]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/atheros/alx/main.c
alx: enable multiple tx queues
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / atheros / alx / main.c
1 /*
2 * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
3 *
4 * This file is free software: you may copy, redistribute and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation, either version 2 of the License, or (at your
7 * option) any later version.
8 *
9 * This file is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 *
17 * This file incorporates work covered by the following copyright and
18 * permission notice:
19 *
20 * Copyright (c) 2012 Qualcomm Atheros, Inc.
21 *
22 * Permission to use, copy, modify, and/or distribute this software for any
23 * purpose with or without fee is hereby granted, provided that the above
24 * copyright notice and this permission notice appear in all copies.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
27 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
29 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
30 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
31 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
32 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
33 */
34
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/interrupt.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/if_vlan.h>
41 #include <linux/mdio.h>
42 #include <linux/aer.h>
43 #include <linux/bitops.h>
44 #include <linux/netdevice.h>
45 #include <linux/etherdevice.h>
46 #include <net/ip6_checksum.h>
47 #include <linux/crc32.h>
48 #include "alx.h"
49 #include "hw.h"
50 #include "reg.h"
51
52 const char alx_drv_name[] = "alx";
53
54 static void alx_free_txbuf(struct alx_tx_queue *txq, int entry)
55 {
56 struct alx_buffer *txb = &txq->bufs[entry];
57
58 if (dma_unmap_len(txb, size)) {
59 dma_unmap_single(txq->dev,
60 dma_unmap_addr(txb, dma),
61 dma_unmap_len(txb, size),
62 DMA_TO_DEVICE);
63 dma_unmap_len_set(txb, size, 0);
64 }
65
66 if (txb->skb) {
67 dev_kfree_skb_any(txb->skb);
68 txb->skb = NULL;
69 }
70 }
71
72 static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
73 {
74 struct alx_rx_queue *rxq = alx->qnapi[0]->rxq;
75 struct sk_buff *skb;
76 struct alx_buffer *cur_buf;
77 dma_addr_t dma;
78 u16 cur, next, count = 0;
79
80 next = cur = rxq->write_idx;
81 if (++next == alx->rx_ringsz)
82 next = 0;
83 cur_buf = &rxq->bufs[cur];
84
85 while (!cur_buf->skb && next != rxq->read_idx) {
86 struct alx_rfd *rfd = &rxq->rfd[cur];
87
88 /*
89 * When DMA RX address is set to something like
90 * 0x....fc0, it will be very likely to cause DMA
91 * RFD overflow issue.
92 *
93 * To work around it, we apply rx skb with 64 bytes
94 * longer space, and offset the address whenever
95 * 0x....fc0 is detected.
96 */
97 skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp);
98 if (!skb)
99 break;
100
101 if (((unsigned long)skb->data & 0xfff) == 0xfc0)
102 skb_reserve(skb, 64);
103
104 dma = dma_map_single(&alx->hw.pdev->dev,
105 skb->data, alx->rxbuf_size,
106 DMA_FROM_DEVICE);
107 if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
108 dev_kfree_skb(skb);
109 break;
110 }
111
112 /* Unfortunately, RX descriptor buffers must be 4-byte
113 * aligned, so we can't use IP alignment.
114 */
115 if (WARN_ON(dma & 3)) {
116 dev_kfree_skb(skb);
117 break;
118 }
119
120 cur_buf->skb = skb;
121 dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
122 dma_unmap_addr_set(cur_buf, dma, dma);
123 rfd->addr = cpu_to_le64(dma);
124
125 cur = next;
126 if (++next == alx->rx_ringsz)
127 next = 0;
128 cur_buf = &rxq->bufs[cur];
129 count++;
130 }
131
132 if (count) {
133 /* flush all updates before updating hardware */
134 wmb();
135 rxq->write_idx = cur;
136 alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
137 }
138
139 return count;
140 }
141
142 static struct alx_tx_queue *alx_tx_queue_mapping(struct alx_priv *alx,
143 struct sk_buff *skb)
144 {
145 unsigned int r_idx = skb->queue_mapping;
146
147 if (r_idx >= alx->num_txq)
148 r_idx = r_idx % alx->num_txq;
149
150 return alx->qnapi[r_idx]->txq;
151 }
152
153 static struct netdev_queue *alx_get_tx_queue(const struct alx_tx_queue *txq)
154 {
155 return netdev_get_tx_queue(txq->netdev, txq->queue_idx);
156 }
157
158 static inline int alx_tpd_avail(struct alx_tx_queue *txq)
159 {
160 if (txq->write_idx >= txq->read_idx)
161 return txq->count + txq->read_idx - txq->write_idx - 1;
162 return txq->read_idx - txq->write_idx - 1;
163 }
164
165 static bool alx_clean_tx_irq(struct alx_tx_queue *txq)
166 {
167 struct alx_priv *alx;
168 struct netdev_queue *tx_queue;
169 u16 hw_read_idx, sw_read_idx;
170 unsigned int total_bytes = 0, total_packets = 0;
171 int budget = ALX_DEFAULT_TX_WORK;
172
173 alx = netdev_priv(txq->netdev);
174 tx_queue = alx_get_tx_queue(txq);
175
176 sw_read_idx = txq->read_idx;
177 hw_read_idx = alx_read_mem16(&alx->hw, txq->c_reg);
178
179 if (sw_read_idx != hw_read_idx) {
180 while (sw_read_idx != hw_read_idx && budget > 0) {
181 struct sk_buff *skb;
182
183 skb = txq->bufs[sw_read_idx].skb;
184 if (skb) {
185 total_bytes += skb->len;
186 total_packets++;
187 budget--;
188 }
189
190 alx_free_txbuf(txq, sw_read_idx);
191
192 if (++sw_read_idx == txq->count)
193 sw_read_idx = 0;
194 }
195 txq->read_idx = sw_read_idx;
196
197 netdev_tx_completed_queue(tx_queue, total_packets, total_bytes);
198 }
199
200 if (netif_tx_queue_stopped(tx_queue) && netif_carrier_ok(alx->dev) &&
201 alx_tpd_avail(txq) > txq->count / 4)
202 netif_tx_wake_queue(tx_queue);
203
204 return sw_read_idx == hw_read_idx;
205 }
206
207 static void alx_schedule_link_check(struct alx_priv *alx)
208 {
209 schedule_work(&alx->link_check_wk);
210 }
211
212 static void alx_schedule_reset(struct alx_priv *alx)
213 {
214 schedule_work(&alx->reset_wk);
215 }
216
217 static int alx_clean_rx_irq(struct alx_rx_queue *rxq, int budget)
218 {
219 struct alx_priv *alx;
220 struct alx_rrd *rrd;
221 struct alx_buffer *rxb;
222 struct sk_buff *skb;
223 u16 length, rfd_cleaned = 0;
224 int work = 0;
225
226 alx = netdev_priv(rxq->netdev);
227
228 while (work < budget) {
229 rrd = &rxq->rrd[rxq->rrd_read_idx];
230 if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
231 break;
232 rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
233
234 if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
235 RRD_SI) != rxq->read_idx ||
236 ALX_GET_FIELD(le32_to_cpu(rrd->word0),
237 RRD_NOR) != 1) {
238 alx_schedule_reset(alx);
239 return work;
240 }
241
242 rxb = &rxq->bufs[rxq->read_idx];
243 dma_unmap_single(rxq->dev,
244 dma_unmap_addr(rxb, dma),
245 dma_unmap_len(rxb, size),
246 DMA_FROM_DEVICE);
247 dma_unmap_len_set(rxb, size, 0);
248 skb = rxb->skb;
249 rxb->skb = NULL;
250
251 if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
252 rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
253 rrd->word3 = 0;
254 dev_kfree_skb_any(skb);
255 goto next_pkt;
256 }
257
258 length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
259 RRD_PKTLEN) - ETH_FCS_LEN;
260 skb_put(skb, length);
261 skb->protocol = eth_type_trans(skb, rxq->netdev);
262
263 skb_checksum_none_assert(skb);
264 if (alx->dev->features & NETIF_F_RXCSUM &&
265 !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
266 cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
267 switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
268 RRD_PID)) {
269 case RRD_PID_IPV6UDP:
270 case RRD_PID_IPV4UDP:
271 case RRD_PID_IPV4TCP:
272 case RRD_PID_IPV6TCP:
273 skb->ip_summed = CHECKSUM_UNNECESSARY;
274 break;
275 }
276 }
277
278 napi_gro_receive(&rxq->np->napi, skb);
279 work++;
280
281 next_pkt:
282 if (++rxq->read_idx == rxq->count)
283 rxq->read_idx = 0;
284 if (++rxq->rrd_read_idx == rxq->count)
285 rxq->rrd_read_idx = 0;
286
287 if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
288 rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
289 }
290
291 if (rfd_cleaned)
292 alx_refill_rx_ring(alx, GFP_ATOMIC);
293
294 return work;
295 }
296
297 static int alx_poll(struct napi_struct *napi, int budget)
298 {
299 struct alx_napi *np = container_of(napi, struct alx_napi, napi);
300 struct alx_priv *alx = np->alx;
301 struct alx_hw *hw = &alx->hw;
302 unsigned long flags;
303 bool tx_complete = true;
304 int work = 0;
305
306 if (np->txq)
307 tx_complete = alx_clean_tx_irq(np->txq);
308 if (np->rxq)
309 work = alx_clean_rx_irq(np->rxq, budget);
310
311 if (!tx_complete || work == budget)
312 return budget;
313
314 napi_complete(&np->napi);
315
316 /* enable interrupt */
317 if (alx->flags & ALX_FLAG_USING_MSIX) {
318 alx_mask_msix(hw, np->vec_idx, false);
319 } else {
320 spin_lock_irqsave(&alx->irq_lock, flags);
321 alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
322 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
323 spin_unlock_irqrestore(&alx->irq_lock, flags);
324 }
325
326 alx_post_write(hw);
327
328 return work;
329 }
330
331 static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr)
332 {
333 struct alx_hw *hw = &alx->hw;
334
335 if (intr & ALX_ISR_FATAL) {
336 netif_warn(alx, hw, alx->dev,
337 "fatal interrupt 0x%x, resetting\n", intr);
338 alx_schedule_reset(alx);
339 return true;
340 }
341
342 if (intr & ALX_ISR_ALERT)
343 netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
344
345 if (intr & ALX_ISR_PHY) {
346 /* suppress PHY interrupt, because the source
347 * is from PHY internal. only the internal status
348 * is cleared, the interrupt status could be cleared.
