]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/intel/e1000e/netdev.c
UBUNTU: SAUCE: Revert "e1000e: Additional PHY power saving in S0ix"
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
28 #include <linux/suspend.h>
29
30 #include "e1000.h"
31
32 char e1000e_driver_name[] = "e1000e";
33
34 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
35 static int debug = -1;
36 module_param(debug, int, 0);
37 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38
39 static const struct e1000_info *e1000_info_tbl[] = {
40 [board_82571] = &e1000_82571_info,
41 [board_82572] = &e1000_82572_info,
42 [board_82573] = &e1000_82573_info,
43 [board_82574] = &e1000_82574_info,
44 [board_82583] = &e1000_82583_info,
45 [board_80003es2lan] = &e1000_es2_info,
46 [board_ich8lan] = &e1000_ich8_info,
47 [board_ich9lan] = &e1000_ich9_info,
48 [board_ich10lan] = &e1000_ich10_info,
49 [board_pchlan] = &e1000_pch_info,
50 [board_pch2lan] = &e1000_pch2_info,
51 [board_pch_lpt] = &e1000_pch_lpt_info,
52 [board_pch_spt] = &e1000_pch_spt_info,
53 [board_pch_cnp] = &e1000_pch_cnp_info,
54 [board_pch_tgp] = &e1000_pch_tgp_info,
55 };
56
57 struct e1000_reg_info {
58 u32 ofs;
59 char *name;
60 };
61
62 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
63 /* General Registers */
64 {E1000_CTRL, "CTRL"},
65 {E1000_STATUS, "STATUS"},
66 {E1000_CTRL_EXT, "CTRL_EXT"},
67
68 /* Interrupt Registers */
69 {E1000_ICR, "ICR"},
70
71 /* Rx Registers */
72 {E1000_RCTL, "RCTL"},
73 {E1000_RDLEN(0), "RDLEN"},
74 {E1000_RDH(0), "RDH"},
75 {E1000_RDT(0), "RDT"},
76 {E1000_RDTR, "RDTR"},
77 {E1000_RXDCTL(0), "RXDCTL"},
78 {E1000_ERT, "ERT"},
79 {E1000_RDBAL(0), "RDBAL"},
80 {E1000_RDBAH(0), "RDBAH"},
81 {E1000_RDFH, "RDFH"},
82 {E1000_RDFT, "RDFT"},
83 {E1000_RDFHS, "RDFHS"},
84 {E1000_RDFTS, "RDFTS"},
85 {E1000_RDFPC, "RDFPC"},
86
87 /* Tx Registers */
88 {E1000_TCTL, "TCTL"},
89 {E1000_TDBAL(0), "TDBAL"},
90 {E1000_TDBAH(0), "TDBAH"},
91 {E1000_TDLEN(0), "TDLEN"},
92 {E1000_TDH(0), "TDH"},
93 {E1000_TDT(0), "TDT"},
94 {E1000_TIDV, "TIDV"},
95 {E1000_TXDCTL(0), "TXDCTL"},
96 {E1000_TADV, "TADV"},
97 {E1000_TARC(0), "TARC"},
98 {E1000_TDFH, "TDFH"},
99 {E1000_TDFT, "TDFT"},
100 {E1000_TDFHS, "TDFHS"},
101 {E1000_TDFTS, "TDFTS"},
102 {E1000_TDFPC, "TDFPC"},
103
104 /* List Terminator */
105 {0, NULL}
106 };
107
108 /**
109 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
110 * @hw: pointer to the HW structure
111 *
112 * When updating the MAC CSR registers, the Manageability Engine (ME) could
113 * be accessing the registers at the same time. Normally, this is handled in
114 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
115 * accesses later than it should which could result in the register to have
116 * an incorrect value. Workaround this by checking the FWSM register which
117 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
118 * and try again a number of times.
119 **/
120 static void __ew32_prepare(struct e1000_hw *hw)
121 {
122 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
123
124 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
125 udelay(50);
126 }
127
128 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
129 {
130 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
131 __ew32_prepare(hw);
132
133 writel(val, hw->hw_addr + reg);
134 }
135
136 /**
137 * e1000_regdump - register printout routine
138 * @hw: pointer to the HW structure
139 * @reginfo: pointer to the register info table
140 **/
141 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
142 {
143 int n = 0;
144 char rname[16];
145 u32 regs[8];
146
147 switch (reginfo->ofs) {
148 case E1000_RXDCTL(0):
149 for (n = 0; n < 2; n++)
150 regs[n] = __er32(hw, E1000_RXDCTL(n));
151 break;
152 case E1000_TXDCTL(0):
153 for (n = 0; n < 2; n++)
154 regs[n] = __er32(hw, E1000_TXDCTL(n));
155 break;
156 case E1000_TARC(0):
157 for (n = 0; n < 2; n++)
158 regs[n] = __er32(hw, E1000_TARC(n));
159 break;
160 default:
161 pr_info("%-15s %08x\n",
162 reginfo->name, __er32(hw, reginfo->ofs));
163 return;
164 }
165
166 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
167 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
168 }
169
170 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
171 struct e1000_buffer *bi)
172 {
173 int i;
174 struct e1000_ps_page *ps_page;
175
176 for (i = 0; i < adapter->rx_ps_pages; i++) {
177 ps_page = &bi->ps_pages[i];
178
179 if (ps_page->page) {
180 pr_info("packet dump for ps_page %d:\n", i);
181 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
182 16, 1, page_address(ps_page->page),
183 PAGE_SIZE, true);
184 }
185 }
186 }
187
188 /**
189 * e1000e_dump - Print registers, Tx-ring and Rx-ring
190 * @adapter: board private structure
191 **/
192 static void e1000e_dump(struct e1000_adapter *adapter)
193 {
194 struct net_device *netdev = adapter->netdev;
195 struct e1000_hw *hw = &adapter->hw;
196 struct e1000_reg_info *reginfo;
197 struct e1000_ring *tx_ring = adapter->tx_ring;
198 struct e1000_tx_desc *tx_desc;
199 struct my_u0 {
200 __le64 a;
201 __le64 b;
202 } *u0;
203 struct e1000_buffer *buffer_info;
204 struct e1000_ring *rx_ring = adapter->rx_ring;
205 union e1000_rx_desc_packet_split *rx_desc_ps;
206 union e1000_rx_desc_extended *rx_desc;
207 struct my_u1 {
208 __le64 a;
209 __le64 b;
210 __le64 c;
211 __le64 d;
212 } *u1;
213 u32 staterr;
214 int i = 0;
215
216 if (!netif_msg_hw(adapter))
217 return;
218
219 /* Print netdevice Info */
220 if (netdev) {
221 dev_info(&adapter->pdev->dev, "Net device Info\n");
222 pr_info("Device Name state trans_start\n");
223 pr_info("%-15s %016lX %016lX\n", netdev->name,
224 netdev->state, dev_trans_start(netdev));
225 }
226
227 /* Print Registers */
228 dev_info(&adapter->pdev->dev, "Register Dump\n");
229 pr_info(" Register Name Value\n");
230 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
231 reginfo->name; reginfo++) {
232 e1000_regdump(hw, reginfo);
233 }
234
235 /* Print Tx Ring Summary */
236 if (!netdev || !netif_running(netdev))
237 return;
238
239 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
240 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
241 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
242 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
243 0, tx_ring->next_to_use, tx_ring->next_to_clean,
244 (unsigned long long)buffer_info->dma,
245 buffer_info->length,
246 buffer_info->next_to_watch,
247 (unsigned long long)buffer_info->time_stamp);
248
249 /* Print Tx Ring */
250 if (!netif_msg_tx_done(adapter))
251 goto rx_ring_summary;
252
253 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
254
255 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
256 *
257 * Legacy Transmit Descriptor
258 * +--------------------------------------------------------------+
259 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
260 * +--------------------------------------------------------------+
261 * 8 | Special | CSS | Status | CMD | CSO | Length |
262 * +--------------------------------------------------------------+
263 * 63 48 47 36 35 32 31 24 23 16 15 0
264 *
265 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
266 * 63 48 47 40 39 32 31 16 15 8 7 0
267 * +----------------------------------------------------------------+
268 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
269 * +----------------------------------------------------------------+
270 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
271 * +----------------------------------------------------------------+
272 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
273 *
274 * Extended Data Descriptor (DTYP=0x1)
275 * +----------------------------------------------------------------+
276 * 0 | Buffer Address [63:0] |
277 * +----------------------------------------------------------------+
278 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
279 * +----------------------------------------------------------------+
280 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
281 */
282 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
283 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
284 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
285 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
286 const char *next_desc;
287 tx_desc = E1000_TX_DESC(*tx_ring, i);
288 buffer_info = &tx_ring->buffer_info[i];
289 u0 = (struct my_u0 *)tx_desc;
290 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
291 next_desc = " NTC/U";
292 else if (i == tx_ring->next_to_use)
293 next_desc = " NTU";
294 else if (i == tx_ring->next_to_clean)
295 next_desc = " NTC";
296 else
297 next_desc = "";
298 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
299 (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
300 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
301 i,
302 (unsigned long long)le64_to_cpu(u0->a),
303 (unsigned long long)le64_to_cpu(u0->b),
304 (unsigned long long)buffer_info->dma,
305 buffer_info->length, buffer_info->next_to_watch,
306 (unsigned long long)buffer_info->time_stamp,
307 buffer_info->skb, next_desc);
308
309 if (netif_msg_pktdata(adapter) && buffer_info->skb)
310 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
311 16, 1, buffer_info->skb->data,
312 buffer_info->skb->len, true);
313 }
314
315 /* Print Rx Ring Summary */
316 rx_ring_summary:
317 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
318 pr_info("Queue [NTU] [NTC]\n");
319 pr_info(" %5d %5X %5X\n",
320 0, rx_ring->next_to_use, rx_ring->next_to_clean);
321
322 /* Print Rx Ring */
323 if (!netif_msg_rx_status(adapter))
324 return;
325
326 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
327 switch (adapter->rx_ps_pages) {
328 case 1:
329 case 2:
330 case 3:
331 /* [Extended] Packet Split Receive Descriptor Format
332 *
333 * +-----------------------------------------------------+
334 * 0 | Buffer Address 0 [63:0] |
335 * +-----------------------------------------------------+
336 * 8 | Buffer Address 1 [63:0] |
337 * +-----------------------------------------------------+
338 * 16 | Buffer Address 2 [63:0] |
339 * +-----------------------------------------------------+
340 * 24 | Buffer Address 3 [63:0] |
341 * +-----------------------------------------------------+
342 */
343 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
344 /* [Extended] Receive Descriptor (Write-Back) Format
345 *
346 * 63 48 47 32 31 13 12 8 7 4 3 0
347 * +------------------------------------------------------+
348 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
349 * | Checksum | Ident | | Queue | | Type |
350 * +------------------------------------------------------+
351 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
352 * +------------------------------------------------------+
353 * 63 48 47 32 31 20 19 0
354 */
355 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
356 for (i = 0; i < rx_ring->count; i++) {
357 const char *next_desc;
358 buffer_info = &rx_ring->buffer_info[i];
359 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
360 u1 = (struct my_u1 *)rx_desc_ps;
361 staterr =
362 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
363
364 if (i == rx_ring->next_to_use)
365 next_desc = " NTU";
366 else if (i == rx_ring->next_to_clean)
367 next_desc = " NTC";
368 else
369 next_desc = "";
370
371 if (staterr & E1000_RXD_STAT_DD) {
372 /* Descriptor Done */
373 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
374 "RWB", i,
375 (unsigned long long)le64_to_cpu(u1->a),
376 (unsigned long long)le64_to_cpu(u1->b),
377 (unsigned long long)le64_to_cpu(u1->c),
378 (unsigned long long)le64_to_cpu(u1->d),
379 buffer_info->skb, next_desc);
380 } else {
381 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
382 "R ", i,
383 (unsigned long long)le64_to_cpu(u1->a),
384 (unsigned long long)le64_to_cpu(u1->b),
385 (unsigned long long)le64_to_cpu(u1->c),
386 (unsigned long long)le64_to_cpu(u1->d),
387 (unsigned long long)buffer_info->dma,
388 buffer_info->skb, next_desc);
389
390 if (netif_msg_pktdata(adapter))
391 e1000e_dump_ps_pages(adapter,
392 buffer_info);
393 }
394 }
395 break;
396 default:
397 case 0:
398 /* Extended Receive Descriptor (Read) Format
399 *
400 * +-----------------------------------------------------+
401 * 0 | Buffer Address [63:0] |
402 * +-----------------------------------------------------+
403 * 8 | Reserved |
404 * +-----------------------------------------------------+
405 */
406 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
407 /* Extended Receive Descriptor (Write-Back) Format
408 *
409 * 63 48 47 32 31 24 23 4 3 0
410 * +------------------------------------------------------+
411 * | RSS Hash | | | |
412 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
413 * | Packet | IP | | | Type |
414 * | Checksum | Ident | | | |
415 * +------------------------------------------------------+
416 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
417 * +------------------------------------------------------+
418 * 63 48 47 32 31 20 19 0
419 */
420 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
421
422 for (i = 0; i < rx_ring->count; i++) {
423 const char *next_desc;
424
425 buffer_info = &rx_ring->buffer_info[i];
426 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
427 u1 = (struct my_u1 *)rx_desc;
428 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
429
430 if (i == rx_ring->next_to_use)
431 next_desc = " NTU";
432 else if (i == rx_ring->next_to_clean)
433 next_desc = " NTC";
434 else
435 next_desc = "";
436
437 if (staterr & E1000_RXD_STAT_DD) {
438 /* Descriptor Done */
439 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
440 "RWB", i,
441 (unsigned long long)le64_to_cpu(u1->a),
442 (unsigned long long)le64_to_cpu(u1->b),
443 buffer_info->skb, next_desc);
444 } else {
445 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
446 "R ", i,
447 (unsigned long long)le64_to_cpu(u1->a),
448 (unsigned long long)le64_to_cpu(u1->b),
449 (unsigned long long)buffer_info->dma,
450 buffer_info->skb, next_desc);
451
452 if (netif_msg_pktdata(adapter) &&
453 buffer_info->skb)
454 print_hex_dump(KERN_INFO, "",
455 DUMP_PREFIX_ADDRESS, 16,
456 1,
457 buffer_info->skb->data,
458 adapter->rx_buffer_len,
459 true);
460 }
461 }
462 }
463 }
464
465 /**
466 * e1000_desc_unused - calculate if we have unused descriptors
467 * @ring: pointer to ring struct to perform calculation on
468 **/
469 static int e1000_desc_unused(struct e1000_ring *ring)
470 {
471 if (ring->next_to_clean > ring->next_to_use)
472 return ring->next_to_clean - ring->next_to_use - 1;
473
474 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
475 }
476
477 /**
478 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
479 * @adapter: board private structure
480 * @hwtstamps: time stamp structure to update
481 * @systim: unsigned 64bit system time value.
482 *
483 * Convert the system time value stored in the RX/TXSTMP registers into a
484 * hwtstamp which can be used by the upper level time stamping functions.
485 *
486 * The 'systim_lock' spinlock is used to protect the consistency of the
487 * system time value. This is needed because reading the 64 bit time
488 * value involves reading two 32 bit registers. The first read latches the
489 * value.
490 **/
491 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
492 struct skb_shared_hwtstamps *hwtstamps,
493 u64 systim)
494 {
495 u64 ns;
496 unsigned long flags;
497
498 spin_lock_irqsave(&adapter->systim_lock, flags);
499 ns = timecounter_cyc2time(&adapter->tc, systim);
500 spin_unlock_irqrestore(&adapter->systim_lock, flags);
501
502 memset(hwtstamps, 0, sizeof(*hwtstamps));
503 hwtstamps->hwtstamp = ns_to_ktime(ns);
504 }
505
506 /**
507 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
508 * @adapter: board private structure
509 * @status: descriptor extended error and status field
510 * @skb: particular skb to include time stamp
511 *
512 * If the time stamp is valid, convert it into the timecounter ns value
513 * and store that result into the shhwtstamps structure which is passed
514 * up the network stack.
515 **/
516 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
517 struct sk_buff *skb)
518 {
519 struct e1000_hw *hw = &adapter->hw;
520 u64 rxstmp;
521
522 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
523 !(status & E1000_RXDEXT_STATERR_TST) ||
524 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
525 return;
526
527 /* The Rx time stamp registers contain the time stamp. No other
528 * received packet will be time stamped until the Rx time stamp
529 * registers are read. Because only one packet can be time stamped
530 * at a time, the register values must belong to this packet and
531 * therefore none of the other additional attributes need to be
532 * compared.
