]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/media/video/gspca/sonixb.c
Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mirror_ubuntu-artful-kernel.git] / drivers / media / video / gspca / sonixb.c
1 /*
2 * sonix sn9c102 (bayer) library
3 *
4 * Copyright (C) 2009-2011 Jean-François Moine <http://moinejf.free.fr>
5 * Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
6 * Add Pas106 Stefano Mozzi (C) 2004
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23 /* Some documentation on known sonixb registers:
24
25 Reg Use
26 sn9c101 / sn9c102:
27 0x10 high nibble red gain low nibble blue gain
28 0x11 low nibble green gain
29 sn9c103:
30 0x05 red gain 0-127
31 0x06 blue gain 0-127
32 0x07 green gain 0-127
33 all:
34 0x08-0x0f i2c / 3wire registers
35 0x12 hstart
36 0x13 vstart
37 0x15 hsize (hsize = register-value * 16)
38 0x16 vsize (vsize = register-value * 16)
39 0x17 bit 0 toggle compression quality (according to sn9c102 driver)
40 0x18 bit 7 enables compression, bit 4-5 set image down scaling:
41 00 scale 1, 01 scale 1/2, 10, scale 1/4
42 0x19 high-nibble is sensor clock divider, changes exposure on sensors which
43 use a clock generated by the bridge. Some sensors have their own clock.
44 0x1c auto_exposure area (for avg_lum) startx (startx = register-value * 32)
45 0x1d auto_exposure area (for avg_lum) starty (starty = register-value * 32)
46 0x1e auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32)
47 0x1f auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32)
48 */
49
50 #define MODULE_NAME "sonixb"
51
52 #include <linux/input.h>
53 #include "gspca.h"
54
55 MODULE_AUTHOR("Jean-François Moine <http://moinejf.free.fr>");
56 MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
57 MODULE_LICENSE("GPL");
58
59 /* controls */
60 enum e_ctrl {
61 BRIGHTNESS,
62 GAIN,
63 EXPOSURE,
64 AUTOGAIN,
65 FREQ,
66 NCTRLS /* number of controls */
67 };
68
69 /* specific webcam descriptor */
70 struct sd {
71 struct gspca_dev gspca_dev; /* !! must be the first item */
72
73 struct gspca_ctrl ctrls[NCTRLS];
74
75 atomic_t avg_lum;
76 int prev_avg_lum;
77 int exp_too_low_cnt;
78 int exp_too_high_cnt;
79 int header_read;
80 u8 header[12]; /* Header without sof marker */
81
82 unsigned char autogain_ignore_frames;
83 unsigned char frames_to_drop;
84
85 __u8 bridge; /* Type of bridge */
86 #define BRIDGE_101 0
87 #define BRIDGE_102 0 /* We make no difference between 101 and 102 */
88 #define BRIDGE_103 1
89
90 __u8 sensor; /* Type of image sensor chip */
91 #define SENSOR_HV7131D 0
92 #define SENSOR_HV7131R 1
93 #define SENSOR_OV6650 2
94 #define SENSOR_OV7630 3
95 #define SENSOR_PAS106 4
96 #define SENSOR_PAS202 5
97 #define SENSOR_TAS5110C 6
98 #define SENSOR_TAS5110D 7
99 #define SENSOR_TAS5130CXX 8
100 __u8 reg11;
101 };
102
103 typedef const __u8 sensor_init_t[8];
104
105 struct sensor_data {
106 const __u8 *bridge_init;
107 sensor_init_t *sensor_init;
108 int sensor_init_size;
109 int flags;
110 unsigned ctrl_dis;
111 __u8 sensor_addr;
112 };
113
114 /* sensor_data flags */
115 #define F_GAIN 0x01 /* has gain */
116 #define F_SIF 0x02 /* sif or vga */
117 #define F_COARSE_EXPO 0x04 /* exposure control is coarse */
118
119 /* priv field of struct v4l2_pix_format flags (do not use low nibble!) */
120 #define MODE_RAW 0x10 /* raw bayer mode */
121 #define MODE_REDUCED_SIF 0x20 /* vga mode (320x240 / 160x120) on sif cam */
122
123 /* ctrl_dis helper macros */
124 #define NO_EXPO ((1 << EXPOSURE) | (1 << AUTOGAIN))
125 #define NO_FREQ (1 << FREQ)
126 #define NO_BRIGHTNESS (1 << BRIGHTNESS)
127
128 #define COMP 0xc7 /* 0x87 //0x07 */
129 #define COMP1 0xc9 /* 0x89 //0x09 */
130
131 #define MCK_INIT 0x63
132 #define MCK_INIT1 0x20 /*fixme: Bayer - 0x50 for JPEG ??*/
133
134 #define SYS_CLK 0x04
135
136 #define SENS(bridge, sensor, _flags, _ctrl_dis, _sensor_addr) \
137 { \
138 .bridge_init = bridge, \
139 .sensor_init = sensor, \
140 .sensor_init_size = sizeof(sensor), \
141 .flags = _flags, .ctrl_dis = _ctrl_dis, .sensor_addr = _sensor_addr \
142 }
143
144 /* We calculate the autogain at the end of the transfer of a frame, at this
145 moment a frame with the old settings is being captured and transmitted. So
146 if we adjust the gain or exposure we must ignore atleast the next frame for
147 the new settings to come into effect before doing any other adjustments. */
148 #define AUTOGAIN_IGNORE_FRAMES 1
149
150 /* V4L2 controls supported by the driver */
151 static void setbrightness(struct gspca_dev *gspca_dev);
152 static void setgain(struct gspca_dev *gspca_dev);
153 static void setexposure(struct gspca_dev *gspca_dev);
154 static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val);
155 static void setfreq(struct gspca_dev *gspca_dev);
156
157 static const struct ctrl sd_ctrls[NCTRLS] = {
158 [BRIGHTNESS] = {
159 {
160 .id = V4L2_CID_BRIGHTNESS,
161 .type = V4L2_CTRL_TYPE_INTEGER,
162 .name = "Brightness",
163 .minimum = 0,
164 .maximum = 255,
165 .step = 1,
166 .default_value = 127,
167 },
168 .set_control = setbrightness
169 },
170 [GAIN] = {
171 {
172 .id = V4L2_CID_GAIN,
173 .type = V4L2_CTRL_TYPE_INTEGER,
174 .name = "Gain",
175 .minimum = 0,
176 .maximum = 255,
177 .step = 1,
178 #define GAIN_KNEE 230
179 .default_value = 127,
180 },
181 .set_control = setgain
182 },
183 [EXPOSURE] = {
184 {
185 .id = V4L2_CID_EXPOSURE,
186 .type = V4L2_CTRL_TYPE_INTEGER,
187 .name = "Exposure",
188 .minimum = 0,
189 .maximum = 1023,
190 .step = 1,
191 .default_value = 66,
192 /* 33 ms / 30 fps (except on PASXXX) */
193 #define EXPOSURE_KNEE 200 /* 100 ms / 10 fps (except on PASXXX) */
194 .flags = 0,
195 },
196 .set_control = setexposure
197 },
198 /* for coarse exposure */
199 #define COARSE_EXPOSURE_MIN 2
200 #define COARSE_EXPOSURE_MAX 15
201 #define COARSE_EXPOSURE_DEF 2 /* 30 fps */
202 [AUTOGAIN] = {
203 {
204 .id = V4L2_CID_AUTOGAIN,
205 .type = V4L2_CTRL_TYPE_BOOLEAN,
206 .name = "Automatic Gain (and Exposure)",
207 .minimum = 0,
208 .maximum = 1,
209 .step = 1,
210 #define AUTOGAIN_DEF 1
211 .default_value = AUTOGAIN_DEF,
212 .flags = V4L2_CTRL_FLAG_UPDATE
213 },
214 .set = sd_setautogain,
215 },
216 [FREQ] = {
217 {
218 .id = V4L2_CID_POWER_LINE_FREQUENCY,
219 .type = V4L2_CTRL_TYPE_MENU,
220 .name = "Light frequency filter",
221 .minimum = 0,
222 .maximum = 2, /* 0: 0, 1: 50Hz, 2:60Hz */
223 .step = 1,
224 #define FREQ_DEF 0
225 .default_value = FREQ_DEF,
226 },
227 .set_control = setfreq
228 },
229 };
230
231 static const struct v4l2_pix_format vga_mode[] = {
232 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
233 .bytesperline = 160,
234 .sizeimage = 160 * 120,
235 .colorspace = V4L2_COLORSPACE_SRGB,
236 .priv = 2 | MODE_RAW},
237 {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
238 .bytesperline = 160,
239 .sizeimage = 160 * 120 * 5 / 4,
240 .colorspace = V4L2_COLORSPACE_SRGB,
241 .priv = 2},
242 {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
243 .bytesperline = 320,
