]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/md.c
md: collect bitmap-specific fields into one structure.
[mirror_ubuntu-artful-kernel.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/hdreg.h>
43 #include <linux/proc_fs.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/file.h>
47 #include <linux/delay.h>
48 #include <linux/raid/md_p.h>
49 #include <linux/raid/md_u.h>
50 #include "md.h"
51 #include "bitmap.h"
52
53 #define DEBUG 0
54 #define dprintk(x...) ((void)(DEBUG && printk(x)))
55
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 static LIST_HEAD(pers_list);
62 static DEFINE_SPINLOCK(pers_lock);
63
64 static void md_print_devices(void);
65
66 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
67
68 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
69
70 /*
71 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
72 * is 1000 KB/sec, so the extra system load does not show up that much.
73 * Increase it if you want to have more _guaranteed_ speed. Note that
74 * the RAID driver will use the maximum available bandwidth if the IO
75 * subsystem is idle. There is also an 'absolute maximum' reconstruction
76 * speed limit - in case reconstruction slows down your system despite
77 * idle IO detection.
78 *
79 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
80 * or /sys/block/mdX/md/sync_speed_{min,max}
81 */
82
83 static int sysctl_speed_limit_min = 1000;
84 static int sysctl_speed_limit_max = 200000;
85 static inline int speed_min(mddev_t *mddev)
86 {
87 return mddev->sync_speed_min ?
88 mddev->sync_speed_min : sysctl_speed_limit_min;
89 }
90
91 static inline int speed_max(mddev_t *mddev)
92 {
93 return mddev->sync_speed_max ?
94 mddev->sync_speed_max : sysctl_speed_limit_max;
95 }
96
97 static struct ctl_table_header *raid_table_header;
98
99 static ctl_table raid_table[] = {
100 {
101 .procname = "speed_limit_min",
102 .data = &sysctl_speed_limit_min,
103 .maxlen = sizeof(int),
104 .mode = S_IRUGO|S_IWUSR,
105 .proc_handler = proc_dointvec,
106 },
107 {
108 .procname = "speed_limit_max",
109 .data = &sysctl_speed_limit_max,
110 .maxlen = sizeof(int),
111 .mode = S_IRUGO|S_IWUSR,
112 .proc_handler = proc_dointvec,
113 },
114 { }
115 };
116
117 static ctl_table raid_dir_table[] = {
118 {
119 .procname = "raid",
120 .maxlen = 0,
121 .mode = S_IRUGO|S_IXUGO,
122 .child = raid_table,
123 },
124 { }
125 };
126
127 static ctl_table raid_root_table[] = {
128 {
129 .procname = "dev",
130 .maxlen = 0,
131 .mode = 0555,
132 .child = raid_dir_table,
133 },
134 { }
135 };
136
137 static const struct block_device_operations md_fops;
138
139 static int start_readonly;
140
141 /*
142 * We have a system wide 'event count' that is incremented
143 * on any 'interesting' event, and readers of /proc/mdstat
144 * can use 'poll' or 'select' to find out when the event
145 * count increases.
146 *
147 * Events are:
148 * start array, stop array, error, add device, remove device,
149 * start build, activate spare
150 */
151 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
152 static atomic_t md_event_count;
153 void md_new_event(mddev_t *mddev)
154 {
155 atomic_inc(&md_event_count);
156 wake_up(&md_event_waiters);
157 }
158 EXPORT_SYMBOL_GPL(md_new_event);
159
160 /* Alternate version that can be called from interrupts
161 * when calling sysfs_notify isn't needed.
162 */
163 static void md_new_event_inintr(mddev_t *mddev)
164 {
165 atomic_inc(&md_event_count);
166 wake_up(&md_event_waiters);
167 }
168
169 /*
170 * Enables to iterate over all existing md arrays
171 * all_mddevs_lock protects this list.
172 */
173 static LIST_HEAD(all_mddevs);
174 static DEFINE_SPINLOCK(all_mddevs_lock);
175
176
177 /*
178 * iterates through all used mddevs in the system.
179 * We take care to grab the all_mddevs_lock whenever navigating
180 * the list, and to always hold a refcount when unlocked.
181 * Any code which breaks out of this loop while own
182 * a reference to the current mddev and must mddev_put it.
183 */
184 #define for_each_mddev(mddev,tmp) \
185 \
186 for (({ spin_lock(&all_mddevs_lock); \
187 tmp = all_mddevs.next; \
188 mddev = NULL;}); \
189 ({ if (tmp != &all_mddevs) \
190 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
191 spin_unlock(&all_mddevs_lock); \
192 if (mddev) mddev_put(mddev); \
193 mddev = list_entry(tmp, mddev_t, all_mddevs); \
194 tmp != &all_mddevs;}); \
195 ({ spin_lock(&all_mddevs_lock); \
196 tmp = tmp->next;}) \
197 )
198
199
200 /* Rather than calling directly into the personality make_request function,
201 * IO requests come here first so that we can check if the device is
202 * being suspended pending a reconfiguration.
203 * We hold a refcount over the call to ->make_request. By the time that
204 * call has finished, the bio has been linked into some internal structure
205 * and so is visible to ->quiesce(), so we don't need the refcount any more.
206 */
207 static int md_make_request(struct request_queue *q, struct bio *bio)
208 {
209 mddev_t *mddev = q->queuedata;
210 int rv;
211 if (mddev == NULL || mddev->pers == NULL) {
212 bio_io_error(bio);
213 return 0;
214 }
215 rcu_read_lock();
216 if (mddev->suspended || mddev->barrier) {
217 DEFINE_WAIT(__wait);
218 for (;;) {
219 prepare_to_wait(&mddev->sb_wait, &__wait,
220 TASK_UNINTERRUPTIBLE);
221 if (!mddev->suspended && !mddev->barrier)
222 break;
223 rcu_read_unlock();
224 schedule();
225 rcu_read_lock();
226 }
227 finish_wait(&mddev->sb_wait, &__wait);
228 }
229 atomic_inc(&mddev->active_io);
230 rcu_read_unlock();
231 rv = mddev->pers->make_request(q, bio);
232 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
233 wake_up(&mddev->sb_wait);
234
235 return rv;
236 }
237
238 static void mddev_suspend(mddev_t *mddev)
239 {
240 BUG_ON(mddev->suspended);
241 mddev->suspended = 1;
242 synchronize_rcu();
243 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
244 mddev->pers->quiesce(mddev, 1);
245 md_unregister_thread(mddev->thread);
246 mddev->thread = NULL;
247 /* we now know that no code is executing in the personality module,
248 * except possibly the tail end of a ->bi_end_io function, but that
249 * is certain to complete before the module has a chance to get
250 * unloaded
251 */
252 }
253
254 static void mddev_resume(mddev_t *mddev)
255 {
256 mddev->suspended = 0;
257 wake_up(&mddev->sb_wait);
258 mddev->pers->quiesce(mddev, 0);
259 }
260
261 int mddev_congested(mddev_t *mddev, int bits)
262 {
263 if (mddev->barrier)
264 return 1;
265 return mddev->suspended;
266 }
267 EXPORT_SYMBOL(mddev_congested);
268
269 /*
270 * Generic barrier handling for md
271 */
272
273 #define POST_REQUEST_BARRIER ((void*)1)
274
275 static void md_end_barrier(struct bio *bio, int err)
276 {
277 mdk_rdev_t *rdev = bio->bi_private;
278 mddev_t *mddev = rdev->mddev;
279 if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER)
280 set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags);
281
282 rdev_dec_pending(rdev, mddev);
283
284 if (atomic_dec_and_test(&mddev->flush_pending)) {
285 if (mddev->barrier == POST_REQUEST_BARRIER) {
286 /* This was a post-request barrier */
287 mddev->barrier = NULL;
288 wake_up(&mddev->sb_wait);
289 } else
290 /* The pre-request barrier has finished */
291 schedule_work(&mddev->barrier_work);
292 }
293 bio_put(bio);
294 }
295
296 static void submit_barriers(mddev_t *mddev)
297 {
298 mdk_rdev_t *rdev;
299
300 rcu_read_lock();
301 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
302 if (rdev->raid_disk >= 0 &&
303 !test_bit(Faulty, &rdev->flags)) {
304 /* Take two references, one is dropped
305 * when request finishes, one after
306 * we reclaim rcu_read_lock
307 */
308 struct bio *bi;
309 atomic_inc(&rdev->nr_pending);
310 atomic_inc(&rdev->nr_pending);
311 rcu_read_unlock();
312 bi = bio_alloc(GFP_KERNEL, 0);
313 bi->bi_end_io = md_end_barrier;
314 bi->bi_private = rdev;
315 bi->bi_bdev = rdev->bdev;
316 atomic_inc(&mddev->flush_pending);
317 submit_bio(WRITE_BARRIER, bi);
318 rcu_read_lock();
319 rdev_dec_pending(rdev, mddev);
320 }
321 rcu_read_unlock();
322 }
323
324 static void md_submit_barrier(struct work_struct *ws)
325 {
326 mddev_t *mddev = container_of(ws, mddev_t, barrier_work);
327 struct bio *bio = mddev->barrier;
328
329 atomic_set(&mddev->flush_pending, 1);
330
331 if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
332 bio_endio(bio, -EOPNOTSUPP);
333 else if (bio->bi_size == 0)
334 /* an empty barrier - all done */
335 bio_endio(bio, 0);
336 else {
337 bio->bi_rw &= ~(1<<BIO_RW_BARRIER);
338 if (mddev->pers->make_request(mddev->queue, bio))
339 generic_make_request(bio);
340 mddev->barrier = POST_REQUEST_BARRIER;
341 submit_barriers(mddev);
342 }
343 if (atomic_dec_and_test(&mddev->flush_pending)) {
344 mddev->barrier = NULL;
345 wake_up(&mddev->sb_wait);
346 }
347 }
348
349 void md_barrier_request(mddev_t *mddev, struct bio *bio)
350 {
351 spin_lock_irq(&mddev->write_lock);
352 wait_event_lock_irq(mddev->sb_wait,
353 !mddev->barrier,
354 mddev->write_lock, /*nothing*/);
355 mddev->barrier = bio;
356 spin_unlock_irq(&mddev->write_lock);
357
358 atomic_set(&mddev->flush_pending, 1);
359 INIT_WORK(&mddev->barrier_work, md_submit_barrier);
360
361 submit_barriers(mddev);
362
363 if (atomic_dec_and_test(&mddev->flush_pending))
364 schedule_work(&mddev->barrier_work);
365 }
366 EXPORT_SYMBOL(md_barrier_request);
367
368 static inline mddev_t *mddev_get(mddev_t *mddev)
369 {
370 atomic_inc(&mddev->active);
371 return mddev;
372 }
373
374 static void mddev_delayed_delete(struct work_struct *ws);
375
376 static void mddev_put(mddev_t *mddev)
377 {
378 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
379 return;
380 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
381 !mddev->hold_active) {
382 list_del(&mddev->all_mddevs);
383 if (mddev->gendisk) {
384 /* we did a probe so need to clean up.
385 * Call schedule_work inside the spinlock
386 * so that flush_scheduled_work() after
387 * mddev_find will succeed in waiting for the
388 * work to be done.
389 */
390 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
391 schedule_work(&mddev->del_work);
392 } else
393 kfree(mddev);
394 }
395 spin_unlock(&all_mddevs_lock);
396 }
397
398 static mddev_t * mddev_find(dev_t unit)
399 {
400 mddev_t *mddev, *new = NULL;
401
402 retry:
403 spin_lock(&all_mddevs_lock);
404
405 if (unit) {
406 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
407 if (mddev->unit == unit) {
408 mddev_get(mddev);
409 spin_unlock(&all_mddevs_lock);
410 kfree(new);
411 return mddev;
412 }
413
414 if (new) {
415 list_add(&new->all_mddevs, &all_mddevs);
416 spin_unlock(&all_mddevs_lock);
417 new->hold_active = UNTIL_IOCTL;
418 return new;
419 }
420 } else if (new) {
421 /* find an unused unit number */
422 static int next_minor = 512;
423 int start = next_minor;
424 int is_free = 0;
425 int dev = 0;
426 while (!is_free) {
427 dev = MKDEV(MD_MAJOR, next_minor);
428 next_minor++;
429 if (next_minor > MINORMASK)
430 next_minor = 0;
431 if (next_minor == start) {
432 /* Oh dear, all in use. */
433 spin_unlock(&all_mddevs_lock);
434 kfree(new);
435 return NULL;
436 }
437
438 is_free = 1;
439 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
440 if (mddev->unit == dev) {
441 is_free = 0;
442 break;
443 }
444 }
445 new->unit = dev;
446 new->md_minor = MINOR(dev);
447 new->hold_active = UNTIL_STOP;
448 list_add(&new->all_mddevs, &all_mddevs);
449 spin_unlock(&all_mddevs_lock);
450 return new;
451 }
452 spin_unlock(&all_mddevs_lock);
453
454 new = kzalloc(sizeof(*new), GFP_KERNEL);
455 if (!new)
456 return NULL;
457
458 new->unit = unit;
459 if (MAJOR(unit) == MD_MAJOR)
460 new->md_minor = MINOR(unit);
461 else
462 new->md_minor = MINOR(unit) >> MdpMinorShift;
463
464 mutex_init(&new->open_mutex);
465 mutex_init(&new->reconfig_mutex);
466 mutex_init(&new->bitmap_info.mutex);
467 INIT_LIST_HEAD(&new->disks);
468 INIT_LIST_HEAD(&new->all_mddevs);
469 init_timer(&new->safemode_timer);
470 atomic_set(&new->active, 1);
471 atomic_set(&new->openers, 0);
472 atomic_set(&new->active_io, 0);
473 spin_lock_init(&new->write_lock);
474 atomic_set(&new->flush_pending, 0);
475 init_waitqueue_head(&new->sb_wait);
476 init_waitqueue_head(&new->recovery_wait);
477 new->reshape_position = MaxSector;
478 new->resync_min = 0;
479 new->resync_max = MaxSector;
480 new->level = LEVEL_NONE;
481
482 goto retry;
483 }
484
485 static inline int mddev_lock(mddev_t * mddev)
486 {
487 return mutex_lock_interruptible(&mddev->reconfig_mutex);
488 }
489
490 static inline int mddev_is_locked(mddev_t *mddev)
491 {
492 return mutex_is_locked(&mddev->reconfig_mutex);
493 }
494
495 static inline int mddev_trylock(mddev_t * mddev)
496 {
497 return mutex_trylock(&mddev->reconfig_mutex);
498 }
499
500 static inline void mddev_unlock(mddev_t * mddev)
501 {
502 mutex_unlock(&mddev->reconfig_mutex);
503
504 md_wakeup_thread(mddev->thread);
505 }
506
507 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
508 {
509 mdk_rdev_t *rdev;
510
511 list_for_each_entry(rdev, &mddev->disks, same_set)
512 if (rdev->desc_nr == nr)
513 return rdev;
514
515 return NULL;
516 }
517
518 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
519 {
520 mdk_rdev_t *rdev;
521
522 list_for_each_entry(rdev, &mddev->disks, same_set)
523 if (rdev->bdev->bd_dev == dev)
524 return rdev;
525
526 return NULL;
527 }
528
529 static struct mdk_personality *find_pers(int level, char *clevel)
530 {
531 struct mdk_personality *pers;
532 list_for_each_entry(pers, &pers_list, list) {
533 if (level != LEVEL_NONE && pers->level == level)
534 return pers;
535 if (strcmp(pers->name, clevel)==0)
536 return pers;
537 }
538 return NULL;
539 }
540
541 /* return the offset of the super block in 512byte sectors */
542 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
543 {
544 sector_t num_sectors = bdev->bd_inode->i_size / 512;
545 return MD_NEW_SIZE_SECTORS(num_sectors);
546 }
547
548 static int alloc_disk_sb(mdk_rdev_t * rdev)
549 {
550 if (rdev->sb_page)
551 MD_BUG();
552
553 rdev->sb_page = alloc_page(GFP_KERNEL);
554 if (!rdev->sb_page) {
555 printk(KERN_ALERT "md: out of memory.\n");
556 return -ENOMEM;
557 }
558
559 return 0;
560 }
561
562 static void free_disk_sb(mdk_rdev_t * rdev)
563 {
564 if (rdev->sb_page) {
565 put_page(rdev->sb_page);
566 rdev->sb_loaded = 0;
567 rdev->sb_page = NULL;
568 rdev->sb_start = 0;
569 rdev->sectors = 0;
570 }
571 }
572
573
574 static void super_written(struct bio *bio, int error)
575 {
576 mdk_rdev_t *rdev = bio->bi_private;
577 mddev_t *mddev = rdev->mddev;
578
579 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
580 printk("md: super_written gets error=%d, uptodate=%d\n",
581 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
582 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
583 md_error(mddev, rdev);
584 }
585
586 if (atomic_dec_and_test(&mddev->pending_writes))
587 wake_up(&mddev->sb_wait);
588 bio_put(bio);
589 }
590
591 static void super_written_barrier(struct bio *bio, int error)
592 {
593 struct bio *bio2 = bio->bi_private;
594 mdk_rdev_t *rdev = bio2->bi_private;
595 mddev_t *mddev = rdev->mddev;
596
597 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
598 error == -EOPNOTSUPP) {
599 unsigned long flags;
600 /* barriers don't appear to be supported :-( */
601 set_bit(BarriersNotsupp, &rdev->flags);
602 mddev->barriers_work = 0;
603 spin_lock_irqsave(&mddev->write_lock, flags);
604 bio2->bi_next = mddev->biolist;
605 mddev->biolist = bio2;
606 spin_unlock_irqrestore(&mddev->write_lock, flags);
607 wake_up(&mddev->sb_wait);
608 bio_put(bio);
609 } else {
610 bio_put(bio2);
611 bio->bi_private = rdev;
612 super_written(bio, error);
613 }
614 }
615
616 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
617 sector_t sector, int size, struct page *page)
618 {
619 /* write first size bytes of page to sector of rdev
620 * Increment mddev->pending_writes before returning
621 * and decrement it on completion, waking up sb_wait
622 * if zero is reached.
623 * If an error occurred, call md_error
624 *
625 * As we might need to resubmit the request if BIO_RW_BARRIER
626 * causes ENOTSUPP, we allocate a spare bio...
627 */
628 struct bio *bio = bio_alloc(GFP_NOIO, 1);
629 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
630
631 bio->bi_bdev = rdev->bdev;
632 bio->bi_sector = sector;
633 bio_add_page(bio, page, size, 0);
634 bio->bi_private = rdev;
635 bio->bi_end_io = super_written;
636 bio->bi_rw = rw;
637
638 atomic_inc(&mddev->pending_writes);
639 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
640 struct bio *rbio;
641 rw |= (1<<BIO_RW_BARRIER);
642 rbio = bio_clone(bio, GFP_NOIO);
643 rbio->bi_private = bio;
644 rbio->bi_end_io = super_written_barrier;
645 submit_bio(rw, rbio);
646 } else
647 submit_bio(rw, bio);
648 }
649
650 void md_super_wait(mddev_t *mddev)
651 {
652 /* wait for all superblock writes that were scheduled to complete.
653 * if any had to be retried (due to BARRIER problems), retry them
654 */
655 DEFINE_WAIT(wq);
656 for(;;) {
657 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
658 if (atomic_read(&mddev->pending_writes)==0)
659 break;
660 while (mddev->biolist) {
661 struct bio *bio;
662 spin_lock_irq(&mddev->write_lock);
663 bio = mddev->biolist;
664 mddev->biolist = bio->bi_next ;
665 bio->bi_next = NULL;
666 spin_unlock_irq(&mddev->write_lock);
667 submit_bio(bio->bi_rw, bio);
668 }
669 schedule();
670 }
671 finish_wait(&mddev->sb_wait, &wq);
672 }
673
674 static void bi_complete(struct bio *bio, int error)
675 {
676 complete((struct completion*)bio->bi_private);
677 }
678
679 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
680 struct page *page, int rw)
681 {
682 struct bio *bio = bio_alloc(GFP_NOIO, 1);
683 struct completion event;
684 int ret;
685
686 rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
687
688 bio->bi_bdev = bdev;
689 bio->bi_sector = sector;
690 bio_add_page(bio, page, size, 0);
691 init_completion(&event);
692 bio->bi_private = &event;
693 bio->bi_end_io = bi_complete;
694 submit_bio(rw, bio);
695 wait_for_completion(&event);
696
697 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
698 bio_put(bio);
699 return ret;
700 }
701 EXPORT_SYMBOL_GPL(sync_page_io);
702
703 static int read_disk_sb(mdk_rdev_t * rdev, int size)
704 {
705 char b[BDEVNAME_SIZE];
706 if (!rdev->sb_page) {
707 MD_BUG();
708 return -EINVAL;
709 }
710 if (rdev->sb_loaded)
711 return 0;
712
713
714 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
715 goto fail;
716 rdev->sb_loaded = 1;
717 return 0;
718
719 fail:
720 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
721 bdevname(rdev->bdev,b));
722 return -EINVAL;
723 }
724
725 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
726 {
727 return sb1->set_uuid0 == sb2->set_uuid0 &&
728 sb1->set_uuid1 == sb2->set_uuid1 &&
729 sb1->set_uuid2 == sb2->set_uuid2 &&
730 sb1->set_uuid3 == sb2->set_uuid3;
731 }
732
733 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
734 {
735 int ret;
736 mdp_super_t *tmp1, *tmp2;
737
738 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
739 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
740
741 if (!tmp1 || !tmp2) {
742 ret = 0;
743 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
744 goto abort;
745 }
746
747 *tmp1 = *sb1;
748 *tmp2 = *sb2;
749
750 /*
751 * nr_disks is not constant
752 */
753 tmp1->nr_disks = 0;
754 tmp2->nr_disks = 0;
755
756 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
757 abort:
758 kfree(tmp1);
759 kfree(tmp2);
760 return ret;
761 }
762
763
764 static u32 md_csum_fold(u32 csum)
765 {
766 csum = (csum & 0xffff) + (csum >> 16);
767 return (csum & 0xffff) + (csum >> 16);
768 }
769
770 static unsigned int calc_sb_csum(mdp_super_t * sb)
771 {
772 u64 newcsum = 0;
773 u32 *sb32 = (u32*)sb;
774 int i;
775 unsigned int disk_csum, csum;
776
777 disk_csum = sb->sb_csum;
778 sb->sb_csum = 0;
779
780 for (i = 0; i < MD_SB_BYTES/4 ; i++)
781 newcsum += sb32[i];
782 csum = (newcsum & 0xffffffff) + (newcsum>>32);
783
784
785 #ifdef CONFIG_ALPHA
786 /* This used to use csum_partial, which was wrong for several
787 * reasons including that different results are returned on
788 * different architectures. It isn't critical that we get exactly
789 * the same return value as before (we always csum_fold before
790 * testing, and that removes any differences). However as we
791 * know that csum_partial always returned a 16bit value on
792 * alphas, do a fold to maximise conformity to previous behaviour.
793 */
794 sb->sb_csum = md_csum_fold(disk_csum);
795 #else
796 sb->sb_csum = disk_csum;
797 #endif
798 return csum;
799 }
800
801
802 /*
803 * Handle superblock details.
804 * We want to be able to handle multiple superblock formats
805 * so we have a common interface to them all, and an array of
806 * different handlers.
807 * We rely on user-space to write the initial superblock, and support
808 * reading and updating of superblocks.
809 * Interface methods are:
810 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
811 * loads and validates a superblock on dev.
812 * if refdev != NULL, compare superblocks on both devices
813 * Return:
814 * 0 - dev has a superblock that is compatible with refdev
815 * 1 - dev has a superblock that is compatible and newer than refdev
816 * so dev should be used as the refdev in future
817 * -EINVAL superblock incompatible or invalid
818 * -othererror e.g. -EIO
819 *
820 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
821 * Verify that dev is acceptable into mddev.
822 * The first time, mddev->raid_disks will be 0, and data from
823 * dev should be merged in. Subsequent calls check that dev
824 * is new enough. Return 0 or -EINVAL
825 *
826 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
827 * Update the superblock for rdev with data in mddev
828 * This does not write to disc.
829 *
830 */
831
832 struct super_type {
833 char *name;
834 struct module *owner;
835 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
836 int minor_version);
837 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
838 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
839 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
840 sector_t num_sectors);
841 };
842
843 /*
844 * Check that the given mddev has no bitmap.
845 *
846 * This function is called from the run method of all personalities that do not
847 * support bitmaps. It prints an error message and returns non-zero if mddev
848 * has a bitmap. Otherwise, it returns 0.
849 *
850 */
851 int md_check_no_bitmap(mddev_t *mddev)
852 {
853 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
854 return 0;
855 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
856 mdname(mddev), mddev->pers->name);
857 return 1;
858 }
859 EXPORT_SYMBOL(md_check_no_bitmap);
860
861 /*
862 * load_super for 0.90.0
863 */
864 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
865 {
866 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
867 mdp_super_t *sb;
868 int ret;
869
870 /*
871 * Calculate the position of the superblock (512byte sectors),
872 * it's at the end of the disk.
873 *
874 * It also happens to be a multiple of 4Kb.
875 */
876 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
877
878 ret = read_disk_sb(rdev, MD_SB_BYTES);
879 if (ret) return ret;
880
881 ret = -EINVAL;
882
883 bdevname(rdev->bdev, b);
884 sb = (mdp_super_t*)page_address(rdev->sb_page);
885
886 if (sb->md_magic != MD_SB_MAGIC) {
887 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
888 b);
889 goto abort;
890 }
891
892 if (sb->major_version != 0 ||
893 sb->minor_version < 90 ||
894 sb->minor_version > 91) {
895 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
896 sb->major_version, sb->minor_version,
897 b);
898 goto abort;
899 }
900
901 if (sb->raid_disks <= 0)
902 goto abort;
903
904 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
905 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
906 b);
907 goto abort;
908 }
909
910 rdev->preferred_minor = sb->md_minor;
911 rdev->data_offset = 0;
912 rdev->sb_size = MD_SB_BYTES;
913
914 if (sb->level == LEVEL_MULTIPATH)
915 rdev->desc_nr = -1;
916 else
917 rdev->desc_nr = sb->this_disk.number;
918
919 if (!refdev) {
920 ret = 1;
921 } else {
922 __u64 ev1, ev2;
923 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
924 if (!uuid_equal(refsb, sb)) {
925 printk(KERN_WARNING "md: %s has different UUID to %s\n",
926 b, bdevname(refdev->bdev,b2));
927 goto abort;
928 }
929 if (!sb_equal(refsb, sb)) {
930 printk(KERN_WARNING "md: %s has same UUID"
931 " but different superblock to %s\n",
932 b, bdevname(refdev->bdev, b2));
933 goto abort;
934 }
935 ev1 = md_event(sb);
936 ev2 = md_event(refsb);
937 if (ev1 > ev2)
938 ret = 1;
939 else
940 ret = 0;
941 }
942 rdev->sectors = rdev->sb_start;
943
944 if (rdev->sectors < sb->size * 2 && sb->level > 1)
945 /* "this cannot possibly happen" ... */
946 ret = -EINVAL;
947
948 abort:
949 return ret;
950 }
951
952 /*
953 * validate_super for 0.90.0
954 */
955 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
956 {
957 mdp_disk_t *desc;
958 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
959 __u64 ev1 = md_event(sb);
960
961 rdev->raid_disk = -1;
962 clear_bit(Faulty, &rdev->flags);
963 clear_bit(In_sync, &rdev->flags);
964 clear_bit(WriteMostly, &rdev->flags);
965 clear_bit(BarriersNotsupp, &rdev->flags);
966
967 if (mddev->raid_disks == 0) {
968 mddev->major_version = 0;
969 mddev->minor_version = sb->minor_version;
970 mddev->patch_version = sb->patch_version;
971 mddev->external = 0;
972 mddev->chunk_sectors = sb->chunk_size >> 9;
973 mddev->ctime = sb->ctime;
974 mddev->utime = sb->utime;
975 mddev->level = sb->level;
976 mddev->clevel[0] = 0;
977 mddev->layout = sb->layout;
978 mddev->raid_disks = sb->raid_disks;
979 mddev->dev_sectors = sb->size * 2;
980 mddev->events = ev1;
981 mddev->bitmap_info.offset = 0;
982 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
983
984 if (mddev->minor_version >= 91) {
985 mddev->reshape_position = sb->reshape_position;
986 mddev->delta_disks = sb->delta_disks;
987 mddev->new_level = sb->new_level;
988 mddev->new_layout = sb->new_layout;
989 mddev->new_chunk_sectors = sb->new_chunk >> 9;
990 } else {
991 mddev->reshape_position = MaxSector;
992 mddev->delta_disks = 0;
993 mddev->new_level = mddev->level;
994 mddev->new_layout = mddev->layout;
995 mddev->new_chunk_sectors = mddev->chunk_sectors;
996 }
997
998 if (sb->state & (1<<MD_SB_CLEAN))
999 mddev->recovery_cp = MaxSector;
1000 else {
1001 if (sb->events_hi == sb->cp_events_hi &&
1002 sb->events_lo == sb->cp_events_lo) {
1003 mddev->recovery_cp = sb->recovery_cp;
1004 } else
1005 mddev->recovery_cp = 0;
1006 }
1007
1008 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1009 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1010 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1011 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1012
1013 mddev->max_disks = MD_SB_DISKS;
1014
1015 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1016 mddev->bitmap_info.file == NULL)
1017 mddev->bitmap_info.offset =
1018 mddev->bitmap_info.default_offset;
1019
1020 } else if (mddev->pers == NULL) {
1021 /* Insist on good event counter while assembling */
1022 ++ev1;
1023 if (ev1 < mddev->events)
1024 return -EINVAL;
1025 } else if (mddev->bitmap) {
1026 /* if adding to array with a bitmap, then we can accept an
1027 * older device ... but not too old.