533 */
534 rxstmp = (u64)er32(RXSTMPL);
535 rxstmp |= (u64)er32(RXSTMPH) << 32;
536 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
537
538 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
539 }
540
541 /**
542 * e1000_receive_skb - helper function to handle Rx indications
543 * @adapter: board private structure
544 * @netdev: pointer to netdev struct
545 * @staterr: descriptor extended error and status field as written by hardware
546 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
547 * @skb: pointer to sk_buff to be indicated to stack
548 **/
549 static void e1000_receive_skb(struct e1000_adapter *adapter,
550 struct net_device *netdev, struct sk_buff *skb,
551 u32 staterr, __le16 vlan)
552 {
553 u16 tag = le16_to_cpu(vlan);
554
555 e1000e_rx_hwtstamp(adapter, staterr, skb);
556
557 skb->protocol = eth_type_trans(skb, netdev);
558
559 if (staterr & E1000_RXD_STAT_VP)
560 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
561
562 napi_gro_receive(&adapter->napi, skb);
563 }
564
565 /**
566 * e1000_rx_checksum - Receive Checksum Offload
567 * @adapter: board private structure
568 * @status_err: receive descriptor status and error fields
569 * @skb: socket buffer with received data
570 **/
571 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
572 struct sk_buff *skb)
573 {
574 u16 status = (u16)status_err;
575 u8 errors = (u8)(status_err >> 24);
576
577 skb_checksum_none_assert(skb);
578
579 /* Rx checksum disabled */
580 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
581 return;
582
583 /* Ignore Checksum bit is set */
584 if (status & E1000_RXD_STAT_IXSM)
585 return;
586
587 /* TCP/UDP checksum error bit or IP checksum error bit is set */
588 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
589 /* let the stack verify checksum errors */
590 adapter->hw_csum_err++;
591 return;
592 }
593
594 /* TCP/UDP Checksum has not been calculated */
595 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
596 return;
597
598 /* It must be a TCP or UDP packet with a valid checksum */
599 skb->ip_summed = CHECKSUM_UNNECESSARY;
600 adapter->hw_csum_good++;
601 }
602
603 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
604 {
605 struct e1000_adapter *adapter = rx_ring->adapter;
606 struct e1000_hw *hw = &adapter->hw;
607
608 __ew32_prepare(hw);
609 writel(i, rx_ring->tail);
610
611 if (unlikely(i != readl(rx_ring->tail))) {
612 u32 rctl = er32(RCTL);
613
614 ew32(RCTL, rctl & ~E1000_RCTL_EN);
615 e_err("ME firmware caused invalid RDT - resetting\n");
616 schedule_work(&adapter->reset_task);
617 }
618 }
619
620 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
621 {
622 struct e1000_adapter *adapter = tx_ring->adapter;
623 struct e1000_hw *hw = &adapter->hw;
624
625 __ew32_prepare(hw);
626 writel(i, tx_ring->tail);
627
628 if (unlikely(i != readl(tx_ring->tail))) {
629 u32 tctl = er32(TCTL);
630
631 ew32(TCTL, tctl & ~E1000_TCTL_EN);
632 e_err("ME firmware caused invalid TDT - resetting\n");
633 schedule_work(&adapter->reset_task);
634 }
635 }
636
637 /**
638 * e1000_alloc_rx_buffers - Replace used receive buffers
639 * @rx_ring: Rx descriptor ring
640 * @cleaned_count: number to reallocate
641 * @gfp: flags for allocation
642 **/
643 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
644 int cleaned_count, gfp_t gfp)
645 {
646 struct e1000_adapter *adapter = rx_ring->adapter;
647 struct net_device *netdev = adapter->netdev;
648 struct pci_dev *pdev = adapter->pdev;
649 union e1000_rx_desc_extended *rx_desc;
650 struct e1000_buffer *buffer_info;
651 struct sk_buff *skb;
652 unsigned int i;
653 unsigned int bufsz = adapter->rx_buffer_len;
654
655 i = rx_ring->next_to_use;
656 buffer_info = &rx_ring->buffer_info[i];
657
658 while (cleaned_count--) {
659 skb = buffer_info->skb;
660 if (skb) {
661 skb_trim(skb, 0);
662 goto map_skb;
663 }
664
665 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
666 if (!skb) {
667 /* Better luck next round */
668 adapter->alloc_rx_buff_failed++;
669 break;
670 }
671
672 buffer_info->skb = skb;
673 map_skb:
674 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
675 adapter->rx_buffer_len,
676 DMA_FROM_DEVICE);
677 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
678 dev_err(&pdev->dev, "Rx DMA map failed\n");
679 adapter->rx_dma_failed++;
680 break;
681 }
682
683 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
684 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
685
686 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
687 /* Force memory writes to complete before letting h/w
688 * know there are new descriptors to fetch. (Only
689 * applicable for weak-ordered memory model archs,
690 * such as IA-64).
691 */
692 wmb();
693 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
694 e1000e_update_rdt_wa(rx_ring, i);
695 else
696 writel(i, rx_ring->tail);
697 }
698 i++;
699 if (i == rx_ring->count)
700 i = 0;
701 buffer_info = &rx_ring->buffer_info[i];
702 }
703
704 rx_ring->next_to_use = i;
705 }
706
707 /**
708 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
709 * @rx_ring: Rx descriptor ring
710 * @cleaned_count: number to reallocate
711 * @gfp: flags for allocation
712 **/
713 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
714 int cleaned_count, gfp_t gfp)
715 {
716 struct e1000_adapter *adapter = rx_ring->adapter;
717 struct net_device *netdev = adapter->netdev;
718 struct pci_dev *pdev = adapter->pdev;
719 union e1000_rx_desc_packet_split *rx_desc;
720 struct e1000_buffer *buffer_info;
721 struct e1000_ps_page *ps_page;
722 struct sk_buff *skb;
723 unsigned int i, j;
724
725 i = rx_ring->next_to_use;
726 buffer_info = &rx_ring->buffer_info[i];
727
728 while (cleaned_count--) {
729 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
730
731 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
732 ps_page = &buffer_info->ps_pages[j];
733 if (j >= adapter->rx_ps_pages) {
734 /* all unused desc entries get hw null ptr */
735 rx_desc->read.buffer_addr[j + 1] =
736 ~cpu_to_le64(0);
737 continue;
738 }
739 if (!ps_page->page) {
740 ps_page->page = alloc_page(gfp);
741 if (!ps_page->page) {
742 adapter->alloc_rx_buff_failed++;
743 goto no_buffers;
744 }
745 ps_page->dma = dma_map_page(&pdev->dev,
746 ps_page->page,
747 0, PAGE_SIZE,
748 DMA_FROM_DEVICE);
749 if (dma_mapping_error(&pdev->dev,
750 ps_page->dma)) {
751 dev_err(&adapter->pdev->dev,
752 "Rx DMA page map failed\n");
753 adapter->rx_dma_failed++;
754 goto no_buffers;
755 }
756 }
757 /* Refresh the desc even if buffer_addrs
758 * didn't change because each write-back
759 * erases this info.
760 */
761 rx_desc->read.buffer_addr[j + 1] =
762 cpu_to_le64(ps_page->dma);
763 }
764
765 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
766 gfp);
767
768 if (!skb) {
769 adapter->alloc_rx_buff_failed++;
770 break;
771 }
772
773 buffer_info->skb = skb;
774 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
775 adapter->rx_ps_bsize0,
776 DMA_FROM_DEVICE);
777 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
778 dev_err(&pdev->dev, "Rx DMA map failed\n");
779 adapter->rx_dma_failed++;
780 /* cleanup skb */
781 dev_kfree_skb_any(skb);
782 buffer_info->skb = NULL;
783 break;
784 }
785
786 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
787
788 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
789 /* Force memory writes to complete before letting h/w
790 * know there are new descriptors to fetch. (Only
791 * applicable for weak-ordered memory model archs,
792 * such as IA-64).
793 */
794 wmb();
795 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
796 e1000e_update_rdt_wa(rx_ring, i << 1);
797 else
798 writel(i << 1, rx_ring->tail);
799 }
800
801 i++;
802 if (i == rx_ring->count)
803 i = 0;
804 buffer_info = &rx_ring->buffer_info[i];
805 }
806
807 no_buffers:
808 rx_ring->next_to_use = i;
809 }
810
811 /**
812 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
813 * @rx_ring: Rx descriptor ring
814 * @cleaned_count: number of buffers to allocate this pass
815 * @gfp: flags for allocation
816 **/
817
818 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
819 int cleaned_count, gfp_t gfp)
820 {
821 struct e1000_adapter *adapter = rx_ring->adapter;
822 struct net_device *netdev = adapter->netdev;
823 struct pci_dev *pdev = adapter->pdev;
824 union e1000_rx_desc_extended *rx_desc;
825 struct e1000_buffer *buffer_info;
826 struct sk_buff *skb;
827 unsigned int i;
828 unsigned int bufsz = 256 - 16; /* for skb_reserve */
829
830 i = rx_ring->next_to_use;
831 buffer_info = &rx_ring->buffer_info[i];
832
833 while (cleaned_count--) {
834 skb = buffer_info->skb;
835 if (skb) {
836 skb_trim(skb, 0);
837 goto check_page;
838 }
839
840 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
841 if (unlikely(!skb)) {
842 /* Better luck next round */
843 adapter->alloc_rx_buff_failed++;
844 break;
845 }
846
847 buffer_info->skb = skb;
848 check_page:
849 /* allocate a new page if necessary */
850 if (!buffer_info->page) {
851 buffer_info->page = alloc_page(gfp);
852 if (unlikely(!buffer_info->page)) {
853 adapter->alloc_rx_buff_failed++;
854 break;
855 }
856 }
857
858 if (!buffer_info->dma) {
859 buffer_info->dma = dma_map_page(&pdev->dev,
860 buffer_info->page, 0,
861 PAGE_SIZE,
862 DMA_FROM_DEVICE);
863 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
864 adapter->alloc_rx_buff_failed++;
865 break;
866 }
867 }
868
869 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
870 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
871
872 if (unlikely(++i == rx_ring->count))
873 i = 0;
874 buffer_info = &rx_ring->buffer_info[i];
875 }
876
877 if (likely(rx_ring->next_to_use != i)) {
878 rx_ring->next_to_use = i;
879 if (unlikely(i-- == 0))
880 i = (rx_ring->count - 1);
881
882 /* Force memory writes to complete before letting h/w
883 * know there are new descriptors to fetch. (Only
884 * applicable for weak-ordered memory model archs,
885 * such as IA-64).
886 */
887 wmb();
888 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
889 e1000e_update_rdt_wa(rx_ring, i);
890 else
891 writel(i, rx_ring->tail);
892 }
893 }
894
895 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
896 struct sk_buff *skb)
897 {
898 if (netdev->features & NETIF_F_RXHASH)
899 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
900 }
901
902 /**
903 * e1000_clean_rx_irq - Send received data up the network stack
904 * @rx_ring: Rx descriptor ring
905 * @work_done: output parameter for indicating completed work
906 * @work_to_do: how many packets we can clean
907 *
908 * the return value indicates whether actual cleaning was done, there
909 * is no guarantee that everything was cleaned
910 **/
911 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
912 int work_to_do)
913 {
914 struct e1000_adapter *adapter = rx_ring->adapter;
915 struct net_device *netdev = adapter->netdev;
916 struct pci_dev *pdev = adapter->pdev;
917 struct e1000_hw *hw = &adapter->hw;
918 union e1000_rx_desc_extended *rx_desc, *next_rxd;
919 struct e1000_buffer *buffer_info, *next_buffer;
920 u32 length, staterr;
921 unsigned int i;
922 int cleaned_count = 0;
923 bool cleaned = false;
924 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
925
926 i = rx_ring->next_to_clean;
927 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
928 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
929 buffer_info = &rx_ring->buffer_info[i];
930
931 while (staterr & E1000_RXD_STAT_DD) {
932 struct sk_buff *skb;
933
934 if (*work_done >= work_to_do)
935 break;
936 (*work_done)++;
937 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
938
939 skb = buffer_info->skb;
940 buffer_info->skb = NULL;
941
942 prefetch(skb->data - NET_IP_ALIGN);
943
944 i++;
945 if (i == rx_ring->count)
946 i = 0;
947 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
948 prefetch(next_rxd);
949
950 next_buffer = &rx_ring->buffer_info[i];
951
952 cleaned = true;
953 cleaned_count++;
954 dma_unmap_single(&pdev->dev, buffer_info->dma,
955 adapter->rx_buffer_len, DMA_FROM_DEVICE);
956 buffer_info->dma = 0;
957
958 length = le16_to_cpu(rx_desc->wb.upper.length);
959
960 /* !EOP means multiple descriptors were used to store a single
961 * packet, if that's the case we need to toss it. In fact, we
962 * need to toss every packet with the EOP bit clear and the
963 * next frame that _does_ have the EOP bit set, as it is by
964 * definition only a frame fragment
965 */
966 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
967 adapter->flags2 |= FLAG2_IS_DISCARDING;
968
969 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
970 /* All receives must fit into a single buffer */
971 e_dbg("Receive packet consumed multiple buffers\n");
972 /* recycle */
973 buffer_info->skb = skb;
974 if (staterr & E1000_RXD_STAT_EOP)
975 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
976 goto next_desc;
977 }
978
979 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
980 !(netdev->features & NETIF_F_RXALL))) {
981 /* recycle */
982 buffer_info->skb = skb;
983 goto next_desc;
984 }
985
986 /* adjust length to remove Ethernet CRC */
987 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
988 /* If configured to store CRC, don't subtract FCS,
989 * but keep the FCS bytes out of the total_rx_bytes
990 * counter
991 */
992 if (netdev->features & NETIF_F_RXFCS)
993 total_rx_bytes -= 4;
994 else
995 length -= 4;
996 }
997
998 total_rx_bytes += length;
999 total_rx_packets++;
1000
1001 /* code added for copybreak, this should improve
1002 * performance for small packets with large amounts
1003 * of reassembly being done in the stack
1004 */
1005 if (length < copybreak) {
1006 struct sk_buff *new_skb =
1007 napi_alloc_skb(&adapter->napi, length);
1008 if (new_skb) {
1009 skb_copy_to_linear_data_offset(new_skb,
1010 -NET_IP_ALIGN,
1011 (skb->data -
1012 NET_IP_ALIGN),
1013 (length +
1014 NET_IP_ALIGN));
1015 /* save the skb in buffer_info as good */
1016 buffer_info->skb = skb;
1017 skb = new_skb;
1018 }
1019 /* else just continue with the old one */
1020 }
1021 /* end copybreak code */
1022 skb_put(skb, length);
1023
1024 /* Receive Checksum Offload */
1025 e1000_rx_checksum(adapter, staterr, skb);
1026
1027 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1028
1029 e1000_receive_skb(adapter, netdev, skb, staterr,
1030 rx_desc->wb.upper.vlan);
1031
1032 next_desc:
1033 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1034
1035 /* return some buffers to hardware, one at a time is too slow */
1036 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1037 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1038 GFP_ATOMIC);
1039 cleaned_count = 0;
1040 }
1041
1042 /* use prefetched values */
1043 rx_desc = next_rxd;
1044 buffer_info = next_buffer;
1045
1046 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1047 }
1048 rx_ring->next_to_clean = i;
1049
1050 cleaned_count = e1000_desc_unused(rx_ring);
1051 if (cleaned_count)
1052 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1053
1054 adapter->total_rx_bytes += total_rx_bytes;
1055 adapter->total_rx_packets += total_rx_packets;
1056 return cleaned;
1057 }
1058
1059 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1060 struct e1000_buffer *buffer_info,
1061 bool drop)
1062 {
1063 struct e1000_adapter *adapter = tx_ring->adapter;
1064
1065 if (buffer_info->dma) {
1066 if (buffer_info->mapped_as_page)
1067 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1068 buffer_info->length, DMA_TO_DEVICE);
1069 else
1070 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1071 buffer_info->length, DMA_TO_DEVICE);
1072 buffer_info->dma = 0;
1073 }
1074 if (buffer_info->skb) {
1075 if (drop)
1076 dev_kfree_skb_any(buffer_info->skb);
1077 else
1078 dev_consume_skb_any(buffer_info->skb);
1079 buffer_info->skb = NULL;
1080 }
1081 buffer_info->time_stamp = 0;
1082 }
1083
1084 static void e1000_print_hw_hang(struct work_struct *work)
1085 {
1086 struct e1000_adapter *adapter = container_of(work,
1087 struct e1000_adapter,
1088 print_hang_task);
1089 struct net_device *netdev = adapter->netdev;
1090 struct e1000_ring *tx_ring = adapter->tx_ring;
1091 unsigned int i = tx_ring->next_to_clean;
1092 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1093 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1094 struct e1000_hw *hw = &adapter->hw;
1095 u16 phy_status, phy_1000t_status, phy_ext_status;
1096 u16 pci_status;
1097
1098 if (test_bit(__E1000_DOWN, &adapter->state))
1099 return;
1100
1101 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1102 /* May be block on write-back, flush and detect again
1103 * flush pending descriptor writebacks to memory
1104 */
1105 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1106 /* execute the writes immediately */
1107 e1e_flush();
1108 /* Due to rare timing issues, write to TIDV again to ensure
1109 * the write is successful
1110 */
1111 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1112 /* execute the writes immediately */
1113 e1e_flush();
1114 adapter->tx_hang_recheck = true;
1115 return;
1116 }
1117 adapter->tx_hang_recheck = false;
1118
1119 if (er32(TDH(0)) == er32(TDT(0))) {
1120 e_dbg("false hang detected, ignoring\n");
1121 return;
1122 }
1123
1124 /* Real hang detected */
1125 netif_stop_queue(netdev);
1126
1127 e1e_rphy(hw, MII_BMSR, &phy_status);
1128 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1129 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1130
1131 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1132
1133 /* detected Hardware unit hang */
1134 e_err("Detected Hardware Unit Hang:\n"
1135 " TDH <%x>\n"
1136 " TDT <%x>\n"
1137 " next_to_use <%x>\n"
1138 " next_to_clean <%x>\n"
1139 "buffer_info[next_to_clean]:\n"
1140 " time_stamp <%lx>\n"
1141 " next_to_watch <%x>\n"
1142 " jiffies <%lx>\n"
1143 " next_to_watch.status <%x>\n"
1144 "MAC Status <%x>\n"
1145 "PHY Status <%x>\n"
1146 "PHY 1000BASE-T Status <%x>\n"
1147 "PHY Extended Status <%x>\n"
1148 "PCI Status <%x>\n",
1149 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1150 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1151 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1152 phy_status, phy_1000t_status, phy_ext_status, pci_status);
1153
1154 e1000e_dump(adapter);
1155
1156 /* Suggest workaround for known h/w issue */
1157 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1158 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1159 }
1160
1161 /**
1162 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1163 * @work: pointer to work struct
1164 *
1165 * This work function polls the TSYNCTXCTL valid bit to determine when a
1166 * timestamp has been taken for the current stored skb. The timestamp must
1167 * be for this skb because only one such packet is allowed in the queue.