244 .sizeimage = 320 * 240 * 5 / 4,
245 .colorspace = V4L2_COLORSPACE_SRGB,
246 .priv = 1},
247 {640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
248 .bytesperline = 640,
249 .sizeimage = 640 * 480 * 5 / 4,
250 .colorspace = V4L2_COLORSPACE_SRGB,
251 .priv = 0},
252 };
253 static const struct v4l2_pix_format sif_mode[] = {
254 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
255 .bytesperline = 160,
256 .sizeimage = 160 * 120,
257 .colorspace = V4L2_COLORSPACE_SRGB,
258 .priv = 1 | MODE_RAW | MODE_REDUCED_SIF},
259 {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
260 .bytesperline = 160,
261 .sizeimage = 160 * 120 * 5 / 4,
262 .colorspace = V4L2_COLORSPACE_SRGB,
263 .priv = 1 | MODE_REDUCED_SIF},
264 {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
265 .bytesperline = 176,
266 .sizeimage = 176 * 144,
267 .colorspace = V4L2_COLORSPACE_SRGB,
268 .priv = 1 | MODE_RAW},
269 {176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
270 .bytesperline = 176,
271 .sizeimage = 176 * 144 * 5 / 4,
272 .colorspace = V4L2_COLORSPACE_SRGB,
273 .priv = 1},
274 {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
275 .bytesperline = 320,
276 .sizeimage = 320 * 240 * 5 / 4,
277 .colorspace = V4L2_COLORSPACE_SRGB,
278 .priv = 0 | MODE_REDUCED_SIF},
279 {352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
280 .bytesperline = 352,
281 .sizeimage = 352 * 288 * 5 / 4,
282 .colorspace = V4L2_COLORSPACE_SRGB,
283 .priv = 0},
284 };
285
286 static const __u8 initHv7131d[] = {
287 0x04, 0x03, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
288 0x00, 0x00,
289 0x00, 0x00, 0x00, 0x02, 0x02, 0x00,
290 0x28, 0x1e, 0x60, 0x8e, 0x42,
291 };
292 static const __u8 hv7131d_sensor_init[][8] = {
293 {0xa0, 0x11, 0x01, 0x04, 0x00, 0x00, 0x00, 0x17},
294 {0xa0, 0x11, 0x02, 0x00, 0x00, 0x00, 0x00, 0x17},
295 {0xa0, 0x11, 0x28, 0x00, 0x00, 0x00, 0x00, 0x17},
296 {0xa0, 0x11, 0x30, 0x30, 0x00, 0x00, 0x00, 0x17}, /* reset level */
297 {0xa0, 0x11, 0x34, 0x02, 0x00, 0x00, 0x00, 0x17}, /* pixel bias volt */
298 };
299
300 static const __u8 initHv7131r[] = {
301 0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
302 0x00, 0x00,
303 0x00, 0x00, 0x00, 0x02, 0x01, 0x00,
304 0x28, 0x1e, 0x60, 0x8a, 0x20,
305 };
306 static const __u8 hv7131r_sensor_init[][8] = {
307 {0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
308 {0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
309 {0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
310 {0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
311 {0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
312 };
313 static const __u8 initOv6650[] = {
314 0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
315 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
316 0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b,
317 0x10,
318 };
319 static const __u8 ov6650_sensor_init[][8] = {
320 /* Bright, contrast, etc are set through SCBB interface.
321 * AVCAP on win2 do not send any data on this controls. */
322 /* Anyway, some registers appears to alter bright and constrat */
323
324 /* Reset sensor */
325 {0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
326 /* Set clock register 0x11 low nibble is clock divider */
327 {0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
328 /* Next some unknown stuff */
329 {0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
330 /* {0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
331 * THIS SET GREEN SCREEN
332 * (pixels could be innverted in decode kind of "brg",
333 * but blue wont be there. Avoid this data ... */
334 {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
335 {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
336 {0xa0, 0x60, 0x30, 0x3d, 0x0a, 0xd8, 0xa4, 0x10},
337 /* Enable rgb brightness control */
338 {0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
339 /* HDG: Note windows uses the line below, which sets both register 0x60
340 and 0x61 I believe these registers of the ov6650 are identical as
341 those of the ov7630, because if this is true the windows settings
342 add a bit additional red gain and a lot additional blue gain, which
343 matches my findings that the windows settings make blue much too
344 blue and red a little too red.
345 {0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
346 /* Some more unknown stuff */
347 {0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
348 {0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
349 };
350
351 static const __u8 initOv7630[] = {
352 0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, /* r01 .. r08 */
353 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* r09 .. r10 */
354 0x00, 0x01, 0x01, 0x0a, /* r11 .. r14 */
355 0x28, 0x1e, /* H & V sizes r15 .. r16 */
356 0x68, 0x8f, MCK_INIT1, /* r17 .. r19 */
357 };
358 static const __u8 ov7630_sensor_init[][8] = {
359 {0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
360 {0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
361 /* {0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10}, jfm */
362 {0xd0, 0x21, 0x12, 0x5c, 0x00, 0x80, 0x34, 0x10}, /* jfm */
363 {0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
364 {0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
365 {0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
366 {0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
367 {0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
368 {0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
369 {0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
370 {0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
371 /* {0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10}, * jfm */
372 {0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
373 {0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
374 {0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
375 {0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
376 {0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
377 {0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
378 };
379
380 static const __u8 initPas106[] = {
381 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
382 0x00, 0x00,
383 0x00, 0x00, 0x00, 0x04, 0x01, 0x00,
384 0x16, 0x12, 0x24, COMP1, MCK_INIT1,
385 };
386 /* compression 0x86 mckinit1 0x2b */
387
388 /* "Known" PAS106B registers:
389 0x02 clock divider
390 0x03 Variable framerate bits 4-11
391 0x04 Var framerate bits 0-3, one must leave the 4 msb's at 0 !!
392 The variable framerate control must never be set lower then 300,
393 which sets the framerate at 90 / reg02, otherwise vsync is lost.
394 0x05 Shutter Time Line Offset, this can be used as an exposure control:
395 0 = use full frame time, 255 = no exposure at all
396 Note this may never be larger then "var-framerate control" / 2 - 2.
397 When var-framerate control is < 514, no exposure is reached at the max
398 allowed value for the framerate control value, rather then at 255.
