]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/md/raid5.c
Add bvec_merge_data to handle stacked devices and ->merge_bvec()
[mirror_ubuntu-artful-kernel.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56
57 /*
58 * Stripe cache
59 */
60
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define BYPASS_THRESHOLD 1
67 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK (NR_HASH - 1)
69
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
77 * be valid.
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
80 */
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 /*
83 * The following can be used to debug the driver
84 */
85 #define RAID5_PARANOIA 1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
91
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
96
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98
99 #if !RAID6_USE_EMPTY_ZERO_PAGE
100 /* In .bss so it's zeroed */
101 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102 #endif
103
104 static inline int raid6_next_disk(int disk, int raid_disks)
105 {
106 disk++;
107 return (disk < raid_disks) ? disk : 0;
108 }
109
110 static void return_io(struct bio *return_bi)
111 {
112 struct bio *bi = return_bi;
113 while (bi) {
114
115 return_bi = bi->bi_next;
116 bi->bi_next = NULL;
117 bi->bi_size = 0;
118 bi->bi_end_io(bi,
119 test_bit(BIO_UPTODATE, &bi->bi_flags)
120 ? 0 : -EIO);
121 bi = return_bi;
122 }
123 }
124
125 static void print_raid5_conf (raid5_conf_t *conf);
126
127 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
128 {
129 if (atomic_dec_and_test(&sh->count)) {
130 BUG_ON(!list_empty(&sh->lru));
131 BUG_ON(atomic_read(&conf->active_stripes)==0);
132 if (test_bit(STRIPE_HANDLE, &sh->state)) {
133 if (test_bit(STRIPE_DELAYED, &sh->state)) {
134 list_add_tail(&sh->lru, &conf->delayed_list);
135 blk_plug_device(conf->mddev->queue);
136 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
137 sh->bm_seq - conf->seq_write > 0) {
138 list_add_tail(&sh->lru, &conf->bitmap_list);
139 blk_plug_device(conf->mddev->queue);
140 } else {
141 clear_bit(STRIPE_BIT_DELAY, &sh->state);
142 list_add_tail(&sh->lru, &conf->handle_list);
143 }
144 md_wakeup_thread(conf->mddev->thread);
145 } else {
146 BUG_ON(sh->ops.pending);
147 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
148 atomic_dec(&conf->preread_active_stripes);
149 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
150 md_wakeup_thread(conf->mddev->thread);
151 }
152 atomic_dec(&conf->active_stripes);
153 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
154 list_add_tail(&sh->lru, &conf->inactive_list);
155 wake_up(&conf->wait_for_stripe);
156 if (conf->retry_read_aligned)
157 md_wakeup_thread(conf->mddev->thread);
158 }
159 }
160 }
161 }
162 static void release_stripe(struct stripe_head *sh)
163 {
164 raid5_conf_t *conf = sh->raid_conf;
165 unsigned long flags;
166
167 spin_lock_irqsave(&conf->device_lock, flags);
168 __release_stripe(conf, sh);
169 spin_unlock_irqrestore(&conf->device_lock, flags);
170 }
171
172 static inline void remove_hash(struct stripe_head *sh)
173 {
174 pr_debug("remove_hash(), stripe %llu\n",
175 (unsigned long long)sh->sector);
176
177 hlist_del_init(&sh->hash);
178 }
179
180 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
181 {
182 struct hlist_head *hp = stripe_hash(conf, sh->sector);
183
184 pr_debug("insert_hash(), stripe %llu\n",
185 (unsigned long long)sh->sector);
186
187 CHECK_DEVLOCK();
188 hlist_add_head(&sh->hash, hp);
189 }
190
191
192 /* find an idle stripe, make sure it is unhashed, and return it. */
193 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
194 {
195 struct stripe_head *sh = NULL;
196 struct list_head *first;
197
198 CHECK_DEVLOCK();
199 if (list_empty(&conf->inactive_list))
200 goto out;
201 first = conf->inactive_list.next;
202 sh = list_entry(first, struct stripe_head, lru);
203 list_del_init(first);
204 remove_hash(sh);
205 atomic_inc(&conf->active_stripes);
206 out:
207 return sh;
208 }
209
210 static void shrink_buffers(struct stripe_head *sh, int num)
211 {
212 struct page *p;
213 int i;
214
215 for (i=0; i<num ; i++) {
216 p = sh->dev[i].page;
217 if (!p)
218 continue;
219 sh->dev[i].page = NULL;
220 put_page(p);
221 }
222 }
223
224 static int grow_buffers(struct stripe_head *sh, int num)
225 {
226 int i;
227
228 for (i=0; i<num; i++) {
229 struct page *page;
230
231 if (!(page = alloc_page(GFP_KERNEL))) {
232 return 1;
233 }
234 sh->dev[i].page = page;
235 }
236 return 0;
237 }
238
239 static void raid5_build_block (struct stripe_head *sh, int i);
240
241 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
242 {
243 raid5_conf_t *conf = sh->raid_conf;
244 int i;
245
246 BUG_ON(atomic_read(&sh->count) != 0);
247 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
248 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
249
250 CHECK_DEVLOCK();
251 pr_debug("init_stripe called, stripe %llu\n",
252 (unsigned long long)sh->sector);
253
254 remove_hash(sh);
255
256 sh->sector = sector;
257 sh->pd_idx = pd_idx;
258 sh->state = 0;
259
260 sh->disks = disks;
261
262 for (i = sh->disks; i--; ) {
263 struct r5dev *dev = &sh->dev[i];
264
265 if (dev->toread || dev->read || dev->towrite || dev->written ||
266 test_bit(R5_LOCKED, &dev->flags)) {
267 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
268 (unsigned long long)sh->sector, i, dev->toread,
269 dev->read, dev->towrite, dev->written,
270 test_bit(R5_LOCKED, &dev->flags));
271 BUG();
272 }
273 dev->flags = 0;
274 raid5_build_block(sh, i);
275 }
276 insert_hash(conf, sh);
277 }
278
279 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
280 {
281 struct stripe_head *sh;
282 struct hlist_node *hn;
283
284 CHECK_DEVLOCK();
285 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
286 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
287 if (sh->sector == sector && sh->disks == disks)
288 return sh;
289 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
290 return NULL;
291 }
292
293 static void unplug_slaves(mddev_t *mddev);
294 static void raid5_unplug_device(struct request_queue *q);
295
296 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
297 int pd_idx, int noblock)
298 {
299 struct stripe_head *sh;
300
301 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
302
303 spin_lock_irq(&conf->device_lock);
304
305 do {
306 wait_event_lock_irq(conf->wait_for_stripe,
307 conf->quiesce == 0,
308 conf->device_lock, /* nothing */);
309 sh = __find_stripe(conf, sector, disks);
310 if (!sh) {
311 if (!conf->inactive_blocked)
312 sh = get_free_stripe(conf);
313 if (noblock && sh == NULL)
314 break;
315 if (!sh) {
316 conf->inactive_blocked = 1;
317 wait_event_lock_irq(conf->wait_for_stripe,
318 !list_empty(&conf->inactive_list) &&
319 (atomic_read(&conf->active_stripes)
320 < (conf->max_nr_stripes *3/4)
321 || !conf->inactive_blocked),
322 conf->device_lock,
323 raid5_unplug_device(conf->mddev->queue)
324 );
325 conf->inactive_blocked = 0;
326 } else
327 init_stripe(sh, sector, pd_idx, disks);
328 } else {
329 if (atomic_read(&sh->count)) {
330 BUG_ON(!list_empty(&sh->lru));
331 } else {
332 if (!test_bit(STRIPE_HANDLE, &sh->state))
333 atomic_inc(&conf->active_stripes);
334 if (list_empty(&sh->lru) &&
335 !test_bit(STRIPE_EXPANDING, &sh->state))
336 BUG();
337 list_del_init(&sh->lru);
338 }
339 }
340 } while (sh == NULL);
341
342 if (sh)
343 atomic_inc(&sh->count);
344
345 spin_unlock_irq(&conf->device_lock);
346 return sh;
347 }
348
349 /* test_and_ack_op() ensures that we only dequeue an operation once */
350 #define test_and_ack_op(op, pend) \
351 do { \
352 if (test_bit(op, &sh->ops.pending) && \
353 !test_bit(op, &sh->ops.complete)) { \
354 if (test_and_set_bit(op, &sh->ops.ack)) \
355 clear_bit(op, &pend); \
356 else \
357 ack++; \
358 } else \
359 clear_bit(op, &pend); \
360 } while (0)
361
362 /* find new work to run, do not resubmit work that is already
363 * in flight
364 */
365 static unsigned long get_stripe_work(struct stripe_head *sh)
366 {
367 unsigned long pending;
368 int ack = 0;
369
370 pending = sh->ops.pending;
371
372 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
373 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
374 test_and_ack_op(STRIPE_OP_PREXOR, pending);
375 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
376 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
377 test_and_ack_op(STRIPE_OP_CHECK, pending);
378 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
379 ack++;
380
381 sh->ops.count -= ack;
382 if (unlikely(sh->ops.count < 0)) {
383 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
384 "ops.complete: %#lx\n", pending, sh->ops.pending,
385 sh->ops.ack, sh->ops.complete);
386 BUG();
387 }
388
389 return pending;
390 }
391
392 static void
393 raid5_end_read_request(struct bio *bi, int error);
394 static void
395 raid5_end_write_request(struct bio *bi, int error);
396
397 static void ops_run_io(struct stripe_head *sh)
398 {
399 raid5_conf_t *conf = sh->raid_conf;
400 int i, disks = sh->disks;
401
402 might_sleep();
403
404 set_bit(STRIPE_IO_STARTED, &sh->state);
405 for (i = disks; i--; ) {
406 int rw;
407 struct bio *bi;
408 mdk_rdev_t *rdev;
409 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
410 rw = WRITE;
411 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
412 rw = READ;
413 else
414 continue;
415
416 bi = &sh->dev[i].req;
417
418 bi->bi_rw = rw;
419 if (rw == WRITE)
420 bi->bi_end_io = raid5_end_write_request;
421 else
422 bi->bi_end_io = raid5_end_read_request;
423
424 rcu_read_lock();
425 rdev = rcu_dereference(conf->disks[i].rdev);
426 if (rdev && test_bit(Faulty, &rdev->flags))
427 rdev = NULL;
428 if (rdev)
429 atomic_inc(&rdev->nr_pending);
430 rcu_read_unlock();
431
432 if (rdev) {
433 if (test_bit(STRIPE_SYNCING, &sh->state) ||
434 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
435 test_bit(STRIPE_EXPAND_READY, &sh->state))
436 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
437
438 bi->bi_bdev = rdev->bdev;
439 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
440 __func__, (unsigned long long)sh->sector,
441 bi->bi_rw, i);
442 atomic_inc(&sh->count);
443 bi->bi_sector = sh->sector + rdev->data_offset;
444 bi->bi_flags = 1 << BIO_UPTODATE;
445 bi->bi_vcnt = 1;
446 bi->bi_max_vecs = 1;
447 bi->bi_idx = 0;
448 bi->bi_io_vec = &sh->dev[i].vec;
449 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
450 bi->bi_io_vec[0].bv_offset = 0;
451 bi->bi_size = STRIPE_SIZE;
452 bi->bi_next = NULL;
453 if (rw == WRITE &&
454 test_bit(R5_ReWrite, &sh->dev[i].flags))
455 atomic_add(STRIPE_SECTORS,
456 &rdev->corrected_errors);
457 generic_make_request(bi);
458 } else {
459 if (rw == WRITE)
460 set_bit(STRIPE_DEGRADED, &sh->state);
461 pr_debug("skip op %ld on disc %d for sector %llu\n",
462 bi->bi_rw, i, (unsigned long long)sh->sector);
463 clear_bit(R5_LOCKED, &sh->dev[i].flags);
464 set_bit(STRIPE_HANDLE, &sh->state);
465 }
466 }
467 }
468
469 static struct dma_async_tx_descriptor *
470 async_copy_data(int frombio, struct bio *bio, struct page *page,
471 sector_t sector, struct dma_async_tx_descriptor *tx)
472 {
473 struct bio_vec *bvl;
474 struct page *bio_page;
475 int i;
476 int page_offset;
477
478 if (bio->bi_sector >= sector)
479 page_offset = (signed)(bio->bi_sector - sector) * 512;
480 else
481 page_offset = (signed)(sector - bio->bi_sector) * -512;
482 bio_for_each_segment(bvl, bio, i) {
483 int len = bio_iovec_idx(bio, i)->bv_len;
484 int clen;
485 int b_offset = 0;
486
487 if (page_offset < 0) {
488 b_offset = -page_offset;
489 page_offset += b_offset;
490 len -= b_offset;
491 }
492
493 if (len > 0 && page_offset + len > STRIPE_SIZE)
494 clen = STRIPE_SIZE - page_offset;
495 else
496 clen = len;
497
498 if (clen > 0) {
499 b_offset += bio_iovec_idx(bio, i)->bv_offset;
500 bio_page = bio_iovec_idx(bio, i)->bv_page;
501 if (frombio)
502 tx = async_memcpy(page, bio_page, page_offset,
503 b_offset, clen,
504 ASYNC_TX_DEP_ACK,
505 tx, NULL, NULL);
506 else
507 tx = async_memcpy(bio_page, page, b_offset,
508 page_offset, clen,
509 ASYNC_TX_DEP_ACK,
510 tx, NULL, NULL);
511 }
512 if (clen < len) /* hit end of page */
513 break;
514 page_offset += len;
515 }
516
517 return tx;
518 }
519
520 static void ops_complete_biofill(void *stripe_head_ref)
521 {
522 struct stripe_head *sh = stripe_head_ref;
523 struct bio *return_bi = NULL;
524 raid5_conf_t *conf = sh->raid_conf;
525 int i;
526
527 pr_debug("%s: stripe %llu\n", __func__,
528 (unsigned long long)sh->sector);
529
530 /* clear completed biofills */
531 for (i = sh->disks; i--; ) {
532 struct r5dev *dev = &sh->dev[i];
533
534 /* acknowledge completion of a biofill operation */
535 /* and check if we need to reply to a read request,
536 * new R5_Wantfill requests are held off until
537 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
538 */
539 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
540 struct bio *rbi, *rbi2;
541
542 /* The access to dev->read is outside of the
543 * spin_lock_irq(&conf->device_lock), but is protected
544 * by the STRIPE_OP_BIOFILL pending bit
545 */
546 BUG_ON(!dev->read);
547 rbi = dev->read;
548 dev->read = NULL;
549 while (rbi && rbi->bi_sector <
550 dev->sector + STRIPE_SECTORS) {
551 rbi2 = r5_next_bio(rbi, dev->sector);
552 spin_lock_irq(&conf->device_lock);
553 if (--rbi->bi_phys_segments == 0) {
554 rbi->bi_next = return_bi;
555 return_bi = rbi;
556 }
557 spin_unlock_irq(&conf->device_lock);
558 rbi = rbi2;
559 }
560 }
561 }
562 set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
563
564 return_io(return_bi);
565
566 set_bit(STRIPE_HANDLE, &sh->state);
567 release_stripe(sh);
568 }
569
570 static void ops_run_biofill(struct stripe_head *sh)
571 {
572 struct dma_async_tx_descriptor *tx = NULL;
573 raid5_conf_t *conf = sh->raid_conf;
574 int i;
575
576 pr_debug("%s: stripe %llu\n", __func__,
577 (unsigned long long)sh->sector);
578
579 for (i = sh->disks; i--; ) {
580 struct r5dev *dev = &sh->dev[i];
581 if (test_bit(R5_Wantfill, &dev->flags)) {
582 struct bio *rbi;
583 spin_lock_irq(&conf->device_lock);
584 dev->read = rbi = dev->toread;
585 dev->toread = NULL;
586 spin_unlock_irq(&conf->device_lock);
587 while (rbi && rbi->bi_sector <
588 dev->sector + STRIPE_SECTORS) {
589 tx = async_copy_data(0, rbi, dev->page,
590 dev->sector, tx);
591 rbi = r5_next_bio(rbi, dev->sector);
592 }
593 }
594 }
595
596 atomic_inc(&sh->count);
597 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
598 ops_complete_biofill, sh);
599 }
600
601 static void ops_complete_compute5(void *stripe_head_ref)
602 {
603 struct stripe_head *sh = stripe_head_ref;
604 int target = sh->ops.target;
605 struct r5dev *tgt = &sh->dev[target];
606
607 pr_debug("%s: stripe %llu\n", __func__,
608 (unsigned long long)sh->sector);
609
610 set_bit(R5_UPTODATE, &tgt->flags);
611 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
612 clear_bit(R5_Wantcompute, &tgt->flags);
613 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
614 set_bit(STRIPE_HANDLE, &sh->state);
615 release_stripe(sh);
616 }
617
618 static struct dma_async_tx_descriptor *
619 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
620 {
621 /* kernel stack size limits the total number of disks */
622 int disks = sh->disks;
623 struct page *xor_srcs[disks];
624 int target = sh->ops.target;
625 struct r5dev *tgt = &sh->dev[target];
626 struct page *xor_dest = tgt->page;
627 int count = 0;
628 struct dma_async_tx_descriptor *tx;
629 int i;
630
631 pr_debug("%s: stripe %llu block: %d\n",
632 __func__, (unsigned long long)sh->sector, target);
633 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
634
635 for (i = disks; i--; )
636 if (i != target)
637 xor_srcs[count++] = sh->dev[i].page;
638
639 atomic_inc(&sh->count);
640
641 if (unlikely(count == 1))
642 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
643 0, NULL, ops_complete_compute5, sh);
644 else
645 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
646 ASYNC_TX_XOR_ZERO_DST, NULL,
647 ops_complete_compute5, sh);
648
649 /* ack now if postxor is not set to be run */
650 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
651 async_tx_ack(tx);
652
653 return tx;
654 }
655
656 static void ops_complete_prexor(void *stripe_head_ref)
657 {
658 struct stripe_head *sh = stripe_head_ref;
659
660 pr_debug("%s: stripe %llu\n", __func__,
661 (unsigned long long)sh->sector);
662
663 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
664 }
665
666 static struct dma_async_tx_descriptor *
667 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
668 {
669 /* kernel stack size limits the total number of disks */
670 int disks = sh->disks;
671 struct page *xor_srcs[disks];
672 int count = 0, pd_idx = sh->pd_idx, i;
673
674 /* existing parity data subtracted */
675 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
676
677 pr_debug("%s: stripe %llu\n", __func__,
678 (unsigned long long)sh->sector);
679
680 for (i = disks; i--; ) {
681 struct r5dev *dev = &sh->dev[i];
682 /* Only process blocks that are known to be uptodate */
683 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
684 xor_srcs[count++] = dev->page;
685 }
686
687 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
688 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
689 ops_complete_prexor, sh);
690
691 return tx;
692 }
693
694 static struct dma_async_tx_descriptor *
695 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
696 unsigned long pending)
697 {
698 int disks = sh->disks;
699 int pd_idx = sh->pd_idx, i;
700
701 /* check if prexor is active which means only process blocks
702 * that are part of a read-modify-write (Wantprexor)
703 */
704 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
705
706 pr_debug("%s: stripe %llu\n", __func__,
707 (unsigned long long)sh->sector);
708
709 for (i = disks; i--; ) {
710 struct r5dev *dev = &sh->dev[i];
711 struct bio *chosen;