1028 */
1029 if (ev1 < mddev->bitmap->events_cleared)
1030 return 0;
1031 } else {
1032 if (ev1 < mddev->events)
1033 /* just a hot-add of a new device, leave raid_disk at -1 */
1034 return 0;
1035 }
1036
1037 if (mddev->level != LEVEL_MULTIPATH) {
1038 desc = sb->disks + rdev->desc_nr;
1039
1040 if (desc->state & (1<<MD_DISK_FAULTY))
1041 set_bit(Faulty, &rdev->flags);
1042 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1043 desc->raid_disk < mddev->raid_disks */) {
1044 set_bit(In_sync, &rdev->flags);
1045 rdev->raid_disk = desc->raid_disk;
1046 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1047 /* active but not in sync implies recovery up to
1048 * reshape position. We don't know exactly where
1049 * that is, so set to zero for now */
1050 if (mddev->minor_version >= 91) {
1051 rdev->recovery_offset = 0;
1052 rdev->raid_disk = desc->raid_disk;
1053 }
1054 }
1055 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1056 set_bit(WriteMostly, &rdev->flags);
1057 } else /* MULTIPATH are always insync */
1058 set_bit(In_sync, &rdev->flags);
1059 return 0;
1060 }
1061
1062 /*
1063 * sync_super for 0.90.0
1064 */
1065 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1066 {
1067 mdp_super_t *sb;
1068 mdk_rdev_t *rdev2;
1069 int next_spare = mddev->raid_disks;
1070
1071
1072 /* make rdev->sb match mddev data..
1073 *
1074 * 1/ zero out disks
1075 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1076 * 3/ any empty disks < next_spare become removed
1077 *
1078 * disks[0] gets initialised to REMOVED because
1079 * we cannot be sure from other fields if it has
1080 * been initialised or not.
1081 */
1082 int i;
1083 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1084
1085 rdev->sb_size = MD_SB_BYTES;
1086
1087 sb = (mdp_super_t*)page_address(rdev->sb_page);
1088
1089 memset(sb, 0, sizeof(*sb));
1090
1091 sb->md_magic = MD_SB_MAGIC;
1092 sb->major_version = mddev->major_version;
1093 sb->patch_version = mddev->patch_version;
1094 sb->gvalid_words = 0; /* ignored */
1095 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1096 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1097 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1098 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1099
1100 sb->ctime = mddev->ctime;
1101 sb->level = mddev->level;
1102 sb->size = mddev->dev_sectors / 2;
1103 sb->raid_disks = mddev->raid_disks;
1104 sb->md_minor = mddev->md_minor;
1105 sb->not_persistent = 0;
1106 sb->utime = mddev->utime;
1107 sb->state = 0;
1108 sb->events_hi = (mddev->events>>32);
1109 sb->events_lo = (u32)mddev->events;
1110
1111 if (mddev->reshape_position == MaxSector)
1112 sb->minor_version = 90;
1113 else {
1114 sb->minor_version = 91;
1115 sb->reshape_position = mddev->reshape_position;
1116 sb->new_level = mddev->new_level;
1117 sb->delta_disks = mddev->delta_disks;
1118 sb->new_layout = mddev->new_layout;
1119 sb->new_chunk = mddev->new_chunk_sectors << 9;
1120 }
1121 mddev->minor_version = sb->minor_version;
1122 if (mddev->in_sync)
1123 {
1124 sb->recovery_cp = mddev->recovery_cp;
1125 sb->cp_events_hi = (mddev->events>>32);
1126 sb->cp_events_lo = (u32)mddev->events;
1127 if (mddev->recovery_cp == MaxSector)
1128 sb->state = (1<< MD_SB_CLEAN);
1129 } else
1130 sb->recovery_cp = 0;
1131
1132 sb->layout = mddev->layout;
1133 sb->chunk_size = mddev->chunk_sectors << 9;
1134
1135 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1136 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1137
1138 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1139 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1140 mdp_disk_t *d;
1141 int desc_nr;
1142 int is_active = test_bit(In_sync, &rdev2->flags);
1143
1144 if (rdev2->raid_disk >= 0 &&
1145 sb->minor_version >= 91)
1146 /* we have nowhere to store the recovery_offset,
1147 * but if it is not below the reshape_position,
1148 * we can piggy-back on that.
1149 */
1150 is_active = 1;
1151 if (rdev2->raid_disk < 0 ||
1152 test_bit(Faulty, &rdev2->flags))
1153 is_active = 0;
1154 if (is_active)
1155 desc_nr = rdev2->raid_disk;
1156 else
1157 desc_nr = next_spare++;
1158 rdev2->desc_nr = desc_nr;
1159 d = &sb->disks[rdev2->desc_nr];
1160 nr_disks++;
1161 d->number = rdev2->desc_nr;
1162 d->major = MAJOR(rdev2->bdev->bd_dev);
1163 d->minor = MINOR(rdev2->bdev->bd_dev);
1164 if (is_active)
1165 d->raid_disk = rdev2->raid_disk;
1166 else
1167 d->raid_disk = rdev2->desc_nr; /* compatibility */
1168 if (test_bit(Faulty, &rdev2->flags))
1169 d->state = (1<<MD_DISK_FAULTY);
1170 else if (is_active) {
1171 d->state = (1<<MD_DISK_ACTIVE);
1172 if (test_bit(In_sync, &rdev2->flags))
1173 d->state |= (1<<MD_DISK_SYNC);
1174 active++;
1175 working++;
1176 } else {
1177 d->state = 0;
1178 spare++;
1179 working++;
1180 }
1181 if (test_bit(WriteMostly, &rdev2->flags))
1182 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1183 }
1184 /* now set the "removed" and "faulty" bits on any missing devices */
1185 for (i=0 ; i < mddev->raid_disks ; i++) {
1186 mdp_disk_t *d = &sb->disks[i];
1187 if (d->state == 0 && d->number == 0) {
1188 d->number = i;
1189 d->raid_disk = i;
1190 d->state = (1<<MD_DISK_REMOVED);
1191 d->state |= (1<<MD_DISK_FAULTY);
1192 failed++;
1193 }
1194 }
1195 sb->nr_disks = nr_disks;
1196 sb->active_disks = active;
1197 sb->working_disks = working;
1198 sb->failed_disks = failed;
1199 sb->spare_disks = spare;
1200
1201 sb->this_disk = sb->disks[rdev->desc_nr];
1202 sb->sb_csum = calc_sb_csum(sb);
1203 }
1204
1205 /*
1206 * rdev_size_change for 0.90.0
1207 */
1208 static unsigned long long
1209 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1210 {
1211 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1212 return 0; /* component must fit device */
1213 if (rdev->mddev->bitmap_info.offset)
1214 return 0; /* can't move bitmap */
1215 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1216 if (!num_sectors || num_sectors > rdev->sb_start)
1217 num_sectors = rdev->sb_start;
1218 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1219 rdev->sb_page);
1220 md_super_wait(rdev->mddev);
1221 return num_sectors / 2; /* kB for sysfs */
1222 }
1223
1224
1225 /*
1226 * version 1 superblock
1227 */
1228
1229 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1230 {
1231 __le32 disk_csum;
1232 u32 csum;
1233 unsigned long long newcsum;
1234 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1235 __le32 *isuper = (__le32*)sb;
1236 int i;
1237
1238 disk_csum = sb->sb_csum;
1239 sb->sb_csum = 0;
1240 newcsum = 0;
1241 for (i=0; size>=4; size -= 4 )
1242 newcsum += le32_to_cpu(*isuper++);
1243
1244 if (size == 2)
1245 newcsum += le16_to_cpu(*(__le16*) isuper);
1246
1247 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1248 sb->sb_csum = disk_csum;
1249 return cpu_to_le32(csum);
1250 }
1251
1252 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1253 {
1254 struct mdp_superblock_1 *sb;
1255 int ret;
1256 sector_t sb_start;
1257 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1258 int bmask;
1259
1260 /*
1261 * Calculate the position of the superblock in 512byte sectors.
1262 * It is always aligned to a 4K boundary and
1263 * depeding on minor_version, it can be:
1264 * 0: At least 8K, but less than 12K, from end of device
1265 * 1: At start of device
1266 * 2: 4K from start of device.
1267 */
1268 switch(minor_version) {
1269 case 0:
1270 sb_start = rdev->bdev->bd_inode->i_size >> 9;
1271 sb_start -= 8*2;
1272 sb_start &= ~(sector_t)(4*2-1);
1273 break;
1274 case 1:
1275 sb_start = 0;
1276 break;
1277 case 2:
1278 sb_start = 8;
1279 break;
1280 default:
1281 return -EINVAL;
1282 }
1283 rdev->sb_start = sb_start;
1284
1285 /* superblock is rarely larger than 1K, but it can be larger,
1286 * and it is safe to read 4k, so we do that
1287 */
1288 ret = read_disk_sb(rdev, 4096);
1289 if (ret) return ret;
1290
1291
1292 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1293
1294 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1295 sb->major_version != cpu_to_le32(1) ||
1296 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1297 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1298 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1299 return -EINVAL;
1300
1301 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1302 printk("md: invalid superblock checksum on %s\n",
1303 bdevname(rdev->bdev,b));
1304 return -EINVAL;
1305 }
1306 if (le64_to_cpu(sb->data_size) < 10) {
1307 printk("md: data_size too small on %s\n",
1308 bdevname(rdev->bdev,b));
1309 return -EINVAL;
1310 }
1311
1312 rdev->preferred_minor = 0xffff;
1313 rdev->data_offset = le64_to_cpu(sb->data_offset);
1314 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1315
1316 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1317 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1318 if (rdev->sb_size & bmask)
1319 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1320
1321 if (minor_version
1322 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1323 return -EINVAL;
1324
1325 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1326 rdev->desc_nr = -1;
1327 else
1328 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1329
1330 if (!refdev) {
1331 ret = 1;
1332 } else {
1333 __u64 ev1, ev2;
1334 struct mdp_superblock_1 *refsb =
1335 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1336
1337 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1338 sb->level != refsb->level ||
1339 sb->layout != refsb->layout ||
1340 sb->chunksize != refsb->chunksize) {
1341 printk(KERN_WARNING "md: %s has strangely different"
1342 " superblock to %s\n",
1343 bdevname(rdev->bdev,b),
1344 bdevname(refdev->bdev,b2));
1345 return -EINVAL;
1346 }
1347 ev1 = le64_to_cpu(sb->events);
1348 ev2 = le64_to_cpu(refsb->events);
1349
1350 if (ev1 > ev2)
1351 ret = 1;
1352 else
1353 ret = 0;
1354 }
1355 if (minor_version)
1356 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1357 le64_to_cpu(sb->data_offset);
1358 else
1359 rdev->sectors = rdev->sb_start;
1360 if (rdev->sectors < le64_to_cpu(sb->data_size))
1361 return -EINVAL;
1362 rdev->sectors = le64_to_cpu(sb->data_size);
1363 if (le64_to_cpu(sb->size) > rdev->sectors)
1364 return -EINVAL;
1365 return ret;
1366 }
1367
1368 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1369 {
1370 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1371 __u64 ev1 = le64_to_cpu(sb->events);
1372
1373 rdev->raid_disk = -1;
1374 clear_bit(Faulty, &rdev->flags);
1375 clear_bit(In_sync, &rdev->flags);
1376 clear_bit(WriteMostly, &rdev->flags);
1377 clear_bit(BarriersNotsupp, &rdev->flags);
1378
1379 if (mddev->raid_disks == 0) {
1380 mddev->major_version = 1;
1381 mddev->patch_version = 0;
1382 mddev->external = 0;
1383 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1384 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1385 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1386 mddev->level = le32_to_cpu(sb->level);
1387 mddev->clevel[0] = 0;
1388 mddev->layout = le32_to_cpu(sb->layout);
1389 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1390 mddev->dev_sectors = le64_to_cpu(sb->size);
1391 mddev->events = ev1;
1392 mddev->bitmap_info.offset = 0;
1393 mddev->bitmap_info.default_offset = 1024 >> 9;
1394
1395 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1396 memcpy(mddev->uuid, sb->set_uuid, 16);
1397
1398 mddev->max_disks = (4096-256)/2;
1399
1400 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1401 mddev->bitmap_info.file == NULL )
1402 mddev->bitmap_info.offset =
1403 (__s32)le32_to_cpu(sb->bitmap_offset);
1404
1405 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1406 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1407 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1408 mddev->new_level = le32_to_cpu(sb->new_level);
1409 mddev->new_layout = le32_to_cpu(sb->new_layout);
1410 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1411 } else {
1412 mddev->reshape_position = MaxSector;
1413 mddev->delta_disks = 0;
1414 mddev->new_level = mddev->level;
1415 mddev->new_layout = mddev->layout;
1416 mddev->new_chunk_sectors = mddev->chunk_sectors;
1417 }
1418
1419 } else if (mddev->pers == NULL) {
1420 /* Insist of good event counter while assembling */
1421 ++ev1;
1422 if (ev1 < mddev->events)
1423 return -EINVAL;
1424 } else if (mddev->bitmap) {
1425 /* If adding to array with a bitmap, then we can accept an
1426 * older device, but not too old.
1427 */
1428 if (ev1 < mddev->bitmap->events_cleared)
1429 return 0;
1430 } else {
1431 if (ev1 < mddev->events)
1432 /* just a hot-add of a new device, leave raid_disk at -1 */
1433 return 0;
1434 }
1435 if (mddev->level != LEVEL_MULTIPATH) {
1436 int role;
1437 if (rdev->desc_nr < 0 ||
1438 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1439 role = 0xffff;
1440 rdev->desc_nr = -1;
1441 } else
1442 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1443 switch(role) {
1444 case 0xffff: /* spare */
1445 break;
1446 case 0xfffe: /* faulty */
1447 set_bit(Faulty, &rdev->flags);
1448 break;
1449 default:
1450 if ((le32_to_cpu(sb->feature_map) &
1451 MD_FEATURE_RECOVERY_OFFSET))
1452 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1453 else
1454 set_bit(In_sync, &rdev->flags);
1455 rdev->raid_disk = role;
1456 break;
1457 }
1458 if (sb->devflags & WriteMostly1)
1459 set_bit(WriteMostly, &rdev->flags);
1460 } else /* MULTIPATH are always insync */
1461 set_bit(In_sync, &rdev->flags);
1462
1463 return 0;
1464 }
1465
1466 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1467 {
1468 struct mdp_superblock_1 *sb;
1469 mdk_rdev_t *rdev2;
1470 int max_dev, i;
1471 /* make rdev->sb match mddev and rdev data. */
1472
1473 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1474
1475 sb->feature_map = 0;
1476 sb->pad0 = 0;
1477 sb->recovery_offset = cpu_to_le64(0);
1478 memset(sb->pad1, 0, sizeof(sb->pad1));
1479 memset(sb->pad2, 0, sizeof(sb->pad2));
1480 memset(sb->pad3, 0, sizeof(sb->pad3));
1481
1482 sb->utime = cpu_to_le64((__u64)mddev->utime);
1483 sb->events = cpu_to_le64(mddev->events);
1484 if (mddev->in_sync)
1485 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1486 else
1487 sb->resync_offset = cpu_to_le64(0);
1488
1489 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1490
1491 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1492 sb->size = cpu_to_le64(mddev->dev_sectors);
1493 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1494 sb->level = cpu_to_le32(mddev->level);
1495 sb->layout = cpu_to_le32(mddev->layout);
1496
1497 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1498 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1499 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1500 }
1501
1502 if (rdev->raid_disk >= 0 &&
1503 !test_bit(In_sync, &rdev->flags)) {
1504 if (rdev->recovery_offset > 0) {
1505 sb->feature_map |=
1506 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1507 sb->recovery_offset =
1508 cpu_to_le64(rdev->recovery_offset);
1509 }
1510 }
1511
1512 if (mddev->reshape_position != MaxSector) {
1513 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1514 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1515 sb->new_layout = cpu_to_le32(mddev->new_layout);
1516 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1517 sb->new_level = cpu_to_le32(mddev->new_level);
1518 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1519 }
1520
1521 max_dev = 0;
1522 list_for_each_entry(rdev2, &mddev->disks, same_set)
1523 if (rdev2->desc_nr+1 > max_dev)
1524 max_dev = rdev2->desc_nr+1;
1525
1526 if (max_dev > le32_to_cpu(sb->max_dev)) {
1527 int bmask;
1528 sb->max_dev = cpu_to_le32(max_dev);
1529 rdev->sb_size = max_dev * 2 + 256;
1530 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1531 if (rdev->sb_size & bmask)
1532 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1533 }
1534 for (i=0; i<max_dev;i++)
1535 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1536
1537 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1538 i = rdev2->desc_nr;
1539 if (test_bit(Faulty, &rdev2->flags))
1540 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1541 else if (test_bit(In_sync, &rdev2->flags))
1542 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1543 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1544 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1545 else
1546 sb->dev_roles[i] = cpu_to_le16(0xffff);
1547 }
1548
1549 sb->sb_csum = calc_sb_1_csum(sb);
1550 }
1551
1552 static unsigned long long
1553 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1554 {
1555 struct mdp_superblock_1 *sb;
1556 sector_t max_sectors;
1557 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1558 return 0; /* component must fit device */
1559 if (rdev->sb_start < rdev->data_offset) {
1560 /* minor versions 1 and 2; superblock before data */
1561 max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1562 max_sectors -= rdev->data_offset;
1563 if (!num_sectors || num_sectors > max_sectors)
1564 num_sectors = max_sectors;
1565 } else if (rdev->mddev->bitmap_info.offset) {
1566 /* minor version 0 with bitmap we can't move */
1567 return 0;
1568 } else {
1569 /* minor version 0; superblock after data */
1570 sector_t sb_start;
1571 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1572 sb_start &= ~(sector_t)(4*2 - 1);
1573 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1574 if (!num_sectors || num_sectors > max_sectors)
1575 num_sectors = max_sectors;
1576 rdev->sb_start = sb_start;
1577 }
1578 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1579 sb->data_size = cpu_to_le64(num_sectors);
1580 sb->super_offset = rdev->sb_start;
1581 sb->sb_csum = calc_sb_1_csum(sb);
1582 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1583 rdev->sb_page);
1584 md_super_wait(rdev->mddev);
1585 return num_sectors / 2; /* kB for sysfs */
1586 }
1587
1588 static struct super_type super_types[] = {
1589 [0] = {
1590 .name = "0.90.0",
1591 .owner = THIS_MODULE,
1592 .load_super = super_90_load,
1593 .validate_super = super_90_validate,
1594 .sync_super = super_90_sync,
1595 .rdev_size_change = super_90_rdev_size_change,
1596 },
1597 [1] = {
1598 .name = "md-1",
1599 .owner = THIS_MODULE,
1600 .load_super = super_1_load,
1601 .validate_super = super_1_validate,
1602 .sync_super = super_1_sync,
1603 .rdev_size_change = super_1_rdev_size_change,
1604 },
1605 };
1606
1607 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1608 {
1609 mdk_rdev_t *rdev, *rdev2;
1610
1611 rcu_read_lock();
1612 rdev_for_each_rcu(rdev, mddev1)
1613 rdev_for_each_rcu(rdev2, mddev2)
1614 if (rdev->bdev->bd_contains ==
1615 rdev2->bdev->bd_contains) {
1616 rcu_read_unlock();
1617 return 1;
1618 }
1619 rcu_read_unlock();
1620 return 0;
1621 }
1622
1623 static LIST_HEAD(pending_raid_disks);
1624
1625 /*
1626 * Try to register data integrity profile for an mddev
1627 *
1628 * This is called when an array is started and after a disk has been kicked
1629 * from the array. It only succeeds if all working and active component devices
1630 * are integrity capable with matching profiles.
1631 */
1632 int md_integrity_register(mddev_t *mddev)
1633 {
1634 mdk_rdev_t *rdev, *reference = NULL;
1635
1636 if (list_empty(&mddev->disks))
1637 return 0; /* nothing to do */
1638 if (blk_get_integrity(mddev->gendisk))
1639 return 0; /* already registered */
1640 list_for_each_entry(rdev, &mddev->disks, same_set) {
1641 /* skip spares and non-functional disks */
1642 if (test_bit(Faulty, &rdev->flags))
1643 continue;
1644 if (rdev->raid_disk < 0)
1645 continue;
1646 /*
1647 * If at least one rdev is not integrity capable, we can not
1648 * enable data integrity for the md device.
1649 */
1650 if (!bdev_get_integrity(rdev->bdev))
1651 return -EINVAL;
1652 if (!reference) {
1653 /* Use the first rdev as the reference */
1654 reference = rdev;
1655 continue;
1656 }
1657 /* does this rdev's profile match the reference profile? */
1658 if (blk_integrity_compare(reference->bdev->bd_disk,
1659 rdev->bdev->bd_disk) < 0)
1660 return -EINVAL;
1661 }
1662 /*
1663 * All component devices are integrity capable and have matching
1664 * profiles, register the common profile for the md device.
1665 */
1666 if (blk_integrity_register(mddev->gendisk,
1667 bdev_get_integrity(reference->bdev)) != 0) {
1668 printk(KERN_ERR "md: failed to register integrity for %s\n",
1669 mdname(mddev));
1670 return -EINVAL;
1671 }
1672 printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1673 mdname(mddev));
1674 return 0;
1675 }
1676 EXPORT_SYMBOL(md_integrity_register);
1677
1678 /* Disable data integrity if non-capable/non-matching disk is being added */
1679 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1680 {
1681 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1682 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1683
1684 if (!bi_mddev) /* nothing to do */
1685 return;
1686 if (rdev->raid_disk < 0) /* skip spares */
1687 return;
1688 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1689 rdev->bdev->bd_disk) >= 0)
1690 return;
1691 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1692 blk_integrity_unregister(mddev->gendisk);
1693 }
1694 EXPORT_SYMBOL(md_integrity_add_rdev);
1695
1696 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1697 {
1698 char b[BDEVNAME_SIZE];
1699 struct kobject *ko;
1700 char *s;
1701 int err;
1702
1703 if (rdev->mddev) {
1704 MD_BUG();
1705 return -EINVAL;
1706 }
1707
1708 /* prevent duplicates */
1709 if (find_rdev(mddev, rdev->bdev->bd_dev))
1710 return -EEXIST;
1711
1712 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1713 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1714 rdev->sectors < mddev->dev_sectors)) {
1715 if (mddev->pers) {
1716 /* Cannot change size, so fail
1717 * If mddev->level <= 0, then we don't care
1718 * about aligning sizes (e.g. linear)
1719 */
1720 if (mddev->level > 0)
1721 return -ENOSPC;
1722 } else
1723 mddev->dev_sectors = rdev->sectors;
1724 }
1725
1726 /* Verify rdev->desc_nr is unique.
1727 * If it is -1, assign a free number, else
1728 * check number is not in use
1729 */
1730 if (rdev->desc_nr < 0) {
1731 int choice = 0;
1732 if (mddev->pers) choice = mddev->raid_disks;
1733 while (find_rdev_nr(mddev, choice))
1734 choice++;
1735 rdev->desc_nr = choice;
1736 } else {
1737 if (find_rdev_nr(mddev, rdev->desc_nr))
1738 return -EBUSY;
1739 }
1740 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1741 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1742 mdname(mddev), mddev->max_disks);
1743 return -EBUSY;
1744 }
1745 bdevname(rdev->bdev,b);
1746 while ( (s=strchr(b, '/')) != NULL)
1747 *s = '!';
1748
1749 rdev->mddev = mddev;
1750 printk(KERN_INFO "md: bind<%s>\n", b);
1751
1752 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1753 goto fail;
1754
1755 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1756 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1757 kobject_del(&rdev->kobj);
1758 goto fail;
1759 }
1760 rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
1761
1762 list_add_rcu(&rdev->same_set, &mddev->disks);
1763 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1764
1765 /* May as well allow recovery to be retried once */
1766 mddev->recovery_disabled = 0;
1767
1768 return 0;
1769
1770 fail:
1771 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1772 b, mdname(mddev));
1773 return err;
1774 }
1775
1776 static void md_delayed_delete(struct work_struct *ws)
1777 {
1778 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1779 kobject_del(&rdev->kobj);
1780 kobject_put(&rdev->kobj);
1781 }
1782
1783 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1784 {
1785 char b[BDEVNAME_SIZE];
1786 if (!rdev->mddev) {
1787 MD_BUG();
1788 return;
1789 }
1790 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1791 list_del_rcu(&rdev->same_set);
1792 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1793 rdev->mddev = NULL;
1794 sysfs_remove_link(&rdev->kobj, "block");
1795 sysfs_put(rdev->sysfs_state);
1796 rdev->sysfs_state = NULL;
1797 /* We need to delay this, otherwise we can deadlock when
1798 * writing to 'remove' to "dev/state". We also need
1799 * to delay it due to rcu usage.
1800 */
1801 synchronize_rcu();
1802 INIT_WORK(&rdev->del_work, md_delayed_delete);
1803 kobject_get(&rdev->kobj);
1804 schedule_work(&rdev->del_work);
1805 }
1806
1807 /*
1808 * prevent the device from being mounted, repartitioned or
1809 * otherwise reused by a RAID array (or any other kernel
1810 * subsystem), by bd_claiming the device.