399 0x06 Shutter Time Pixel Offset, like reg05 this influences exposure, but
400 only a very little bit, leave at 0xcd
401 0x07 offset sign bit (bit0 1 > negative offset)
402 0x08 offset
403 0x09 Blue Gain
404 0x0a Green1 Gain
405 0x0b Green2 Gain
406 0x0c Red Gain
407 0x0e Global gain
408 0x13 Write 1 to commit settings to sensor
409 */
410
411 static const __u8 pas106_sensor_init[][8] = {
412 /* Pixel Clock Divider 6 */
413 { 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 },
414 /* Frame Time MSB (also seen as 0x12) */
415 { 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 },
416 /* Frame Time LSB (also seen as 0x05) */
417 { 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 },
418 /* Shutter Time Line Offset (also seen as 0x6d) */
419 { 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 },
420 /* Shutter Time Pixel Offset (also seen as 0xb1) */
421 { 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 },
422 /* Black Level Subtract Sign (also seen 0x00) */
423 { 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 },
424 /* Black Level Subtract Level (also seen 0x01) */
425 { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
426 { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
427 /* Color Gain B Pixel 5 a */
428 { 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 },
429 /* Color Gain G1 Pixel 1 5 */
430 { 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 },
431 /* Color Gain G2 Pixel 1 0 5 */
432 { 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 },
433 /* Color Gain R Pixel 3 1 */
434 { 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 },
435 /* Color GainH Pixel */
436 { 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 },
437 /* Global Gain */
438 { 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 },
439 /* Contrast */
440 { 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 },
441 /* H&V synchro polarity */
442 { 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 },
443 /* ?default */
444 { 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 },
445 /* DAC scale */
446 { 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 },
447 /* ?default */
448 { 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 },
449 /* Validate Settings */
450 { 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 },
451 };
452
453 static const __u8 initPas202[] = {
454 0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
455 0x00, 0x00,
456 0x00, 0x00, 0x00, 0x06, 0x03, 0x0a,
457 0x28, 0x1e, 0x20, 0x89, 0x20,
458 };
459
460 /* "Known" PAS202BCB registers:
461 0x02 clock divider
462 0x04 Variable framerate bits 6-11 (*)
463 0x05 Var framerate bits 0-5, one must leave the 2 msb's at 0 !!
464 0x07 Blue Gain
465 0x08 Green Gain
466 0x09 Red Gain
467 0x0b offset sign bit (bit0 1 > negative offset)
468 0x0c offset
469 0x0e Unknown image is slightly brighter when bit 0 is 0, if reg0f is 0 too,
470 leave at 1 otherwise we get a jump in our exposure control
471 0x0f Exposure 0-255, 0 = use full frame time, 255 = no exposure at all
472 0x10 Master gain 0 - 31
473 0x11 write 1 to apply changes
474 (*) The variable framerate control must never be set lower then 500
475 which sets the framerate at 30 / reg02, otherwise vsync is lost.
476 */
477 static const __u8 pas202_sensor_init[][8] = {
478 /* Set the clock divider to 4 -> 30 / 4 = 7.5 fps, we would like
479 to set it lower, but for some reason the bridge starts missing
480 vsync's then */
481 {0xa0, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x10},
482 {0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
483 {0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
484 {0xd0, 0x40, 0x0c, 0x00, 0x0c, 0x01, 0x32, 0x10},
485 {0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
486 {0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
487 {0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
488 {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
489 {0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
490 {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
491 };
492
493 static const __u8 initTas5110c[] = {
494 0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
495 0x00, 0x00,
496 0x00, 0x00, 0x00, 0x45, 0x09, 0x0a,
497 0x16, 0x12, 0x60, 0x86, 0x2b,
498 };
499 /* Same as above, except a different hstart */
500 static const __u8 initTas5110d[] = {
501 0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
502 0x00, 0x00,
503 0x00, 0x00, 0x00, 0x41, 0x09, 0x0a,
504 0x16, 0x12, 0x60, 0x86, 0x2b,
505 };
506 /* tas5110c is 3 wire, tas5110d is 2 wire (regular i2c) */
507 static const __u8 tas5110c_sensor_init[][8] = {
508 {0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
509 {0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
510 };
511 /* Known TAS5110D registers
512 * reg02: gain, bit order reversed!! 0 == max gain, 255 == min gain
513 * reg03: bit3: vflip, bit4: ~hflip, bit7: ~gainboost (~ == inverted)
514 * Note: writing reg03 seems to only work when written together with 02
515 */
516 static const __u8 tas5110d_sensor_init[][8] = {
517 {0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17}, /* reset */
518 };
519
520 static const __u8 initTas5130[] = {
521 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
522 0x00, 0x00,
523 0x00, 0x00, 0x00, 0x68, 0x0c, 0x0a,
524 0x28, 0x1e, 0x60, COMP, MCK_INIT,
525 };
526 static const __u8 tas5130_sensor_init[][8] = {
527 /* {0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
528 * shutter 0x47 short exposure? */
529 {0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
530 /* shutter 0x01 long exposure */
531 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
532 };
533
534 static const struct sensor_data sensor_data[] = {
535 SENS(initHv7131d, hv7131d_sensor_init, F_GAIN, NO_BRIGHTNESS|NO_FREQ, 0),
536 SENS(initHv7131r, hv7131r_sensor_init, 0, NO_BRIGHTNESS|NO_EXPO|NO_FREQ, 0),
537 SENS(initOv6650, ov6650_sensor_init, F_GAIN|F_SIF, 0, 0x60),
538 SENS(initOv7630, ov7630_sensor_init, F_GAIN, 0, 0x21),
539 SENS(initPas106, pas106_sensor_init, F_GAIN|F_SIF, NO_FREQ, 0),
540 SENS(initPas202, pas202_sensor_init, F_GAIN, NO_FREQ, 0),
541 SENS(initTas5110c, tas5110c_sensor_init, F_GAIN|F_SIF|F_COARSE_EXPO,
542 NO_BRIGHTNESS|NO_FREQ, 0),
543 SENS(initTas5110d, tas5110d_sensor_init, F_GAIN|F_SIF|F_COARSE_EXPO,
544 NO_BRIGHTNESS|NO_FREQ, 0),
545 SENS(initTas5130, tas5130_sensor_init, F_GAIN,
546 NO_BRIGHTNESS|NO_EXPO|NO_FREQ, 0),
547 };
548
549 /* get one byte in gspca_dev->usb_buf */
550 static void reg_r(struct gspca_dev *gspca_dev,
551 __u16 value)
552 {
553 usb_control_msg(gspca_dev->dev,
554 usb_rcvctrlpipe(gspca_dev->dev, 0),
555 0, /* request */
556 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
557 value,
558 0, /* index */
559 gspca_dev->usb_buf, 1,
560 500);
561 }
562
563 static void reg_w(struct gspca_dev *gspca_dev,
564 __u16 value,
565 const __u8 *buffer,
566 int len)
567 {
568 #ifdef GSPCA_DEBUG
569 if (len > USB_BUF_SZ) {
570 PDEBUG(D_ERR|D_PACK, "reg_w: buffer overflow");
571 return;
572 }
573 #endif
574 memcpy(gspca_dev->usb_buf, buffer, len);