712 int towrite;
713
714 towrite = 0;
715 if (prexor) { /* rmw */
716 if (dev->towrite &&
717 test_bit(R5_Wantprexor, &dev->flags))
718 towrite = 1;
719 } else { /* rcw */
720 if (i != pd_idx && dev->towrite &&
721 test_bit(R5_LOCKED, &dev->flags))
722 towrite = 1;
723 }
724
725 if (towrite) {
726 struct bio *wbi;
727
728 spin_lock(&sh->lock);
729 chosen = dev->towrite;
730 dev->towrite = NULL;
731 BUG_ON(dev->written);
732 wbi = dev->written = chosen;
733 spin_unlock(&sh->lock);
734
735 while (wbi && wbi->bi_sector <
736 dev->sector + STRIPE_SECTORS) {
737 tx = async_copy_data(1, wbi, dev->page,
738 dev->sector, tx);
739 wbi = r5_next_bio(wbi, dev->sector);
740 }
741 }
742 }
743
744 return tx;
745 }
746
747 static void ops_complete_postxor(void *stripe_head_ref)
748 {
749 struct stripe_head *sh = stripe_head_ref;
750
751 pr_debug("%s: stripe %llu\n", __func__,
752 (unsigned long long)sh->sector);
753
754 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
755 set_bit(STRIPE_HANDLE, &sh->state);
756 release_stripe(sh);
757 }
758
759 static void ops_complete_write(void *stripe_head_ref)
760 {
761 struct stripe_head *sh = stripe_head_ref;
762 int disks = sh->disks, i, pd_idx = sh->pd_idx;
763
764 pr_debug("%s: stripe %llu\n", __func__,
765 (unsigned long long)sh->sector);
766
767 for (i = disks; i--; ) {
768 struct r5dev *dev = &sh->dev[i];
769 if (dev->written || i == pd_idx)
770 set_bit(R5_UPTODATE, &dev->flags);
771 }
772
773 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
774 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
775
776 set_bit(STRIPE_HANDLE, &sh->state);
777 release_stripe(sh);
778 }
779
780 static void
781 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
782 unsigned long pending)
783 {
784 /* kernel stack size limits the total number of disks */
785 int disks = sh->disks;
786 struct page *xor_srcs[disks];
787
788 int count = 0, pd_idx = sh->pd_idx, i;
789 struct page *xor_dest;
790 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
791 unsigned long flags;
792 dma_async_tx_callback callback;
793
794 pr_debug("%s: stripe %llu\n", __func__,
795 (unsigned long long)sh->sector);
796
797 /* check if prexor is active which means only process blocks
798 * that are part of a read-modify-write (written)
799 */
800 if (prexor) {
801 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
802 for (i = disks; i--; ) {
803 struct r5dev *dev = &sh->dev[i];
804 if (dev->written)
805 xor_srcs[count++] = dev->page;
806 }
807 } else {
808 xor_dest = sh->dev[pd_idx].page;
809 for (i = disks; i--; ) {
810 struct r5dev *dev = &sh->dev[i];
811 if (i != pd_idx)
812 xor_srcs[count++] = dev->page;
813 }
814 }
815
816 /* check whether this postxor is part of a write */
817 callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
818 ops_complete_write : ops_complete_postxor;
819
820 /* 1/ if we prexor'd then the dest is reused as a source
821 * 2/ if we did not prexor then we are redoing the parity
822 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
823 * for the synchronous xor case
824 */
825 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
826 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
827
828 atomic_inc(&sh->count);
829
830 if (unlikely(count == 1)) {
831 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
832 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
833 flags, tx, callback, sh);
834 } else
835 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
836 flags, tx, callback, sh);
837 }
838
839 static void ops_complete_check(void *stripe_head_ref)
840 {
841 struct stripe_head *sh = stripe_head_ref;
842 int pd_idx = sh->pd_idx;
843
844 pr_debug("%s: stripe %llu\n", __func__,
845 (unsigned long long)sh->sector);
846
847 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
848 sh->ops.zero_sum_result == 0)
849 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
850
851 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
852 set_bit(STRIPE_HANDLE, &sh->state);
853 release_stripe(sh);
854 }
855
856 static void ops_run_check(struct stripe_head *sh)
857 {
858 /* kernel stack size limits the total number of disks */
859 int disks = sh->disks;
860 struct page *xor_srcs[disks];
861 struct dma_async_tx_descriptor *tx;
862
863 int count = 0, pd_idx = sh->pd_idx, i;
864 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
865
866 pr_debug("%s: stripe %llu\n", __func__,
867 (unsigned long long)sh->sector);
868
869 for (i = disks; i--; ) {
870 struct r5dev *dev = &sh->dev[i];
871 if (i != pd_idx)
872 xor_srcs[count++] = dev->page;
873 }
874
875 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
876 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
877
878 if (tx)
879 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
880 else
881 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
882
883 atomic_inc(&sh->count);
884 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
885 ops_complete_check, sh);
886 }
887
888 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
889 {
890 int overlap_clear = 0, i, disks = sh->disks;
891 struct dma_async_tx_descriptor *tx = NULL;
892
893 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
894 ops_run_biofill(sh);
895 overlap_clear++;
896 }
897
898 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
899 tx = ops_run_compute5(sh, pending);
900
901 if (test_bit(STRIPE_OP_PREXOR, &pending))
902 tx = ops_run_prexor(sh, tx);
903
904 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
905 tx = ops_run_biodrain(sh, tx, pending);
906 overlap_clear++;
907 }
908
909 if (test_bit(STRIPE_OP_POSTXOR, &pending))
910 ops_run_postxor(sh, tx, pending);
911
912 if (test_bit(STRIPE_OP_CHECK, &pending))
913 ops_run_check(sh);
914
915 if (test_bit(STRIPE_OP_IO, &pending))
916 ops_run_io(sh);
917
918 if (overlap_clear)
919 for (i = disks; i--; ) {
920 struct r5dev *dev = &sh->dev[i];
921 if (test_and_clear_bit(R5_Overlap, &dev->flags))
922 wake_up(&sh->raid_conf->wait_for_overlap);
923 }
924 }
925
926 static int grow_one_stripe(raid5_conf_t *conf)
927 {
928 struct stripe_head *sh;
929 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
930 if (!sh)
931 return 0;
932 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
933 sh->raid_conf = conf;
934 spin_lock_init(&sh->lock);
935
936 if (grow_buffers(sh, conf->raid_disks)) {
937 shrink_buffers(sh, conf->raid_disks);
938 kmem_cache_free(conf->slab_cache, sh);
939 return 0;
940 }
941 sh->disks = conf->raid_disks;
942 /* we just created an active stripe so... */
943 atomic_set(&sh->count, 1);
944 atomic_inc(&conf->active_stripes);
945 INIT_LIST_HEAD(&sh->lru);
946 release_stripe(sh);
947 return 1;
948 }
949
950 static int grow_stripes(raid5_conf_t *conf, int num)
951 {
952 struct kmem_cache *sc;
953 int devs = conf->raid_disks;
954
955 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
956 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
957 conf->active_name = 0;
958 sc = kmem_cache_create(conf->cache_name[conf->active_name],
959 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
960 0, 0, NULL);
961 if (!sc)
962 return 1;
963 conf->slab_cache = sc;
964 conf->pool_size = devs;
965 while (num--)
966 if (!grow_one_stripe(conf))
967 return 1;
968 return 0;
969 }
970
971 #ifdef CONFIG_MD_RAID5_RESHAPE
972 static int resize_stripes(raid5_conf_t *conf, int newsize)
973 {
974 /* Make all the stripes able to hold 'newsize' devices.
975 * New slots in each stripe get 'page' set to a new page.
976 *
977 * This happens in stages:
978 * 1/ create a new kmem_cache and allocate the required number of
979 * stripe_heads.
980 * 2/ gather all the old stripe_heads and tranfer the pages across
981 * to the new stripe_heads. This will have the side effect of
982 * freezing the array as once all stripe_heads have been collected,
983 * no IO will be possible. Old stripe heads are freed once their
984 * pages have been transferred over, and the old kmem_cache is
985 * freed when all stripes are done.
986 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
987 * we simple return a failre status - no need to clean anything up.
988 * 4/ allocate new pages for the new slots in the new stripe_heads.
989 * If this fails, we don't bother trying the shrink the
990 * stripe_heads down again, we just leave them as they are.
991 * As each stripe_head is processed the new one is released into
992 * active service.
993 *
994 * Once step2 is started, we cannot afford to wait for a write,
995 * so we use GFP_NOIO allocations.
996 */
997 struct stripe_head *osh, *nsh;
998 LIST_HEAD(newstripes);
999 struct disk_info *ndisks;
1000 int err = 0;
1001 struct kmem_cache *sc;
1002 int i;
1003
1004 if (newsize <= conf->pool_size)
1005 return 0; /* never bother to shrink */
1006
1007 md_allow_write(conf->mddev);
1008
1009 /* Step 1 */
1010 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1011 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1012 0, 0, NULL);
1013 if (!sc)
1014 return -ENOMEM;
1015
1016 for (i = conf->max_nr_stripes; i; i--) {
1017 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1018 if (!nsh)
1019 break;
1020
1021 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1022
1023 nsh->raid_conf = conf;
1024 spin_lock_init(&nsh->lock);
1025
1026 list_add(&nsh->lru, &newstripes);
1027 }
1028 if (i) {
1029 /* didn't get enough, give up */
1030 while (!list_empty(&newstripes)) {
1031 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1032 list_del(&nsh->lru);
1033 kmem_cache_free(sc, nsh);
1034 }
1035 kmem_cache_destroy(sc);
1036 return -ENOMEM;
1037 }
1038 /* Step 2 - Must use GFP_NOIO now.
1039 * OK, we have enough stripes, start collecting inactive
1040 * stripes and copying them over
1041 */
1042 list_for_each_entry(nsh, &newstripes, lru) {
1043 spin_lock_irq(&conf->device_lock);
1044 wait_event_lock_irq(conf->wait_for_stripe,
1045 !list_empty(&conf->inactive_list),
1046 conf->device_lock,
1047 unplug_slaves(conf->mddev)
1048 );
1049 osh = get_free_stripe(conf);
1050 spin_unlock_irq(&conf->device_lock);
1051 atomic_set(&nsh->count, 1);
1052 for(i=0; i<conf->pool_size; i++)
1053 nsh->dev[i].page = osh->dev[i].page;
1054 for( ; i<newsize; i++)
1055 nsh->dev[i].page = NULL;
1056 kmem_cache_free(conf->slab_cache, osh);
1057 }
1058 kmem_cache_destroy(conf->slab_cache);
1059
1060 /* Step 3.
1061 * At this point, we are holding all the stripes so the array
1062 * is completely stalled, so now is a good time to resize
1063 * conf->disks.
1064 */
1065 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1066 if (ndisks) {
1067 for (i=0; i<conf->raid_disks; i++)
1068 ndisks[i] = conf->disks[i];
1069 kfree(conf->disks);
1070 conf->disks = ndisks;
1071 } else
1072 err = -ENOMEM;
1073
1074 /* Step 4, return new stripes to service */
1075 while(!list_empty(&newstripes)) {
1076 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1077 list_del_init(&nsh->lru);
1078 for (i=conf->raid_disks; i < newsize; i++)
1079 if (nsh->dev[i].page == NULL) {
1080 struct page *p = alloc_page(GFP_NOIO);
1081 nsh->dev[i].page = p;
1082 if (!p)
1083 err = -ENOMEM;
1084 }
1085 release_stripe(nsh);
1086 }
1087 /* critical section pass, GFP_NOIO no longer needed */
1088
1089 conf->slab_cache = sc;
1090 conf->active_name = 1-conf->active_name;
1091 conf->pool_size = newsize;
1092 return err;
1093 }
1094 #endif
1095
1096 static int drop_one_stripe(raid5_conf_t *conf)
1097 {
1098 struct stripe_head *sh;
1099
1100 spin_lock_irq(&conf->device_lock);
1101 sh = get_free_stripe(conf);
1102 spin_unlock_irq(&conf->device_lock);
1103 if (!sh)
1104 return 0;
1105 BUG_ON(atomic_read(&sh->count));
1106 shrink_buffers(sh, conf->pool_size);
1107 kmem_cache_free(conf->slab_cache, sh);
1108 atomic_dec(&conf->active_stripes);
1109 return 1;
1110 }
1111
1112 static void shrink_stripes(raid5_conf_t *conf)
1113 {
1114 while (drop_one_stripe(conf))
1115 ;
1116
1117 if (conf->slab_cache)
1118 kmem_cache_destroy(conf->slab_cache);
1119 conf->slab_cache = NULL;
1120 }
1121
1122 static void raid5_end_read_request(struct bio * bi, int error)
1123 {
1124 struct stripe_head *sh = bi->bi_private;
1125 raid5_conf_t *conf = sh->raid_conf;
1126 int disks = sh->disks, i;
1127 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1128 char b[BDEVNAME_SIZE];
1129 mdk_rdev_t *rdev;
1130
1131
1132 for (i=0 ; i<disks; i++)
1133 if (bi == &sh->dev[i].req)
1134 break;
1135
1136 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1137 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1138 uptodate);
1139 if (i == disks) {
1140 BUG();
1141 return;
1142 }
1143
1144 if (uptodate) {
1145 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1146 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1147 rdev = conf->disks[i].rdev;
1148 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1149 " (%lu sectors at %llu on %s)\n",
1150 mdname(conf->mddev), STRIPE_SECTORS,
1151 (unsigned long long)(sh->sector
1152 + rdev->data_offset),
1153 bdevname(rdev->bdev, b));
1154 clear_bit(R5_ReadError, &sh->dev[i].flags);
1155 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1156 }
1157 if (atomic_read(&conf->disks[i].rdev->read_errors))
1158 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1159 } else {
1160 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1161 int retry = 0;
1162 rdev = conf->disks[i].rdev;
1163
1164 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1165 atomic_inc(&rdev->read_errors);
1166 if (conf->mddev->degraded)
1167 printk_rl(KERN_WARNING
1168 "raid5:%s: read error not correctable "
1169 "(sector %llu on %s).\n",
1170 mdname(conf->mddev),
1171 (unsigned long long)(sh->sector
1172 + rdev->data_offset),
1173 bdn);
1174 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1175 /* Oh, no!!! */
1176 printk_rl(KERN_WARNING
1177 "raid5:%s: read error NOT corrected!! "
1178 "(sector %llu on %s).\n",
1179 mdname(conf->mddev),
1180 (unsigned long long)(sh->sector
1181 + rdev->data_offset),
1182 bdn);
1183 else if (atomic_read(&rdev->read_errors)
1184 > conf->max_nr_stripes)
1185 printk(KERN_WARNING
1186 "raid5:%s: Too many read errors, failing device %s.\n",
1187 mdname(conf->mddev), bdn);
1188 else
1189 retry = 1;
1190 if (retry)
1191 set_bit(R5_ReadError, &sh->dev[i].flags);
1192 else {
1193 clear_bit(R5_ReadError, &sh->dev[i].flags);
1194 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1195 md_error(conf->mddev, rdev);
1196 }
1197 }
1198 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1199 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1200 set_bit(STRIPE_HANDLE, &sh->state);
1201 release_stripe(sh);
1202 }
1203
1204 static void raid5_end_write_request (struct bio *bi, int error)
1205 {
1206 struct stripe_head *sh = bi->bi_private;
1207 raid5_conf_t *conf = sh->raid_conf;
1208 int disks = sh->disks, i;
1209 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1210
1211 for (i=0 ; i<disks; i++)
1212 if (bi == &sh->dev[i].req)
1213 break;
1214
1215 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1216 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1217 uptodate);
1218 if (i == disks) {
1219 BUG();
1220 return;
1221 }
1222
1223 if (!uptodate)
1224 md_error(conf->mddev, conf->disks[i].rdev);
1225
1226 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1227
1228 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1229 set_bit(STRIPE_HANDLE, &sh->state);
1230 release_stripe(sh);
1231 }
1232
1233
1234 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1235
1236 static void raid5_build_block (struct stripe_head *sh, int i)
1237 {
1238 struct r5dev *dev = &sh->dev[i];
1239
1240 bio_init(&dev->req);
1241 dev->req.bi_io_vec = &dev->vec;
1242 dev->req.bi_vcnt++;
1243 dev->req.bi_max_vecs++;
1244 dev->vec.bv_page = dev->page;
1245 dev->vec.bv_len = STRIPE_SIZE;
1246 dev->vec.bv_offset = 0;
1247
1248 dev->req.bi_sector = sh->sector;
1249 dev->req.bi_private = sh;
1250
1251 dev->flags = 0;
1252 dev->sector = compute_blocknr(sh, i);
1253 }
1254
1255 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1256 {
1257 char b[BDEVNAME_SIZE];
1258 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1259 pr_debug("raid5: error called\n");
1260
1261 if (!test_bit(Faulty, &rdev->flags)) {
1262 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1263 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1264 unsigned long flags;
1265 spin_lock_irqsave(&conf->device_lock, flags);
1266 mddev->degraded++;
1267 spin_unlock_irqrestore(&conf->device_lock, flags);
1268 /*
1269 * if recovery was running, make sure it aborts.
1270 */
1271 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1272 }
1273 set_bit(Faulty, &rdev->flags);
1274 printk (KERN_ALERT
1275 "raid5: Disk failure on %s, disabling device.\n"
1276 "raid5: Operation continuing on %d devices.\n",
1277 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1278 }
1279 }
1280
1281 /*
1282 * Input: a 'big' sector number,
1283 * Output: index of the data and parity disk, and the sector # in them.
1284 */
1285 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1286 unsigned int data_disks, unsigned int * dd_idx,
1287 unsigned int * pd_idx, raid5_conf_t *conf)
1288 {
1289 long stripe;
1290 unsigned long chunk_number;
1291 unsigned int chunk_offset;
1292 sector_t new_sector;
1293 int sectors_per_chunk = conf->chunk_size >> 9;
1294
1295 /* First compute the information on this sector */
1296
1297 /*
1298 * Compute the chunk number and the sector offset inside the chunk
1299 */
1300 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1301 chunk_number = r_sector;
1302 BUG_ON(r_sector != chunk_number);
1303
1304 /*
1305 * Compute the stripe number
1306 */
1307 stripe = chunk_number / data_disks;
1308
1309 /*
1310 * Compute the data disk and parity disk indexes inside the stripe
1311 */
1312 *dd_idx = chunk_number % data_disks;
1313
1314 /*
1315 * Select the parity disk based on the user selected algorithm.
