (!pmd->fail_io)
2036 r = __resize_space_map(pmd->data_sm, new_count);
2037 pmd_write_unlock(pmd);
2038
2039 return r;
2040 }
2041
2042 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2043 {
2044 int r = -EINVAL;
2045
2046 pmd_write_lock(pmd);
2047 if (!pmd->fail_io) {
2048 r = __resize_space_map(pmd->metadata_sm, new_count);
2049 if (!r)
2050 __set_metadata_reserve(pmd);
2051 }
2052 pmd_write_unlock(pmd);
2053
2054 return r;
2055 }
2056
2057 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2058 {
2059 pmd_write_lock_in_core(pmd);
2060 dm_bm_set_read_only(pmd->bm);
2061 pmd_write_unlock(pmd);
2062 }
2063
2064 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2065 {
2066 pmd_write_lock_in_core(pmd);
2067 dm_bm_set_read_write(pmd->bm);
2068 pmd_write_unlock(pmd);
2069 }
2070
2071 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2072 dm_block_t threshold,
2073 dm_sm_threshold_fn fn,
2074 void *context)
2075 {
2076 int r;
2077
2078 pmd_write_lock_in_core(pmd);
2079 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2080 pmd_write_unlock(pmd);
2081
2082 return r;
2083 }
2084
2085 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2086 dm_pool_pre_commit_fn fn,
2087 void *context)
2088 {
2089 pmd_write_lock_in_core(pmd);
2090 pmd->pre_commit_fn = fn;
2091 pmd->pre_commit_context = context;
2092 pmd_write_unlock(pmd);
2093 }
2094
2095 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2096 {
2097 int r = -EINVAL;
2098 struct dm_block *sblock;
2099 struct thin_disk_superblock *disk_super;
2100
2101 pmd_write_lock(pmd);
2102 if (pmd->fail_io)
2103 goto out;
2104
2105 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2106
2107 r = superblock_lock(pmd, &sblock);
2108 if (r) {
2109 DMERR("couldn't lock superblock");
2110 goto out;
2111 }
2112
2113 disk_super = dm_block_data(sblock);
2114 disk_super->flags = cpu_to_le32(pmd->flags);
2115
2116 dm_bm_unlock(sblock);
2117 out:
2118 pmd_write_unlock(pmd);
2119 return r;
2120 }
2121
2122 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2123 {
2124 bool needs_check;
2125
2126 down_read(&pmd->root_lock);
2127 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2128 up_read(&pmd->root_lock);
2129
2130 return needs_check;
2131 }
2132
2133 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2134 {
2135 down_read(&pmd->root_lock);
2136 if (!pmd->fail_io)
2137 dm_tm_issue_prefetches(pmd->tm);
2138 up_read(&pmd->root_lock);
2139 }