1168 */
1169 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1170 {
1171 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1172 tx_hwtstamp_work);
1173 struct e1000_hw *hw = &adapter->hw;
1174
1175 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1176 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1177 struct skb_shared_hwtstamps shhwtstamps;
1178 u64 txstmp;
1179
1180 txstmp = er32(TXSTMPL);
1181 txstmp |= (u64)er32(TXSTMPH) << 32;
1182
1183 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1184
1185 /* Clear the global tx_hwtstamp_skb pointer and force writes
1186 * prior to notifying the stack of a Tx timestamp.
1187 */
1188 adapter->tx_hwtstamp_skb = NULL;
1189 wmb(); /* force write prior to skb_tstamp_tx */
1190
1191 skb_tstamp_tx(skb, &shhwtstamps);
1192 dev_consume_skb_any(skb);
1193 } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1194 + adapter->tx_timeout_factor * HZ)) {
1195 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1196 adapter->tx_hwtstamp_skb = NULL;
1197 adapter->tx_hwtstamp_timeouts++;
1198 e_warn("clearing Tx timestamp hang\n");
1199 } else {
1200 /* reschedule to check later */
1201 schedule_work(&adapter->tx_hwtstamp_work);
1202 }
1203 }
1204
1205 /**
1206 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1207 * @tx_ring: Tx descriptor ring
1208 *
1209 * the return value indicates whether actual cleaning was done, there
1210 * is no guarantee that everything was cleaned
1211 **/
1212 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1213 {
1214 struct e1000_adapter *adapter = tx_ring->adapter;
1215 struct net_device *netdev = adapter->netdev;
1216 struct e1000_hw *hw = &adapter->hw;
1217 struct e1000_tx_desc *tx_desc, *eop_desc;
1218 struct e1000_buffer *buffer_info;
1219 unsigned int i, eop;
1220 unsigned int count = 0;
1221 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1222 unsigned int bytes_compl = 0, pkts_compl = 0;
1223
1224 i = tx_ring->next_to_clean;
1225 eop = tx_ring->buffer_info[i].next_to_watch;
1226 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1227
1228 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1229 (count < tx_ring->count)) {
1230 bool cleaned = false;
1231
1232 dma_rmb(); /* read buffer_info after eop_desc */
1233 for (; !cleaned; count++) {
1234 tx_desc = E1000_TX_DESC(*tx_ring, i);
1235 buffer_info = &tx_ring->buffer_info[i];
1236 cleaned = (i == eop);
1237
1238 if (cleaned) {
1239 total_tx_packets += buffer_info->segs;
1240 total_tx_bytes += buffer_info->bytecount;
1241 if (buffer_info->skb) {
1242 bytes_compl += buffer_info->skb->len;
1243 pkts_compl++;
1244 }
1245 }
1246
1247 e1000_put_txbuf(tx_ring, buffer_info, false);
1248 tx_desc->upper.data = 0;
1249
1250 i++;
1251 if (i == tx_ring->count)
1252 i = 0;
1253 }
1254
1255 if (i == tx_ring->next_to_use)
1256 break;
1257 eop = tx_ring->buffer_info[i].next_to_watch;
1258 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1259 }
1260
1261 tx_ring->next_to_clean = i;
1262
1263 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1264
1265 #define TX_WAKE_THRESHOLD 32
1266 if (count && netif_carrier_ok(netdev) &&
1267 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1268 /* Make sure that anybody stopping the queue after this
1269 * sees the new next_to_clean.
1270 */
1271 smp_mb();
1272
1273 if (netif_queue_stopped(netdev) &&
1274 !(test_bit(__E1000_DOWN, &adapter->state))) {
1275 netif_wake_queue(netdev);
1276 ++adapter->restart_queue;
1277 }
1278 }
1279
1280 if (adapter->detect_tx_hung) {
1281 /* Detect a transmit hang in hardware, this serializes the
1282 * check with the clearing of time_stamp and movement of i
1283 */
1284 adapter->detect_tx_hung = false;
1285 if (tx_ring->buffer_info[i].time_stamp &&
1286 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1287 + (adapter->tx_timeout_factor * HZ)) &&
1288 !(er32(STATUS) & E1000_STATUS_TXOFF))
1289 schedule_work(&adapter->print_hang_task);
1290 else
1291 adapter->tx_hang_recheck = false;
1292 }
1293 adapter->total_tx_bytes += total_tx_bytes;
1294 adapter->total_tx_packets += total_tx_packets;
1295 return count < tx_ring->count;
1296 }
1297
1298 /**
1299 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1300 * @rx_ring: Rx descriptor ring
1301 * @work_done: output parameter for indicating completed work
1302 * @work_to_do: how many packets we can clean
1303 *
1304 * the return value indicates whether actual cleaning was done, there
1305 * is no guarantee that everything was cleaned
1306 **/
1307 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1308 int work_to_do)
1309 {
1310 struct e1000_adapter *adapter = rx_ring->adapter;
1311 struct e1000_hw *hw = &adapter->hw;
1312 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1313 struct net_device *netdev = adapter->netdev;
1314 struct pci_dev *pdev = adapter->pdev;
1315 struct e1000_buffer *buffer_info, *next_buffer;
1316 struct e1000_ps_page *ps_page;
1317 struct sk_buff *skb;
1318 unsigned int i, j;
1319 u32 length, staterr;
1320 int cleaned_count = 0;
1321 bool cleaned = false;
1322 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1323
1324 i = rx_ring->next_to_clean;
1325 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1326 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1327 buffer_info = &rx_ring->buffer_info[i];
1328
1329 while (staterr & E1000_RXD_STAT_DD) {
1330 if (*work_done >= work_to_do)
1331 break;
1332 (*work_done)++;
1333 skb = buffer_info->skb;
1334 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1335
1336 /* in the packet split case this is header only */
1337 prefetch(skb->data - NET_IP_ALIGN);
1338
1339 i++;
1340 if (i == rx_ring->count)
1341 i = 0;
1342 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1343 prefetch(next_rxd);
1344
1345 next_buffer = &rx_ring->buffer_info[i];
1346
1347 cleaned = true;
1348 cleaned_count++;
1349 dma_unmap_single(&pdev->dev, buffer_info->dma,
1350 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1351 buffer_info->dma = 0;
1352
1353 /* see !EOP comment in other Rx routine */
1354 if (!(staterr & E1000_RXD_STAT_EOP))
1355 adapter->flags2 |= FLAG2_IS_DISCARDING;
1356
1357 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1358 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1359 dev_kfree_skb_irq(skb);
1360 if (staterr & E1000_RXD_STAT_EOP)
1361 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1362 goto next_desc;
1363 }
1364
1365 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1366 !(netdev->features & NETIF_F_RXALL))) {
1367 dev_kfree_skb_irq(skb);
1368 goto next_desc;
1369 }
1370
1371 length = le16_to_cpu(rx_desc->wb.middle.length0);
1372
1373 if (!length) {
1374 e_dbg("Last part of the packet spanning multiple descriptors\n");
1375 dev_kfree_skb_irq(skb);
1376 goto next_desc;
1377 }
1378
1379 /* Good Receive */
1380 skb_put(skb, length);
1381
1382 {
1383 /* this looks ugly, but it seems compiler issues make
1384 * it more efficient than reusing j
1385 */
1386 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1387
1388 /* page alloc/put takes too long and effects small
1389 * packet throughput, so unsplit small packets and
1390 * save the alloc/put only valid in softirq (napi)
1391 * context to call kmap_*
1392 */
1393 if (l1 && (l1 <= copybreak) &&
1394 ((length + l1) <= adapter->rx_ps_bsize0)) {
1395 u8 *vaddr;
1396
1397 ps_page = &buffer_info->ps_pages[0];
1398
1399 /* there is no documentation about how to call
1400 * kmap_atomic, so we can't hold the mapping
1401 * very long
1402 */
1403 dma_sync_single_for_cpu(&pdev->dev,
1404 ps_page->dma,
1405 PAGE_SIZE,
1406 DMA_FROM_DEVICE);
1407 vaddr = kmap_atomic(ps_page->page);
1408 memcpy(skb_tail_pointer(skb), vaddr, l1);
1409 kunmap_atomic(vaddr);
1410 dma_sync_single_for_device(&pdev->dev,
1411 ps_page->dma,
1412 PAGE_SIZE,
1413 DMA_FROM_DEVICE);
1414
1415 /* remove the CRC */
1416 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1417 if (!(netdev->features & NETIF_F_RXFCS))
1418 l1 -= 4;
1419 }
1420
1421 skb_put(skb, l1);
1422 goto copydone;
1423 } /* if */
1424 }
1425
1426 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1427 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1428 if (!length)
1429 break;
1430
1431 ps_page = &buffer_info->ps_pages[j];
1432 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1433 DMA_FROM_DEVICE);
1434 ps_page->dma = 0;
1435 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1436 ps_page->page = NULL;
1437 skb->len += length;
1438 skb->data_len += length;
1439 skb->truesize += PAGE_SIZE;
1440 }
1441
1442 /* strip the ethernet crc, problem is we're using pages now so
1443 * this whole operation can get a little cpu intensive
1444 */
1445 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1446 if (!(netdev->features & NETIF_F_RXFCS))
1447 pskb_trim(skb, skb->len - 4);
1448 }
1449
1450 copydone:
1451 total_rx_bytes += skb->len;
1452 total_rx_packets++;
1453
1454 e1000_rx_checksum(adapter, staterr, skb);
1455
1456 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1457
1458 if (rx_desc->wb.upper.header_status &
1459 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1460 adapter->rx_hdr_split++;
1461
1462 e1000_receive_skb(adapter, netdev, skb, staterr,
1463 rx_desc->wb.middle.vlan);
1464
1465 next_desc:
1466 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1467 buffer_info->skb = NULL;
1468
1469 /* return some buffers to hardware, one at a time is too slow */
1470 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1471 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1472 GFP_ATOMIC);
1473 cleaned_count = 0;
1474 }
1475
1476 /* use prefetched values */
1477 rx_desc = next_rxd;
1478 buffer_info = next_buffer;
1479
1480 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1481 }
1482 rx_ring->next_to_clean = i;
1483
1484 cleaned_count = e1000_desc_unused(rx_ring);
1485 if (cleaned_count)
1486 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1487
1488 adapter->total_rx_bytes += total_rx_bytes;
1489 adapter->total_rx_packets += total_rx_packets;
1490 return cleaned;
1491 }
1492
1493 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1494 u16 length)
1495 {
1496 bi->page = NULL;
1497 skb->len += length;
1498 skb->data_len += length;
1499 skb->truesize += PAGE_SIZE;
1500 }
1501
1502 /**
1503 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1504 * @rx_ring: Rx descriptor ring
1505 * @work_done: output parameter for indicating completed work
1506 * @work_to_do: how many packets we can clean
1507 *
1508 * the return value indicates whether actual cleaning was done, there
1509 * is no guarantee that everything was cleaned
1510 **/
1511 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1512 int work_to_do)
1513 {
1514 struct e1000_adapter *adapter = rx_ring->adapter;
1515 struct net_device *netdev = adapter->netdev;
1516 struct pci_dev *pdev = adapter->pdev;
1517 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1518 struct e1000_buffer *buffer_info, *next_buffer;
1519 u32 length, staterr;
1520 unsigned int i;
1521 int cleaned_count = 0;
1522 bool cleaned = false;
1523 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1524 struct skb_shared_info *shinfo;
1525
1526 i = rx_ring->next_to_clean;
1527 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1528 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1529 buffer_info = &rx_ring->buffer_info[i];
1530
1531 while (staterr & E1000_RXD_STAT_DD) {
1532 struct sk_buff *skb;
1533
1534 if (*work_done >= work_to_do)
1535 break;
1536 (*work_done)++;
1537 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1538
1539 skb = buffer_info->skb;
1540 buffer_info->skb = NULL;
1541
1542 ++i;
1543 if (i == rx_ring->count)
1544 i = 0;
1545 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1546 prefetch(next_rxd);
1547
1548 next_buffer = &rx_ring->buffer_info[i];
1549
1550 cleaned = true;
1551 cleaned_count++;
1552 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1553 DMA_FROM_DEVICE);
1554 buffer_info->dma = 0;
1555
1556 length = le16_to_cpu(rx_desc->wb.upper.length);
1557
1558 /* errors is only valid for DD + EOP descriptors */
1559 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1560 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1561 !(netdev->features & NETIF_F_RXALL)))) {
1562 /* recycle both page and skb */
1563 buffer_info->skb = skb;
1564 /* an error means any chain goes out the window too */
1565 if (rx_ring->rx_skb_top)
1566 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1567 rx_ring->rx_skb_top = NULL;
1568 goto next_desc;
1569 }
1570 #define rxtop (rx_ring->rx_skb_top)
1571 if (!(staterr & E1000_RXD_STAT_EOP)) {
1572 /* this descriptor is only the beginning (or middle) */
1573 if (!rxtop) {
1574 /* this is the beginning of a chain */
1575 rxtop = skb;
1576 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1577 0, length);
1578 } else {
1579 /* this is the middle of a chain */
1580 shinfo = skb_shinfo(rxtop);
1581 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1582 buffer_info->page, 0,
1583 length);
1584 /* re-use the skb, only consumed the page */
1585 buffer_info->skb = skb;
1586 }
1587 e1000_consume_page(buffer_info, rxtop, length);
1588 goto next_desc;
1589 } else {
1590 if (rxtop) {
1591 /* end of the chain */
1592 shinfo = skb_shinfo(rxtop);
1593 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1594 buffer_info->page, 0,
1595 length);
1596 /* re-use the current skb, we only consumed the
1597 * page
1598 */
1599 buffer_info->skb = skb;
1600 skb = rxtop;
1601 rxtop = NULL;
1602 e1000_consume_page(buffer_info, skb, length);
1603 } else {
1604 /* no chain, got EOP, this buf is the packet
1605 * copybreak to save the put_page/alloc_page
1606 */
1607 if (length <= copybreak &&
1608 skb_tailroom(skb) >= length) {
1609 u8 *vaddr;
1610 vaddr = kmap_atomic(buffer_info->page);
1611 memcpy(skb_tail_pointer(skb), vaddr,
1612 length);
1613 kunmap_atomic(vaddr);
1614 /* re-use the page, so don't erase
1615 * buffer_info->page
1616 */
1617 skb_put(skb, length);
1618 } else {
1619 skb_fill_page_desc(skb, 0,
1620 buffer_info->page, 0,
1621 length);
1622 e1000_consume_page(buffer_info, skb,
1623 length);
1624 }
1625 }
1626 }
1627
1628 /* Receive Checksum Offload */
1629 e1000_rx_checksum(adapter, staterr, skb);
1630
1631 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1632
1633 /* probably a little skewed due to removing CRC */
1634 total_rx_bytes += skb->len;
1635 total_rx_packets++;
1636
1637 /* eth type trans needs skb->data to point to something */
1638 if (!pskb_may_pull(skb, ETH_HLEN)) {
1639 e_err("pskb_may_pull failed.\n");
1640 dev_kfree_skb_irq(skb);
1641 goto next_desc;
1642 }
1643
1644 e1000_receive_skb(adapter, netdev, skb, staterr,
1645 rx_desc->wb.upper.vlan);
1646
1647 next_desc:
1648 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1649
1650 /* return some buffers to hardware, one at a time is too slow */
1651 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1652 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1653 GFP_ATOMIC);
1654 cleaned_count = 0;
1655 }
1656
1657 /* use prefetched values */
1658 rx_desc = next_rxd;
1659 buffer_info = next_buffer;
1660
1661 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1662 }
1663 rx_ring->next_to_clean = i;
1664
1665 cleaned_count = e1000_desc_unused(rx_ring);
1666 if (cleaned_count)
1667 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1668
1669 adapter->total_rx_bytes += total_rx_bytes;
1670 adapter->total_rx_packets += total_rx_packets;
1671 return cleaned;
1672 }
1673
1674 /**
1675 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1676 * @rx_ring: Rx descriptor ring
1677 **/
1678 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1679 {
1680 struct e1000_adapter *adapter = rx_ring->adapter;
1681 struct e1000_buffer *buffer_info;
1682 struct e1000_ps_page *ps_page;
1683 struct pci_dev *pdev = adapter->pdev;
1684 unsigned int i, j;
1685
1686 /* Free all the Rx ring sk_buffs */
1687 for (i = 0; i < rx_ring->count; i++) {
1688 buffer_info = &rx_ring->buffer_info[i];
1689 if (buffer_info->dma) {
1690 if (adapter->clean_rx == e1000_clean_rx_irq)
1691 dma_unmap_single(&pdev->dev, buffer_info->dma,
1692 adapter->rx_buffer_len,
1693 DMA_FROM_DEVICE);
1694 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1695 dma_unmap_page(&pdev->dev, buffer_info->dma,
1696 PAGE_SIZE, DMA_FROM_DEVICE);
1697 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1698 dma_unmap_single(&pdev->dev, buffer_info->dma,
1699 adapter->rx_ps_bsize0,
1700 DMA_FROM_DEVICE);
1701 buffer_info->dma = 0;
1702 }
1703
1704 if (buffer_info->page) {
1705 put_page(buffer_info->page);
1706 buffer_info->page = NULL;
1707 }
1708
1709 if (buffer_info->skb) {
1710 dev_kfree_skb(buffer_info->skb);
1711 buffer_info->skb = NULL;
1712 }
1713
1714 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1715 ps_page = &buffer_info->ps_pages[j];
1716 if (!ps_page->page)
1717 break;
1718 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1719 DMA_FROM_DEVICE);
1720 ps_page->dma = 0;
1721 put_page(ps_page->page);
1722 ps_page->page = NULL;
1723 }
1724 }
1725
1726 /* there also may be some cached data from a chained receive */
1727 if (rx_ring->rx_skb_top) {
1728 dev_kfree_skb(rx_ring->rx_skb_top);
1729 rx_ring->rx_skb_top = NULL;
1730 }
1731
1732 /* Zero out the descriptor ring */