1316 */
1317 switch(conf->level) {
1318 case 4:
1319 *pd_idx = data_disks;
1320 break;
1321 case 5:
1322 switch (conf->algorithm) {
1323 case ALGORITHM_LEFT_ASYMMETRIC:
1324 *pd_idx = data_disks - stripe % raid_disks;
1325 if (*dd_idx >= *pd_idx)
1326 (*dd_idx)++;
1327 break;
1328 case ALGORITHM_RIGHT_ASYMMETRIC:
1329 *pd_idx = stripe % raid_disks;
1330 if (*dd_idx >= *pd_idx)
1331 (*dd_idx)++;
1332 break;
1333 case ALGORITHM_LEFT_SYMMETRIC:
1334 *pd_idx = data_disks - stripe % raid_disks;
1335 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1336 break;
1337 case ALGORITHM_RIGHT_SYMMETRIC:
1338 *pd_idx = stripe % raid_disks;
1339 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1340 break;
1341 default:
1342 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1343 conf->algorithm);
1344 }
1345 break;
1346 case 6:
1347
1348 /**** FIX THIS ****/
1349 switch (conf->algorithm) {
1350 case ALGORITHM_LEFT_ASYMMETRIC:
1351 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1352 if (*pd_idx == raid_disks-1)
1353 (*dd_idx)++; /* Q D D D P */
1354 else if (*dd_idx >= *pd_idx)
1355 (*dd_idx) += 2; /* D D P Q D */
1356 break;
1357 case ALGORITHM_RIGHT_ASYMMETRIC:
1358 *pd_idx = stripe % raid_disks;
1359 if (*pd_idx == raid_disks-1)
1360 (*dd_idx)++; /* Q D D D P */
1361 else if (*dd_idx >= *pd_idx)
1362 (*dd_idx) += 2; /* D D P Q D */
1363 break;
1364 case ALGORITHM_LEFT_SYMMETRIC:
1365 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1366 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1367 break;
1368 case ALGORITHM_RIGHT_SYMMETRIC:
1369 *pd_idx = stripe % raid_disks;
1370 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1371 break;
1372 default:
1373 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1374 conf->algorithm);
1375 }
1376 break;
1377 }
1378
1379 /*
1380 * Finally, compute the new sector number
1381 */
1382 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1383 return new_sector;
1384 }
1385
1386
1387 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1388 {
1389 raid5_conf_t *conf = sh->raid_conf;
1390 int raid_disks = sh->disks;
1391 int data_disks = raid_disks - conf->max_degraded;
1392 sector_t new_sector = sh->sector, check;
1393 int sectors_per_chunk = conf->chunk_size >> 9;
1394 sector_t stripe;
1395 int chunk_offset;
1396 int chunk_number, dummy1, dummy2, dd_idx = i;
1397 sector_t r_sector;
1398
1399
1400 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1401 stripe = new_sector;
1402 BUG_ON(new_sector != stripe);
1403
1404 if (i == sh->pd_idx)
1405 return 0;
1406 switch(conf->level) {
1407 case 4: break;
1408 case 5:
1409 switch (conf->algorithm) {
1410 case ALGORITHM_LEFT_ASYMMETRIC:
1411 case ALGORITHM_RIGHT_ASYMMETRIC:
1412 if (i > sh->pd_idx)
1413 i--;
1414 break;
1415 case ALGORITHM_LEFT_SYMMETRIC:
1416 case ALGORITHM_RIGHT_SYMMETRIC:
1417 if (i < sh->pd_idx)
1418 i += raid_disks;
1419 i -= (sh->pd_idx + 1);
1420 break;
1421 default:
1422 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1423 conf->algorithm);
1424 }
1425 break;
1426 case 6:
1427 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1428 return 0; /* It is the Q disk */
1429 switch (conf->algorithm) {
1430 case ALGORITHM_LEFT_ASYMMETRIC:
1431 case ALGORITHM_RIGHT_ASYMMETRIC:
1432 if (sh->pd_idx == raid_disks-1)
1433 i--; /* Q D D D P */
1434 else if (i > sh->pd_idx)
1435 i -= 2; /* D D P Q D */
1436 break;
1437 case ALGORITHM_LEFT_SYMMETRIC:
1438 case ALGORITHM_RIGHT_SYMMETRIC:
1439 if (sh->pd_idx == raid_disks-1)
1440 i--; /* Q D D D P */
1441 else {
1442 /* D D P Q D */
1443 if (i < sh->pd_idx)
1444 i += raid_disks;
1445 i -= (sh->pd_idx + 2);
1446 }
1447 break;
1448 default:
1449 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1450 conf->algorithm);
1451 }
1452 break;
1453 }
1454
1455 chunk_number = stripe * data_disks + i;
1456 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1457
1458 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1459 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1460 printk(KERN_ERR "compute_blocknr: map not correct\n");
1461 return 0;
1462 }
1463 return r_sector;
1464 }
1465
1466
1467
1468 /*
1469 * Copy data between a page in the stripe cache, and one or more bion
1470 * The page could align with the middle of the bio, or there could be
1471 * several bion, each with several bio_vecs, which cover part of the page
1472 * Multiple bion are linked together on bi_next. There may be extras
1473 * at the end of this list. We ignore them.
1474 */
1475 static void copy_data(int frombio, struct bio *bio,
1476 struct page *page,
1477 sector_t sector)
1478 {
1479 char *pa = page_address(page);
1480 struct bio_vec *bvl;
1481 int i;
1482 int page_offset;
1483
1484 if (bio->bi_sector >= sector)
1485 page_offset = (signed)(bio->bi_sector - sector) * 512;
1486 else
1487 page_offset = (signed)(sector - bio->bi_sector) * -512;
1488 bio_for_each_segment(bvl, bio, i) {
1489 int len = bio_iovec_idx(bio,i)->bv_len;
1490 int clen;
1491 int b_offset = 0;
1492
1493 if (page_offset < 0) {
1494 b_offset = -page_offset;
1495 page_offset += b_offset;
1496 len -= b_offset;
1497 }
1498
1499 if (len > 0 && page_offset + len > STRIPE_SIZE)
1500 clen = STRIPE_SIZE - page_offset;
1501 else clen = len;
1502
1503 if (clen > 0) {
1504 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1505 if (frombio)
1506 memcpy(pa+page_offset, ba+b_offset, clen);
1507 else
1508 memcpy(ba+b_offset, pa+page_offset, clen);
1509 __bio_kunmap_atomic(ba, KM_USER0);
1510 }
1511 if (clen < len) /* hit end of page */
1512 break;
1513 page_offset += len;
1514 }
1515 }
1516
1517 #define check_xor() do { \
1518 if (count == MAX_XOR_BLOCKS) { \
1519 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1520 count = 0; \
1521 } \
1522 } while(0)
1523
1524 static void compute_parity6(struct stripe_head *sh, int method)
1525 {
1526 raid6_conf_t *conf = sh->raid_conf;
1527 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1528 struct bio *chosen;
1529 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1530 void *ptrs[disks];
1531
1532 qd_idx = raid6_next_disk(pd_idx, disks);
1533 d0_idx = raid6_next_disk(qd_idx, disks);
1534
1535 pr_debug("compute_parity, stripe %llu, method %d\n",
1536 (unsigned long long)sh->sector, method);
1537
1538 switch(method) {
1539 case READ_MODIFY_WRITE:
1540 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1541 case RECONSTRUCT_WRITE:
1542 for (i= disks; i-- ;)
1543 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1544 chosen = sh->dev[i].towrite;
1545 sh->dev[i].towrite = NULL;
1546
1547 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1548 wake_up(&conf->wait_for_overlap);
1549
1550 BUG_ON(sh->dev[i].written);
1551 sh->dev[i].written = chosen;
1552 }
1553 break;
1554 case CHECK_PARITY:
1555 BUG(); /* Not implemented yet */
1556 }
1557
1558 for (i = disks; i--;)
1559 if (sh->dev[i].written) {
1560 sector_t sector = sh->dev[i].sector;
1561 struct bio *wbi = sh->dev[i].written;
1562 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1563 copy_data(1, wbi, sh->dev[i].page, sector);
1564 wbi = r5_next_bio(wbi, sector);
1565 }
1566
1567 set_bit(R5_LOCKED, &sh->dev[i].flags);
1568 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1569 }
1570
1571 // switch(method) {
1572 // case RECONSTRUCT_WRITE:
1573 // case CHECK_PARITY:
1574 // case UPDATE_PARITY:
1575 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1576 /* FIX: Is this ordering of drives even remotely optimal? */
1577 count = 0;
1578 i = d0_idx;
1579 do {
1580 ptrs[count++] = page_address(sh->dev[i].page);
1581 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1582 printk("block %d/%d not uptodate on parity calc\n", i,count);
1583 i = raid6_next_disk(i, disks);
1584 } while ( i != d0_idx );
1585 // break;
1586 // }
1587
1588 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1589
1590 switch(method) {
1591 case RECONSTRUCT_WRITE:
1592 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1593 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1594 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1595 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1596 break;
1597 case UPDATE_PARITY:
1598 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1599 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1600 break;
1601 }
1602 }
1603
1604
1605 /* Compute one missing block */
1606 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1607 {
1608 int i, count, disks = sh->disks;
1609 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1610 int pd_idx = sh->pd_idx;
1611 int qd_idx = raid6_next_disk(pd_idx, disks);
1612
1613 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1614 (unsigned long long)sh->sector, dd_idx);
1615
1616 if ( dd_idx == qd_idx ) {
1617 /* We're actually computing the Q drive */
1618 compute_parity6(sh, UPDATE_PARITY);
1619 } else {
1620 dest = page_address(sh->dev[dd_idx].page);
1621 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1622 count = 0;
1623 for (i = disks ; i--; ) {
1624 if (i == dd_idx || i == qd_idx)
1625 continue;
1626 p = page_address(sh->dev[i].page);
1627 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1628 ptr[count++] = p;
1629 else
1630 printk("compute_block() %d, stripe %llu, %d"
1631 " not present\n", dd_idx,
1632 (unsigned long long)sh->sector, i);
1633
1634 check_xor();
1635 }
1636 if (count)
1637 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1638 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1639 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1640 }
1641 }
1642
1643 /* Compute two missing blocks */
1644 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1645 {
1646 int i, count, disks = sh->disks;
1647 int pd_idx = sh->pd_idx;
1648 int qd_idx = raid6_next_disk(pd_idx, disks);
1649 int d0_idx = raid6_next_disk(qd_idx, disks);
1650 int faila, failb;
1651
1652 /* faila and failb are disk numbers relative to d0_idx */
1653 /* pd_idx become disks-2 and qd_idx become disks-1 */
1654 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1655 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1656
1657 BUG_ON(faila == failb);
1658 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1659
1660 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1661 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1662
1663 if ( failb == disks-1 ) {
1664 /* Q disk is one of the missing disks */
1665 if ( faila == disks-2 ) {
1666 /* Missing P+Q, just recompute */
1667 compute_parity6(sh, UPDATE_PARITY);
1668 return;
1669 } else {
1670 /* We're missing D+Q; recompute D from P */
1671 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1672 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1673 return;
1674 }
1675 }
1676
1677 /* We're missing D+P or D+D; build pointer table */
1678 {
1679 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1680 void *ptrs[disks];
1681
1682 count = 0;
1683 i = d0_idx;
1684 do {
1685 ptrs[count++] = page_address(sh->dev[i].page);
1686 i = raid6_next_disk(i, disks);
1687 if (i != dd_idx1 && i != dd_idx2 &&
1688 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1689 printk("compute_2 with missing block %d/%d\n", count, i);
1690 } while ( i != d0_idx );
1691
1692 if ( failb == disks-2 ) {
1693 /* We're missing D+P. */
1694 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1695 } else {
1696 /* We're missing D+D. */
1697 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1698 }
1699
1700 /* Both the above update both missing blocks */
1701 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1702 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1703 }
1704 }
1705
1706 static int
1707 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1708 {
1709 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1710 int locked = 0;
1711
1712 if (rcw) {
1713 /* if we are not expanding this is a proper write request, and
1714 * there will be bios with new data to be drained into the
1715 * stripe cache
1716 */
1717 if (!expand) {
1718 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1719 sh->ops.count++;
1720 }
1721
1722 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1723 sh->ops.count++;
1724
1725 for (i = disks; i--; ) {
1726 struct r5dev *dev = &sh->dev[i];
1727
1728 if (dev->towrite) {
1729 set_bit(R5_LOCKED, &dev->flags);
1730 if (!expand)
1731 clear_bit(R5_UPTODATE, &dev->flags);
1732 locked++;
1733 }
1734 }
1735 if (locked + 1 == disks)
1736 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1737 atomic_inc(&sh->raid_conf->pending_full_writes);
1738 } else {
1739 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1740 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1741
1742 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1743 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1744 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1745
1746 sh->ops.count += 3;
1747
1748 for (i = disks; i--; ) {
1749 struct r5dev *dev = &sh->dev[i];
1750 if (i == pd_idx)
1751 continue;
1752
1753 /* For a read-modify write there may be blocks that are
1754 * locked for reading while others are ready to be
1755 * written so we distinguish these blocks by the
1756 * R5_Wantprexor bit
1757 */
1758 if (dev->towrite &&
1759 (test_bit(R5_UPTODATE, &dev->flags) ||
1760 test_bit(R5_Wantcompute, &dev->flags))) {
1761 set_bit(R5_Wantprexor, &dev->flags);
1762 set_bit(R5_LOCKED, &dev->flags);
1763 clear_bit(R5_UPTODATE, &dev->flags);
1764 locked++;
1765 }
1766 }
1767 }
1768
1769 /* keep the parity disk locked while asynchronous operations
1770 * are in flight
1771 */
1772 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1773 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1774 locked++;
1775
1776 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1777 __func__, (unsigned long long)sh->sector,
1778 locked, sh->ops.pending);
1779
1780 return locked;
1781 }
1782
1783 /*
1784 * Each stripe/dev can have one or more bion attached.
1785 * toread/towrite point to the first in a chain.
1786 * The bi_next chain must be in order.
1787 */
1788 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1789 {
1790 struct bio **bip;
1791 raid5_conf_t *conf = sh->raid_conf;
1792 int firstwrite=0;
1793
1794 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1795 (unsigned long long)bi->bi_sector,
1796 (unsigned long long)sh->sector);
1797
1798
1799 spin_lock(&sh->lock);
1800 spin_lock_irq(&conf->device_lock);
1801 if (forwrite) {
1802 bip = &sh->dev[dd_idx].towrite;
1803 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1804 firstwrite = 1;
1805 } else
1806 bip = &sh->dev[dd_idx].toread;
1807 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1808 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1809 goto overlap;
1810 bip = & (*bip)->bi_next;
1811 }
1812 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1813 goto overlap;
1814
1815 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1816 if (*bip)
1817 bi->bi_next = *bip;
1818 *bip = bi;
1819 bi->bi_phys_segments ++;
1820 spin_unlock_irq(&conf->device_lock);
1821 spin_unlock(&sh->lock);
1822
1823 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1824 (unsigned long long)bi->bi_sector,
1825 (unsigned long long)sh->sector, dd_idx);
1826
1827 if (conf->mddev->bitmap && firstwrite) {
1828 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1829 STRIPE_SECTORS, 0);
1830 sh->bm_seq = conf->seq_flush+1;
1831 set_bit(STRIPE_BIT_DELAY, &sh->state);
1832 }
1833
1834 if (forwrite) {
1835 /* check if page is covered */
1836 sector_t sector = sh->dev[dd_idx].sector;
1837 for (bi=sh->dev[dd_idx].towrite;
1838 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1839 bi && bi->bi_sector <= sector;
1840 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1841 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1842 sector = bi->bi_sector + (bi->bi_size>>9);
1843 }
1844 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1845 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1846 }
1847 return 1;
1848
1849 overlap:
1850 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1851 spin_unlock_irq(&conf->device_lock);
1852 spin_unlock(&sh->lock);
1853 return 0;
1854 }
1855
1856 static void end_reshape(raid5_conf_t *conf);
1857
1858 static int page_is_zero(struct page *p)
1859 {
1860 char *a = page_address(p);
1861 return ((*(u32*)a) == 0 &&
1862 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1863 }
1864
1865 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1866 {
1867 int sectors_per_chunk = conf->chunk_size >> 9;
1868 int pd_idx, dd_idx;
1869 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1870
1871 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1872 *sectors_per_chunk + chunk_offset,
1873 disks, disks - conf->max_degraded,
1874 &dd_idx, &pd_idx, conf);
1875 return pd_idx;
1876 }
1877
1878 static void
1879 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1880 struct stripe_head_state *s, int disks,
1881 struct bio **return_bi)
1882 {
1883 int i;
1884 for (i = disks; i--; ) {
1885 struct bio *bi;
1886 int bitmap_end = 0;
1887
1888 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1889 mdk_rdev_t *rdev;
1890 rcu_read_lock();
1891 rdev = rcu_dereference(conf->disks[i].rdev);
1892 if (rdev && test_bit(In_sync, &rdev->flags))
1893 /* multiple read failures in one stripe */
1894 md_error(conf->mddev, rdev);
1895 rcu_read_unlock();
1896 }
1897 spin_lock_irq(&conf->device_lock);
1898 /* fail all writes first */
1899 bi = sh->dev[i].towrite;
1900 sh->dev[i].towrite = NULL;
1901 if (bi) {
1902 s->to_write--;
1903 bitmap_end = 1;
1904 }
1905
1906 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1907 wake_up(&conf->wait_for_overlap);
1908
1909 while (bi && bi->bi_sector <
1910 sh->dev[i].sector + STRIPE_SECTORS) {
1911 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1912 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1913 if (--bi->bi_phys_segments == 0) {
1914 md_write_end(conf->mddev);
1915 bi->bi_next = *return_bi;
1916 *return_bi = bi;
1917 }
1918 bi = nextbi;
1919 }
1920 /* and fail all 'written' */
1921 bi = sh->dev[i].written;
1922 sh->dev[i].written = NULL;
1923 if (bi) bitmap_end = 1;
1924 while (bi && bi->bi_sector <
1925 sh->dev[i].sector + STRIPE_SECTORS) {
1926 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1927 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1928 if (--bi->bi_phys_segments == 0) {
1929 md_write_end(conf->mddev);
1930 bi->bi_next = *return_bi;
1931 *return_bi = bi;
1932 }
1933 bi = bi2;
1934 }
1935
1936 /* fail any reads if this device is non-operational and
1937 * the data has not reached the cache yet.
1938 */
1939 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1940 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1941 test_bit(R5_ReadError, &sh->dev[i].flags))) {
1942 bi = sh->dev[i].toread;
1943 sh->dev[i].toread = NULL;
1944 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1945 wake_up(&conf->wait_for_overlap);
1946 if (bi) s->to_read--;
1947 while (bi && bi->bi_sector <
1948 sh->dev[i].sector + STRIPE_SECTORS) {
1949 struct bio *nextbi =
1950 r5_next_bio(bi, sh->dev[i].sector);
1951 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1952 if (--bi->bi_phys_segments == 0) {
1953 bi->bi_next = *return_bi;
1954 *return_bi = bi;
1955 }
1956 bi = nextbi;
1957 }
1958 }
1959 spin_unlock_irq(&conf->device_lock);
1960 if (bitmap_end)
1961 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1962 STRIPE_SECTORS, 0, 0);
1963 }
1964
1965 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1966 if (atomic_dec_and_test(&conf->pending_full_writes))
1967 md_wakeup_thread(conf->mddev->thread);
1968 }
1969
1970 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1971 * to process
1972 */
1973 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1974 struct stripe_head_state *s, int disk_idx, int disks)
1975 {
1976 struct r5dev *dev = &sh->dev[disk_idx];
1977 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1978
1979 /* don't schedule compute operations or reads on the parity block while
1980 * a check is in flight
1981 */
1982 if ((disk_idx == sh->pd_idx) &&
1983 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1984 return ~0;
1985
1986 /* is the data in this block needed, and can we get it? */
1987 if (!test_bit(R5_LOCKED, &dev->flags) &&
1988 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1989 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1990 s->syncing || s->expanding || (s->failed &&
1991 (failed_dev->toread || (failed_dev->towrite &&
1992 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1993 ))))) {
1994 /* 1/ We would like to get this block, possibly by computing it,
1995 * but we might not be able to.
1996 *
1997 * 2/ Since parity check operations potentially make the parity
1998 * block !uptodate it will need to be refreshed before any
1999 * compute operations on data disks are scheduled.