349 */
350 alx->int_mask &= ~ALX_ISR_PHY;
351 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
352 alx_schedule_link_check(alx);
353 }
354
355 return false;
356 }
357
358 static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
359 {
360 struct alx_hw *hw = &alx->hw;
361
362 spin_lock(&alx->irq_lock);
363
364 /* ACK interrupt */
365 alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
366 intr &= alx->int_mask;
367
368 if (alx_intr_handle_misc(alx, intr))
369 goto out;
370
371 if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
372 napi_schedule(&alx->qnapi[0]->napi);
373 /* mask rx/tx interrupt, enable them when napi complete */
374 alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
375 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
376 }
377
378 alx_write_mem32(hw, ALX_ISR, 0);
379
380 out:
381 spin_unlock(&alx->irq_lock);
382 return IRQ_HANDLED;
383 }
384
385 static irqreturn_t alx_intr_msix_ring(int irq, void *data)
386 {
387 struct alx_napi *np = data;
388 struct alx_hw *hw = &np->alx->hw;
389
390 /* mask interrupt to ACK chip */
391 alx_mask_msix(hw, np->vec_idx, true);
392 /* clear interrupt status */
393 alx_write_mem32(hw, ALX_ISR, np->vec_mask);
394
395 napi_schedule(&np->napi);
396
397 return IRQ_HANDLED;
398 }
399
400 static irqreturn_t alx_intr_msix_misc(int irq, void *data)
401 {
402 struct alx_priv *alx = data;
403 struct alx_hw *hw = &alx->hw;
404 u32 intr;
405
406 /* mask interrupt to ACK chip */
407 alx_mask_msix(hw, 0, true);
408
409 /* read interrupt status */
410 intr = alx_read_mem32(hw, ALX_ISR);
411 intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES);
412
413 if (alx_intr_handle_misc(alx, intr))
414 return IRQ_HANDLED;
415
416 /* clear interrupt status */
417 alx_write_mem32(hw, ALX_ISR, intr);
418
419 /* enable interrupt again */
420 alx_mask_msix(hw, 0, false);
421
422 return IRQ_HANDLED;
423 }
424
425 static irqreturn_t alx_intr_msi(int irq, void *data)
426 {
427 struct alx_priv *alx = data;
428
429 return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
430 }
431
432 static irqreturn_t alx_intr_legacy(int irq, void *data)
433 {
434 struct alx_priv *alx = data;
435 struct alx_hw *hw = &alx->hw;
436 u32 intr;
437
438 intr = alx_read_mem32(hw, ALX_ISR);
439
440 if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
441 return IRQ_NONE;
442
443 return alx_intr_handle(alx, intr);
444 }
445
446 static const u16 txring_header_reg[] = {ALX_TPD_PRI0_ADDR_LO,
447 ALX_TPD_PRI1_ADDR_LO,
448 ALX_TPD_PRI2_ADDR_LO,
449 ALX_TPD_PRI3_ADDR_LO};
450
451 static void alx_init_ring_ptrs(struct alx_priv *alx)
452 {
453 struct alx_hw *hw = &alx->hw;
454 u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
455 struct alx_napi *np;
456 int i;
457
458 for (i = 0; i < alx->num_napi; i++) {
459 np = alx->qnapi[i];
460 if (np->txq) {
461 np->txq->read_idx = 0;
462 np->txq->write_idx = 0;
463 alx_write_mem32(hw,
464 txring_header_reg[np->txq->queue_idx],
465 np->txq->tpd_dma);
466 }
467
468 if (np->rxq) {
469 np->rxq->read_idx = 0;
470 np->rxq->write_idx = 0;
471 np->rxq->rrd_read_idx = 0;
472 alx_write_mem32(hw, ALX_RRD_ADDR_LO, np->rxq->rrd_dma);
473 alx_write_mem32(hw, ALX_RFD_ADDR_LO, np->rxq->rfd_dma);
474 }
475 }
476
477 alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
478 alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
479
480 alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
481 alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
482 alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
483 alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
484
485 /* load these pointers into the chip */
486 alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
487 }
488
489 static void alx_free_txring_buf(struct alx_tx_queue *txq)
490 {
491 int i;
492
493 if (!txq->bufs)
494 return;
495
496 for (i = 0; i < txq->count; i++)
497 alx_free_txbuf(txq, i);
498
499 memset(txq->bufs, 0, txq->count * sizeof(struct alx_buffer));
500 memset(txq->tpd, 0, txq->count * sizeof(struct alx_txd));
501 txq->write_idx = 0;
502 txq->read_idx = 0;
503
504 netdev_tx_reset_queue(alx_get_tx_queue(txq));
505 }
506
507 static void alx_free_rxring_buf(struct alx_rx_queue *rxq)
508 {
509 struct alx_buffer *cur_buf;
510 u16 i;
511
512 if (!rxq->bufs)
513 return;
514
515 for (i = 0; i < rxq->count; i++) {
516 cur_buf = rxq->bufs + i;
517 if (cur_buf->skb) {
518 dma_unmap_single(rxq->dev,
519 dma_unmap_addr(cur_buf, dma),
520 dma_unmap_len(cur_buf, size),
521 DMA_FROM_DEVICE);
522 dev_kfree_skb(cur_buf->skb);
523 cur_buf->skb = NULL;
524 dma_unmap_len_set(cur_buf, size, 0);
525 dma_unmap_addr_set(cur_buf, dma, 0);
526 }
527 }
528
529 rxq->write_idx = 0;
530 rxq->read_idx = 0;
531 rxq->rrd_read_idx = 0;
532 }
533
534 static void alx_free_buffers(struct alx_priv *alx)
535 {
536 int i;
537
538 for (i = 0; i < alx->num_txq; i++)
539 if (alx->qnapi[i] && alx->qnapi[i]->txq)
540 alx_free_txring_buf(alx->qnapi[i]->txq);
541
542 if (alx->qnapi[0] && alx->qnapi[0]->rxq)
543 alx_free_rxring_buf(alx->qnapi[0]->rxq);
544 }
545
546 static int alx_reinit_rings(struct alx_priv *alx)
547 {
548 alx_free_buffers(alx);
549
550 alx_init_ring_ptrs(alx);
551
552 if (!alx_refill_rx_ring(alx, GFP_KERNEL))
553 return -ENOMEM;
554
555 return 0;
556 }
557
558 static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
559 {
560 u32 crc32, bit, reg;
561
562 crc32 = ether_crc(ETH_ALEN, addr);
563 reg = (crc32 >> 31) & 0x1;
564 bit = (crc32 >> 26) & 0x1F;
565
566 mc_hash[reg] |= BIT(bit);
567 }
568
569 static void __alx_set_rx_mode(struct net_device *netdev)
570 {
571 struct alx_priv *alx = netdev_priv(netdev);
572 struct alx_hw *hw = &alx->hw;
573 struct netdev_hw_addr *ha;
574 u32 mc_hash[2] = {};
575
576 if (!(netdev->flags & IFF_ALLMULTI)) {
577 netdev_for_each_mc_addr(ha, netdev)
578 alx_add_mc_addr(hw, ha->addr, mc_hash);
579
580 alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
581 alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
582 }
583
584 hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
585 if (netdev->flags & IFF_PROMISC)
