]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/md/dm.c
dm: ensure bio submission follows a depth-first tree walk
[mirror_ubuntu-bionic-kernel.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28
29 #define DM_MSG_PREFIX "core"
30
31 /*
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
34 */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37
38 static const char *_name = DM_NAME;
39
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42
43 static DEFINE_IDR(_minor_idr);
44
45 static DEFINE_SPINLOCK(_minor_lock);
46
47 static void do_deferred_remove(struct work_struct *w);
48
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50
51 static struct workqueue_struct *deferred_remove_workqueue;
52
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55
56 void dm_issue_global_event(void)
57 {
58 atomic_inc(&dm_global_event_nr);
59 wake_up(&dm_global_eventq);
60 }
61
62 /*
63 * One of these is allocated per bio.
64 */
65 struct dm_io {
66 struct mapped_device *md;
67 blk_status_t status;
68 atomic_t io_count;
69 struct bio *bio;
70 unsigned long start_time;
71 spinlock_t endio_lock;
72 struct dm_stats_aux stats_aux;
73 };
74
75 #define MINOR_ALLOCED ((void *)-1)
76
77 /*
78 * Bits for the md->flags field.
79 */
80 #define DMF_BLOCK_IO_FOR_SUSPEND 0
81 #define DMF_SUSPENDED 1
82 #define DMF_FROZEN 2
83 #define DMF_FREEING 3
84 #define DMF_DELETING 4
85 #define DMF_NOFLUSH_SUSPENDING 5
86 #define DMF_DEFERRED_REMOVE 6
87 #define DMF_SUSPENDED_INTERNALLY 7
88
89 #define DM_NUMA_NODE NUMA_NO_NODE
90 static int dm_numa_node = DM_NUMA_NODE;
91
92 /*
93 * For mempools pre-allocation at the table loading time.
94 */
95 struct dm_md_mempools {
96 mempool_t *io_pool;
97 struct bio_set *bs;
98 };
99
100 struct table_device {
101 struct list_head list;
102 refcount_t count;
103 struct dm_dev dm_dev;
104 };
105
106 static struct kmem_cache *_io_cache;
107 static struct kmem_cache *_rq_tio_cache;
108 static struct kmem_cache *_rq_cache;
109
110 /*
111 * Bio-based DM's mempools' reserved IOs set by the user.
112 */
113 #define RESERVED_BIO_BASED_IOS 16
114 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
115
116 static int __dm_get_module_param_int(int *module_param, int min, int max)
117 {
118 int param = READ_ONCE(*module_param);
119 int modified_param = 0;
120 bool modified = true;
121
122 if (param < min)
123 modified_param = min;
124 else if (param > max)
125 modified_param = max;
126 else
127 modified = false;
128
129 if (modified) {
130 (void)cmpxchg(module_param, param, modified_param);
131 param = modified_param;
132 }
133
134 return param;
135 }
136
137 unsigned __dm_get_module_param(unsigned *module_param,
138 unsigned def, unsigned max)
139 {
140 unsigned param = READ_ONCE(*module_param);
141 unsigned modified_param = 0;
142
143 if (!param)
144 modified_param = def;
145 else if (param > max)
146 modified_param = max;
147
148 if (modified_param) {
149 (void)cmpxchg(module_param, param, modified_param);
150 param = modified_param;
151 }
152
153 return param;
154 }
155
156 unsigned dm_get_reserved_bio_based_ios(void)
157 {
158 return __dm_get_module_param(&reserved_bio_based_ios,
159 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
160 }
161 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
162
163 static unsigned dm_get_numa_node(void)
164 {
165 return __dm_get_module_param_int(&dm_numa_node,
166 DM_NUMA_NODE, num_online_nodes() - 1);
167 }
168
169 static int __init local_init(void)
170 {
171 int r = -ENOMEM;
172
173 /* allocate a slab for the dm_ios */
174 _io_cache = KMEM_CACHE(dm_io, 0);
175 if (!_io_cache)
176 return r;
177
178 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
179 if (!_rq_tio_cache)
180 goto out_free_io_cache;
181
182 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
183 __alignof__(struct request), 0, NULL);
184 if (!_rq_cache)
185 goto out_free_rq_tio_cache;
186
187 r = dm_uevent_init();
188 if (r)
189 goto out_free_rq_cache;
190
191 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
192 if (!deferred_remove_workqueue) {
193 r = -ENOMEM;
194 goto out_uevent_exit;
195 }
196
197 _major = major;
198 r = register_blkdev(_major, _name);
199 if (r < 0)
200 goto out_free_workqueue;
201
202 if (!_major)
203 _major = r;
204
205 return 0;
206
207 out_free_workqueue:
208 destroy_workqueue(deferred_remove_workqueue);
209 out_uevent_exit:
210 dm_uevent_exit();
211 out_free_rq_cache:
212 kmem_cache_destroy(_rq_cache);
213 out_free_rq_tio_cache:
214 kmem_cache_destroy(_rq_tio_cache);
215 out_free_io_cache:
216 kmem_cache_destroy(_io_cache);
217
218 return r;
219 }
220
221 static void local_exit(void)
222 {
223 flush_scheduled_work();
224 destroy_workqueue(deferred_remove_workqueue);
225
226 kmem_cache_destroy(_rq_cache);
227 kmem_cache_destroy(_rq_tio_cache);
228 kmem_cache_destroy(_io_cache);
229 unregister_blkdev(_major, _name);
230 dm_uevent_exit();
231
232 _major = 0;
233
234 DMINFO("cleaned up");
235 }
236
237 static int (*_inits[])(void) __initdata = {
238 local_init,
239 dm_target_init,
240 dm_linear_init,
241 dm_stripe_init,
242 dm_io_init,
243 dm_kcopyd_init,
244 dm_interface_init,
245 dm_statistics_init,
246 };
247
248 static void (*_exits[])(void) = {
249 local_exit,
250 dm_target_exit,
251 dm_linear_exit,
252 dm_stripe_exit,
253 dm_io_exit,
254 dm_kcopyd_exit,
255 dm_interface_exit,
256 dm_statistics_exit,
257 };
258
259 static int __init dm_init(void)
260 {
261 const int count = ARRAY_SIZE(_inits);
262
263 int r, i;
264
265 for (i = 0; i < count; i++) {
266 r = _inits[i]();
267 if (r)
268 goto bad;
269 }
270
271 return 0;
272
273 bad:
274 while (i--)
275 _exits[i]();
276
277 return r;
278 }
279
280 static void __exit dm_exit(void)
281 {
282 int i = ARRAY_SIZE(_exits);
283
284 while (i--)
285 _exits[i]();
286
287 /*
288 * Should be empty by this point.
289 */
290 idr_destroy(&_minor_idr);
291 }
292
293 /*
294 * Block device functions
295 */
296 int dm_deleting_md(struct mapped_device *md)
297 {
298 return test_bit(DMF_DELETING, &md->flags);
299 }
300
301 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
302 {
303 struct mapped_device *md;
304
305 spin_lock(&_minor_lock);
306
307 md = bdev->bd_disk->private_data;
308 if (!md)
309 goto out;
310
311 if (test_bit(DMF_FREEING, &md->flags) ||
312 dm_deleting_md(md)) {
313 md = NULL;
314 goto out;
315 }
316
317 dm_get(md);
318 atomic_inc(&md->open_count);
319 out:
320 spin_unlock(&_minor_lock);
321
322 return md ? 0 : -ENXIO;
323 }
324
325 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
326 {
327 struct mapped_device *md;
328
329 spin_lock(&_minor_lock);
330
331 md = disk->private_data;
332 if (WARN_ON(!md))
333 goto out;
334
335 if (atomic_dec_and_test(&md->open_count) &&
336 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
337 queue_work(deferred_remove_workqueue, &deferred_remove_work);
338
339 dm_put(md);
340 out:
341 spin_unlock(&_minor_lock);
342 }
343
344 int dm_open_count(struct mapped_device *md)
345 {
346 return atomic_read(&md->open_count);
347 }
348
349 /*
350 * Guarantees nothing is using the device before it's deleted.
351 */
352 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
353 {
354 int r = 0;
355
356 spin_lock(&_minor_lock);
357
358 if (dm_open_count(md)) {
359 r = -EBUSY;
360 if (mark_deferred)
361 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
362 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
363 r = -EEXIST;
364 else
365 set_bit(DMF_DELETING, &md->flags);
366
367 spin_unlock(&_minor_lock);
368
369 return r;
370 }
371
372 int dm_cancel_deferred_remove(struct mapped_device *md)
373 {
374 int r = 0;
375
376 spin_lock(&_minor_lock);
377
378 if (test_bit(DMF_DELETING, &md->flags))
379 r = -EBUSY;
380 else
381 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
382
383 spin_unlock(&_minor_lock);
384
385 return r;
386 }
387
388 static void do_deferred_remove(struct work_struct *w)
389 {
390 dm_deferred_remove();
391 }
392
393 sector_t dm_get_size(struct mapped_device *md)
394 {
395 return get_capacity(md->disk);
396 }
397
398 struct request_queue *dm_get_md_queue(struct mapped_device *md)
399 {
400 return md->queue;
401 }
402
403 struct dm_stats *dm_get_stats(struct mapped_device *md)
404 {
405 return &md->stats;
406 }
407
408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 {
410 struct mapped_device *md = bdev->bd_disk->private_data;
411
412 return dm_get_geometry(md, geo);
413 }
414
415 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
416 struct block_device **bdev,
417 fmode_t *mode)
418 {
419 struct dm_target *tgt;
420 struct dm_table *map;
421 int srcu_idx, r;
422
423 retry:
424 r = -ENOTTY;
425 map = dm_get_live_table(md, &srcu_idx);
426 if (!map || !dm_table_get_size(map))
427 goto out;
428
429 /* We only support devices that have a single target */
430 if (dm_table_get_num_targets(map) != 1)
431 goto out;
432
433 tgt = dm_table_get_target(map, 0);
434 if (!tgt->type->prepare_ioctl)
435 goto out;
436
437 if (dm_suspended_md(md)) {
438 r = -EAGAIN;
439 goto out;
440 }
441
442 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
443 if (r < 0)
444 goto out;
445
446 bdgrab(*bdev);
447 dm_put_live_table(md, srcu_idx);
448 return r;
449
450 out:
451 dm_put_live_table(md, srcu_idx);
452 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
453 msleep(10);
454 goto retry;
455 }
456 return r;
457 }
458
459 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
460 unsigned int cmd, unsigned long arg)
461 {
462 struct mapped_device *md = bdev->bd_disk->private_data;
463 int r;
464
465 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
466 if (r < 0)
467 return r;
468
469 if (r > 0) {
470 /*
471 * Target determined this ioctl is being issued against a
472 * subset of the parent bdev; require extra privileges.