2000 *
2001 * 3/ We hold off parity block re-reads until check operations
2002 * have quiesced.
2003 */
2004 if ((s->uptodate == disks - 1) &&
2005 (s->failed && disk_idx == s->failed_num) &&
2006 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2007 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2008 set_bit(R5_Wantcompute, &dev->flags);
2009 sh->ops.target = disk_idx;
2010 s->req_compute = 1;
2011 sh->ops.count++;
2012 /* Careful: from this point on 'uptodate' is in the eye
2013 * of raid5_run_ops which services 'compute' operations
2014 * before writes. R5_Wantcompute flags a block that will
2015 * be R5_UPTODATE by the time it is needed for a
2016 * subsequent operation.
2017 */
2018 s->uptodate++;
2019 return 0; /* uptodate + compute == disks */
2020 } else if ((s->uptodate < disks - 1) &&
2021 test_bit(R5_Insync, &dev->flags)) {
2022 /* Note: we hold off compute operations while checks are
2023 * in flight, but we still prefer 'compute' over 'read'
2024 * hence we only read if (uptodate < * disks-1)
2025 */
2026 set_bit(R5_LOCKED, &dev->flags);
2027 set_bit(R5_Wantread, &dev->flags);
2028 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2029 sh->ops.count++;
2030 s->locked++;
2031 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2032 s->syncing);
2033 }
2034 }
2035
2036 return ~0;
2037 }
2038
2039 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2040 struct stripe_head_state *s, int disks)
2041 {
2042 int i;
2043
2044 /* Clear completed compute operations. Parity recovery
2045 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2046 * later on in this routine
2047 */
2048 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2049 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2050 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2051 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2052 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2053 }
2054
2055 /* look for blocks to read/compute, skip this if a compute
2056 * is already in flight, or if the stripe contents are in the
2057 * midst of changing due to a write
2058 */
2059 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2060 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2061 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2062 for (i = disks; i--; )
2063 if (__handle_issuing_new_read_requests5(
2064 sh, s, i, disks) == 0)
2065 break;
2066 }
2067 set_bit(STRIPE_HANDLE, &sh->state);
2068 }
2069
2070 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2071 struct stripe_head_state *s, struct r6_state *r6s,
2072 int disks)
2073 {
2074 int i;
2075 for (i = disks; i--; ) {
2076 struct r5dev *dev = &sh->dev[i];
2077 if (!test_bit(R5_LOCKED, &dev->flags) &&
2078 !test_bit(R5_UPTODATE, &dev->flags) &&
2079 (dev->toread || (dev->towrite &&
2080 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2081 s->syncing || s->expanding ||
2082 (s->failed >= 1 &&
2083 (sh->dev[r6s->failed_num[0]].toread ||
2084 s->to_write)) ||
2085 (s->failed >= 2 &&
2086 (sh->dev[r6s->failed_num[1]].toread ||
2087 s->to_write)))) {
2088 /* we would like to get this block, possibly
2089 * by computing it, but we might not be able to
2090 */
2091 if ((s->uptodate == disks - 1) &&
2092 (s->failed && (i == r6s->failed_num[0] ||
2093 i == r6s->failed_num[1]))) {
2094 pr_debug("Computing stripe %llu block %d\n",
2095 (unsigned long long)sh->sector, i);
2096 compute_block_1(sh, i, 0);
2097 s->uptodate++;
2098 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2099 /* Computing 2-failure is *very* expensive; only
2100 * do it if failed >= 2
2101 */
2102 int other;
2103 for (other = disks; other--; ) {
2104 if (other == i)
2105 continue;
2106 if (!test_bit(R5_UPTODATE,
2107 &sh->dev[other].flags))
2108 break;
2109 }
2110 BUG_ON(other < 0);
2111 pr_debug("Computing stripe %llu blocks %d,%d\n",
2112 (unsigned long long)sh->sector,
2113 i, other);
2114 compute_block_2(sh, i, other);
2115 s->uptodate += 2;
2116 } else if (test_bit(R5_Insync, &dev->flags)) {
2117 set_bit(R5_LOCKED, &dev->flags);
2118 set_bit(R5_Wantread, &dev->flags);
2119 s->locked++;
2120 pr_debug("Reading block %d (sync=%d)\n",
2121 i, s->syncing);
2122 }
2123 }
2124 }
2125 set_bit(STRIPE_HANDLE, &sh->state);
2126 }
2127
2128
2129 /* handle_completed_write_requests
2130 * any written block on an uptodate or failed drive can be returned.
2131 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2132 * never LOCKED, so we don't need to test 'failed' directly.
2133 */
2134 static void handle_completed_write_requests(raid5_conf_t *conf,
2135 struct stripe_head *sh, int disks, struct bio **return_bi)
2136 {
2137 int i;
2138 struct r5dev *dev;
2139
2140 for (i = disks; i--; )
2141 if (sh->dev[i].written) {
2142 dev = &sh->dev[i];
2143 if (!test_bit(R5_LOCKED, &dev->flags) &&
2144 test_bit(R5_UPTODATE, &dev->flags)) {
2145 /* We can return any write requests */
2146 struct bio *wbi, *wbi2;
2147 int bitmap_end = 0;
2148 pr_debug("Return write for disc %d\n", i);
2149 spin_lock_irq(&conf->device_lock);
2150 wbi = dev->written;
2151 dev->written = NULL;
2152 while (wbi && wbi->bi_sector <
2153 dev->sector + STRIPE_SECTORS) {
2154 wbi2 = r5_next_bio(wbi, dev->sector);
2155 if (--wbi->bi_phys_segments == 0) {
2156 md_write_end(conf->mddev);
2157 wbi->bi_next = *return_bi;
2158 *return_bi = wbi;
2159 }
2160 wbi = wbi2;
2161 }
2162 if (dev->towrite == NULL)
2163 bitmap_end = 1;
2164 spin_unlock_irq(&conf->device_lock);
2165 if (bitmap_end)
2166 bitmap_endwrite(conf->mddev->bitmap,
2167 sh->sector,
2168 STRIPE_SECTORS,
2169 !test_bit(STRIPE_DEGRADED, &sh->state),
2170 0);
2171 }
2172 }
2173
2174 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2175 if (atomic_dec_and_test(&conf->pending_full_writes))
2176 md_wakeup_thread(conf->mddev->thread);
2177 }
2178
2179 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2180 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2181 {
2182 int rmw = 0, rcw = 0, i;
2183 for (i = disks; i--; ) {
2184 /* would I have to read this buffer for read_modify_write */
2185 struct r5dev *dev = &sh->dev[i];
2186 if ((dev->towrite || i == sh->pd_idx) &&
2187 !test_bit(R5_LOCKED, &dev->flags) &&
2188 !(test_bit(R5_UPTODATE, &dev->flags) ||
2189 test_bit(R5_Wantcompute, &dev->flags))) {
2190 if (test_bit(R5_Insync, &dev->flags))
2191 rmw++;
2192 else
2193 rmw += 2*disks; /* cannot read it */
2194 }
2195 /* Would I have to read this buffer for reconstruct_write */
2196 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2197 !test_bit(R5_LOCKED, &dev->flags) &&
2198 !(test_bit(R5_UPTODATE, &dev->flags) ||
2199 test_bit(R5_Wantcompute, &dev->flags))) {
2200 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2201 else
2202 rcw += 2*disks;
2203 }
2204 }
2205 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2206 (unsigned long long)sh->sector, rmw, rcw);
2207 set_bit(STRIPE_HANDLE, &sh->state);
2208 if (rmw < rcw && rmw > 0)
2209 /* prefer read-modify-write, but need to get some data */
2210 for (i = disks; i--; ) {
2211 struct r5dev *dev = &sh->dev[i];
2212 if ((dev->towrite || i == sh->pd_idx) &&
2213 !test_bit(R5_LOCKED, &dev->flags) &&
2214 !(test_bit(R5_UPTODATE, &dev->flags) ||
2215 test_bit(R5_Wantcompute, &dev->flags)) &&
2216 test_bit(R5_Insync, &dev->flags)) {
2217 if (
2218 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2219 pr_debug("Read_old block "
2220 "%d for r-m-w\n", i);
2221 set_bit(R5_LOCKED, &dev->flags);
2222 set_bit(R5_Wantread, &dev->flags);
2223 if (!test_and_set_bit(
2224 STRIPE_OP_IO, &sh->ops.pending))
2225 sh->ops.count++;
2226 s->locked++;
2227 } else {
2228 set_bit(STRIPE_DELAYED, &sh->state);
2229 set_bit(STRIPE_HANDLE, &sh->state);
2230 }
2231 }
2232 }
2233 if (rcw <= rmw && rcw > 0)
2234 /* want reconstruct write, but need to get some data */
2235 for (i = disks; i--; ) {
2236 struct r5dev *dev = &sh->dev[i];
2237 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2238 i != sh->pd_idx &&
2239 !test_bit(R5_LOCKED, &dev->flags) &&
2240 !(test_bit(R5_UPTODATE, &dev->flags) ||
2241 test_bit(R5_Wantcompute, &dev->flags)) &&
2242 test_bit(R5_Insync, &dev->flags)) {
2243 if (
2244 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2245 pr_debug("Read_old block "
2246 "%d for Reconstruct\n", i);
2247 set_bit(R5_LOCKED, &dev->flags);
2248 set_bit(R5_Wantread, &dev->flags);
2249 if (!test_and_set_bit(
2250 STRIPE_OP_IO, &sh->ops.pending))
2251 sh->ops.count++;
2252 s->locked++;
2253 } else {
2254 set_bit(STRIPE_DELAYED, &sh->state);
2255 set_bit(STRIPE_HANDLE, &sh->state);
2256 }
2257 }
2258 }
2259 /* now if nothing is locked, and if we have enough data,
2260 * we can start a write request
2261 */
2262 /* since handle_stripe can be called at any time we need to handle the
2263 * case where a compute block operation has been submitted and then a
2264 * subsequent call wants to start a write request. raid5_run_ops only
2265 * handles the case where compute block and postxor are requested
2266 * simultaneously. If this is not the case then new writes need to be
2267 * held off until the compute completes.
2268 */
2269 if ((s->req_compute ||
2270 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2271 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2272 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2273 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2274 }
2275
2276 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2277 struct stripe_head *sh, struct stripe_head_state *s,
2278 struct r6_state *r6s, int disks)
2279 {
2280 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2281 int qd_idx = r6s->qd_idx;
2282 for (i = disks; i--; ) {
2283 struct r5dev *dev = &sh->dev[i];
2284 /* Would I have to read this buffer for reconstruct_write */
2285 if (!test_bit(R5_OVERWRITE, &dev->flags)
2286 && i != pd_idx && i != qd_idx
2287 && (!test_bit(R5_LOCKED, &dev->flags)
2288 ) &&
2289 !test_bit(R5_UPTODATE, &dev->flags)) {
2290 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2291 else {
2292 pr_debug("raid6: must_compute: "
2293 "disk %d flags=%#lx\n", i, dev->flags);
2294 must_compute++;
2295 }
2296 }
2297 }
2298 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2299 (unsigned long long)sh->sector, rcw, must_compute);
2300 set_bit(STRIPE_HANDLE, &sh->state);
2301
2302 if (rcw > 0)
2303 /* want reconstruct write, but need to get some data */
2304 for (i = disks; i--; ) {
2305 struct r5dev *dev = &sh->dev[i];
2306 if (!test_bit(R5_OVERWRITE, &dev->flags)
2307 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2308 && !test_bit(R5_LOCKED, &dev->flags) &&
2309 !test_bit(R5_UPTODATE, &dev->flags) &&
2310 test_bit(R5_Insync, &dev->flags)) {
2311 if (
2312 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2313 pr_debug("Read_old stripe %llu "
2314 "block %d for Reconstruct\n",
2315 (unsigned long long)sh->sector, i);
2316 set_bit(R5_LOCKED, &dev->flags);
2317 set_bit(R5_Wantread, &dev->flags);
2318 s->locked++;
2319 } else {
2320 pr_debug("Request delayed stripe %llu "
2321 "block %d for Reconstruct\n",
2322 (unsigned long long)sh->sector, i);
2323 set_bit(STRIPE_DELAYED, &sh->state);
2324 set_bit(STRIPE_HANDLE, &sh->state);
2325 }
2326 }
2327 }
2328 /* now if nothing is locked, and if we have enough data, we can start a
2329 * write request
2330 */
2331 if (s->locked == 0 && rcw == 0 &&
2332 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2333 if (must_compute > 0) {
2334 /* We have failed blocks and need to compute them */
2335 switch (s->failed) {
2336 case 0:
2337 BUG();
2338 case 1:
2339 compute_block_1(sh, r6s->failed_num[0], 0);
2340 break;
2341 case 2:
2342 compute_block_2(sh, r6s->failed_num[0],
2343 r6s->failed_num[1]);
2344 break;
2345 default: /* This request should have been failed? */
2346 BUG();
2347 }
2348 }
2349
2350 pr_debug("Computing parity for stripe %llu\n",
2351 (unsigned long long)sh->sector);
2352 compute_parity6(sh, RECONSTRUCT_WRITE);
2353 /* now every locked buffer is ready to be written */
2354 for (i = disks; i--; )
2355 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2356 pr_debug("Writing stripe %llu block %d\n",
2357 (unsigned long long)sh->sector, i);
2358 s->locked++;
2359 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2360 }
2361 if (s->locked == disks)
2362 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2363 atomic_inc(&conf->pending_full_writes);
2364 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2365 set_bit(STRIPE_INSYNC, &sh->state);
2366
2367 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2368 atomic_dec(&conf->preread_active_stripes);
2369 if (atomic_read(&conf->preread_active_stripes) <
2370 IO_THRESHOLD)
2371 md_wakeup_thread(conf->mddev->thread);
2372 }
2373 }
2374 }
2375
2376 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2377 struct stripe_head_state *s, int disks)
2378 {
2379 int canceled_check = 0;
2380
2381 set_bit(STRIPE_HANDLE, &sh->state);
2382
2383 /* complete a check operation */
2384 if (test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2385 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2386 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2387 if (s->failed == 0) {
2388 if (sh->ops.zero_sum_result == 0)
2389 /* parity is correct (on disc,
2390 * not in buffer any more)
2391 */
2392 set_bit(STRIPE_INSYNC, &sh->state);
2393 else {
2394 conf->mddev->resync_mismatches +=
2395 STRIPE_SECTORS;
2396 if (test_bit(
2397 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2398 /* don't try to repair!! */
2399 set_bit(STRIPE_INSYNC, &sh->state);
2400 else {
2401 set_bit(STRIPE_OP_COMPUTE_BLK,
2402 &sh->ops.pending);
2403 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2404 &sh->ops.pending);
2405 set_bit(R5_Wantcompute,
2406 &sh->dev[sh->pd_idx].flags);
2407 sh->ops.target = sh->pd_idx;
2408 sh->ops.count++;
2409 s->uptodate++;
2410 }
2411 }
2412 } else
2413 canceled_check = 1; /* STRIPE_INSYNC is not set */
2414 }
2415
2416 /* start a new check operation if there are no failures, the stripe is
2417 * not insync, and a repair is not in flight
2418 */
2419 if (s->failed == 0 &&
2420 !test_bit(STRIPE_INSYNC, &sh->state) &&
2421 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2422 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2423 BUG_ON(s->uptodate != disks);
2424 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2425 sh->ops.count++;
2426 s->uptodate--;
2427 }
2428 }
2429
2430 /* check if we can clear a parity disk reconstruct */
2431 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2432 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2433
2434 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2435 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2436 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2437 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2438 }
2439
2440
2441 /* Wait for check parity and compute block operations to complete
2442 * before write-back. If a failure occurred while the check operation
2443 * was in flight we need to cycle this stripe through handle_stripe
2444 * since the parity block may not be uptodate
2445 */
2446 if (!canceled_check && !test_bit(STRIPE_INSYNC, &sh->state) &&
2447 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2448 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2449 struct r5dev *dev;
2450 /* either failed parity check, or recovery is happening */
2451 if (s->failed == 0)
2452 s->failed_num = sh->pd_idx;
2453 dev = &sh->dev[s->failed_num];
2454 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2455 BUG_ON(s->uptodate != disks);
2456
2457 set_bit(R5_LOCKED, &dev->flags);
2458 set_bit(R5_Wantwrite, &dev->flags);
2459 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2460 sh->ops.count++;
2461
2462 clear_bit(STRIPE_DEGRADED, &sh->state);
2463 s->locked++;
2464 set_bit(STRIPE_INSYNC, &sh->state);
2465 }
2466 }
2467
2468
2469 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2470 struct stripe_head_state *s,
2471 struct r6_state *r6s, struct page *tmp_page,
2472 int disks)
2473 {
2474 int update_p = 0, update_q = 0;
2475 struct r5dev *dev;
2476 int pd_idx = sh->pd_idx;
2477 int qd_idx = r6s->qd_idx;
2478
2479 set_bit(STRIPE_HANDLE, &sh->state);
2480
2481 BUG_ON(s->failed > 2);
2482 BUG_ON(s->uptodate < disks);
2483 /* Want to check and possibly repair P and Q.
2484 * However there could be one 'failed' device, in which
2485 * case we can only check one of them, possibly using the
2486 * other to generate missing data
2487 */
2488
2489 /* If !tmp_page, we cannot do the calculations,
2490 * but as we have set STRIPE_HANDLE, we will soon be called
2491 * by stripe_handle with a tmp_page - just wait until then.
2492 */
2493 if (tmp_page) {
2494 if (s->failed == r6s->q_failed) {
2495 /* The only possible failed device holds 'Q', so it
2496 * makes sense to check P (If anything else were failed,
2497 * we would have used P to recreate it).
2498 */
2499 compute_block_1(sh, pd_idx, 1);
2500 if (!page_is_zero(sh->dev[pd_idx].page)) {
2501 compute_block_1(sh, pd_idx, 0);
2502 update_p = 1;
2503 }
2504 }
2505 if (!r6s->q_failed && s->failed < 2) {
2506 /* q is not failed, and we didn't use it to generate
2507 * anything, so it makes sense to check it
2508 */
2509 memcpy(page_address(tmp_page),
2510 page_address(sh->dev[qd_idx].page),
2511 STRIPE_SIZE);
2512 compute_parity6(sh, UPDATE_PARITY);
2513 if (memcmp(page_address(tmp_page),
2514 page_address(sh->dev[qd_idx].page),
2515 STRIPE_SIZE) != 0) {
2516 clear_bit(STRIPE_INSYNC, &sh->state);
2517 update_q = 1;
2518 }
2519 }
2520 if (update_p || update_q) {
2521 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2522 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2523 /* don't try to repair!! */
2524 update_p = update_q = 0;
2525 }
2526
2527 /* now write out any block on a failed drive,
2528 * or P or Q if they need it
2529 */
2530
2531 if (s->failed == 2) {
2532 dev = &sh->dev[r6s->failed_num[1]];
2533 s->locked++;
2534 set_bit(R5_LOCKED, &dev->flags);
2535 set_bit(R5_Wantwrite, &dev->flags);
2536 }
2537 if (s->failed >= 1) {
2538 dev = &sh->dev[r6s->failed_num[0]];
2539 s->locked++;
2540 set_bit(R5_LOCKED, &dev->flags);
2541 set_bit(R5_Wantwrite, &dev->flags);
2542 }
2543
2544 if (update_p) {
2545 dev = &sh->dev[pd_idx];
2546 s->locked++;
2547 set_bit(R5_LOCKED, &dev->flags);
2548 set_bit(R5_Wantwrite, &dev->flags);
2549 }
2550 if (update_q) {
2551 dev = &sh->dev[qd_idx];
2552 s->locked++;
2553 set_bit(R5_LOCKED, &dev->flags);
2554 set_bit(R5_Wantwrite, &dev->flags);
2555 }
2556 clear_bit(STRIPE_DEGRADED, &sh->state);
2557
2558 set_bit(STRIPE_INSYNC, &sh->state);
2559 }
2560 }
2561
2562 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2563 struct r6_state *r6s)
2564 {
2565 int i;
2566
2567 /* We have read all the blocks in this stripe and now we need to
2568 * copy some of them into a target stripe for expand.