586 hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
587 if (netdev->flags & IFF_ALLMULTI)
588 hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
589
590 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
591 }
592
593 static void alx_set_rx_mode(struct net_device *netdev)
594 {
595 __alx_set_rx_mode(netdev);
596 }
597
598 static int alx_set_mac_address(struct net_device *netdev, void *data)
599 {
600 struct alx_priv *alx = netdev_priv(netdev);
601 struct alx_hw *hw = &alx->hw;
602 struct sockaddr *addr = data;
603
604 if (!is_valid_ether_addr(addr->sa_data))
605 return -EADDRNOTAVAIL;
606
607 if (netdev->addr_assign_type & NET_ADDR_RANDOM)
608 netdev->addr_assign_type ^= NET_ADDR_RANDOM;
609
610 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
611 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
612 alx_set_macaddr(hw, hw->mac_addr);
613
614 return 0;
615 }
616
617 static int alx_alloc_tx_ring(struct alx_priv *alx, struct alx_tx_queue *txq,
618 int offset)
619 {
620 txq->bufs = kcalloc(txq->count, sizeof(struct alx_buffer), GFP_KERNEL);
621 if (!txq->bufs)
622 return -ENOMEM;
623
624 txq->tpd = alx->descmem.virt + offset;
625 txq->tpd_dma = alx->descmem.dma + offset;
626 offset += sizeof(struct alx_txd) * txq->count;
627
628 return offset;
629 }
630
631 static int alx_alloc_rx_ring(struct alx_priv *alx, struct alx_rx_queue *rxq,
632 int offset)
633 {
634 rxq->bufs = kcalloc(rxq->count, sizeof(struct alx_buffer), GFP_KERNEL);
635 if (!rxq->bufs)
636 return -ENOMEM;
637
638 rxq->rrd = alx->descmem.virt + offset;
639 rxq->rrd_dma = alx->descmem.dma + offset;
640 offset += sizeof(struct alx_rrd) * rxq->count;
641
642 rxq->rfd = alx->descmem.virt + offset;
643 rxq->rfd_dma = alx->descmem.dma + offset;
644 offset += sizeof(struct alx_rfd) * rxq->count;
645
646 return offset;
647 }
648
649 static int alx_alloc_rings(struct alx_priv *alx)
650 {
651 int i, offset = 0;
652
653 /* physical tx/rx ring descriptors
654 *
655 * Allocate them as a single chunk because they must not cross a
656 * 4G boundary (hardware has a single register for high 32 bits
657 * of addresses only)
658 */
659 alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz *
660 alx->num_txq +
661 sizeof(struct alx_rrd) * alx->rx_ringsz +
662 sizeof(struct alx_rfd) * alx->rx_ringsz;
663 alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
664 alx->descmem.size,
665 &alx->descmem.dma,
666 GFP_KERNEL);
667 if (!alx->descmem.virt)
668 return -ENOMEM;
669
670 /* alignment requirements */
671 BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
672 BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
673
674 for (i = 0; i < alx->num_txq; i++) {
675 offset = alx_alloc_tx_ring(alx, alx->qnapi[i]->txq, offset);
676 if (offset < 0) {
677 netdev_err(alx->dev, "Allocation of tx buffer failed!\n");
678 return -ENOMEM;
679 }
680 }
681
682 offset = alx_alloc_rx_ring(alx, alx->qnapi[0]->rxq, offset);
683 if (offset < 0) {
684 netdev_err(alx->dev, "Allocation of rx buffer failed!\n");
685 return -ENOMEM;
686 }
687
688 alx_reinit_rings(alx);
689
690 return 0;
691 }
692
693 static void alx_free_rings(struct alx_priv *alx)
694 {
695 int i;
696
697 alx_free_buffers(alx);
698
699 for (i = 0; i < alx->num_txq; i++)
700 if (alx->qnapi[i] && alx->qnapi[i]->txq)
701 kfree(alx->qnapi[i]->txq->bufs);
702
703 if (alx->qnapi[0] && alx->qnapi[0]->rxq)
704 kfree(alx->qnapi[0]->rxq->bufs);
705
706 if (!alx->descmem.virt)
707 dma_free_coherent(&alx->hw.pdev->dev,
708 alx->descmem.size,
709 alx->descmem.virt,
710 alx->descmem.dma);
711 }
712
713 static void alx_free_napis(struct alx_priv *alx)
714 {
715 struct alx_napi *np;
716 int i;
717
718 for (i = 0; i < alx->num_napi; i++) {
719 np = alx->qnapi[i];
720 if (!np)
721 continue;
722
723 netif_napi_del(&np->napi);
724 kfree(np->txq);
725 kfree(np->rxq);
726 kfree(np);
727 alx->qnapi[i] = NULL;
728 }
729 }
730
731 static const u16 tx_pidx_reg[] = {ALX_TPD_PRI0_PIDX, ALX_TPD_PRI1_PIDX,
732 ALX_TPD_PRI2_PIDX, ALX_TPD_PRI3_PIDX};
733 static const u16 tx_cidx_reg[] = {ALX_TPD_PRI0_CIDX, ALX_TPD_PRI1_CIDX,
734 ALX_TPD_PRI2_CIDX, ALX_TPD_PRI3_CIDX};
735 static const u32 tx_vect_mask[] = {ALX_ISR_TX_Q0, ALX_ISR_TX_Q1,
736 ALX_ISR_TX_Q2, ALX_ISR_TX_Q3};
737 static const u32 rx_vect_mask[] = {ALX_ISR_RX_Q0, ALX_ISR_RX_Q1,
738 ALX_ISR_RX_Q2, ALX_ISR_RX_Q3,
739 ALX_ISR_RX_Q4, ALX_ISR_RX_Q5,
740 ALX_ISR_RX_Q6, ALX_ISR_RX_Q7};
741
742 static int alx_alloc_napis(struct alx_priv *alx)
743 {
744 struct alx_napi *np;
745 struct alx_rx_queue *rxq;
746 struct alx_tx_queue *txq;
747 int i;
748
749 alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
750
751 /* allocate alx_napi structures */
752 for (i = 0; i < alx->num_napi; i++) {
753 np = kzalloc(sizeof(struct alx_napi), GFP_KERNEL);
754 if (!np)
755 goto err_out;
756
757 np->alx = alx;
758 netif_napi_add(alx->dev, &np->napi, alx_poll, 64);
759 alx->qnapi[i] = np;
760 }
761
762 /* allocate tx queues */
763 for (i = 0; i < alx->num_txq; i++) {
764 np = alx->qnapi[i];
765 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
766 if (!txq)
767 goto err_out;
768
769 np->txq = txq;
770 txq->p_reg = tx_pidx_reg[i];
771 txq->c_reg = tx_cidx_reg[i];
772 txq->queue_idx = i;
773 txq->count = alx->tx_ringsz;
774 txq->netdev = alx->dev;
775 txq->dev = &alx->hw.pdev->dev;
776 np->vec_mask |= tx_vect_mask[i];
777 alx->int_mask |= tx_vect_mask[i];
778 }
779
780 /* allocate rx queues */
781 np = alx->qnapi[0];
782 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
783 if (!rxq)
784 goto err_out;
785
786 np->rxq = rxq;
787 rxq->np = alx->qnapi[0];
788 rxq->queue_idx = 0;
789 rxq->count = alx->rx_ringsz;
790 rxq->netdev = alx->dev;
791 rxq->dev = &alx->hw.pdev->dev;
792 np->vec_mask |= rx_vect_mask[0];
793 alx->int_mask |= rx_vect_mask[0];
794
795 return 0;
796
797 err_out:
798 netdev_err(alx->dev, "error allocating internal structures\n");
799 alx_free_napis(alx);
800 return -ENOMEM;
801 }
802
803 static const int txq_vec_mapping_shift[] = {
804 0, ALX_MSI_MAP_TBL1_TXQ0_SHIFT,
805 0, ALX_MSI_MAP_TBL1_TXQ1_SHIFT,
806 1, ALX_MSI_MAP_TBL2_TXQ2_SHIFT,