473 */
474 if (!capable(CAP_SYS_RAWIO)) {
475 DMWARN_LIMIT(
476 "%s: sending ioctl %x to DM device without required privilege.",
477 current->comm, cmd);
478 r = -ENOIOCTLCMD;
479 goto out;
480 }
481 }
482
483 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
484 out:
485 bdput(bdev);
486 return r;
487 }
488
489 static struct dm_io *alloc_io(struct mapped_device *md)
490 {
491 return mempool_alloc(md->io_pool, GFP_NOIO);
492 }
493
494 static void free_io(struct mapped_device *md, struct dm_io *io)
495 {
496 mempool_free(io, md->io_pool);
497 }
498
499 static void free_tio(struct dm_target_io *tio)
500 {
501 bio_put(&tio->clone);
502 }
503
504 int md_in_flight(struct mapped_device *md)
505 {
506 return atomic_read(&md->pending[READ]) +
507 atomic_read(&md->pending[WRITE]);
508 }
509
510 static void start_io_acct(struct dm_io *io)
511 {
512 struct mapped_device *md = io->md;
513 struct bio *bio = io->bio;
514 int cpu;
515 int rw = bio_data_dir(bio);
516
517 io->start_time = jiffies;
518
519 cpu = part_stat_lock();
520 part_round_stats(md->queue, cpu, &dm_disk(md)->part0);
521 part_stat_unlock();
522 atomic_set(&dm_disk(md)->part0.in_flight[rw],
523 atomic_inc_return(&md->pending[rw]));
524
525 if (unlikely(dm_stats_used(&md->stats)))
526 dm_stats_account_io(&md->stats, bio_data_dir(bio),
527 bio->bi_iter.bi_sector, bio_sectors(bio),
528 false, 0, &io->stats_aux);
529 }
530
531 static void end_io_acct(struct dm_io *io)
532 {
533 struct mapped_device *md = io->md;
534 struct bio *bio = io->bio;
535 unsigned long duration = jiffies - io->start_time;
536 int pending;
537 int rw = bio_data_dir(bio);
538
539 generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
540
541 if (unlikely(dm_stats_used(&md->stats)))
542 dm_stats_account_io(&md->stats, bio_data_dir(bio),
543 bio->bi_iter.bi_sector, bio_sectors(bio),
544 true, duration, &io->stats_aux);
545
546 /*
547 * After this is decremented the bio must not be touched if it is
548 * a flush.
549 */
550 pending = atomic_dec_return(&md->pending[rw]);
551 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
552 pending += atomic_read(&md->pending[rw^0x1]);
553
554 /* nudge anyone waiting on suspend queue */
555 if (!pending)
556 wake_up(&md->wait);
557 }
558
559 /*
560 * Add the bio to the list of deferred io.
561 */
562 static void queue_io(struct mapped_device *md, struct bio *bio)
563 {
564 unsigned long flags;
565
566 spin_lock_irqsave(&md->deferred_lock, flags);
567 bio_list_add(&md->deferred, bio);
568 spin_unlock_irqrestore(&md->deferred_lock, flags);
569 queue_work(md->wq, &md->work);
570 }
571
572 /*
573 * Everyone (including functions in this file), should use this
574 * function to access the md->map field, and make sure they call
575 * dm_put_live_table() when finished.
576 */
577 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
578 {
579 *srcu_idx = srcu_read_lock(&md->io_barrier);
580
581 return srcu_dereference(md->map, &md->io_barrier);
582 }
583
584 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
585 {
586 srcu_read_unlock(&md->io_barrier, srcu_idx);
587 }
588
589 void dm_sync_table(struct mapped_device *md)
590 {
591 synchronize_srcu(&md->io_barrier);
592 synchronize_rcu_expedited();
593 }
594
595 /*
596 * A fast alternative to dm_get_live_table/dm_put_live_table.
597 * The caller must not block between these two functions.
598 */
599 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
600 {
601 rcu_read_lock();
602 return rcu_dereference(md->map);
603 }
604
605 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
606 {
607 rcu_read_unlock();
608 }
609
610 /*
611 * Open a table device so we can use it as a map destination.
612 */
613 static int open_table_device(struct table_device *td, dev_t dev,
614 struct mapped_device *md)
615 {
616 static char *_claim_ptr = "I belong to device-mapper";
617 struct block_device *bdev;
618
619 int r;
620
621 BUG_ON(td->dm_dev.bdev);
622
623 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
624 if (IS_ERR(bdev))
625 return PTR_ERR(bdev);
626
627 r = bd_link_disk_holder(bdev, dm_disk(md));
628 if (r) {
629 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
630 return r;
631 }
632
633 td->dm_dev.bdev = bdev;
634 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
635 return 0;
636 }
637
638 /*
639 * Close a table device that we've been using.
640 */
641 static void close_table_device(struct table_device *td, struct mapped_device *md)
642 {
643 if (!td->dm_dev.bdev)
644 return;
645
646 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
647 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
648 put_dax(td->dm_dev.dax_dev);
649 td->dm_dev.bdev = NULL;
650 td->dm_dev.dax_dev = NULL;
651 }
652
653 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
654 fmode_t mode) {
655 struct table_device *td;
656
657 list_for_each_entry(td, l, list)
658 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
659 return td;
660
661 return NULL;
662 }
663
664 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
665 struct dm_dev **result) {
666 int r;
667 struct table_device *td;
668
669 mutex_lock(&md->table_devices_lock);
670 td = find_table_device(&md->table_devices, dev, mode);
671 if (!td) {
672 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
673 if (!td) {
674 mutex_unlock(&md->table_devices_lock);
675 return -ENOMEM;
676 }
677
678 td->dm_dev.mode = mode;
679 td->dm_dev.bdev = NULL;
680
681 if ((r = open_table_device(td, dev, md))) {
682 mutex_unlock(&md->table_devices_lock);
683 kfree(td);
684 return r;
685 }
686
687 format_dev_t(td->dm_dev.name, dev);
688
689 refcount_set(&td->count, 1);
690 list_add(&td->list, &md->table_devices);
691 } else {
692 refcount_inc(&td->count);
693 }
694 mutex_unlock(&md->table_devices_lock);
695
696 *result = &td->dm_dev;
697 return 0;
698 }
699 EXPORT_SYMBOL_GPL(dm_get_table_device);
700
701 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
702 {
703 struct table_device *td = container_of(d, struct table_device, dm_dev);
704
705 mutex_lock(&md->table_devices_lock);
706 if (refcount_dec_and_test(&td->count)) {
707 close_table_device(td, md);
708 list_del(&td->list);
709 kfree(td);
710 }
711 mutex_unlock(&md->table_devices_lock);
712 }
713 EXPORT_SYMBOL(dm_put_table_device);
714
715 static void free_table_devices(struct list_head *devices)
716 {
717 struct list_head *tmp, *next;
718
719 list_for_each_safe(tmp, next, devices) {
720 struct table_device *td = list_entry(tmp, struct table_device, list);
721
722 DMWARN("dm_destroy: %s still exists with %d references",
723 td->dm_dev.name, refcount_read(&td->count));
724 kfree(td);
725 }
726 }
727
728 /*
729 * Get the geometry associated with a dm device
730 */
731 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
732 {
733 *geo = md->geometry;
734
735 return 0;
736 }
737
738 /*
739 * Set the geometry of a device.
740 */
741 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
742 {
743 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
744
745 if (geo->start > sz) {
746 DMWARN("Start sector is beyond the geometry limits.");
747 return -EINVAL;
748 }
749
750 md->geometry = *geo;
751
752 return 0;
753 }
754
755 /*-----------------------------------------------------------------
756 * CRUD START:
757 * A more elegant soln is in the works that uses the queue
758 * merge fn, unfortunately there are a couple of changes to
759 * the block layer that I want to make for this. So in the
760 * interests of getting something for people to use I give
761 * you this clearly demarcated crap.
762 *---------------------------------------------------------------*/
763
764 static int __noflush_suspending(struct mapped_device *md)
765 {
766 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
767 }
768
769 /*
770 * Decrements the number of outstanding ios that a bio has been
771 * cloned into, completing the original io if necc.
772 */
773 static void dec_pending(struct dm_io *io, blk_status_t error)
774 {
775 unsigned long flags;
776 blk_status_t io_error;
777 struct bio *bio;
778 struct mapped_device *md = io->md;
779
780 /* Push-back supersedes any I/O errors */
781 if (unlikely(error)) {
782 spin_lock_irqsave(&io->endio_lock, flags);
783 if (!(io->status == BLK_STS_DM_REQUEUE &&
784 __noflush_suspending(md)))
785 io->status = error;
786 spin_unlock_irqrestore(&io->endio_lock, flags);
787 }
788
789 if (atomic_dec_and_test(&io->io_count)) {
790 if (io->status == BLK_STS_DM_REQUEUE) {
791 /*
792 * Target requested pushing back the I/O.
793 */
794 spin_lock_irqsave(&md->deferred_lock, flags);
795 if (__noflush_suspending(md))
796 bio_list_add_head(&md->deferred, io->bio);
797 else
798 /* noflush suspend was interrupted. */
799 io->status = BLK_STS_IOERR;
800 spin_unlock_irqrestore(&md->deferred_lock, flags);
801 }
802
803 io_error = io->status;
804 bio = io->bio;
805 end_io_acct(io);
806 free_io(md, io);
807
808 if (io_error == BLK_STS_DM_REQUEUE)
809 return;
810
811 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
812 /*
813 * Preflush done for flush with data, reissue
814 * without REQ_PREFLUSH.