575 usb_control_msg(gspca_dev->dev,
576 usb_sndctrlpipe(gspca_dev->dev, 0),
577 0x08, /* request */
578 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
579 value,
580 0, /* index */
581 gspca_dev->usb_buf, len,
582 500);
583 }
584
585 static int i2c_w(struct gspca_dev *gspca_dev, const __u8 *buffer)
586 {
587 int retry = 60;
588
589 /* is i2c ready */
590 reg_w(gspca_dev, 0x08, buffer, 8);
591 while (retry--) {
592 msleep(10);
593 reg_r(gspca_dev, 0x08);
594 if (gspca_dev->usb_buf[0] & 0x04) {
595 if (gspca_dev->usb_buf[0] & 0x08)
596 return -1;
597 return 0;
598 }
599 }
600 return -1;
601 }
602
603 static void i2c_w_vector(struct gspca_dev *gspca_dev,
604 const __u8 buffer[][8], int len)
605 {
606 for (;;) {
607 reg_w(gspca_dev, 0x08, *buffer, 8);
608 len -= 8;
609 if (len <= 0)
610 break;
611 buffer++;
612 }
613 }
614
615 static void setbrightness(struct gspca_dev *gspca_dev)
616 {
617 struct sd *sd = (struct sd *) gspca_dev;
618
619 switch (sd->sensor) {
620 case SENSOR_OV6650:
621 case SENSOR_OV7630: {
622 __u8 i2cOV[] =
623 {0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
624
625 /* change reg 0x06 */
626 i2cOV[1] = sensor_data[sd->sensor].sensor_addr;
627 i2cOV[3] = sd->ctrls[BRIGHTNESS].val;
628 if (i2c_w(gspca_dev, i2cOV) < 0)
629 goto err;
630 break;
631 }
632 case SENSOR_PAS106:
633 case SENSOR_PAS202: {
634 __u8 i2cpbright[] =
635 {0xb0, 0x40, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x16};
636 __u8 i2cpdoit[] =
637 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
638
639 /* PAS106 uses reg 7 and 8 instead of b and c */
640 if (sd->sensor == SENSOR_PAS106) {
641 i2cpbright[2] = 7;
642 i2cpdoit[2] = 0x13;
643 }
644
645 if (sd->ctrls[BRIGHTNESS].val < 127) {
646 /* change reg 0x0b, signreg */
647 i2cpbright[3] = 0x01;
648 /* set reg 0x0c, offset */
649 i2cpbright[4] = 127 - sd->ctrls[BRIGHTNESS].val;
650 } else
651 i2cpbright[4] = sd->ctrls[BRIGHTNESS].val - 127;
652
653 if (i2c_w(gspca_dev, i2cpbright) < 0)
654 goto err;
655 if (i2c_w(gspca_dev, i2cpdoit) < 0)
656 goto err;
657 break;
658 }
659 }
660 return;
661 err:
662 PDEBUG(D_ERR, "i2c error brightness");
663 }
664
665 static void setsensorgain(struct gspca_dev *gspca_dev)
666 {
667 struct sd *sd = (struct sd *) gspca_dev;
668 u8 gain = sd->ctrls[GAIN].val;
669
670 switch (sd->sensor) {
671 case SENSOR_HV7131D: {
672 __u8 i2c[] =
673 {0xc0, 0x11, 0x31, 0x00, 0x00, 0x00, 0x00, 0x17};
674
675 i2c[3] = 0x3f - (gain / 4);
676 i2c[4] = 0x3f - (gain / 4);
677 i2c[5] = 0x3f - (gain / 4);
678
679 if (i2c_w(gspca_dev, i2c) < 0)
680 goto err;
681 break;
682 }
683 case SENSOR_TAS5110C:
684 case SENSOR_TAS5130CXX: {
685 __u8 i2c[] =
686 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};
687
688 i2c[4] = 255 - gain;
689 if (i2c_w(gspca_dev, i2c) < 0)
690 goto err;
691 break;
692 }
693 case SENSOR_TAS5110D: {
694 __u8 i2c[] = {
695 0xb0, 0x61, 0x02, 0x00, 0x10, 0x00, 0x00, 0x17 };
696 gain = 255 - gain;
697 /* The bits in the register are the wrong way around!! */
698 i2c[3] |= (gain & 0x80) >> 7;
699 i2c[3] |= (gain & 0x40) >> 5;
700 i2c[3] |= (gain & 0x20) >> 3;
701 i2c[3] |= (gain & 0x10) >> 1;
702 i2c[3] |= (gain & 0x08) << 1;
703 i2c[3] |= (gain & 0x04) << 3;
704 i2c[3] |= (gain & 0x02) << 5;
705 i2c[3] |= (gain & 0x01) << 7;
706 if (i2c_w(gspca_dev, i2c) < 0)
707 goto err;
708 break;
709 }
710
711 case SENSOR_OV6650:
712 gain >>= 1;
713 /* fall thru */
714 case SENSOR_OV7630: {
715 __u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
716
717 i2c[1] = sensor_data[sd->sensor].sensor_addr;
718 i2c[3] = gain >> 2;
719 if (i2c_w(gspca_dev, i2c) < 0)
720 goto err;
721 break;
722 }
723 case SENSOR_PAS106:
724 case SENSOR_PAS202: {
725 __u8 i2cpgain[] =
726 {0xa0, 0x40, 0x10, 0x00, 0x00, 0x00, 0x00, 0x15};
727 __u8 i2cpcolorgain[] =
728 {0xc0, 0x40, 0x07, 0x00, 0x00, 0x00, 0x00, 0x15};
729 __u8 i2cpdoit[] =
730 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
731
732 /* PAS106 uses different regs (and has split green gains) */
733 if (sd->sensor == SENSOR_PAS106) {
734 i2cpgain[2] = 0x0e;
735 i2cpcolorgain[0] = 0xd0;
736 i2cpcolorgain[2] = 0x09;
737 i2cpdoit[2] = 0x13;
738 }
739
740 i2cpgain[3] = gain >> 3;
741 i2cpcolorgain[3] = gain >> 4;
742 i2cpcolorgain[4] = gain >> 4;
743 i2cpcolorgain[5] = gain >> 4;
744 i2cpcolorgain[6] = gain >> 4;
745
746 if (i2c_w(gspca_dev, i2cpgain) < 0)
747 goto err;
748 if (i2c_w(gspca_dev, i2cpcolorgain) < 0)
749 goto err;
750 if (i2c_w(gspca_dev, i2cpdoit) < 0)
751 goto err;
752 break;
753 }
754 }
755 return;
756 err:
757 PDEBUG(D_ERR, "i2c error gain");
758 }
759
760 static void setgain(struct gspca_dev *gspca_dev)
761 {
762 struct sd *sd = (struct sd *) gspca_dev;
763 __u8 gain;
764 __u8 buf[3] = { 0, 0, 0 };
765
766 if (sensor_data[sd->sensor].flags & F_GAIN) {
767 /* Use the sensor gain to do the actual gain */
768 setsensorgain(gspca_dev);
769 return;
770 }
771
772 if (sd->bridge == BRIDGE_103) {
773 gain = sd->ctrls[GAIN].val >> 1;
774 buf[0] = gain; /* Red */
775 buf[1] = gain; /* Green */
776 buf[2] = gain; /* Blue */
777 reg_w(gspca_dev, 0x05, buf, 3);
778 } else {
779 gain = sd->ctrls[GAIN].val >> 4;
780 buf[0] = gain << 4 | gain; /* Red and blue */
781 buf[1] = gain; /* Green */
782 reg_w(gspca_dev, 0x10, buf, 2);
783 }
784 }
785
786 static void setexposure(struct gspca_dev *gspca_dev)
787 {
788 struct sd *sd = (struct sd *) gspca_dev;
789
790 switch (sd->sensor) {
791 case SENSOR_HV7131D: {
792 /* Note the datasheet wrongly says line mode exposure uses reg
793 0x26 and 0x27, testing has shown 0x25 + 0x26 */
794 __u8 i2c[] = {0xc0, 0x11, 0x25, 0x00, 0x00, 0x00, 0x00, 0x17};
795 /* The HV7131D's exposure goes from 0 - 65535, we scale our
796 exposure of 0-1023 to 0-6138. There are 2 reasons for this:
797 1) This puts our exposure knee of 200 at approx the point
798 where the framerate starts dropping
799 2) At 6138 the framerate has already dropped to 2 fps,
800 going any lower makes little sense */
801 u16 reg = sd->ctrls[EXPOSURE].val * 6;
802
803 i2c[3] = reg >> 8;
804 i2c[4] = reg & 0xff;
805 if (i2c_w(gspca_dev, i2c) != 0)
806 goto err;
807 break;
808 }
809 case SENSOR_TAS5110C:
810 case SENSOR_TAS5110D: {
811 /* register 19's high nibble contains the sn9c10x clock divider
812 The high nibble configures the no fps according to the
813 formula: 60 / high_nibble. With a maximum of 30 fps */
814 u8 reg = sd->ctrls[EXPOSURE].val;
815
816 reg = (reg << 4) | 0x0b;
817 reg_w(gspca_dev, 0x19, &reg, 1);
818 break;
819 }
820 case SENSOR_OV6650:
821 case SENSOR_OV7630: {
822 /* The ov6650 / ov7630 have 2 registers which both influence
823 exposure, register 11, whose low nibble sets the nr off fps
824 according to: fps = 30 / (low_nibble + 1)
825
826 The fps configures the maximum exposure setting, but it is
827 possible to use less exposure then what the fps maximum
828 allows by setting register 10. register 10 configures the
829 actual exposure as quotient of the full exposure, with 0
830 being no exposure at all (not very useful) and reg10_max
831 being max exposure possible at that framerate.