807 1, ALX_MSI_MAP_TBL2_TXQ3_SHIFT,
808 };
809
810 static void alx_config_vector_mapping(struct alx_priv *alx)
811 {
812 struct alx_hw *hw = &alx->hw;
813 u32 tbl[2] = {0, 0};
814 int i, vector, idx, shift;
815
816 if (alx->flags & ALX_FLAG_USING_MSIX) {
817 /* tx mappings */
818 for (i = 0, vector = 1; i < alx->num_txq; i++, vector++) {
819 idx = txq_vec_mapping_shift[i * 2];
820 shift = txq_vec_mapping_shift[i * 2 + 1];
821 tbl[idx] |= vector << shift;
822 }
823
824 /* rx mapping */
825 tbl[0] |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT;
826 }
827
828 alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl[0]);
829 alx_write_mem32(hw, ALX_MSI_MAP_TBL2, tbl[1]);
830 alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
831 }
832
833 static bool alx_enable_msix(struct alx_priv *alx)
834 {
835 int i, err, num_vec, num_txq, num_rxq;
836
837 num_txq = min_t(int, num_online_cpus(), ALX_MAX_TX_QUEUES);
838 num_rxq = 1;
839 num_vec = max_t(int, num_txq, num_rxq) + 1;
840
841 alx->msix_entries = kcalloc(num_vec, sizeof(struct msix_entry),
842 GFP_KERNEL);
843 if (!alx->msix_entries) {
844 netdev_warn(alx->dev, "Allocation of msix entries failed!\n");
845 return false;
846 }
847
848 for (i = 0; i < num_vec; i++)
849 alx->msix_entries[i].entry = i;
850
851 err = pci_enable_msix(alx->hw.pdev, alx->msix_entries, num_vec);
852 if (err) {
853 kfree(alx->msix_entries);
854 netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n");
855 return false;
856 }
857
858 alx->num_vec = num_vec;
859 alx->num_napi = num_vec - 1;
860 alx->num_txq = num_txq;
861 alx->num_rxq = num_rxq;
862
863 return true;
864 }
865
866 static int alx_request_msix(struct alx_priv *alx)
867 {
868 struct net_device *netdev = alx->dev;
869 int i, err, vector = 0, free_vector = 0;
870
871 err = request_irq(alx->msix_entries[0].vector, alx_intr_msix_misc,
872 0, netdev->name, alx);
873 if (err)
874 goto out_err;
875
876 for (i = 0; i < alx->num_napi; i++) {
877 struct alx_napi *np = alx->qnapi[i];
878
879 vector++;
880
881 if (np->txq && np->rxq)
882 sprintf(np->irq_lbl, "%s-TxRx-%u", netdev->name,
883 np->txq->queue_idx);
884 else if (np->txq)
885 sprintf(np->irq_lbl, "%s-tx-%u", netdev->name,
886 np->txq->queue_idx);
887 else if (np->rxq)
888 sprintf(np->irq_lbl, "%s-rx-%u", netdev->name,
889 np->rxq->queue_idx);
890 else
891 sprintf(np->irq_lbl, "%s-unused", netdev->name);
892
893 np->vec_idx = vector;
894 err = request_irq(alx->msix_entries[vector].vector,
895 alx_intr_msix_ring, 0, np->irq_lbl, np);
896 if (err)
897 goto out_free;
898 }
899 return 0;
900
901 out_free:
902 free_irq(alx->msix_entries[free_vector++].vector, alx);
903
904 vector--;
905 for (i = 0; i < vector; i++)
906 free_irq(alx->msix_entries[free_vector++].vector,
907 alx->qnapi[i]);
908
909 out_err:
910 return err;
911 }
912
913 static void alx_init_intr(struct alx_priv *alx, bool msix)
914 {
915 if (msix) {
916 if (alx_enable_msix(alx))
917 alx->flags |= ALX_FLAG_USING_MSIX;
918 }
919
920 if (!(alx->flags & ALX_FLAG_USING_MSIX)) {
921 alx->num_vec = 1;
922 alx->num_napi = 1;
923 alx->num_txq = 1;
924 alx->num_rxq = 1;
925
926 if (!pci_enable_msi(alx->hw.pdev))
927 alx->flags |= ALX_FLAG_USING_MSI;
928 }
929 }
930
931 static void alx_disable_advanced_intr(struct alx_priv *alx)
932 {
933 if (alx->flags & ALX_FLAG_USING_MSIX) {
934 kfree(alx->msix_entries);
935 pci_disable_msix(alx->hw.pdev);
936 alx->flags &= ~ALX_FLAG_USING_MSIX;
937 }
938
939 if (alx->flags & ALX_FLAG_USING_MSI) {
940 pci_disable_msi(alx->hw.pdev);
941 alx->flags &= ~ALX_FLAG_USING_MSI;
942 }
943 }
944
945 static void alx_irq_enable(struct alx_priv *alx)
946 {
947 struct alx_hw *hw = &alx->hw;
948 int i;
949
950 /* level-1 interrupt switch */
951 alx_write_mem32(hw, ALX_ISR, 0);
952 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
953 alx_post_write(hw);
954
955 if (alx->flags & ALX_FLAG_USING_MSIX)
956 /* enable all msix irqs */
957 for (i = 0; i < alx->num_vec; i++)
958 alx_mask_msix(hw, i, false);
959 }
960
961 static void alx_irq_disable(struct alx_priv *alx)
962 {
963 struct alx_hw *hw = &alx->hw;
964 int i;
965
966 alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
967 alx_write_mem32(hw, ALX_IMR, 0);
968 alx_post_write(hw);
969
970 if (alx->flags & ALX_FLAG_USING_MSIX) {
971 for (i = 0; i < alx->num_vec; i++) {
972 alx_mask_msix(hw, i, true);
973 synchronize_irq(alx->msix_entries[i].vector);
974 }
975 } else {
976 synchronize_irq(alx->hw.pdev->irq);
977 }
978 }
979
980 static int alx_realloc_resources(struct alx_priv *alx)
981 {
982 int err;
983
984 alx_free_rings(alx);
985 alx_free_napis(alx);
986 alx_disable_advanced_intr(alx);
987
988 err = alx_alloc_napis(alx);
989 if (err)
990 return err;
991
992 err = alx_alloc_rings(alx);
993 if (err)
994 return err;
995
996 return 0;
997 }
998
999 static int alx_request_irq(struct alx_priv *alx)
1000 {
1001 struct pci_dev *pdev = alx->hw.pdev;
1002 struct alx_hw *hw = &alx->hw;
1003 int err;
1004 u32 msi_ctrl;
1005
1006 msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
1007
1008 if (alx->flags & ALX_FLAG_USING_MSIX) {
1009 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl);
1010 err = alx_request_msix(alx);
1011 if (!err)
1012 goto out;
1013
1014 /* msix request failed, realloc resources */
1015 err = alx_realloc_resources(alx);
1016 if (err)
1017 goto out;
1018 }
1019
1020 if (alx->flags & ALX_FLAG_USING_MSI) {
1021 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
1022 msi_ctrl | ALX_MSI_MASK_SEL_LINE);
1023 err = request_irq(pdev->irq, alx_intr_msi, 0,
1024 alx->dev->name, alx);
1025 if (!err)
1026 goto out;
1027 /* fall back to legacy interrupt */
1028 alx->flags &= ~ALX_FLAG_USING_MSI;
1029 pci_disable_msi(alx->hw.pdev);
1030 }
1031
1032 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
1033 err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED,
1034 alx->dev->name, alx);
1035 out:
1036 if (!err)
1037 alx_config_vector_mapping(alx);
1038 else
1039 netdev_err(alx->dev, "IRQ registration failed!\n");
1040 return err;
1041 }
1042
1043 static void alx_free_irq(struct alx_priv *alx)