815 */
816 bio->bi_opf &= ~REQ_PREFLUSH;
817 queue_io(md, bio);
818 } else {
819 /* done with normal IO or empty flush */
820 if (io_error)
821 bio->bi_status = io_error;
822 bio_endio(bio);
823 }
824 }
825 }
826
827 void disable_write_same(struct mapped_device *md)
828 {
829 struct queue_limits *limits = dm_get_queue_limits(md);
830
831 /* device doesn't really support WRITE SAME, disable it */
832 limits->max_write_same_sectors = 0;
833 }
834
835 void disable_write_zeroes(struct mapped_device *md)
836 {
837 struct queue_limits *limits = dm_get_queue_limits(md);
838
839 /* device doesn't really support WRITE ZEROES, disable it */
840 limits->max_write_zeroes_sectors = 0;
841 }
842
843 static void clone_endio(struct bio *bio)
844 {
845 blk_status_t error = bio->bi_status;
846 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
847 struct dm_io *io = tio->io;
848 struct mapped_device *md = tio->io->md;
849 dm_endio_fn endio = tio->ti->type->end_io;
850
851 if (unlikely(error == BLK_STS_TARGET)) {
852 if (bio_op(bio) == REQ_OP_WRITE_SAME &&
853 !bio->bi_disk->queue->limits.max_write_same_sectors)
854 disable_write_same(md);
855 if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
856 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
857 disable_write_zeroes(md);
858 }
859
860 if (endio) {
861 int r = endio(tio->ti, bio, &error);
862 switch (r) {
863 case DM_ENDIO_REQUEUE:
864 error = BLK_STS_DM_REQUEUE;
865 /*FALLTHRU*/
866 case DM_ENDIO_DONE:
867 break;
868 case DM_ENDIO_INCOMPLETE:
869 /* The target will handle the io */
870 return;
871 default:
872 DMWARN("unimplemented target endio return value: %d", r);
873 BUG();
874 }
875 }
876
877 free_tio(tio);
878 dec_pending(io, error);
879 }
880
881 /*
882 * Return maximum size of I/O possible at the supplied sector up to the current
883 * target boundary.
884 */
885 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
886 {
887 sector_t target_offset = dm_target_offset(ti, sector);
888
889 return ti->len - target_offset;
890 }
891
892 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
893 {
894 sector_t len = max_io_len_target_boundary(sector, ti);
895 sector_t offset, max_len;
896
897 /*
898 * Does the target need to split even further?
899 */
900 if (ti->max_io_len) {
901 offset = dm_target_offset(ti, sector);
902 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
903 max_len = sector_div(offset, ti->max_io_len);
904 else
905 max_len = offset & (ti->max_io_len - 1);
906 max_len = ti->max_io_len - max_len;
907
908 if (len > max_len)
909 len = max_len;
910 }
911
912 return len;
913 }
914
915 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
916 {
917 if (len > UINT_MAX) {
918 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
919 (unsigned long long)len, UINT_MAX);
920 ti->error = "Maximum size of target IO is too large";
921 return -EINVAL;
922 }
923
924 ti->max_io_len = (uint32_t) len;
925
926 return 0;
927 }
928 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
929
930 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
931 sector_t sector, int *srcu_idx)
932 {
933 struct dm_table *map;
934 struct dm_target *ti;
935
936 map = dm_get_live_table(md, srcu_idx);
937 if (!map)
938 return NULL;
939
940 ti = dm_table_find_target(map, sector);
941 if (!dm_target_is_valid(ti))
942 return NULL;
943
944 return ti;
945 }
946
947 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
948 long nr_pages, void **kaddr, pfn_t *pfn)
949 {
950 struct mapped_device *md = dax_get_private(dax_dev);
951 sector_t sector = pgoff * PAGE_SECTORS;
952 struct dm_target *ti;
953 long len, ret = -EIO;
954 int srcu_idx;
955
956 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
957
958 if (!ti)
959 goto out;
960 if (!ti->type->direct_access)
961 goto out;
962 len = max_io_len(sector, ti) / PAGE_SECTORS;
963 if (len < 1)
964 goto out;
965 nr_pages = min(len, nr_pages);
966 if (ti->type->direct_access)
967 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
968
969 out:
970 dm_put_live_table(md, srcu_idx);
971
972 return ret;
973 }
974
975 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
976 void *addr, size_t bytes, struct iov_iter *i)
977 {
978 struct mapped_device *md = dax_get_private(dax_dev);
979 sector_t sector = pgoff * PAGE_SECTORS;
980 struct dm_target *ti;
981 long ret = 0;
982 int srcu_idx;
983
984 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
985
986 if (!ti)
987 goto out;
988 if (!ti->type->dax_copy_from_iter) {
989 ret = copy_from_iter(addr, bytes, i);
990 goto out;
991 }
992 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
993 out:
994 dm_put_live_table(md, srcu_idx);
995
996 return ret;
997 }
998
999 /*
1000 * A target may call dm_accept_partial_bio only from the map routine. It is
1001 * allowed for all bio types except REQ_PREFLUSH.
1002 *
1003 * dm_accept_partial_bio informs the dm that the target only wants to process
1004 * additional n_sectors sectors of the bio and the rest of the data should be
1005 * sent in a next bio.
1006 *
1007 * A diagram that explains the arithmetics:
1008 * +--------------------+---------------+-------+
1009 * | 1 | 2 | 3 |
1010 * +--------------------+---------------+-------+
1011 *
1012 * <-------------- *tio->len_ptr --------------->
1013 * <------- bi_size ------->
1014 * <-- n_sectors -->
1015 *
1016 * Region 1 was already iterated over with bio_advance or similar function.
1017 * (it may be empty if the target doesn't use bio_advance)
1018 * Region 2 is the remaining bio size that the target wants to process.
1019 * (it may be empty if region 1 is non-empty, although there is no reason
1020 * to make it empty)
1021 * The target requires that region 3 is to be sent in the next bio.
1022 *
1023 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1024 * the partially processed part (the sum of regions 1+2) must be the same for all
1025 * copies of the bio.
1026 */
1027 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1028 {
1029 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1030 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1031 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1032 BUG_ON(bi_size > *tio->len_ptr);
1033 BUG_ON(n_sectors > bi_size);
1034 *tio->len_ptr -= bi_size - n_sectors;
1035 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1036 }
1037 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1038
1039 /*
1040 * The zone descriptors obtained with a zone report indicate
1041 * zone positions within the target device. The zone descriptors
1042 * must be remapped to match their position within the dm device.
1043 * A target may call dm_remap_zone_report after completion of a
1044 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1045 * from the target device mapping to the dm device.
1046 */
1047 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1048 {
1049 #ifdef CONFIG_BLK_DEV_ZONED
1050 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1051 struct bio *report_bio = tio->io->bio;
1052 struct blk_zone_report_hdr *hdr = NULL;
1053 struct blk_zone *zone;
1054 unsigned int nr_rep = 0;
1055 unsigned int ofst;
1056 struct bio_vec bvec;
1057 struct bvec_iter iter;
1058 void *addr;
1059
1060 if (bio->bi_status)
1061 return;
1062
1063 /*
1064 * Remap the start sector of the reported zones. For sequential zones,
1065 * also remap the write pointer position.
1066 */
1067 bio_for_each_segment(bvec, report_bio, iter) {
1068 addr = kmap_atomic(bvec.bv_page);
1069
1070 /* Remember the report header in the first page */
1071 if (!hdr) {
1072 hdr = addr;
1073 ofst = sizeof(struct blk_zone_report_hdr);
1074 } else
1075 ofst = 0;
1076
1077 /* Set zones start sector */
1078 while (hdr->nr_zones && ofst < bvec.bv_len) {
1079 zone = addr + ofst;
1080 if (zone->start >= start + ti->len) {
1081 hdr->nr_zones = 0;
1082 break;
1083 }
1084 zone->start = zone->start + ti->begin - start;
1085 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1086 if (zone->cond == BLK_ZONE_COND_FULL)
1087 zone->wp = zone->start + zone->len;
1088 else if (zone->cond == BLK_ZONE_COND_EMPTY)
1089 zone->wp = zone->start;
1090 else
1091 zone->wp = zone->wp + ti->begin - start;
1092 }
1093 ofst += sizeof(struct blk_zone);
1094 hdr->nr_zones--;
1095 nr_rep++;
1096 }
1097
1098 if (addr != hdr)
1099 kunmap_atomic(addr);
1100
1101 if (!hdr->nr_zones)
1102 break;
1103 }
1104
1105 if (hdr) {
1106 hdr->nr_zones = nr_rep;
1107 kunmap_atomic(hdr);
1108 }
1109
1110 bio_advance(report_bio, report_bio->bi_iter.bi_size);
1111
1112 #else /* !CONFIG_BLK_DEV_ZONED */
1113 bio->bi_status = BLK_STS_NOTSUPP;
1114 #endif
1115 }
1116 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1117
1118 /*
1119 * Flush current->bio_list when the target map method blocks.
1120 * This fixes deadlocks in snapshot and possibly in other targets.
1121 */
1122 struct dm_offload {
1123 struct blk_plug plug;
1124 struct blk_plug_cb cb;
1125 };
1126
1127 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1128 {
1129 struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1130 struct bio_list list;
1131 struct bio *bio;
1132 int i;
1133
1134 INIT_LIST_HEAD(&o->cb.list);
1135
1136 if (unlikely(!current->bio_list))
1137 return;
1138
1139 for (i = 0; i < 2; i++) {
1140 list = current->bio_list[i];
1141 bio_list_init(&current->bio_list[i]);
1142
1143 while ((bio = bio_list_pop(&list))) {
1144 struct bio_set *bs = bio->bi_pool;
1145 if (unlikely(!bs) || bs == fs_bio_set ||
1146 !bs->rescue_workqueue) {
1147 bio_list_add(&current->bio_list[i], bio);
1148 continue;
1149 }
1150
1151 spin_lock(&bs->rescue_lock);
1152 bio_list_add(&bs->rescue_list, bio);
1153 queue_work(bs->rescue_workqueue, &bs->rescue_work);
1154 spin_unlock(&bs->rescue_lock);
1155 }
1156 }
1157 }
1158
1159 static void dm_offload_start(struct dm_offload *o)
1160 {
1161 blk_start_plug(&o->plug);
1162 o->cb.callback = flush_current_bio_list;
1163 list_add(&o->cb.list, &current->plug->cb_list);
1164 }
1165
1166 static void dm_offload_end(struct dm_offload *o)
1167 {
1168 list_del(&o->cb.list);
1169 blk_finish_plug(&o->plug);
1170 }
1171
1172 static void __map_bio(struct dm_target_io *tio)
1173 {
1174 int r;
1175 sector_t sector;
1176 struct dm_offload o;
1177 struct bio *clone = &tio->clone;
1178 struct dm_target *ti = tio->ti;
1179
1180 clone->bi_end_io = clone_endio;
1181
1182 /*
1183 * Map the clone. If r == 0 we don't need to do
1184 * anything, the target has assumed ownership of
1185 * this io.