1733 memset(rx_ring->desc, 0, rx_ring->size);
1734
1735 rx_ring->next_to_clean = 0;
1736 rx_ring->next_to_use = 0;
1737 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1738 }
1739
1740 static void e1000e_downshift_workaround(struct work_struct *work)
1741 {
1742 struct e1000_adapter *adapter = container_of(work,
1743 struct e1000_adapter,
1744 downshift_task);
1745
1746 if (test_bit(__E1000_DOWN, &adapter->state))
1747 return;
1748
1749 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1750 }
1751
1752 /**
1753 * e1000_intr_msi - Interrupt Handler
1754 * @irq: interrupt number
1755 * @data: pointer to a network interface device structure
1756 **/
1757 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1758 {
1759 struct net_device *netdev = data;
1760 struct e1000_adapter *adapter = netdev_priv(netdev);
1761 struct e1000_hw *hw = &adapter->hw;
1762 u32 icr = er32(ICR);
1763
1764 /* read ICR disables interrupts using IAM */
1765 if (icr & E1000_ICR_LSC) {
1766 hw->mac.get_link_status = true;
1767 /* ICH8 workaround-- Call gig speed drop workaround on cable
1768 * disconnect (LSC) before accessing any PHY registers
1769 */
1770 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1771 (!(er32(STATUS) & E1000_STATUS_LU)))
1772 schedule_work(&adapter->downshift_task);
1773
1774 /* 80003ES2LAN workaround-- For packet buffer work-around on
1775 * link down event; disable receives here in the ISR and reset
1776 * adapter in watchdog
1777 */
1778 if (netif_carrier_ok(netdev) &&
1779 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1780 /* disable receives */
1781 u32 rctl = er32(RCTL);
1782
1783 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1784 adapter->flags |= FLAG_RESTART_NOW;
1785 }
1786 /* guard against interrupt when we're going down */
1787 if (!test_bit(__E1000_DOWN, &adapter->state))
1788 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1789 }
1790
1791 /* Reset on uncorrectable ECC error */
1792 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1793 u32 pbeccsts = er32(PBECCSTS);
1794
1795 adapter->corr_errors +=
1796 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1797 adapter->uncorr_errors +=
1798 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1799 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1800
1801 /* Do the reset outside of interrupt context */
1802 schedule_work(&adapter->reset_task);
1803
1804 /* return immediately since reset is imminent */
1805 return IRQ_HANDLED;
1806 }
1807
1808 if (napi_schedule_prep(&adapter->napi)) {
1809 adapter->total_tx_bytes = 0;
1810 adapter->total_tx_packets = 0;
1811 adapter->total_rx_bytes = 0;
1812 adapter->total_rx_packets = 0;
1813 __napi_schedule(&adapter->napi);
1814 }
1815
1816 return IRQ_HANDLED;
1817 }
1818
1819 /**
1820 * e1000_intr - Interrupt Handler
1821 * @irq: interrupt number
1822 * @data: pointer to a network interface device structure
1823 **/
1824 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1825 {
1826 struct net_device *netdev = data;
1827 struct e1000_adapter *adapter = netdev_priv(netdev);
1828 struct e1000_hw *hw = &adapter->hw;
1829 u32 rctl, icr = er32(ICR);
1830
1831 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1832 return IRQ_NONE; /* Not our interrupt */
1833
1834 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1835 * not set, then the adapter didn't send an interrupt
1836 */
1837 if (!(icr & E1000_ICR_INT_ASSERTED))
1838 return IRQ_NONE;
1839
1840 /* Interrupt Auto-Mask...upon reading ICR,
1841 * interrupts are masked. No need for the
1842 * IMC write
1843 */
1844
1845 if (icr & E1000_ICR_LSC) {
1846 hw->mac.get_link_status = true;
1847 /* ICH8 workaround-- Call gig speed drop workaround on cable
1848 * disconnect (LSC) before accessing any PHY registers
1849 */
1850 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1851 (!(er32(STATUS) & E1000_STATUS_LU)))
1852 schedule_work(&adapter->downshift_task);
1853
1854 /* 80003ES2LAN workaround--
1855 * For packet buffer work-around on link down event;
1856 * disable receives here in the ISR and
1857 * reset adapter in watchdog
1858 */
1859 if (netif_carrier_ok(netdev) &&
1860 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1861 /* disable receives */
1862 rctl = er32(RCTL);
1863 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1864 adapter->flags |= FLAG_RESTART_NOW;
1865 }
1866 /* guard against interrupt when we're going down */
1867 if (!test_bit(__E1000_DOWN, &adapter->state))
1868 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1869 }
1870
1871 /* Reset on uncorrectable ECC error */
1872 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1873 u32 pbeccsts = er32(PBECCSTS);
1874
1875 adapter->corr_errors +=
1876 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1877 adapter->uncorr_errors +=
1878 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1879 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1880
1881 /* Do the reset outside of interrupt context */
1882 schedule_work(&adapter->reset_task);
1883
1884 /* return immediately since reset is imminent */
1885 return IRQ_HANDLED;
1886 }
1887
1888 if (napi_schedule_prep(&adapter->napi)) {
1889 adapter->total_tx_bytes = 0;
1890 adapter->total_tx_packets = 0;
1891 adapter->total_rx_bytes = 0;
1892 adapter->total_rx_packets = 0;
1893 __napi_schedule(&adapter->napi);
1894 }
1895
1896 return IRQ_HANDLED;
1897 }
1898
1899 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1900 {
1901 struct net_device *netdev = data;
1902 struct e1000_adapter *adapter = netdev_priv(netdev);
1903 struct e1000_hw *hw = &adapter->hw;
1904 u32 icr = er32(ICR);
1905
1906 if (icr & adapter->eiac_mask)
1907 ew32(ICS, (icr & adapter->eiac_mask));
1908
1909 if (icr & E1000_ICR_LSC) {
1910 hw->mac.get_link_status = true;
1911 /* guard against interrupt when we're going down */
1912 if (!test_bit(__E1000_DOWN, &adapter->state))
1913 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1914 }
1915
1916 if (!test_bit(__E1000_DOWN, &adapter->state))
1917 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1918
1919 return IRQ_HANDLED;
1920 }
1921
1922 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1923 {
1924 struct net_device *netdev = data;
1925 struct e1000_adapter *adapter = netdev_priv(netdev);
1926 struct e1000_hw *hw = &adapter->hw;
1927 struct e1000_ring *tx_ring = adapter->tx_ring;
1928
1929 adapter->total_tx_bytes = 0;
1930 adapter->total_tx_packets = 0;
1931
1932 if (!e1000_clean_tx_irq(tx_ring))
1933 /* Ring was not completely cleaned, so fire another interrupt */
1934 ew32(ICS, tx_ring->ims_val);
1935
1936 if (!test_bit(__E1000_DOWN, &adapter->state))
1937 ew32(IMS, adapter->tx_ring->ims_val);
1938
1939 return IRQ_HANDLED;
1940 }
1941
1942 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1943 {
1944 struct net_device *netdev = data;
1945 struct e1000_adapter *adapter = netdev_priv(netdev);
1946 struct e1000_ring *rx_ring = adapter->rx_ring;
1947
1948 /* Write the ITR value calculated at the end of the
1949 * previous interrupt.
1950 */
1951 if (rx_ring->set_itr) {
1952 u32 itr = rx_ring->itr_val ?
1953 1000000000 / (rx_ring->itr_val * 256) : 0;
1954
1955 writel(itr, rx_ring->itr_register);
1956 rx_ring->set_itr = 0;
1957 }
1958
1959 if (napi_schedule_prep(&adapter->napi)) {
1960 adapter->total_rx_bytes = 0;
1961 adapter->total_rx_packets = 0;
1962 __napi_schedule(&adapter->napi);
1963 }
1964 return IRQ_HANDLED;
1965 }
1966
1967 /**
1968 * e1000_configure_msix - Configure MSI-X hardware
1969 * @adapter: board private structure
1970 *
1971 * e1000_configure_msix sets up the hardware to properly
1972 * generate MSI-X interrupts.
1973 **/
1974 static void e1000_configure_msix(struct e1000_adapter *adapter)
1975 {
1976 struct e1000_hw *hw = &adapter->hw;
1977 struct e1000_ring *rx_ring = adapter->rx_ring;
1978 struct e1000_ring *tx_ring = adapter->tx_ring;
1979 int vector = 0;
1980 u32 ctrl_ext, ivar = 0;
1981
1982 adapter->eiac_mask = 0;
1983
1984 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1985 if (hw->mac.type == e1000_82574) {
1986 u32 rfctl = er32(RFCTL);
1987
1988 rfctl |= E1000_RFCTL_ACK_DIS;
1989 ew32(RFCTL, rfctl);
1990 }
1991
1992 /* Configure Rx vector */
1993 rx_ring->ims_val = E1000_IMS_RXQ0;
1994 adapter->eiac_mask |= rx_ring->ims_val;
1995 if (rx_ring->itr_val)
1996 writel(1000000000 / (rx_ring->itr_val * 256),
1997 rx_ring->itr_register);
1998 else
1999 writel(1, rx_ring->itr_register);
2000 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2001
2002 /* Configure Tx vector */
2003 tx_ring->ims_val = E1000_IMS_TXQ0;
2004 vector++;
2005 if (tx_ring->itr_val)
2006 writel(1000000000 / (tx_ring->itr_val * 256),
2007 tx_ring->itr_register);
2008 else
2009 writel(1, tx_ring->itr_register);
2010 adapter->eiac_mask |= tx_ring->ims_val;
2011 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2012
2013 /* set vector for Other Causes, e.g. link changes */
2014 vector++;
2015 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2016 if (rx_ring->itr_val)
2017 writel(1000000000 / (rx_ring->itr_val * 256),
2018 hw->hw_addr + E1000_EITR_82574(vector));
2019 else
2020 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2021
2022 /* Cause Tx interrupts on every write back */
2023 ivar |= BIT(31);
2024
2025 ew32(IVAR, ivar);
2026
2027 /* enable MSI-X PBA support */
2028 ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2029 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2030 ew32(CTRL_EXT, ctrl_ext);
2031 e1e_flush();
2032 }
2033
2034 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2035 {
2036 if (adapter->msix_entries) {
2037 pci_disable_msix(adapter->pdev);
2038 kfree(adapter->msix_entries);
2039 adapter->msix_entries = NULL;
2040 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2041 pci_disable_msi(adapter->pdev);
2042 adapter->flags &= ~FLAG_MSI_ENABLED;
2043 }
2044 }
2045
2046 /**
2047 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2048 * @adapter: board private structure
2049 *
2050 * Attempt to configure interrupts using the best available
2051 * capabilities of the hardware and kernel.
2052 **/
2053 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2054 {
2055 int err;
2056 int i;
2057
2058 switch (adapter->int_mode) {
2059 case E1000E_INT_MODE_MSIX:
2060 if (adapter->flags & FLAG_HAS_MSIX) {
2061 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2062 adapter->msix_entries = kcalloc(adapter->num_vectors,
2063 sizeof(struct
2064 msix_entry),
2065 GFP_KERNEL);
2066 if (adapter->msix_entries) {
2067 struct e1000_adapter *a = adapter;
2068
2069 for (i = 0; i < adapter->num_vectors; i++)
2070 adapter->msix_entries[i].entry = i;
2071
2072 err = pci_enable_msix_range(a->pdev,
2073 a->msix_entries,
2074 a->num_vectors,
2075 a->num_vectors);
2076 if (err > 0)
2077 return;
2078 }
2079 /* MSI-X failed, so fall through and try MSI */
2080 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2081 e1000e_reset_interrupt_capability(adapter);
2082 }
2083 adapter->int_mode = E1000E_INT_MODE_MSI;
2084 fallthrough;
2085 case E1000E_INT_MODE_MSI:
2086 if (!pci_enable_msi(adapter->pdev)) {
2087 adapter->flags |= FLAG_MSI_ENABLED;
2088 } else {
2089 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2090 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2091 }
2092 fallthrough;
2093 case E1000E_INT_MODE_LEGACY:
2094 /* Don't do anything; this is the system default */
2095 break;
2096 }
2097
2098 /* store the number of vectors being used */
2099 adapter->num_vectors = 1;
2100 }
2101
2102 /**
2103 * e1000_request_msix - Initialize MSI-X interrupts
2104 * @adapter: board private structure
2105 *
2106 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2107 * kernel.
2108 **/
2109 static int e1000_request_msix(struct e1000_adapter *adapter)
2110 {
2111 struct net_device *netdev = adapter->netdev;
2112 int err = 0, vector = 0;
2113
2114 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2115 snprintf(adapter->rx_ring->name,
2116 sizeof(adapter->rx_ring->name) - 1,
2117 "%.14s-rx-0", netdev->name);
2118 else
2119 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2120 err = request_irq(adapter->msix_entries[vector].vector,
2121 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2122 netdev);
2123 if (err)
2124 return err;
2125 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2126 E1000_EITR_82574(vector);
2127 adapter->rx_ring->itr_val = adapter->itr;
2128 vector++;
2129
2130 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2131 snprintf(adapter->tx_ring->name,
2132 sizeof(adapter->tx_ring->name) - 1,
2133 "%.14s-tx-0", netdev->name);
2134 else
2135 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2136 err = request_irq(adapter->msix_entries[vector].vector,
2137 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2138 netdev);
2139 if (err)
2140 return err;
2141 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2142 E1000_EITR_82574(vector);
2143 adapter->tx_ring->itr_val = adapter->itr;
2144 vector++;
2145
2146 err = request_irq(adapter->msix_entries[vector].vector,
2147 e1000_msix_other, 0, netdev->name, netdev);
2148 if (err)
2149 return err;
2150
2151 e1000_configure_msix(adapter);
2152
2153 return 0;
2154 }
2155
2156 /**
2157 * e1000_request_irq - initialize interrupts
2158 * @adapter: board private structure
2159 *
2160 * Attempts to configure interrupts using the best available
2161 * capabilities of the hardware and kernel.
2162 **/
2163 static int e1000_request_irq(struct e1000_adapter *adapter)
2164 {
2165 struct net_device *netdev = adapter->netdev;
2166 int err;
2167
2168 if (adapter->msix_entries) {
2169 err = e1000_request_msix(adapter);
2170 if (!err)
2171 return err;
2172 /* fall back to MSI */
2173 e1000e_reset_interrupt_capability(adapter);
2174 adapter->int_mode = E1000E_INT_MODE_MSI;
2175 e1000e_set_interrupt_capability(adapter);
2176 }
2177 if (adapter->flags & FLAG_MSI_ENABLED) {
2178 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2179 netdev->name, netdev);
2180 if (!err)
2181 return err;
2182
2183 /* fall back to legacy interrupt */
2184 e1000e_reset_interrupt_capability(adapter);
2185 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2186 }
2187
2188 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2189 netdev->name, netdev);
2190 if (err)
2191 e_err("Unable to allocate interrupt, Error: %d\n", err);
2192
2193 return err;
2194 }
2195
2196 static void e1000_free_irq(struct e1000_adapter *adapter)
2197 {
2198 struct net_device *netdev = adapter->netdev;
2199
2200 if (adapter->msix_entries) {
2201 int vector = 0;
2202
2203 free_irq(adapter->msix_entries[vector].vector, netdev);
2204 vector++;
2205
2206 free_irq(adapter->msix_entries[vector].vector, netdev);
2207 vector++;
2208
2209 /* Other Causes interrupt vector */
2210 free_irq(adapter->msix_entries[vector].vector, netdev);
2211 return;
2212 }
2213
2214 free_irq(adapter->pdev->irq, netdev);
2215 }
2216
2217 /**
2218 * e1000_irq_disable - Mask off interrupt generation on the NIC
2219 * @adapter: board private structure
2220 **/
2221 static void e1000_irq_disable(struct e1000_adapter *adapter)
2222 {
2223 struct e1000_hw *hw = &adapter->hw;
2224
2225 ew32(IMC, ~0);
2226 if (adapter->msix_entries)
2227 ew32(EIAC_82574, 0);
2228 e1e_flush();
2229
2230 if (adapter->msix_entries) {
2231 int i;
2232
2233 for (i = 0; i < adapter->num_vectors; i++)
2234 synchronize_irq(adapter->msix_entries[i].vector);
2235 } else {
2236 synchronize_irq(adapter->pdev->irq);
2237 }
2238 }
2239
2240 /**
2241 * e1000_irq_enable - Enable default interrupt generation settings
2242 * @adapter: board private structure
2243 **/
2244 static void e1000_irq_enable(struct e1000_adapter *adapter)
2245 {
2246 struct e1000_hw *hw = &adapter->hw;
2247
2248 if (adapter->msix_entries) {
2249 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2250 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2251 IMS_OTHER_MASK);
2252 } else if (hw->mac.type >= e1000_pch_lpt) {
2253 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2254 } else {
2255 ew32(IMS, IMS_ENABLE_MASK);
2256 }
2257 e1e_flush();
2258 }
2259
2260 /**
2261 * e1000e_get_hw_control - get control of the h/w from f/w
2262 * @adapter: address of board private structure
2263 *
2264 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2265 * For ASF and Pass Through versions of f/w this means that
2266 * the driver is loaded. For AMT version (only with 82573)
2267 * of the f/w this means that the network i/f is open.
2268 **/
2269 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2270 {
2271 struct e1000_hw *hw = &adapter->hw;
2272 u32 ctrl_ext;
2273 u32 swsm;
2274
2275 /* Let firmware know the driver has taken over */
2276 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2277 swsm = er32(SWSM);
2278 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2279 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2280 ctrl_ext = er32(CTRL_EXT);
2281 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2282 }
2283 }
2284
2285 /**
2286 * e1000e_release_hw_control - release control of the h/w to f/w
2287 * @adapter: address of board private structure
2288 *
2289 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2290 * For ASF and Pass Through versions of f/w this means that the
2291 * driver is no longer loaded. For AMT version (only with 82573) i
2292 * of the f/w this means that the network i/f is closed.