1044 {
1045 struct pci_dev *pdev = alx->hw.pdev;
1046 int i, vector = 0;
1047
1048 if (alx->flags & ALX_FLAG_USING_MSIX) {
1049 free_irq(alx->msix_entries[vector++].vector, alx);
1050 for (i = 0; i < alx->num_napi; i++)
1051 free_irq(alx->msix_entries[vector++].vector,
1052 alx->qnapi[i]);
1053 } else {
1054 free_irq(pdev->irq, alx);
1055 }
1056
1057 alx_disable_advanced_intr(alx);
1058 }
1059
1060 static int alx_identify_hw(struct alx_priv *alx)
1061 {
1062 struct alx_hw *hw = &alx->hw;
1063 int rev = alx_hw_revision(hw);
1064
1065 if (rev > ALX_REV_C0)
1066 return -EINVAL;
1067
1068 hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
1069
1070 return 0;
1071 }
1072
1073 static int alx_init_sw(struct alx_priv *alx)
1074 {
1075 struct pci_dev *pdev = alx->hw.pdev;
1076 struct alx_hw *hw = &alx->hw;
1077 int err;
1078
1079 err = alx_identify_hw(alx);
1080 if (err) {
1081 dev_err(&pdev->dev, "unrecognized chip, aborting\n");
1082 return err;
1083 }
1084
1085 alx->hw.lnk_patch =
1086 pdev->device == ALX_DEV_ID_AR8161 &&
1087 pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
1088 pdev->subsystem_device == 0x0091 &&
1089 pdev->revision == 0;
1090
1091 hw->smb_timer = 400;
1092 hw->mtu = alx->dev->mtu;
1093 alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
1094 /* MTU range: 34 - 9256 */
1095 alx->dev->min_mtu = 34;
1096 alx->dev->max_mtu = ALX_MAX_FRAME_LEN(ALX_MAX_FRAME_SIZE);
1097 alx->tx_ringsz = 256;
1098 alx->rx_ringsz = 512;
1099 hw->imt = 200;
1100 alx->int_mask = ALX_ISR_MISC;
1101 hw->dma_chnl = hw->max_dma_chnl;
1102 hw->ith_tpd = alx->tx_ringsz / 3;
1103 hw->link_speed = SPEED_UNKNOWN;
1104 hw->duplex = DUPLEX_UNKNOWN;
1105 hw->adv_cfg = ADVERTISED_Autoneg |
1106 ADVERTISED_10baseT_Half |
1107 ADVERTISED_10baseT_Full |
1108 ADVERTISED_100baseT_Full |
1109 ADVERTISED_100baseT_Half |
1110 ADVERTISED_1000baseT_Full;
1111 hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
1112
1113 hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
1114 ALX_MAC_CTRL_MHASH_ALG_HI5B |
1115 ALX_MAC_CTRL_BRD_EN |
1116 ALX_MAC_CTRL_PCRCE |
1117 ALX_MAC_CTRL_CRCE |
1118 ALX_MAC_CTRL_RXFC_EN |
1119 ALX_MAC_CTRL_TXFC_EN |
1120 7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
1121
1122 return err;
1123 }
1124
1125
1126 static netdev_features_t alx_fix_features(struct net_device *netdev,
1127 netdev_features_t features)
1128 {
1129 if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
1130 features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1131
1132 return features;
1133 }
1134
1135 static void alx_netif_stop(struct alx_priv *alx)
1136 {
1137 int i;
1138
1139 netif_trans_update(alx->dev);
1140 if (netif_carrier_ok(alx->dev)) {
1141 netif_carrier_off(alx->dev);
1142 netif_tx_disable(alx->dev);
1143 for (i = 0; i < alx->num_napi; i++)
1144 napi_disable(&alx->qnapi[i]->napi);
1145 }
1146 }
1147
1148 static void alx_halt(struct alx_priv *alx)
1149 {
1150 struct alx_hw *hw = &alx->hw;
1151
1152 alx_netif_stop(alx);
1153 hw->link_speed = SPEED_UNKNOWN;
1154 hw->duplex = DUPLEX_UNKNOWN;
1155
1156 alx_reset_mac(hw);
1157
1158 /* disable l0s/l1 */
1159 alx_enable_aspm(hw, false, false);
1160 alx_irq_disable(alx);
1161 alx_free_buffers(alx);
1162 }
1163
1164 static void alx_configure(struct alx_priv *alx)
1165 {
1166 struct alx_hw *hw = &alx->hw;
1167
1168 alx_configure_basic(hw);
1169 alx_disable_rss(hw);
1170 __alx_set_rx_mode(alx->dev);
1171
1172 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
1173 }
1174
1175 static void alx_activate(struct alx_priv *alx)
1176 {
1177 /* hardware setting lost, restore it */
1178 alx_reinit_rings(alx);
1179 alx_configure(alx);
1180
1181 /* clear old interrupts */
1182 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1183
1184 alx_irq_enable(alx);
1185
1186 alx_schedule_link_check(alx);
1187 }
1188
1189 static void alx_reinit(struct alx_priv *alx)
1190 {
1191 ASSERT_RTNL();
1192
1193 alx_halt(alx);
1194 alx_activate(alx);
1195 }
1196
1197 static int alx_change_mtu(struct net_device *netdev, int mtu)
1198 {
1199 struct alx_priv *alx = netdev_priv(netdev);
1200 int max_frame = ALX_MAX_FRAME_LEN(mtu);
1201
1202 netdev->mtu = mtu;
1203 alx->hw.mtu = mtu;
1204 alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
1205 netdev_update_features(netdev);
1206 if (netif_running(netdev))
1207 alx_reinit(alx);
1208 return 0;
1209 }
1210
1211 static void alx_netif_start(struct alx_priv *alx)
1212 {
1213 int i;
1214
1215 netif_tx_wake_all_queues(alx->dev);
1216 for (i = 0; i < alx->num_napi; i++)
1217 napi_enable(&alx->qnapi[i]->napi);
1218 netif_carrier_on(alx->dev);
1219 }
1220
1221 static int __alx_open(struct alx_priv *alx, bool resume)
1222 {
1223 int err;
1224
1225 alx_init_intr(alx, true);
1226
1227 if (!resume)
1228 netif_carrier_off(alx->dev);
1229
1230 err = alx_alloc_napis(alx);
1231 if (err)
1232 goto out_disable_adv_intr;
1233
1234 err = alx_alloc_rings(alx);
1235 if (err)
1236 goto out_free_rings;
1237
1238 alx_configure(alx);
1239
1240 err = alx_request_irq(alx);
1241 if (err)
1242 goto out_free_rings;
1243
1244 netif_set_real_num_tx_queues(alx->dev, alx->num_txq);
1245 netif_set_real_num_rx_queues(alx->dev, alx->num_rxq);
1246
1247 /* clear old interrupts */
1248 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1249
1250 alx_irq_enable(alx);
1251
1252 if (!resume)
1253 netif_tx_start_all_queues(alx->dev);
1254
1255 alx_schedule_link_check(alx);
1256 return 0;
1257
1258 out_free_rings:
1259 alx_free_rings(alx);
1260 alx_free_napis(alx);
1261 out_disable_adv_intr:
1262 alx_disable_advanced_intr(alx);
1263 return err;
1264 }
1265
1266 static void __alx_stop(struct alx_priv *alx)
1267 {
1268 alx_halt(alx);
1269 alx_free_irq(alx);
1270 alx_free_rings(alx);
1271 alx_free_napis(alx);
1272 }
1273
1274 static const char *alx_speed_desc(struct alx_hw *hw)
1275 {
1276 switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
1277 case ADVERTISED_1000baseT_Full:
1278 return "1 Gbps Full";
1279 case ADVERTISED_100baseT_Full:
1280 return "100 Mbps Full";
1281 case ADVERTISED_100baseT_Half:
1282 return "100 Mbps Half";
1283 case ADVERTISED_10baseT_Full:
1284 return "10 Mbps Full";
1285 case ADVERTISED_10baseT_Half:
1286 return "10 Mbps Half";
1287 default:
1288 return "Unknown speed";
1289 }
1290 }
1291
1292 static void alx_check_link(struct alx_priv *alx)
1293 {
1294 struct alx_hw *hw = &alx->hw;
1295 unsigned long flags;
1296 int old_speed;
1297 u8 old_duplex;
1298 int err;
1299
1300 /* clear PHY internal interrupt status, otherwise the main
1301 * interrupt status will be asserted forever
1302 */
1303 alx_clear_phy_intr(hw);
1304
1305 old_speed = hw->link_speed;
1306 old_duplex = hw->duplex;
1307 err = alx_read_phy_link(hw);
1308 if (err < 0)
1309 goto reset;
1310
1311 spin_lock_irqsave(&alx->irq_lock, flags);
1312 alx->int_mask |= ALX_ISR_PHY;
1313 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
1314 spin_unlock_irqrestore(&alx->irq_lock, flags);
1315
1316 if (old_speed == hw->link_speed)
1317 return;
1318
1319 if (hw->link_speed != SPEED_UNKNOWN) {
1320 netif_info(alx, link, alx->dev,
1321 "NIC Up: %s\n", alx_speed_desc(hw));
1322 alx_post_phy_link(hw);
1323 alx_enable_aspm(hw, true, true);
1324 alx_start_mac(hw);
1325
1326 if (old_speed == SPEED_UNKNOWN)
1327 alx_netif_start(alx);
1328 } else {
1329 /* link is now down */
1330 alx_netif_stop(alx);
1331 netif_info(alx, link, alx->dev, "Link Down\n");
1332 err = alx_reset_mac(hw);
1333 if (err)
1334 goto reset;
1335 alx_irq_disable(alx);
1336
1337 /* MAC reset causes all HW settings to be lost, restore all */
1338 err = alx_reinit_rings(alx);
1339 if (err)
1340 goto reset;
1341 alx_configure(alx);
1342 alx_enable_aspm(hw, false, true);
1343 alx_post_phy_link(hw);
1344 alx_irq_enable(alx);
1345 }
1346
1347 return;
1348
1349 reset:
1350 alx_schedule_reset(alx);
1351 }
1352
1353 static int alx_open(struct net_device *netdev)
1354 {
1355 return __alx_open(netdev_priv(netdev), false);
1356 }
1357
1358 static int alx_stop(struct net_device *netdev)
1359 {
1360 __alx_stop(netdev_priv(netdev));
1361 return 0;
1362 }
1363
1364 static void alx_link_check(struct work_struct *work)
1365 {
1366 struct alx_priv *alx;
1367
1368 alx = container_of(work, struct alx_priv, link_check_wk);
1369
1370 rtnl_lock();
1371 alx_check_link(alx);
1372 rtnl_unlock();
1373 }
1374
1375 static void alx_reset(struct work_struct *work)
1376 {
1377 struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
1378
1379 rtnl_lock();
1380 alx_reinit(alx);
1381 rtnl_unlock();
1382 }
1383
1384 static int alx_tpd_req(struct sk_buff *skb)
1385 {
1386 int num;
1387
1388 num = skb_shinfo(skb)->nr_frags + 1;
1389 /* we need one extra descriptor for LSOv2 */
1390 if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
1391 num++;
1392
1393 return num;
1394 }
1395
1396 static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
1397 {
1398 u8 cso, css;
1399
1400 if (skb->ip_summed != CHECKSUM_PARTIAL)
1401 return 0;
1402
1403 cso = skb_checksum_start_offset(skb);
1404 if (cso & 1)
1405 return -EINVAL;
1406
1407 css = cso + skb->csum_offset;
1408 first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
1409 first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
1410 first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
1411
1412 return 0;
1413 }
1414
1415 static int alx_tso(struct sk_buff *skb, struct alx_txd *first)
1416 {
1417 int err;
1418
1419 if (skb->ip_summed != CHECKSUM_PARTIAL)
1420 return 0;
1421
1422 if (!skb_is_gso(skb))
1423 return 0;
1424
1425 err = skb_cow_head(skb, 0);
1426 if (err < 0)
1427 return err;
1428
1429 if (skb->protocol == htons(ETH_P_IP)) {
1430 struct iphdr *iph = ip_hdr(skb);
1431
1432 iph->check = 0;
1433 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1434 0, IPPROTO_TCP, 0);
1435 first->word1 |= 1 << TPD_IPV4_SHIFT;
1436 } else if (skb_is_gso_v6(skb)) {
1437 ipv6_hdr(skb)->payload_len = 0;
1438 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1439 &ipv6_hdr(skb)->daddr,
1440 0, IPPROTO_TCP, 0);
1441 /* LSOv2: the first TPD only provides the packet length */
1442 first->adrl.l.pkt_len = skb->len;
1443 first->word1 |= 1 << TPD_LSO_V2_SHIFT;
1444 }
1445
1446 first->word1 |= 1 << TPD_LSO_EN_SHIFT;
1447 first->word1 |= (skb_transport_offset(skb) &
1448 TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT;
1449 first->word1 |= (skb_shinfo(skb)->gso_size &
1450 TPD_MSS_MASK) << TPD_MSS_SHIFT;
1451 return 1;
1452 }
1453
1454 static int alx_map_tx_skb(struct alx_tx_queue *txq, struct sk_buff *skb)
1455 {
1456 struct alx_txd *tpd, *first_tpd;
1457 dma_addr_t dma;
1458 int maplen, f, first_idx = txq->write_idx;
1459
1460 first_tpd = &txq->tpd[txq->write_idx];
1461 tpd = first_tpd;
1462
1463 if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) {
1464 if (++txq->write_idx == txq->count)
1465 txq->write_idx = 0;
1466
1467 tpd = &txq->tpd[txq->write_idx];
1468 tpd->len = first_tpd->len;
1469 tpd->vlan_tag = first_tpd->vlan_tag;
1470 tpd->word1 = first_tpd->word1;
1471 }
1472
1473 maplen = skb_headlen(skb);
1474 dma = dma_map_single(txq->dev, skb->data, maplen,
1475 DMA_TO_DEVICE);
1476 if (dma_mapping_error(txq->dev, dma))
1477 goto err_dma;
1478
1479 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1480 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1481
1482 tpd->adrl.addr = cpu_to_le64(dma);
1483 tpd->len = cpu_to_le16(maplen);
1484
1485 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1486 struct skb_frag_struct *frag;
1487
1488 frag = &skb_shinfo(skb)->frags[f];
1489
1490 if (++txq->write_idx == txq->count)
1491 txq->write_idx = 0;
1492 tpd = &txq->tpd[txq->write_idx];
1493
1494 tpd->word1 = first_tpd->word1;
1495
1496 maplen = skb_frag_size(frag);
1497 dma = skb_frag_dma_map(txq->dev, frag, 0,
1498 maplen, DMA_TO_DEVICE);
1499 if (dma_mapping_error(txq->dev, dma))
1500 goto err_dma;
1501 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1502 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1503
1504 tpd->adrl.addr = cpu_to_le64(dma);
1505 tpd->len = cpu_to_le16(maplen);
1506 }
1507
1508 /* last TPD, set EOP flag and store skb */