1186 */
1187 atomic_inc(&tio->io->io_count);
1188 sector = clone->bi_iter.bi_sector;
1189
1190 dm_offload_start(&o);
1191 r = ti->type->map(ti, clone);
1192 dm_offload_end(&o);
1193
1194 switch (r) {
1195 case DM_MAPIO_SUBMITTED:
1196 break;
1197 case DM_MAPIO_REMAPPED:
1198 /* the bio has been remapped so dispatch it */
1199 trace_block_bio_remap(clone->bi_disk->queue, clone,
1200 bio_dev(tio->io->bio), sector);
1201 generic_make_request(clone);
1202 break;
1203 case DM_MAPIO_KILL:
1204 dec_pending(tio->io, BLK_STS_IOERR);
1205 free_tio(tio);
1206 break;
1207 case DM_MAPIO_REQUEUE:
1208 dec_pending(tio->io, BLK_STS_DM_REQUEUE);
1209 free_tio(tio);
1210 break;
1211 default:
1212 DMWARN("unimplemented target map return value: %d", r);
1213 BUG();
1214 }
1215 }
1216
1217 struct clone_info {
1218 struct mapped_device *md;
1219 struct dm_table *map;
1220 struct bio *bio;
1221 struct dm_io *io;
1222 sector_t sector;
1223 unsigned sector_count;
1224 };
1225
1226 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1227 {
1228 bio->bi_iter.bi_sector = sector;
1229 bio->bi_iter.bi_size = to_bytes(len);
1230 }
1231
1232 /*
1233 * Creates a bio that consists of range of complete bvecs.
1234 */
1235 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1236 sector_t sector, unsigned len)
1237 {
1238 struct bio *clone = &tio->clone;
1239
1240 __bio_clone_fast(clone, bio);
1241
1242 if (unlikely(bio_integrity(bio) != NULL)) {
1243 int r;
1244
1245 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1246 !dm_target_passes_integrity(tio->ti->type))) {
1247 DMWARN("%s: the target %s doesn't support integrity data.",
1248 dm_device_name(tio->io->md),
1249 tio->ti->type->name);
1250 return -EIO;
1251 }
1252
1253 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1254 if (r < 0)
1255 return r;
1256 }
1257
1258 if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1259 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1260 clone->bi_iter.bi_size = to_bytes(len);
1261
1262 if (unlikely(bio_integrity(bio) != NULL))
1263 bio_integrity_trim(clone);
1264
1265 return 0;
1266 }
1267
1268 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1269 struct dm_target *ti,
1270 unsigned target_bio_nr)
1271 {
1272 struct dm_target_io *tio;
1273 struct bio *clone;
1274
1275 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1276 tio = container_of(clone, struct dm_target_io, clone);
1277
1278 tio->io = ci->io;
1279 tio->ti = ti;
1280 tio->target_bio_nr = target_bio_nr;
1281
1282 return tio;
1283 }
1284
1285 static void __clone_and_map_simple_bio(struct clone_info *ci,
1286 struct dm_target *ti,
1287 unsigned target_bio_nr, unsigned *len)
1288 {
1289 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1290 struct bio *clone = &tio->clone;
1291
1292 tio->len_ptr = len;
1293
1294 __bio_clone_fast(clone, ci->bio);
1295 if (len)
1296 bio_setup_sector(clone, ci->sector, *len);
1297
1298 __map_bio(tio);
1299 }
1300
1301 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1302 unsigned num_bios, unsigned *len)
1303 {
1304 unsigned target_bio_nr;
1305
1306 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1307 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1308 }
1309
1310 static int __send_empty_flush(struct clone_info *ci)
1311 {
1312 unsigned target_nr = 0;
1313 struct dm_target *ti;
1314
1315 BUG_ON(bio_has_data(ci->bio));
1316 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1317 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1318
1319 return 0;
1320 }
1321
1322 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1323 sector_t sector, unsigned *len)
1324 {
1325 struct bio *bio = ci->bio;
1326 struct dm_target_io *tio;
1327 unsigned target_bio_nr;
1328 unsigned num_target_bios = 1;
1329 int r = 0;
1330
1331 /*
1332 * Does the target want to receive duplicate copies of the bio?
1333 */
1334 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1335 num_target_bios = ti->num_write_bios(ti, bio);
1336
1337 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1338 tio = alloc_tio(ci, ti, target_bio_nr);
1339 tio->len_ptr = len;
1340 r = clone_bio(tio, bio, sector, *len);
1341 if (r < 0) {
1342 free_tio(tio);
1343 break;
1344 }
1345 __map_bio(tio);
1346 }
1347
1348 return r;
1349 }
1350
1351 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1352
1353 static unsigned get_num_discard_bios(struct dm_target *ti)
1354 {
1355 return ti->num_discard_bios;
1356 }
1357
1358 static unsigned get_num_write_same_bios(struct dm_target *ti)
1359 {
1360 return ti->num_write_same_bios;
1361 }
1362
1363 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1364 {
1365 return ti->num_write_zeroes_bios;
1366 }
1367
1368 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1369
1370 static bool is_split_required_for_discard(struct dm_target *ti)
1371 {
1372 return ti->split_discard_bios;
1373 }
1374
1375 static int __send_changing_extent_only(struct clone_info *ci,
1376 get_num_bios_fn get_num_bios,
1377 is_split_required_fn is_split_required)
1378 {
1379 struct dm_target *ti;
1380 unsigned len;
1381 unsigned num_bios;
1382
1383 do {
1384 ti = dm_table_find_target(ci->map, ci->sector);
1385 if (!dm_target_is_valid(ti))
1386 return -EIO;
1387
1388 /*
1389 * Even though the device advertised support for this type of
1390 * request, that does not mean every target supports it, and
1391 * reconfiguration might also have changed that since the
1392 * check was performed.
1393 */
1394 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1395 if (!num_bios)
1396 return -EOPNOTSUPP;
1397
1398 if (is_split_required && !is_split_required(ti))
1399 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1400 else
1401 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1402
1403 __send_duplicate_bios(ci, ti, num_bios, &len);
1404
1405 ci->sector += len;
1406 } while (ci->sector_count -= len);
1407
1408 return 0;
1409 }
1410
1411 static int __send_discard(struct clone_info *ci)
1412 {
1413 return __send_changing_extent_only(ci, get_num_discard_bios,
1414 is_split_required_for_discard);
1415 }
1416
1417 static int __send_write_same(struct clone_info *ci)
1418 {
1419 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1420 }
1421
1422 static int __send_write_zeroes(struct clone_info *ci)
1423 {
1424 return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1425 }
1426
1427 /*
1428 * Select the correct strategy for processing a non-flush bio.
1429 */
1430 static int __split_and_process_non_flush(struct clone_info *ci)
1431 {
1432 struct bio *bio = ci->bio;
1433 struct dm_target *ti;
1434 unsigned len;
1435 int r;
1436
1437 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1438 return __send_discard(ci);
1439 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1440 return __send_write_same(ci);
1441 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1442 return __send_write_zeroes(ci);
1443
1444 ti = dm_table_find_target(ci->map, ci->sector);
1445 if (!dm_target_is_valid(ti))
1446 return -EIO;
1447
1448 if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1449 len = ci->sector_count;
1450 else
1451 len = min_t(sector_t, max_io_len(ci->sector, ti),
1452 ci->sector_count);
1453
1454 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1455 if (r < 0)
1456 return r;
1457
1458 ci->sector += len;
1459 ci->sector_count -= len;
1460
1461 return 0;
1462 }
1463
1464 /*
1465 * Entry point to split a bio into clones and submit them to the targets.
1466 */
1467 static void __split_and_process_bio(struct mapped_device *md,
1468 struct dm_table *map, struct bio *bio)
1469 {
1470 struct clone_info ci;
1471 int error = 0;
1472
1473 if (unlikely(!map)) {
1474 bio_io_error(bio);
1475 return;
1476 }
1477
1478 ci.map = map;
1479 ci.md = md;
1480 ci.io = alloc_io(md);
1481 ci.io->status = 0;
1482 atomic_set(&ci.io->io_count, 1);
1483 ci.io->bio = bio;
1484 ci.io->md = md;
1485 spin_lock_init(&ci.io->endio_lock);
1486 ci.sector = bio->bi_iter.bi_sector;
1487
1488 start_io_acct(ci.io);
1489
1490 if (bio->bi_opf & REQ_PREFLUSH) {
1491 ci.bio = &ci.md->flush_bio;
1492 ci.sector_count = 0;
1493 error = __send_empty_flush(&ci);
1494 /* dec_pending submits any data associated with flush */
1495 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1496 ci.bio = bio;
1497 ci.sector_count = 0;
1498 error = __split_and_process_non_flush(&ci);
1499 } else {
1500 ci.bio = bio;
1501 ci.sector_count = bio_sectors(bio);
1502 while (ci.sector_count && !error) {
1503 error = __split_and_process_non_flush(&ci);
1504 if (current->bio_list && ci.sector_count && !error) {
1505 /*
1506 * Remainder must be passed to generic_make_request()
1507 * so that it gets handled *after* bios already submitted
1508 * have been completely processed.
1509 * We take a clone of the original to store in
1510 * ci.io->bio to be used by end_io_acct() and
1511 * for dec_pending to use for completion handling.
1512 * As this path is not used for REQ_OP_ZONE_REPORT,
1513 * the usage of io->bio in dm_remap_zone_report()
1514 * won't be affected by this reassignment.
1515 */
1516 struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1517 md->queue->bio_split);
1518 ci.io->bio = b;
1519 bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1520 bio_chain(b, bio);
1521 generic_make_request(bio);
1522 break;
1523 }
1524 }
1525 }
1526
1527 /* drop the extra reference count */
1528 dec_pending(ci.io, errno_to_blk_status(error));
1529 }
1530 /*-----------------------------------------------------------------
1531 * CRUD END
1532 *---------------------------------------------------------------*/
1533
1534 /*
1535 * The request function that remaps the bio to one target and
1536 * splits off any remainder.