2569 */
2570 struct dma_async_tx_descriptor *tx = NULL;
2571 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2572 for (i = 0; i < sh->disks; i++)
2573 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2574 int dd_idx, pd_idx, j;
2575 struct stripe_head *sh2;
2576
2577 sector_t bn = compute_blocknr(sh, i);
2578 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2579 conf->raid_disks -
2580 conf->max_degraded, &dd_idx,
2581 &pd_idx, conf);
2582 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2583 pd_idx, 1);
2584 if (sh2 == NULL)
2585 /* so far only the early blocks of this stripe
2586 * have been requested. When later blocks
2587 * get requested, we will try again
2588 */
2589 continue;
2590 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2591 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2592 /* must have already done this block */
2593 release_stripe(sh2);
2594 continue;
2595 }
2596
2597 /* place all the copies on one channel */
2598 tx = async_memcpy(sh2->dev[dd_idx].page,
2599 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2600 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2601
2602 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2603 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2604 for (j = 0; j < conf->raid_disks; j++)
2605 if (j != sh2->pd_idx &&
2606 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2607 sh2->disks)) &&
2608 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2609 break;
2610 if (j == conf->raid_disks) {
2611 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2612 set_bit(STRIPE_HANDLE, &sh2->state);
2613 }
2614 release_stripe(sh2);
2615
2616 }
2617 /* done submitting copies, wait for them to complete */
2618 if (tx) {
2619 async_tx_ack(tx);
2620 dma_wait_for_async_tx(tx);
2621 }
2622 }
2623
2624
2625 /*
2626 * handle_stripe - do things to a stripe.
2627 *
2628 * We lock the stripe and then examine the state of various bits
2629 * to see what needs to be done.
2630 * Possible results:
2631 * return some read request which now have data
2632 * return some write requests which are safely on disc
2633 * schedule a read on some buffers
2634 * schedule a write of some buffers
2635 * return confirmation of parity correctness
2636 *
2637 * buffers are taken off read_list or write_list, and bh_cache buffers
2638 * get BH_Lock set before the stripe lock is released.
2639 *
2640 */
2641
2642 static void handle_stripe5(struct stripe_head *sh)
2643 {
2644 raid5_conf_t *conf = sh->raid_conf;
2645 int disks = sh->disks, i;
2646 struct bio *return_bi = NULL;
2647 struct stripe_head_state s;
2648 struct r5dev *dev;
2649 unsigned long pending = 0;
2650 mdk_rdev_t *blocked_rdev = NULL;
2651 int prexor;
2652
2653 memset(&s, 0, sizeof(s));
2654 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2655 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2656 atomic_read(&sh->count), sh->pd_idx,
2657 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2658
2659 spin_lock(&sh->lock);
2660 clear_bit(STRIPE_HANDLE, &sh->state);
2661 clear_bit(STRIPE_DELAYED, &sh->state);
2662
2663 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2664 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2665 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2666 /* Now to look around and see what can be done */
2667
2668 /* clean-up completed biofill operations */
2669 if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2670 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2671 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2672 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2673 }
2674
2675 rcu_read_lock();
2676 for (i=disks; i--; ) {
2677 mdk_rdev_t *rdev;
2678 struct r5dev *dev = &sh->dev[i];
2679 clear_bit(R5_Insync, &dev->flags);
2680
2681 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2682 "written %p\n", i, dev->flags, dev->toread, dev->read,
2683 dev->towrite, dev->written);
2684
2685 /* maybe we can request a biofill operation
2686 *
2687 * new wantfill requests are only permitted while
2688 * STRIPE_OP_BIOFILL is clear
2689 */
2690 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2691 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2692 set_bit(R5_Wantfill, &dev->flags);
2693
2694 /* now count some things */
2695 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2696 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2697 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2698
2699 if (test_bit(R5_Wantfill, &dev->flags))
2700 s.to_fill++;
2701 else if (dev->toread)
2702 s.to_read++;
2703 if (dev->towrite) {
2704 s.to_write++;
2705 if (!test_bit(R5_OVERWRITE, &dev->flags))
2706 s.non_overwrite++;
2707 }
2708 if (dev->written)
2709 s.written++;
2710 rdev = rcu_dereference(conf->disks[i].rdev);
2711 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2712 blocked_rdev = rdev;
2713 atomic_inc(&rdev->nr_pending);
2714 break;
2715 }
2716 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2717 /* The ReadError flag will just be confusing now */
2718 clear_bit(R5_ReadError, &dev->flags);
2719 clear_bit(R5_ReWrite, &dev->flags);
2720 }
2721 if (!rdev || !test_bit(In_sync, &rdev->flags)
2722 || test_bit(R5_ReadError, &dev->flags)) {
2723 s.failed++;
2724 s.failed_num = i;
2725 } else
2726 set_bit(R5_Insync, &dev->flags);
2727 }
2728 rcu_read_unlock();
2729
2730 if (unlikely(blocked_rdev)) {
2731 set_bit(STRIPE_HANDLE, &sh->state);
2732 goto unlock;
2733 }
2734
2735 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2736 sh->ops.count++;
2737
2738 pr_debug("locked=%d uptodate=%d to_read=%d"
2739 " to_write=%d failed=%d failed_num=%d\n",
2740 s.locked, s.uptodate, s.to_read, s.to_write,
2741 s.failed, s.failed_num);
2742 /* check if the array has lost two devices and, if so, some requests might
2743 * need to be failed
2744 */
2745 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2746 handle_requests_to_failed_array(conf, sh, &s, disks,
2747 &return_bi);
2748 if (s.failed > 1 && s.syncing) {
2749 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2750 clear_bit(STRIPE_SYNCING, &sh->state);
2751 s.syncing = 0;
2752 }
2753
2754 /* might be able to return some write requests if the parity block
2755 * is safe, or on a failed drive
2756 */
2757 dev = &sh->dev[sh->pd_idx];
2758 if ( s.written &&
2759 ((test_bit(R5_Insync, &dev->flags) &&
2760 !test_bit(R5_LOCKED, &dev->flags) &&
2761 test_bit(R5_UPTODATE, &dev->flags)) ||
2762 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2763 handle_completed_write_requests(conf, sh, disks, &return_bi);
2764
2765 /* Now we might consider reading some blocks, either to check/generate
2766 * parity, or to satisfy requests
2767 * or to load a block that is being partially written.
2768 */
2769 if (s.to_read || s.non_overwrite ||
2770 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2771 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2772 handle_issuing_new_read_requests5(sh, &s, disks);
2773
2774 /* Now we check to see if any write operations have recently
2775 * completed
2776 */
2777
2778 /* leave prexor set until postxor is done, allows us to distinguish
2779 * a rmw from a rcw during biodrain
2780 */
2781 prexor = 0;
2782 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2783 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2784
2785 prexor = 1;
2786 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2787 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2788 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2789
2790 for (i = disks; i--; )
2791 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2792 }
2793
2794 /* if only POSTXOR is set then this is an 'expand' postxor */
2795 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2796 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2797
2798 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2799 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2800 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2801
2802 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2803 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2804 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2805
2806 /* All the 'written' buffers and the parity block are ready to
2807 * be written back to disk
2808 */
2809 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2810 for (i = disks; i--; ) {
2811 dev = &sh->dev[i];
2812 if (test_bit(R5_LOCKED, &dev->flags) &&
2813 (i == sh->pd_idx || dev->written)) {
2814 pr_debug("Writing block %d\n", i);
2815 set_bit(R5_Wantwrite, &dev->flags);
2816 if (!test_and_set_bit(
2817 STRIPE_OP_IO, &sh->ops.pending))
2818 sh->ops.count++;
2819 if (prexor)
2820 continue;
2821 if (!test_bit(R5_Insync, &dev->flags) ||
2822 (i == sh->pd_idx && s.failed == 0))
2823 set_bit(STRIPE_INSYNC, &sh->state);
2824 }
2825 }
2826 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2827 atomic_dec(&conf->preread_active_stripes);
2828 if (atomic_read(&conf->preread_active_stripes) <
2829 IO_THRESHOLD)
2830 md_wakeup_thread(conf->mddev->thread);
2831 }
2832 }
2833
2834 /* Now to consider new write requests and what else, if anything
2835 * should be read. We do not handle new writes when:
2836 * 1/ A 'write' operation (copy+xor) is already in flight.
2837 * 2/ A 'check' operation is in flight, as it may clobber the parity
2838 * block.
2839 */
2840 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2841 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2842 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2843
2844 /* maybe we need to check and possibly fix the parity for this stripe
2845 * Any reads will already have been scheduled, so we just see if enough
2846 * data is available. The parity check is held off while parity
2847 * dependent operations are in flight.
2848 */
2849 if ((s.syncing && s.locked == 0 &&
2850 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2851 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2852 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2853 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2854 handle_parity_checks5(conf, sh, &s, disks);
2855
2856 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2857 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2858 clear_bit(STRIPE_SYNCING, &sh->state);
2859 }
2860
2861 /* If the failed drive is just a ReadError, then we might need to progress
2862 * the repair/check process
2863 */
2864 if (s.failed == 1 && !conf->mddev->ro &&
2865 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2866 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2867 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2868 ) {
2869 dev = &sh->dev[s.failed_num];
2870 if (!test_bit(R5_ReWrite, &dev->flags)) {
2871 set_bit(R5_Wantwrite, &dev->flags);
2872 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2873 sh->ops.count++;
2874 set_bit(R5_ReWrite, &dev->flags);
2875 set_bit(R5_LOCKED, &dev->flags);
2876 s.locked++;
2877 } else {
2878 /* let's read it back */
2879 set_bit(R5_Wantread, &dev->flags);
2880 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2881 sh->ops.count++;
2882 set_bit(R5_LOCKED, &dev->flags);
2883 s.locked++;
2884 }
2885 }
2886
2887 /* Finish postxor operations initiated by the expansion
2888 * process
2889 */
2890 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2891 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2892
2893 clear_bit(STRIPE_EXPANDING, &sh->state);
2894
2895 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2896 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2897 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2898
2899 for (i = conf->raid_disks; i--; ) {
2900 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2901 set_bit(R5_LOCKED, &dev->flags);
2902 s.locked++;
2903 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2904 sh->ops.count++;
2905 }
2906 }
2907
2908 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2909 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2910 /* Need to write out all blocks after computing parity */
2911 sh->disks = conf->raid_disks;
2912 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2913 conf->raid_disks);
2914 s.locked += handle_write_operations5(sh, 1, 1);
2915 } else if (s.expanded &&
2916 s.locked == 0 &&
2917 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2918 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2919 atomic_dec(&conf->reshape_stripes);
2920 wake_up(&conf->wait_for_overlap);
2921 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2922 }
2923
2924 if (s.expanding && s.locked == 0 &&
2925 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2926 handle_stripe_expansion(conf, sh, NULL);
2927
2928 if (sh->ops.count)
2929 pending = get_stripe_work(sh);
2930
2931 unlock:
2932 spin_unlock(&sh->lock);
2933
2934 /* wait for this device to become unblocked */
2935 if (unlikely(blocked_rdev))
2936 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2937
2938 if (pending)
2939 raid5_run_ops(sh, pending);
2940
2941 return_io(return_bi);
2942
2943 }
2944
2945 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2946 {
2947 raid6_conf_t *conf = sh->raid_conf;
2948 int disks = sh->disks;
2949 struct bio *return_bi = NULL;
2950 int i, pd_idx = sh->pd_idx;
2951 struct stripe_head_state s;
2952 struct r6_state r6s;
2953 struct r5dev *dev, *pdev, *qdev;
2954 mdk_rdev_t *blocked_rdev = NULL;
2955
2956 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2957 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2958 "pd_idx=%d, qd_idx=%d\n",
2959 (unsigned long long)sh->sector, sh->state,
2960 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2961 memset(&s, 0, sizeof(s));
2962
2963 spin_lock(&sh->lock);
2964 clear_bit(STRIPE_HANDLE, &sh->state);
2965 clear_bit(STRIPE_DELAYED, &sh->state);
2966
2967 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2968 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2969 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2970 /* Now to look around and see what can be done */
2971
2972 rcu_read_lock();
2973 for (i=disks; i--; ) {
2974 mdk_rdev_t *rdev;
2975 dev = &sh->dev[i];
2976 clear_bit(R5_Insync, &dev->flags);
2977
2978 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2979 i, dev->flags, dev->toread, dev->towrite, dev->written);
2980 /* maybe we can reply to a read */
2981 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2982 struct bio *rbi, *rbi2;
2983 pr_debug("Return read for disc %d\n", i);
2984 spin_lock_irq(&conf->device_lock);
2985 rbi = dev->toread;
2986 dev->toread = NULL;
2987 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2988 wake_up(&conf->wait_for_overlap);
2989 spin_unlock_irq(&conf->device_lock);
2990 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2991 copy_data(0, rbi, dev->page, dev->sector);
2992 rbi2 = r5_next_bio(rbi, dev->sector);
2993 spin_lock_irq(&conf->device_lock);
2994 if (--rbi->bi_phys_segments == 0) {
2995 rbi->bi_next = return_bi;
2996 return_bi = rbi;
2997 }
2998 spin_unlock_irq(&conf->device_lock);
2999 rbi = rbi2;
3000 }
3001 }
3002
3003 /* now count some things */
3004 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3005 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3006
3007
3008 if (dev->toread)
3009 s.to_read++;
3010 if (dev->towrite) {
3011 s.to_write++;
3012 if (!test_bit(R5_OVERWRITE, &dev->flags))
3013 s.non_overwrite++;
3014 }
3015 if (dev->written)
3016 s.written++;
3017 rdev = rcu_dereference(conf->disks[i].rdev);
3018 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3019 blocked_rdev = rdev;
3020 atomic_inc(&rdev->nr_pending);
3021 break;
3022 }
3023 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3024 /* The ReadError flag will just be confusing now */
3025 clear_bit(R5_ReadError, &dev->flags);
3026 clear_bit(R5_ReWrite, &dev->flags);
3027 }
3028 if (!rdev || !test_bit(In_sync, &rdev->flags)
3029 || test_bit(R5_ReadError, &dev->flags)) {
3030 if (s.failed < 2)
3031 r6s.failed_num[s.failed] = i;
3032 s.failed++;
3033 } else
3034 set_bit(R5_Insync, &dev->flags);
3035 }
3036 rcu_read_unlock();
3037
3038 if (unlikely(blocked_rdev)) {
3039 set_bit(STRIPE_HANDLE, &sh->state);
3040 goto unlock;
3041 }
3042 pr_debug("locked=%d uptodate=%d to_read=%d"
3043 " to_write=%d failed=%d failed_num=%d,%d\n",
3044 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3045 r6s.failed_num[0], r6s.failed_num[1]);
3046 /* check if the array has lost >2 devices and, if so, some requests
3047 * might need to be failed
3048 */
3049 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3050 handle_requests_to_failed_array(conf, sh, &s, disks,
3051 &return_bi);
3052 if (s.failed > 2 && s.syncing) {
3053 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3054 clear_bit(STRIPE_SYNCING, &sh->state);
3055 s.syncing = 0;
3056 }
3057
3058 /*
3059 * might be able to return some write requests if the parity blocks
3060 * are safe, or on a failed drive
3061 */
3062 pdev = &sh->dev[pd_idx];
3063 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3064 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3065 qdev = &sh->dev[r6s.qd_idx];
3066 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3067 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3068
3069 if ( s.written &&
3070 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3071 && !test_bit(R5_LOCKED, &pdev->flags)
3072 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3073 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3074 && !test_bit(R5_LOCKED, &qdev->flags)
3075 && test_bit(R5_UPTODATE, &qdev->flags)))))
3076 handle_completed_write_requests(conf, sh, disks, &return_bi);
3077
3078 /* Now we might consider reading some blocks, either to check/generate
3079 * parity, or to satisfy requests
3080 * or to load a block that is being partially written.