1509 tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1510 txq->bufs[txq->write_idx].skb = skb;
1511
1512 if (++txq->write_idx == txq->count)
1513 txq->write_idx = 0;
1514
1515 return 0;
1516
1517 err_dma:
1518 f = first_idx;
1519 while (f != txq->write_idx) {
1520 alx_free_txbuf(txq, f);
1521 if (++f == txq->count)
1522 f = 0;
1523 }
1524 return -ENOMEM;
1525 }
1526
1527 static netdev_tx_t alx_start_xmit_ring(struct sk_buff *skb,
1528 struct alx_tx_queue *txq)
1529 {
1530 struct alx_priv *alx;
1531 struct alx_txd *first;
1532 int tso;
1533
1534 alx = netdev_priv(txq->netdev);
1535
1536 if (alx_tpd_avail(txq) < alx_tpd_req(skb)) {
1537 netif_tx_stop_queue(alx_get_tx_queue(txq));
1538 goto drop;
1539 }
1540
1541 first = &txq->tpd[txq->write_idx];
1542 memset(first, 0, sizeof(*first));
1543
1544 tso = alx_tso(skb, first);
1545 if (tso < 0)
1546 goto drop;
1547 else if (!tso && alx_tx_csum(skb, first))
1548 goto drop;
1549
1550 if (alx_map_tx_skb(txq, skb) < 0)
1551 goto drop;
1552
1553 netdev_tx_sent_queue(alx_get_tx_queue(txq), skb->len);
1554
1555 /* flush updates before updating hardware */
1556 wmb();
1557 alx_write_mem16(&alx->hw, txq->p_reg, txq->write_idx);
1558
1559 if (alx_tpd_avail(txq) < txq->count / 8)
1560 netif_tx_stop_queue(alx_get_tx_queue(txq));
1561
1562 return NETDEV_TX_OK;
1563
1564 drop:
1565 dev_kfree_skb_any(skb);
1566 return NETDEV_TX_OK;
1567 }
1568
1569 static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1570 struct net_device *netdev)
1571 {
1572 struct alx_priv *alx = netdev_priv(netdev);
1573 return alx_start_xmit_ring(skb, alx_tx_queue_mapping(alx, skb));
1574 }
1575
1576 static void alx_tx_timeout(struct net_device *dev)
1577 {
1578 struct alx_priv *alx = netdev_priv(dev);
1579
1580 alx_schedule_reset(alx);
1581 }
1582
1583 static int alx_mdio_read(struct net_device *netdev,
1584 int prtad, int devad, u16 addr)
1585 {
1586 struct alx_priv *alx = netdev_priv(netdev);
1587 struct alx_hw *hw = &alx->hw;
1588 u16 val;
1589 int err;
1590
1591 if (prtad != hw->mdio.prtad)
1592 return -EINVAL;
1593
1594 if (devad == MDIO_DEVAD_NONE)
1595 err = alx_read_phy_reg(hw, addr, &val);
1596 else
1597 err = alx_read_phy_ext(hw, devad, addr, &val);
1598
1599 if (err)
1600 return err;
1601 return val;
1602 }
1603
1604 static int alx_mdio_write(struct net_device *netdev,
1605 int prtad, int devad, u16 addr, u16 val)
1606 {
1607 struct alx_priv *alx = netdev_priv(netdev);
1608 struct alx_hw *hw = &alx->hw;
1609
1610 if (prtad != hw->mdio.prtad)
1611 return -EINVAL;
1612
1613 if (devad == MDIO_DEVAD_NONE)
1614 return alx_write_phy_reg(hw, addr, val);
1615
1616 return alx_write_phy_ext(hw, devad, addr, val);
1617 }
1618
1619 static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1620 {
1621 struct alx_priv *alx = netdev_priv(netdev);
1622
1623 if (!netif_running(netdev))
1624 return -EAGAIN;
1625
1626 return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1627 }
1628
1629 #ifdef CONFIG_NET_POLL_CONTROLLER
1630 static void alx_poll_controller(struct net_device *netdev)
1631 {
1632 struct alx_priv *alx = netdev_priv(netdev);
1633 int i;
1634
1635 if (alx->flags & ALX_FLAG_USING_MSIX) {
1636 alx_intr_msix_misc(0, alx);
1637 for (i = 0; i < alx->num_txq; i++)
1638 alx_intr_msix_ring(0, alx->qnapi[i]);
1639 } else if (alx->flags & ALX_FLAG_USING_MSI)
1640 alx_intr_msi(0, alx);
1641 else
1642 alx_intr_legacy(0, alx);
1643 }
1644 #endif
1645
1646 static struct rtnl_link_stats64 *alx_get_stats64(struct net_device *dev,
1647 struct rtnl_link_stats64 *net_stats)
1648 {
1649 struct alx_priv *alx = netdev_priv(dev);
1650 struct alx_hw_stats *hw_stats = &alx->hw.stats;
1651
1652 spin_lock(&alx->stats_lock);
1653
1654 alx_update_hw_stats(&alx->hw);
1655
1656 net_stats->tx_bytes = hw_stats->tx_byte_cnt;
1657 net_stats->rx_bytes = hw_stats->rx_byte_cnt;
1658 net_stats->multicast = hw_stats->rx_mcast;
1659 net_stats->collisions = hw_stats->tx_single_col +
1660 hw_stats->tx_multi_col +
1661 hw_stats->tx_late_col +
1662 hw_stats->tx_abort_col;
1663
1664 net_stats->rx_errors = hw_stats->rx_frag +
1665 hw_stats->rx_fcs_err +
1666 hw_stats->rx_len_err +
1667 hw_stats->rx_ov_sz +
1668 hw_stats->rx_ov_rrd +
1669 hw_stats->rx_align_err +
1670 hw_stats->rx_ov_rxf;
1671
1672 net_stats->rx_fifo_errors = hw_stats->rx_ov_rxf;
1673 net_stats->rx_length_errors = hw_stats->rx_len_err;
1674 net_stats->rx_crc_errors = hw_stats->rx_fcs_err;
1675 net_stats->rx_frame_errors = hw_stats->rx_align_err;
1676 net_stats->rx_dropped = hw_stats->rx_ov_rrd;
1677
1678 net_stats->tx_errors = hw_stats->tx_late_col +
1679 hw_stats->tx_abort_col +
1680 hw_stats->tx_underrun +
1681 hw_stats->tx_trunc;
1682
1683 net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1684 net_stats->tx_fifo_errors = hw_stats->tx_underrun;
1685 net_stats->tx_window_errors = hw_stats->tx_late_col;
1686
1687 net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1688 net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1689
1690 spin_unlock(&alx->stats_lock);
1691
1692 return net_stats;
1693 }
1694
1695 static const struct net_device_ops alx_netdev_ops = {
1696 .ndo_open = alx_open,
1697 .ndo_stop = alx_stop,
1698 .ndo_start_xmit = alx_start_xmit,
1699 .ndo_get_stats64 = alx_get_stats64,
1700 .ndo_set_rx_mode = alx_set_rx_mode,
1701 .ndo_validate_addr = eth_validate_addr,
1702 .ndo_set_mac_address = alx_set_mac_address,
1703 .ndo_change_mtu = alx_change_mtu,
1704 .ndo_do_ioctl = alx_ioctl,
1705 .ndo_tx_timeout = alx_tx_timeout,
1706 .ndo_fix_features = alx_fix_features,
1707 #ifdef CONFIG_NET_POLL_CONTROLLER
1708 .ndo_poll_controller = alx_poll_controller,
1709 #endif
1710 };
1711
1712 static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1713 {
1714 struct net_device *netdev;
1715 struct alx_priv *alx;
1716 struct alx_hw *hw;
1717 bool phy_configured;
1718 int err;
1719
1720 err = pci_enable_device_mem(pdev);
1721 if (err)
1722 return err;
1723
1724 /* The alx chip can DMA to 64-bit addresses, but it uses a single
1725 * shared register for the high 32 bits, so only a single, aligned,
1726 * 4 GB physical address range can be used for descriptors.