832
833 The code maps our 0 - 510 ms exposure ctrl to these 2
834 registers, trying to keep fps as high as possible.
835 */
836 __u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
837 int reg10, reg11, reg10_max;
838
839 /* ov6645 datasheet says reg10_max is 9a, but that uses
840 tline * 2 * reg10 as formula for calculating texpo, the
841 ov6650 probably uses the same formula as the 7730 which uses
842 tline * 4 * reg10, which explains why the reg10max we've
843 found experimentally for the ov6650 is exactly half that of
844 the ov6645. The ov7630 datasheet says the max is 0x41. */
845 if (sd->sensor == SENSOR_OV6650) {
846 reg10_max = 0x4d;
847 i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */
848 } else
849 reg10_max = 0x41;
850
851 reg11 = (15 * sd->ctrls[EXPOSURE].val + 999) / 1000;
852 if (reg11 < 1)
853 reg11 = 1;
854 else if (reg11 > 16)
855 reg11 = 16;
856
857 /* In 640x480, if the reg11 has less than 4, the image is
858 unstable (the bridge goes into a higher compression mode
859 which we have not reverse engineered yet). */
860 if (gspca_dev->width == 640 && reg11 < 4)
861 reg11 = 4;
862
863 /* frame exposure time in ms = 1000 * reg11 / 30 ->
864 reg10 = (sd->ctrls[EXPOSURE].val / 2) * reg10_max
865 / (1000 * reg11 / 30) */
866 reg10 = (sd->ctrls[EXPOSURE].val * 15 * reg10_max)
867 / (1000 * reg11);
868
869 /* Don't allow this to get below 10 when using autogain, the
870 steps become very large (relatively) when below 10 causing
871 the image to oscilate from much too dark, to much too bright
872 and back again. */
873 if (sd->ctrls[AUTOGAIN].val && reg10 < 10)
874 reg10 = 10;
875 else if (reg10 > reg10_max)
876 reg10 = reg10_max;
877
878 /* Write reg 10 and reg11 low nibble */
879 i2c[1] = sensor_data[sd->sensor].sensor_addr;
880 i2c[3] = reg10;
881 i2c[4] |= reg11 - 1;
882
883 /* If register 11 didn't change, don't change it */
884 if (sd->reg11 == reg11)
885 i2c[0] = 0xa0;
886
887 if (i2c_w(gspca_dev, i2c) == 0)
888 sd->reg11 = reg11;
889 else
890 goto err;
891 break;
892 }
893 case SENSOR_PAS202: {
894 __u8 i2cpframerate[] =
895 {0xb0, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, 0x16};
896 __u8 i2cpexpo[] =
897 {0xa0, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x16};
898 const __u8 i2cpdoit[] =
899 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
900 int framerate_ctrl;
901
902 /* The exposure knee for the autogain algorithm is 200
903 (100 ms / 10 fps on other sensors), for values below this
904 use the control for setting the partial frame expose time,
905 above that use variable framerate. This way we run at max
906 framerate (640x480@7.5 fps, 320x240@10fps) until the knee
907 is reached. Using the variable framerate control above 200
908 is better then playing around with both clockdiv + partial
909 frame exposure times (like we are doing with the ov chips),
910 as that sometimes leads to jumps in the exposure control,
911 which are bad for auto exposure. */
912 if (sd->ctrls[EXPOSURE].val < 200) {
913 i2cpexpo[3] = 255 - (sd->ctrls[EXPOSURE].val * 255)
914 / 200;
915 framerate_ctrl = 500;
916 } else {
917 /* The PAS202's exposure control goes from 0 - 4095,
918 but anything below 500 causes vsync issues, so scale
919 our 200-1023 to 500-4095 */
920 framerate_ctrl = (sd->ctrls[EXPOSURE].val - 200)
921 * 1000 / 229 + 500;
922 }
923
924 i2cpframerate[3] = framerate_ctrl >> 6;
925 i2cpframerate[4] = framerate_ctrl & 0x3f;
926 if (i2c_w(gspca_dev, i2cpframerate) < 0)
927 goto err;
928 if (i2c_w(gspca_dev, i2cpexpo) < 0)
929 goto err;
930 if (i2c_w(gspca_dev, i2cpdoit) < 0)
931 goto err;
932 break;
933 }
934 case SENSOR_PAS106: {
935 __u8 i2cpframerate[] =
936 {0xb1, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00, 0x14};
937 __u8 i2cpexpo[] =
938 {0xa1, 0x40, 0x05, 0x00, 0x00, 0x00, 0x00, 0x14};
939 const __u8 i2cpdoit[] =
940 {0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14};
941 int framerate_ctrl;
942
943 /* For values below 150 use partial frame exposure, above
944 that use framerate ctrl */
945 if (sd->ctrls[EXPOSURE].val < 150) {
946 i2cpexpo[3] = 150 - sd->ctrls[EXPOSURE].val;
947 framerate_ctrl = 300;
948 } else {
949 /* The PAS106's exposure control goes from 0 - 4095,
950 but anything below 300 causes vsync issues, so scale
951 our 150-1023 to 300-4095 */
952 framerate_ctrl = (sd->ctrls[EXPOSURE].val - 150)
953 * 1000 / 230 + 300;
954 }
955
956 i2cpframerate[3] = framerate_ctrl >> 4;
957 i2cpframerate[4] = framerate_ctrl & 0x0f;
958 if (i2c_w(gspca_dev, i2cpframerate) < 0)
959 goto err;
960 if (i2c_w(gspca_dev, i2cpexpo) < 0)
961 goto err;
962 if (i2c_w(gspca_dev, i2cpdoit) < 0)
963 goto err;
964 break;
965 }
966 }
967 return;
968 err:
969 PDEBUG(D_ERR, "i2c error exposure");
970 }
971
972 static void setfreq(struct gspca_dev *gspca_dev)
973 {
974 struct sd *sd = (struct sd *) gspca_dev;
975
976 switch (sd->sensor) {
977 case SENSOR_OV6650:
978 case SENSOR_OV7630: {
979 /* Framerate adjust register for artificial light 50 hz flicker
980 compensation, for the ov6650 this is identical to ov6630
981 0x2b register, see ov6630 datasheet.