3081 */
3082 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3083 (s.syncing && (s.uptodate < disks)) || s.expanding)
3084 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3085
3086 /* now to consider writing and what else, if anything should be read */
3087 if (s.to_write)
3088 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3089
3090 /* maybe we need to check and possibly fix the parity for this stripe
3091 * Any reads will already have been scheduled, so we just see if enough
3092 * data is available
3093 */
3094 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3095 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3096
3097 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3098 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3099 clear_bit(STRIPE_SYNCING, &sh->state);
3100 }
3101
3102 /* If the failed drives are just a ReadError, then we might need
3103 * to progress the repair/check process
3104 */
3105 if (s.failed <= 2 && !conf->mddev->ro)
3106 for (i = 0; i < s.failed; i++) {
3107 dev = &sh->dev[r6s.failed_num[i]];
3108 if (test_bit(R5_ReadError, &dev->flags)
3109 && !test_bit(R5_LOCKED, &dev->flags)
3110 && test_bit(R5_UPTODATE, &dev->flags)
3111 ) {
3112 if (!test_bit(R5_ReWrite, &dev->flags)) {
3113 set_bit(R5_Wantwrite, &dev->flags);
3114 set_bit(R5_ReWrite, &dev->flags);
3115 set_bit(R5_LOCKED, &dev->flags);
3116 } else {
3117 /* let's read it back */
3118 set_bit(R5_Wantread, &dev->flags);
3119 set_bit(R5_LOCKED, &dev->flags);
3120 }
3121 }
3122 }
3123
3124 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3125 /* Need to write out all blocks after computing P&Q */
3126 sh->disks = conf->raid_disks;
3127 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3128 conf->raid_disks);
3129 compute_parity6(sh, RECONSTRUCT_WRITE);
3130 for (i = conf->raid_disks ; i-- ; ) {
3131 set_bit(R5_LOCKED, &sh->dev[i].flags);
3132 s.locked++;
3133 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3134 }
3135 clear_bit(STRIPE_EXPANDING, &sh->state);
3136 } else if (s.expanded) {
3137 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3138 atomic_dec(&conf->reshape_stripes);
3139 wake_up(&conf->wait_for_overlap);
3140 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3141 }
3142
3143 if (s.expanding && s.locked == 0 &&
3144 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
3145 handle_stripe_expansion(conf, sh, &r6s);
3146
3147 unlock:
3148 spin_unlock(&sh->lock);
3149
3150 /* wait for this device to become unblocked */
3151 if (unlikely(blocked_rdev))
3152 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3153
3154 return_io(return_bi);
3155
3156 for (i=disks; i-- ;) {
3157 int rw;
3158 struct bio *bi;
3159 mdk_rdev_t *rdev;
3160 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3161 rw = WRITE;
3162 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3163 rw = READ;
3164 else
3165 continue;
3166
3167 set_bit(STRIPE_IO_STARTED, &sh->state);
3168
3169 bi = &sh->dev[i].req;
3170
3171 bi->bi_rw = rw;
3172 if (rw == WRITE)
3173 bi->bi_end_io = raid5_end_write_request;
3174 else
3175 bi->bi_end_io = raid5_end_read_request;
3176
3177 rcu_read_lock();
3178 rdev = rcu_dereference(conf->disks[i].rdev);
3179 if (rdev && test_bit(Faulty, &rdev->flags))
3180 rdev = NULL;
3181 if (rdev)
3182 atomic_inc(&rdev->nr_pending);
3183 rcu_read_unlock();
3184
3185 if (rdev) {
3186 if (s.syncing || s.expanding || s.expanded)
3187 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3188
3189 bi->bi_bdev = rdev->bdev;
3190 pr_debug("for %llu schedule op %ld on disc %d\n",
3191 (unsigned long long)sh->sector, bi->bi_rw, i);
3192 atomic_inc(&sh->count);
3193 bi->bi_sector = sh->sector + rdev->data_offset;
3194 bi->bi_flags = 1 << BIO_UPTODATE;
3195 bi->bi_vcnt = 1;
3196 bi->bi_max_vecs = 1;
3197 bi->bi_idx = 0;
3198 bi->bi_io_vec = &sh->dev[i].vec;
3199 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3200 bi->bi_io_vec[0].bv_offset = 0;
3201 bi->bi_size = STRIPE_SIZE;
3202 bi->bi_next = NULL;
3203 if (rw == WRITE &&
3204 test_bit(R5_ReWrite, &sh->dev[i].flags))
3205 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3206 generic_make_request(bi);
3207 } else {
3208 if (rw == WRITE)
3209 set_bit(STRIPE_DEGRADED, &sh->state);
3210 pr_debug("skip op %ld on disc %d for sector %llu\n",
3211 bi->bi_rw, i, (unsigned long long)sh->sector);
3212 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3213 set_bit(STRIPE_HANDLE, &sh->state);
3214 }
3215 }
3216 }
3217
3218 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3219 {
3220 if (sh->raid_conf->level == 6)
3221 handle_stripe6(sh, tmp_page);
3222 else
3223 handle_stripe5(sh);
3224 }
3225
3226
3227
3228 static void raid5_activate_delayed(raid5_conf_t *conf)
3229 {
3230 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3231 while (!list_empty(&conf->delayed_list)) {
3232 struct list_head *l = conf->delayed_list.next;
3233 struct stripe_head *sh;
3234 sh = list_entry(l, struct stripe_head, lru);
3235 list_del_init(l);
3236 clear_bit(STRIPE_DELAYED, &sh->state);
3237 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3238 atomic_inc(&conf->preread_active_stripes);
3239 list_add_tail(&sh->lru, &conf->hold_list);
3240 }
3241 } else
3242 blk_plug_device(conf->mddev->queue);
3243 }
3244
3245 static void activate_bit_delay(raid5_conf_t *conf)
3246 {
3247 /* device_lock is held */
3248 struct list_head head;
3249 list_add(&head, &conf->bitmap_list);
3250 list_del_init(&conf->bitmap_list);
3251 while (!list_empty(&head)) {
3252 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3253 list_del_init(&sh->lru);
3254 atomic_inc(&sh->count);
3255 __release_stripe(conf, sh);
3256 }
3257 }
3258
3259 static void unplug_slaves(mddev_t *mddev)
3260 {
3261 raid5_conf_t *conf = mddev_to_conf(mddev);
3262 int i;
3263
3264 rcu_read_lock();
3265 for (i=0; i<mddev->raid_disks; i++) {
3266 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3267 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3268 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3269
3270 atomic_inc(&rdev->nr_pending);
3271 rcu_read_unlock();
3272
3273 blk_unplug(r_queue);
3274
3275 rdev_dec_pending(rdev, mddev);
3276 rcu_read_lock();
3277 }
3278 }
3279 rcu_read_unlock();
3280 }
3281
3282 static void raid5_unplug_device(struct request_queue *q)
3283 {
3284 mddev_t *mddev = q->queuedata;
3285 raid5_conf_t *conf = mddev_to_conf(mddev);
3286 unsigned long flags;
3287
3288 spin_lock_irqsave(&conf->device_lock, flags);
3289
3290 if (blk_remove_plug(q)) {
3291 conf->seq_flush++;
3292 raid5_activate_delayed(conf);
3293 }
3294 md_wakeup_thread(mddev->thread);
3295
3296 spin_unlock_irqrestore(&conf->device_lock, flags);
3297
3298 unplug_slaves(mddev);
3299 }
3300
3301 static int raid5_congested(void *data, int bits)
3302 {
3303 mddev_t *mddev = data;
3304 raid5_conf_t *conf = mddev_to_conf(mddev);
3305
3306 /* No difference between reads and writes. Just check
3307 * how busy the stripe_cache is
3308 */
3309 if (conf->inactive_blocked)
3310 return 1;
3311 if (conf->quiesce)
3312 return 1;
3313 if (list_empty_careful(&conf->inactive_list))
3314 return 1;
3315
3316 return 0;
3317 }
3318
3319 /* We want read requests to align with chunks where possible,
3320 * but write requests don't need to.
3321 */
3322 static int raid5_mergeable_bvec(struct request_queue *q,
3323 struct bvec_merge_data *bvm,
3324 struct bio_vec *biovec)
3325 {
3326 mddev_t *mddev = q->queuedata;
3327 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3328 int max;
3329 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3330 unsigned int bio_sectors = bvm->bi_size >> 9;
3331
3332 if ((bvm->bi_rw & 1) == WRITE)
3333 return biovec->bv_len; /* always allow writes to be mergeable */
3334
3335 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3336 if (max < 0) max = 0;
3337 if (max <= biovec->bv_len && bio_sectors == 0)
3338 return biovec->bv_len;
3339 else
3340 return max;
3341 }
3342
3343
3344 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3345 {
3346 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3347 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3348 unsigned int bio_sectors = bio->bi_size >> 9;
3349
3350 return chunk_sectors >=
3351 ((sector & (chunk_sectors - 1)) + bio_sectors);
3352 }
3353
3354 /*
3355 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3356 * later sampled by raid5d.
3357 */
3358 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3359 {
3360 unsigned long flags;
3361
3362 spin_lock_irqsave(&conf->device_lock, flags);
3363
3364 bi->bi_next = conf->retry_read_aligned_list;
3365 conf->retry_read_aligned_list = bi;
3366
3367 spin_unlock_irqrestore(&conf->device_lock, flags);
3368 md_wakeup_thread(conf->mddev->thread);
3369 }
3370
3371
3372 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3373 {
3374 struct bio *bi;
3375
3376 bi = conf->retry_read_aligned;
3377 if (bi) {
3378 conf->retry_read_aligned = NULL;
3379 return bi;
3380 }
3381 bi = conf->retry_read_aligned_list;
3382 if(bi) {
3383 conf->retry_read_aligned_list = bi->bi_next;
3384 bi->bi_next = NULL;
3385 bi->bi_phys_segments = 1; /* biased count of active stripes */
3386 bi->bi_hw_segments = 0; /* count of processed stripes */
3387 }
3388
3389 return bi;
3390 }
3391
3392
3393 /*
3394 * The "raid5_align_endio" should check if the read succeeded and if it
3395 * did, call bio_endio on the original bio (having bio_put the new bio
3396 * first).
3397 * If the read failed..
3398 */
3399 static void raid5_align_endio(struct bio *bi, int error)
3400 {
3401 struct bio* raid_bi = bi->bi_private;
3402 mddev_t *mddev;
3403 raid5_conf_t *conf;
3404 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3405 mdk_rdev_t *rdev;
3406
3407 bio_put(bi);
3408
3409 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3410 conf = mddev_to_conf(mddev);
3411 rdev = (void*)raid_bi->bi_next;
3412 raid_bi->bi_next = NULL;
3413
3414 rdev_dec_pending(rdev, conf->mddev);
3415
3416 if (!error && uptodate) {
3417 bio_endio(raid_bi, 0);
3418 if (atomic_dec_and_test(&conf->active_aligned_reads))
3419 wake_up(&conf->wait_for_stripe);
3420 return;
3421 }
3422
3423
3424 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3425
3426 add_bio_to_retry(raid_bi, conf);
3427 }
3428
3429 static int bio_fits_rdev(struct bio *bi)
3430 {
3431 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3432
3433 if ((bi->bi_size>>9) > q->max_sectors)
3434 return 0;
3435 blk_recount_segments(q, bi);
3436 if (bi->bi_phys_segments > q->max_phys_segments ||
3437 bi->bi_hw_segments > q->max_hw_segments)
3438 return 0;
3439
3440 if (q->merge_bvec_fn)
3441 /* it's too hard to apply the merge_bvec_fn at this stage,
3442 * just just give up
3443 */
3444 return 0;
3445
3446 return 1;
3447 }
3448
3449
3450 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3451 {
3452 mddev_t *mddev = q->queuedata;
3453 raid5_conf_t *conf = mddev_to_conf(mddev);
3454 const unsigned int raid_disks = conf->raid_disks;
3455 const unsigned int data_disks = raid_disks - conf->max_degraded;
3456 unsigned int dd_idx, pd_idx;
3457 struct bio* align_bi;
3458 mdk_rdev_t *rdev;
3459
3460 if (!in_chunk_boundary(mddev, raid_bio)) {
3461 pr_debug("chunk_aligned_read : non aligned\n");
3462 return 0;
3463 }
3464 /*
3465 * use bio_clone to make a copy of the bio
3466 */
3467 align_bi = bio_clone(raid_bio, GFP_NOIO);
3468 if (!align_bi)
3469 return 0;
3470 /*
3471 * set bi_end_io to a new function, and set bi_private to the
3472 * original bio.
3473 */
3474 align_bi->bi_end_io = raid5_align_endio;
3475 align_bi->bi_private = raid_bio;
3476 /*
3477 * compute position
3478 */
3479 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3480 raid_disks,
3481 data_disks,
3482 &dd_idx,
3483 &pd_idx,
3484 conf);
3485
3486 rcu_read_lock();
3487 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3488 if (rdev && test_bit(In_sync, &rdev->flags)) {
3489 atomic_inc(&rdev->nr_pending);
3490 rcu_read_unlock();
3491 raid_bio->bi_next = (void*)rdev;
3492 align_bi->bi_bdev = rdev->bdev;
3493 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3494 align_bi->bi_sector += rdev->data_offset;
3495
3496 if (!bio_fits_rdev(align_bi)) {
3497 /* too big in some way */
3498 bio_put(align_bi);
3499 rdev_dec_pending(rdev, mddev);
3500 return 0;
3501 }
3502
3503 spin_lock_irq(&conf->device_lock);
3504 wait_event_lock_irq(conf->wait_for_stripe,
3505 conf->quiesce == 0,
3506 conf->device_lock, /* nothing */);
3507 atomic_inc(&conf->active_aligned_reads);
3508 spin_unlock_irq(&conf->device_lock);
3509
3510 generic_make_request(align_bi);
3511 return 1;
3512 } else {
3513 rcu_read_unlock();
3514 bio_put(align_bi);
3515 return 0;
3516 }
3517 }
3518
3519 /* __get_priority_stripe - get the next stripe to process
3520 *
3521 * Full stripe writes are allowed to pass preread active stripes up until
3522 * the bypass_threshold is exceeded. In general the bypass_count
3523 * increments when the handle_list is handled before the hold_list; however, it
3524 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3525 * stripe with in flight i/o. The bypass_count will be reset when the
3526 * head of the hold_list has changed, i.e. the head was promoted to the
3527 * handle_list.
3528 */
3529 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3530 {
3531 struct stripe_head *sh;
3532
3533 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3534 __func__,
3535 list_empty(&conf->handle_list) ? "empty" : "busy",
3536 list_empty(&conf->hold_list) ? "empty" : "busy",
3537 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3538
3539 if (!list_empty(&conf->handle_list)) {
3540 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3541
3542 if (list_empty(&conf->hold_list))
3543 conf->bypass_count = 0;
3544 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3545 if (conf->hold_list.next == conf->last_hold)
3546 conf->bypass_count++;
3547 else {
3548 conf->last_hold = conf->hold_list.next;
3549 conf->bypass_count -= conf->bypass_threshold;
3550 if (conf->bypass_count < 0)
3551 conf->bypass_count = 0;
3552 }
3553 }
3554 } else if (!list_empty(&conf->hold_list) &&
3555 ((conf->bypass_threshold &&
3556 conf->bypass_count > conf->bypass_threshold) ||
3557 atomic_read(&conf->pending_full_writes) == 0)) {
3558 sh = list_entry(conf->hold_list.next,
3559 typeof(*sh), lru);
3560 conf->bypass_count -= conf->bypass_threshold;
3561 if (conf->bypass_count < 0)
3562 conf->bypass_count = 0;
3563 } else
3564 return NULL;
3565
3566 list_del_init(&sh->lru);
3567 atomic_inc(&sh->count);
3568 BUG_ON(atomic_read(&sh->count) != 1);
3569 return sh;
3570 }
3571
3572 static int make_request(struct request_queue *q, struct bio * bi)
3573 {
3574 mddev_t *mddev = q->queuedata;
3575 raid5_conf_t *conf = mddev_to_conf(mddev);
3576 unsigned int dd_idx, pd_idx;
3577 sector_t new_sector;
3578 sector_t logical_sector, last_sector;
3579 struct stripe_head *sh;
3580 const int rw = bio_data_dir(bi);
3581 int remaining;
3582
3583 if (unlikely(bio_barrier(bi))) {
3584 bio_endio(bi, -EOPNOTSUPP);
3585 return 0;
3586 }
3587
3588 md_write_start(mddev, bi);
3589
3590 disk_stat_inc(mddev->gendisk, ios[rw]);
3591 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3592
3593 if (rw == READ &&
3594 mddev->reshape_position == MaxSector &&
3595 chunk_aligned_read(q,bi))
3596 return 0;
3597
3598 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3599 last_sector = bi->bi_sector + (bi->bi_size>>9);
3600 bi->bi_next = NULL;
3601 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3602
3603 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3604 DEFINE_WAIT(w);
3605 int disks, data_disks;
3606
3607 retry:
3608 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3609 if (likely(conf->expand_progress == MaxSector))
3610 disks = conf->raid_disks;
3611 else {
3612 /* spinlock is needed as expand_progress may be
3613 * 64bit on a 32bit platform, and so it might be
3614 * possible to see a half-updated value
3615 * Ofcourse expand_progress could change after
3616 * the lock is dropped, so once we get a reference
3617 * to the stripe that we think it is, we will have
3618 * to check again.
3619 */
3620 spin_lock_irq(&conf->device_lock);
3621 disks = conf->raid_disks;
3622 if (logical_sector >= conf->expand_progress)
3623 disks = conf->previous_raid_disks;
3624 else {
3625 if (logical_sector >= conf->expand_lo) {
3626 spin_unlock_irq(&conf->device_lock);
3627 schedule();
3628 goto retry;
3629 }
3630 }
3631 spin_unlock_irq(&conf->device_lock);
3632 }
3633 data_disks = disks - conf->max_degraded;
3634
3635 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3636 &dd_idx, &pd_idx, conf);
3637 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3638 (unsigned long long)new_sector,
3639 (unsigned long long)logical_sector);
3640
3641 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3642 if (sh) {
3643 if (unlikely(conf->expand_progress != MaxSector)) {
3644 /* expansion might have moved on while waiting for a
3645 * stripe, so we must do the range check again.
3646 * Expansion could still move past after this
3647 * test, but as we are holding a reference to
3648 * 'sh', we know that if that happens,
3649 * STRIPE_EXPANDING will get set and the expansion
3650 * won't proceed until we finish with the stripe.
3651 */
3652 int must_retry = 0;
3653 spin_lock_irq(&conf->device_lock);
3654 if (logical_sector < conf->expand_progress &&
3655 disks == conf->previous_raid_disks)
3656 /* mismatch, need to try again */
3657 must_retry = 1;
3658 spin_unlock_irq(&conf->device_lock);
3659 if (must_retry) {
3660 release_stripe(sh);
3661 goto retry;
3662 }
3663 }
3664 /* FIXME what if we get a false positive because these
3665 * are being updated.
3666 */
3667 if (logical_sector >= mddev->suspend_lo &&
3668 logical_sector < mddev->suspend_hi) {
3669 release_stripe(sh);
3670 schedule();
3671 goto retry;
3672 }
3673
3674 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3675 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3676 /* Stripe is busy expanding or
3677 * add failed due to overlap. Flush everything
3678 * and wait a while
3679 */
3680 raid5_unplug_device(mddev->queue);
3681 release_stripe(sh);
3682 schedule();
3683 goto retry;
3684 }
3685 finish_wait(&conf->wait_for_overlap, &w);
3686 set_bit(STRIPE_HANDLE, &sh->state);
3687 clear_bit(STRIPE_DELAYED, &sh->state);
3688 release_stripe(sh);
3689 } else {
3690 /* cannot get stripe for read-ahead, just give-up */
3691 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3692 finish_wait(&conf->wait_for_overlap, &w);
3693 break;
3694 }
3695
3696 }
3697 spin_lock_irq(&conf->device_lock);
3698 remaining = --bi->bi_phys_segments;
3699 spin_unlock_irq(&conf->device_lock);
3700 if (remaining == 0) {
3701
3702 if ( rw == WRITE )
3703 md_write_end(mddev);
3704
3705 bi->bi_end_io(bi,
3706 test_bit(BIO_UPTODATE, &bi->bi_flags)
3707 ? 0 : -EIO);
3708 }
3709 return 0;
3710 }
3711
3712 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3713 {
3714 /* reshaping is quite different to recovery/resync so it is
3715 * handled quite separately ... here.
3716 *
3717 * On each call to sync_request, we gather one chunk worth of
3718 * destination stripes and flag them as expanding.
3719 * Then we find all the source stripes and request reads.
3720 * As the reads complete, handle_stripe will copy the data
3721 * into the destination stripe and release that stripe.
3722 */
3723 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3724 struct stripe_head *sh;
3725 int pd_idx;
3726 sector_t first_sector, last_sector;
3727 int raid_disks = conf->previous_raid_disks;
3728 int data_disks = raid_disks - conf->max_degraded;
3729 int new_data_disks = conf->raid_disks - conf->max_degraded;
3730 int i;
3731 int dd_idx;
3732 sector_t writepos, safepos, gap;
3733
3734 if (sector_nr == 0 &&
3735 conf->expand_progress != 0) {
3736 /* restarting in the middle, skip the initial sectors */
3737 sector_nr = conf->expand_progress;
3738 sector_div(sector_nr, new_data_disks);
3739 *skipped = 1;
3740 return sector_nr;
3741 }
3742
3743 /* we update the metadata when there is more than 3Meg
3744 * in the block range (that is rather arbitrary, should
3745 * probably be time based) or when the data about to be
3746 * copied would over-write the source of the data at
3747 * the front of the range.