1537 */
1538 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1539 {
1540 int rw = bio_data_dir(bio);
1541 struct mapped_device *md = q->queuedata;
1542 int srcu_idx;
1543 struct dm_table *map;
1544
1545 map = dm_get_live_table(md, &srcu_idx);
1546
1547 generic_start_io_acct(q, rw, bio_sectors(bio), &dm_disk(md)->part0);
1548
1549 /* if we're suspended, we have to queue this io for later */
1550 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1551 dm_put_live_table(md, srcu_idx);
1552
1553 if (!(bio->bi_opf & REQ_RAHEAD))
1554 queue_io(md, bio);
1555 else
1556 bio_io_error(bio);
1557 return BLK_QC_T_NONE;
1558 }
1559
1560 __split_and_process_bio(md, map, bio);
1561 dm_put_live_table(md, srcu_idx);
1562 return BLK_QC_T_NONE;
1563 }
1564
1565 static int dm_any_congested(void *congested_data, int bdi_bits)
1566 {
1567 int r = bdi_bits;
1568 struct mapped_device *md = congested_data;
1569 struct dm_table *map;
1570
1571 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1572 if (dm_request_based(md)) {
1573 /*
1574 * With request-based DM we only need to check the
1575 * top-level queue for congestion.
1576 */
1577 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1578 } else {
1579 map = dm_get_live_table_fast(md);
1580 if (map)
1581 r = dm_table_any_congested(map, bdi_bits);
1582 dm_put_live_table_fast(md);
1583 }
1584 }
1585
1586 return r;
1587 }
1588
1589 /*-----------------------------------------------------------------
1590 * An IDR is used to keep track of allocated minor numbers.
1591 *---------------------------------------------------------------*/
1592 static void free_minor(int minor)
1593 {
1594 spin_lock(&_minor_lock);
1595 idr_remove(&_minor_idr, minor);
1596 spin_unlock(&_minor_lock);
1597 }
1598
1599 /*
1600 * See if the device with a specific minor # is free.
1601 */
1602 static int specific_minor(int minor)
1603 {
1604 int r;
1605
1606 if (minor >= (1 << MINORBITS))
1607 return -EINVAL;
1608
1609 idr_preload(GFP_KERNEL);
1610 spin_lock(&_minor_lock);
1611
1612 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1613
1614 spin_unlock(&_minor_lock);
1615 idr_preload_end();
1616 if (r < 0)
1617 return r == -ENOSPC ? -EBUSY : r;
1618 return 0;
1619 }
1620
1621 static int next_free_minor(int *minor)
1622 {
1623 int r;
1624
1625 idr_preload(GFP_KERNEL);
1626 spin_lock(&_minor_lock);
1627
1628 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1629
1630 spin_unlock(&_minor_lock);
1631 idr_preload_end();
1632 if (r < 0)
1633 return r;
1634 *minor = r;
1635 return 0;
1636 }
1637
1638 static const struct block_device_operations dm_blk_dops;
1639 static const struct dax_operations dm_dax_ops;
1640
1641 static void dm_wq_work(struct work_struct *work);
1642
1643 void dm_init_md_queue(struct mapped_device *md)
1644 {
1645 /*
1646 * Initialize data that will only be used by a non-blk-mq DM queue
1647 * - must do so here (in alloc_dev callchain) before queue is used
1648 */
1649 md->queue->queuedata = md;
1650 md->queue->backing_dev_info->congested_data = md;
1651 }
1652
1653 void dm_init_normal_md_queue(struct mapped_device *md)
1654 {
1655 md->use_blk_mq = false;
1656 dm_init_md_queue(md);
1657
1658 /*
1659 * Initialize aspects of queue that aren't relevant for blk-mq
1660 */
1661 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1662 }
1663
1664 static void cleanup_mapped_device(struct mapped_device *md)
1665 {
1666 if (md->wq)
1667 destroy_workqueue(md->wq);
1668 if (md->kworker_task)
1669 kthread_stop(md->kworker_task);
1670 mempool_destroy(md->io_pool);
1671 if (md->bs)
1672 bioset_free(md->bs);
1673
1674 if (md->dax_dev) {
1675 kill_dax(md->dax_dev);
1676 put_dax(md->dax_dev);
1677 md->dax_dev = NULL;
1678 }
1679
1680 if (md->disk) {
1681 spin_lock(&_minor_lock);
1682 md->disk->private_data = NULL;
1683 spin_unlock(&_minor_lock);
1684 del_gendisk(md->disk);
1685 put_disk(md->disk);
1686 }
1687
1688 if (md->queue)
1689 blk_cleanup_queue(md->queue);
1690
1691 cleanup_srcu_struct(&md->io_barrier);
1692
1693 if (md->bdev) {
1694 bdput(md->bdev);
1695 md->bdev = NULL;
1696 }
1697
1698 dm_mq_cleanup_mapped_device(md);
1699 }
1700
1701 /*
1702 * Allocate and initialise a blank device with a given minor.
1703 */
1704 static struct mapped_device *alloc_dev(int minor)
1705 {
1706 int r, numa_node_id = dm_get_numa_node();
1707 struct dax_device *dax_dev;
1708 struct mapped_device *md;
1709 void *old_md;
1710
1711 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1712 if (!md) {
1713 DMWARN("unable to allocate device, out of memory.");
1714 return NULL;
1715 }
1716
1717 if (!try_module_get(THIS_MODULE))
1718 goto bad_module_get;
1719
1720 /* get a minor number for the dev */
1721 if (minor == DM_ANY_MINOR)
1722 r = next_free_minor(&minor);
1723 else
1724 r = specific_minor(minor);
1725 if (r < 0)
1726 goto bad_minor;
1727
1728 r = init_srcu_struct(&md->io_barrier);
1729 if (r < 0)
1730 goto bad_io_barrier;
1731
1732 md->numa_node_id = numa_node_id;
1733 md->use_blk_mq = dm_use_blk_mq_default();
1734 md->init_tio_pdu = false;
1735 md->type = DM_TYPE_NONE;
1736 mutex_init(&md->suspend_lock);
1737 mutex_init(&md->type_lock);
1738 mutex_init(&md->table_devices_lock);
1739 spin_lock_init(&md->deferred_lock);
1740 atomic_set(&md->holders, 1);
1741 atomic_set(&md->open_count, 0);
1742 atomic_set(&md->event_nr, 0);
1743 atomic_set(&md->uevent_seq, 0);
1744 INIT_LIST_HEAD(&md->uevent_list);
1745 INIT_LIST_HEAD(&md->table_devices);
1746 spin_lock_init(&md->uevent_lock);
1747
1748 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1749 if (!md->queue)
1750 goto bad;
1751
1752 dm_init_md_queue(md);
1753
1754 md->disk = alloc_disk_node(1, numa_node_id);
1755 if (!md->disk)
1756 goto bad;
1757
1758 atomic_set(&md->pending[0], 0);
1759 atomic_set(&md->pending[1], 0);
1760 init_waitqueue_head(&md->wait);
1761 INIT_WORK(&md->work, dm_wq_work);
1762 init_waitqueue_head(&md->eventq);
1763 init_completion(&md->kobj_holder.completion);
1764 md->kworker_task = NULL;
1765
1766 md->disk->major = _major;
1767 md->disk->first_minor = minor;
1768 md->disk->fops = &dm_blk_dops;
1769 md->disk->queue = md->queue;
1770 md->disk->private_data = md;
1771 sprintf(md->disk->disk_name, "dm-%d", minor);
1772
1773 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1774 if (!dax_dev)
1775 goto bad;
1776 md->dax_dev = dax_dev;
1777
1778 add_disk(md->disk);
1779 format_dev_t(md->name, MKDEV(_major, minor));
1780
1781 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1782 if (!md->wq)
1783 goto bad;
1784
1785 md->bdev = bdget_disk(md->disk, 0);
1786 if (!md->bdev)
1787 goto bad;
1788
1789 bio_init(&md->flush_bio, NULL, 0);
1790 bio_set_dev(&md->flush_bio, md->bdev);
1791 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1792
1793 dm_stats_init(&md->stats);
1794
1795 /* Populate the mapping, nobody knows we exist yet */
1796 spin_lock(&_minor_lock);
1797 old_md = idr_replace(&_minor_idr, md, minor);
1798 spin_unlock(&_minor_lock);
1799
1800 BUG_ON(old_md != MINOR_ALLOCED);
1801
1802 return md;
1803
1804 bad:
1805 cleanup_mapped_device(md);
1806 bad_io_barrier:
1807 free_minor(minor);
1808 bad_minor:
1809 module_put(THIS_MODULE);
1810 bad_module_get:
1811 kvfree(md);
1812 return NULL;
1813 }
1814
1815 static void unlock_fs(struct mapped_device *md);
1816
1817 static void free_dev(struct mapped_device *md)
1818 {
1819 int minor = MINOR(disk_devt(md->disk));
1820
1821 unlock_fs(md);
1822
1823 cleanup_mapped_device(md);
1824
1825 free_table_devices(&md->table_devices);
1826 dm_stats_cleanup(&md->stats);
1827 free_minor(minor);
1828
1829 module_put(THIS_MODULE);
1830 kvfree(md);
1831 }
1832
1833 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1834 {
1835 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1836
1837 if (md->bs) {
1838 /* The md already has necessary mempools. */
1839 if (dm_table_bio_based(t)) {
1840 /*
1841 * Reload bioset because front_pad may have changed
1842 * because a different table was loaded.
1843 */
1844 bioset_free(md->bs);
1845 md->bs = p->bs;
1846 p->bs = NULL;
1847 }
1848 /*
1849 * There's no need to reload with request-based dm
1850 * because the size of front_pad doesn't change.
1851 * Note for future: If you are to reload bioset,
1852 * prep-ed requests in the queue may refer
1853 * to bio from the old bioset, so you must walk
1854 * through the queue to unprep.
1855 */
1856 goto out;
1857 }
1858
1859 BUG_ON(!p || md->io_pool || md->bs);
1860
1861 md->io_pool = p->io_pool;
1862 p->io_pool = NULL;
1863 md->bs = p->bs;
1864 p->bs = NULL;
1865
1866 out:
1867 /* mempool bind completed, no longer need any mempools in the table */
1868 dm_table_free_md_mempools(t);
1869 }
1870
1871 /*
1872 * Bind a table to the device.