2293 *
2294 **/
2295 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2296 {
2297 struct e1000_hw *hw = &adapter->hw;
2298 u32 ctrl_ext;
2299 u32 swsm;
2300
2301 /* Let firmware taken over control of h/w */
2302 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2303 swsm = er32(SWSM);
2304 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2305 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2306 ctrl_ext = er32(CTRL_EXT);
2307 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2308 }
2309 }
2310
2311 /**
2312 * e1000_alloc_ring_dma - allocate memory for a ring structure
2313 * @adapter: board private structure
2314 * @ring: ring struct for which to allocate dma
2315 **/
2316 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2317 struct e1000_ring *ring)
2318 {
2319 struct pci_dev *pdev = adapter->pdev;
2320
2321 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2322 GFP_KERNEL);
2323 if (!ring->desc)
2324 return -ENOMEM;
2325
2326 return 0;
2327 }
2328
2329 /**
2330 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2331 * @tx_ring: Tx descriptor ring
2332 *
2333 * Return 0 on success, negative on failure
2334 **/
2335 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2336 {
2337 struct e1000_adapter *adapter = tx_ring->adapter;
2338 int err = -ENOMEM, size;
2339
2340 size = sizeof(struct e1000_buffer) * tx_ring->count;
2341 tx_ring->buffer_info = vzalloc(size);
2342 if (!tx_ring->buffer_info)
2343 goto err;
2344
2345 /* round up to nearest 4K */
2346 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2347 tx_ring->size = ALIGN(tx_ring->size, 4096);
2348
2349 err = e1000_alloc_ring_dma(adapter, tx_ring);
2350 if (err)
2351 goto err;
2352
2353 tx_ring->next_to_use = 0;
2354 tx_ring->next_to_clean = 0;
2355
2356 return 0;
2357 err:
2358 vfree(tx_ring->buffer_info);
2359 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2360 return err;
2361 }
2362
2363 /**
2364 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2365 * @rx_ring: Rx descriptor ring
2366 *
2367 * Returns 0 on success, negative on failure
2368 **/
2369 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2370 {
2371 struct e1000_adapter *adapter = rx_ring->adapter;
2372 struct e1000_buffer *buffer_info;
2373 int i, size, desc_len, err = -ENOMEM;
2374
2375 size = sizeof(struct e1000_buffer) * rx_ring->count;
2376 rx_ring->buffer_info = vzalloc(size);
2377 if (!rx_ring->buffer_info)
2378 goto err;
2379
2380 for (i = 0; i < rx_ring->count; i++) {
2381 buffer_info = &rx_ring->buffer_info[i];
2382 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2383 sizeof(struct e1000_ps_page),
2384 GFP_KERNEL);
2385 if (!buffer_info->ps_pages)
2386 goto err_pages;
2387 }
2388
2389 desc_len = sizeof(union e1000_rx_desc_packet_split);
2390
2391 /* Round up to nearest 4K */
2392 rx_ring->size = rx_ring->count * desc_len;
2393 rx_ring->size = ALIGN(rx_ring->size, 4096);
2394
2395 err = e1000_alloc_ring_dma(adapter, rx_ring);
2396 if (err)
2397 goto err_pages;
2398
2399 rx_ring->next_to_clean = 0;
2400 rx_ring->next_to_use = 0;
2401 rx_ring->rx_skb_top = NULL;
2402
2403 return 0;
2404
2405 err_pages:
2406 for (i = 0; i < rx_ring->count; i++) {
2407 buffer_info = &rx_ring->buffer_info[i];
2408 kfree(buffer_info->ps_pages);
2409 }
2410 err:
2411 vfree(rx_ring->buffer_info);
2412 e_err("Unable to allocate memory for the receive descriptor ring\n");
2413 return err;
2414 }
2415
2416 /**
2417 * e1000_clean_tx_ring - Free Tx Buffers
2418 * @tx_ring: Tx descriptor ring
2419 **/
2420 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2421 {
2422 struct e1000_adapter *adapter = tx_ring->adapter;
2423 struct e1000_buffer *buffer_info;
2424 unsigned long size;
2425 unsigned int i;
2426
2427 for (i = 0; i < tx_ring->count; i++) {
2428 buffer_info = &tx_ring->buffer_info[i];
2429 e1000_put_txbuf(tx_ring, buffer_info, false);
2430 }
2431
2432 netdev_reset_queue(adapter->netdev);
2433 size = sizeof(struct e1000_buffer) * tx_ring->count;
2434 memset(tx_ring->buffer_info, 0, size);
2435
2436 memset(tx_ring->desc, 0, tx_ring->size);
2437
2438 tx_ring->next_to_use = 0;
2439 tx_ring->next_to_clean = 0;
2440 }
2441
2442 /**
2443 * e1000e_free_tx_resources - Free Tx Resources per Queue
2444 * @tx_ring: Tx descriptor ring
2445 *
2446 * Free all transmit software resources
2447 **/
2448 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2449 {
2450 struct e1000_adapter *adapter = tx_ring->adapter;
2451 struct pci_dev *pdev = adapter->pdev;
2452
2453 e1000_clean_tx_ring(tx_ring);
2454
2455 vfree(tx_ring->buffer_info);
2456 tx_ring->buffer_info = NULL;
2457
2458 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2459 tx_ring->dma);
2460 tx_ring->desc = NULL;
2461 }
2462
2463 /**
2464 * e1000e_free_rx_resources - Free Rx Resources
2465 * @rx_ring: Rx descriptor ring
2466 *
2467 * Free all receive software resources
2468 **/
2469 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2470 {
2471 struct e1000_adapter *adapter = rx_ring->adapter;
2472 struct pci_dev *pdev = adapter->pdev;
2473 int i;
2474
2475 e1000_clean_rx_ring(rx_ring);
2476
2477 for (i = 0; i < rx_ring->count; i++)
2478 kfree(rx_ring->buffer_info[i].ps_pages);
2479
2480 vfree(rx_ring->buffer_info);
2481 rx_ring->buffer_info = NULL;
2482
2483 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2484 rx_ring->dma);
2485 rx_ring->desc = NULL;
2486 }
2487
2488 /**
2489 * e1000_update_itr - update the dynamic ITR value based on statistics
2490 * @itr_setting: current adapter->itr
2491 * @packets: the number of packets during this measurement interval
2492 * @bytes: the number of bytes during this measurement interval
2493 *
2494 * Stores a new ITR value based on packets and byte
2495 * counts during the last interrupt. The advantage of per interrupt
2496 * computation is faster updates and more accurate ITR for the current
2497 * traffic pattern. Constants in this function were computed
2498 * based on theoretical maximum wire speed and thresholds were set based
2499 * on testing data as well as attempting to minimize response time
2500 * while increasing bulk throughput. This functionality is controlled
2501 * by the InterruptThrottleRate module parameter.
2502 **/
2503 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2504 {
2505 unsigned int retval = itr_setting;
2506
2507 if (packets == 0)
2508 return itr_setting;
2509
2510 switch (itr_setting) {
2511 case lowest_latency:
2512 /* handle TSO and jumbo frames */
2513 if (bytes / packets > 8000)
2514 retval = bulk_latency;
2515 else if ((packets < 5) && (bytes > 512))
2516 retval = low_latency;
2517 break;
2518 case low_latency: /* 50 usec aka 20000 ints/s */
2519 if (bytes > 10000) {
2520 /* this if handles the TSO accounting */
2521 if (bytes / packets > 8000)
2522 retval = bulk_latency;
2523 else if ((packets < 10) || ((bytes / packets) > 1200))
2524 retval = bulk_latency;
2525 else if ((packets > 35))
2526 retval = lowest_latency;
2527 } else if (bytes / packets > 2000) {
2528 retval = bulk_latency;
2529 } else if (packets <= 2 && bytes < 512) {
2530 retval = lowest_latency;
2531 }
2532 break;
2533 case bulk_latency: /* 250 usec aka 4000 ints/s */
2534 if (bytes > 25000) {
2535 if (packets > 35)
2536 retval = low_latency;
2537 } else if (bytes < 6000) {
2538 retval = low_latency;
2539 }
2540 break;
2541 }
2542
2543 return retval;
2544 }
2545
2546 static void e1000_set_itr(struct e1000_adapter *adapter)
2547 {
2548 u16 current_itr;
2549 u32 new_itr = adapter->itr;
2550
2551 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2552 if (adapter->link_speed != SPEED_1000) {
2553 current_itr = 0;
2554 new_itr = 4000;
2555 goto set_itr_now;
2556 }
2557
2558 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2559 new_itr = 0;
2560 goto set_itr_now;
2561 }
2562
2563 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2564 adapter->total_tx_packets,
2565 adapter->total_tx_bytes);
2566 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2567 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2568 adapter->tx_itr = low_latency;
2569
2570 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2571 adapter->total_rx_packets,
2572 adapter->total_rx_bytes);
2573 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2574 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2575 adapter->rx_itr = low_latency;
2576
2577 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2578
2579 /* counts and packets in update_itr are dependent on these numbers */
2580 switch (current_itr) {
2581 case lowest_latency:
2582 new_itr = 70000;
2583 break;
2584 case low_latency:
2585 new_itr = 20000; /* aka hwitr = ~200 */
2586 break;
2587 case bulk_latency:
2588 new_itr = 4000;
2589 break;
2590 default:
2591 break;
2592 }
2593
2594 set_itr_now:
2595 if (new_itr != adapter->itr) {
2596 /* this attempts to bias the interrupt rate towards Bulk
2597 * by adding intermediate steps when interrupt rate is
2598 * increasing
2599 */
2600 new_itr = new_itr > adapter->itr ?
2601 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2602 adapter->itr = new_itr;
2603 adapter->rx_ring->itr_val = new_itr;
2604 if (adapter->msix_entries)
2605 adapter->rx_ring->set_itr = 1;
2606 else
2607 e1000e_write_itr(adapter, new_itr);
2608 }
2609 }
2610
2611 /**
2612 * e1000e_write_itr - write the ITR value to the appropriate registers
2613 * @adapter: address of board private structure
2614 * @itr: new ITR value to program
2615 *
2616 * e1000e_write_itr determines if the adapter is in MSI-X mode
2617 * and, if so, writes the EITR registers with the ITR value.
2618 * Otherwise, it writes the ITR value into the ITR register.
2619 **/
2620 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2621 {
2622 struct e1000_hw *hw = &adapter->hw;
2623 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2624
2625 if (adapter->msix_entries) {
2626 int vector;
2627
2628 for (vector = 0; vector < adapter->num_vectors; vector++)
2629 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2630 } else {
2631 ew32(ITR, new_itr);
2632 }
2633 }
2634
2635 /**
2636 * e1000_alloc_queues - Allocate memory for all rings
2637 * @adapter: board private structure to initialize
2638 **/
2639 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2640 {
2641 int size = sizeof(struct e1000_ring);
2642
2643 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2644 if (!adapter->tx_ring)
2645 goto err;
2646 adapter->tx_ring->count = adapter->tx_ring_count;
2647 adapter->tx_ring->adapter = adapter;
2648
2649 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2650 if (!adapter->rx_ring)
2651 goto err;
2652 adapter->rx_ring->count = adapter->rx_ring_count;
2653 adapter->rx_ring->adapter = adapter;
2654
2655 return 0;
2656 err:
2657 e_err("Unable to allocate memory for queues\n");
2658 kfree(adapter->rx_ring);
2659 kfree(adapter->tx_ring);
2660 return -ENOMEM;
2661 }
2662
2663 /**
2664 * e1000e_poll - NAPI Rx polling callback
2665 * @napi: struct associated with this polling callback
2666 * @budget: number of packets driver is allowed to process this poll
2667 **/
2668 static int e1000e_poll(struct napi_struct *napi, int budget)
2669 {
2670 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2671 napi);
2672 struct e1000_hw *hw = &adapter->hw;
2673 struct net_device *poll_dev = adapter->netdev;
2674 int tx_cleaned = 1, work_done = 0;
2675
2676 adapter = netdev_priv(poll_dev);
2677
2678 if (!adapter->msix_entries ||
2679 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2680 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2681
2682 adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2683
2684 if (!tx_cleaned || work_done == budget)
2685 return budget;
2686
2687 /* Exit the polling mode, but don't re-enable interrupts if stack might
2688 * poll us due to busy-polling
2689 */
2690 if (likely(napi_complete_done(napi, work_done))) {
2691 if (adapter->itr_setting & 3)
2692 e1000_set_itr(adapter);
2693 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2694 if (adapter->msix_entries)
2695 ew32(IMS, adapter->rx_ring->ims_val);
2696 else
2697 e1000_irq_enable(adapter);
2698 }
2699 }
2700
2701 return work_done;
2702 }
2703
2704 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2705 __always_unused __be16 proto, u16 vid)
2706 {
2707 struct e1000_adapter *adapter = netdev_priv(netdev);
2708 struct e1000_hw *hw = &adapter->hw;
2709 u32 vfta, index;
2710
2711 /* don't update vlan cookie if already programmed */
2712 if ((adapter->hw.mng_cookie.status &
2713 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2714 (vid == adapter->mng_vlan_id))
2715 return 0;
2716
2717 /* add VID to filter table */
2718 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2719 index = (vid >> 5) & 0x7F;
2720 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2721 vfta |= BIT((vid & 0x1F));
2722 hw->mac.ops.write_vfta(hw, index, vfta);
2723 }
2724
2725 set_bit(vid, adapter->active_vlans);
2726
2727 return 0;
2728 }
2729
2730 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2731 __always_unused __be16 proto, u16 vid)
2732 {
2733 struct e1000_adapter *adapter = netdev_priv(netdev);
2734 struct e1000_hw *hw = &adapter->hw;
2735 u32 vfta, index;
2736
2737 if ((adapter->hw.mng_cookie.status &
2738 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2739 (vid == adapter->mng_vlan_id)) {
2740 /* release control to f/w */
2741 e1000e_release_hw_control(adapter);
2742 return 0;
2743 }
2744
2745 /* remove VID from filter table */
2746 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2747 index = (vid >> 5) & 0x7F;
2748 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2749 vfta &= ~BIT((vid & 0x1F));
2750 hw->mac.ops.write_vfta(hw, index, vfta);
2751 }
2752
2753 clear_bit(vid, adapter->active_vlans);
2754
2755 return 0;
2756 }
2757
2758 /**
2759 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2760 * @adapter: board private structure to initialize
2761 **/
2762 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2763 {
2764 struct net_device *netdev = adapter->netdev;
2765 struct e1000_hw *hw = &adapter->hw;
2766 u32 rctl;
2767
2768 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2769 /* disable VLAN receive filtering */
2770 rctl = er32(RCTL);
2771 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2772 ew32(RCTL, rctl);
2773
2774 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2775 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2776 adapter->mng_vlan_id);
2777 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2778 }
2779 }
2780 }
2781
2782 /**
2783 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2784 * @adapter: board private structure to initialize
2785 **/
2786 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2787 {
2788 struct e1000_hw *hw = &adapter->hw;
2789 u32 rctl;
2790
2791 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2792 /* enable VLAN receive filtering */
2793 rctl = er32(RCTL);
2794 rctl |= E1000_RCTL_VFE;
2795 rctl &= ~E1000_RCTL_CFIEN;
2796 ew32(RCTL, rctl);
2797 }
2798 }
2799
2800 /**
2801 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2802 * @adapter: board private structure to initialize
2803 **/
2804 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2805 {
2806 struct e1000_hw *hw = &adapter->hw;
2807 u32 ctrl;
2808
2809 /* disable VLAN tag insert/strip */
2810 ctrl = er32(CTRL);
2811 ctrl &= ~E1000_CTRL_VME;
2812 ew32(CTRL, ctrl);
2813 }
2814
2815 /**
2816 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2817 * @adapter: board private structure to initialize
2818 **/
2819 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2820 {
2821 struct e1000_hw *hw = &adapter->hw;
2822 u32 ctrl;
2823
2824 /* enable VLAN tag insert/strip */
2825 ctrl = er32(CTRL);
2826 ctrl |= E1000_CTRL_VME;
2827 ew32(CTRL, ctrl);
2828 }
2829
2830 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2831 {
2832 struct net_device *netdev = adapter->netdev;
2833 u16 vid = adapter->hw.mng_cookie.vlan_id;
2834 u16 old_vid = adapter->mng_vlan_id;
2835
2836 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2837 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2838 adapter->mng_vlan_id = vid;
2839 }
2840
2841 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2842 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2843 }
2844
2845 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2846 {
2847 u16 vid;
2848
2849 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2850
2851 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2852 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2853 }
2854
2855 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2856 {
2857 struct e1000_hw *hw = &adapter->hw;
2858 u32 manc, manc2h, mdef, i, j;
2859
2860 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2861 return;
2862
2863 manc = er32(MANC);
2864
2865 /* enable receiving management packets to the host. this will probably
2866 * generate destination unreachable messages from the host OS, but
2867 * the packets will be handled on SMBUS
2868 */
2869 manc |= E1000_MANC_EN_MNG2HOST;
2870 manc2h = er32(MANC2H);
2871
2872 switch (hw->mac.type) {
2873 default:
2874 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2875 break;
2876 case e1000_82574:
2877 case e1000_82583:
2878 /* Check if IPMI pass-through decision filter already exists;
2879 * if so, enable it.
2880 */
2881 for (i = 0, j = 0; i < 8; i++) {
2882 mdef = er32(MDEF(i));
2883
2884 /* Ignore filters with anything other than IPMI ports */
2885 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886 continue;
2887
2888 /* Enable this decision filter in MANC2H */
2889 if (mdef)
2890 manc2h |= BIT(i);
2891
2892 j |= mdef;
2893 }
2894
2895 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2896 break;
2897
2898 /* Create new decision filter in an empty filter */
2899 for (i = 0, j = 0; i < 8; i++)
2900 if (er32(MDEF(i)) == 0) {
2901 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2902 E1000_MDEF_PORT_664));
2903 manc2h |= BIT(1);
2904 j++;
2905 break;
2906 }
2907
2908 if (!j)
2909 e_warn("Unable to create IPMI pass-through filter\n");
2910 break;
2911 }
2912
2913 ew32(MANC2H, manc2h);
2914 ew32(MANC, manc);
2915 }
2916
2917 /**
2918 * e1000_configure_tx - Configure Transmit Unit after Reset
2919 * @adapter: board private structure
2920 *
2921 * Configure the Tx unit of the MAC after a reset.