3748 * i.e. one new_stripe forward from expand_progress new_maps
3749 * to after where expand_lo old_maps to
3750 */
3751 writepos = conf->expand_progress +
3752 conf->chunk_size/512*(new_data_disks);
3753 sector_div(writepos, new_data_disks);
3754 safepos = conf->expand_lo;
3755 sector_div(safepos, data_disks);
3756 gap = conf->expand_progress - conf->expand_lo;
3757
3758 if (writepos >= safepos ||
3759 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3760 /* Cannot proceed until we've updated the superblock... */
3761 wait_event(conf->wait_for_overlap,
3762 atomic_read(&conf->reshape_stripes)==0);
3763 mddev->reshape_position = conf->expand_progress;
3764 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3765 md_wakeup_thread(mddev->thread);
3766 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3767 kthread_should_stop());
3768 spin_lock_irq(&conf->device_lock);
3769 conf->expand_lo = mddev->reshape_position;
3770 spin_unlock_irq(&conf->device_lock);
3771 wake_up(&conf->wait_for_overlap);
3772 }
3773
3774 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3775 int j;
3776 int skipped = 0;
3777 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3778 sh = get_active_stripe(conf, sector_nr+i,
3779 conf->raid_disks, pd_idx, 0);
3780 set_bit(STRIPE_EXPANDING, &sh->state);
3781 atomic_inc(&conf->reshape_stripes);
3782 /* If any of this stripe is beyond the end of the old
3783 * array, then we need to zero those blocks
3784 */
3785 for (j=sh->disks; j--;) {
3786 sector_t s;
3787 if (j == sh->pd_idx)
3788 continue;
3789 if (conf->level == 6 &&
3790 j == raid6_next_disk(sh->pd_idx, sh->disks))
3791 continue;
3792 s = compute_blocknr(sh, j);
3793 if (s < (mddev->array_size<<1)) {
3794 skipped = 1;
3795 continue;
3796 }
3797 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3798 set_bit(R5_Expanded, &sh->dev[j].flags);
3799 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3800 }
3801 if (!skipped) {
3802 set_bit(STRIPE_EXPAND_READY, &sh->state);
3803 set_bit(STRIPE_HANDLE, &sh->state);
3804 }
3805 release_stripe(sh);
3806 }
3807 spin_lock_irq(&conf->device_lock);
3808 conf->expand_progress = (sector_nr + i) * new_data_disks;
3809 spin_unlock_irq(&conf->device_lock);
3810 /* Ok, those stripe are ready. We can start scheduling
3811 * reads on the source stripes.
3812 * The source stripes are determined by mapping the first and last
3813 * block on the destination stripes.
3814 */
3815 first_sector =
3816 raid5_compute_sector(sector_nr*(new_data_disks),
3817 raid_disks, data_disks,
3818 &dd_idx, &pd_idx, conf);
3819 last_sector =
3820 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3821 *(new_data_disks) -1,
3822 raid_disks, data_disks,
3823 &dd_idx, &pd_idx, conf);
3824 if (last_sector >= (mddev->size<<1))
3825 last_sector = (mddev->size<<1)-1;
3826 while (first_sector <= last_sector) {
3827 pd_idx = stripe_to_pdidx(first_sector, conf,
3828 conf->previous_raid_disks);
3829 sh = get_active_stripe(conf, first_sector,
3830 conf->previous_raid_disks, pd_idx, 0);
3831 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3832 set_bit(STRIPE_HANDLE, &sh->state);
3833 release_stripe(sh);
3834 first_sector += STRIPE_SECTORS;
3835 }
3836 /* If this takes us to the resync_max point where we have to pause,
3837 * then we need to write out the superblock.
3838 */
3839 sector_nr += conf->chunk_size>>9;
3840 if (sector_nr >= mddev->resync_max) {
3841 /* Cannot proceed until we've updated the superblock... */
3842 wait_event(conf->wait_for_overlap,
3843 atomic_read(&conf->reshape_stripes) == 0);
3844 mddev->reshape_position = conf->expand_progress;
3845 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3846 md_wakeup_thread(mddev->thread);
3847 wait_event(mddev->sb_wait,
3848 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3849 || kthread_should_stop());
3850 spin_lock_irq(&conf->device_lock);
3851 conf->expand_lo = mddev->reshape_position;
3852 spin_unlock_irq(&conf->device_lock);
3853 wake_up(&conf->wait_for_overlap);
3854 }
3855 return conf->chunk_size>>9;
3856 }
3857
3858 /* FIXME go_faster isn't used */
3859 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3860 {
3861 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3862 struct stripe_head *sh;
3863 int pd_idx;
3864 int raid_disks = conf->raid_disks;
3865 sector_t max_sector = mddev->size << 1;
3866 int sync_blocks;
3867 int still_degraded = 0;
3868 int i;
3869
3870 if (sector_nr >= max_sector) {
3871 /* just being told to finish up .. nothing much to do */
3872 unplug_slaves(mddev);
3873 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3874 end_reshape(conf);
3875 return 0;
3876 }
3877
3878 if (mddev->curr_resync < max_sector) /* aborted */
3879 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3880 &sync_blocks, 1);
3881 else /* completed sync */
3882 conf->fullsync = 0;
3883 bitmap_close_sync(mddev->bitmap);
3884
3885 return 0;
3886 }
3887
3888 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3889 return reshape_request(mddev, sector_nr, skipped);
3890
3891 /* No need to check resync_max as we never do more than one
3892 * stripe, and as resync_max will always be on a chunk boundary,
3893 * if the check in md_do_sync didn't fire, there is no chance
3894 * of overstepping resync_max here
3895 */
3896
3897 /* if there is too many failed drives and we are trying
3898 * to resync, then assert that we are finished, because there is
3899 * nothing we can do.
3900 */
3901 if (mddev->degraded >= conf->max_degraded &&
3902 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3903 sector_t rv = (mddev->size << 1) - sector_nr;
3904 *skipped = 1;
3905 return rv;
3906 }
3907 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3908 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3909 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3910 /* we can skip this block, and probably more */
3911 sync_blocks /= STRIPE_SECTORS;
3912 *skipped = 1;
3913 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3914 }
3915
3916
3917 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3918
3919 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3920 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3921 if (sh == NULL) {
3922 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3923 /* make sure we don't swamp the stripe cache if someone else
3924 * is trying to get access
3925 */
3926 schedule_timeout_uninterruptible(1);
3927 }
3928 /* Need to check if array will still be degraded after recovery/resync
3929 * We don't need to check the 'failed' flag as when that gets set,
3930 * recovery aborts.
3931 */
3932 for (i=0; i<mddev->raid_disks; i++)
3933 if (conf->disks[i].rdev == NULL)
3934 still_degraded = 1;
3935
3936 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3937
3938 spin_lock(&sh->lock);
3939 set_bit(STRIPE_SYNCING, &sh->state);
3940 clear_bit(STRIPE_INSYNC, &sh->state);
3941 spin_unlock(&sh->lock);
3942
3943 handle_stripe(sh, NULL);
3944 release_stripe(sh);
3945
3946 return STRIPE_SECTORS;
3947 }
3948
3949 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3950 {
3951 /* We may not be able to submit a whole bio at once as there
3952 * may not be enough stripe_heads available.
3953 * We cannot pre-allocate enough stripe_heads as we may need
3954 * more than exist in the cache (if we allow ever large chunks).
3955 * So we do one stripe head at a time and record in
3956 * ->bi_hw_segments how many have been done.
3957 *
3958 * We *know* that this entire raid_bio is in one chunk, so
3959 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3960 */
3961 struct stripe_head *sh;
3962 int dd_idx, pd_idx;
3963 sector_t sector, logical_sector, last_sector;
3964 int scnt = 0;
3965 int remaining;
3966 int handled = 0;
3967
3968 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3969 sector = raid5_compute_sector( logical_sector,
3970 conf->raid_disks,
3971 conf->raid_disks - conf->max_degraded,
3972 &dd_idx,
3973 &pd_idx,
3974 conf);
3975 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3976
3977 for (; logical_sector < last_sector;
3978 logical_sector += STRIPE_SECTORS,
3979 sector += STRIPE_SECTORS,
3980 scnt++) {
3981
3982 if (scnt < raid_bio->bi_hw_segments)
3983 /* already done this stripe */
3984 continue;
3985
3986 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3987
3988 if (!sh) {
3989 /* failed to get a stripe - must wait */
3990 raid_bio->bi_hw_segments = scnt;
3991 conf->retry_read_aligned = raid_bio;
3992 return handled;
3993 }
3994
3995 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3996 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3997 release_stripe(sh);
3998 raid_bio->bi_hw_segments = scnt;
3999 conf->retry_read_aligned = raid_bio;
4000 return handled;
4001 }
4002
4003 handle_stripe(sh, NULL);
4004 release_stripe(sh);
4005 handled++;
4006 }
4007 spin_lock_irq(&conf->device_lock);
4008 remaining = --raid_bio->bi_phys_segments;
4009 spin_unlock_irq(&conf->device_lock);
4010 if (remaining == 0) {
4011
4012 raid_bio->bi_end_io(raid_bio,
4013 test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
4014 ? 0 : -EIO);
4015 }
4016 if (atomic_dec_and_test(&conf->active_aligned_reads))
4017 wake_up(&conf->wait_for_stripe);
4018 return handled;
4019 }
4020
4021
4022
4023 /*
4024 * This is our raid5 kernel thread.
4025 *
4026 * We scan the hash table for stripes which can be handled now.
4027 * During the scan, completed stripes are saved for us by the interrupt
4028 * handler, so that they will not have to wait for our next wakeup.
4029 */
4030 static void raid5d(mddev_t *mddev)
4031 {
4032 struct stripe_head *sh;
4033 raid5_conf_t *conf = mddev_to_conf(mddev);
4034 int handled;
4035
4036 pr_debug("+++ raid5d active\n");
4037
4038 md_check_recovery(mddev);
4039
4040 handled = 0;
4041 spin_lock_irq(&conf->device_lock);
4042 while (1) {
4043 struct bio *bio;
4044
4045 if (conf->seq_flush != conf->seq_write) {
4046 int seq = conf->seq_flush;
4047 spin_unlock_irq(&conf->device_lock);
4048 bitmap_unplug(mddev->bitmap);
4049 spin_lock_irq(&conf->device_lock);
4050 conf->seq_write = seq;
4051 activate_bit_delay(conf);
4052 }
4053
4054 while ((bio = remove_bio_from_retry(conf))) {
4055 int ok;
4056 spin_unlock_irq(&conf->device_lock);
4057 ok = retry_aligned_read(conf, bio);
4058 spin_lock_irq(&conf->device_lock);
4059 if (!ok)
4060 break;
4061 handled++;
4062 }
4063
4064 sh = __get_priority_stripe(conf);
4065
4066 if (!sh) {
4067 async_tx_issue_pending_all();
4068 break;
4069 }
4070 spin_unlock_irq(&conf->device_lock);
4071
4072 handled++;
4073 handle_stripe(sh, conf->spare_page);
4074 release_stripe(sh);
4075
4076 spin_lock_irq(&conf->device_lock);
4077 }
4078 pr_debug("%d stripes handled\n", handled);
4079
4080 spin_unlock_irq(&conf->device_lock);
4081
4082 unplug_slaves(mddev);
4083
4084 pr_debug("--- raid5d inactive\n");
4085 }
4086
4087 static ssize_t
4088 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4089 {
4090 raid5_conf_t *conf = mddev_to_conf(mddev);
4091 if (conf)
4092 return sprintf(page, "%d\n", conf->max_nr_stripes);
4093 else
4094 return 0;
4095 }
4096
4097 static ssize_t
4098 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4099 {
4100 raid5_conf_t *conf = mddev_to_conf(mddev);
4101 unsigned long new;
4102 if (len >= PAGE_SIZE)
4103 return -EINVAL;
4104 if (!conf)
4105 return -ENODEV;
4106
4107 if (strict_strtoul(page, 10, &new))
4108 return -EINVAL;
4109 if (new <= 16 || new > 32768)
4110 return -EINVAL;
4111 while (new < conf->max_nr_stripes) {
4112 if (drop_one_stripe(conf))
4113 conf->max_nr_stripes--;
4114 else
4115 break;
4116 }
4117 md_allow_write(mddev);
4118 while (new > conf->max_nr_stripes) {
4119 if (grow_one_stripe(conf))
4120 conf->max_nr_stripes++;
4121 else break;
4122 }
4123 return len;
4124 }
4125
4126 static struct md_sysfs_entry
4127 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4128 raid5_show_stripe_cache_size,
4129 raid5_store_stripe_cache_size);
4130
4131 static ssize_t
4132 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4133 {
4134 raid5_conf_t *conf = mddev_to_conf(mddev);
4135 if (conf)
4136 return sprintf(page, "%d\n", conf->bypass_threshold);
4137 else
4138 return 0;
4139 }
4140
4141 static ssize_t
4142 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4143 {
4144 raid5_conf_t *conf = mddev_to_conf(mddev);
4145 unsigned long new;
4146 if (len >= PAGE_SIZE)
4147 return -EINVAL;
4148 if (!conf)
4149 return -ENODEV;
4150
4151 if (strict_strtoul(page, 10, &new))
4152 return -EINVAL;
4153 if (new > conf->max_nr_stripes)
4154 return -EINVAL;
4155 conf->bypass_threshold = new;
4156 return len;
4157 }
4158
4159 static struct md_sysfs_entry
4160 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4161 S_IRUGO | S_IWUSR,
4162 raid5_show_preread_threshold,
4163 raid5_store_preread_threshold);
4164
4165 static ssize_t
4166 stripe_cache_active_show(mddev_t *mddev, char *page)
4167 {
4168 raid5_conf_t *conf = mddev_to_conf(mddev);
4169 if (conf)
4170 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4171 else
4172 return 0;
4173 }
4174
4175 static struct md_sysfs_entry
4176 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4177
4178 static struct attribute *raid5_attrs[] = {
4179 &raid5_stripecache_size.attr,
4180 &raid5_stripecache_active.attr,
4181 &raid5_preread_bypass_threshold.attr,
4182 NULL,
4183 };
4184 static struct attribute_group raid5_attrs_group = {
4185 .name = NULL,
4186 .attrs = raid5_attrs,
4187 };
4188
4189 static int run(mddev_t *mddev)
4190 {
4191 raid5_conf_t *conf;
4192 int raid_disk, memory;
4193 mdk_rdev_t *rdev;
4194 struct disk_info *disk;
4195 struct list_head *tmp;
4196 int working_disks = 0;
4197
4198 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4199 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4200 mdname(mddev), mddev->level);
4201 return -EIO;
4202 }
4203
4204 if (mddev->reshape_position != MaxSector) {
4205 /* Check that we can continue the reshape.
4206 * Currently only disks can change, it must
4207 * increase, and we must be past the point where
4208 * a stripe over-writes itself
4209 */
4210 sector_t here_new, here_old;
4211 int old_disks;
4212 int max_degraded = (mddev->level == 5 ? 1 : 2);
4213
4214 if (mddev->new_level != mddev->level ||
4215 mddev->new_layout != mddev->layout ||
4216 mddev->new_chunk != mddev->chunk_size) {
4217 printk(KERN_ERR "raid5: %s: unsupported reshape "
4218 "required - aborting.\n",
4219 mdname(mddev));
4220 return -EINVAL;
4221 }
4222 if (mddev->delta_disks <= 0) {
4223 printk(KERN_ERR "raid5: %s: unsupported reshape "
4224 "(reduce disks) required - aborting.\n",
4225 mdname(mddev));
4226 return -EINVAL;
4227 }
4228 old_disks = mddev->raid_disks - mddev->delta_disks;
4229 /* reshape_position must be on a new-stripe boundary, and one
4230 * further up in new geometry must map after here in old
4231 * geometry.
4232 */
4233 here_new = mddev->reshape_position;
4234 if (sector_div(here_new, (mddev->chunk_size>>9)*
4235 (mddev->raid_disks - max_degraded))) {
4236 printk(KERN_ERR "raid5: reshape_position not "
4237 "on a stripe boundary\n");
4238 return -EINVAL;
4239 }
4240 /* here_new is the stripe we will write to */
4241 here_old = mddev->reshape_position;
4242 sector_div(here_old, (mddev->chunk_size>>9)*
4243 (old_disks-max_degraded));
4244 /* here_old is the first stripe that we might need to read
4245 * from */
4246 if (here_new >= here_old) {
4247 /* Reading from the same stripe as writing to - bad */
4248 printk(KERN_ERR "raid5: reshape_position too early for "
4249 "auto-recovery - aborting.\n");
4250 return -EINVAL;
4251 }
4252 printk(KERN_INFO "raid5: reshape will continue\n");
4253 /* OK, we should be able to continue; */
4254 }
4255
4256
4257 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4258 if ((conf = mddev->private) == NULL)
4259 goto abort;
4260 if (mddev->reshape_position == MaxSector) {
4261 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4262 } else {
4263 conf->raid_disks = mddev->raid_disks;
4264 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4265 }
4266
4267 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4268 GFP_KERNEL);
4269 if (!conf->disks)
4270 goto abort;
4271
4272 conf->mddev = mddev;
4273
4274 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4275 goto abort;
4276
4277 if (mddev->level == 6) {
4278 conf->spare_page = alloc_page(GFP_KERNEL);
4279 if (!conf->spare_page)
4280 goto abort;
4281 }
4282 spin_lock_init(&conf->device_lock);
4283 mddev->queue->queue_lock = &conf->device_lock;
4284 init_waitqueue_head(&conf->wait_for_stripe);
4285 init_waitqueue_head(&conf->wait_for_overlap);
4286 INIT_LIST_HEAD(&conf->handle_list);
4287 INIT_LIST_HEAD(&conf->hold_list);
4288 INIT_LIST_HEAD(&conf->delayed_list);
4289 INIT_LIST_HEAD(&conf->bitmap_list);
4290 INIT_LIST_HEAD(&conf->inactive_list);
4291 atomic_set(&conf->active_stripes, 0);
4292 atomic_set(&conf->preread_active_stripes, 0);
4293 atomic_set(&conf->active_aligned_reads, 0);
4294 conf->bypass_threshold = BYPASS_THRESHOLD;
4295
4296 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4297
4298 rdev_for_each(rdev, tmp, mddev) {
4299 raid_disk = rdev->raid_disk;
4300 if (raid_disk >= conf->raid_disks
4301 || raid_disk < 0)
4302 continue;
4303 disk = conf->disks + raid_disk;
4304
4305 disk->rdev = rdev;
4306
4307 if (test_bit(In_sync, &rdev->flags)) {
4308 char b[BDEVNAME_SIZE];
4309 printk(KERN_INFO "raid5: device %s operational as raid"
4310 " disk %d\n", bdevname(rdev->bdev,b),
4311 raid_disk);
4312 working_disks++;
4313 } else
4314 /* Cannot rely on bitmap to complete recovery */
4315 conf->fullsync = 1;
4316 }
4317
4318 /*
4319 * 0 for a fully functional array, 1 or 2 for a degraded array.