1811 */
1812 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1813 {
1814 int err = 0;
1815 struct block_device *bdev;
1816 char b[BDEVNAME_SIZE];
1817
1818 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1819 if (IS_ERR(bdev)) {
1820 printk(KERN_ERR "md: could not open %s.\n",
1821 __bdevname(dev, b));
1822 return PTR_ERR(bdev);
1823 }
1824 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1825 if (err) {
1826 printk(KERN_ERR "md: could not bd_claim %s.\n",
1827 bdevname(bdev, b));
1828 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1829 return err;
1830 }
1831 if (!shared)
1832 set_bit(AllReserved, &rdev->flags);
1833 rdev->bdev = bdev;
1834 return err;
1835 }
1836
1837 static void unlock_rdev(mdk_rdev_t *rdev)
1838 {
1839 struct block_device *bdev = rdev->bdev;
1840 rdev->bdev = NULL;
1841 if (!bdev)
1842 MD_BUG();
1843 bd_release(bdev);
1844 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1845 }
1846
1847 void md_autodetect_dev(dev_t dev);
1848
1849 static void export_rdev(mdk_rdev_t * rdev)
1850 {
1851 char b[BDEVNAME_SIZE];
1852 printk(KERN_INFO "md: export_rdev(%s)\n",
1853 bdevname(rdev->bdev,b));
1854 if (rdev->mddev)
1855 MD_BUG();
1856 free_disk_sb(rdev);
1857 #ifndef MODULE
1858 if (test_bit(AutoDetected, &rdev->flags))
1859 md_autodetect_dev(rdev->bdev->bd_dev);
1860 #endif
1861 unlock_rdev(rdev);
1862 kobject_put(&rdev->kobj);
1863 }
1864
1865 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1866 {
1867 unbind_rdev_from_array(rdev);
1868 export_rdev(rdev);
1869 }
1870
1871 static void export_array(mddev_t *mddev)
1872 {
1873 mdk_rdev_t *rdev, *tmp;
1874
1875 rdev_for_each(rdev, tmp, mddev) {
1876 if (!rdev->mddev) {
1877 MD_BUG();
1878 continue;
1879 }
1880 kick_rdev_from_array(rdev);
1881 }
1882 if (!list_empty(&mddev->disks))
1883 MD_BUG();
1884 mddev->raid_disks = 0;
1885 mddev->major_version = 0;
1886 }
1887
1888 static void print_desc(mdp_disk_t *desc)
1889 {
1890 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1891 desc->major,desc->minor,desc->raid_disk,desc->state);
1892 }
1893
1894 static void print_sb_90(mdp_super_t *sb)
1895 {
1896 int i;
1897
1898 printk(KERN_INFO
1899 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1900 sb->major_version, sb->minor_version, sb->patch_version,
1901 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1902 sb->ctime);
1903 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1904 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1905 sb->md_minor, sb->layout, sb->chunk_size);
1906 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1907 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1908 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1909 sb->failed_disks, sb->spare_disks,
1910 sb->sb_csum, (unsigned long)sb->events_lo);
1911
1912 printk(KERN_INFO);
1913 for (i = 0; i < MD_SB_DISKS; i++) {
1914 mdp_disk_t *desc;
1915
1916 desc = sb->disks + i;
1917 if (desc->number || desc->major || desc->minor ||
1918 desc->raid_disk || (desc->state && (desc->state != 4))) {
1919 printk(" D %2d: ", i);
1920 print_desc(desc);
1921 }
1922 }
1923 printk(KERN_INFO "md: THIS: ");
1924 print_desc(&sb->this_disk);
1925 }
1926
1927 static void print_sb_1(struct mdp_superblock_1 *sb)
1928 {
1929 __u8 *uuid;
1930
1931 uuid = sb->set_uuid;
1932 printk(KERN_INFO
1933 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
1934 ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
1935 "md: Name: \"%s\" CT:%llu\n",
1936 le32_to_cpu(sb->major_version),
1937 le32_to_cpu(sb->feature_map),
1938 uuid[0], uuid[1], uuid[2], uuid[3],
1939 uuid[4], uuid[5], uuid[6], uuid[7],
1940 uuid[8], uuid[9], uuid[10], uuid[11],
1941 uuid[12], uuid[13], uuid[14], uuid[15],
1942 sb->set_name,
1943 (unsigned long long)le64_to_cpu(sb->ctime)
1944 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1945
1946 uuid = sb->device_uuid;
1947 printk(KERN_INFO
1948 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1949 " RO:%llu\n"
1950 "md: Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
1951 ":%02x%02x%02x%02x%02x%02x\n"
1952 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1953 "md: (MaxDev:%u) \n",
1954 le32_to_cpu(sb->level),
1955 (unsigned long long)le64_to_cpu(sb->size),
1956 le32_to_cpu(sb->raid_disks),
1957 le32_to_cpu(sb->layout),
1958 le32_to_cpu(sb->chunksize),
1959 (unsigned long long)le64_to_cpu(sb->data_offset),
1960 (unsigned long long)le64_to_cpu(sb->data_size),
1961 (unsigned long long)le64_to_cpu(sb->super_offset),
1962 (unsigned long long)le64_to_cpu(sb->recovery_offset),
1963 le32_to_cpu(sb->dev_number),
1964 uuid[0], uuid[1], uuid[2], uuid[3],
1965 uuid[4], uuid[5], uuid[6], uuid[7],
1966 uuid[8], uuid[9], uuid[10], uuid[11],
1967 uuid[12], uuid[13], uuid[14], uuid[15],
1968 sb->devflags,
1969 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
1970 (unsigned long long)le64_to_cpu(sb->events),
1971 (unsigned long long)le64_to_cpu(sb->resync_offset),
1972 le32_to_cpu(sb->sb_csum),
1973 le32_to_cpu(sb->max_dev)
1974 );
1975 }
1976
1977 static void print_rdev(mdk_rdev_t *rdev, int major_version)
1978 {
1979 char b[BDEVNAME_SIZE];
1980 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
1981 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
1982 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1983 rdev->desc_nr);
1984 if (rdev->sb_loaded) {
1985 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
1986 switch (major_version) {
1987 case 0:
1988 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
1989 break;
1990 case 1:
1991 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
1992 break;
1993 }
1994 } else
1995 printk(KERN_INFO "md: no rdev superblock!\n");
1996 }
1997
1998 static void md_print_devices(void)
1999 {
2000 struct list_head *tmp;
2001 mdk_rdev_t *rdev;
2002 mddev_t *mddev;
2003 char b[BDEVNAME_SIZE];
2004
2005 printk("\n");
2006 printk("md: **********************************\n");
2007 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2008 printk("md: **********************************\n");
2009 for_each_mddev(mddev, tmp) {
2010
2011 if (mddev->bitmap)
2012 bitmap_print_sb(mddev->bitmap);
2013 else
2014 printk("%s: ", mdname(mddev));
2015 list_for_each_entry(rdev, &mddev->disks, same_set)
2016 printk("<%s>", bdevname(rdev->bdev,b));
2017 printk("\n");
2018
2019 list_for_each_entry(rdev, &mddev->disks, same_set)
2020 print_rdev(rdev, mddev->major_version);
2021 }
2022 printk("md: **********************************\n");
2023 printk("\n");
2024 }
2025
2026
2027 static void sync_sbs(mddev_t * mddev, int nospares)
2028 {
2029 /* Update each superblock (in-memory image), but
2030 * if we are allowed to, skip spares which already
2031 * have the right event counter, or have one earlier
2032 * (which would mean they aren't being marked as dirty
2033 * with the rest of the array)
2034 */
2035 mdk_rdev_t *rdev;
2036
2037 /* First make sure individual recovery_offsets are correct */
2038 list_for_each_entry(rdev, &mddev->disks, same_set) {
2039 if (rdev->raid_disk >= 0 &&
2040 !test_bit(In_sync, &rdev->flags) &&
2041 mddev->curr_resync_completed > rdev->recovery_offset)
2042 rdev->recovery_offset = mddev->curr_resync_completed;
2043
2044 }
2045 list_for_each_entry(rdev, &mddev->disks, same_set) {
2046 if (rdev->sb_events == mddev->events ||
2047 (nospares &&
2048 rdev->raid_disk < 0 &&
2049 (rdev->sb_events&1)==0 &&
2050 rdev->sb_events+1 == mddev->events)) {
2051 /* Don't update this superblock */
2052 rdev->sb_loaded = 2;
2053 } else {
2054 super_types[mddev->major_version].
2055 sync_super(mddev, rdev);
2056 rdev->sb_loaded = 1;
2057 }
2058 }
2059 }
2060
2061 static void md_update_sb(mddev_t * mddev, int force_change)
2062 {
2063 mdk_rdev_t *rdev;
2064 int sync_req;
2065 int nospares = 0;
2066
2067 mddev->utime = get_seconds();
2068 if (mddev->external)
2069 return;
2070 repeat:
2071 spin_lock_irq(&mddev->write_lock);
2072
2073 set_bit(MD_CHANGE_PENDING, &mddev->flags);
2074 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2075 force_change = 1;
2076 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2077 /* just a clean<-> dirty transition, possibly leave spares alone,
2078 * though if events isn't the right even/odd, we will have to do
2079 * spares after all
2080 */
2081 nospares = 1;
2082 if (force_change)
2083 nospares = 0;
2084 if (mddev->degraded)
2085 /* If the array is degraded, then skipping spares is both
2086 * dangerous and fairly pointless.
2087 * Dangerous because a device that was removed from the array
2088 * might have a event_count that still looks up-to-date,
2089 * so it can be re-added without a resync.
2090 * Pointless because if there are any spares to skip,
2091 * then a recovery will happen and soon that array won't
2092 * be degraded any more and the spare can go back to sleep then.
2093 */
2094 nospares = 0;
2095
2096 sync_req = mddev->in_sync;
2097
2098 /* If this is just a dirty<->clean transition, and the array is clean
2099 * and 'events' is odd, we can roll back to the previous clean state */
2100 if (nospares
2101 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2102 && (mddev->events & 1)
2103 && mddev->events != 1)
2104 mddev->events--;
2105 else {
2106 /* otherwise we have to go forward and ... */
2107 mddev->events ++;
2108 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
2109 /* .. if the array isn't clean, an 'even' event must also go
2110 * to spares. */
2111 if ((mddev->events&1)==0)
2112 nospares = 0;
2113 } else {
2114 /* otherwise an 'odd' event must go to spares */
2115 if ((mddev->events&1))
2116 nospares = 0;
2117 }
2118 }
2119
2120 if (!mddev->events) {
2121 /*
2122 * oops, this 64-bit counter should never wrap.
2123 * Either we are in around ~1 trillion A.C., assuming
2124 * 1 reboot per second, or we have a bug:
2125 */
2126 MD_BUG();
2127 mddev->events --;
2128 }
2129
2130 /*
2131 * do not write anything to disk if using
2132 * nonpersistent superblocks
2133 */
2134 if (!mddev->persistent) {
2135 if (!mddev->external)
2136 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2137
2138 spin_unlock_irq(&mddev->write_lock);
2139 wake_up(&mddev->sb_wait);
2140 return;
2141 }
2142 sync_sbs(mddev, nospares);
2143 spin_unlock_irq(&mddev->write_lock);
2144
2145 dprintk(KERN_INFO
2146 "md: updating %s RAID superblock on device (in sync %d)\n",
2147 mdname(mddev),mddev->in_sync);
2148
2149 bitmap_update_sb(mddev->bitmap);
2150 list_for_each_entry(rdev, &mddev->disks, same_set) {
2151 char b[BDEVNAME_SIZE];
2152 dprintk(KERN_INFO "md: ");
2153 if (rdev->sb_loaded != 1)
2154 continue; /* no noise on spare devices */
2155 if (test_bit(Faulty, &rdev->flags))
2156 dprintk("(skipping faulty ");
2157
2158 dprintk("%s ", bdevname(rdev->bdev,b));
2159 if (!test_bit(Faulty, &rdev->flags)) {
2160 md_super_write(mddev,rdev,
2161 rdev->sb_start, rdev->sb_size,
2162 rdev->sb_page);
2163 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2164 bdevname(rdev->bdev,b),
2165 (unsigned long long)rdev->sb_start);
2166 rdev->sb_events = mddev->events;
2167
2168 } else
2169 dprintk(")\n");
2170 if (mddev->level == LEVEL_MULTIPATH)
2171 /* only need to write one superblock... */
2172 break;
2173 }
2174 md_super_wait(mddev);
2175 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2176
2177 spin_lock_irq(&mddev->write_lock);
2178 if (mddev->in_sync != sync_req ||
2179 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2180 /* have to write it out again */
2181 spin_unlock_irq(&mddev->write_lock);
2182 goto repeat;
2183 }
2184 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2185 spin_unlock_irq(&mddev->write_lock);
2186 wake_up(&mddev->sb_wait);
2187 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2188 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2189
2190 }
2191
2192 /* words written to sysfs files may, or may not, be \n terminated.
2193 * We want to accept with case. For this we use cmd_match.
2194 */
2195 static int cmd_match(const char *cmd, const char *str)
2196 {
2197 /* See if cmd, written into a sysfs file, matches
2198 * str. They must either be the same, or cmd can
2199 * have a trailing newline
2200 */
2201 while (*cmd && *str && *cmd == *str) {
2202 cmd++;
2203 str++;
2204 }
2205 if (*cmd == '\n')
2206 cmd++;
2207 if (*str || *cmd)
2208 return 0;
2209 return 1;
2210 }
2211
2212 struct rdev_sysfs_entry {
2213 struct attribute attr;
2214 ssize_t (*show)(mdk_rdev_t *, char *);
2215 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2216 };
2217
2218 static ssize_t
2219 state_show(mdk_rdev_t *rdev, char *page)
2220 {
2221 char *sep = "";
2222 size_t len = 0;
2223
2224 if (test_bit(Faulty, &rdev->flags)) {
2225 len+= sprintf(page+len, "%sfaulty",sep);
2226 sep = ",";
2227 }
2228 if (test_bit(In_sync, &rdev->flags)) {
2229 len += sprintf(page+len, "%sin_sync",sep);
2230 sep = ",";
2231 }
2232 if (test_bit(WriteMostly, &rdev->flags)) {
2233 len += sprintf(page+len, "%swrite_mostly",sep);
2234 sep = ",";
2235 }
2236 if (test_bit(Blocked, &rdev->flags)) {
2237 len += sprintf(page+len, "%sblocked", sep);
2238 sep = ",";
2239 }
2240 if (!test_bit(Faulty, &rdev->flags) &&
2241 !test_bit(In_sync, &rdev->flags)) {
2242 len += sprintf(page+len, "%sspare", sep);
2243 sep = ",";
2244 }
2245 return len+sprintf(page+len, "\n");
2246 }
2247
2248 static ssize_t
2249 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2250 {
2251 /* can write
2252 * faulty - simulates and error
2253 * remove - disconnects the device
2254 * writemostly - sets write_mostly
2255 * -writemostly - clears write_mostly
2256 * blocked - sets the Blocked flag
2257 * -blocked - clears the Blocked flag
2258 * insync - sets Insync providing device isn't active
2259 */
2260 int err = -EINVAL;
2261 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2262 md_error(rdev->mddev, rdev);
2263 err = 0;
2264 } else if (cmd_match(buf, "remove")) {
2265 if (rdev->raid_disk >= 0)
2266 err = -EBUSY;
2267 else {
2268 mddev_t *mddev = rdev->mddev;
2269 kick_rdev_from_array(rdev);
2270 if (mddev->pers)
2271 md_update_sb(mddev, 1);
2272 md_new_event(mddev);
2273 err = 0;
2274 }
2275 } else if (cmd_match(buf, "writemostly")) {
2276 set_bit(WriteMostly, &rdev->flags);
2277 err = 0;
2278 } else if (cmd_match(buf, "-writemostly")) {
2279 clear_bit(WriteMostly, &rdev->flags);
2280 err = 0;
2281 } else if (cmd_match(buf, "blocked")) {
2282 set_bit(Blocked, &rdev->flags);
2283 err = 0;
2284 } else if (cmd_match(buf, "-blocked")) {
2285 clear_bit(Blocked, &rdev->flags);
2286 wake_up(&rdev->blocked_wait);
2287 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2288 md_wakeup_thread(rdev->mddev->thread);
2289
2290 err = 0;
2291 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2292 set_bit(In_sync, &rdev->flags);
2293 err = 0;
2294 }
2295 if (!err && rdev->sysfs_state)
2296 sysfs_notify_dirent(rdev->sysfs_state);
2297 return err ? err : len;
2298 }
2299 static struct rdev_sysfs_entry rdev_state =
2300 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2301
2302 static ssize_t
2303 errors_show(mdk_rdev_t *rdev, char *page)
2304 {
2305 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2306 }
2307
2308 static ssize_t
2309 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2310 {
2311 char *e;
2312 unsigned long n = simple_strtoul(buf, &e, 10);
2313 if (*buf && (*e == 0 || *e == '\n')) {
2314 atomic_set(&rdev->corrected_errors, n);
2315 return len;
2316 }
2317 return -EINVAL;
2318 }
2319 static struct rdev_sysfs_entry rdev_errors =
2320 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2321
2322 static ssize_t
2323 slot_show(mdk_rdev_t *rdev, char *page)
2324 {
2325 if (rdev->raid_disk < 0)
2326 return sprintf(page, "none\n");
2327 else
2328 return sprintf(page, "%d\n", rdev->raid_disk);
2329 }
2330
2331 static ssize_t
2332 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2333 {
2334 char *e;
2335 int err;
2336 char nm[20];
2337 int slot = simple_strtoul(buf, &e, 10);
2338 if (strncmp(buf, "none", 4)==0)
2339 slot = -1;
2340 else if (e==buf || (*e && *e!= '\n'))
2341 return -EINVAL;
2342 if (rdev->mddev->pers && slot == -1) {
2343 /* Setting 'slot' on an active array requires also
2344 * updating the 'rd%d' link, and communicating
2345 * with the personality with ->hot_*_disk.
2346 * For now we only support removing
2347 * failed/spare devices. This normally happens automatically,
2348 * but not when the metadata is externally managed.
2349 */
2350 if (rdev->raid_disk == -1)
2351 return -EEXIST;
2352 /* personality does all needed checks */
2353 if (rdev->mddev->pers->hot_add_disk == NULL)
2354 return -EINVAL;
2355 err = rdev->mddev->pers->
2356 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2357 if (err)
2358 return err;
2359 sprintf(nm, "rd%d", rdev->raid_disk);
2360 sysfs_remove_link(&rdev->mddev->kobj, nm);
2361 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2362 md_wakeup_thread(rdev->mddev->thread);
2363 } else if (rdev->mddev->pers) {
2364 mdk_rdev_t *rdev2;
2365 /* Activating a spare .. or possibly reactivating
2366 * if we ever get bitmaps working here.
2367 */
2368
2369 if (rdev->raid_disk != -1)
2370 return -EBUSY;
2371
2372 if (rdev->mddev->pers->hot_add_disk == NULL)
2373 return -EINVAL;
2374
2375 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2376 if (rdev2->raid_disk == slot)
2377 return -EEXIST;
2378
2379 rdev->raid_disk = slot;
2380 if (test_bit(In_sync, &rdev->flags))
2381 rdev->saved_raid_disk = slot;
2382 else
2383 rdev->saved_raid_disk = -1;
2384 err = rdev->mddev->pers->
2385 hot_add_disk(rdev->mddev, rdev);
2386 if (err) {
2387 rdev->raid_disk = -1;
2388 return err;
2389 } else
2390 sysfs_notify_dirent(rdev->sysfs_state);
2391 sprintf(nm, "rd%d", rdev->raid_disk);
2392 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2393 printk(KERN_WARNING
2394 "md: cannot register "
2395 "%s for %s\n",
2396 nm, mdname(rdev->mddev));
2397
2398 /* don't wakeup anyone, leave that to userspace. */
2399 } else {
2400 if (slot >= rdev->mddev->raid_disks)
2401 return -ENOSPC;
2402 rdev->raid_disk = slot;
2403 /* assume it is working */
2404 clear_bit(Faulty, &rdev->flags);
2405 clear_bit(WriteMostly, &rdev->flags);
2406 set_bit(In_sync, &rdev->flags);
2407 sysfs_notify_dirent(rdev->sysfs_state);
2408 }
2409 return len;
2410 }
2411
2412
2413 static struct rdev_sysfs_entry rdev_slot =
2414 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2415
2416 static ssize_t
2417 offset_show(mdk_rdev_t *rdev, char *page)
2418 {
2419 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2420 }
2421
2422 static ssize_t
2423 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2424 {
2425 char *e;
2426 unsigned long long offset = simple_strtoull(buf, &e, 10);
2427 if (e==buf || (*e && *e != '\n'))
2428 return -EINVAL;
2429 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2430 return -EBUSY;
2431 if (rdev->sectors && rdev->mddev->external)
2432 /* Must set offset before size, so overlap checks
2433 * can be sane */
2434 return -EBUSY;
2435 rdev->data_offset = offset;
2436 return len;
2437 }
2438
2439 static struct rdev_sysfs_entry rdev_offset =
2440 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2441
2442 static ssize_t
2443 rdev_size_show(mdk_rdev_t *rdev, char *page)
2444 {
2445 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2446 }
2447
2448 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2449 {
2450 /* check if two start/length pairs overlap */
2451 if (s1+l1 <= s2)
2452 return 0;
2453 if (s2+l2 <= s1)
2454 return 0;
2455 return 1;
2456 }
2457
2458 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2459 {
2460 unsigned long long blocks;
2461 sector_t new;
2462
2463 if (strict_strtoull(buf, 10, &blocks) < 0)
2464 return -EINVAL;
2465
2466 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2467 return -EINVAL; /* sector conversion overflow */
2468
2469 new = blocks * 2;
2470 if (new != blocks * 2)
2471 return -EINVAL; /* unsigned long long to sector_t overflow */
2472
2473 *sectors = new;
2474 return 0;
2475 }
2476
2477 static ssize_t
2478 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2479 {
2480 mddev_t *my_mddev = rdev->mddev;
2481 sector_t oldsectors = rdev->sectors;
2482 sector_t sectors;
2483
2484 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2485 return -EINVAL;
2486 if (my_mddev->pers && rdev->raid_disk >= 0) {
2487 if (my_mddev->persistent) {
2488 sectors = super_types[my_mddev->major_version].
2489 rdev_size_change(rdev, sectors);
2490 if (!sectors)
2491 return -EBUSY;
2492 } else if (!sectors)
2493 sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2494 rdev->data_offset;
2495 }
2496 if (sectors < my_mddev->dev_sectors)
2497 return -EINVAL; /* component must fit device */
2498
2499 rdev->sectors = sectors;
2500 if (sectors > oldsectors && my_mddev->external) {
2501 /* need to check that all other rdevs with the same ->bdev
2502 * do not overlap. We need to unlock the mddev to avoid
2503 * a deadlock. We have already changed rdev->sectors, and if
2504 * we have to change it back, we will have the lock again.
2505 */
2506 mddev_t *mddev;
2507 int overlap = 0;
2508 struct list_head *tmp;
2509
2510 mddev_unlock(my_mddev);
2511 for_each_mddev(mddev, tmp) {
2512 mdk_rdev_t *rdev2;
2513
2514 mddev_lock(mddev);
2515 list_for_each_entry(rdev2, &mddev->disks, same_set)
2516 if (test_bit(AllReserved, &rdev2->flags) ||
2517 (rdev->bdev == rdev2->bdev &&
2518 rdev != rdev2 &&
2519 overlaps(rdev->data_offset, rdev->sectors,
2520 rdev2->data_offset,
2521 rdev2->sectors))) {
2522 overlap = 1;
2523 break;
2524 }
2525 mddev_unlock(mddev);
2526 if (overlap) {
2527 mddev_put(mddev);
2528 break;
2529 }
2530 }
2531 mddev_lock(my_mddev);
2532 if (overlap) {
2533 /* Someone else could have slipped in a size
2534 * change here, but doing so is just silly.
2535 * We put oldsectors back because we *know* it is
2536 * safe, and trust userspace not to race with
2537 * itself
2538 */
2539 rdev->sectors = oldsectors;
2540 return -EBUSY;
2541 }
2542 }
2543 return len;
2544 }
2545
2546 static struct rdev_sysfs_entry rdev_size =
2547 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2548
2549 static struct attribute *rdev_default_attrs[] = {
2550 &rdev_state.attr,
2551 &rdev_errors.attr,
2552 &rdev_slot.attr,
2553 &rdev_offset.attr,
2554 &rdev_size.attr,
2555 NULL,
2556 };
2557 static ssize_t
2558 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2559 {
2560 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2561 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2562 mddev_t *mddev = rdev->mddev;
2563 ssize_t rv;
2564
2565 if (!entry->show)
2566 return -EIO;
2567
2568 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2569 if (!rv) {
2570 if (rdev->mddev == NULL)
2571 rv = -EBUSY;
2572 else
2573 rv = entry->show(rdev, page);
2574 mddev_unlock(mddev);
2575 }
2576 return rv;
2577 }
2578
2579 static ssize_t
2580 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2581 const char *page, size_t length)
2582 {
2583 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2584 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2585 ssize_t rv;
2586 mddev_t *mddev = rdev->mddev;
2587
2588 if (!entry->store)
2589 return -EIO;
2590 if (!capable(CAP_SYS_ADMIN))
2591 return -EACCES;
2592 rv = mddev ? mddev_lock(mddev): -EBUSY;
2593 if (!rv) {
2594 if (rdev->mddev == NULL)
2595 rv = -EBUSY;
2596 else
2597 rv = entry->store(rdev, page, length);
2598 mddev_unlock(mddev);
2599 }
2600 return rv;
2601 }
2602
2603 static void rdev_free(struct kobject *ko)
2604 {
2605 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2606 kfree(rdev);
2607 }
2608 static struct sysfs_ops rdev_sysfs_ops = {
2609 .show = rdev_attr_show,
2610 .store = rdev_attr_store,
2611 };
2612 static struct kobj_type rdev_ktype = {
2613 .release = rdev_free,
2614 .sysfs_ops = &rdev_sysfs_ops,
2615 .default_attrs = rdev_default_attrs,
2616 };
2617
2618 /*
2619 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2620 *
2621 * mark the device faulty if:
2622 *
2623 * - the device is nonexistent (zero size)
2624 * - the device has no valid superblock
2625 *
2626 * a faulty rdev _never_ has rdev->sb set.
2627 */
2628 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2629 {
2630 char b[BDEVNAME_SIZE];
2631 int err;
2632 mdk_rdev_t *rdev;
2633 sector_t size;
2634
2635 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2636 if (!rdev) {
2637 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2638 return ERR_PTR(-ENOMEM);
2639 }
2640
2641 if ((err = alloc_disk_sb(rdev)))
2642 goto abort_free;
2643
2644 err = lock_rdev(rdev, newdev, super_format == -2);
2645 if (err)
2646 goto abort_free;
2647
2648 kobject_init(&rdev->kobj, &rdev_ktype);
2649
2650 rdev->desc_nr = -1;
2651 rdev->saved_raid_disk = -1;
2652 rdev->raid_disk = -1;
2653 rdev->flags = 0;
2654 rdev->data_offset = 0;
2655 rdev->sb_events = 0;
2656 atomic_set(&rdev->nr_pending, 0);
2657 atomic_set(&rdev->read_errors, 0);
2658 atomic_set(&rdev->corrected_errors, 0);
2659
2660 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2661 if (!size) {
2662 printk(KERN_WARNING
2663 "md: %s has zero or unknown size, marking faulty!\n",
2664 bdevname(rdev->bdev,b));
2665 err = -EINVAL;
2666 goto abort_free;
2667 }
2668
2669 if (super_format >= 0) {
2670 err = super_types[super_format].