982 0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
983 __u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
984 switch (sd->ctrls[FREQ].val) {
985 default:
986 /* case 0: * no filter*/
987 /* case 2: * 60 hz */
988 i2c[3] = 0;
989 break;
990 case 1: /* 50 hz */
991 i2c[3] = (sd->sensor == SENSOR_OV6650)
992 ? 0x4f : 0x8a;
993 break;
994 }
995 i2c[1] = sensor_data[sd->sensor].sensor_addr;
996 if (i2c_w(gspca_dev, i2c) < 0)
997 PDEBUG(D_ERR, "i2c error setfreq");
998 break;
999 }
1000 }
1001 }
1002
1003 #include "autogain_functions.h"
1004
1005 static void do_autogain(struct gspca_dev *gspca_dev)
1006 {
1007 int deadzone, desired_avg_lum, result;
1008 struct sd *sd = (struct sd *) gspca_dev;
1009 int avg_lum = atomic_read(&sd->avg_lum);
1010
1011 if ((gspca_dev->ctrl_dis & (1 << AUTOGAIN)) ||
1012 avg_lum == -1 || !sd->ctrls[AUTOGAIN].val)
1013 return;
1014
1015 if (sd->autogain_ignore_frames > 0) {
1016 sd->autogain_ignore_frames--;
1017 return;
1018 }
1019
1020 /* SIF / VGA sensors have a different autoexposure area and thus
1021 different avg_lum values for the same picture brightness */
1022 if (sensor_data[sd->sensor].flags & F_SIF) {
1023 deadzone = 500;
1024 /* SIF sensors tend to overexpose, so keep this small */
1025 desired_avg_lum = 5000;
1026 } else {
1027 deadzone = 1500;
1028 desired_avg_lum = 13000;
1029 }
1030
1031 if (sensor_data[sd->sensor].flags & F_COARSE_EXPO)
1032 result = coarse_grained_expo_autogain(gspca_dev, avg_lum,
1033 sd->ctrls[BRIGHTNESS].val
1034 * desired_avg_lum / 127,
1035 deadzone);
1036 else
1037 result = auto_gain_n_exposure(gspca_dev, avg_lum,
1038 sd->ctrls[BRIGHTNESS].val
1039 * desired_avg_lum / 127,
1040 deadzone, GAIN_KNEE, EXPOSURE_KNEE);
1041
1042 if (result) {
1043 PDEBUG(D_FRAM, "autogain: gain changed: gain: %d expo: %d",
1044 (int) sd->ctrls[GAIN].val,
1045 (int) sd->ctrls[EXPOSURE].val);
1046 sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
1047 }
1048 }
1049
1050 /* this function is called at probe time */
1051 static int sd_config(struct gspca_dev *gspca_dev,
1052 const struct usb_device_id *id)
1053 {
1054 struct sd *sd = (struct sd *) gspca_dev;
1055 struct cam *cam;
1056
1057 reg_r(gspca_dev, 0x00);
1058 if (gspca_dev->usb_buf[0] != 0x10)
1059 return -ENODEV;
1060
1061 /* copy the webcam info from the device id */
1062 sd->sensor = id->driver_info >> 8;
1063 sd->bridge = id->driver_info & 0xff;
1064
1065 gspca_dev->ctrl_dis = sensor_data[sd->sensor].ctrl_dis;
1066 #if AUTOGAIN_DEF
1067 if (!(gspca_dev->ctrl_dis & (1 << AUTOGAIN)))
1068 gspca_dev->ctrl_inac = (1 << GAIN) | (1 << EXPOSURE);
1069 #endif
1070
1071 cam = &gspca_dev->cam;
1072 cam->ctrls = sd->ctrls;
1073 if (!(sensor_data[sd->sensor].flags & F_SIF)) {
1074 cam->cam_mode = vga_mode;
1075 cam->nmodes = ARRAY_SIZE(vga_mode);
1076 } else {
1077 cam->cam_mode = sif_mode;
1078 cam->nmodes = ARRAY_SIZE(sif_mode);
1079 }
1080 cam->npkt = 36; /* 36 packets per ISOC message */
1081
1082 return 0;
1083 }
1084
1085 /* this function is called at probe and resume time */
1086 static int sd_init(struct gspca_dev *gspca_dev)
1087 {
1088 struct sd *sd = (struct sd *) gspca_dev;
1089 const __u8 stop = 0x09; /* Disable stream turn of LED */
1090
1091 if (sensor_data[sd->sensor].flags & F_COARSE_EXPO) {
1092 sd->ctrls[EXPOSURE].min = COARSE_EXPOSURE_MIN;
1093 sd->ctrls[EXPOSURE].max = COARSE_EXPOSURE_MAX;
1094 sd->ctrls[EXPOSURE].def = COARSE_EXPOSURE_DEF;
1095 if (sd->ctrls[EXPOSURE].val > COARSE_EXPOSURE_MAX)
1096 sd->ctrls[EXPOSURE].val = COARSE_EXPOSURE_DEF;
1097 }
1098
1099 reg_w(gspca_dev, 0x01, &stop, 1);
1100
1101 return 0;
1102 }
1103
1104 /* -- start the camera -- */
1105 static int sd_start(struct gspca_dev *gspca_dev)
1106 {
1107 struct sd *sd = (struct sd *) gspca_dev;
1108 struct cam *cam = &gspca_dev->cam;
1109 int i, mode;
1110 __u8 regs[0x31];
1111
1112 mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07;
1113 /* Copy registers 0x01 - 0x19 from the template */
1114 memcpy(&regs[0x01], sensor_data[sd->sensor].bridge_init, 0x19);
1115 /* Set the mode */
1116 regs[0x18] |= mode << 4;
1117
1118 /* Set bridge gain to 1.0 */
1119 if (sd->bridge == BRIDGE_103) {
1120 regs[0x05] = 0x20; /* Red */
1121 regs[0x06] = 0x20; /* Green */
1122 regs[0x07] = 0x20; /* Blue */
1123 } else {
1124 regs[0x10] = 0x00; /* Red and blue */
1125 regs[0x11] = 0x00; /* Green */
1126 }
1127
1128 /* Setup pixel numbers and auto exposure window */
1129 if (sensor_data[sd->sensor].flags & F_SIF) {
1130 regs[0x1a] = 0x14; /* HO_SIZE 640, makes no sense */
1131 regs[0x1b] = 0x0a; /* VO_SIZE 320, makes no sense */
1132 regs[0x1c] = 0x02; /* AE H-start 64 */
1133 regs[0x1d] = 0x02; /* AE V-start 64 */
1134 regs[0x1e] = 0x09; /* AE H-end 288 */
1135 regs[0x1f] = 0x07; /* AE V-end 224 */
1136 } else {
1137 regs[0x1a] = 0x1d; /* HO_SIZE 960, makes no sense */
1138 regs[0x1b] = 0x10; /* VO_SIZE 512, makes no sense */
1139 regs[0x1c] = 0x05; /* AE H-start 160 */
1140 regs[0x1d] = 0x03; /* AE V-start 96 */
1141 regs[0x1e] = 0x0f; /* AE H-end 480 */
1142 regs[0x1f] = 0x0c; /* AE V-end 384 */
1143 }
1144
1145 /* Setup the gamma table (only used with the sn9c103 bridge) */
1146 for (i = 0; i < 16; i++)
1147 regs[0x20 + i] = i * 16;
1148 regs[0x20 + i] = 255;
1149
1150 /* Special cases where some regs depend on mode or bridge */
1151 switch (sd->sensor) {
1152 case SENSOR_TAS5130CXX:
1153 /* FIXME / TESTME
1154 probably not mode specific at all most likely the upper
1155 nibble of 0x19 is exposure (clock divider) just as with
1156 the tas5110, we need someone to test this. */
1157 regs[0x19] = mode ? 0x23 : 0x43;
1158 break;
1159 case SENSOR_OV7630:
1160 /* FIXME / TESTME for some reason with the 101/102 bridge the
1161 clock is set to 12 Mhz (reg1 == 0x04), rather then 24.