4320 */
4321 mddev->degraded = conf->raid_disks - working_disks;
4322 conf->mddev = mddev;
4323 conf->chunk_size = mddev->chunk_size;
4324 conf->level = mddev->level;
4325 if (conf->level == 6)
4326 conf->max_degraded = 2;
4327 else
4328 conf->max_degraded = 1;
4329 conf->algorithm = mddev->layout;
4330 conf->max_nr_stripes = NR_STRIPES;
4331 conf->expand_progress = mddev->reshape_position;
4332
4333 /* device size must be a multiple of chunk size */
4334 mddev->size &= ~(mddev->chunk_size/1024 -1);
4335 mddev->resync_max_sectors = mddev->size << 1;
4336
4337 if (conf->level == 6 && conf->raid_disks < 4) {
4338 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4339 mdname(mddev), conf->raid_disks);
4340 goto abort;
4341 }
4342 if (!conf->chunk_size || conf->chunk_size % 4) {
4343 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4344 conf->chunk_size, mdname(mddev));
4345 goto abort;
4346 }
4347 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4348 printk(KERN_ERR
4349 "raid5: unsupported parity algorithm %d for %s\n",
4350 conf->algorithm, mdname(mddev));
4351 goto abort;
4352 }
4353 if (mddev->degraded > conf->max_degraded) {
4354 printk(KERN_ERR "raid5: not enough operational devices for %s"
4355 " (%d/%d failed)\n",
4356 mdname(mddev), mddev->degraded, conf->raid_disks);
4357 goto abort;
4358 }
4359
4360 if (mddev->degraded > 0 &&
4361 mddev->recovery_cp != MaxSector) {
4362 if (mddev->ok_start_degraded)
4363 printk(KERN_WARNING
4364 "raid5: starting dirty degraded array: %s"
4365 "- data corruption possible.\n",
4366 mdname(mddev));
4367 else {
4368 printk(KERN_ERR
4369 "raid5: cannot start dirty degraded array for %s\n",
4370 mdname(mddev));
4371 goto abort;
4372 }
4373 }
4374
4375 {
4376 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4377 if (!mddev->thread) {
4378 printk(KERN_ERR
4379 "raid5: couldn't allocate thread for %s\n",
4380 mdname(mddev));
4381 goto abort;
4382 }
4383 }
4384 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4385 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4386 if (grow_stripes(conf, conf->max_nr_stripes)) {
4387 printk(KERN_ERR
4388 "raid5: couldn't allocate %dkB for buffers\n", memory);
4389 shrink_stripes(conf);
4390 md_unregister_thread(mddev->thread);
4391 goto abort;
4392 } else
4393 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4394 memory, mdname(mddev));
4395
4396 if (mddev->degraded == 0)
4397 printk("raid5: raid level %d set %s active with %d out of %d"
4398 " devices, algorithm %d\n", conf->level, mdname(mddev),
4399 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4400 conf->algorithm);
4401 else
4402 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4403 " out of %d devices, algorithm %d\n", conf->level,
4404 mdname(mddev), mddev->raid_disks - mddev->degraded,
4405 mddev->raid_disks, conf->algorithm);
4406
4407 print_raid5_conf(conf);
4408
4409 if (conf->expand_progress != MaxSector) {
4410 printk("...ok start reshape thread\n");
4411 conf->expand_lo = conf->expand_progress;
4412 atomic_set(&conf->reshape_stripes, 0);
4413 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4414 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4415 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4416 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4417 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4418 "%s_reshape");
4419 }
4420
4421 /* read-ahead size must cover two whole stripes, which is
4422 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4423 */
4424 {
4425 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4426 int stripe = data_disks *
4427 (mddev->chunk_size / PAGE_SIZE);
4428 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4429 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4430 }
4431
4432 /* Ok, everything is just fine now */
4433 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4434 printk(KERN_WARNING
4435 "raid5: failed to create sysfs attributes for %s\n",
4436 mdname(mddev));
4437
4438 mddev->queue->unplug_fn = raid5_unplug_device;
4439 mddev->queue->backing_dev_info.congested_data = mddev;
4440 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4441
4442 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4443 conf->max_degraded);
4444
4445 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4446
4447 return 0;
4448 abort:
4449 if (conf) {
4450 print_raid5_conf(conf);
4451 safe_put_page(conf->spare_page);
4452 kfree(conf->disks);
4453 kfree(conf->stripe_hashtbl);
4454 kfree(conf);
4455 }
4456 mddev->private = NULL;
4457 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4458 return -EIO;
4459 }
4460
4461
4462
4463 static int stop(mddev_t *mddev)
4464 {
4465 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4466
4467 md_unregister_thread(mddev->thread);
4468 mddev->thread = NULL;
4469 shrink_stripes(conf);
4470 kfree(conf->stripe_hashtbl);
4471 mddev->queue->backing_dev_info.congested_fn = NULL;
4472 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4473 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4474 kfree(conf->disks);
4475 kfree(conf);
4476 mddev->private = NULL;
4477 return 0;
4478 }
4479
4480 #ifdef DEBUG
4481 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4482 {
4483 int i;
4484
4485 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4486 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4487 seq_printf(seq, "sh %llu, count %d.\n",
4488 (unsigned long long)sh->sector, atomic_read(&sh->count));
4489 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4490 for (i = 0; i < sh->disks; i++) {
4491 seq_printf(seq, "(cache%d: %p %ld) ",
4492 i, sh->dev[i].page, sh->dev[i].flags);
4493 }
4494 seq_printf(seq, "\n");
4495 }
4496
4497 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4498 {
4499 struct stripe_head *sh;
4500 struct hlist_node *hn;
4501 int i;
4502
4503 spin_lock_irq(&conf->device_lock);
4504 for (i = 0; i < NR_HASH; i++) {
4505 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4506 if (sh->raid_conf != conf)
4507 continue;
4508 print_sh(seq, sh);
4509 }
4510 }
4511 spin_unlock_irq(&conf->device_lock);
4512 }
4513 #endif
4514
4515 static void status (struct seq_file *seq, mddev_t *mddev)
4516 {
4517 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4518 int i;
4519
4520 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4521 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4522 for (i = 0; i < conf->raid_disks; i++)
4523 seq_printf (seq, "%s",
4524 conf->disks[i].rdev &&
4525 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4526 seq_printf (seq, "]");
4527 #ifdef DEBUG
4528 seq_printf (seq, "\n");
4529 printall(seq, conf);
4530 #endif
4531 }
4532
4533 static void print_raid5_conf (raid5_conf_t *conf)
4534 {
4535 int i;
4536 struct disk_info *tmp;
4537
4538 printk("RAID5 conf printout:\n");
4539 if (!conf) {
4540 printk("(conf==NULL)\n");
4541 return;
4542 }
4543 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4544 conf->raid_disks - conf->mddev->degraded);
4545
4546 for (i = 0; i < conf->raid_disks; i++) {
4547 char b[BDEVNAME_SIZE];
4548 tmp = conf->disks + i;
4549 if (tmp->rdev)
4550 printk(" disk %d, o:%d, dev:%s\n",
4551 i, !test_bit(Faulty, &tmp->rdev->flags),
4552 bdevname(tmp->rdev->bdev,b));
4553 }
4554 }
4555
4556 static int raid5_spare_active(mddev_t *mddev)
4557 {
4558 int i;
4559 raid5_conf_t *conf = mddev->private;
4560 struct disk_info *tmp;
4561
4562 for (i = 0; i < conf->raid_disks; i++) {
4563 tmp = conf->disks + i;
4564 if (tmp->rdev
4565 && !test_bit(Faulty, &tmp->rdev->flags)
4566 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4567 unsigned long flags;
4568 spin_lock_irqsave(&conf->device_lock, flags);
4569 mddev->degraded--;
4570 spin_unlock_irqrestore(&conf->device_lock, flags);
4571 }
4572 }
4573 print_raid5_conf(conf);
4574 return 0;
4575 }
4576
4577 static int raid5_remove_disk(mddev_t *mddev, int number)
4578 {
4579 raid5_conf_t *conf = mddev->private;
4580 int err = 0;
4581 mdk_rdev_t *rdev;
4582 struct disk_info *p = conf->disks + number;
4583
4584 print_raid5_conf(conf);
4585 rdev = p->rdev;
4586 if (rdev) {
4587 if (test_bit(In_sync, &rdev->flags) ||
4588 atomic_read(&rdev->nr_pending)) {
4589 err = -EBUSY;
4590 goto abort;
4591 }
4592 /* Only remove non-faulty devices if recovery
4593 * isn't possible.
4594 */
4595 if (!test_bit(Faulty, &rdev->flags) &&
4596 mddev->degraded <= conf->max_degraded) {
4597 err = -EBUSY;
4598 goto abort;
4599 }
4600 p->rdev = NULL;
4601 synchronize_rcu();
4602 if (atomic_read(&rdev->nr_pending)) {
4603 /* lost the race, try later */
4604 err = -EBUSY;
4605 p->rdev = rdev;
4606 }
4607 }
4608 abort:
4609
4610 print_raid5_conf(conf);
4611 return err;
4612 }
4613
4614 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4615 {
4616 raid5_conf_t *conf = mddev->private;
4617 int found = 0;
4618 int disk;
4619 struct disk_info *p;
4620
4621 if (mddev->degraded > conf->max_degraded)
4622 /* no point adding a device */
4623 return 0;
4624
4625 /*
4626 * find the disk ... but prefer rdev->saved_raid_disk
4627 * if possible.
4628 */
4629 if (rdev->saved_raid_disk >= 0 &&
4630 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4631 disk = rdev->saved_raid_disk;
4632 else
4633 disk = 0;
4634 for ( ; disk < conf->raid_disks; disk++)
4635 if ((p=conf->disks + disk)->rdev == NULL) {
4636 clear_bit(In_sync, &rdev->flags);
4637 rdev->raid_disk = disk;
4638 found = 1;
4639 if (rdev->saved_raid_disk != disk)
4640 conf->fullsync = 1;
4641 rcu_assign_pointer(p->rdev, rdev);
4642 break;
4643 }
4644 print_raid5_conf(conf);
4645 return found;
4646 }
4647
4648 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4649 {
4650 /* no resync is happening, and there is enough space
4651 * on all devices, so we can resize.
4652 * We need to make sure resync covers any new space.
4653 * If the array is shrinking we should possibly wait until
4654 * any io in the removed space completes, but it hardly seems
4655 * worth it.
4656 */
4657 raid5_conf_t *conf = mddev_to_conf(mddev);
4658
4659 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4660 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4661 set_capacity(mddev->gendisk, mddev->array_size << 1);
4662 mddev->changed = 1;
4663 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4664 mddev->recovery_cp = mddev->size << 1;
4665 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4666 }
4667 mddev->size = sectors /2;
4668 mddev->resync_max_sectors = sectors;
4669 return 0;
4670 }
4671
4672 #ifdef CONFIG_MD_RAID5_RESHAPE
4673 static int raid5_check_reshape(mddev_t *mddev)
4674 {
4675 raid5_conf_t *conf = mddev_to_conf(mddev);
4676 int err;
4677
4678 if (mddev->delta_disks < 0 ||
4679 mddev->new_level != mddev->level)
4680 return -EINVAL; /* Cannot shrink array or change level yet */
4681 if (mddev->delta_disks == 0)
4682 return 0; /* nothing to do */
4683
4684 /* Can only proceed if there are plenty of stripe_heads.
4685 * We need a minimum of one full stripe,, and for sensible progress
4686 * it is best to have about 4 times that.
4687 * If we require 4 times, then the default 256 4K stripe_heads will
4688 * allow for chunk sizes up to 256K, which is probably OK.
4689 * If the chunk size is greater, user-space should request more
4690 * stripe_heads first.
4691 */
4692 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4693 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4694 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4695 (mddev->chunk_size / STRIPE_SIZE)*4);
4696 return -ENOSPC;
4697 }
4698
4699 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4700 if (err)
4701 return err;
4702
4703 if (mddev->degraded > conf->max_degraded)
4704 return -EINVAL;
4705 /* looks like we might be able to manage this */
4706 return 0;
4707 }
4708
4709 static int raid5_start_reshape(mddev_t *mddev)
4710 {
4711 raid5_conf_t *conf = mddev_to_conf(mddev);
4712 mdk_rdev_t *rdev;
4713 struct list_head *rtmp;
4714 int spares = 0;
4715 int added_devices = 0;
4716 unsigned long flags;
4717
4718 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4719 return -EBUSY;
4720
4721 rdev_for_each(rdev, rtmp, mddev)
4722 if (rdev->raid_disk < 0 &&
4723 !test_bit(Faulty, &rdev->flags))
4724 spares++;
4725
4726 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4727 /* Not enough devices even to make a degraded array
4728 * of that size
4729 */
4730 return -EINVAL;
4731
4732 atomic_set(&conf->reshape_stripes, 0);
4733 spin_lock_irq(&conf->device_lock);
4734 conf->previous_raid_disks = conf->raid_disks;
4735 conf->raid_disks += mddev->delta_disks;
4736 conf->expand_progress = 0;
4737 conf->expand_lo = 0;
4738 spin_unlock_irq(&conf->device_lock);
4739
4740 /* Add some new drives, as many as will fit.
4741 * We know there are enough to make the newly sized array work.
4742 */
4743 rdev_for_each(rdev, rtmp, mddev)
4744 if (rdev->raid_disk < 0 &&
4745 !test_bit(Faulty, &rdev->flags)) {
4746 if (raid5_add_disk(mddev, rdev)) {
4747 char nm[20];
4748 set_bit(In_sync, &rdev->flags);
4749 added_devices++;
4750 rdev->recovery_offset = 0;
4751 sprintf(nm, "rd%d", rdev->raid_disk);
4752 if (sysfs_create_link(&mddev->kobj,
4753 &rdev->kobj, nm))
4754 printk(KERN_WARNING
4755 "raid5: failed to create "
4756 " link %s for %s\n",
4757 nm, mdname(mddev));
4758 } else
4759 break;
4760 }
4761
4762 spin_lock_irqsave(&conf->device_lock, flags);
4763 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4764 spin_unlock_irqrestore(&conf->device_lock, flags);
4765 mddev->raid_disks = conf->raid_disks;
4766 mddev->reshape_position = 0;
4767 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4768
4769 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4770 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4771 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4772 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4773 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4774 "%s_reshape");
4775 if (!mddev->sync_thread) {
4776 mddev->recovery = 0;
4777 spin_lock_irq(&conf->device_lock);
4778 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4779 conf->expand_progress = MaxSector;
4780 spin_unlock_irq(&conf->device_lock);
4781 return -EAGAIN;
4782 }
4783 md_wakeup_thread(mddev->sync_thread);
4784 md_new_event(mddev);
4785 return 0;
4786 }
4787 #endif
4788
4789 static void end_reshape(raid5_conf_t *conf)
4790 {
4791 struct block_device *bdev;
4792
4793 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4794 conf->mddev->array_size = conf->mddev->size *
4795 (conf->raid_disks - conf->max_degraded);
4796 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4797 conf->mddev->changed = 1;
4798
4799 bdev = bdget_disk(conf->mddev->gendisk, 0);
4800 if (bdev) {
4801 mutex_lock(&bdev->bd_inode->i_mutex);
4802 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4803 mutex_unlock(&bdev->bd_inode->i_mutex);
4804 bdput(bdev);
4805 }
4806 spin_lock_irq(&conf->device_lock);
4807 conf->expand_progress = MaxSector;
4808 spin_unlock_irq(&conf->device_lock);
4809 conf->mddev->reshape_position = MaxSector;
4810
4811 /* read-ahead size must cover two whole stripes, which is
4812 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4813 */
4814 {
4815 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4816 int stripe = data_disks *
4817 (conf->mddev->chunk_size / PAGE_SIZE);
4818 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4819 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4820 }
4821 }
4822 }
4823
4824 static void raid5_quiesce(mddev_t *mddev, int state)
4825 {
4826 raid5_conf_t *conf = mddev_to_conf(mddev);
4827
4828 switch(state) {
4829 case 2: /* resume for a suspend */
4830 wake_up(&conf->wait_for_overlap);
4831 break;
4832
4833 case 1: /* stop all writes */
4834 spin_lock_irq(&conf->device_lock);
4835 conf->quiesce = 1;
4836 wait_event_lock_irq(conf->wait_for_stripe,
4837 atomic_read(&conf->active_stripes) == 0 &&
4838 atomic_read(&conf->active_aligned_reads) == 0,
4839 conf->device_lock, /* nothing */);
4840 spin_unlock_irq(&conf->device_lock);
4841 break;
4842
4843 case 0: /* re-enable writes */
4844 spin_lock_irq(&conf->device_lock);
4845 conf->quiesce = 0;
4846 wake_up(&conf->wait_for_stripe);
4847 wake_up(&conf->wait_for_overlap);
4848 spin_unlock_irq(&conf->device_lock);
4849 break;
4850 }
4851 }
4852
4853 static struct mdk_personality raid6_personality =
4854 {
4855 .name = "raid6",
4856 .level = 6,
4857 .owner = THIS_MODULE,
4858 .make_request = make_request,
4859 .run = run,
4860 .stop = stop,
4861 .status = status,
4862 .error_handler = error,
4863 .hot_add_disk = raid5_add_disk,
4864 .hot_remove_disk= raid5_remove_disk,
4865 .spare_active = raid5_spare_active,
4866 .sync_request = sync_request,
4867 .resize = raid5_resize,
4868 #ifdef CONFIG_MD_RAID5_RESHAPE
4869 .check_reshape = raid5_check_reshape,
4870 .start_reshape = raid5_start_reshape,
4871 #endif
4872 .quiesce = raid5_quiesce,
4873 };
4874 static struct mdk_personality raid5_personality =
4875 {
4876 .name = "raid5",
4877 .level = 5,
4878 .owner = THIS_MODULE,
4879 .make_request = make_request,
4880 .run = run,
4881 .stop = stop,
4882 .status = status,
4883 .error_handler = error,
4884 .hot_add_disk = raid5_add_disk,
4885 .hot_remove_disk= raid5_remove_disk,
4886 .spare_active = raid5_spare_active,
4887 .sync_request = sync_request,
4888 .resize = raid5_resize,
4889 #ifdef CONFIG_MD_RAID5_RESHAPE
4890 .check_reshape = raid5_check_reshape,
4891 .start_reshape = raid5_start_reshape,
4892 #endif
4893 .quiesce = raid5_quiesce,
4894 };
4895
4896 static struct mdk_personality raid4_personality =
4897 {
4898 .name = "raid4",
4899 .level = 4,
4900 .owner = THIS_MODULE,
4901 .make_request = make_request,
4902 .run = run,
4903 .stop = stop,
4904 .status = status,
4905 .error_handler = error,
4906 .hot_add_disk = raid5_add_disk,
4907 .hot_remove_disk= raid5_remove_disk,
4908 .spare_active = raid5_spare_active,
4909 .sync_request = sync_request,
4910 .resize = raid5_resize,
4911 #ifdef CONFIG_MD_RAID5_RESHAPE
4912 .check_reshape = raid5_check_reshape,
4913 .start_reshape = raid5_start_reshape,
4914 #endif
4915 .quiesce = raid5_quiesce,
4916 };
4917
4918 static int __init raid5_init(void)
4919 {
4920 int e;
4921
4922 e = raid6_select_algo();
4923 if ( e )
4924 return e;
4925 register_md_personality(&raid6_personality);
4926 register_md_personality(&raid5_personality);
4927 register_md_personality(&raid4_personality);
4928 return 0;
4929 }
4930
4931 static void raid5_exit(void)
4932 {
4933 unregister_md_personality(&raid6_personality);
4934 unregister_md_personality(&raid5_personality);
4935 unregister_md_personality(&raid4_personality);
4936 }
4937
4938 module_init(raid5_init);
4939 module_exit(raid5_exit);
4940 MODULE_LICENSE("GPL");
4941 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4942 MODULE_ALIAS("md-raid5");
4943 MODULE_ALIAS("md-raid4");
4944 MODULE_ALIAS("md-level-5");
4945 MODULE_ALIAS("md-level-4");
4946 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4947 MODULE_ALIAS("md-raid6");
4948 MODULE_ALIAS("md-level-6");
4949
4950 /* This used to be two separate modules, they were: */
4951 MODULE_ALIAS("raid5");
4952 MODULE_ALIAS("raid6");