2671 load_super(rdev, NULL, super_minor);
2672 if (err == -EINVAL) {
2673 printk(KERN_WARNING
2674 "md: %s does not have a valid v%d.%d "
2675 "superblock, not importing!\n",
2676 bdevname(rdev->bdev,b),
2677 super_format, super_minor);
2678 goto abort_free;
2679 }
2680 if (err < 0) {
2681 printk(KERN_WARNING
2682 "md: could not read %s's sb, not importing!\n",
2683 bdevname(rdev->bdev,b));
2684 goto abort_free;
2685 }
2686 }
2687
2688 INIT_LIST_HEAD(&rdev->same_set);
2689 init_waitqueue_head(&rdev->blocked_wait);
2690
2691 return rdev;
2692
2693 abort_free:
2694 if (rdev->sb_page) {
2695 if (rdev->bdev)
2696 unlock_rdev(rdev);
2697 free_disk_sb(rdev);
2698 }
2699 kfree(rdev);
2700 return ERR_PTR(err);
2701 }
2702
2703 /*
2704 * Check a full RAID array for plausibility
2705 */
2706
2707
2708 static void analyze_sbs(mddev_t * mddev)
2709 {
2710 int i;
2711 mdk_rdev_t *rdev, *freshest, *tmp;
2712 char b[BDEVNAME_SIZE];
2713
2714 freshest = NULL;
2715 rdev_for_each(rdev, tmp, mddev)
2716 switch (super_types[mddev->major_version].
2717 load_super(rdev, freshest, mddev->minor_version)) {
2718 case 1:
2719 freshest = rdev;
2720 break;
2721 case 0:
2722 break;
2723 default:
2724 printk( KERN_ERR \
2725 "md: fatal superblock inconsistency in %s"
2726 " -- removing from array\n",
2727 bdevname(rdev->bdev,b));
2728 kick_rdev_from_array(rdev);
2729 }
2730
2731
2732 super_types[mddev->major_version].
2733 validate_super(mddev, freshest);
2734
2735 i = 0;
2736 rdev_for_each(rdev, tmp, mddev) {
2737 if (rdev->desc_nr >= mddev->max_disks ||
2738 i > mddev->max_disks) {
2739 printk(KERN_WARNING
2740 "md: %s: %s: only %d devices permitted\n",
2741 mdname(mddev), bdevname(rdev->bdev, b),
2742 mddev->max_disks);
2743 kick_rdev_from_array(rdev);
2744 continue;
2745 }
2746 if (rdev != freshest)
2747 if (super_types[mddev->major_version].
2748 validate_super(mddev, rdev)) {
2749 printk(KERN_WARNING "md: kicking non-fresh %s"
2750 " from array!\n",
2751 bdevname(rdev->bdev,b));
2752 kick_rdev_from_array(rdev);
2753 continue;
2754 }
2755 if (mddev->level == LEVEL_MULTIPATH) {
2756 rdev->desc_nr = i++;
2757 rdev->raid_disk = rdev->desc_nr;
2758 set_bit(In_sync, &rdev->flags);
2759 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2760 rdev->raid_disk = -1;
2761 clear_bit(In_sync, &rdev->flags);
2762 }
2763 }
2764 }
2765
2766 static void md_safemode_timeout(unsigned long data);
2767
2768 static ssize_t
2769 safe_delay_show(mddev_t *mddev, char *page)
2770 {
2771 int msec = (mddev->safemode_delay*1000)/HZ;
2772 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2773 }
2774 static ssize_t
2775 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2776 {
2777 int scale=1;
2778 int dot=0;
2779 int i;
2780 unsigned long msec;
2781 char buf[30];
2782
2783 /* remove a period, and count digits after it */
2784 if (len >= sizeof(buf))
2785 return -EINVAL;
2786 strlcpy(buf, cbuf, sizeof(buf));
2787 for (i=0; i<len; i++) {
2788 if (dot) {
2789 if (isdigit(buf[i])) {
2790 buf[i-1] = buf[i];
2791 scale *= 10;
2792 }
2793 buf[i] = 0;
2794 } else if (buf[i] == '.') {
2795 dot=1;
2796 buf[i] = 0;
2797 }
2798 }
2799 if (strict_strtoul(buf, 10, &msec) < 0)
2800 return -EINVAL;
2801 msec = (msec * 1000) / scale;
2802 if (msec == 0)
2803 mddev->safemode_delay = 0;
2804 else {
2805 unsigned long old_delay = mddev->safemode_delay;
2806 mddev->safemode_delay = (msec*HZ)/1000;
2807 if (mddev->safemode_delay == 0)
2808 mddev->safemode_delay = 1;
2809 if (mddev->safemode_delay < old_delay)
2810 md_safemode_timeout((unsigned long)mddev);
2811 }
2812 return len;
2813 }
2814 static struct md_sysfs_entry md_safe_delay =
2815 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2816
2817 static ssize_t
2818 level_show(mddev_t *mddev, char *page)
2819 {
2820 struct mdk_personality *p = mddev->pers;
2821 if (p)
2822 return sprintf(page, "%s\n", p->name);
2823 else if (mddev->clevel[0])
2824 return sprintf(page, "%s\n", mddev->clevel);
2825 else if (mddev->level != LEVEL_NONE)
2826 return sprintf(page, "%d\n", mddev->level);
2827 else
2828 return 0;
2829 }
2830
2831 static ssize_t
2832 level_store(mddev_t *mddev, const char *buf, size_t len)
2833 {
2834 char level[16];
2835 ssize_t rv = len;
2836 struct mdk_personality *pers;
2837 void *priv;
2838 mdk_rdev_t *rdev;
2839
2840 if (mddev->pers == NULL) {
2841 if (len == 0)
2842 return 0;
2843 if (len >= sizeof(mddev->clevel))
2844 return -ENOSPC;
2845 strncpy(mddev->clevel, buf, len);
2846 if (mddev->clevel[len-1] == '\n')
2847 len--;
2848 mddev->clevel[len] = 0;
2849 mddev->level = LEVEL_NONE;
2850 return rv;
2851 }
2852
2853 /* request to change the personality. Need to ensure:
2854 * - array is not engaged in resync/recovery/reshape
2855 * - old personality can be suspended
2856 * - new personality will access other array.
2857 */
2858
2859 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
2860 return -EBUSY;
2861
2862 if (!mddev->pers->quiesce) {
2863 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
2864 mdname(mddev), mddev->pers->name);
2865 return -EINVAL;
2866 }
2867
2868 /* Now find the new personality */
2869 if (len == 0 || len >= sizeof(level))
2870 return -EINVAL;
2871 strncpy(level, buf, len);
2872 if (level[len-1] == '\n')
2873 len--;
2874 level[len] = 0;
2875
2876 request_module("md-%s", level);
2877 spin_lock(&pers_lock);
2878 pers = find_pers(LEVEL_NONE, level);
2879 if (!pers || !try_module_get(pers->owner)) {
2880 spin_unlock(&pers_lock);
2881 printk(KERN_WARNING "md: personality %s not loaded\n", level);
2882 return -EINVAL;
2883 }
2884 spin_unlock(&pers_lock);
2885
2886 if (pers == mddev->pers) {
2887 /* Nothing to do! */
2888 module_put(pers->owner);
2889 return rv;
2890 }
2891 if (!pers->takeover) {
2892 module_put(pers->owner);
2893 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
2894 mdname(mddev), level);
2895 return -EINVAL;
2896 }
2897
2898 /* ->takeover must set new_* and/or delta_disks
2899 * if it succeeds, and may set them when it fails.
2900 */
2901 priv = pers->takeover(mddev);
2902 if (IS_ERR(priv)) {
2903 mddev->new_level = mddev->level;
2904 mddev->new_layout = mddev->layout;
2905 mddev->new_chunk_sectors = mddev->chunk_sectors;
2906 mddev->raid_disks -= mddev->delta_disks;
2907 mddev->delta_disks = 0;
2908 module_put(pers->owner);
2909 printk(KERN_WARNING "md: %s: %s would not accept array\n",
2910 mdname(mddev), level);
2911 return PTR_ERR(priv);
2912 }
2913
2914 /* Looks like we have a winner */
2915 mddev_suspend(mddev);
2916 mddev->pers->stop(mddev);
2917 module_put(mddev->pers->owner);
2918 /* Invalidate devices that are now superfluous */
2919 list_for_each_entry(rdev, &mddev->disks, same_set)
2920 if (rdev->raid_disk >= mddev->raid_disks) {
2921 rdev->raid_disk = -1;
2922 clear_bit(In_sync, &rdev->flags);
2923 }
2924 mddev->pers = pers;
2925 mddev->private = priv;
2926 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2927 mddev->level = mddev->new_level;
2928 mddev->layout = mddev->new_layout;
2929 mddev->chunk_sectors = mddev->new_chunk_sectors;
2930 mddev->delta_disks = 0;
2931 pers->run(mddev);
2932 mddev_resume(mddev);
2933 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2934 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2935 md_wakeup_thread(mddev->thread);
2936 return rv;
2937 }
2938
2939 static struct md_sysfs_entry md_level =
2940 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2941
2942
2943 static ssize_t
2944 layout_show(mddev_t *mddev, char *page)
2945 {
2946 /* just a number, not meaningful for all levels */
2947 if (mddev->reshape_position != MaxSector &&
2948 mddev->layout != mddev->new_layout)
2949 return sprintf(page, "%d (%d)\n",
2950 mddev->new_layout, mddev->layout);
2951 return sprintf(page, "%d\n", mddev->layout);
2952 }
2953
2954 static ssize_t
2955 layout_store(mddev_t *mddev, const char *buf, size_t len)
2956 {
2957 char *e;
2958 unsigned long n = simple_strtoul(buf, &e, 10);
2959
2960 if (!*buf || (*e && *e != '\n'))
2961 return -EINVAL;
2962
2963 if (mddev->pers) {
2964 int err;
2965 if (mddev->pers->check_reshape == NULL)
2966 return -EBUSY;
2967 mddev->new_layout = n;
2968 err = mddev->pers->check_reshape(mddev);
2969 if (err) {
2970 mddev->new_layout = mddev->layout;
2971 return err;
2972 }
2973 } else {
2974 mddev->new_layout = n;
2975 if (mddev->reshape_position == MaxSector)
2976 mddev->layout = n;
2977 }
2978 return len;
2979 }
2980 static struct md_sysfs_entry md_layout =
2981 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2982
2983
2984 static ssize_t
2985 raid_disks_show(mddev_t *mddev, char *page)
2986 {
2987 if (mddev->raid_disks == 0)
2988 return 0;
2989 if (mddev->reshape_position != MaxSector &&
2990 mddev->delta_disks != 0)
2991 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2992 mddev->raid_disks - mddev->delta_disks);
2993 return sprintf(page, "%d\n", mddev->raid_disks);
2994 }
2995
2996 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2997
2998 static ssize_t
2999 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3000 {
3001 char *e;
3002 int rv = 0;
3003 unsigned long n = simple_strtoul(buf, &e, 10);
3004
3005 if (!*buf || (*e && *e != '\n'))
3006 return -EINVAL;
3007
3008 if (mddev->pers)
3009 rv = update_raid_disks(mddev, n);
3010 else if (mddev->reshape_position != MaxSector) {
3011 int olddisks = mddev->raid_disks - mddev->delta_disks;
3012 mddev->delta_disks = n - olddisks;
3013 mddev->raid_disks = n;
3014 } else
3015 mddev->raid_disks = n;
3016 return rv ? rv : len;
3017 }
3018 static struct md_sysfs_entry md_raid_disks =
3019 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3020
3021 static ssize_t
3022 chunk_size_show(mddev_t *mddev, char *page)
3023 {
3024 if (mddev->reshape_position != MaxSector &&
3025 mddev->chunk_sectors != mddev->new_chunk_sectors)
3026 return sprintf(page, "%d (%d)\n",
3027 mddev->new_chunk_sectors << 9,
3028 mddev->chunk_sectors << 9);
3029 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3030 }
3031
3032 static ssize_t
3033 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3034 {
3035 char *e;
3036 unsigned long n = simple_strtoul(buf, &e, 10);
3037
3038 if (!*buf || (*e && *e != '\n'))
3039 return -EINVAL;
3040
3041 if (mddev->pers) {
3042 int err;
3043 if (mddev->pers->check_reshape == NULL)
3044 return -EBUSY;
3045 mddev->new_chunk_sectors = n >> 9;
3046 err = mddev->pers->check_reshape(mddev);
3047 if (err) {
3048 mddev->new_chunk_sectors = mddev->chunk_sectors;
3049 return err;
3050 }
3051 } else {
3052 mddev->new_chunk_sectors = n >> 9;
3053 if (mddev->reshape_position == MaxSector)
3054 mddev->chunk_sectors = n >> 9;
3055 }
3056 return len;
3057 }
3058 static struct md_sysfs_entry md_chunk_size =
3059 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3060
3061 static ssize_t
3062 resync_start_show(mddev_t *mddev, char *page)
3063 {
3064 if (mddev->recovery_cp == MaxSector)
3065 return sprintf(page, "none\n");
3066 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3067 }
3068
3069 static ssize_t
3070 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3071 {
3072 char *e;
3073 unsigned long long n = simple_strtoull(buf, &e, 10);
3074
3075 if (mddev->pers)
3076 return -EBUSY;
3077 if (!*buf || (*e && *e != '\n'))
3078 return -EINVAL;
3079
3080 mddev->recovery_cp = n;
3081 return len;
3082 }
3083 static struct md_sysfs_entry md_resync_start =
3084 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3085
3086 /*
3087 * The array state can be:
3088 *
3089 * clear
3090 * No devices, no size, no level
3091 * Equivalent to STOP_ARRAY ioctl
3092 * inactive
3093 * May have some settings, but array is not active
3094 * all IO results in error
3095 * When written, doesn't tear down array, but just stops it
3096 * suspended (not supported yet)
3097 * All IO requests will block. The array can be reconfigured.
3098 * Writing this, if accepted, will block until array is quiescent
3099 * readonly
3100 * no resync can happen. no superblocks get written.
3101 * write requests fail
3102 * read-auto
3103 * like readonly, but behaves like 'clean' on a write request.
3104 *
3105 * clean - no pending writes, but otherwise active.
3106 * When written to inactive array, starts without resync
3107 * If a write request arrives then
3108 * if metadata is known, mark 'dirty' and switch to 'active'.
3109 * if not known, block and switch to write-pending
3110 * If written to an active array that has pending writes, then fails.
3111 * active
3112 * fully active: IO and resync can be happening.
3113 * When written to inactive array, starts with resync
3114 *
3115 * write-pending
3116 * clean, but writes are blocked waiting for 'active' to be written.
3117 *
3118 * active-idle
3119 * like active, but no writes have been seen for a while (100msec).
3120 *
3121 */
3122 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3123 write_pending, active_idle, bad_word};
3124 static char *array_states[] = {
3125 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3126 "write-pending", "active-idle", NULL };
3127
3128 static int match_word(const char *word, char **list)
3129 {
3130 int n;
3131 for (n=0; list[n]; n++)
3132 if (cmd_match(word, list[n]))
3133 break;
3134 return n;
3135 }
3136
3137 static ssize_t
3138 array_state_show(mddev_t *mddev, char *page)
3139 {
3140 enum array_state st = inactive;
3141
3142 if (mddev->pers)
3143 switch(mddev->ro) {
3144 case 1:
3145 st = readonly;
3146 break;
3147 case 2:
3148 st = read_auto;
3149 break;
3150 case 0:
3151 if (mddev->in_sync)
3152 st = clean;
3153 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
3154 st = write_pending;
3155 else if (mddev->safemode)
3156 st = active_idle;
3157 else
3158 st = active;
3159 }
3160 else {
3161 if (list_empty(&mddev->disks) &&
3162 mddev->raid_disks == 0 &&
3163 mddev->dev_sectors == 0)
3164 st = clear;
3165 else
3166 st = inactive;
3167 }
3168 return sprintf(page, "%s\n", array_states[st]);
3169 }
3170
3171 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3172 static int do_md_run(mddev_t * mddev);
3173 static int restart_array(mddev_t *mddev);
3174
3175 static ssize_t
3176 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3177 {
3178 int err = -EINVAL;
3179 enum array_state st = match_word(buf, array_states);
3180 switch(st) {
3181 case bad_word:
3182 break;
3183 case clear:
3184 /* stopping an active array */
3185 if (atomic_read(&mddev->openers) > 0)
3186 return -EBUSY;
3187 err = do_md_stop(mddev, 0, 0);
3188 break;
3189 case inactive:
3190 /* stopping an active array */
3191 if (mddev->pers) {
3192 if (atomic_read(&mddev->openers) > 0)
3193 return -EBUSY;
3194 err = do_md_stop(mddev, 2, 0);
3195 } else
3196 err = 0; /* already inactive */
3197 break;
3198 case suspended:
3199 break; /* not supported yet */
3200 case readonly:
3201 if (mddev->pers)
3202 err = do_md_stop(mddev, 1, 0);
3203 else {
3204 mddev->ro = 1;
3205 set_disk_ro(mddev->gendisk, 1);
3206 err = do_md_run(mddev);
3207 }
3208 break;
3209 case read_auto:
3210 if (mddev->pers) {
3211 if (mddev->ro == 0)
3212 err = do_md_stop(mddev, 1, 0);
3213 else if (mddev->ro == 1)
3214 err = restart_array(mddev);
3215 if (err == 0) {
3216 mddev->ro = 2;
3217 set_disk_ro(mddev->gendisk, 0);
3218 }
3219 } else {
3220 mddev->ro = 2;
3221 err = do_md_run(mddev);
3222 }
3223 break;
3224 case clean:
3225 if (mddev->pers) {
3226 restart_array(mddev);
3227 spin_lock_irq(&mddev->write_lock);
3228 if (atomic_read(&mddev->writes_pending) == 0) {
3229 if (mddev->in_sync == 0) {
3230 mddev->in_sync = 1;
3231 if (mddev->safemode == 1)
3232 mddev->safemode = 0;
3233 if (mddev->persistent)
3234 set_bit(MD_CHANGE_CLEAN,
3235 &mddev->flags);
3236 }
3237 err = 0;
3238 } else
3239 err = -EBUSY;
3240 spin_unlock_irq(&mddev->write_lock);
3241 } else
3242 err = -EINVAL;
3243 break;
3244 case active:
3245 if (mddev->pers) {
3246 restart_array(mddev);
3247 if (mddev->external)
3248 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3249 wake_up(&mddev->sb_wait);
3250 err = 0;
3251 } else {
3252 mddev->ro = 0;
3253 set_disk_ro(mddev->gendisk, 0);
3254 err = do_md_run(mddev);
3255 }
3256 break;
3257 case write_pending:
3258 case active_idle:
3259 /* these cannot be set */
3260 break;
3261 }
3262 if (err)
3263 return err;
3264 else {
3265 sysfs_notify_dirent(mddev->sysfs_state);
3266 return len;
3267 }
3268 }
3269 static struct md_sysfs_entry md_array_state =
3270 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3271
3272 static ssize_t
3273 null_show(mddev_t *mddev, char *page)
3274 {
3275 return -EINVAL;
3276 }
3277
3278 static ssize_t
3279 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3280 {
3281 /* buf must be %d:%d\n? giving major and minor numbers */
3282 /* The new device is added to the array.
3283 * If the array has a persistent superblock, we read the
3284 * superblock to initialise info and check validity.
3285 * Otherwise, only checking done is that in bind_rdev_to_array,
3286 * which mainly checks size.
3287 */
3288 char *e;
3289 int major = simple_strtoul(buf, &e, 10);
3290 int minor;
3291 dev_t dev;
3292 mdk_rdev_t *rdev;
3293 int err;
3294
3295 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3296 return -EINVAL;
3297 minor = simple_strtoul(e+1, &e, 10);
3298 if (*e && *e != '\n')
3299 return -EINVAL;
3300 dev = MKDEV(major, minor);
3301 if (major != MAJOR(dev) ||
3302 minor != MINOR(dev))
3303 return -EOVERFLOW;
3304
3305
3306 if (mddev->persistent) {
3307 rdev = md_import_device(dev, mddev->major_version,
3308 mddev->minor_version);
3309 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3310 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3311 mdk_rdev_t, same_set);
3312 err = super_types[mddev->major_version]
3313 .load_super(rdev, rdev0, mddev->minor_version);
3314 if (err < 0)
3315 goto out;
3316 }
3317 } else if (mddev->external)
3318 rdev = md_import_device(dev, -2, -1);
3319 else
3320 rdev = md_import_device(dev, -1, -1);
3321
3322 if (IS_ERR(rdev))
3323 return PTR_ERR(rdev);
3324 err = bind_rdev_to_array(rdev, mddev);
3325 out:
3326 if (err)
3327 export_rdev(rdev);
3328 return err ? err : len;
3329 }
3330
3331 static struct md_sysfs_entry md_new_device =
3332 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3333
3334 static ssize_t
3335 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3336 {
3337 char *end;
3338 unsigned long chunk, end_chunk;
3339
3340 if (!mddev->bitmap)
3341 goto out;
3342 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3343 while (*buf) {
3344 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3345 if (buf == end) break;
3346 if (*end == '-') { /* range */
3347 buf = end + 1;
3348 end_chunk = simple_strtoul(buf, &end, 0);
3349 if (buf == end) break;
3350 }
3351 if (*end && !isspace(*end)) break;
3352 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3353 buf = end;
3354 while (isspace(*buf)) buf++;
3355 }
3356 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3357 out:
3358 return len;
3359 }
3360
3361 static struct md_sysfs_entry md_bitmap =
3362 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3363
3364 static ssize_t
3365 size_show(mddev_t *mddev, char *page)
3366 {
3367 return sprintf(page, "%llu\n",
3368 (unsigned long long)mddev->dev_sectors / 2);
3369 }
3370
3371 static int update_size(mddev_t *mddev, sector_t num_sectors);
3372
3373 static ssize_t
3374 size_store(mddev_t *mddev, const char *buf, size_t len)
3375 {
3376 /* If array is inactive, we can reduce the component size, but
3377 * not increase it (except from 0).
3378 * If array is active, we can try an on-line resize
3379 */
3380 sector_t sectors;
3381 int err = strict_blocks_to_sectors(buf, &sectors);
3382
3383 if (err < 0)
3384 return err;
3385 if (mddev->pers) {
3386 err = update_size(mddev, sectors);
3387 md_update_sb(mddev, 1);
3388 } else {
3389 if (mddev->dev_sectors == 0 ||
3390 mddev->dev_sectors > sectors)
3391 mddev->dev_sectors = sectors;
3392 else
3393 err = -ENOSPC;
3394 }
3395 return err ? err : len;
3396 }
3397
3398 static struct md_sysfs_entry md_size =
3399 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3400
3401
3402 /* Metdata version.
3403 * This is one of
3404 * 'none' for arrays with no metadata (good luck...)
3405 * 'external' for arrays with externally managed metadata,
3406 * or N.M for internally known formats
3407 */
3408 static ssize_t
3409 metadata_show(mddev_t *mddev, char *page)
3410 {
3411 if (mddev->persistent)
3412 return sprintf(page, "%d.%d\n",
3413 mddev->major_version, mddev->minor_version);
3414 else if (mddev->external)
3415 return sprintf(page, "external:%s\n", mddev->metadata_type);
3416 else
3417 return sprintf(page, "none\n");
3418 }
3419
3420 static ssize_t
3421 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3422 {
3423 int major, minor;
3424 char *e;
3425 /* Changing the details of 'external' metadata is
3426 * always permitted. Otherwise there must be
3427 * no devices attached to the array.
3428 */
3429 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3430 ;
3431 else if (!list_empty(&mddev->disks))
3432 return -EBUSY;
3433
3434 if (cmd_match(buf, "none")) {
3435 mddev->persistent = 0;
3436 mddev->external = 0;
3437 mddev->major_version = 0;
3438 mddev->minor_version = 90;
3439 return len;
3440 }
3441 if (strncmp(buf, "external:", 9) == 0) {
3442 size_t namelen = len-9;
3443 if (namelen >= sizeof(mddev->metadata_type))
3444 namelen = sizeof(mddev->metadata_type)-1;
3445 strncpy(mddev->metadata_type, buf+9, namelen);
3446 mddev->metadata_type[namelen] = 0;
3447 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3448 mddev->metadata_type[--namelen] = 0;
3449 mddev->persistent = 0;
3450 mddev->external = 1;
3451 mddev->major_version = 0;
3452 mddev->minor_version = 90;
3453 return len;
3454 }
3455 major = simple_strtoul(buf, &e, 10);
3456 if (e==buf || *e != '.')