1873 */
1874 static void event_callback(void *context)
1875 {
1876 unsigned long flags;
1877 LIST_HEAD(uevents);
1878 struct mapped_device *md = (struct mapped_device *) context;
1879
1880 spin_lock_irqsave(&md->uevent_lock, flags);
1881 list_splice_init(&md->uevent_list, &uevents);
1882 spin_unlock_irqrestore(&md->uevent_lock, flags);
1883
1884 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1885
1886 atomic_inc(&md->event_nr);
1887 wake_up(&md->eventq);
1888 dm_issue_global_event();
1889 }
1890
1891 /*
1892 * Protected by md->suspend_lock obtained by dm_swap_table().
1893 */
1894 static void __set_size(struct mapped_device *md, sector_t size)
1895 {
1896 lockdep_assert_held(&md->suspend_lock);
1897
1898 set_capacity(md->disk, size);
1899
1900 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1901 }
1902
1903 /*
1904 * Returns old map, which caller must destroy.
1905 */
1906 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1907 struct queue_limits *limits)
1908 {
1909 struct dm_table *old_map;
1910 struct request_queue *q = md->queue;
1911 sector_t size;
1912
1913 lockdep_assert_held(&md->suspend_lock);
1914
1915 size = dm_table_get_size(t);
1916
1917 /*
1918 * Wipe any geometry if the size of the table changed.
1919 */
1920 if (size != dm_get_size(md))
1921 memset(&md->geometry, 0, sizeof(md->geometry));
1922
1923 __set_size(md, size);
1924
1925 dm_table_event_callback(t, event_callback, md);
1926
1927 /*
1928 * The queue hasn't been stopped yet, if the old table type wasn't
1929 * for request-based during suspension. So stop it to prevent
1930 * I/O mapping before resume.
1931 * This must be done before setting the queue restrictions,
1932 * because request-based dm may be run just after the setting.
1933 */
1934 if (dm_table_request_based(t)) {
1935 dm_stop_queue(q);
1936 /*
1937 * Leverage the fact that request-based DM targets are
1938 * immutable singletons and establish md->immutable_target
1939 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1940 */
1941 md->immutable_target = dm_table_get_immutable_target(t);
1942 }
1943
1944 __bind_mempools(md, t);
1945
1946 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1947 rcu_assign_pointer(md->map, (void *)t);
1948 md->immutable_target_type = dm_table_get_immutable_target_type(t);
1949
1950 dm_table_set_restrictions(t, q, limits);
1951 if (old_map)
1952 dm_sync_table(md);
1953
1954 return old_map;
1955 }
1956
1957 /*
1958 * Returns unbound table for the caller to free.
1959 */
1960 static struct dm_table *__unbind(struct mapped_device *md)
1961 {
1962 struct dm_table *map = rcu_dereference_protected(md->map, 1);
1963
1964 if (!map)
1965 return NULL;
1966
1967 dm_table_event_callback(map, NULL, NULL);
1968 RCU_INIT_POINTER(md->map, NULL);
1969 dm_sync_table(md);
1970
1971 return map;
1972 }
1973
1974 /*
1975 * Constructor for a new device.
1976 */
1977 int dm_create(int minor, struct mapped_device **result)
1978 {
1979 struct mapped_device *md;
1980
1981 md = alloc_dev(minor);
1982 if (!md)
1983 return -ENXIO;
1984
1985 dm_sysfs_init(md);
1986
1987 *result = md;
1988 return 0;
1989 }
1990
1991 /*
1992 * Functions to manage md->type.
1993 * All are required to hold md->type_lock.
1994 */
1995 void dm_lock_md_type(struct mapped_device *md)
1996 {
1997 mutex_lock(&md->type_lock);
1998 }
1999
2000 void dm_unlock_md_type(struct mapped_device *md)
2001 {
2002 mutex_unlock(&md->type_lock);
2003 }
2004
2005 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2006 {
2007 BUG_ON(!mutex_is_locked(&md->type_lock));
2008 md->type = type;
2009 }
2010
2011 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2012 {
2013 return md->type;
2014 }
2015
2016 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2017 {
2018 return md->immutable_target_type;
2019 }
2020
2021 /*
2022 * The queue_limits are only valid as long as you have a reference
2023 * count on 'md'.
2024 */
2025 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2026 {
2027 BUG_ON(!atomic_read(&md->holders));
2028 return &md->queue->limits;
2029 }
2030 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2031
2032 /*
2033 * Setup the DM device's queue based on md's type
2034 */
2035 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2036 {
2037 int r;
2038 enum dm_queue_mode type = dm_get_md_type(md);
2039
2040 switch (type) {
2041 case DM_TYPE_REQUEST_BASED:
2042 r = dm_old_init_request_queue(md, t);
2043 if (r) {
2044 DMERR("Cannot initialize queue for request-based mapped device");
2045 return r;
2046 }
2047 break;
2048 case DM_TYPE_MQ_REQUEST_BASED:
2049 r = dm_mq_init_request_queue(md, t);
2050 if (r) {
2051 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2052 return r;
2053 }
2054 break;
2055 case DM_TYPE_BIO_BASED:
2056 case DM_TYPE_DAX_BIO_BASED:
2057 dm_init_normal_md_queue(md);
2058 blk_queue_make_request(md->queue, dm_make_request);
2059
2060 if (type == DM_TYPE_DAX_BIO_BASED)
2061 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
2062 break;
2063 case DM_TYPE_NONE:
2064 WARN_ON_ONCE(true);
2065 break;
2066 }
2067
2068 return 0;
2069 }
2070
2071 struct mapped_device *dm_get_md(dev_t dev)
2072 {
2073 struct mapped_device *md;
2074 unsigned minor = MINOR(dev);
2075
2076 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2077 return NULL;
2078
2079 spin_lock(&_minor_lock);
2080
2081 md = idr_find(&_minor_idr, minor);
2082 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2083 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2084 md = NULL;
2085 goto out;
2086 }
2087 dm_get(md);
2088 out:
2089 spin_unlock(&_minor_lock);
2090
2091 return md;
2092 }
2093 EXPORT_SYMBOL_GPL(dm_get_md);
2094
2095 void *dm_get_mdptr(struct mapped_device *md)
2096 {
2097 return md->interface_ptr;
2098 }
2099
2100 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2101 {
2102 md->interface_ptr = ptr;
2103 }
2104
2105 void dm_get(struct mapped_device *md)
2106 {
2107 atomic_inc(&md->holders);
2108 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2109 }
2110
2111 int dm_hold(struct mapped_device *md)
2112 {
2113 spin_lock(&_minor_lock);
2114 if (test_bit(DMF_FREEING, &md->flags)) {
2115 spin_unlock(&_minor_lock);
2116 return -EBUSY;
2117 }
2118 dm_get(md);
2119 spin_unlock(&_minor_lock);
2120 return 0;
2121 }
2122 EXPORT_SYMBOL_GPL(dm_hold);
2123
2124 const char *dm_device_name(struct mapped_device *md)
2125 {
2126 return md->name;
2127 }
2128 EXPORT_SYMBOL_GPL(dm_device_name);
2129
2130 static void __dm_destroy(struct mapped_device *md, bool wait)
2131 {
2132 struct request_queue *q = dm_get_md_queue(md);
2133 struct dm_table *map;
2134 int srcu_idx;
2135
2136 might_sleep();
2137
2138 spin_lock(&_minor_lock);
2139 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2140 set_bit(DMF_FREEING, &md->flags);
2141 spin_unlock(&_minor_lock);
2142
2143 blk_set_queue_dying(q);
2144
2145 if (dm_request_based(md) && md->kworker_task)
2146 kthread_flush_worker(&md->kworker);
2147
2148 /*
2149 * Take suspend_lock so that presuspend and postsuspend methods
2150 * do not race with internal suspend.
2151 */
2152 mutex_lock(&md->suspend_lock);
2153 map = dm_get_live_table(md, &srcu_idx);
2154 if (!dm_suspended_md(md)) {
2155 dm_table_presuspend_targets(map);
2156 dm_table_postsuspend_targets(map);
2157 }
2158 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2159 dm_put_live_table(md, srcu_idx);
2160 mutex_unlock(&md->suspend_lock);
2161
2162 /*
2163 * Rare, but there may be I/O requests still going to complete,
2164 * for example. Wait for all references to disappear.
2165 * No one should increment the reference count of the mapped_device,
2166 * after the mapped_device state becomes DMF_FREEING.
2167 */
2168 if (wait)
2169 while (atomic_read(&md->holders))
2170 msleep(1);
2171 else if (atomic_read(&md->holders))
2172 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2173 dm_device_name(md), atomic_read(&md->holders));
2174
2175 dm_sysfs_exit(md);
2176 dm_table_destroy(__unbind(md));
2177 free_dev(md);
2178 }
2179
2180 void dm_destroy(struct mapped_device *md)
2181 {
2182 __dm_destroy(md, true);
2183 }
2184
2185 void dm_destroy_immediate(struct mapped_device *md)
2186 {
2187 __dm_destroy(md, false);
2188 }
2189
2190 void dm_put(struct mapped_device *md)
2191 {
2192 atomic_dec(&md->holders);
2193 }
2194 EXPORT_SYMBOL_GPL(dm_put);
2195
2196 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2197 {
2198 int r = 0;
2199 DEFINE_WAIT(wait);
2200
2201 while (1) {
2202 prepare_to_wait(&md->wait, &wait, task_state);
2203
2204 if (!md_in_flight(md))
2205 break;
2206
2207 if (signal_pending_state(task_state, current)) {
2208 r = -EINTR;
2209 break;
2210 }
2211
2212 io_schedule();
2213 }
2214 finish_wait(&md->wait, &wait);
2215
2216 return r;
2217 }
2218
2219 /*
2220 * Process the deferred bios
2221 */
2222 static void dm_wq_work(struct work_struct *work)
2223 {
2224 struct mapped_device *md = container_of(work, struct mapped_device,
2225 work);
2226 struct bio *c;
2227 int srcu_idx;
2228 struct dm_table *map;
2229
2230 map = dm_get_live_table(md, &srcu_idx);
2231
2232 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2233 spin_lock_irq(&md->deferred_lock);
2234 c = bio_list_pop(&md->deferred);
2235 spin_unlock_irq(&md->deferred_lock);
2236
2237 if (!c)
2238 break;
2239
2240 if (dm_request_based(md))
2241 generic_make_request(c);
2242 else
2243 __split_and_process_bio(md, map, c);
2244 }
2245
2246 dm_put_live_table(md, srcu_idx);
2247 }
2248
2249 static void dm_queue_flush(struct mapped_device *md)
2250 {
2251 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2252 smp_mb__after_atomic();
2253 queue_work(md->wq, &md->work);
2254 }
2255
2256 /*
2257 * Swap in a new table, returning the old one for the caller to destroy.