2922 **/
2923 static void e1000_configure_tx(struct e1000_adapter *adapter)
2924 {
2925 struct e1000_hw *hw = &adapter->hw;
2926 struct e1000_ring *tx_ring = adapter->tx_ring;
2927 u64 tdba;
2928 u32 tdlen, tctl, tarc;
2929
2930 /* Setup the HW Tx Head and Tail descriptor pointers */
2931 tdba = tx_ring->dma;
2932 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2933 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2934 ew32(TDBAH(0), (tdba >> 32));
2935 ew32(TDLEN(0), tdlen);
2936 ew32(TDH(0), 0);
2937 ew32(TDT(0), 0);
2938 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2939 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2940
2941 writel(0, tx_ring->head);
2942 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2943 e1000e_update_tdt_wa(tx_ring, 0);
2944 else
2945 writel(0, tx_ring->tail);
2946
2947 /* Set the Tx Interrupt Delay register */
2948 ew32(TIDV, adapter->tx_int_delay);
2949 /* Tx irq moderation */
2950 ew32(TADV, adapter->tx_abs_int_delay);
2951
2952 if (adapter->flags2 & FLAG2_DMA_BURST) {
2953 u32 txdctl = er32(TXDCTL(0));
2954
2955 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2956 E1000_TXDCTL_WTHRESH);
2957 /* set up some performance related parameters to encourage the
2958 * hardware to use the bus more efficiently in bursts, depends
2959 * on the tx_int_delay to be enabled,
2960 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2961 * hthresh = 1 ==> prefetch when one or more available
2962 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2963 * BEWARE: this seems to work but should be considered first if
2964 * there are Tx hangs or other Tx related bugs
2965 */
2966 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2967 ew32(TXDCTL(0), txdctl);
2968 }
2969 /* erratum work around: set txdctl the same for both queues */
2970 ew32(TXDCTL(1), er32(TXDCTL(0)));
2971
2972 /* Program the Transmit Control Register */
2973 tctl = er32(TCTL);
2974 tctl &= ~E1000_TCTL_CT;
2975 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2976 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2977
2978 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2979 tarc = er32(TARC(0));
2980 /* set the speed mode bit, we'll clear it if we're not at
2981 * gigabit link later
2982 */
2983 #define SPEED_MODE_BIT BIT(21)
2984 tarc |= SPEED_MODE_BIT;
2985 ew32(TARC(0), tarc);
2986 }
2987
2988 /* errata: program both queues to unweighted RR */
2989 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2990 tarc = er32(TARC(0));
2991 tarc |= 1;
2992 ew32(TARC(0), tarc);
2993 tarc = er32(TARC(1));
2994 tarc |= 1;
2995 ew32(TARC(1), tarc);
2996 }
2997
2998 /* Setup Transmit Descriptor Settings for eop descriptor */
2999 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3000
3001 /* only set IDE if we are delaying interrupts using the timers */
3002 if (adapter->tx_int_delay)
3003 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3004
3005 /* enable Report Status bit */
3006 adapter->txd_cmd |= E1000_TXD_CMD_RS;
3007
3008 ew32(TCTL, tctl);
3009
3010 hw->mac.ops.config_collision_dist(hw);
3011
3012 /* SPT and KBL Si errata workaround to avoid data corruption */
3013 if (hw->mac.type == e1000_pch_spt) {
3014 u32 reg_val;
3015
3016 reg_val = er32(IOSFPC);
3017 reg_val |= E1000_RCTL_RDMTS_HEX;
3018 ew32(IOSFPC, reg_val);
3019
3020 reg_val = er32(TARC(0));
3021 /* SPT and KBL Si errata workaround to avoid Tx hang.
3022 * Dropping the number of outstanding requests from
3023 * 3 to 2 in order to avoid a buffer overrun.
3024 */
3025 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3026 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3027 ew32(TARC(0), reg_val);
3028 }
3029 }
3030
3031 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3032 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3033
3034 /**
3035 * e1000_setup_rctl - configure the receive control registers
3036 * @adapter: Board private structure
3037 **/
3038 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3039 {
3040 struct e1000_hw *hw = &adapter->hw;
3041 u32 rctl, rfctl;
3042 u32 pages = 0;
3043
3044 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3045 * If jumbo frames not set, program related MAC/PHY registers
3046 * to h/w defaults
3047 */
3048 if (hw->mac.type >= e1000_pch2lan) {
3049 s32 ret_val;
3050
3051 if (adapter->netdev->mtu > ETH_DATA_LEN)
3052 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3053 else
3054 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3055
3056 if (ret_val)
3057 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3058 }
3059
3060 /* Program MC offset vector base */
3061 rctl = er32(RCTL);
3062 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3063 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3064 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3065 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3066
3067 /* Do not Store bad packets */
3068 rctl &= ~E1000_RCTL_SBP;
3069
3070 /* Enable Long Packet receive */
3071 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3072 rctl &= ~E1000_RCTL_LPE;
3073 else
3074 rctl |= E1000_RCTL_LPE;
3075
3076 /* Some systems expect that the CRC is included in SMBUS traffic. The
3077 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3078 * host memory when this is enabled
3079 */
3080 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3081 rctl |= E1000_RCTL_SECRC;
3082
3083 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3084 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3085 u16 phy_data;
3086
3087 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3088 phy_data &= 0xfff8;
3089 phy_data |= BIT(2);
3090 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3091
3092 e1e_rphy(hw, 22, &phy_data);
3093 phy_data &= 0x0fff;
3094 phy_data |= BIT(14);
3095 e1e_wphy(hw, 0x10, 0x2823);
3096 e1e_wphy(hw, 0x11, 0x0003);
3097 e1e_wphy(hw, 22, phy_data);
3098 }
3099
3100 /* Setup buffer sizes */
3101 rctl &= ~E1000_RCTL_SZ_4096;
3102 rctl |= E1000_RCTL_BSEX;
3103 switch (adapter->rx_buffer_len) {
3104 case 2048:
3105 default:
3106 rctl |= E1000_RCTL_SZ_2048;
3107 rctl &= ~E1000_RCTL_BSEX;
3108 break;
3109 case 4096:
3110 rctl |= E1000_RCTL_SZ_4096;
3111 break;
3112 case 8192:
3113 rctl |= E1000_RCTL_SZ_8192;
3114 break;
3115 case 16384:
3116 rctl |= E1000_RCTL_SZ_16384;
3117 break;
3118 }
3119
3120 /* Enable Extended Status in all Receive Descriptors */
3121 rfctl = er32(RFCTL);
3122 rfctl |= E1000_RFCTL_EXTEN;
3123 ew32(RFCTL, rfctl);
3124
3125 /* 82571 and greater support packet-split where the protocol
3126 * header is placed in skb->data and the packet data is
3127 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3128 * In the case of a non-split, skb->data is linearly filled,
3129 * followed by the page buffers. Therefore, skb->data is
3130 * sized to hold the largest protocol header.
3131 *
3132 * allocations using alloc_page take too long for regular MTU
3133 * so only enable packet split for jumbo frames
3134 *
3135 * Using pages when the page size is greater than 16k wastes
3136 * a lot of memory, since we allocate 3 pages at all times
3137 * per packet.
3138 */
3139 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3140 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3141 adapter->rx_ps_pages = pages;
3142 else
3143 adapter->rx_ps_pages = 0;
3144
3145 if (adapter->rx_ps_pages) {
3146 u32 psrctl = 0;
3147
3148 /* Enable Packet split descriptors */
3149 rctl |= E1000_RCTL_DTYP_PS;
3150
3151 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3152
3153 switch (adapter->rx_ps_pages) {
3154 case 3:
3155 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3156 fallthrough;
3157 case 2:
3158 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3159 fallthrough;
3160 case 1:
3161 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3162 break;
3163 }
3164
3165 ew32(PSRCTL, psrctl);
3166 }
3167
3168 /* This is useful for sniffing bad packets. */
3169 if (adapter->netdev->features & NETIF_F_RXALL) {
3170 /* UPE and MPE will be handled by normal PROMISC logic
3171 * in e1000e_set_rx_mode
3172 */
3173 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3174 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3175 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3176
3177 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3178 E1000_RCTL_DPF | /* Allow filtered pause */
3179 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3180 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3181 * and that breaks VLANs.
3182 */
3183 }
3184
3185 ew32(RCTL, rctl);
3186 /* just started the receive unit, no need to restart */
3187 adapter->flags &= ~FLAG_RESTART_NOW;
3188 }
3189
3190 /**
3191 * e1000_configure_rx - Configure Receive Unit after Reset
3192 * @adapter: board private structure
3193 *
3194 * Configure the Rx unit of the MAC after a reset.
3195 **/
3196 static void e1000_configure_rx(struct e1000_adapter *adapter)
3197 {
3198 struct e1000_hw *hw = &adapter->hw;
3199 struct e1000_ring *rx_ring = adapter->rx_ring;
3200 u64 rdba;
3201 u32 rdlen, rctl, rxcsum, ctrl_ext;
3202
3203 if (adapter->rx_ps_pages) {
3204 /* this is a 32 byte descriptor */
3205 rdlen = rx_ring->count *
3206 sizeof(union e1000_rx_desc_packet_split);
3207 adapter->clean_rx = e1000_clean_rx_irq_ps;
3208 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3209 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3210 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3211 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3212 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3213 } else {
3214 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3215 adapter->clean_rx = e1000_clean_rx_irq;
3216 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3217 }
3218
3219 /* disable receives while setting up the descriptors */
3220 rctl = er32(RCTL);
3221 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3222 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3223 e1e_flush();
3224 usleep_range(10000, 11000);
3225
3226 if (adapter->flags2 & FLAG2_DMA_BURST) {
3227 /* set the writeback threshold (only takes effect if the RDTR
3228 * is set). set GRAN=1 and write back up to 0x4 worth, and
3229 * enable prefetching of 0x20 Rx descriptors
3230 * granularity = 01
3231 * wthresh = 04,
3232 * hthresh = 04,
3233 * pthresh = 0x20
3234 */
3235 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3236 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3237 }
3238
3239 /* set the Receive Delay Timer Register */
3240 ew32(RDTR, adapter->rx_int_delay);
3241
3242 /* irq moderation */
3243 ew32(RADV, adapter->rx_abs_int_delay);
3244 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3245 e1000e_write_itr(adapter, adapter->itr);
3246
3247 ctrl_ext = er32(CTRL_EXT);
3248 /* Auto-Mask interrupts upon ICR access */
3249 ctrl_ext |= E1000_CTRL_EXT_IAME;
3250 ew32(IAM, 0xffffffff);
3251 ew32(CTRL_EXT, ctrl_ext);
3252 e1e_flush();
3253
3254 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3255 * the Base and Length of the Rx Descriptor Ring
3256 */
3257 rdba = rx_ring->dma;
3258 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3259 ew32(RDBAH(0), (rdba >> 32));
3260 ew32(RDLEN(0), rdlen);
3261 ew32(RDH(0), 0);
3262 ew32(RDT(0), 0);
3263 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3264 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3265
3266 writel(0, rx_ring->head);
3267 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3268 e1000e_update_rdt_wa(rx_ring, 0);
3269 else
3270 writel(0, rx_ring->tail);
3271
3272 /* Enable Receive Checksum Offload for TCP and UDP */
3273 rxcsum = er32(RXCSUM);
3274 if (adapter->netdev->features & NETIF_F_RXCSUM)
3275 rxcsum |= E1000_RXCSUM_TUOFL;
3276 else
3277 rxcsum &= ~E1000_RXCSUM_TUOFL;
3278 ew32(RXCSUM, rxcsum);
3279
3280 /* With jumbo frames, excessive C-state transition latencies result
3281 * in dropped transactions.
3282 */
3283 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3284 u32 lat =
3285 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3286 adapter->max_frame_size) * 8 / 1000;
3287
3288 if (adapter->flags & FLAG_IS_ICH) {
3289 u32 rxdctl = er32(RXDCTL(0));
3290
3291 ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3292 }
3293
3294 dev_info(&adapter->pdev->dev,
3295 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3296 cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3297 } else {
3298 cpu_latency_qos_update_request(&adapter->pm_qos_req,
3299 PM_QOS_DEFAULT_VALUE);
3300 }
3301
3302 /* Enable Receives */
3303 ew32(RCTL, rctl);
3304 }
3305
3306 /**
3307 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3308 * @netdev: network interface device structure
3309 *
3310 * Writes multicast address list to the MTA hash table.
3311 * Returns: -ENOMEM on failure
3312 * 0 on no addresses written
3313 * X on writing X addresses to MTA
3314 */
3315 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3316 {
3317 struct e1000_adapter *adapter = netdev_priv(netdev);
3318 struct e1000_hw *hw = &adapter->hw;
3319 struct netdev_hw_addr *ha;
3320 u8 *mta_list;
3321 int i;
3322
3323 if (netdev_mc_empty(netdev)) {
3324 /* nothing to program, so clear mc list */
3325 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3326 return 0;
3327 }
3328
3329 mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3330 if (!mta_list)
3331 return -ENOMEM;
3332
3333 /* update_mc_addr_list expects a packed array of only addresses. */
3334 i = 0;
3335 netdev_for_each_mc_addr(ha, netdev)
3336 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3337
3338 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3339 kfree(mta_list);
3340
3341 return netdev_mc_count(netdev);
3342 }
3343
3344 /**
3345 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3346 * @netdev: network interface device structure
3347 *
3348 * Writes unicast address list to the RAR table.
3349 * Returns: -ENOMEM on failure/insufficient address space
3350 * 0 on no addresses written
3351 * X on writing X addresses to the RAR table
3352 **/
3353 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3354 {
3355 struct e1000_adapter *adapter = netdev_priv(netdev);
3356 struct e1000_hw *hw = &adapter->hw;
3357 unsigned int rar_entries;
3358 int count = 0;
3359
3360 rar_entries = hw->mac.ops.rar_get_count(hw);
3361
3362 /* save a rar entry for our hardware address */
3363 rar_entries--;
3364
3365 /* save a rar entry for the LAA workaround */
3366 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3367 rar_entries--;
3368
3369 /* return ENOMEM indicating insufficient memory for addresses */
3370 if (netdev_uc_count(netdev) > rar_entries)
3371 return -ENOMEM;
3372
3373 if (!netdev_uc_empty(netdev) && rar_entries) {
3374 struct netdev_hw_addr *ha;
3375
3376 /* write the addresses in reverse order to avoid write
3377 * combining
3378 */
3379 netdev_for_each_uc_addr(ha, netdev) {
3380 int ret_val;
3381
3382 if (!rar_entries)
3383 break;
3384 ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3385 if (ret_val < 0)
3386 return -ENOMEM;
3387 count++;
3388 }
3389 }
3390
3391 /* zero out the remaining RAR entries not used above */
3392 for (; rar_entries > 0; rar_entries--) {
3393 ew32(RAH(rar_entries), 0);
3394 ew32(RAL(rar_entries), 0);
3395 }
3396 e1e_flush();
3397
3398 return count;
3399 }
3400
3401 /**
3402 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3403 * @netdev: network interface device structure
3404 *
3405 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3406 * address list or the network interface flags are updated. This routine is
3407 * responsible for configuring the hardware for proper unicast, multicast,
3408 * promiscuous mode, and all-multi behavior.
3409 **/
3410 static void e1000e_set_rx_mode(struct net_device *netdev)
3411 {
3412 struct e1000_adapter *adapter = netdev_priv(netdev);
3413 struct e1000_hw *hw = &adapter->hw;
3414 u32 rctl;
3415
3416 if (pm_runtime_suspended(netdev->dev.parent))
3417 return;
3418
3419 /* Check for Promiscuous and All Multicast modes */
3420 rctl = er32(RCTL);
3421
3422 /* clear the affected bits */
3423 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3424
3425 if (netdev->flags & IFF_PROMISC) {
3426 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3427 /* Do not hardware filter VLANs in promisc mode */
3428 e1000e_vlan_filter_disable(adapter);
3429 } else {
3430 int count;
3431
3432 if (netdev->flags & IFF_ALLMULTI) {
3433 rctl |= E1000_RCTL_MPE;
3434 } else {
3435 /* Write addresses to the MTA, if the attempt fails
3436 * then we should just turn on promiscuous mode so
3437 * that we can at least receive multicast traffic
3438 */
3439 count = e1000e_write_mc_addr_list(netdev);
3440 if (count < 0)
3441 rctl |= E1000_RCTL_MPE;
3442 }
3443 e1000e_vlan_filter_enable(adapter);
3444 /* Write addresses to available RAR registers, if there is not
3445 * sufficient space to store all the addresses then enable
3446 * unicast promiscuous mode
3447 */
3448 count = e1000e_write_uc_addr_list(netdev);
3449 if (count < 0)
3450 rctl |= E1000_RCTL_UPE;
3451 }
3452
3453 ew32(RCTL, rctl);
3454
3455 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3456 e1000e_vlan_strip_enable(adapter);
3457 else
3458 e1000e_vlan_strip_disable(adapter);
3459 }
3460
3461 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3462 {
3463 struct e1000_hw *hw = &adapter->hw;
3464 u32 mrqc, rxcsum;
3465 u32 rss_key[10];
3466 int i;
3467
3468 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3469 for (i = 0; i < 10; i++)
3470 ew32(RSSRK(i), rss_key[i]);
3471
3472 /* Direct all traffic to queue 0 */
3473 for (i = 0; i < 32; i++)
3474 ew32(RETA(i), 0);
3475
3476 /* Disable raw packet checksumming so that RSS hash is placed in
3477 * descriptor on writeback.