3457 return -EINVAL;
3458 buf = e+1;
3459 minor = simple_strtoul(buf, &e, 10);
3460 if (e==buf || (*e && *e != '\n') )
3461 return -EINVAL;
3462 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3463 return -ENOENT;
3464 mddev->major_version = major;
3465 mddev->minor_version = minor;
3466 mddev->persistent = 1;
3467 mddev->external = 0;
3468 return len;
3469 }
3470
3471 static struct md_sysfs_entry md_metadata =
3472 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3473
3474 static ssize_t
3475 action_show(mddev_t *mddev, char *page)
3476 {
3477 char *type = "idle";
3478 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3479 type = "frozen";
3480 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3481 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3482 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3483 type = "reshape";
3484 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3485 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3486 type = "resync";
3487 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3488 type = "check";
3489 else
3490 type = "repair";
3491 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3492 type = "recover";
3493 }
3494 return sprintf(page, "%s\n", type);
3495 }
3496
3497 static ssize_t
3498 action_store(mddev_t *mddev, const char *page, size_t len)
3499 {
3500 if (!mddev->pers || !mddev->pers->sync_request)
3501 return -EINVAL;
3502
3503 if (cmd_match(page, "frozen"))
3504 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3505 else
3506 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3507
3508 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3509 if (mddev->sync_thread) {
3510 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3511 md_unregister_thread(mddev->sync_thread);
3512 mddev->sync_thread = NULL;
3513 mddev->recovery = 0;
3514 }
3515 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3516 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3517 return -EBUSY;
3518 else if (cmd_match(page, "resync"))
3519 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3520 else if (cmd_match(page, "recover")) {
3521 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3522 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3523 } else if (cmd_match(page, "reshape")) {
3524 int err;
3525 if (mddev->pers->start_reshape == NULL)
3526 return -EINVAL;
3527 err = mddev->pers->start_reshape(mddev);
3528 if (err)
3529 return err;
3530 sysfs_notify(&mddev->kobj, NULL, "degraded");
3531 } else {
3532 if (cmd_match(page, "check"))
3533 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3534 else if (!cmd_match(page, "repair"))
3535 return -EINVAL;
3536 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3537 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3538 }
3539 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3540 md_wakeup_thread(mddev->thread);
3541 sysfs_notify_dirent(mddev->sysfs_action);
3542 return len;
3543 }
3544
3545 static ssize_t
3546 mismatch_cnt_show(mddev_t *mddev, char *page)
3547 {
3548 return sprintf(page, "%llu\n",
3549 (unsigned long long) mddev->resync_mismatches);
3550 }
3551
3552 static struct md_sysfs_entry md_scan_mode =
3553 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3554
3555
3556 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3557
3558 static ssize_t
3559 sync_min_show(mddev_t *mddev, char *page)
3560 {
3561 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3562 mddev->sync_speed_min ? "local": "system");
3563 }
3564
3565 static ssize_t
3566 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3567 {
3568 int min;
3569 char *e;
3570 if (strncmp(buf, "system", 6)==0) {
3571 mddev->sync_speed_min = 0;
3572 return len;
3573 }
3574 min = simple_strtoul(buf, &e, 10);
3575 if (buf == e || (*e && *e != '\n') || min <= 0)
3576 return -EINVAL;
3577 mddev->sync_speed_min = min;
3578 return len;
3579 }
3580
3581 static struct md_sysfs_entry md_sync_min =
3582 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3583
3584 static ssize_t
3585 sync_max_show(mddev_t *mddev, char *page)
3586 {
3587 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3588 mddev->sync_speed_max ? "local": "system");
3589 }
3590
3591 static ssize_t
3592 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3593 {
3594 int max;
3595 char *e;
3596 if (strncmp(buf, "system", 6)==0) {
3597 mddev->sync_speed_max = 0;
3598 return len;
3599 }
3600 max = simple_strtoul(buf, &e, 10);
3601 if (buf == e || (*e && *e != '\n') || max <= 0)
3602 return -EINVAL;
3603 mddev->sync_speed_max = max;
3604 return len;
3605 }
3606
3607 static struct md_sysfs_entry md_sync_max =
3608 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3609
3610 static ssize_t
3611 degraded_show(mddev_t *mddev, char *page)
3612 {
3613 return sprintf(page, "%d\n", mddev->degraded);
3614 }
3615 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3616
3617 static ssize_t
3618 sync_force_parallel_show(mddev_t *mddev, char *page)
3619 {
3620 return sprintf(page, "%d\n", mddev->parallel_resync);
3621 }
3622
3623 static ssize_t
3624 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3625 {
3626 long n;
3627
3628 if (strict_strtol(buf, 10, &n))
3629 return -EINVAL;
3630
3631 if (n != 0 && n != 1)
3632 return -EINVAL;
3633
3634 mddev->parallel_resync = n;
3635
3636 if (mddev->sync_thread)
3637 wake_up(&resync_wait);
3638
3639 return len;
3640 }
3641
3642 /* force parallel resync, even with shared block devices */
3643 static struct md_sysfs_entry md_sync_force_parallel =
3644 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3645 sync_force_parallel_show, sync_force_parallel_store);
3646
3647 static ssize_t
3648 sync_speed_show(mddev_t *mddev, char *page)
3649 {
3650 unsigned long resync, dt, db;
3651 if (mddev->curr_resync == 0)
3652 return sprintf(page, "none\n");
3653 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3654 dt = (jiffies - mddev->resync_mark) / HZ;
3655 if (!dt) dt++;
3656 db = resync - mddev->resync_mark_cnt;
3657 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3658 }
3659
3660 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3661
3662 static ssize_t
3663 sync_completed_show(mddev_t *mddev, char *page)
3664 {
3665 unsigned long max_sectors, resync;
3666
3667 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3668 return sprintf(page, "none\n");
3669
3670 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3671 max_sectors = mddev->resync_max_sectors;
3672 else
3673 max_sectors = mddev->dev_sectors;
3674
3675 resync = mddev->curr_resync_completed;
3676 return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3677 }
3678
3679 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3680
3681 static ssize_t
3682 min_sync_show(mddev_t *mddev, char *page)
3683 {
3684 return sprintf(page, "%llu\n",
3685 (unsigned long long)mddev->resync_min);
3686 }
3687 static ssize_t
3688 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3689 {
3690 unsigned long long min;
3691 if (strict_strtoull(buf, 10, &min))
3692 return -EINVAL;
3693 if (min > mddev->resync_max)
3694 return -EINVAL;
3695 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3696 return -EBUSY;
3697
3698 /* Must be a multiple of chunk_size */
3699 if (mddev->chunk_sectors) {
3700 sector_t temp = min;
3701 if (sector_div(temp, mddev->chunk_sectors))
3702 return -EINVAL;
3703 }
3704 mddev->resync_min = min;
3705
3706 return len;
3707 }
3708
3709 static struct md_sysfs_entry md_min_sync =
3710 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3711
3712 static ssize_t
3713 max_sync_show(mddev_t *mddev, char *page)
3714 {
3715 if (mddev->resync_max == MaxSector)
3716 return sprintf(page, "max\n");
3717 else
3718 return sprintf(page, "%llu\n",
3719 (unsigned long long)mddev->resync_max);
3720 }
3721 static ssize_t
3722 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3723 {
3724 if (strncmp(buf, "max", 3) == 0)
3725 mddev->resync_max = MaxSector;
3726 else {
3727 unsigned long long max;
3728 if (strict_strtoull(buf, 10, &max))
3729 return -EINVAL;
3730 if (max < mddev->resync_min)
3731 return -EINVAL;
3732 if (max < mddev->resync_max &&
3733 mddev->ro == 0 &&
3734 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3735 return -EBUSY;
3736
3737 /* Must be a multiple of chunk_size */
3738 if (mddev->chunk_sectors) {
3739 sector_t temp = max;
3740 if (sector_div(temp, mddev->chunk_sectors))
3741 return -EINVAL;
3742 }
3743 mddev->resync_max = max;
3744 }
3745 wake_up(&mddev->recovery_wait);
3746 return len;
3747 }
3748
3749 static struct md_sysfs_entry md_max_sync =
3750 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3751
3752 static ssize_t
3753 suspend_lo_show(mddev_t *mddev, char *page)
3754 {
3755 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3756 }
3757
3758 static ssize_t
3759 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3760 {
3761 char *e;
3762 unsigned long long new = simple_strtoull(buf, &e, 10);
3763
3764 if (mddev->pers == NULL ||
3765 mddev->pers->quiesce == NULL)
3766 return -EINVAL;
3767 if (buf == e || (*e && *e != '\n'))
3768 return -EINVAL;
3769 if (new >= mddev->suspend_hi ||
3770 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3771 mddev->suspend_lo = new;
3772 mddev->pers->quiesce(mddev, 2);
3773 return len;
3774 } else
3775 return -EINVAL;
3776 }
3777 static struct md_sysfs_entry md_suspend_lo =
3778 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3779
3780
3781 static ssize_t
3782 suspend_hi_show(mddev_t *mddev, char *page)
3783 {
3784 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3785 }
3786
3787 static ssize_t
3788 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3789 {
3790 char *e;
3791 unsigned long long new = simple_strtoull(buf, &e, 10);
3792
3793 if (mddev->pers == NULL ||
3794 mddev->pers->quiesce == NULL)
3795 return -EINVAL;
3796 if (buf == e || (*e && *e != '\n'))
3797 return -EINVAL;
3798 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3799 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3800 mddev->suspend_hi = new;
3801 mddev->pers->quiesce(mddev, 1);
3802 mddev->pers->quiesce(mddev, 0);
3803 return len;
3804 } else
3805 return -EINVAL;
3806 }
3807 static struct md_sysfs_entry md_suspend_hi =
3808 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3809
3810 static ssize_t
3811 reshape_position_show(mddev_t *mddev, char *page)
3812 {
3813 if (mddev->reshape_position != MaxSector)
3814 return sprintf(page, "%llu\n",
3815 (unsigned long long)mddev->reshape_position);
3816 strcpy(page, "none\n");
3817 return 5;
3818 }
3819
3820 static ssize_t
3821 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3822 {
3823 char *e;
3824 unsigned long long new = simple_strtoull(buf, &e, 10);
3825 if (mddev->pers)
3826 return -EBUSY;
3827 if (buf == e || (*e && *e != '\n'))
3828 return -EINVAL;
3829 mddev->reshape_position = new;
3830 mddev->delta_disks = 0;
3831 mddev->new_level = mddev->level;
3832 mddev->new_layout = mddev->layout;
3833 mddev->new_chunk_sectors = mddev->chunk_sectors;
3834 return len;
3835 }
3836
3837 static struct md_sysfs_entry md_reshape_position =
3838 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3839 reshape_position_store);
3840
3841 static ssize_t
3842 array_size_show(mddev_t *mddev, char *page)
3843 {
3844 if (mddev->external_size)
3845 return sprintf(page, "%llu\n",
3846 (unsigned long long)mddev->array_sectors/2);
3847 else
3848 return sprintf(page, "default\n");
3849 }
3850
3851 static ssize_t
3852 array_size_store(mddev_t *mddev, const char *buf, size_t len)
3853 {
3854 sector_t sectors;
3855
3856 if (strncmp(buf, "default", 7) == 0) {
3857 if (mddev->pers)
3858 sectors = mddev->pers->size(mddev, 0, 0);
3859 else
3860 sectors = mddev->array_sectors;
3861
3862 mddev->external_size = 0;
3863 } else {
3864 if (strict_blocks_to_sectors(buf, &sectors) < 0)
3865 return -EINVAL;
3866 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
3867 return -E2BIG;
3868
3869 mddev->external_size = 1;
3870 }
3871
3872 mddev->array_sectors = sectors;
3873 set_capacity(mddev->gendisk, mddev->array_sectors);
3874 if (mddev->pers)
3875 revalidate_disk(mddev->gendisk);
3876
3877 return len;
3878 }
3879
3880 static struct md_sysfs_entry md_array_size =
3881 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
3882 array_size_store);
3883
3884 static struct attribute *md_default_attrs[] = {
3885 &md_level.attr,
3886 &md_layout.attr,
3887 &md_raid_disks.attr,
3888 &md_chunk_size.attr,
3889 &md_size.attr,
3890 &md_resync_start.attr,
3891 &md_metadata.attr,
3892 &md_new_device.attr,
3893 &md_safe_delay.attr,
3894 &md_array_state.attr,
3895 &md_reshape_position.attr,
3896 &md_array_size.attr,
3897 NULL,
3898 };
3899
3900 static struct attribute *md_redundancy_attrs[] = {
3901 &md_scan_mode.attr,
3902 &md_mismatches.attr,
3903 &md_sync_min.attr,
3904 &md_sync_max.attr,
3905 &md_sync_speed.attr,
3906 &md_sync_force_parallel.attr,
3907 &md_sync_completed.attr,
3908 &md_min_sync.attr,
3909 &md_max_sync.attr,
3910 &md_suspend_lo.attr,
3911 &md_suspend_hi.attr,
3912 &md_bitmap.attr,
3913 &md_degraded.attr,
3914 NULL,
3915 };
3916 static struct attribute_group md_redundancy_group = {
3917 .name = NULL,
3918 .attrs = md_redundancy_attrs,
3919 };
3920
3921
3922 static ssize_t
3923 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3924 {
3925 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3926 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3927 ssize_t rv;
3928
3929 if (!entry->show)
3930 return -EIO;
3931 rv = mddev_lock(mddev);
3932 if (!rv) {
3933 rv = entry->show(mddev, page);
3934 mddev_unlock(mddev);
3935 }
3936 return rv;
3937 }
3938
3939 static ssize_t
3940 md_attr_store(struct kobject *kobj, struct attribute *attr,
3941 const char *page, size_t length)
3942 {
3943 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3944 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3945 ssize_t rv;
3946
3947 if (!entry->store)
3948 return -EIO;
3949 if (!capable(CAP_SYS_ADMIN))
3950 return -EACCES;
3951 rv = mddev_lock(mddev);
3952 if (mddev->hold_active == UNTIL_IOCTL)
3953 mddev->hold_active = 0;
3954 if (!rv) {
3955 rv = entry->store(mddev, page, length);
3956 mddev_unlock(mddev);
3957 }
3958 return rv;
3959 }
3960
3961 static void md_free(struct kobject *ko)
3962 {
3963 mddev_t *mddev = container_of(ko, mddev_t, kobj);
3964
3965 if (mddev->sysfs_state)
3966 sysfs_put(mddev->sysfs_state);
3967
3968 if (mddev->gendisk) {
3969 del_gendisk(mddev->gendisk);
3970 put_disk(mddev->gendisk);
3971 }
3972 if (mddev->queue)
3973 blk_cleanup_queue(mddev->queue);
3974
3975 kfree(mddev);
3976 }
3977
3978 static struct sysfs_ops md_sysfs_ops = {
3979 .show = md_attr_show,
3980 .store = md_attr_store,
3981 };
3982 static struct kobj_type md_ktype = {
3983 .release = md_free,
3984 .sysfs_ops = &md_sysfs_ops,
3985 .default_attrs = md_default_attrs,
3986 };
3987
3988 int mdp_major = 0;
3989
3990 static void mddev_delayed_delete(struct work_struct *ws)
3991 {
3992 mddev_t *mddev = container_of(ws, mddev_t, del_work);
3993
3994 if (mddev->private == &md_redundancy_group) {
3995 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3996 if (mddev->sysfs_action)
3997 sysfs_put(mddev->sysfs_action);
3998 mddev->sysfs_action = NULL;
3999 mddev->private = NULL;
4000 }
4001 kobject_del(&mddev->kobj);
4002 kobject_put(&mddev->kobj);
4003 }
4004
4005 static int md_alloc(dev_t dev, char *name)
4006 {
4007 static DEFINE_MUTEX(disks_mutex);
4008 mddev_t *mddev = mddev_find(dev);
4009 struct gendisk *disk;
4010 int partitioned;
4011 int shift;
4012 int unit;
4013 int error;
4014
4015 if (!mddev)
4016 return -ENODEV;
4017
4018 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4019 shift = partitioned ? MdpMinorShift : 0;
4020 unit = MINOR(mddev->unit) >> shift;
4021
4022 /* wait for any previous instance if this device
4023 * to be completed removed (mddev_delayed_delete).
4024 */
4025 flush_scheduled_work();
4026
4027 mutex_lock(&disks_mutex);
4028 error = -EEXIST;
4029 if (mddev->gendisk)
4030 goto abort;
4031
4032 if (name) {
4033 /* Need to ensure that 'name' is not a duplicate.
4034 */
4035 mddev_t *mddev2;
4036 spin_lock(&all_mddevs_lock);
4037
4038 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4039 if (mddev2->gendisk &&
4040 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4041 spin_unlock(&all_mddevs_lock);
4042 goto abort;
4043 }
4044 spin_unlock(&all_mddevs_lock);
4045 }
4046
4047 error = -ENOMEM;
4048 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4049 if (!mddev->queue)
4050 goto abort;
4051 mddev->queue->queuedata = mddev;
4052
4053 /* Can be unlocked because the queue is new: no concurrency */
4054 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
4055
4056 blk_queue_make_request(mddev->queue, md_make_request);
4057
4058 disk = alloc_disk(1 << shift);
4059 if (!disk) {
4060 blk_cleanup_queue(mddev->queue);
4061 mddev->queue = NULL;
4062 goto abort;
4063 }
4064 disk->major = MAJOR(mddev->unit);
4065 disk->first_minor = unit << shift;
4066 if (name)
4067 strcpy(disk->disk_name, name);
4068 else if (partitioned)
4069 sprintf(disk->disk_name, "md_d%d", unit);
4070 else
4071 sprintf(disk->disk_name, "md%d", unit);
4072 disk->fops = &md_fops;
4073 disk->private_data = mddev;
4074 disk->queue = mddev->queue;
4075 /* Allow extended partitions. This makes the
4076 * 'mdp' device redundant, but we can't really
4077 * remove it now.
4078 */
4079 disk->flags |= GENHD_FL_EXT_DEVT;
4080 add_disk(disk);
4081 mddev->gendisk = disk;
4082 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4083 &disk_to_dev(disk)->kobj, "%s", "md");
4084 if (error) {
4085 /* This isn't possible, but as kobject_init_and_add is marked
4086 * __must_check, we must do something with the result
4087 */
4088 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4089 disk->disk_name);
4090 error = 0;
4091 }
4092 abort:
4093 mutex_unlock(&disks_mutex);
4094 if (!error) {
4095 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4096 mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
4097 }
4098 mddev_put(mddev);
4099 return error;
4100 }
4101
4102 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4103 {
4104 md_alloc(dev, NULL);
4105 return NULL;
4106 }
4107
4108 static int add_named_array(const char *val, struct kernel_param *kp)
4109 {
4110 /* val must be "md_*" where * is not all digits.
4111 * We allocate an array with a large free minor number, and
4112 * set the name to val. val must not already be an active name.
4113 */
4114 int len = strlen(val);
4115 char buf[DISK_NAME_LEN];
4116
4117 while (len && val[len-1] == '\n')
4118 len--;
4119 if (len >= DISK_NAME_LEN)
4120 return -E2BIG;
4121 strlcpy(buf, val, len+1);
4122 if (strncmp(buf, "md_", 3) != 0)
4123 return -EINVAL;
4124 return md_alloc(0, buf);
4125 }
4126
4127 static void md_safemode_timeout(unsigned long data)
4128 {
4129 mddev_t *mddev = (mddev_t *) data;
4130
4131 if (!atomic_read(&mddev->writes_pending)) {
4132 mddev->safemode = 1;
4133 if (mddev->external)
4134 sysfs_notify_dirent(mddev->sysfs_state);
4135 }
4136 md_wakeup_thread(mddev->thread);
4137 }
4138
4139 static int start_dirty_degraded;
4140
4141 static int do_md_run(mddev_t * mddev)
4142 {
4143 int err;
4144 mdk_rdev_t *rdev;
4145 struct gendisk *disk;
4146 struct mdk_personality *pers;
4147
4148 if (list_empty(&mddev->disks))
4149 /* cannot run an array with no devices.. */
4150 return -EINVAL;
4151
4152 if (mddev->pers)
4153 return -EBUSY;
4154
4155 /*
4156 * Analyze all RAID superblock(s)
4157 */
4158 if (!mddev->raid_disks) {
4159 if (!mddev->persistent)
4160 return -EINVAL;
4161 analyze_sbs(mddev);
4162 }
4163
4164 if (mddev->level != LEVEL_NONE)
4165 request_module("md-level-%d", mddev->level);
4166 else if (mddev->clevel[0])
4167 request_module("md-%s", mddev->clevel);
4168
4169 /*
4170 * Drop all container device buffers, from now on
4171 * the only valid external interface is through the md
4172 * device.
4173 */
4174 list_for_each_entry(rdev, &mddev->disks, same_set) {
4175 if (test_bit(Faulty, &rdev->flags))
4176 continue;
4177 sync_blockdev(rdev->bdev);
4178 invalidate_bdev(rdev->bdev);
4179
4180 /* perform some consistency tests on the device.
4181 * We don't want the data to overlap the metadata,
4182 * Internal Bitmap issues have been handled elsewhere.
4183 */
4184 if (rdev->data_offset < rdev->sb_start) {
4185 if (mddev->dev_sectors &&
4186 rdev->data_offset + mddev->dev_sectors
4187 > rdev->sb_start) {
4188 printk("md: %s: data overlaps metadata\n",
4189 mdname(mddev));
4190 return -EINVAL;
4191 }
4192 } else {
4193 if (rdev->sb_start + rdev->sb_size/512
4194 > rdev->data_offset) {
4195 printk("md: %s: metadata overlaps data\n",
4196 mdname(mddev));
4197 return -EINVAL;
4198 }
4199 }
4200 sysfs_notify_dirent(rdev->sysfs_state);
4201 }
4202
4203 md_probe(mddev->unit, NULL, NULL);
4204 disk = mddev->gendisk;
4205 if (!disk)
4206 return -ENOMEM;
4207
4208 spin_lock(&pers_lock);
4209 pers = find_pers(mddev->level, mddev->clevel);
4210 if (!pers || !try_module_get(pers->owner)) {
4211 spin_unlock(&pers_lock);
4212 if (mddev->level != LEVEL_NONE)
4213 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4214 mddev->level);
4215 else
4216 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4217 mddev->clevel);
4218 return -EINVAL;
4219 }
4220 mddev->pers = pers;
4221 spin_unlock(&pers_lock);
4222 if (mddev->level != pers->level) {
4223 mddev->level = pers->level;
4224 mddev->new_level = pers->level;
4225 }
4226 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4227
4228 if (mddev->reshape_position != MaxSector &&
4229 pers->start_reshape == NULL) {
4230 /* This personality cannot handle reshaping... */
4231 mddev->pers = NULL;
4232 module_put(pers->owner);
4233 return -EINVAL;
4234 }
4235
4236 if (pers->sync_request) {
4237 /* Warn if this is a potentially silly
4238 * configuration.
4239 */
4240 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4241 mdk_rdev_t *rdev2;
4242 int warned = 0;
4243
4244 list_for_each_entry(rdev, &mddev->disks, same_set)
4245 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4246 if (rdev < rdev2 &&
4247 rdev->bdev->bd_contains ==
4248 rdev2->bdev->bd_contains) {
4249 printk(KERN_WARNING
4250 "%s: WARNING: %s appears to be"
4251 " on the same physical disk as"
4252 " %s.\n",
4253 mdname(mddev),
4254 bdevname(rdev->bdev,b),
4255 bdevname(rdev2->bdev,b2));
4256 warned = 1;
4257 }
4258 }
4259
4260 if (warned)
4261 printk(KERN_WARNING
4262 "True protection against single-disk"
4263 " failure might be compromised.\n");
4264 }
4265
4266 mddev->recovery = 0;
4267 /* may be over-ridden by personality */
4268 mddev->resync_max_sectors = mddev->dev_sectors;
4269
4270 mddev->barriers_work = 1;
4271 mddev->ok_start_degraded = start_dirty_degraded;
4272
4273 if (start_readonly)
4274 mddev->ro = 2; /* read-only, but switch on first write */
4275
4276 err = mddev->pers->run(mddev);
4277 if (err)
4278 printk(KERN_ERR "md: pers->run() failed ...\n");
4279 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4280 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4281 " but 'external_size' not in effect?\n", __func__);
4282 printk(KERN_ERR
4283 "md: invalid array_size %llu > default size %llu\n",
4284 (unsigned long long)mddev->array_sectors / 2,
4285 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4286 err = -EINVAL;
4287 mddev->pers->stop(mddev);
4288 }
4289 if (err == 0 && mddev->pers->sync_request) {
4290 err = bitmap_create(mddev);
4291 if (err) {
4292 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4293 mdname(mddev), err);
4294 mddev->pers->stop(mddev);
4295 }
4296 }
4297 if (err) {
4298 module_put(mddev->pers->owner);
4299 mddev->pers = NULL;
4300 bitmap_destroy(mddev);
4301 return err;
4302 }
4303 if (mddev->pers->sync_request) {
4304 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4305 printk(KERN_WARNING
4306 "md: cannot register extra attributes for %s\n",
4307 mdname(mddev));
4308 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4309 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4310 mddev->ro = 0;
4311
4312 atomic_set(&mddev->writes_pending,0);
4313 mddev->safemode = 0;
4314 mddev->safemode_timer.function = md_safemode_timeout;
4315 mddev->safemode_timer.data = (unsigned long) mddev;
4316 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4317 mddev->in_sync = 1;
4318
4319 list_for_each_entry(rdev, &mddev->disks, same_set)
4320 if (rdev->raid_disk >= 0) {
4321 char nm[20];
4322 sprintf(nm, "rd%d", rdev->raid_disk);
4323 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4324 printk("md: cannot register %s for %s\n",
4325 nm, mdname(mddev));
4326 }
4327
4328 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4329
4330 if (mddev->flags)
4331 md_update_sb(mddev, 0);
4332
4333 set_capacity(disk, mddev->array_sectors);
4334
4335 /* If there is a partially-recovered drive we need to
4336 * start recovery here. If we leave it to md_check_recovery,
4337 * it will remove the drives and not do the right thing
4338 */
4339 if (mddev->degraded && !mddev->sync_thread) {
4340 int spares = 0;
4341 list_for_each_entry(rdev, &mddev->disks, same_set)
4342 if (rdev->raid_disk >= 0 &&
4343 !test_bit(In_sync, &rdev->flags) &&
4344 !test_bit(Faulty, &rdev->flags))
4345 /* complete an interrupted recovery */
4346 spares++;
4347 if (spares && mddev->pers->sync_request) {
4348 mddev->recovery = 0;
4349 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4350 mddev->sync_thread = md_register_thread(md_do_sync,
4351 mddev,
4352 "resync");
4353 if (!mddev->sync_thread) {
4354 printk(KERN_ERR "%s: could not start resync"
4355 " thread...\n",
4356 mdname(mddev));
4357 /* leave the spares where they are, it shouldn't hurt */
4358 mddev->recovery = 0;
4359 }
4360 }
4361 }
4362 md_wakeup_thread(mddev->thread);
4363 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4364
4365 revalidate_disk(mddev->gendisk);
4366 mddev->changed = 1;
4367 md_new_event(mddev);
4368 sysfs_notify_dirent(mddev->sysfs_state);
4369 if (mddev->sysfs_action)
4370 sysfs_notify_dirent(mddev->sysfs_action);
4371 sysfs_notify(&mddev->kobj, NULL, "degraded");
4372 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4373 return 0;
4374 }
4375
4376 static int restart_array(mddev_t *mddev)
4377 {
4378 struct gendisk *disk = mddev->gendisk;
4379
4380 /* Complain if it has no devices */
4381 if (list_empty(&mddev->disks))
4382 return -ENXIO;
4383 if (!mddev->pers)
4384 return -EINVAL;
4385 if (!mddev->ro)
4386 return -EBUSY;
4387 mddev->safemode = 0;
4388 mddev->ro = 0;
4389 set_disk_ro(disk, 0);
4390 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4391 mdname(mddev));
4392 /* Kick recovery or resync if necessary */
4393 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4394 md_wakeup_thread(mddev->thread);
4395 md_wakeup_thread(mddev->sync_thread);
4396 sysfs_notify_dirent(mddev->sysfs_state);
4397 return 0;
4398 }
4399
4400 /* similar to deny_write_access, but accounts for our holding a reference
4401 * to the file ourselves */
4402 static int deny_bitmap_write_access(struct file * file)
4403 {
4404 struct inode *inode = file->f_mapping->host;
4405
4406 spin_lock(&inode->i_lock);
4407 if (atomic_read(&inode->i_writecount) > 1) {
4408 spin_unlock(&inode->i_lock);
4409 return -ETXTBSY;
4410 }
4411 atomic_set(&inode->i_writecount, -1);
4412 spin_unlock(&inode->i_lock);
4413
4414 return 0;
4415 }
4416
4417 static void restore_bitmap_write_access(struct file *file)
4418 {
4419 struct inode *inode = file->f_mapping->host;
4420
4421 spin_lock(&inode->i_lock);
4422 atomic_set(&inode->i_writecount, 1);
4423 spin_unlock(&inode->i_lock);
4424 }
4425
4426 /* mode:
4427 * 0 - completely stop and dis-assemble array
4428 * 1 - switch to readonly
4429 * 2 - stop but do not disassemble array
4430 */
4431 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4432 {
4433 int err = 0;
4434 struct gendisk *disk = mddev->gendisk;
4435 mdk_rdev_t *rdev;
4436
4437 mutex_lock(&mddev->open_mutex);
4438 if (atomic_read(&mddev->openers) > is_open) {
4439 printk("md: %s still in use.\n",mdname(mddev));
4440 err = -EBUSY;
4441 } else if (mddev->pers) {
4442
4443 if (mddev->sync_thread) {
4444 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4445 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4446 md_unregister_thread(mddev->sync_thread);
4447 mddev->sync_thread = NULL;
4448 }
4449
4450 del_timer_sync(&mddev->safemode_timer);
4451
4452 switch(mode) {
4453 case 1: /* readonly */
4454 err = -ENXIO;
4455 if (mddev->ro==1)
4456 goto out;
4457 mddev->ro = 1;
4458 break;
4459 case 0: /* disassemble */
4460 case 2: /* stop */
4461 bitmap_flush(mddev);
4462 md_super_wait(mddev);
4463 if (mddev->ro)
4464 set_disk_ro(disk, 0);
4465
4466 mddev->pers->stop(mddev);
4467 mddev->queue->merge_bvec_fn = NULL;
4468 mddev->queue->unplug_fn = NULL;
4469 mddev->queue->backing_dev_info.congested_fn = NULL;
4470 module_put(mddev->pers->owner);
4471 if (mddev->pers->sync_request)
4472 mddev->private = &md_redundancy_group;
4473 mddev->pers = NULL;
4474 /* tell userspace to handle 'inactive' */
4475 sysfs_notify_dirent(mddev->sysfs_state);
4476
4477 list_for_each_entry(rdev, &mddev->disks, same_set)
4478 if (rdev->raid_disk >= 0) {
4479 char nm[20];
4480 sprintf(nm, "rd%d", rdev->raid_disk);
4481 sysfs_remove_link(&mddev->kobj, nm);
4482 }
4483
4484 set_capacity(disk, 0);
4485 mddev->changed = 1;
4486
4487 if (mddev->ro)
4488 mddev->ro = 0;
4489 }
4490 if (!mddev->in_sync || mddev->flags) {
4491 /* mark array as shutdown cleanly */
4492 mddev->in_sync = 1;
4493 md_update_sb(mddev, 1);
4494 }
4495 if (mode == 1)
4496 set_disk_ro(disk, 1);
4497 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4498 err = 0;
4499 }
4500 out:
4501 mutex_unlock(&mddev->open_mutex);
4502 if (err)
4503 return err;
4504 /*
4505 * Free resources if final stop
4506 */
4507 if (mode == 0) {
4508
4509 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4510
4511 bitmap_destroy(mddev);
4512 if (mddev->bitmap_info.file) {
4513 restore_bitmap_write_access(mddev->bitmap_info.file);
4514 fput(mddev->bitmap_info.file);
4515 mddev->bitmap_info.file = NULL;
4516 }
4517 mddev->bitmap_info.offset = 0;
4518
4519 /* make sure all md_delayed_delete calls have finished */
4520 flush_scheduled_work();
4521
4522 export_array(mddev);
4523
4524 mddev->array_sectors = 0;
4525 mddev->external_size = 0;
4526 mddev->dev_sectors = 0;
4527 mddev->raid_disks = 0;
4528 mddev->recovery_cp = 0;
4529 mddev->resync_min = 0;
4530 mddev->resync_max = MaxSector;
4531 mddev->reshape_position = MaxSector;
4532 mddev->external = 0;
4533 mddev->persistent = 0;
4534 mddev->level = LEVEL_NONE;
4535 mddev->clevel[0] = 0;
4536 mddev->flags = 0;
4537 mddev->ro = 0;
4538 mddev->metadata_type[0] = 0;
4539 mddev->chunk_sectors = 0;
4540 mddev->ctime = mddev->utime = 0;
4541 mddev->layout = 0;
4542 mddev->max_disks = 0;
4543 mddev->events = 0;
4544 mddev->delta_disks = 0;
4545 mddev->new_level = LEVEL_NONE;
4546 mddev->new_layout = 0;
4547 mddev->new_chunk_sectors = 0;
4548 mddev->curr_resync = 0;
4549 mddev->resync_mismatches = 0;
4550 mddev->suspend_lo = mddev->suspend_hi = 0;
4551 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4552 mddev->recovery = 0;
4553 mddev->in_sync = 0;
4554 mddev->changed = 0;
4555 mddev->degraded = 0;
4556 mddev->barriers_work = 0;
4557 mddev->safemode = 0;
4558 mddev->bitmap_info.offset = 0;
4559 mddev->bitmap_info.default_offset = 0;
4560 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4561 if (mddev->hold_active == UNTIL_STOP)
4562 mddev->hold_active = 0;
4563
4564 } else if (mddev->pers)
4565 printk(KERN_INFO "md: %s switched to read-only mode.\n",
4566 mdname(mddev));
4567 err = 0;
4568 blk_integrity_unregister(disk);
4569 md_new_event(mddev);
4570 sysfs_notify_dirent(mddev->sysfs_state);
4571 return err;
4572 }
4573
4574 #ifndef MODULE
4575 static void autorun_array(mddev_t *mddev)
4576 {
4577 mdk_rdev_t *rdev;
4578 int err;
4579
4580 if (list_empty(&mddev->disks))
4581 return;
4582
4583 printk(KERN_INFO "md: running: ");
4584
4585 list_for_each_entry(rdev, &mddev->disks, same_set) {
4586 char b[BDEVNAME_SIZE];
4587 printk("<%s>", bdevname(rdev->bdev,b));
4588 }
4589 printk("\n");
4590
4591 err = do_md_run(mddev);
4592 if (err) {
4593 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4594 do_md_stop(mddev, 0, 0);
4595 }
4596 }
4597
4598 /*
4599 * lets try to run arrays based on all disks that have arrived
4600 * until now. (those are in pending_raid_disks)
4601 *
4602 * the method: pick the first pending disk, collect all disks with
4603 * the same UUID, remove all from the pending list and put them into
4604 * the 'same_array' list. Then order this list based on superblock
4605 * update time (freshest comes first), kick out 'old' disks and
4606 * compare superblocks. If everything's fine then run it.