2258 */
2259 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2260 {
2261 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2262 struct queue_limits limits;
2263 int r;
2264
2265 mutex_lock(&md->suspend_lock);
2266
2267 /* device must be suspended */
2268 if (!dm_suspended_md(md))
2269 goto out;
2270
2271 /*
2272 * If the new table has no data devices, retain the existing limits.
2273 * This helps multipath with queue_if_no_path if all paths disappear,
2274 * then new I/O is queued based on these limits, and then some paths
2275 * reappear.
2276 */
2277 if (dm_table_has_no_data_devices(table)) {
2278 live_map = dm_get_live_table_fast(md);
2279 if (live_map)
2280 limits = md->queue->limits;
2281 dm_put_live_table_fast(md);
2282 }
2283
2284 if (!live_map) {
2285 r = dm_calculate_queue_limits(table, &limits);
2286 if (r) {
2287 map = ERR_PTR(r);
2288 goto out;
2289 }
2290 }
2291
2292 map = __bind(md, table, &limits);
2293 dm_issue_global_event();
2294
2295 out:
2296 mutex_unlock(&md->suspend_lock);
2297 return map;
2298 }
2299
2300 /*
2301 * Functions to lock and unlock any filesystem running on the
2302 * device.
2303 */
2304 static int lock_fs(struct mapped_device *md)
2305 {
2306 int r;
2307
2308 WARN_ON(md->frozen_sb);
2309
2310 md->frozen_sb = freeze_bdev(md->bdev);
2311 if (IS_ERR(md->frozen_sb)) {
2312 r = PTR_ERR(md->frozen_sb);
2313 md->frozen_sb = NULL;
2314 return r;
2315 }
2316
2317 set_bit(DMF_FROZEN, &md->flags);
2318
2319 return 0;
2320 }
2321
2322 static void unlock_fs(struct mapped_device *md)
2323 {
2324 if (!test_bit(DMF_FROZEN, &md->flags))
2325 return;
2326
2327 thaw_bdev(md->bdev, md->frozen_sb);
2328 md->frozen_sb = NULL;
2329 clear_bit(DMF_FROZEN, &md->flags);
2330 }
2331
2332 /*
2333 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2334 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2335 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2336 *
2337 * If __dm_suspend returns 0, the device is completely quiescent
2338 * now. There is no request-processing activity. All new requests
2339 * are being added to md->deferred list.
2340 */
2341 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2342 unsigned suspend_flags, long task_state,
2343 int dmf_suspended_flag)
2344 {
2345 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2346 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2347 int r;
2348
2349 lockdep_assert_held(&md->suspend_lock);
2350
2351 /*
2352 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2353 * This flag is cleared before dm_suspend returns.
2354 */
2355 if (noflush)
2356 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2357 else
2358 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2359
2360 /*
2361 * This gets reverted if there's an error later and the targets
2362 * provide the .presuspend_undo hook.
2363 */
2364 dm_table_presuspend_targets(map);
2365
2366 /*
2367 * Flush I/O to the device.
2368 * Any I/O submitted after lock_fs() may not be flushed.
2369 * noflush takes precedence over do_lockfs.
2370 * (lock_fs() flushes I/Os and waits for them to complete.)
2371 */
2372 if (!noflush && do_lockfs) {
2373 r = lock_fs(md);
2374 if (r) {
2375 dm_table_presuspend_undo_targets(map);
2376 return r;
2377 }
2378 }
2379
2380 /*
2381 * Here we must make sure that no processes are submitting requests
2382 * to target drivers i.e. no one may be executing
2383 * __split_and_process_bio. This is called from dm_request and
2384 * dm_wq_work.
2385 *
2386 * To get all processes out of __split_and_process_bio in dm_request,
2387 * we take the write lock. To prevent any process from reentering
2388 * __split_and_process_bio from dm_request and quiesce the thread
2389 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2390 * flush_workqueue(md->wq).
2391 */
2392 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2393 if (map)
2394 synchronize_srcu(&md->io_barrier);
2395
2396 /*
2397 * Stop md->queue before flushing md->wq in case request-based
2398 * dm defers requests to md->wq from md->queue.
2399 */
2400 if (dm_request_based(md)) {
2401 dm_stop_queue(md->queue);
2402 if (md->kworker_task)
2403 kthread_flush_worker(&md->kworker);
2404 }
2405
2406 flush_workqueue(md->wq);
2407
2408 /*
2409 * At this point no more requests are entering target request routines.
2410 * We call dm_wait_for_completion to wait for all existing requests
2411 * to finish.
2412 */
2413 r = dm_wait_for_completion(md, task_state);
2414 if (!r)
2415 set_bit(dmf_suspended_flag, &md->flags);
2416
2417 if (noflush)
2418 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2419 if (map)
2420 synchronize_srcu(&md->io_barrier);
2421
2422 /* were we interrupted ? */
2423 if (r < 0) {
2424 dm_queue_flush(md);
2425
2426 if (dm_request_based(md))
2427 dm_start_queue(md->queue);
2428
2429 unlock_fs(md);
2430 dm_table_presuspend_undo_targets(map);
2431 /* pushback list is already flushed, so skip flush */
2432 }
2433
2434 return r;
2435 }
2436
2437 /*
2438 * We need to be able to change a mapping table under a mounted
2439 * filesystem. For example we might want to move some data in
2440 * the background. Before the table can be swapped with
2441 * dm_bind_table, dm_suspend must be called to flush any in
2442 * flight bios and ensure that any further io gets deferred.
2443 */
2444 /*
2445 * Suspend mechanism in request-based dm.
2446 *
2447 * 1. Flush all I/Os by lock_fs() if needed.
2448 * 2. Stop dispatching any I/O by stopping the request_queue.
2449 * 3. Wait for all in-flight I/Os to be completed or requeued.
2450 *
2451 * To abort suspend, start the request_queue.
2452 */
2453 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2454 {
2455 struct dm_table *map = NULL;
2456 int r = 0;
2457
2458 retry:
2459 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2460
2461 if (dm_suspended_md(md)) {
2462 r = -EINVAL;
2463 goto out_unlock;
2464 }
2465
2466 if (dm_suspended_internally_md(md)) {
2467 /* already internally suspended, wait for internal resume */
2468 mutex_unlock(&md->suspend_lock);
2469 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2470 if (r)
2471 return r;
2472 goto retry;
2473 }
2474
2475 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2476
2477 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2478 if (r)
2479 goto out_unlock;
2480
2481 dm_table_postsuspend_targets(map);
2482
2483 out_unlock:
2484 mutex_unlock(&md->suspend_lock);
2485 return r;
2486 }
2487
2488 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2489 {
2490 if (map) {
2491 int r = dm_table_resume_targets(map);
2492 if (r)
2493 return r;
2494 }
2495
2496 dm_queue_flush(md);
2497
2498 /*
2499 * Flushing deferred I/Os must be done after targets are resumed
2500 * so that mapping of targets can work correctly.
2501 * Request-based dm is queueing the deferred I/Os in its request_queue.
2502 */
2503 if (dm_request_based(md))
2504 dm_start_queue(md->queue);
2505
2506 unlock_fs(md);
2507
2508 return 0;
2509 }
2510
2511 int dm_resume(struct mapped_device *md)
2512 {
2513 int r;
2514 struct dm_table *map = NULL;
2515
2516 retry:
2517 r = -EINVAL;
2518 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2519
2520 if (!dm_suspended_md(md))
2521 goto out;
2522
2523 if (dm_suspended_internally_md(md)) {
2524 /* already internally suspended, wait for internal resume */
2525 mutex_unlock(&md->suspend_lock);
2526 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2527 if (r)
2528 return r;
2529 goto retry;
2530 }
2531
2532 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2533 if (!map || !dm_table_get_size(map))
2534 goto out;
2535
2536 r = __dm_resume(md, map);
2537 if (r)
2538 goto out;
2539
2540 clear_bit(DMF_SUSPENDED, &md->flags);
2541 out:
2542 mutex_unlock(&md->suspend_lock);
2543
2544 return r;
2545 }
2546
2547 /*
2548 * Internal suspend/resume works like userspace-driven suspend. It waits
2549 * until all bios finish and prevents issuing new bios to the target drivers.
2550 * It may be used only from the kernel.
2551 */
2552
2553 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2554 {
2555 struct dm_table *map = NULL;
2556
2557 lockdep_assert_held(&md->suspend_lock);
2558
2559 if (md->internal_suspend_count++)
2560 return; /* nested internal suspend */
2561
2562 if (dm_suspended_md(md)) {
2563 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2564 return; /* nest suspend */
2565 }
2566
2567 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2568
2569 /*
2570 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2571 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2572 * would require changing .presuspend to return an error -- avoid this
2573 * until there is a need for more elaborate variants of internal suspend.
2574 */
2575 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2576 DMF_SUSPENDED_INTERNALLY);
2577
2578 dm_table_postsuspend_targets(map);
2579 }
2580
2581 static void __dm_internal_resume(struct mapped_device *md)
2582 {
2583 BUG_ON(!md->internal_suspend_count);
2584
2585 if (--md->internal_suspend_count)
2586 return; /* resume from nested internal suspend */
2587
2588 if (dm_suspended_md(md))
2589 goto done; /* resume from nested suspend */
2590
2591 /*
2592 * NOTE: existing callers don't need to call dm_table_resume_targets
2593 * (which may fail -- so best to avoid it for now by passing NULL map)
2594 */
2595 (void) __dm_resume(md, NULL);
2596
2597 done:
2598 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2599 smp_mb__after_atomic();
2600 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2601 }
2602
2603 void dm_internal_suspend_noflush(struct mapped_device *md)
2604 {
2605 mutex_lock(&md->suspend_lock);
2606 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2607 mutex_unlock(&md->suspend_lock);
2608 }
2609 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2610
2611 void dm_internal_resume(struct mapped_device *md)
2612 {
2613 mutex_lock(&md->suspend_lock);
2614 __dm_internal_resume(md);
2615 mutex_unlock(&md->suspend_lock);
2616 }
2617 EXPORT_SYMBOL_GPL(dm_internal_resume);
2618
2619 /*
2620 * Fast variants of internal suspend/resume hold md->suspend_lock,
2621 * which prevents interaction with userspace-driven suspend.