1727 */
1728 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1729 dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1730 } else {
1731 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1732 if (err) {
1733 dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1734 goto out_pci_disable;
1735 }
1736 }
1737
1738 err = pci_request_mem_regions(pdev, alx_drv_name);
1739 if (err) {
1740 dev_err(&pdev->dev,
1741 "pci_request_mem_regions failed\n");
1742 goto out_pci_disable;
1743 }
1744
1745 pci_enable_pcie_error_reporting(pdev);
1746 pci_set_master(pdev);
1747
1748 if (!pdev->pm_cap) {
1749 dev_err(&pdev->dev,
1750 "Can't find power management capability, aborting\n");
1751 err = -EIO;
1752 goto out_pci_release;
1753 }
1754
1755 netdev = alloc_etherdev_mqs(sizeof(*alx),
1756 ALX_MAX_TX_QUEUES, 1);
1757 if (!netdev) {
1758 err = -ENOMEM;
1759 goto out_pci_release;
1760 }
1761
1762 SET_NETDEV_DEV(netdev, &pdev->dev);
1763 alx = netdev_priv(netdev);
1764 spin_lock_init(&alx->hw.mdio_lock);
1765 spin_lock_init(&alx->irq_lock);
1766 spin_lock_init(&alx->stats_lock);
1767 alx->dev = netdev;
1768 alx->hw.pdev = pdev;
1769 alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1770 NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1771 hw = &alx->hw;
1772 pci_set_drvdata(pdev, alx);
1773
1774 hw->hw_addr = pci_ioremap_bar(pdev, 0);
1775 if (!hw->hw_addr) {
1776 dev_err(&pdev->dev, "cannot map device registers\n");
1777 err = -EIO;
1778 goto out_free_netdev;
1779 }
1780
1781 netdev->netdev_ops = &alx_netdev_ops;
1782 netdev->ethtool_ops = &alx_ethtool_ops;
1783 netdev->irq = pdev->irq;
1784 netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1785
1786 if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1787 pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1788
1789 err = alx_init_sw(alx);
1790 if (err) {
1791 dev_err(&pdev->dev, "net device private data init failed\n");
1792 goto out_unmap;
1793 }
1794
1795 alx_reset_pcie(hw);
1796
1797 phy_configured = alx_phy_configured(hw);
1798
1799 if (!phy_configured)
1800 alx_reset_phy(hw);
1801
1802 err = alx_reset_mac(hw);
1803 if (err) {
1804 dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1805 goto out_unmap;
1806 }
1807
1808 /* setup link to put it in a known good starting state */
1809 if (!phy_configured) {
1810 err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1811 if (err) {
1812 dev_err(&pdev->dev,
1813 "failed to configure PHY speed/duplex (err=%d)\n",
1814 err);
1815 goto out_unmap;
1816 }
1817 }
1818
1819 netdev->hw_features = NETIF_F_SG |
1820 NETIF_F_HW_CSUM |
1821 NETIF_F_TSO |
1822 NETIF_F_TSO6;
1823
1824 if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1825 dev_warn(&pdev->dev,
1826 "Invalid permanent address programmed, using random one\n");
1827 eth_hw_addr_random(netdev);
1828 memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1829 }
1830
1831 memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1832 memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1833 memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1834
1835 hw->mdio.prtad = 0;
1836 hw->mdio.mmds = 0;
1837 hw->mdio.dev = netdev;
1838 hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1839 MDIO_SUPPORTS_C22 |
1840 MDIO_EMULATE_C22;
1841 hw->mdio.mdio_read = alx_mdio_read;
1842 hw->mdio.mdio_write = alx_mdio_write;
1843
1844 if (!alx_get_phy_info(hw)) {
1845 dev_err(&pdev->dev, "failed to identify PHY\n");
1846 err = -EIO;
1847 goto out_unmap;
1848 }
1849
1850 INIT_WORK(&alx->link_check_wk, alx_link_check);
1851 INIT_WORK(&alx->reset_wk, alx_reset);
1852 netif_carrier_off(netdev);
1853
1854 err = register_netdev(netdev);
1855 if (err) {
1856 dev_err(&pdev->dev, "register netdevice failed\n");
1857 goto out_unmap;
1858 }
1859
1860 netdev_info(netdev,
1861 "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1862 netdev->dev_addr);
1863
1864 return 0;
1865
1866 out_unmap:
1867 iounmap(hw->hw_addr);
1868 out_free_netdev:
1869 free_netdev(netdev);
1870 out_pci_release:
1871 pci_release_mem_regions(pdev);
1872 out_pci_disable:
1873 pci_disable_device(pdev);
1874 return err;
1875 }
1876
1877 static void alx_remove(struct pci_dev *pdev)
1878 {
1879 struct alx_priv *alx = pci_get_drvdata(pdev);
1880 struct alx_hw *hw = &alx->hw;
1881
1882 cancel_work_sync(&alx->link_check_wk);
1883 cancel_work_sync(&alx->reset_wk);
1884
1885 /* restore permanent mac address */
1886 alx_set_macaddr(hw, hw->perm_addr);
1887
1888 unregister_netdev(alx->dev);
1889 iounmap(hw->hw_addr);
1890 pci_release_mem_regions(pdev);
1891
1892 pci_disable_pcie_error_reporting(pdev);
1893 pci_disable_device(pdev);
1894
1895 free_netdev(alx->dev);
1896 }
1897
1898 #ifdef CONFIG_PM_SLEEP
1899 static int alx_suspend(struct device *dev)
1900 {
1901 struct pci_dev *pdev = to_pci_dev(dev);
1902 struct alx_priv *alx = pci_get_drvdata(pdev);
1903
1904 if (!netif_running(alx->dev))
1905 return 0;
1906 netif_device_detach(alx->dev);
1907 __alx_stop(alx);
1908 return 0;
1909 }
1910
1911 static int alx_resume(struct device *dev)
1912 {
1913 struct pci_dev *pdev = to_pci_dev(dev);
1914 struct alx_priv *alx = pci_get_drvdata(pdev);
1915 struct alx_hw *hw = &alx->hw;
1916
1917 alx_reset_phy(hw);
1918
1919 if (!netif_running(alx->dev))
1920 return 0;
1921 netif_device_attach(alx->dev);
1922 return __alx_open(alx, true);
1923 }
1924
1925 static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1926 #define ALX_PM_OPS (&alx_pm_ops)
1927 #else
1928 #define ALX_PM_OPS NULL
1929 #endif
1930
1931
1932 static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1933 pci_channel_state_t state)
1934 {
1935 struct alx_priv *alx = pci_get_drvdata(pdev);
1936 struct net_device *netdev = alx->dev;
1937 pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1938
1939 dev_info(&pdev->dev, "pci error detected\n");
1940
1941 rtnl_lock();
1942
1943 if (netif_running(netdev)) {
1944 netif_device_detach(netdev);
1945 alx_halt(alx);
1946 }
1947
1948 if (state == pci_channel_io_perm_failure)
1949 rc = PCI_ERS_RESULT_DISCONNECT;
1950 else
1951 pci_disable_device(pdev);
1952
1953 rtnl_unlock();
1954
1955 return rc;
1956 }
1957
1958 static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1959 {
1960 struct alx_priv *alx = pci_get_drvdata(pdev);
1961 struct alx_hw *hw = &alx->hw;
1962 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1963
1964 dev_info(&pdev->dev, "pci error slot reset\n");
1965
1966 rtnl_lock();
1967
1968 if (pci_enable_device(pdev)) {
1969 dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1970 goto out;
1971 }
1972
1973 pci_set_master(pdev);
1974
1975 alx_reset_pcie(hw);
1976 if (!alx_reset_mac(hw))
1977 rc = PCI_ERS_RESULT_RECOVERED;
1978 out:
1979 pci_cleanup_aer_uncorrect_error_status(pdev);
1980
1981 rtnl_unlock();
1982
1983 return rc;
1984 }
1985
1986 static void alx_pci_error_resume(struct pci_dev *pdev)
1987 {
1988 struct alx_priv *alx = pci_get_drvdata(pdev);
1989 struct net_device *netdev = alx->dev;
1990
1991 dev_info(&pdev->dev, "pci error resume\n");
1992
1993 rtnl_lock();
1994
1995 if (netif_running(netdev)) {
1996 alx_activate(alx);
1997 netif_device_attach(netdev);
1998 }
1999
2000 rtnl_unlock();
2001 }
2002
2003 static const struct pci_error_handlers alx_err_handlers = {
2004 .error_detected = alx_pci_error_detected,
2005 .slot_reset = alx_pci_error_slot_reset,
2006 .resume = alx_pci_error_resume,
2007 };
2008
2009 static const struct pci_device_id alx_pci_tbl[] = {
2010 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
2011 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2012 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
2013 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2014 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
2015 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2016 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500),
2017 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2018 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
2019 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2020 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
2021 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
2022 {}
2023 };
2024
2025 static struct pci_driver alx_driver = {
2026 .name = alx_drv_name,
2027 .id_table = alx_pci_tbl,
2028 .probe = alx_probe,
2029 .remove = alx_remove,
2030 .err_handler = &alx_err_handlers,
2031 .driver.pm = ALX_PM_OPS,
2032 };
2033
2034 module_pci_driver(alx_driver);
2035 MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
2036 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
2037 MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
2038 MODULE_DESCRIPTION(
2039 "Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
2040 MODULE_LICENSE("GPL");