4607 *
4608 * If "unit" is allocated, then bump its reference count
4609 */
4610 static void autorun_devices(int part)
4611 {
4612 mdk_rdev_t *rdev0, *rdev, *tmp;
4613 mddev_t *mddev;
4614 char b[BDEVNAME_SIZE];
4615
4616 printk(KERN_INFO "md: autorun ...\n");
4617 while (!list_empty(&pending_raid_disks)) {
4618 int unit;
4619 dev_t dev;
4620 LIST_HEAD(candidates);
4621 rdev0 = list_entry(pending_raid_disks.next,
4622 mdk_rdev_t, same_set);
4623
4624 printk(KERN_INFO "md: considering %s ...\n",
4625 bdevname(rdev0->bdev,b));
4626 INIT_LIST_HEAD(&candidates);
4627 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4628 if (super_90_load(rdev, rdev0, 0) >= 0) {
4629 printk(KERN_INFO "md: adding %s ...\n",
4630 bdevname(rdev->bdev,b));
4631 list_move(&rdev->same_set, &candidates);
4632 }
4633 /*
4634 * now we have a set of devices, with all of them having
4635 * mostly sane superblocks. It's time to allocate the
4636 * mddev.
4637 */
4638 if (part) {
4639 dev = MKDEV(mdp_major,
4640 rdev0->preferred_minor << MdpMinorShift);
4641 unit = MINOR(dev) >> MdpMinorShift;
4642 } else {
4643 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4644 unit = MINOR(dev);
4645 }
4646 if (rdev0->preferred_minor != unit) {
4647 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4648 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4649 break;
4650 }
4651
4652 md_probe(dev, NULL, NULL);
4653 mddev = mddev_find(dev);
4654 if (!mddev || !mddev->gendisk) {
4655 if (mddev)
4656 mddev_put(mddev);
4657 printk(KERN_ERR
4658 "md: cannot allocate memory for md drive.\n");
4659 break;
4660 }
4661 if (mddev_lock(mddev))
4662 printk(KERN_WARNING "md: %s locked, cannot run\n",
4663 mdname(mddev));
4664 else if (mddev->raid_disks || mddev->major_version
4665 || !list_empty(&mddev->disks)) {
4666 printk(KERN_WARNING
4667 "md: %s already running, cannot run %s\n",
4668 mdname(mddev), bdevname(rdev0->bdev,b));
4669 mddev_unlock(mddev);
4670 } else {
4671 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4672 mddev->persistent = 1;
4673 rdev_for_each_list(rdev, tmp, &candidates) {
4674 list_del_init(&rdev->same_set);
4675 if (bind_rdev_to_array(rdev, mddev))
4676 export_rdev(rdev);
4677 }
4678 autorun_array(mddev);
4679 mddev_unlock(mddev);
4680 }
4681 /* on success, candidates will be empty, on error
4682 * it won't...
4683 */
4684 rdev_for_each_list(rdev, tmp, &candidates) {
4685 list_del_init(&rdev->same_set);
4686 export_rdev(rdev);
4687 }
4688 mddev_put(mddev);
4689 }
4690 printk(KERN_INFO "md: ... autorun DONE.\n");
4691 }
4692 #endif /* !MODULE */
4693
4694 static int get_version(void __user * arg)
4695 {
4696 mdu_version_t ver;
4697
4698 ver.major = MD_MAJOR_VERSION;
4699 ver.minor = MD_MINOR_VERSION;
4700 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4701
4702 if (copy_to_user(arg, &ver, sizeof(ver)))
4703 return -EFAULT;
4704
4705 return 0;
4706 }
4707
4708 static int get_array_info(mddev_t * mddev, void __user * arg)
4709 {
4710 mdu_array_info_t info;
4711 int nr,working,insync,failed,spare;
4712 mdk_rdev_t *rdev;
4713
4714 nr=working=insync=failed=spare=0;
4715 list_for_each_entry(rdev, &mddev->disks, same_set) {
4716 nr++;
4717 if (test_bit(Faulty, &rdev->flags))
4718 failed++;
4719 else {
4720 working++;
4721 if (test_bit(In_sync, &rdev->flags))
4722 insync++;
4723 else
4724 spare++;
4725 }
4726 }
4727
4728 info.major_version = mddev->major_version;
4729 info.minor_version = mddev->minor_version;
4730 info.patch_version = MD_PATCHLEVEL_VERSION;
4731 info.ctime = mddev->ctime;
4732 info.level = mddev->level;
4733 info.size = mddev->dev_sectors / 2;
4734 if (info.size != mddev->dev_sectors / 2) /* overflow */
4735 info.size = -1;
4736 info.nr_disks = nr;
4737 info.raid_disks = mddev->raid_disks;
4738 info.md_minor = mddev->md_minor;
4739 info.not_persistent= !mddev->persistent;
4740
4741 info.utime = mddev->utime;
4742 info.state = 0;
4743 if (mddev->in_sync)
4744 info.state = (1<<MD_SB_CLEAN);
4745 if (mddev->bitmap && mddev->bitmap_info.offset)
4746 info.state = (1<<MD_SB_BITMAP_PRESENT);
4747 info.active_disks = insync;
4748 info.working_disks = working;
4749 info.failed_disks = failed;
4750 info.spare_disks = spare;
4751
4752 info.layout = mddev->layout;
4753 info.chunk_size = mddev->chunk_sectors << 9;
4754
4755 if (copy_to_user(arg, &info, sizeof(info)))
4756 return -EFAULT;
4757
4758 return 0;
4759 }
4760
4761 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4762 {
4763 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4764 char *ptr, *buf = NULL;
4765 int err = -ENOMEM;
4766
4767 if (md_allow_write(mddev))
4768 file = kmalloc(sizeof(*file), GFP_NOIO);
4769 else
4770 file = kmalloc(sizeof(*file), GFP_KERNEL);
4771
4772 if (!file)
4773 goto out;
4774
4775 /* bitmap disabled, zero the first byte and copy out */
4776 if (!mddev->bitmap || !mddev->bitmap->file) {
4777 file->pathname[0] = '\0';
4778 goto copy_out;
4779 }
4780
4781 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4782 if (!buf)
4783 goto out;
4784
4785 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4786 if (IS_ERR(ptr))
4787 goto out;
4788
4789 strcpy(file->pathname, ptr);
4790
4791 copy_out:
4792 err = 0;
4793 if (copy_to_user(arg, file, sizeof(*file)))
4794 err = -EFAULT;
4795 out:
4796 kfree(buf);
4797 kfree(file);
4798 return err;
4799 }
4800
4801 static int get_disk_info(mddev_t * mddev, void __user * arg)
4802 {
4803 mdu_disk_info_t info;
4804 mdk_rdev_t *rdev;
4805
4806 if (copy_from_user(&info, arg, sizeof(info)))
4807 return -EFAULT;
4808
4809 rdev = find_rdev_nr(mddev, info.number);
4810 if (rdev) {
4811 info.major = MAJOR(rdev->bdev->bd_dev);
4812 info.minor = MINOR(rdev->bdev->bd_dev);
4813 info.raid_disk = rdev->raid_disk;
4814 info.state = 0;
4815 if (test_bit(Faulty, &rdev->flags))
4816 info.state |= (1<<MD_DISK_FAULTY);
4817 else if (test_bit(In_sync, &rdev->flags)) {
4818 info.state |= (1<<MD_DISK_ACTIVE);
4819 info.state |= (1<<MD_DISK_SYNC);
4820 }
4821 if (test_bit(WriteMostly, &rdev->flags))
4822 info.state |= (1<<MD_DISK_WRITEMOSTLY);
4823 } else {
4824 info.major = info.minor = 0;
4825 info.raid_disk = -1;
4826 info.state = (1<<MD_DISK_REMOVED);
4827 }
4828
4829 if (copy_to_user(arg, &info, sizeof(info)))
4830 return -EFAULT;
4831
4832 return 0;
4833 }
4834
4835 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4836 {
4837 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4838 mdk_rdev_t *rdev;
4839 dev_t dev = MKDEV(info->major,info->minor);
4840
4841 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4842 return -EOVERFLOW;
4843
4844 if (!mddev->raid_disks) {
4845 int err;
4846 /* expecting a device which has a superblock */
4847 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4848 if (IS_ERR(rdev)) {
4849 printk(KERN_WARNING
4850 "md: md_import_device returned %ld\n",
4851 PTR_ERR(rdev));
4852 return PTR_ERR(rdev);
4853 }
4854 if (!list_empty(&mddev->disks)) {
4855 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4856 mdk_rdev_t, same_set);
4857 err = super_types[mddev->major_version]
4858 .load_super(rdev, rdev0, mddev->minor_version);
4859 if (err < 0) {
4860 printk(KERN_WARNING
4861 "md: %s has different UUID to %s\n",
4862 bdevname(rdev->bdev,b),
4863 bdevname(rdev0->bdev,b2));
4864 export_rdev(rdev);
4865 return -EINVAL;
4866 }
4867 }
4868 err = bind_rdev_to_array(rdev, mddev);
4869 if (err)
4870 export_rdev(rdev);
4871 return err;
4872 }
4873
4874 /*
4875 * add_new_disk can be used once the array is assembled
4876 * to add "hot spares". They must already have a superblock
4877 * written
4878 */
4879 if (mddev->pers) {
4880 int err;
4881 if (!mddev->pers->hot_add_disk) {
4882 printk(KERN_WARNING
4883 "%s: personality does not support diskops!\n",
4884 mdname(mddev));
4885 return -EINVAL;
4886 }
4887 if (mddev->persistent)
4888 rdev = md_import_device(dev, mddev->major_version,
4889 mddev->minor_version);
4890 else
4891 rdev = md_import_device(dev, -1, -1);
4892 if (IS_ERR(rdev)) {
4893 printk(KERN_WARNING
4894 "md: md_import_device returned %ld\n",
4895 PTR_ERR(rdev));
4896 return PTR_ERR(rdev);
4897 }
4898 /* set save_raid_disk if appropriate */
4899 if (!mddev->persistent) {
4900 if (info->state & (1<<MD_DISK_SYNC) &&
4901 info->raid_disk < mddev->raid_disks)
4902 rdev->raid_disk = info->raid_disk;
4903 else
4904 rdev->raid_disk = -1;
4905 } else
4906 super_types[mddev->major_version].
4907 validate_super(mddev, rdev);
4908 rdev->saved_raid_disk = rdev->raid_disk;
4909
4910 clear_bit(In_sync, &rdev->flags); /* just to be sure */
4911 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4912 set_bit(WriteMostly, &rdev->flags);
4913 else
4914 clear_bit(WriteMostly, &rdev->flags);
4915
4916 rdev->raid_disk = -1;
4917 err = bind_rdev_to_array(rdev, mddev);
4918 if (!err && !mddev->pers->hot_remove_disk) {
4919 /* If there is hot_add_disk but no hot_remove_disk
4920 * then added disks for geometry changes,
4921 * and should be added immediately.
4922 */
4923 super_types[mddev->major_version].
4924 validate_super(mddev, rdev);
4925 err = mddev->pers->hot_add_disk(mddev, rdev);
4926 if (err)
4927 unbind_rdev_from_array(rdev);
4928 }
4929 if (err)
4930 export_rdev(rdev);
4931 else
4932 sysfs_notify_dirent(rdev->sysfs_state);
4933
4934 md_update_sb(mddev, 1);
4935 if (mddev->degraded)
4936 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4937 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4938 md_wakeup_thread(mddev->thread);
4939 return err;
4940 }
4941
4942 /* otherwise, add_new_disk is only allowed
4943 * for major_version==0 superblocks
4944 */
4945 if (mddev->major_version != 0) {
4946 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4947 mdname(mddev));
4948 return -EINVAL;
4949 }
4950
4951 if (!(info->state & (1<<MD_DISK_FAULTY))) {
4952 int err;
4953 rdev = md_import_device(dev, -1, 0);
4954 if (IS_ERR(rdev)) {
4955 printk(KERN_WARNING
4956 "md: error, md_import_device() returned %ld\n",
4957 PTR_ERR(rdev));
4958 return PTR_ERR(rdev);
4959 }
4960 rdev->desc_nr = info->number;
4961 if (info->raid_disk < mddev->raid_disks)
4962 rdev->raid_disk = info->raid_disk;
4963 else
4964 rdev->raid_disk = -1;
4965
4966 if (rdev->raid_disk < mddev->raid_disks)
4967 if (info->state & (1<<MD_DISK_SYNC))
4968 set_bit(In_sync, &rdev->flags);
4969
4970 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4971 set_bit(WriteMostly, &rdev->flags);
4972
4973 if (!mddev->persistent) {
4974 printk(KERN_INFO "md: nonpersistent superblock ...\n");
4975 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4976 } else
4977 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4978 rdev->sectors = rdev->sb_start;
4979
4980 err = bind_rdev_to_array(rdev, mddev);
4981 if (err) {
4982 export_rdev(rdev);
4983 return err;
4984 }
4985 }
4986
4987 return 0;
4988 }
4989
4990 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4991 {
4992 char b[BDEVNAME_SIZE];
4993 mdk_rdev_t *rdev;
4994
4995 rdev = find_rdev(mddev, dev);
4996 if (!rdev)
4997 return -ENXIO;
4998
4999 if (rdev->raid_disk >= 0)
5000 goto busy;
5001
5002 kick_rdev_from_array(rdev);
5003 md_update_sb(mddev, 1);
5004 md_new_event(mddev);
5005
5006 return 0;
5007 busy:
5008 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5009 bdevname(rdev->bdev,b), mdname(mddev));
5010 return -EBUSY;
5011 }
5012
5013 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5014 {
5015 char b[BDEVNAME_SIZE];
5016 int err;
5017 mdk_rdev_t *rdev;
5018
5019 if (!mddev->pers)
5020 return -ENODEV;
5021
5022 if (mddev->major_version != 0) {
5023 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5024 " version-0 superblocks.\n",
5025 mdname(mddev));
5026 return -EINVAL;
5027 }
5028 if (!mddev->pers->hot_add_disk) {
5029 printk(KERN_WARNING
5030 "%s: personality does not support diskops!\n",
5031 mdname(mddev));
5032 return -EINVAL;
5033 }
5034
5035 rdev = md_import_device(dev, -1, 0);
5036 if (IS_ERR(rdev)) {
5037 printk(KERN_WARNING
5038 "md: error, md_import_device() returned %ld\n",
5039 PTR_ERR(rdev));
5040 return -EINVAL;
5041 }
5042
5043 if (mddev->persistent)
5044 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5045 else
5046 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5047
5048 rdev->sectors = rdev->sb_start;
5049
5050 if (test_bit(Faulty, &rdev->flags)) {
5051 printk(KERN_WARNING
5052 "md: can not hot-add faulty %s disk to %s!\n",
5053 bdevname(rdev->bdev,b), mdname(mddev));
5054 err = -EINVAL;
5055 goto abort_export;
5056 }
5057 clear_bit(In_sync, &rdev->flags);
5058 rdev->desc_nr = -1;
5059 rdev->saved_raid_disk = -1;
5060 err = bind_rdev_to_array(rdev, mddev);
5061 if (err)
5062 goto abort_export;
5063
5064 /*
5065 * The rest should better be atomic, we can have disk failures
5066 * noticed in interrupt contexts ...
5067 */
5068
5069 rdev->raid_disk = -1;
5070
5071 md_update_sb(mddev, 1);
5072
5073 /*
5074 * Kick recovery, maybe this spare has to be added to the
5075 * array immediately.
5076 */
5077 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5078 md_wakeup_thread(mddev->thread);
5079 md_new_event(mddev);
5080 return 0;
5081
5082 abort_export:
5083 export_rdev(rdev);
5084 return err;
5085 }
5086
5087 static int set_bitmap_file(mddev_t *mddev, int fd)
5088 {
5089 int err;
5090
5091 if (mddev->pers) {
5092 if (!mddev->pers->quiesce)
5093 return -EBUSY;
5094 if (mddev->recovery || mddev->sync_thread)
5095 return -EBUSY;
5096 /* we should be able to change the bitmap.. */
5097 }
5098
5099
5100 if (fd >= 0) {
5101 if (mddev->bitmap)
5102 return -EEXIST; /* cannot add when bitmap is present */
5103 mddev->bitmap_info.file = fget(fd);
5104
5105 if (mddev->bitmap_info.file == NULL) {
5106 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5107 mdname(mddev));
5108 return -EBADF;
5109 }
5110
5111 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5112 if (err) {
5113 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5114 mdname(mddev));
5115 fput(mddev->bitmap_info.file);
5116 mddev->bitmap_info.file = NULL;
5117 return err;
5118 }
5119 mddev->bitmap_info.offset = 0; /* file overrides offset */
5120 } else if (mddev->bitmap == NULL)
5121 return -ENOENT; /* cannot remove what isn't there */
5122 err = 0;
5123 if (mddev->pers) {
5124 mddev->pers->quiesce(mddev, 1);
5125 if (fd >= 0)
5126 err = bitmap_create(mddev);
5127 if (fd < 0 || err) {
5128 bitmap_destroy(mddev);
5129 fd = -1; /* make sure to put the file */
5130 }
5131 mddev->pers->quiesce(mddev, 0);
5132 }
5133 if (fd < 0) {
5134 if (mddev->bitmap_info.file) {
5135 restore_bitmap_write_access(mddev->bitmap_info.file);
5136 fput(mddev->bitmap_info.file);
5137 }
5138 mddev->bitmap_info.file = NULL;
5139 }
5140
5141 return err;
5142 }
5143
5144 /*
5145 * set_array_info is used two different ways
5146 * The original usage is when creating a new array.
5147 * In this usage, raid_disks is > 0 and it together with
5148 * level, size, not_persistent,layout,chunksize determine the
5149 * shape of the array.
5150 * This will always create an array with a type-0.90.0 superblock.
5151 * The newer usage is when assembling an array.
5152 * In this case raid_disks will be 0, and the major_version field is
5153 * use to determine which style super-blocks are to be found on the devices.
5154 * The minor and patch _version numbers are also kept incase the
5155 * super_block handler wishes to interpret them.
5156 */
5157 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5158 {
5159
5160 if (info->raid_disks == 0) {
5161 /* just setting version number for superblock loading */
5162 if (info->major_version < 0 ||
5163 info->major_version >= ARRAY_SIZE(super_types) ||
5164 super_types[info->major_version].name == NULL) {
5165 /* maybe try to auto-load a module? */
5166 printk(KERN_INFO
5167 "md: superblock version %d not known\n",
5168 info->major_version);
5169 return -EINVAL;
5170 }
5171 mddev->major_version = info->major_version;
5172 mddev->minor_version = info->minor_version;
5173 mddev->patch_version = info->patch_version;
5174 mddev->persistent = !info->not_persistent;
5175 return 0;
5176 }
5177 mddev->major_version = MD_MAJOR_VERSION;
5178 mddev->minor_version = MD_MINOR_VERSION;
5179 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5180 mddev->ctime = get_seconds();
5181
5182 mddev->level = info->level;
5183 mddev->clevel[0] = 0;
5184 mddev->dev_sectors = 2 * (sector_t)info->size;
5185 mddev->raid_disks = info->raid_disks;
5186 /* don't set md_minor, it is determined by which /dev/md* was
5187 * openned
5188 */
5189 if (info->state & (1<<MD_SB_CLEAN))
5190 mddev->recovery_cp = MaxSector;
5191 else
5192 mddev->recovery_cp = 0;
5193 mddev->persistent = ! info->not_persistent;
5194 mddev->external = 0;
5195
5196 mddev->layout = info->layout;
5197 mddev->chunk_sectors = info->chunk_size >> 9;
5198
5199 mddev->max_disks = MD_SB_DISKS;
5200
5201 if (mddev->persistent)
5202 mddev->flags = 0;
5203 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5204
5205 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5206 mddev->bitmap_info.offset = 0;
5207
5208 mddev->reshape_position = MaxSector;
5209
5210 /*
5211 * Generate a 128 bit UUID
5212 */
5213 get_random_bytes(mddev->uuid, 16);
5214
5215 mddev->new_level = mddev->level;
5216 mddev->new_chunk_sectors = mddev->chunk_sectors;
5217 mddev->new_layout = mddev->layout;
5218 mddev->delta_disks = 0;
5219
5220 return 0;
5221 }
5222
5223 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5224 {
5225 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5226
5227 if (mddev->external_size)
5228 return;
5229
5230 mddev->array_sectors = array_sectors;
5231 }
5232 EXPORT_SYMBOL(md_set_array_sectors);
5233
5234 static int update_size(mddev_t *mddev, sector_t num_sectors)
5235 {
5236 mdk_rdev_t *rdev;
5237 int rv;
5238 int fit = (num_sectors == 0);
5239
5240 if (mddev->pers->resize == NULL)
5241 return -EINVAL;
5242 /* The "num_sectors" is the number of sectors of each device that
5243 * is used. This can only make sense for arrays with redundancy.
5244 * linear and raid0 always use whatever space is available. We can only
5245 * consider changing this number if no resync or reconstruction is
5246 * happening, and if the new size is acceptable. It must fit before the
5247 * sb_start or, if that is <data_offset, it must fit before the size
5248 * of each device. If num_sectors is zero, we find the largest size
5249 * that fits.
5250
5251 */
5252 if (mddev->sync_thread)
5253 return -EBUSY;
5254 if (mddev->bitmap)
5255 /* Sorry, cannot grow a bitmap yet, just remove it,
5256 * grow, and re-add.
5257 */
5258 return -EBUSY;
5259 list_for_each_entry(rdev, &mddev->disks, same_set) {
5260 sector_t avail = rdev->sectors;
5261
5262 if (fit && (num_sectors == 0 || num_sectors > avail))
5263 num_sectors = avail;
5264 if (avail < num_sectors)
5265 return -ENOSPC;
5266 }
5267 rv = mddev->pers->resize(mddev, num_sectors);
5268 if (!rv)
5269 revalidate_disk(mddev->gendisk);
5270 return rv;
5271 }
5272
5273 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5274 {
5275 int rv;
5276 /* change the number of raid disks */
5277 if (mddev->pers->check_reshape == NULL)
5278 return -EINVAL;
5279 if (raid_disks <= 0 ||
5280 raid_disks >= mddev->max_disks)
5281 return -EINVAL;
5282 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5283 return -EBUSY;
5284 mddev->delta_disks = raid_disks - mddev->raid_disks;
5285
5286 rv = mddev->pers->check_reshape(mddev);
5287 return rv;
5288 }
5289
5290
5291 /*
5292 * update_array_info is used to change the configuration of an
5293 * on-line array.
5294 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5295 * fields in the info are checked against the array.
5296 * Any differences that cannot be handled will cause an error.
5297 * Normally, only one change can be managed at a time.