2622 */
2623
2624 void dm_internal_suspend_fast(struct mapped_device *md)
2625 {
2626 mutex_lock(&md->suspend_lock);
2627 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2628 return;
2629
2630 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2631 synchronize_srcu(&md->io_barrier);
2632 flush_workqueue(md->wq);
2633 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2634 }
2635 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2636
2637 void dm_internal_resume_fast(struct mapped_device *md)
2638 {
2639 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2640 goto done;
2641
2642 dm_queue_flush(md);
2643
2644 done:
2645 mutex_unlock(&md->suspend_lock);
2646 }
2647 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2648
2649 /*-----------------------------------------------------------------
2650 * Event notification.
2651 *---------------------------------------------------------------*/
2652 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2653 unsigned cookie)
2654 {
2655 char udev_cookie[DM_COOKIE_LENGTH];
2656 char *envp[] = { udev_cookie, NULL };
2657
2658 if (!cookie)
2659 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2660 else {
2661 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2662 DM_COOKIE_ENV_VAR_NAME, cookie);
2663 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2664 action, envp);
2665 }
2666 }
2667
2668 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2669 {
2670 return atomic_add_return(1, &md->uevent_seq);
2671 }
2672
2673 uint32_t dm_get_event_nr(struct mapped_device *md)
2674 {
2675 return atomic_read(&md->event_nr);
2676 }
2677
2678 int dm_wait_event(struct mapped_device *md, int event_nr)
2679 {
2680 return wait_event_interruptible(md->eventq,
2681 (event_nr != atomic_read(&md->event_nr)));
2682 }
2683
2684 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2685 {
2686 unsigned long flags;
2687
2688 spin_lock_irqsave(&md->uevent_lock, flags);
2689 list_add(elist, &md->uevent_list);
2690 spin_unlock_irqrestore(&md->uevent_lock, flags);
2691 }
2692
2693 /*
2694 * The gendisk is only valid as long as you have a reference
2695 * count on 'md'.
2696 */
2697 struct gendisk *dm_disk(struct mapped_device *md)
2698 {
2699 return md->disk;
2700 }
2701 EXPORT_SYMBOL_GPL(dm_disk);
2702
2703 struct kobject *dm_kobject(struct mapped_device *md)
2704 {
2705 return &md->kobj_holder.kobj;
2706 }
2707
2708 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2709 {
2710 struct mapped_device *md;
2711
2712 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2713
2714 spin_lock(&_minor_lock);
2715 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2716 md = NULL;
2717 goto out;
2718 }
2719 dm_get(md);
2720 out:
2721 spin_unlock(&_minor_lock);
2722
2723 return md;
2724 }
2725
2726 int dm_suspended_md(struct mapped_device *md)
2727 {
2728 return test_bit(DMF_SUSPENDED, &md->flags);
2729 }
2730
2731 int dm_suspended_internally_md(struct mapped_device *md)
2732 {
2733 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2734 }
2735
2736 int dm_test_deferred_remove_flag(struct mapped_device *md)
2737 {
2738 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2739 }
2740
2741 int dm_suspended(struct dm_target *ti)
2742 {
2743 return dm_suspended_md(dm_table_get_md(ti->table));
2744 }
2745 EXPORT_SYMBOL_GPL(dm_suspended);
2746
2747 int dm_noflush_suspending(struct dm_target *ti)
2748 {
2749 return __noflush_suspending(dm_table_get_md(ti->table));
2750 }
2751 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2752
2753 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2754 unsigned integrity, unsigned per_io_data_size)
2755 {
2756 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2757 unsigned int pool_size = 0;
2758 unsigned int front_pad;
2759
2760 if (!pools)
2761 return NULL;
2762
2763 switch (type) {
2764 case DM_TYPE_BIO_BASED:
2765 case DM_TYPE_DAX_BIO_BASED:
2766 pool_size = dm_get_reserved_bio_based_ios();
2767 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2768
2769 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2770 if (!pools->io_pool)
2771 goto out;
2772 break;
2773 case DM_TYPE_REQUEST_BASED:
2774 case DM_TYPE_MQ_REQUEST_BASED:
2775 pool_size = dm_get_reserved_rq_based_ios();
2776 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2777 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2778 break;
2779 default:
2780 BUG();
2781 }
2782
2783 pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER);
2784 if (!pools->bs)
2785 goto out;
2786
2787 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2788 goto out;
2789
2790 return pools;
2791
2792 out:
2793 dm_free_md_mempools(pools);
2794
2795 return NULL;
2796 }
2797
2798 void dm_free_md_mempools(struct dm_md_mempools *pools)
2799 {
2800 if (!pools)
2801 return;
2802
2803 mempool_destroy(pools->io_pool);
2804
2805 if (pools->bs)
2806 bioset_free(pools->bs);
2807
2808 kfree(pools);
2809 }
2810
2811 struct dm_pr {
2812 u64 old_key;
2813 u64 new_key;
2814 u32 flags;
2815 bool fail_early;
2816 };
2817
2818 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2819 void *data)
2820 {
2821 struct mapped_device *md = bdev->bd_disk->private_data;
2822 struct dm_table *table;
2823 struct dm_target *ti;
2824 int ret = -ENOTTY, srcu_idx;
2825
2826 table = dm_get_live_table(md, &srcu_idx);
2827 if (!table || !dm_table_get_size(table))
2828 goto out;
2829
2830 /* We only support devices that have a single target */
2831 if (dm_table_get_num_targets(table) != 1)
2832 goto out;
2833 ti = dm_table_get_target(table, 0);
2834
2835 ret = -EINVAL;
2836 if (!ti->type->iterate_devices)
2837 goto out;
2838
2839 ret = ti->type->iterate_devices(ti, fn, data);
2840 out:
2841 dm_put_live_table(md, srcu_idx);
2842 return ret;
2843 }
2844
2845 /*
2846 * For register / unregister we need to manually call out to every path.
2847 */
2848 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2849 sector_t start, sector_t len, void *data)
2850 {
2851 struct dm_pr *pr = data;
2852 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2853
2854 if (!ops || !ops->pr_register)
2855 return -EOPNOTSUPP;
2856 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2857 }
2858
2859 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2860 u32 flags)
2861 {
2862 struct dm_pr pr = {
2863 .old_key = old_key,
2864 .new_key = new_key,
2865 .flags = flags,
2866 .fail_early = true,
2867 };
2868 int ret;
2869
2870 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2871 if (ret && new_key) {
2872 /* unregister all paths if we failed to register any path */
2873 pr.old_key = new_key;
2874 pr.new_key = 0;
2875 pr.flags = 0;
2876 pr.fail_early = false;
2877 dm_call_pr(bdev, __dm_pr_register, &pr);
2878 }
2879
2880 return ret;
2881 }
2882
2883 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2884 u32 flags)
2885 {
2886 struct mapped_device *md = bdev->bd_disk->private_data;
2887 const struct pr_ops *ops;
2888 fmode_t mode;
2889 int r;
2890
2891 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2892 if (r < 0)
2893 return r;
2894
2895 ops = bdev->bd_disk->fops->pr_ops;
2896 if (ops && ops->pr_reserve)
2897 r = ops->pr_reserve(bdev, key, type, flags);
2898 else
2899 r = -EOPNOTSUPP;
2900
2901 bdput(bdev);
2902 return r;
2903 }
2904
2905 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2906 {
2907 struct mapped_device *md = bdev->bd_disk->private_data;
2908 const struct pr_ops *ops;
2909 fmode_t mode;
2910 int r;
2911
2912 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2913 if (r < 0)
2914 return r;
2915
2916 ops = bdev->bd_disk->fops->pr_ops;
2917 if (ops && ops->pr_release)
2918 r = ops->pr_release(bdev, key, type);
2919 else
2920 r = -EOPNOTSUPP;
2921
2922 bdput(bdev);
2923 return r;
2924 }
2925
2926 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2927 enum pr_type type, bool abort)
2928 {
2929 struct mapped_device *md = bdev->bd_disk->private_data;
2930 const struct pr_ops *ops;
2931 fmode_t mode;
2932 int r;
2933
2934 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2935 if (r < 0)
2936 return r;
2937
2938 ops = bdev->bd_disk->fops->pr_ops;
2939 if (ops && ops->pr_preempt)
2940 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2941 else
2942 r = -EOPNOTSUPP;
2943
2944 bdput(bdev);
2945 return r;
2946 }
2947
2948 static int dm_pr_clear(struct block_device *bdev, u64 key)
2949 {
2950 struct mapped_device *md = bdev->bd_disk->private_data;
2951 const struct pr_ops *ops;
2952 fmode_t mode;
2953 int r;
2954
2955 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2956 if (r < 0)
2957 return r;
2958
2959 ops = bdev->bd_disk->fops->pr_ops;
2960 if (ops && ops->pr_clear)
2961 r = ops->pr_clear(bdev, key);
2962 else
2963 r = -EOPNOTSUPP;
2964
2965 bdput(bdev);
2966 return r;
2967 }
2968
2969 static const struct pr_ops dm_pr_ops = {
2970 .pr_register = dm_pr_register,
2971 .pr_reserve = dm_pr_reserve,
2972 .pr_release = dm_pr_release,
2973 .pr_preempt = dm_pr_preempt,
2974 .pr_clear = dm_pr_clear,
2975 };
2976
2977 static const struct block_device_operations dm_blk_dops = {
2978 .open = dm_blk_open,
2979 .release = dm_blk_close,
2980 .ioctl = dm_blk_ioctl,
2981 .getgeo = dm_blk_getgeo,
2982 .pr_ops = &dm_pr_ops,
2983 .owner = THIS_MODULE
2984 };
2985
2986 static const struct dax_operations dm_dax_ops = {
2987 .direct_access = dm_dax_direct_access,
2988 .copy_from_iter = dm_dax_copy_from_iter,
2989 };
2990
2991 /*
2992 * module hooks
2993 */
2994 module_init(dm_init);
2995 module_exit(dm_exit);
2996
2997 module_param(major, uint, 0);
2998 MODULE_PARM_DESC(major, "The major number of the device mapper");
2999
3000 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3001 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3002
3003 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3004 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3005
3006 MODULE_DESCRIPTION(DM_NAME " driver");
3007 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3008 MODULE_LICENSE("GPL");