3478 */
3479 rxcsum = er32(RXCSUM);
3480 rxcsum |= E1000_RXCSUM_PCSD;
3481
3482 ew32(RXCSUM, rxcsum);
3483
3484 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3485 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3486 E1000_MRQC_RSS_FIELD_IPV6 |
3487 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3488 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3489
3490 ew32(MRQC, mrqc);
3491 }
3492
3493 /**
3494 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3495 * @adapter: board private structure
3496 * @timinca: pointer to returned time increment attributes
3497 *
3498 * Get attributes for incrementing the System Time Register SYSTIML/H at
3499 * the default base frequency, and set the cyclecounter shift value.
3500 **/
3501 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3502 {
3503 struct e1000_hw *hw = &adapter->hw;
3504 u32 incvalue, incperiod, shift;
3505
3506 /* Make sure clock is enabled on I217/I218/I219 before checking
3507 * the frequency
3508 */
3509 if ((hw->mac.type >= e1000_pch_lpt) &&
3510 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3511 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3512 u32 fextnvm7 = er32(FEXTNVM7);
3513
3514 if (!(fextnvm7 & BIT(0))) {
3515 ew32(FEXTNVM7, fextnvm7 | BIT(0));
3516 e1e_flush();
3517 }
3518 }
3519
3520 switch (hw->mac.type) {
3521 case e1000_pch2lan:
3522 /* Stable 96MHz frequency */
3523 incperiod = INCPERIOD_96MHZ;
3524 incvalue = INCVALUE_96MHZ;
3525 shift = INCVALUE_SHIFT_96MHZ;
3526 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3527 break;
3528 case e1000_pch_lpt:
3529 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3530 /* Stable 96MHz frequency */
3531 incperiod = INCPERIOD_96MHZ;
3532 incvalue = INCVALUE_96MHZ;
3533 shift = INCVALUE_SHIFT_96MHZ;
3534 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3535 } else {
3536 /* Stable 25MHz frequency */
3537 incperiod = INCPERIOD_25MHZ;
3538 incvalue = INCVALUE_25MHZ;
3539 shift = INCVALUE_SHIFT_25MHZ;
3540 adapter->cc.shift = shift;
3541 }
3542 break;
3543 case e1000_pch_spt:
3544 /* Stable 24MHz frequency */
3545 incperiod = INCPERIOD_24MHZ;
3546 incvalue = INCVALUE_24MHZ;
3547 shift = INCVALUE_SHIFT_24MHZ;
3548 adapter->cc.shift = shift;
3549 break;
3550 case e1000_pch_cnp:
3551 case e1000_pch_tgp:
3552 case e1000_pch_adp:
3553 case e1000_pch_mtp:
3554 case e1000_pch_lnp:
3555 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3556 /* Stable 24MHz frequency */
3557 incperiod = INCPERIOD_24MHZ;
3558 incvalue = INCVALUE_24MHZ;
3559 shift = INCVALUE_SHIFT_24MHZ;
3560 adapter->cc.shift = shift;
3561 } else {
3562 /* Stable 38400KHz frequency */
3563 incperiod = INCPERIOD_38400KHZ;
3564 incvalue = INCVALUE_38400KHZ;
3565 shift = INCVALUE_SHIFT_38400KHZ;
3566 adapter->cc.shift = shift;
3567 }
3568 break;
3569 case e1000_82574:
3570 case e1000_82583:
3571 /* Stable 25MHz frequency */
3572 incperiod = INCPERIOD_25MHZ;
3573 incvalue = INCVALUE_25MHZ;
3574 shift = INCVALUE_SHIFT_25MHZ;
3575 adapter->cc.shift = shift;
3576 break;
3577 default:
3578 return -EINVAL;
3579 }
3580
3581 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3582 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3583
3584 return 0;
3585 }
3586
3587 /**
3588 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3589 * @adapter: board private structure
3590 * @config: timestamp configuration
3591 *
3592 * Outgoing time stamping can be enabled and disabled. Play nice and
3593 * disable it when requested, although it shouldn't cause any overhead
3594 * when no packet needs it. At most one packet in the queue may be
3595 * marked for time stamping, otherwise it would be impossible to tell
3596 * for sure to which packet the hardware time stamp belongs.
3597 *
3598 * Incoming time stamping has to be configured via the hardware filters.
3599 * Not all combinations are supported, in particular event type has to be
3600 * specified. Matching the kind of event packet is not supported, with the
3601 * exception of "all V2 events regardless of level 2 or 4".
3602 **/
3603 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3604 struct hwtstamp_config *config)
3605 {
3606 struct e1000_hw *hw = &adapter->hw;
3607 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3608 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3609 u32 rxmtrl = 0;
3610 u16 rxudp = 0;
3611 bool is_l4 = false;
3612 bool is_l2 = false;
3613 u32 regval;
3614
3615 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3616 return -EINVAL;
3617
3618 /* flags reserved for future extensions - must be zero */
3619 if (config->flags)
3620 return -EINVAL;
3621
3622 switch (config->tx_type) {
3623 case HWTSTAMP_TX_OFF:
3624 tsync_tx_ctl = 0;
3625 break;
3626 case HWTSTAMP_TX_ON:
3627 break;
3628 default:
3629 return -ERANGE;
3630 }
3631
3632 switch (config->rx_filter) {
3633 case HWTSTAMP_FILTER_NONE:
3634 tsync_rx_ctl = 0;
3635 break;
3636 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3637 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3638 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3639 is_l4 = true;
3640 break;
3641 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3642 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3643 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3644 is_l4 = true;
3645 break;
3646 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3647 /* Also time stamps V2 L2 Path Delay Request/Response */
3648 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3649 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3650 is_l2 = true;
3651 break;
3652 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3653 /* Also time stamps V2 L2 Path Delay Request/Response. */
3654 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3655 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3656 is_l2 = true;
3657 break;
3658 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3659 /* Hardware cannot filter just V2 L4 Sync messages */
3660 fallthrough;
3661 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3662 /* Also time stamps V2 Path Delay Request/Response. */
3663 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3664 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3665 is_l2 = true;
3666 is_l4 = true;
3667 break;
3668 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3669 /* Hardware cannot filter just V2 L4 Delay Request messages */
3670 fallthrough;
3671 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3672 /* Also time stamps V2 Path Delay Request/Response. */
3673 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3674 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3675 is_l2 = true;
3676 is_l4 = true;
3677 break;
3678 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3679 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3680 /* Hardware cannot filter just V2 L4 or L2 Event messages */
3681 fallthrough;
3682 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3683 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3684 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3685 is_l2 = true;
3686 is_l4 = true;
3687 break;
3688 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3689 /* For V1, the hardware can only filter Sync messages or
3690 * Delay Request messages but not both so fall-through to
3691 * time stamp all packets.
3692 */
3693 fallthrough;
3694 case HWTSTAMP_FILTER_NTP_ALL:
3695 case HWTSTAMP_FILTER_ALL:
3696 is_l2 = true;
3697 is_l4 = true;
3698 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3699 config->rx_filter = HWTSTAMP_FILTER_ALL;
3700 break;
3701 default:
3702 return -ERANGE;
3703 }
3704
3705 adapter->hwtstamp_config = *config;
3706
3707 /* enable/disable Tx h/w time stamping */
3708 regval = er32(TSYNCTXCTL);
3709 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3710 regval |= tsync_tx_ctl;
3711 ew32(TSYNCTXCTL, regval);
3712 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3713 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3714 e_err("Timesync Tx Control register not set as expected\n");
3715 return -EAGAIN;
3716 }
3717
3718 /* enable/disable Rx h/w time stamping */
3719 regval = er32(TSYNCRXCTL);
3720 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3721 regval |= tsync_rx_ctl;
3722 ew32(TSYNCRXCTL, regval);
3723 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3724 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3725 (regval & (E1000_TSYNCRXCTL_ENABLED |
3726 E1000_TSYNCRXCTL_TYPE_MASK))) {
3727 e_err("Timesync Rx Control register not set as expected\n");
3728 return -EAGAIN;
3729 }
3730
3731 /* L2: define ethertype filter for time stamped packets */
3732 if (is_l2)
3733 rxmtrl |= ETH_P_1588;
3734
3735 /* define which PTP packets get time stamped */
3736 ew32(RXMTRL, rxmtrl);
3737
3738 /* Filter by destination port */
3739 if (is_l4) {
3740 rxudp = PTP_EV_PORT;
3741 cpu_to_be16s(&rxudp);
3742 }
3743 ew32(RXUDP, rxudp);
3744
3745 e1e_flush();
3746
3747 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3748 er32(RXSTMPH);
3749 er32(TXSTMPH);
3750
3751 return 0;
3752 }
3753
3754 /**
3755 * e1000_configure - configure the hardware for Rx and Tx
3756 * @adapter: private board structure
3757 **/
3758 static void e1000_configure(struct e1000_adapter *adapter)
3759 {
3760 struct e1000_ring *rx_ring = adapter->rx_ring;
3761
3762 e1000e_set_rx_mode(adapter->netdev);
3763
3764 e1000_restore_vlan(adapter);
3765 e1000_init_manageability_pt(adapter);
3766
3767 e1000_configure_tx(adapter);
3768
3769 if (adapter->netdev->features & NETIF_F_RXHASH)
3770 e1000e_setup_rss_hash(adapter);
3771 e1000_setup_rctl(adapter);
3772 e1000_configure_rx(adapter);
3773 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3774 }
3775
3776 /**
3777 * e1000e_power_up_phy - restore link in case the phy was powered down
3778 * @adapter: address of board private structure
3779 *
3780 * The phy may be powered down to save power and turn off link when the
3781 * driver is unloaded and wake on lan is not enabled (among others)
3782 * *** this routine MUST be followed by a call to e1000e_reset ***
3783 **/
3784 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3785 {
3786 if (adapter->hw.phy.ops.power_up)
3787 adapter->hw.phy.ops.power_up(&adapter->hw);
3788
3789 adapter->hw.mac.ops.setup_link(&adapter->hw);
3790 }
3791
3792 /**
3793 * e1000_power_down_phy - Power down the PHY
3794 * @adapter: board private structure
3795 *
3796 * Power down the PHY so no link is implied when interface is down.
3797 * The PHY cannot be powered down if management or WoL is active.
3798 */
3799 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3800 {
3801 if (adapter->hw.phy.ops.power_down)
3802 adapter->hw.phy.ops.power_down(&adapter->hw);
3803 }
3804
3805 /**
3806 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3807 * @adapter: board private structure
3808 *
3809 * We want to clear all pending descriptors from the TX ring.
3810 * zeroing happens when the HW reads the regs. We assign the ring itself as
3811 * the data of the next descriptor. We don't care about the data we are about
3812 * to reset the HW.
3813 */
3814 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3815 {
3816 struct e1000_hw *hw = &adapter->hw;
3817 struct e1000_ring *tx_ring = adapter->tx_ring;
3818 struct e1000_tx_desc *tx_desc = NULL;
3819 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3820 u16 size = 512;
3821
3822 tctl = er32(TCTL);
3823 ew32(TCTL, tctl | E1000_TCTL_EN);
3824 tdt = er32(TDT(0));
3825 BUG_ON(tdt != tx_ring->next_to_use);
3826 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3827 tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3828
3829 tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3830 tx_desc->upper.data = 0;
3831 /* flush descriptors to memory before notifying the HW */
3832 wmb();
3833 tx_ring->next_to_use++;
3834 if (tx_ring->next_to_use == tx_ring->count)
3835 tx_ring->next_to_use = 0;
3836 ew32(TDT(0), tx_ring->next_to_use);
3837 usleep_range(200, 250);
3838 }
3839
3840 /**
3841 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3842 * @adapter: board private structure
3843 *
3844 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3845 */
3846 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3847 {
3848 u32 rctl, rxdctl;
3849 struct e1000_hw *hw = &adapter->hw;
3850
3851 rctl = er32(RCTL);
3852 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3853 e1e_flush();
3854 usleep_range(100, 150);
3855
3856 rxdctl = er32(RXDCTL(0));
3857 /* zero the lower 14 bits (prefetch and host thresholds) */
3858 rxdctl &= 0xffffc000;
3859
3860 /* update thresholds: prefetch threshold to 31, host threshold to 1
3861 * and make sure the granularity is "descriptors" and not "cache lines"
3862 */
3863 rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3864
3865 ew32(RXDCTL(0), rxdctl);
3866 /* momentarily enable the RX ring for the changes to take effect */
3867 ew32(RCTL, rctl | E1000_RCTL_EN);
3868 e1e_flush();
3869 usleep_range(100, 150);
3870 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3871 }
3872
3873 /**
3874 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3875 * @adapter: board private structure
3876 *
3877 * In i219, the descriptor rings must be emptied before resetting the HW
3878 * or before changing the device state to D3 during runtime (runtime PM).
3879 *
3880 * Failure to do this will cause the HW to enter a unit hang state which can
3881 * only be released by PCI reset on the device
3882 *
3883 */
3884
3885 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3886 {
3887 u16 hang_state;
3888 u32 fext_nvm11, tdlen;
3889 struct e1000_hw *hw = &adapter->hw;
3890
3891 /* First, disable MULR fix in FEXTNVM11 */
3892 fext_nvm11 = er32(FEXTNVM11);
3893 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3894 ew32(FEXTNVM11, fext_nvm11);
3895 /* do nothing if we're not in faulty state, or if the queue is empty */
3896 tdlen = er32(TDLEN(0));
3897 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3898 &hang_state);
3899 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3900 return;
3901 e1000_flush_tx_ring(adapter);
3902 /* recheck, maybe the fault is caused by the rx ring */
3903 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3904 &hang_state);
3905 if (hang_state & FLUSH_DESC_REQUIRED)
3906 e1000_flush_rx_ring(adapter);
3907 }
3908
3909 /**
3910 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3911 * @adapter: board private structure
3912 *
3913 * When the MAC is reset, all hardware bits for timesync will be reset to the
3914 * default values. This function will restore the settings last in place.
3915 * Since the clock SYSTIME registers are reset, we will simply restore the
3916 * cyclecounter to the kernel real clock time.
3917 **/
3918 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3919 {
3920 struct ptp_clock_info *info = &adapter->ptp_clock_info;
3921 struct e1000_hw *hw = &adapter->hw;
3922 unsigned long flags;
3923 u32 timinca;
3924 s32 ret_val;
3925
3926 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3927 return;
3928
3929 if (info->adjfreq) {
3930 /* restore the previous ptp frequency delta */
3931 ret_val = info->adjfreq(info, adapter->ptp_delta);
3932 } else {
3933 /* set the default base frequency if no adjustment possible */
3934 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3935 if (!ret_val)
3936 ew32(TIMINCA, timinca);
3937 }
3938
3939 if (ret_val) {
3940 dev_warn(&adapter->pdev->dev,
3941 "Failed to restore TIMINCA clock rate delta: %d\n",
3942 ret_val);
3943 return;
3944 }
3945
3946 /* reset the systim ns time counter */
3947 spin_lock_irqsave(&adapter->systim_lock, flags);
3948 timecounter_init(&adapter->tc, &adapter->cc,
3949 ktime_to_ns(ktime_get_real()));
3950 spin_unlock_irqrestore(&adapter->systim_lock, flags);
3951
3952 /* restore the previous hwtstamp configuration settings */
3953 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3954 }
3955
3956 /**
3957 * e1000e_reset - bring the hardware into a known good state
3958 * @adapter: board private structure
3959 *
3960 * This function boots the hardware and enables some settings that
3961 * require a configuration cycle of the hardware - those cannot be
3962 * set/changed during runtime. After reset the device needs to be
3963 * properly configured for Rx, Tx etc.
3964 */
3965 void e1000e_reset(struct e1000_adapter *adapter)
3966 {
3967 struct e1000_mac_info *mac = &adapter->hw.mac;
3968 struct e1000_fc_info *fc = &adapter->hw.fc;
3969 struct e1000_hw *hw = &adapter->hw;
3970 u32 tx_space, min_tx_space, min_rx_space;
3971 u32 pba = adapter->pba;
3972 u16 hwm;
3973
3974 /* reset Packet Buffer Allocation to default */
3975 ew32(PBA, pba);
3976
3977 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3978 /* To maintain wire speed transmits, the Tx FIFO should be
3979 * large enough to accommodate two full transmit packets,
3980 * rounded up to the next 1KB and expressed in KB. Likewise,
3981 * the Rx FIFO should be large enough to accommodate at least
3982 * one full receive packet and is similarly rounded up and
3983 * expressed in KB.
3984 */
3985 pba = er32(PBA);
3986 /* upper 16 bits has Tx packet buffer allocation size in KB */
3987 tx_space = pba >> 16;
3988 /* lower 16 bits has Rx packet buffer allocation size in KB */
3989 pba &= 0xffff;
3990 /* the Tx fifo also stores 16 bytes of information about the Tx
3991 * but don't include ethernet FCS because hardware appends it
3992 */
3993 min_tx_space = (adapter->max_frame_size +
3994 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3995 min_tx_space = ALIGN(min_tx_space, 1024);
3996 min_tx_space >>= 10;
3997 /* software strips receive CRC, so leave room for it */
3998 min_rx_space = adapter->max_frame_size;
3999 min_rx_space = ALIGN(min_rx_space, 1024);
4000 min_rx_space >>= 10;
4001
4002 /* If current Tx allocation is less than the min Tx FIFO size,
4003 * and the min Tx FIFO size is less than the current Rx FIFO
4004 * allocation, take space away from current Rx allocation
4005 */
4006 if ((tx_space < min_tx_space) &&
4007 ((min_tx_space - tx_space) < pba)) {
4008 pba -= min_tx_space - tx_space;
4009
4010 /* if short on Rx space, Rx wins and must trump Tx
4011 * adjustment
4012 */
4013 if (pba < min_rx_space)
4014 pba = min_rx_space;
4015 }
4016
4017 ew32(PBA, pba);
4018 }
4019
4020 /* flow control settings
4021 *
4022 * The high water mark must be low enough to fit one full frame
4023 * (or the size used for early receive) above it in the Rx FIFO.