5298 */
5299 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5300 {
5301 int rv = 0;
5302 int cnt = 0;
5303 int state = 0;
5304
5305 /* calculate expected state,ignoring low bits */
5306 if (mddev->bitmap && mddev->bitmap_info.offset)
5307 state |= (1 << MD_SB_BITMAP_PRESENT);
5308
5309 if (mddev->major_version != info->major_version ||
5310 mddev->minor_version != info->minor_version ||
5311 /* mddev->patch_version != info->patch_version || */
5312 mddev->ctime != info->ctime ||
5313 mddev->level != info->level ||
5314 /* mddev->layout != info->layout || */
5315 !mddev->persistent != info->not_persistent||
5316 mddev->chunk_sectors != info->chunk_size >> 9 ||
5317 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5318 ((state^info->state) & 0xfffffe00)
5319 )
5320 return -EINVAL;
5321 /* Check there is only one change */
5322 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5323 cnt++;
5324 if (mddev->raid_disks != info->raid_disks)
5325 cnt++;
5326 if (mddev->layout != info->layout)
5327 cnt++;
5328 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5329 cnt++;
5330 if (cnt == 0)
5331 return 0;
5332 if (cnt > 1)
5333 return -EINVAL;
5334
5335 if (mddev->layout != info->layout) {
5336 /* Change layout
5337 * we don't need to do anything at the md level, the
5338 * personality will take care of it all.
5339 */
5340 if (mddev->pers->check_reshape == NULL)
5341 return -EINVAL;
5342 else {
5343 mddev->new_layout = info->layout;
5344 rv = mddev->pers->check_reshape(mddev);
5345 if (rv)
5346 mddev->new_layout = mddev->layout;
5347 return rv;
5348 }
5349 }
5350 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5351 rv = update_size(mddev, (sector_t)info->size * 2);
5352
5353 if (mddev->raid_disks != info->raid_disks)
5354 rv = update_raid_disks(mddev, info->raid_disks);
5355
5356 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5357 if (mddev->pers->quiesce == NULL)
5358 return -EINVAL;
5359 if (mddev->recovery || mddev->sync_thread)
5360 return -EBUSY;
5361 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5362 /* add the bitmap */
5363 if (mddev->bitmap)
5364 return -EEXIST;
5365 if (mddev->bitmap_info.default_offset == 0)
5366 return -EINVAL;
5367 mddev->bitmap_info.offset =
5368 mddev->bitmap_info.default_offset;
5369 mddev->pers->quiesce(mddev, 1);
5370 rv = bitmap_create(mddev);
5371 if (rv)
5372 bitmap_destroy(mddev);
5373 mddev->pers->quiesce(mddev, 0);
5374 } else {
5375 /* remove the bitmap */
5376 if (!mddev->bitmap)
5377 return -ENOENT;
5378 if (mddev->bitmap->file)
5379 return -EINVAL;
5380 mddev->pers->quiesce(mddev, 1);
5381 bitmap_destroy(mddev);
5382 mddev->pers->quiesce(mddev, 0);
5383 mddev->bitmap_info.offset = 0;
5384 }
5385 }
5386 md_update_sb(mddev, 1);
5387 return rv;
5388 }
5389
5390 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5391 {
5392 mdk_rdev_t *rdev;
5393
5394 if (mddev->pers == NULL)
5395 return -ENODEV;
5396
5397 rdev = find_rdev(mddev, dev);
5398 if (!rdev)
5399 return -ENODEV;
5400
5401 md_error(mddev, rdev);
5402 return 0;
5403 }
5404
5405 /*
5406 * We have a problem here : there is no easy way to give a CHS
5407 * virtual geometry. We currently pretend that we have a 2 heads
5408 * 4 sectors (with a BIG number of cylinders...). This drives
5409 * dosfs just mad... ;-)
5410 */
5411 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5412 {
5413 mddev_t *mddev = bdev->bd_disk->private_data;
5414
5415 geo->heads = 2;
5416 geo->sectors = 4;
5417 geo->cylinders = get_capacity(mddev->gendisk) / 8;
5418 return 0;
5419 }
5420
5421 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5422 unsigned int cmd, unsigned long arg)
5423 {
5424 int err = 0;
5425 void __user *argp = (void __user *)arg;
5426 mddev_t *mddev = NULL;
5427
5428 if (!capable(CAP_SYS_ADMIN))
5429 return -EACCES;
5430
5431 /*
5432 * Commands dealing with the RAID driver but not any
5433 * particular array:
5434 */
5435 switch (cmd)
5436 {
5437 case RAID_VERSION:
5438 err = get_version(argp);
5439 goto done;
5440
5441 case PRINT_RAID_DEBUG:
5442 err = 0;
5443 md_print_devices();
5444 goto done;
5445
5446 #ifndef MODULE
5447 case RAID_AUTORUN:
5448 err = 0;
5449 autostart_arrays(arg);
5450 goto done;
5451 #endif
5452 default:;
5453 }
5454
5455 /*
5456 * Commands creating/starting a new array:
5457 */
5458
5459 mddev = bdev->bd_disk->private_data;
5460
5461 if (!mddev) {
5462 BUG();
5463 goto abort;
5464 }
5465
5466 err = mddev_lock(mddev);
5467 if (err) {
5468 printk(KERN_INFO
5469 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5470 err, cmd);
5471 goto abort;
5472 }
5473
5474 switch (cmd)
5475 {
5476 case SET_ARRAY_INFO:
5477 {
5478 mdu_array_info_t info;
5479 if (!arg)
5480 memset(&info, 0, sizeof(info));
5481 else if (copy_from_user(&info, argp, sizeof(info))) {
5482 err = -EFAULT;
5483 goto abort_unlock;
5484 }
5485 if (mddev->pers) {
5486 err = update_array_info(mddev, &info);
5487 if (err) {
5488 printk(KERN_WARNING "md: couldn't update"
5489 " array info. %d\n", err);
5490 goto abort_unlock;
5491 }
5492 goto done_unlock;
5493 }
5494 if (!list_empty(&mddev->disks)) {
5495 printk(KERN_WARNING
5496 "md: array %s already has disks!\n",
5497 mdname(mddev));
5498 err = -EBUSY;
5499 goto abort_unlock;
5500 }
5501 if (mddev->raid_disks) {
5502 printk(KERN_WARNING
5503 "md: array %s already initialised!\n",
5504 mdname(mddev));
5505 err = -EBUSY;
5506 goto abort_unlock;
5507 }
5508 err = set_array_info(mddev, &info);
5509 if (err) {
5510 printk(KERN_WARNING "md: couldn't set"
5511 " array info. %d\n", err);
5512 goto abort_unlock;
5513 }
5514 }
5515 goto done_unlock;
5516
5517 default:;
5518 }
5519
5520 /*
5521 * Commands querying/configuring an existing array:
5522 */
5523 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5524 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5525 if ((!mddev->raid_disks && !mddev->external)
5526 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5527 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5528 && cmd != GET_BITMAP_FILE) {
5529 err = -ENODEV;
5530 goto abort_unlock;
5531 }
5532
5533 /*
5534 * Commands even a read-only array can execute:
5535 */
5536 switch (cmd)
5537 {
5538 case GET_ARRAY_INFO:
5539 err = get_array_info(mddev, argp);
5540 goto done_unlock;
5541
5542 case GET_BITMAP_FILE:
5543 err = get_bitmap_file(mddev, argp);
5544 goto done_unlock;
5545
5546 case GET_DISK_INFO:
5547 err = get_disk_info(mddev, argp);
5548 goto done_unlock;
5549
5550 case RESTART_ARRAY_RW:
5551 err = restart_array(mddev);
5552 goto done_unlock;
5553
5554 case STOP_ARRAY:
5555 err = do_md_stop(mddev, 0, 1);
5556 goto done_unlock;
5557
5558 case STOP_ARRAY_RO:
5559 err = do_md_stop(mddev, 1, 1);
5560 goto done_unlock;
5561
5562 }
5563
5564 /*
5565 * The remaining ioctls are changing the state of the
5566 * superblock, so we do not allow them on read-only arrays.
5567 * However non-MD ioctls (e.g. get-size) will still come through
5568 * here and hit the 'default' below, so only disallow
5569 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5570 */
5571 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5572 if (mddev->ro == 2) {
5573 mddev->ro = 0;
5574 sysfs_notify_dirent(mddev->sysfs_state);
5575 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5576 md_wakeup_thread(mddev->thread);
5577 } else {
5578 err = -EROFS;
5579 goto abort_unlock;
5580 }
5581 }
5582
5583 switch (cmd)
5584 {
5585 case ADD_NEW_DISK:
5586 {
5587 mdu_disk_info_t info;
5588 if (copy_from_user(&info, argp, sizeof(info)))
5589 err = -EFAULT;
5590 else
5591 err = add_new_disk(mddev, &info);
5592 goto done_unlock;
5593 }
5594
5595 case HOT_REMOVE_DISK:
5596 err = hot_remove_disk(mddev, new_decode_dev(arg));
5597 goto done_unlock;
5598
5599 case HOT_ADD_DISK:
5600 err = hot_add_disk(mddev, new_decode_dev(arg));
5601 goto done_unlock;
5602
5603 case SET_DISK_FAULTY:
5604 err = set_disk_faulty(mddev, new_decode_dev(arg));
5605 goto done_unlock;
5606
5607 case RUN_ARRAY:
5608 err = do_md_run(mddev);
5609 goto done_unlock;
5610
5611 case SET_BITMAP_FILE:
5612 err = set_bitmap_file(mddev, (int)arg);
5613 goto done_unlock;
5614
5615 default:
5616 err = -EINVAL;
5617 goto abort_unlock;
5618 }
5619
5620 done_unlock:
5621 abort_unlock:
5622 if (mddev->hold_active == UNTIL_IOCTL &&
5623 err != -EINVAL)
5624 mddev->hold_active = 0;
5625 mddev_unlock(mddev);
5626
5627 return err;
5628 done:
5629 if (err)
5630 MD_BUG();
5631 abort:
5632 return err;
5633 }
5634
5635 static int md_open(struct block_device *bdev, fmode_t mode)
5636 {
5637 /*
5638 * Succeed if we can lock the mddev, which confirms that
5639 * it isn't being stopped right now.
5640 */
5641 mddev_t *mddev = mddev_find(bdev->bd_dev);
5642 int err;
5643
5644 if (mddev->gendisk != bdev->bd_disk) {
5645 /* we are racing with mddev_put which is discarding this
5646 * bd_disk.
5647 */
5648 mddev_put(mddev);
5649 /* Wait until bdev->bd_disk is definitely gone */
5650 flush_scheduled_work();
5651 /* Then retry the open from the top */
5652 return -ERESTARTSYS;
5653 }
5654 BUG_ON(mddev != bdev->bd_disk->private_data);
5655
5656 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5657 goto out;
5658
5659 err = 0;
5660 atomic_inc(&mddev->openers);
5661 mutex_unlock(&mddev->open_mutex);
5662
5663 check_disk_change(bdev);
5664 out:
5665 return err;
5666 }
5667
5668 static int md_release(struct gendisk *disk, fmode_t mode)
5669 {
5670 mddev_t *mddev = disk->private_data;
5671
5672 BUG_ON(!mddev);
5673 atomic_dec(&mddev->openers);
5674 mddev_put(mddev);
5675
5676 return 0;
5677 }
5678
5679 static int md_media_changed(struct gendisk *disk)
5680 {
5681 mddev_t *mddev = disk->private_data;
5682
5683 return mddev->changed;
5684 }
5685
5686 static int md_revalidate(struct gendisk *disk)
5687 {
5688 mddev_t *mddev = disk->private_data;
5689
5690 mddev->changed = 0;
5691 return 0;
5692 }
5693 static const struct block_device_operations md_fops =
5694 {
5695 .owner = THIS_MODULE,
5696 .open = md_open,
5697 .release = md_release,
5698 .ioctl = md_ioctl,
5699 .getgeo = md_getgeo,
5700 .media_changed = md_media_changed,
5701 .revalidate_disk= md_revalidate,
5702 };
5703
5704 static int md_thread(void * arg)
5705 {
5706 mdk_thread_t *thread = arg;
5707
5708 /*
5709 * md_thread is a 'system-thread', it's priority should be very
5710 * high. We avoid resource deadlocks individually in each
5711 * raid personality. (RAID5 does preallocation) We also use RR and
5712 * the very same RT priority as kswapd, thus we will never get
5713 * into a priority inversion deadlock.
5714 *
5715 * we definitely have to have equal or higher priority than
5716 * bdflush, otherwise bdflush will deadlock if there are too
5717 * many dirty RAID5 blocks.
5718 */
5719
5720 allow_signal(SIGKILL);
5721 while (!kthread_should_stop()) {
5722
5723 /* We need to wait INTERRUPTIBLE so that
5724 * we don't add to the load-average.
5725 * That means we need to be sure no signals are
5726 * pending
5727 */
5728 if (signal_pending(current))
5729 flush_signals(current);
5730
5731 wait_event_interruptible_timeout
5732 (thread->wqueue,
5733 test_bit(THREAD_WAKEUP, &thread->flags)
5734 || kthread_should_stop(),
5735 thread->timeout);
5736
5737 clear_bit(THREAD_WAKEUP, &thread->flags);
5738
5739 thread->run(thread->mddev);
5740 }
5741
5742 return 0;
5743 }
5744
5745 void md_wakeup_thread(mdk_thread_t *thread)
5746 {
5747 if (thread) {
5748 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5749 set_bit(THREAD_WAKEUP, &thread->flags);
5750 wake_up(&thread->wqueue);
5751 }
5752 }
5753
5754 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5755 const char *name)
5756 {
5757 mdk_thread_t *thread;
5758
5759 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5760 if (!thread)
5761 return NULL;
5762
5763 init_waitqueue_head(&thread->wqueue);
5764
5765 thread->run = run;
5766 thread->mddev = mddev;
5767 thread->timeout = MAX_SCHEDULE_TIMEOUT;
5768 thread->tsk = kthread_run(md_thread, thread,
5769 "%s_%s",
5770 mdname(thread->mddev),
5771 name ?: mddev->pers->name);
5772 if (IS_ERR(thread->tsk)) {
5773 kfree(thread);
5774 return NULL;
5775 }
5776 return thread;
5777 }
5778
5779 void md_unregister_thread(mdk_thread_t *thread)
5780 {
5781 if (!thread)
5782 return;
5783 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5784
5785 kthread_stop(thread->tsk);
5786 kfree(thread);
5787 }
5788
5789 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5790 {
5791 if (!mddev) {
5792 MD_BUG();
5793 return;
5794 }
5795
5796 if (!rdev || test_bit(Faulty, &rdev->flags))
5797 return;
5798
5799 if (mddev->external)
5800 set_bit(Blocked, &rdev->flags);
5801 /*
5802 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5803 mdname(mddev),
5804 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5805 __builtin_return_address(0),__builtin_return_address(1),
5806 __builtin_return_address(2),__builtin_return_address(3));
5807 */
5808 if (!mddev->pers)
5809 return;
5810 if (!mddev->pers->error_handler)
5811 return;
5812 mddev->pers->error_handler(mddev,rdev);
5813 if (mddev->degraded)
5814 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5815 set_bit(StateChanged, &rdev->flags);
5816 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5817 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5818 md_wakeup_thread(mddev->thread);
5819 md_new_event_inintr(mddev);
5820 }
5821
5822 /* seq_file implementation /proc/mdstat */
5823
5824 static void status_unused(struct seq_file *seq)
5825 {
5826 int i = 0;
5827 mdk_rdev_t *rdev;
5828
5829 seq_printf(seq, "unused devices: ");
5830
5831 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
5832 char b[BDEVNAME_SIZE];
5833 i++;
5834 seq_printf(seq, "%s ",
5835 bdevname(rdev->bdev,b));
5836 }
5837 if (!i)
5838 seq_printf(seq, "<none>");
5839
5840 seq_printf(seq, "\n");
5841 }
5842
5843
5844 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5845 {
5846 sector_t max_sectors, resync, res;
5847 unsigned long dt, db;
5848 sector_t rt;
5849 int scale;
5850 unsigned int per_milli;
5851
5852 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
5853
5854 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5855 max_sectors = mddev->resync_max_sectors;
5856 else
5857 max_sectors = mddev->dev_sectors;
5858
5859 /*
5860 * Should not happen.
5861 */
5862 if (!max_sectors) {
5863 MD_BUG();
5864 return;
5865 }
5866 /* Pick 'scale' such that (resync>>scale)*1000 will fit
5867 * in a sector_t, and (max_sectors>>scale) will fit in a
5868 * u32, as those are the requirements for sector_div.
5869 * Thus 'scale' must be at least 10
5870 */
5871 scale = 10;
5872 if (sizeof(sector_t) > sizeof(unsigned long)) {
5873 while ( max_sectors/2 > (1ULL<<(scale+32)))
5874 scale++;
5875 }
5876 res = (resync>>scale)*1000;
5877 sector_div(res, (u32)((max_sectors>>scale)+1));
5878
5879 per_milli = res;
5880 {
5881 int i, x = per_milli/50, y = 20-x;
5882 seq_printf(seq, "[");
5883 for (i = 0; i < x; i++)
5884 seq_printf(seq, "=");
5885 seq_printf(seq, ">");
5886 for (i = 0; i < y; i++)
5887 seq_printf(seq, ".");
5888 seq_printf(seq, "] ");
5889 }
5890 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5891 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5892 "reshape" :
5893 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5894 "check" :
5895 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5896 "resync" : "recovery"))),
5897 per_milli/10, per_milli % 10,
5898 (unsigned long long) resync/2,
5899 (unsigned long long) max_sectors/2);
5900
5901 /*
5902 * dt: time from mark until now
5903 * db: blocks written from mark until now
5904 * rt: remaining time
5905 *
5906 * rt is a sector_t, so could be 32bit or 64bit.
5907 * So we divide before multiply in case it is 32bit and close
5908 * to the limit.
5909 * We scale the divisor (db) by 32 to avoid loosing precision
5910 * near the end of resync when the number of remaining sectors
5911 * is close to 'db'.
5912 * We then divide rt by 32 after multiplying by db to compensate.
5913 * The '+1' avoids division by zero if db is very small.
5914 */
5915 dt = ((jiffies - mddev->resync_mark) / HZ);
5916 if (!dt) dt++;
5917 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5918 - mddev->resync_mark_cnt;
5919
5920 rt = max_sectors - resync; /* number of remaining sectors */
5921 sector_div(rt, db/32+1);
5922 rt *= dt;
5923 rt >>= 5;
5924
5925 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
5926 ((unsigned long)rt % 60)/6);
5927
5928 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5929 }
5930
5931 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5932 {
5933 struct list_head *tmp;
5934 loff_t l = *pos;
5935 mddev_t *mddev;
5936
5937 if (l >= 0x10000)
5938 return NULL;
5939 if (!l--)
5940 /* header */
5941 return (void*)1;
5942
5943 spin_lock(&all_mddevs_lock);
5944 list_for_each(tmp,&all_mddevs)
5945 if (!l--) {
5946 mddev = list_entry(tmp, mddev_t, all_mddevs);
5947 mddev_get(mddev);
5948 spin_unlock(&all_mddevs_lock);
5949 return mddev;
5950 }
5951 spin_unlock(&all_mddevs_lock);
5952 if (!l--)
5953 return (void*)2;/* tail */
5954 return NULL;
5955 }
5956
5957 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5958 {
5959 struct list_head *tmp;
5960 mddev_t *next_mddev, *mddev = v;
5961
5962 ++*pos;
5963 if (v == (void*)2)
5964 return NULL;
5965
5966 spin_lock(&all_mddevs_lock);
5967 if (v == (void*)1)
5968 tmp = all_mddevs.next;
5969 else
5970 tmp = mddev->all_mddevs.next;
5971 if (tmp != &all_mddevs)
5972 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5973 else {
5974 next_mddev = (void*)2;
5975 *pos = 0x10000;
5976 }
5977 spin_unlock(&all_mddevs_lock);
5978
5979 if (v != (void*)1)
5980 mddev_put(mddev);
5981 return next_mddev;
5982
5983 }
5984
5985 static void md_seq_stop(struct seq_file *seq, void *v)
5986 {
5987 mddev_t *mddev = v;
5988
5989 if (mddev && v != (void*)1 && v != (void*)2)
5990 mddev_put(mddev);
5991 }
5992
5993 struct mdstat_info {
5994 int event;
5995 };
5996
5997 static int md_seq_show(struct seq_file *seq, void *v)
5998 {
5999 mddev_t *mddev = v;
6000 sector_t sectors;
6001 mdk_rdev_t *rdev;
6002 struct mdstat_info *mi = seq->private;
6003 struct bitmap *bitmap;
6004
6005 if (v == (void*)1) {
6006 struct mdk_personality *pers;
6007 seq_printf(seq, "Personalities : ");
6008 spin_lock(&pers_lock);
6009 list_for_each_entry(pers, &pers_list, list)
6010 seq_printf(seq, "[%s] ", pers->name);
6011
6012 spin_unlock(&pers_lock);
6013 seq_printf(seq, "\n");
6014 mi->event = atomic_read(&md_event_count);
6015 return 0;
6016 }
6017 if (v == (void*)2) {
6018 status_unused(seq);
6019 return 0;
6020 }
6021
6022 if (mddev_lock(mddev) < 0)
6023 return -EINTR;
6024
6025 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6026 seq_printf(seq, "%s : %sactive", mdname(mddev),
6027 mddev->pers ? "" : "in");
6028 if (mddev->pers) {
6029 if (mddev->ro==1)
6030 seq_printf(seq, " (read-only)");
6031 if (mddev->ro==2)
6032 seq_printf(seq, " (auto-read-only)");
6033 seq_printf(seq, " %s", mddev->pers->name);
6034 }
6035
6036 sectors = 0;
6037 list_for_each_entry(rdev, &mddev->disks, same_set) {
6038 char b[BDEVNAME_SIZE];
6039 seq_printf(seq, " %s[%d]",
6040 bdevname(rdev->bdev,b), rdev->desc_nr);
6041 if (test_bit(WriteMostly, &rdev->flags))
6042 seq_printf(seq, "(W)");
6043 if (test_bit(Faulty, &rdev->flags)) {
6044 seq_printf(seq, "(F)");
6045 continue;
6046 } else if (rdev->raid_disk < 0)
6047 seq_printf(seq, "(S)"); /* spare */
6048 sectors += rdev->sectors;
6049 }
6050
6051 if (!list_empty(&mddev->disks)) {
6052 if (mddev->pers)
6053 seq_printf(seq, "\n %llu blocks",
6054 (unsigned long long)
6055 mddev->array_sectors / 2);
6056 else
6057 seq_printf(seq, "\n %llu blocks",
6058 (unsigned long long)sectors / 2);
6059 }
6060 if (mddev->persistent) {
6061 if (mddev->major_version != 0 ||
6062 mddev->minor_version != 90) {
6063 seq_printf(seq," super %d.%d",
6064 mddev->major_version,
6065 mddev->minor_version);
6066 }
6067 } else if (mddev->external)
6068 seq_printf(seq, " super external:%s",
6069 mddev->metadata_type);
6070 else
6071 seq_printf(seq, " super non-persistent");
6072
6073 if (mddev->pers) {
6074 mddev->pers->status(seq, mddev);
6075 seq_printf(seq, "\n ");
6076 if (mddev->pers->sync_request) {
6077 if (mddev->curr_resync > 2) {
6078 status_resync(seq, mddev);
6079 seq_printf(seq, "\n ");
6080 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6081 seq_printf(seq, "\tresync=DELAYED\n ");
6082 else if (mddev->recovery_cp < MaxSector)
6083 seq_printf(seq, "\tresync=PENDING\n ");
6084 }
6085 } else
6086 seq_printf(seq, "\n ");
6087
6088 if ((bitmap = mddev->bitmap)) {
6089 unsigned long chunk_kb;
6090 unsigned long flags;
6091 spin_lock_irqsave(&bitmap->lock, flags);
6092 chunk_kb = bitmap->chunksize >> 10;
6093 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6094 "%lu%s chunk",
6095 bitmap->pages - bitmap->missing_pages,
6096 bitmap->pages,
6097 (bitmap->pages - bitmap->missing_pages)
6098 << (PAGE_SHIFT - 10),
6099 chunk_kb ? chunk_kb : bitmap->chunksize,
6100 chunk_kb ? "KB" : "B");
6101 if (bitmap->file) {
6102 seq_printf(seq, ", file: ");
6103 seq_path(seq, &bitmap->file->f_path, " \t\n");
6104 }
6105
6106 seq_printf(seq, "\n");
6107 spin_unlock_irqrestore(&bitmap->lock, flags);
6108 }
6109
6110 seq_printf(seq, "\n");
6111 }
6112 mddev_unlock(mddev);
6113
6114 return 0;
6115 }
6116
6117 static const struct seq_operations md_seq_ops = {
6118 .start = md_seq_start,
6119 .next = md_seq_next,
6120 .stop = md_seq_stop,
6121 .show = md_seq_show,
6122 };
6123
6124 static int md_seq_open(struct inode *inode, struct file *file)
6125 {
6126 int error;
6127 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6128 if (mi == NULL)
6129 return -ENOMEM;
6130
6131 error = seq_open(file, &md_seq_ops);
6132 if (error)
6133 kfree(mi);
6134 else {
6135 struct seq_file *p = file->private_data;
6136 p->private = mi;
6137 mi->event = atomic_read(&md_event_count);
6138 }
6139 return error;
6140 }
6141
6142 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6143 {
6144 struct seq_file *m = filp->private_data;
6145 struct mdstat_info *mi = m->private;
6146 int mask;
6147
6148 poll_wait(filp, &md_event_waiters, wait);
6149
6150 /* always allow read */
6151 mask = POLLIN | POLLRDNORM;
6152
6153 if (mi->event != atomic_read(&md_event_count))
6154 mask |= POLLERR | POLLPRI;
6155 return mask;
6156 }
6157
6158 static const struct file_operations md_seq_fops = {
6159 .owner = THIS_MODULE,
6160 .open = md_seq_open,
6161 .read = seq_read,
6162 .llseek = seq_lseek,
6163 .release = seq_release_private,
6164 .poll = mdstat_poll,
6165 };
6166
6167 int register_md_personality(struct mdk_personality *p)
6168 {
6169 spin_lock(&pers_lock);
6170 list_add_tail(&p->list, &pers_list);
6171 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6172 spin_unlock(&pers_lock);
6173 return 0;
6174 }
6175
6176 int unregister_md_personality(struct mdk_personality *p)
6177 {
6178 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6179 spin_lock(&pers_lock);
6180 list_del_init(&p->list);
6181 spin_unlock(&pers_lock);
6182 return 0;
6183 }
6184
6185 static int is_mddev_idle(mddev_t *mddev, int init)
6186 {
6187 mdk_rdev_t * rdev;
6188 int idle;
6189 int curr_events;
6190
6191 idle = 1;
6192 rcu_read_lock();
6193 rdev_for_each_rcu(rdev, mddev) {
6194 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6195 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6196 (int)part_stat_read(&disk->part0, sectors[1]) -
6197 atomic_read(&disk->sync_io);
6198 /* sync IO will cause sync_io to increase before the disk_stats
6199 * as sync_io is counted when a request starts, and
6200 * disk_stats is counted when it completes.
6201 * So resync activity will cause curr_events to be smaller than
6202 * when there was no such activity.
6203 * non-sync IO will cause disk_stat to increase without
6204 * increasing sync_io so curr_events will (eventually)
6205 * be larger than it was before. Once it becomes
6206 * substantially larger, the test below will cause
6207 * the array to appear non-idle, and resync will slow
6208 * down.
6209 * If there is a lot of outstanding resync activity when
6210 * we set last_event to curr_events, then all that activity
6211 * completing might cause the array to appear non-idle
6212 * and resync will be slowed down even though there might
6213 * not have been non-resync activity. This will only
6214 * happen once though. 'last_events' will soon reflect
6215 * the state where there is little or no outstanding
6216 * resync requests, and further resync activity will
6217 * always make curr_events less than last_events.