1162 Also the hstart needs to go from 1 to 2 when using a 103,
1163 which is likely related. This does not seem right. */
1164 if (sd->bridge == BRIDGE_103) {
1165 regs[0x01] = 0x44; /* Select 24 Mhz clock */
1166 regs[0x12] = 0x02; /* Set hstart to 2 */
1167 }
1168 }
1169 /* Disable compression when the raw bayer format has been selected */
1170 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW)
1171 regs[0x18] &= ~0x80;
1172
1173 /* Vga mode emulation on SIF sensor? */
1174 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) {
1175 regs[0x12] += 16; /* hstart adjust */
1176 regs[0x13] += 24; /* vstart adjust */
1177 regs[0x15] = 320 / 16; /* hsize */
1178 regs[0x16] = 240 / 16; /* vsize */
1179 }
1180
1181 /* reg 0x01 bit 2 video transfert on */
1182 reg_w(gspca_dev, 0x01, &regs[0x01], 1);
1183 /* reg 0x17 SensorClk enable inv Clk 0x60 */
1184 reg_w(gspca_dev, 0x17, &regs[0x17], 1);
1185 /* Set the registers from the template */
1186 reg_w(gspca_dev, 0x01, &regs[0x01],
1187 (sd->bridge == BRIDGE_103) ? 0x30 : 0x1f);
1188
1189 /* Init the sensor */
1190 i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init,
1191 sensor_data[sd->sensor].sensor_init_size);
1192
1193 /* Mode / bridge specific sensor setup */
1194 switch (sd->sensor) {
1195 case SENSOR_PAS202: {
1196 const __u8 i2cpclockdiv[] =
1197 {0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10};
1198 /* clockdiv from 4 to 3 (7.5 -> 10 fps) when in low res mode */
1199 if (mode)
1200 i2c_w(gspca_dev, i2cpclockdiv);
1201 break;
1202 }
1203 case SENSOR_OV7630:
1204 /* FIXME / TESTME We should be able to handle this identical
1205 for the 101/102 and the 103 case */
1206 if (sd->bridge == BRIDGE_103) {
1207 const __u8 i2c[] = { 0xa0, 0x21, 0x13,
1208 0x80, 0x00, 0x00, 0x00, 0x10 };
1209 i2c_w(gspca_dev, i2c);
1210 }
1211 break;
1212 }
1213 /* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
1214 reg_w(gspca_dev, 0x15, &regs[0x15], 2);
1215 /* compression register */
1216 reg_w(gspca_dev, 0x18, &regs[0x18], 1);
1217 /* H_start */
1218 reg_w(gspca_dev, 0x12, &regs[0x12], 1);
1219 /* V_START */
1220 reg_w(gspca_dev, 0x13, &regs[0x13], 1);
1221 /* reset 0x17 SensorClk enable inv Clk 0x60 */
1222 /*fixme: ov7630 [17]=68 8f (+20 if 102)*/
1223 reg_w(gspca_dev, 0x17, &regs[0x17], 1);
1224 /*MCKSIZE ->3 */ /*fixme: not ov7630*/
1225 reg_w(gspca_dev, 0x19, &regs[0x19], 1);
1226 /* AE_STRX AE_STRY AE_ENDX AE_ENDY */
1227 reg_w(gspca_dev, 0x1c, &regs[0x1c], 4);
1228 /* Enable video transfert */
1229 reg_w(gspca_dev, 0x01, &regs[0x01], 1);
1230 /* Compression */
1231 reg_w(gspca_dev, 0x18, &regs[0x18], 2);
1232 msleep(20);
1233
1234 sd->reg11 = -1;
1235
1236 setgain(gspca_dev);
1237 setbrightness(gspca_dev);
1238 setexposure(gspca_dev);
1239 setfreq(gspca_dev);
1240
1241 sd->frames_to_drop = 0;
1242 sd->autogain_ignore_frames = 0;
1243 sd->exp_too_high_cnt = 0;
1244 sd->exp_too_low_cnt = 0;
1245 atomic_set(&sd->avg_lum, -1);
1246 return 0;
1247 }
1248
1249 static void sd_stopN(struct gspca_dev *gspca_dev)
1250 {
1251 sd_init(gspca_dev);
1252 }
1253
1254 static u8* find_sof(struct gspca_dev *gspca_dev, u8 *data, int len)
1255 {
1256 struct sd *sd = (struct sd *) gspca_dev;
1257 int i, header_size = (sd->bridge == BRIDGE_103) ? 18 : 12;
1258
1259 /* frames start with:
1260 * ff ff 00 c4 c4 96 synchro
1261 * 00 (unknown)
1262 * xx (frame sequence / size / compression)
1263 * (xx) (idem - extra byte for sn9c103)
1264 * ll mm brightness sum inside auto exposure
1265 * ll mm brightness sum outside auto exposure
1266 * (xx xx xx xx xx) audio values for snc103
1267 */
1268 for (i = 0; i < len; i++) {
1269 switch (sd->header_read) {
1270 case 0:
1271 if (data[i] == 0xff)
1272 sd->header_read++;
1273 break;
1274 case 1:
1275 if (data[i] == 0xff)
1276 sd->header_read++;
1277 else
1278 sd->header_read = 0;
1279 break;
1280 case 2:
1281 if (data[i] == 0x00)
1282 sd->header_read++;
1283 else if (data[i] != 0xff)
1284 sd->header_read = 0;
1285 break;
1286 case 3:
1287 if (data[i] == 0xc4)
1288 sd->header_read++;
1289 else if (data[i] == 0xff)
1290 sd->header_read = 1;
1291 else
1292 sd->header_read = 0;
1293 break;
1294 case 4:
1295 if (data[i] == 0xc4)
1296 sd->header_read++;
1297 else if (data[i] == 0xff)
1298 sd->header_read = 1;
1299 else
1300 sd->header_read = 0;
1301 break;
1302 case 5:
1303 if (data[i] == 0x96)
1304 sd->header_read++;
1305 else if (data[i] == 0xff)
1306 sd->header_read = 1;
1307 else
1308 sd->header_read = 0;
1309 break;
1310 default:
1311 sd->header[sd->header_read - 6] = data[i];
1312 sd->header_read++;
1313 if (sd->header_read == header_size) {
1314 sd->header_read = 0;
1315 return data + i + 1;
1316 }
1317 }
1318 }
1319 return NULL;
1320 }
1321
1322 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1323 u8 *data, /* isoc packet */
1324 int len) /* iso packet length */
1325 {
1326 int fr_h_sz = 0, lum_offset = 0, len_after_sof = 0;
1327 struct sd *sd = (struct sd *) gspca_dev;
1328 struct cam *cam = &gspca_dev->cam;
1329 u8 *sof;
1330
1331 sof = find_sof(gspca_dev, data, len);
1332 if (sof) {
1333 if (sd->bridge == BRIDGE_103) {
1334 fr_h_sz = 18;
1335 lum_offset = 3;
1336 } else {
1337 fr_h_sz = 12;
1338 lum_offset = 2;
1339 }
1340
1341 len_after_sof = len - (sof - data);
1342 len = (sof - data) - fr_h_sz;
1343 if (len < 0)
1344 len = 0;
1345 }
1346
1347 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) {
1348 /* In raw mode we sometimes get some garbage after the frame
1349 ignore this */
1350 int used;
1351 int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage;
1352
1353 used = gspca_dev->image_len;
1354 if (used + len > size)
1355 len = size - used;
1356 }
1357
1358 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
1359
1360 if (sof) {
1361 int lum = sd->header[lum_offset] +
1362 (sd->header[lum_offset + 1] << 8);
1363
1364 /* When exposure changes midway a frame we