6218 *
6219 */
6220 if (init || curr_events - rdev->last_events > 64) {
6221 rdev->last_events = curr_events;
6222 idle = 0;
6223 }
6224 }
6225 rcu_read_unlock();
6226 return idle;
6227 }
6228
6229 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6230 {
6231 /* another "blocks" (512byte) blocks have been synced */
6232 atomic_sub(blocks, &mddev->recovery_active);
6233 wake_up(&mddev->recovery_wait);
6234 if (!ok) {
6235 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6236 md_wakeup_thread(mddev->thread);
6237 // stop recovery, signal do_sync ....
6238 }
6239 }
6240
6241
6242 /* md_write_start(mddev, bi)
6243 * If we need to update some array metadata (e.g. 'active' flag
6244 * in superblock) before writing, schedule a superblock update
6245 * and wait for it to complete.
6246 */
6247 void md_write_start(mddev_t *mddev, struct bio *bi)
6248 {
6249 int did_change = 0;
6250 if (bio_data_dir(bi) != WRITE)
6251 return;
6252
6253 BUG_ON(mddev->ro == 1);
6254 if (mddev->ro == 2) {
6255 /* need to switch to read/write */
6256 mddev->ro = 0;
6257 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6258 md_wakeup_thread(mddev->thread);
6259 md_wakeup_thread(mddev->sync_thread);
6260 did_change = 1;
6261 }
6262 atomic_inc(&mddev->writes_pending);
6263 if (mddev->safemode == 1)
6264 mddev->safemode = 0;
6265 if (mddev->in_sync) {
6266 spin_lock_irq(&mddev->write_lock);
6267 if (mddev->in_sync) {
6268 mddev->in_sync = 0;
6269 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6270 md_wakeup_thread(mddev->thread);
6271 did_change = 1;
6272 }
6273 spin_unlock_irq(&mddev->write_lock);
6274 }
6275 if (did_change)
6276 sysfs_notify_dirent(mddev->sysfs_state);
6277 wait_event(mddev->sb_wait,
6278 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6279 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6280 }
6281
6282 void md_write_end(mddev_t *mddev)
6283 {
6284 if (atomic_dec_and_test(&mddev->writes_pending)) {
6285 if (mddev->safemode == 2)
6286 md_wakeup_thread(mddev->thread);
6287 else if (mddev->safemode_delay)
6288 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6289 }
6290 }
6291
6292 /* md_allow_write(mddev)
6293 * Calling this ensures that the array is marked 'active' so that writes
6294 * may proceed without blocking. It is important to call this before
6295 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6296 * Must be called with mddev_lock held.
6297 *
6298 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6299 * is dropped, so return -EAGAIN after notifying userspace.
6300 */
6301 int md_allow_write(mddev_t *mddev)
6302 {
6303 if (!mddev->pers)
6304 return 0;
6305 if (mddev->ro)
6306 return 0;
6307 if (!mddev->pers->sync_request)
6308 return 0;
6309
6310 spin_lock_irq(&mddev->write_lock);
6311 if (mddev->in_sync) {
6312 mddev->in_sync = 0;
6313 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6314 if (mddev->safemode_delay &&
6315 mddev->safemode == 0)
6316 mddev->safemode = 1;
6317 spin_unlock_irq(&mddev->write_lock);
6318 md_update_sb(mddev, 0);
6319 sysfs_notify_dirent(mddev->sysfs_state);
6320 } else
6321 spin_unlock_irq(&mddev->write_lock);
6322
6323 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6324 return -EAGAIN;
6325 else
6326 return 0;
6327 }
6328 EXPORT_SYMBOL_GPL(md_allow_write);
6329
6330 #define SYNC_MARKS 10
6331 #define SYNC_MARK_STEP (3*HZ)
6332 void md_do_sync(mddev_t *mddev)
6333 {
6334 mddev_t *mddev2;
6335 unsigned int currspeed = 0,
6336 window;
6337 sector_t max_sectors,j, io_sectors;
6338 unsigned long mark[SYNC_MARKS];
6339 sector_t mark_cnt[SYNC_MARKS];
6340 int last_mark,m;
6341 struct list_head *tmp;
6342 sector_t last_check;
6343 int skipped = 0;
6344 mdk_rdev_t *rdev;
6345 char *desc;
6346
6347 /* just incase thread restarts... */
6348 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6349 return;
6350 if (mddev->ro) /* never try to sync a read-only array */
6351 return;
6352
6353 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6354 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6355 desc = "data-check";
6356 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6357 desc = "requested-resync";
6358 else
6359 desc = "resync";
6360 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6361 desc = "reshape";
6362 else
6363 desc = "recovery";
6364
6365 /* we overload curr_resync somewhat here.
6366 * 0 == not engaged in resync at all
6367 * 2 == checking that there is no conflict with another sync
6368 * 1 == like 2, but have yielded to allow conflicting resync to
6369 * commense
6370 * other == active in resync - this many blocks
6371 *
6372 * Before starting a resync we must have set curr_resync to
6373 * 2, and then checked that every "conflicting" array has curr_resync
6374 * less than ours. When we find one that is the same or higher
6375 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6376 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6377 * This will mean we have to start checking from the beginning again.
6378 *
6379 */
6380
6381 do {
6382 mddev->curr_resync = 2;
6383
6384 try_again:
6385 if (kthread_should_stop()) {
6386 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6387 goto skip;
6388 }
6389 for_each_mddev(mddev2, tmp) {
6390 if (mddev2 == mddev)
6391 continue;
6392 if (!mddev->parallel_resync
6393 && mddev2->curr_resync
6394 && match_mddev_units(mddev, mddev2)) {
6395 DEFINE_WAIT(wq);
6396 if (mddev < mddev2 && mddev->curr_resync == 2) {
6397 /* arbitrarily yield */
6398 mddev->curr_resync = 1;
6399 wake_up(&resync_wait);
6400 }
6401 if (mddev > mddev2 && mddev->curr_resync == 1)
6402 /* no need to wait here, we can wait the next
6403 * time 'round when curr_resync == 2
6404 */
6405 continue;
6406 /* We need to wait 'interruptible' so as not to
6407 * contribute to the load average, and not to
6408 * be caught by 'softlockup'
6409 */
6410 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6411 if (!kthread_should_stop() &&
6412 mddev2->curr_resync >= mddev->curr_resync) {
6413 printk(KERN_INFO "md: delaying %s of %s"
6414 " until %s has finished (they"
6415 " share one or more physical units)\n",
6416 desc, mdname(mddev), mdname(mddev2));
6417 mddev_put(mddev2);
6418 if (signal_pending(current))
6419 flush_signals(current);
6420 schedule();
6421 finish_wait(&resync_wait, &wq);
6422 goto try_again;
6423 }
6424 finish_wait(&resync_wait, &wq);
6425 }
6426 }
6427 } while (mddev->curr_resync < 2);
6428
6429 j = 0;
6430 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6431 /* resync follows the size requested by the personality,
6432 * which defaults to physical size, but can be virtual size
6433 */
6434 max_sectors = mddev->resync_max_sectors;
6435 mddev->resync_mismatches = 0;
6436 /* we don't use the checkpoint if there's a bitmap */
6437 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6438 j = mddev->resync_min;
6439 else if (!mddev->bitmap)
6440 j = mddev->recovery_cp;
6441
6442 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6443 max_sectors = mddev->dev_sectors;
6444 else {
6445 /* recovery follows the physical size of devices */
6446 max_sectors = mddev->dev_sectors;
6447 j = MaxSector;
6448 list_for_each_entry(rdev, &mddev->disks, same_set)
6449 if (rdev->raid_disk >= 0 &&
6450 !test_bit(Faulty, &rdev->flags) &&
6451 !test_bit(In_sync, &rdev->flags) &&
6452 rdev->recovery_offset < j)
6453 j = rdev->recovery_offset;
6454 }
6455
6456 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6457 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6458 " %d KB/sec/disk.\n", speed_min(mddev));
6459 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6460 "(but not more than %d KB/sec) for %s.\n",
6461 speed_max(mddev), desc);
6462
6463 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6464
6465 io_sectors = 0;
6466 for (m = 0; m < SYNC_MARKS; m++) {
6467 mark[m] = jiffies;
6468 mark_cnt[m] = io_sectors;
6469 }
6470 last_mark = 0;
6471 mddev->resync_mark = mark[last_mark];
6472 mddev->resync_mark_cnt = mark_cnt[last_mark];
6473
6474 /*
6475 * Tune reconstruction:
6476 */
6477 window = 32*(PAGE_SIZE/512);
6478 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6479 window/2,(unsigned long long) max_sectors/2);
6480
6481 atomic_set(&mddev->recovery_active, 0);
6482 last_check = 0;
6483
6484 if (j>2) {
6485 printk(KERN_INFO
6486 "md: resuming %s of %s from checkpoint.\n",
6487 desc, mdname(mddev));
6488 mddev->curr_resync = j;
6489 }
6490 mddev->curr_resync_completed = mddev->curr_resync;
6491
6492 while (j < max_sectors) {
6493 sector_t sectors;
6494
6495 skipped = 0;
6496
6497 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6498 ((mddev->curr_resync > mddev->curr_resync_completed &&
6499 (mddev->curr_resync - mddev->curr_resync_completed)
6500 > (max_sectors >> 4)) ||
6501 (j - mddev->curr_resync_completed)*2
6502 >= mddev->resync_max - mddev->curr_resync_completed
6503 )) {
6504 /* time to update curr_resync_completed */
6505 blk_unplug(mddev->queue);
6506 wait_event(mddev->recovery_wait,
6507 atomic_read(&mddev->recovery_active) == 0);
6508 mddev->curr_resync_completed =
6509 mddev->curr_resync;
6510 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6511 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6512 }
6513
6514 while (j >= mddev->resync_max && !kthread_should_stop()) {
6515 /* As this condition is controlled by user-space,
6516 * we can block indefinitely, so use '_interruptible'
6517 * to avoid triggering warnings.
6518 */
6519 flush_signals(current); /* just in case */
6520 wait_event_interruptible(mddev->recovery_wait,
6521 mddev->resync_max > j
6522 || kthread_should_stop());
6523 }
6524
6525 if (kthread_should_stop())
6526 goto interrupted;
6527
6528 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6529 currspeed < speed_min(mddev));
6530 if (sectors == 0) {
6531 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6532 goto out;
6533 }
6534
6535 if (!skipped) { /* actual IO requested */
6536 io_sectors += sectors;
6537 atomic_add(sectors, &mddev->recovery_active);
6538 }
6539
6540 j += sectors;
6541 if (j>1) mddev->curr_resync = j;
6542 mddev->curr_mark_cnt = io_sectors;
6543 if (last_check == 0)
6544 /* this is the earliers that rebuilt will be
6545 * visible in /proc/mdstat
6546 */
6547 md_new_event(mddev);
6548
6549 if (last_check + window > io_sectors || j == max_sectors)
6550 continue;
6551
6552 last_check = io_sectors;
6553
6554 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6555 break;
6556
6557 repeat:
6558 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6559 /* step marks */
6560 int next = (last_mark+1) % SYNC_MARKS;
6561
6562 mddev->resync_mark = mark[next];
6563 mddev->resync_mark_cnt = mark_cnt[next];
6564 mark[next] = jiffies;
6565 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6566 last_mark = next;
6567 }
6568
6569
6570 if (kthread_should_stop())
6571 goto interrupted;
6572
6573
6574 /*
6575 * this loop exits only if either when we are slower than
6576 * the 'hard' speed limit, or the system was IO-idle for
6577 * a jiffy.
6578 * the system might be non-idle CPU-wise, but we only care
6579 * about not overloading the IO subsystem. (things like an
6580 * e2fsck being done on the RAID array should execute fast)
6581 */
6582 blk_unplug(mddev->queue);
6583 cond_resched();
6584
6585 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6586 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6587
6588 if (currspeed > speed_min(mddev)) {
6589 if ((currspeed > speed_max(mddev)) ||
6590 !is_mddev_idle(mddev, 0)) {
6591 msleep(500);
6592 goto repeat;
6593 }
6594 }
6595 }
6596 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6597 /*
6598 * this also signals 'finished resyncing' to md_stop
6599 */
6600 out:
6601 blk_unplug(mddev->queue);
6602
6603 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6604
6605 /* tell personality that we are finished */
6606 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6607
6608 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6609 mddev->curr_resync > 2) {
6610 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6611 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6612 if (mddev->curr_resync >= mddev->recovery_cp) {
6613 printk(KERN_INFO
6614 "md: checkpointing %s of %s.\n",
6615 desc, mdname(mddev));
6616 mddev->recovery_cp = mddev->curr_resync;
6617 }
6618 } else
6619 mddev->recovery_cp = MaxSector;
6620 } else {
6621 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6622 mddev->curr_resync = MaxSector;
6623 list_for_each_entry(rdev, &mddev->disks, same_set)
6624 if (rdev->raid_disk >= 0 &&
6625 !test_bit(Faulty, &rdev->flags) &&
6626 !test_bit(In_sync, &rdev->flags) &&
6627 rdev->recovery_offset < mddev->curr_resync)
6628 rdev->recovery_offset = mddev->curr_resync;
6629 }
6630 }
6631 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6632
6633 skip:
6634 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6635 /* We completed so min/max setting can be forgotten if used. */
6636 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6637 mddev->resync_min = 0;
6638 mddev->resync_max = MaxSector;
6639 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6640 mddev->resync_min = mddev->curr_resync_completed;
6641 mddev->curr_resync = 0;
6642 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6643 mddev->curr_resync_completed = 0;
6644 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6645 wake_up(&resync_wait);
6646 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6647 md_wakeup_thread(mddev->thread);
6648 return;
6649
6650 interrupted:
6651 /*
6652 * got a signal, exit.
6653 */
6654 printk(KERN_INFO
6655 "md: md_do_sync() got signal ... exiting\n");
6656 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6657 goto out;
6658
6659 }
6660 EXPORT_SYMBOL_GPL(md_do_sync);
6661
6662
6663 static int remove_and_add_spares(mddev_t *mddev)
6664 {
6665 mdk_rdev_t *rdev;
6666 int spares = 0;
6667
6668 mddev->curr_resync_completed = 0;
6669
6670 list_for_each_entry(rdev, &mddev->disks, same_set)
6671 if (rdev->raid_disk >= 0 &&
6672 !test_bit(Blocked, &rdev->flags) &&
6673 (test_bit(Faulty, &rdev->flags) ||
6674 ! test_bit(In_sync, &rdev->flags)) &&
6675 atomic_read(&rdev->nr_pending)==0) {
6676 if (mddev->pers->hot_remove_disk(
6677 mddev, rdev->raid_disk)==0) {
6678 char nm[20];
6679 sprintf(nm,"rd%d", rdev->raid_disk);
6680 sysfs_remove_link(&mddev->kobj, nm);
6681 rdev->raid_disk = -1;
6682 }
6683 }
6684
6685 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6686 list_for_each_entry(rdev, &mddev->disks, same_set) {
6687 if (rdev->raid_disk >= 0 &&
6688 !test_bit(In_sync, &rdev->flags) &&
6689 !test_bit(Blocked, &rdev->flags))
6690 spares++;
6691 if (rdev->raid_disk < 0
6692 && !test_bit(Faulty, &rdev->flags)) {
6693 rdev->recovery_offset = 0;
6694 if (mddev->pers->
6695 hot_add_disk(mddev, rdev) == 0) {
6696 char nm[20];
6697 sprintf(nm, "rd%d", rdev->raid_disk);
6698 if (sysfs_create_link(&mddev->kobj,
6699 &rdev->kobj, nm))
6700 printk(KERN_WARNING
6701 "md: cannot register "
6702 "%s for %s\n",
6703 nm, mdname(mddev));
6704 spares++;
6705 md_new_event(mddev);
6706 } else
6707 break;
6708 }
6709 }
6710 }
6711 return spares;
6712 }
6713 /*
6714 * This routine is regularly called by all per-raid-array threads to
6715 * deal with generic issues like resync and super-block update.
6716 * Raid personalities that don't have a thread (linear/raid0) do not
6717 * need this as they never do any recovery or update the superblock.
6718 *
6719 * It does not do any resync itself, but rather "forks" off other threads
6720 * to do that as needed.
6721 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6722 * "->recovery" and create a thread at ->sync_thread.
6723 * When the thread finishes it sets MD_RECOVERY_DONE
6724 * and wakeups up this thread which will reap the thread and finish up.
6725 * This thread also removes any faulty devices (with nr_pending == 0).
6726 *
6727 * The overall approach is:
6728 * 1/ if the superblock needs updating, update it.
6729 * 2/ If a recovery thread is running, don't do anything else.
6730 * 3/ If recovery has finished, clean up, possibly marking spares active.
6731 * 4/ If there are any faulty devices, remove them.
6732 * 5/ If array is degraded, try to add spares devices
6733 * 6/ If array has spares or is not in-sync, start a resync thread.
6734 */
6735 void md_check_recovery(mddev_t *mddev)
6736 {
6737 mdk_rdev_t *rdev;
6738
6739
6740 if (mddev->bitmap)
6741 bitmap_daemon_work(mddev);
6742
6743 if (mddev->ro)
6744 return;
6745
6746 if (signal_pending(current)) {
6747 if (mddev->pers->sync_request && !mddev->external) {
6748 printk(KERN_INFO "md: %s in immediate safe mode\n",
6749 mdname(mddev));
6750 mddev->safemode = 2;
6751 }
6752 flush_signals(current);
6753 }
6754
6755 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6756 return;
6757 if ( ! (
6758 (mddev->flags && !mddev->external) ||
6759 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6760 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6761 (mddev->external == 0 && mddev->safemode == 1) ||
6762 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6763 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6764 ))
6765 return;
6766
6767 if (mddev_trylock(mddev)) {
6768 int spares = 0;
6769
6770 if (mddev->ro) {
6771 /* Only thing we do on a ro array is remove
6772 * failed devices.
6773 */
6774 remove_and_add_spares(mddev);
6775 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6776 goto unlock;
6777 }
6778
6779 if (!mddev->external) {
6780 int did_change = 0;
6781 spin_lock_irq(&mddev->write_lock);
6782 if (mddev->safemode &&
6783 !atomic_read(&mddev->writes_pending) &&
6784 !mddev->in_sync &&
6785 mddev->recovery_cp == MaxSector) {
6786 mddev->in_sync = 1;
6787 did_change = 1;
6788 if (mddev->persistent)
6789 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6790 }
6791 if (mddev->safemode == 1)
6792 mddev->safemode = 0;
6793 spin_unlock_irq(&mddev->write_lock);
6794 if (did_change)
6795 sysfs_notify_dirent(mddev->sysfs_state);
6796 }
6797
6798 if (mddev->flags)
6799 md_update_sb(mddev, 0);
6800
6801 list_for_each_entry(rdev, &mddev->disks, same_set)
6802 if (test_and_clear_bit(StateChanged, &rdev->flags))
6803 sysfs_notify_dirent(rdev->sysfs_state);
6804
6805
6806 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6807 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6808 /* resync/recovery still happening */
6809 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6810 goto unlock;
6811 }
6812 if (mddev->sync_thread) {
6813 /* resync has finished, collect result */
6814 md_unregister_thread(mddev->sync_thread);
6815 mddev->sync_thread = NULL;
6816 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
6817 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
6818 /* success...*/
6819 /* activate any spares */
6820 if (mddev->pers->spare_active(mddev))
6821 sysfs_notify(&mddev->kobj, NULL,
6822 "degraded");
6823 }
6824 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6825 mddev->pers->finish_reshape)
6826 mddev->pers->finish_reshape(mddev);
6827 md_update_sb(mddev, 1);
6828
6829 /* if array is no-longer degraded, then any saved_raid_disk
6830 * information must be scrapped
6831 */
6832 if (!mddev->degraded)
6833 list_for_each_entry(rdev, &mddev->disks, same_set)
6834 rdev->saved_raid_disk = -1;
6835
6836 mddev->recovery = 0;
6837 /* flag recovery needed just to double check */
6838 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6839 sysfs_notify_dirent(mddev->sysfs_action);
6840 md_new_event(mddev);
6841 goto unlock;
6842 }
6843 /* Set RUNNING before clearing NEEDED to avoid
6844 * any transients in the value of "sync_action".
6845 */
6846 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6847 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6848 /* Clear some bits that don't mean anything, but
6849 * might be left set
6850 */
6851 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6852 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6853
6854 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6855 goto unlock;
6856 /* no recovery is running.
6857 * remove any failed drives, then
6858 * add spares if possible.
6859 * Spare are also removed and re-added, to allow
6860 * the personality to fail the re-add.
6861 */
6862
6863 if (mddev->reshape_position != MaxSector) {
6864 if (mddev->pers->check_reshape == NULL ||
6865 mddev->pers->check_reshape(mddev) != 0)
6866 /* Cannot proceed */
6867 goto unlock;
6868 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6869 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6870 } else if ((spares = remove_and_add_spares(mddev))) {
6871 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6872 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6873 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
6874 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6875 } else if (mddev->recovery_cp < MaxSector) {
6876 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6877 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6878 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6879 /* nothing to be done ... */
6880 goto unlock;
6881
6882 if (mddev->pers->sync_request) {
6883 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6884 /* We are adding a device or devices to an array
6885 * which has the bitmap stored on all devices.
6886 * So make sure all bitmap pages get written
6887 */
6888 bitmap_write_all(mddev->bitmap);
6889 }
6890 mddev->sync_thread = md_register_thread(md_do_sync,
6891 mddev,
6892 "resync");
6893 if (!mddev->sync_thread) {
6894 printk(KERN_ERR "%s: could not start resync"
6895 " thread...\n",
6896 mdname(mddev));
6897 /* leave the spares where they are, it shouldn't hurt */
6898 mddev->recovery = 0;
6899 } else
6900 md_wakeup_thread(mddev->sync_thread);
6901 sysfs_notify_dirent(mddev->sysfs_action);
6902 md_new_event(mddev);
6903 }
6904 unlock:
6905 if (!mddev->sync_thread) {
6906 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6907 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6908 &mddev->recovery))
6909 if (mddev->sysfs_action)
6910 sysfs_notify_dirent(mddev->sysfs_action);
6911 }
6912 mddev_unlock(mddev);
6913 }
6914 }
6915
6916 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6917 {
6918 sysfs_notify_dirent(rdev->sysfs_state);
6919 wait_event_timeout(rdev->blocked_wait,
6920 !test_bit(Blocked, &rdev->flags),
6921 msecs_to_jiffies(5000));
6922 rdev_dec_pending(rdev, mddev);
6923 }
6924 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6925
6926 static int md_notify_reboot(struct notifier_block *this,
6927 unsigned long code, void *x)
6928 {
6929 struct list_head *tmp;
6930 mddev_t *mddev;
6931
6932 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6933
6934 printk(KERN_INFO "md: stopping all md devices.\n");
6935
6936 for_each_mddev(mddev, tmp)
6937 if (mddev_trylock(mddev)) {
6938 /* Force a switch to readonly even array
6939 * appears to still be in use. Hence
6940 * the '100'.
6941 */
6942 do_md_stop(mddev, 1, 100);
6943 mddev_unlock(mddev);
6944 }
6945 /*
6946 * certain more exotic SCSI devices are known to be
6947 * volatile wrt too early system reboots. While the
6948 * right place to handle this issue is the given
6949 * driver, we do want to have a safe RAID driver ...
6950 */
6951 mdelay(1000*1);
6952 }
6953 return NOTIFY_DONE;
6954 }
6955
6956 static struct notifier_block md_notifier = {
6957 .notifier_call = md_notify_reboot,
6958 .next = NULL,
6959 .priority = INT_MAX, /* before any real devices */
6960 };
6961
6962 static void md_geninit(void)
6963 {
6964 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6965
6966 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6967 }
6968
6969 static int __init md_init(void)
6970 {
6971 if (register_blkdev(MD_MAJOR, "md"))
6972 return -1;
6973 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6974 unregister_blkdev(MD_MAJOR, "md");
6975 return -1;
6976 }
6977 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
6978 md_probe, NULL, NULL);
6979 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6980 md_probe, NULL, NULL);
6981
6982 register_reboot_notifier(&md_notifier);
6983 raid_table_header = register_sysctl_table(raid_root_table);
6984
6985 md_geninit();
6986 return 0;
6987 }
6988
6989
6990 #ifndef MODULE
6991
6992 /*
6993 * Searches all registered partitions for autorun RAID arrays
6994 * at boot time.
6995 */
6996
6997 static LIST_HEAD(all_detected_devices);
6998 struct detected_devices_node {
6999 struct list_head list;
7000 dev_t dev;
7001 };
7002
7003 void md_autodetect_dev(dev_t dev)
7004 {
7005 struct detected_devices_node *node_detected_dev;
7006
7007 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7008 if (node_detected_dev) {
7009 node_detected_dev->dev = dev;
7010 list_add_tail(&node_detected_dev->list, &all_detected_devices);
7011 } else {
7012 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7013 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7014 }
7015 }
7016
7017
7018 static void autostart_arrays(int part)
7019 {
7020 mdk_rdev_t *rdev;
7021 struct detected_devices_node *node_detected_dev;
7022 dev_t dev;
7023 int i_scanned, i_passed;
7024
7025 i_scanned = 0;
7026 i_passed = 0;
7027
7028 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7029
7030 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7031 i_scanned++;
7032 node_detected_dev = list_entry(all_detected_devices.next,
7033 struct detected_devices_node, list);
7034 list_del(&node_detected_dev->list);
7035 dev = node_detected_dev->dev;
7036 kfree(node_detected_dev);
7037 rdev = md_import_device(dev,0, 90);
7038 if (IS_ERR(rdev))
7039 continue;
7040
7041 if (test_bit(Faulty, &rdev->flags)) {
7042 MD_BUG();
7043 continue;
7044 }
7045 set_bit(AutoDetected, &rdev->flags);
7046 list_add(&rdev->same_set, &pending_raid_disks);
7047 i_passed++;
7048 }
7049
7050 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7051 i_scanned, i_passed);
7052
7053 autorun_devices(part);
7054 }
7055
7056 #endif /* !MODULE */
7057
7058 static __exit void md_exit(void)
7059 {
7060 mddev_t *mddev;
7061 struct list_head *tmp;
7062
7063 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7064 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7065
7066 unregister_blkdev(MD_MAJOR,"md");
7067 unregister_blkdev(mdp_major, "mdp");
7068 unregister_reboot_notifier(&md_notifier);
7069 unregister_sysctl_table(raid_table_header);
7070 remove_proc_entry("mdstat", NULL);
7071 for_each_mddev(mddev, tmp) {
7072 export_array(mddev);
7073 mddev->hold_active = 0;
7074 }
7075 }
7076
7077 subsys_initcall(md_init);
7078 module_exit(md_exit)
7079
7080 static int get_ro(char *buffer, struct kernel_param *kp)
7081 {
7082 return sprintf(buffer, "%d", start_readonly);
7083 }
7084 static int set_ro(const char *val, struct kernel_param *kp)
7085 {
7086 char *e;
7087 int num = simple_strtoul(val, &e, 10);
7088 if (*val && (*e == '\0' || *e == '\n')) {
7089 start_readonly = num;
7090 return 0;
7091 }
7092 return -EINVAL;
7093 }
7094
7095 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7096 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7097
7098 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7099
7100 EXPORT_SYMBOL(register_md_personality);
7101 EXPORT_SYMBOL(unregister_md_personality);
7102 EXPORT_SYMBOL(md_error);
7103 EXPORT_SYMBOL(md_done_sync);
7104 EXPORT_SYMBOL(md_write_start);
7105 EXPORT_SYMBOL(md_write_end);
7106 EXPORT_SYMBOL(md_register_thread);
7107 EXPORT_SYMBOL(md_unregister_thread);
7108 EXPORT_SYMBOL(md_wakeup_thread);
7109 EXPORT_SYMBOL(md_check_recovery);
7110 MODULE_LICENSE("GPL");
7111 MODULE_ALIAS("md");
7112 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);