1365 get a lum of 0 in this case drop 2 frames
1366 as the frames directly after an exposure
1367 change have an unstable image. Sometimes lum
1368 *really* is 0 (cam used in low light with
1369 low exposure setting), so do not drop frames
1370 if the previous lum was 0 too. */
1371 if (lum == 0 && sd->prev_avg_lum != 0) {
1372 lum = -1;
1373 sd->frames_to_drop = 2;
1374 sd->prev_avg_lum = 0;
1375 } else
1376 sd->prev_avg_lum = lum;
1377 atomic_set(&sd->avg_lum, lum);
1378
1379 if (sd->frames_to_drop)
1380 sd->frames_to_drop--;
1381 else
1382 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
1383
1384 gspca_frame_add(gspca_dev, FIRST_PACKET, sof, len_after_sof);
1385 }
1386 }
1387
1388 static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val)
1389 {
1390 struct sd *sd = (struct sd *) gspca_dev;
1391
1392 sd->ctrls[AUTOGAIN].val = val;
1393 sd->exp_too_high_cnt = 0;
1394 sd->exp_too_low_cnt = 0;
1395
1396 /* when switching to autogain set defaults to make sure
1397 we are on a valid point of the autogain gain /
1398 exposure knee graph, and give this change time to
1399 take effect before doing autogain. */
1400 if (sd->ctrls[AUTOGAIN].val
1401 && !(sensor_data[sd->sensor].flags & F_COARSE_EXPO)) {
1402 sd->ctrls[EXPOSURE].val = sd->ctrls[EXPOSURE].def;
1403 sd->ctrls[GAIN].val = sd->ctrls[GAIN].def;
1404 if (gspca_dev->streaming) {
1405 sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
1406 setexposure(gspca_dev);
1407 setgain(gspca_dev);
1408 }
1409 }
1410
1411 if (sd->ctrls[AUTOGAIN].val)
1412 gspca_dev->ctrl_inac = (1 << GAIN) | (1 << EXPOSURE);
1413 else
1414 gspca_dev->ctrl_inac = 0;
1415
1416 return 0;
1417 }
1418
1419 static int sd_querymenu(struct gspca_dev *gspca_dev,
1420 struct v4l2_querymenu *menu)
1421 {
1422 switch (menu->id) {
1423 case V4L2_CID_POWER_LINE_FREQUENCY:
1424 switch (menu->index) {
1425 case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
1426 strcpy((char *) menu->name, "NoFliker");
1427 return 0;
1428 case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
1429 strcpy((char *) menu->name, "50 Hz");
1430 return 0;
1431 case 2: /* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
1432 strcpy((char *) menu->name, "60 Hz");
1433 return 0;
1434 }
1435 break;
1436 }
1437 return -EINVAL;
1438 }
1439
1440 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
1441 static int sd_int_pkt_scan(struct gspca_dev *gspca_dev,
1442 u8 *data, /* interrupt packet data */
1443 int len) /* interrupt packet length */
1444 {
1445 int ret = -EINVAL;
1446
1447 if (len == 1 && data[0] == 1) {
1448 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 1);
1449 input_sync(gspca_dev->input_dev);
1450 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
1451 input_sync(gspca_dev->input_dev);
1452 ret = 0;
1453 }
1454
1455 return ret;
1456 }
1457 #endif
1458
1459 /* sub-driver description */
1460 static const struct sd_desc sd_desc = {
1461 .name = MODULE_NAME,
1462 .ctrls = sd_ctrls,
1463 .nctrls = ARRAY_SIZE(sd_ctrls),
1464 .config = sd_config,
1465 .init = sd_init,
1466 .start = sd_start,
1467 .stopN = sd_stopN,
1468 .pkt_scan = sd_pkt_scan,
1469 .querymenu = sd_querymenu,
1470 .dq_callback = do_autogain,
1471 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
1472 .int_pkt_scan = sd_int_pkt_scan,
1473 #endif
1474 };
1475
1476 /* -- module initialisation -- */
1477 #define SB(sensor, bridge) \
1478 .driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge
1479
1480
1481 static const struct usb_device_id device_table[] = {
1482 {USB_DEVICE(0x0c45, 0x6001), SB(TAS5110C, 102)}, /* TAS5110C1B */
1483 {USB_DEVICE(0x0c45, 0x6005), SB(TAS5110C, 101)}, /* TAS5110C1B */
1484 {USB_DEVICE(0x0c45, 0x6007), SB(TAS5110D, 101)}, /* TAS5110D */
1485 {USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)},
1486 {USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)},
1487 {USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)},
1488 {USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)},
1489 #if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1490 {USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)},
1491 {USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)},
1492 #endif
1493 {USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)},
1494 {USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)},
1495 {USB_DEVICE(0x0c45, 0x602a), SB(HV7131D, 102)},
1496 /* {USB_DEVICE(0x0c45, 0x602b), SB(MI0343, 102)}, */
1497 {USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)},
1498 {USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)},
1499 {USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)},
1500 /* {USB_DEVICE(0x0c45, 0x6030), SB(MI03XX, 102)}, */ /* MI0343 MI0360 MI0330 */
1501 /* {USB_DEVICE(0x0c45, 0x6082), SB(MI03XX, 103)}, */ /* MI0343 MI0360 */
1502 {USB_DEVICE(0x0c45, 0x6083), SB(HV7131D, 103)},
1503 {USB_DEVICE(0x0c45, 0x608c), SB(HV7131R, 103)},
1504 /* {USB_DEVICE(0x0c45, 0x608e), SB(CISVF10, 103)}, */
1505 {USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)},
1506 {USB_DEVICE(0x0c45, 0x60a8), SB(PAS106, 103)},
1507 {USB_DEVICE(0x0c45, 0x60aa), SB(TAS5130CXX, 103)},
1508 {USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)},
1509 {USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)},
1510 {}
1511 };
1512 MODULE_DEVICE_TABLE(usb, device_table);
1513
1514 /* -- device connect -- */
1515 static int sd_probe(struct usb_interface *intf,
1516 const struct usb_device_id *id)
1517 {
1518 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1519 THIS_MODULE);
1520 }
1521
1522 static struct usb_driver sd_driver = {
1523 .name = MODULE_NAME,
1524 .id_table = device_table,
1525 .probe = sd_probe,
1526 .disconnect = gspca_disconnect,
1527 #ifdef CONFIG_PM
1528 .suspend = gspca_suspend,
1529 .resume = gspca_resume,
1530 #endif
1531 };
1532
1533 module_usb_driver(sd_driver);