4024 * Set it to the lower of:
4025 * - 90% of the Rx FIFO size, and
4026 * - the full Rx FIFO size minus one full frame
4027 */
4028 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4029 fc->pause_time = 0xFFFF;
4030 else
4031 fc->pause_time = E1000_FC_PAUSE_TIME;
4032 fc->send_xon = true;
4033 fc->current_mode = fc->requested_mode;
4034
4035 switch (hw->mac.type) {
4036 case e1000_ich9lan:
4037 case e1000_ich10lan:
4038 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4039 pba = 14;
4040 ew32(PBA, pba);
4041 fc->high_water = 0x2800;
4042 fc->low_water = fc->high_water - 8;
4043 break;
4044 }
4045 fallthrough;
4046 default:
4047 hwm = min(((pba << 10) * 9 / 10),
4048 ((pba << 10) - adapter->max_frame_size));
4049
4050 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4051 fc->low_water = fc->high_water - 8;
4052 break;
4053 case e1000_pchlan:
4054 /* Workaround PCH LOM adapter hangs with certain network
4055 * loads. If hangs persist, try disabling Tx flow control.
4056 */
4057 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4058 fc->high_water = 0x3500;
4059 fc->low_water = 0x1500;
4060 } else {
4061 fc->high_water = 0x5000;
4062 fc->low_water = 0x3000;
4063 }
4064 fc->refresh_time = 0x1000;
4065 break;
4066 case e1000_pch2lan:
4067 case e1000_pch_lpt:
4068 case e1000_pch_spt:
4069 case e1000_pch_cnp:
4070 case e1000_pch_tgp:
4071 case e1000_pch_adp:
4072 case e1000_pch_mtp:
4073 case e1000_pch_lnp:
4074 fc->refresh_time = 0xFFFF;
4075 fc->pause_time = 0xFFFF;
4076
4077 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4078 fc->high_water = 0x05C20;
4079 fc->low_water = 0x05048;
4080 break;
4081 }
4082
4083 pba = 14;
4084 ew32(PBA, pba);
4085 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4086 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4087 break;
4088 }
4089
4090 /* Alignment of Tx data is on an arbitrary byte boundary with the
4091 * maximum size per Tx descriptor limited only to the transmit
4092 * allocation of the packet buffer minus 96 bytes with an upper
4093 * limit of 24KB due to receive synchronization limitations.
4094 */
4095 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4096 24 << 10);
4097
4098 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4099 * fit in receive buffer.
4100 */
4101 if (adapter->itr_setting & 0x3) {
4102 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4103 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4104 dev_info(&adapter->pdev->dev,
4105 "Interrupt Throttle Rate off\n");
4106 adapter->flags2 |= FLAG2_DISABLE_AIM;
4107 e1000e_write_itr(adapter, 0);
4108 }
4109 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4110 dev_info(&adapter->pdev->dev,
4111 "Interrupt Throttle Rate on\n");
4112 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4113 adapter->itr = 20000;
4114 e1000e_write_itr(adapter, adapter->itr);
4115 }
4116 }
4117
4118 if (hw->mac.type >= e1000_pch_spt)
4119 e1000_flush_desc_rings(adapter);
4120 /* Allow time for pending master requests to run */
4121 mac->ops.reset_hw(hw);
4122
4123 /* For parts with AMT enabled, let the firmware know
4124 * that the network interface is in control
4125 */
4126 if (adapter->flags & FLAG_HAS_AMT)
4127 e1000e_get_hw_control(adapter);
4128
4129 ew32(WUC, 0);
4130
4131 if (mac->ops.init_hw(hw))
4132 e_err("Hardware Error\n");
4133
4134 e1000_update_mng_vlan(adapter);
4135
4136 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4137 ew32(VET, ETH_P_8021Q);
4138
4139 e1000e_reset_adaptive(hw);
4140
4141 /* restore systim and hwtstamp settings */
4142 e1000e_systim_reset(adapter);
4143
4144 /* Set EEE advertisement as appropriate */
4145 if (adapter->flags2 & FLAG2_HAS_EEE) {
4146 s32 ret_val;
4147 u16 adv_addr;
4148
4149 switch (hw->phy.type) {
4150 case e1000_phy_82579:
4151 adv_addr = I82579_EEE_ADVERTISEMENT;
4152 break;
4153 case e1000_phy_i217:
4154 adv_addr = I217_EEE_ADVERTISEMENT;
4155 break;
4156 default:
4157 dev_err(&adapter->pdev->dev,
4158 "Invalid PHY type setting EEE advertisement\n");
4159 return;
4160 }
4161
4162 ret_val = hw->phy.ops.acquire(hw);
4163 if (ret_val) {
4164 dev_err(&adapter->pdev->dev,
4165 "EEE advertisement - unable to acquire PHY\n");
4166 return;
4167 }
4168
4169 e1000_write_emi_reg_locked(hw, adv_addr,
4170 hw->dev_spec.ich8lan.eee_disable ?
4171 0 : adapter->eee_advert);
4172
4173 hw->phy.ops.release(hw);
4174 }
4175
4176 if (!netif_running(adapter->netdev) &&
4177 !test_bit(__E1000_TESTING, &adapter->state))
4178 e1000_power_down_phy(adapter);
4179
4180 e1000_get_phy_info(hw);
4181
4182 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4183 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4184 u16 phy_data = 0;
4185 /* speed up time to link by disabling smart power down, ignore
4186 * the return value of this function because there is nothing
4187 * different we would do if it failed
4188 */
4189 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4190 phy_data &= ~IGP02E1000_PM_SPD;
4191 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4192 }
4193 if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4194 u32 reg;
4195
4196 /* Fextnvm7 @ 0xe4[2] = 1 */
4197 reg = er32(FEXTNVM7);
4198 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4199 ew32(FEXTNVM7, reg);
4200 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4201 reg = er32(FEXTNVM9);
4202 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4203 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4204 ew32(FEXTNVM9, reg);
4205 }
4206
4207 }
4208
4209 /**
4210 * e1000e_trigger_lsc - trigger an LSC interrupt
4211 * @adapter:
4212 *
4213 * Fire a link status change interrupt to start the watchdog.
4214 **/
4215 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4216 {
4217 struct e1000_hw *hw = &adapter->hw;
4218
4219 if (adapter->msix_entries)
4220 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4221 else
4222 ew32(ICS, E1000_ICS_LSC);
4223 }
4224
4225 void e1000e_up(struct e1000_adapter *adapter)
4226 {
4227 /* hardware has been reset, we need to reload some things */
4228 e1000_configure(adapter);
4229
4230 clear_bit(__E1000_DOWN, &adapter->state);
4231
4232 if (adapter->msix_entries)
4233 e1000_configure_msix(adapter);
4234 e1000_irq_enable(adapter);
4235
4236 /* Tx queue started by watchdog timer when link is up */
4237
4238 e1000e_trigger_lsc(adapter);
4239 }
4240
4241 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4242 {
4243 struct e1000_hw *hw = &adapter->hw;
4244
4245 if (!(adapter->flags2 & FLAG2_DMA_BURST))
4246 return;
4247
4248 /* flush pending descriptor writebacks to memory */
4249 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4250 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4251
4252 /* execute the writes immediately */
4253 e1e_flush();
4254
4255 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4256 * write is successful
4257 */
4258 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4259 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4260
4261 /* execute the writes immediately */
4262 e1e_flush();
4263 }
4264
4265 static void e1000e_update_stats(struct e1000_adapter *adapter);
4266
4267 /**
4268 * e1000e_down - quiesce the device and optionally reset the hardware
4269 * @adapter: board private structure
4270 * @reset: boolean flag to reset the hardware or not
4271 */
4272 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4273 {
4274 struct net_device *netdev = adapter->netdev;
4275 struct e1000_hw *hw = &adapter->hw;
4276 u32 tctl, rctl;
4277
4278 /* signal that we're down so the interrupt handler does not
4279 * reschedule our watchdog timer
4280 */
4281 set_bit(__E1000_DOWN, &adapter->state);
4282
4283 netif_carrier_off(netdev);
4284
4285 /* disable receives in the hardware */
4286 rctl = er32(RCTL);
4287 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4288 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4289 /* flush and sleep below */
4290
4291 netif_stop_queue(netdev);
4292
4293 /* disable transmits in the hardware */
4294 tctl = er32(TCTL);
4295 tctl &= ~E1000_TCTL_EN;
4296 ew32(TCTL, tctl);
4297
4298 /* flush both disables and wait for them to finish */
4299 e1e_flush();
4300 usleep_range(10000, 11000);
4301
4302 e1000_irq_disable(adapter);
4303
4304 napi_synchronize(&adapter->napi);
4305
4306 del_timer_sync(&adapter->watchdog_timer);
4307 del_timer_sync(&adapter->phy_info_timer);
4308
4309 spin_lock(&adapter->stats64_lock);
4310 e1000e_update_stats(adapter);
4311 spin_unlock(&adapter->stats64_lock);
4312
4313 e1000e_flush_descriptors(adapter);
4314
4315 adapter->link_speed = 0;
4316 adapter->link_duplex = 0;
4317
4318 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4319 if ((hw->mac.type >= e1000_pch2lan) &&
4320 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4321 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4322 e_dbg("failed to disable jumbo frame workaround mode\n");
4323
4324 if (!pci_channel_offline(adapter->pdev)) {
4325 if (reset)
4326 e1000e_reset(adapter);
4327 else if (hw->mac.type >= e1000_pch_spt)
4328 e1000_flush_desc_rings(adapter);
4329 }
4330 e1000_clean_tx_ring(adapter->tx_ring);
4331 e1000_clean_rx_ring(adapter->rx_ring);
4332 }
4333
4334 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4335 {
4336 might_sleep();
4337 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4338 usleep_range(1000, 1100);
4339 e1000e_down(adapter, true);
4340 e1000e_up(adapter);
4341 clear_bit(__E1000_RESETTING, &adapter->state);
4342 }
4343
4344 /**
4345 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4346 * @hw: pointer to the HW structure
4347 * @systim: PHC time value read, sanitized and returned
4348 * @sts: structure to hold system time before and after reading SYSTIML,
4349 * may be NULL
4350 *
4351 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4352 * check to see that the time is incrementing at a reasonable
4353 * rate and is a multiple of incvalue.
4354 **/
4355 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4356 struct ptp_system_timestamp *sts)
4357 {
4358 u64 time_delta, rem, temp;
4359 u64 systim_next;
4360 u32 incvalue;
4361 int i;
4362
4363 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4364 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4365 /* latch SYSTIMH on read of SYSTIML */
4366 ptp_read_system_prets(sts);
4367 systim_next = (u64)er32(SYSTIML);
4368 ptp_read_system_postts(sts);
4369 systim_next |= (u64)er32(SYSTIMH) << 32;
4370
4371 time_delta = systim_next - systim;
4372 temp = time_delta;
4373 /* VMWare users have seen incvalue of zero, don't div / 0 */
4374 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4375
4376 systim = systim_next;
4377
4378 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4379 break;
4380 }
4381
4382 return systim;
4383 }
4384
4385 /**
4386 * e1000e_read_systim - read SYSTIM register
4387 * @adapter: board private structure
4388 * @sts: structure which will contain system time before and after reading
4389 * SYSTIML, may be NULL
4390 **/
4391 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4392 struct ptp_system_timestamp *sts)
4393 {
4394 struct e1000_hw *hw = &adapter->hw;
4395 u32 systimel, systimel_2, systimeh;
4396 u64 systim;
4397 /* SYSTIMH latching upon SYSTIML read does not work well.
4398 * This means that if SYSTIML overflows after we read it but before
4399 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4400 * will experience a huge non linear increment in the systime value
4401 * to fix that we test for overflow and if true, we re-read systime.
4402 */
4403 ptp_read_system_prets(sts);
4404 systimel = er32(SYSTIML);
4405 ptp_read_system_postts(sts);
4406 systimeh = er32(SYSTIMH);
4407 /* Is systimel is so large that overflow is possible? */
4408 if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4409 ptp_read_system_prets(sts);
4410 systimel_2 = er32(SYSTIML);
4411 ptp_read_system_postts(sts);
4412 if (systimel > systimel_2) {
4413 /* There was an overflow, read again SYSTIMH, and use
4414 * systimel_2
4415 */
4416 systimeh = er32(SYSTIMH);
4417 systimel = systimel_2;
4418 }
4419 }
4420 systim = (u64)systimel;
4421 systim |= (u64)systimeh << 32;
4422
4423 if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4424 systim = e1000e_sanitize_systim(hw, systim, sts);
4425
4426 return systim;
4427 }
4428
4429 /**
4430 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4431 * @cc: cyclecounter structure
4432 **/
4433 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4434 {
4435 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4436 cc);
4437
4438 return e1000e_read_systim(adapter, NULL);
4439 }
4440
4441 /**
4442 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4443 * @adapter: board private structure to initialize
4444 *
4445 * e1000_sw_init initializes the Adapter private data structure.
4446 * Fields are initialized based on PCI device information and
4447 * OS network device settings (MTU size).
4448 **/
4449 static int e1000_sw_init(struct e1000_adapter *adapter)
4450 {
4451 struct net_device *netdev = adapter->netdev;
4452
4453 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4454 adapter->rx_ps_bsize0 = 128;
4455 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4456 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4457 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4458 adapter->rx_ring_count = E1000_DEFAULT_RXD;
4459
4460 spin_lock_init(&adapter->stats64_lock);
4461
4462 e1000e_set_interrupt_capability(adapter);
4463
4464 if (e1000_alloc_queues(adapter))
4465 return -ENOMEM;
4466
4467 /* Setup hardware time stamping cyclecounter */
4468 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4469 adapter->cc.read = e1000e_cyclecounter_read;
4470 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4471 adapter->cc.mult = 1;
4472 /* cc.shift set in e1000e_get_base_tininca() */
4473
4474 spin_lock_init(&adapter->systim_lock);
4475 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4476 }
4477
4478 /* Explicitly disable IRQ since the NIC can be in any state. */
4479 e1000_irq_disable(adapter);
4480
4481 set_bit(__E1000_DOWN, &adapter->state);
4482 return 0;
4483 }
4484
4485 /**
4486 * e1000_intr_msi_test - Interrupt Handler
4487 * @irq: interrupt number
4488 * @data: pointer to a network interface device structure
4489 **/
4490 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4491 {
4492 struct net_device *netdev = data;
4493 struct e1000_adapter *adapter = netdev_priv(netdev);
4494 struct e1000_hw *hw = &adapter->hw;
4495 u32 icr = er32(ICR);
4496
4497 e_dbg("icr is %08X\n", icr);
4498 if (icr & E1000_ICR_RXSEQ) {
4499 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4500 /* Force memory writes to complete before acknowledging the
4501 * interrupt is handled.
4502 */
4503 wmb();
4504 }
4505
4506 return IRQ_HANDLED;
4507 }
4508
4509 /**
4510 * e1000_test_msi_interrupt - Returns 0 for successful test
4511 * @adapter: board private struct
4512 *
4513 * code flow taken from tg3.c
4514 **/
4515 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4516 {
4517 struct net_device *netdev = adapter->netdev;
4518 struct e1000_hw *hw = &adapter->hw;
4519 int err;
4520
4521 /* poll_enable hasn't been called yet, so don't need disable */
4522 /* clear any pending events */
4523 er32(ICR);
4524
4525 /* free the real vector and request a test handler */
4526 e1000_free_irq(adapter);
4527 e1000e_reset_interrupt_capability(adapter);
4528
4529 /* Assume that the test fails, if it succeeds then the test
4530 * MSI irq handler will unset this flag
4531 */
4532 adapter->flags |= FLAG_MSI_TEST_FAILED;
4533
4534 err = pci_enable_msi(adapter->pdev);
4535 if (err)
4536 goto msi_test_failed;
4537
4538 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4539 netdev->name, netdev);
4540 if (err) {
4541 pci_disable_msi(adapter->pdev);
4542 goto msi_test_failed;
4543 }
4544
4545 /* Force memory writes to complete before enabling and firing an
4546 * interrupt.
4547 */
4548 wmb();
4549
4550 e1000_irq_enable(adapter);
4551
4552 /* fire an unusual interrupt on the test handler */
4553 ew32(ICS, E1000_ICS_RXSEQ);
4554 e1e_flush();
4555 msleep(100);
4556
4557 e1000_irq_disable(adapter);
4558
4559 rmb(); /* read flags after interrupt has been fired */
4560
4561 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4562 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4563 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4564 } else {
4565 e_dbg("MSI interrupt test succeeded!\n");
4566 }
4567
4568 free_irq(adapter->pdev->irq, netdev);
4569 pci_disable_msi(adapter->pdev);
4570
4571 msi_test_failed:
4572 e1000e_set_interrupt_capability(adapter);
4573 return e1000_request_irq(adapter);
4574 }
4575
4576 /**
4577 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4578 * @adapter: board private struct
4579 *
4580 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4581 **/
4582 static int e1000_test_msi(struct e1000_adapter *adapter)
4583 {
4584 int err;
4585 u16 pci_cmd;
4586
4587 if (!(adapter->flags & FLAG_MSI_ENABLED))
4588 return 0;
4589
4590 /* disable SERR in case the MSI write causes a master abort */
4591 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4592 if (pci_cmd & PCI_COMMAND_SERR)
4593 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4594 pci_cmd & ~PCI_COMMAND_SERR);
4595
4596 err = e1000_test_msi_interrupt(adapter);
4597
4598 /* re-enable SERR */
4599 if (pci_cmd & PCI_COMMAND_SERR) {
4600 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4601 pci_cmd |= PCI_COMMAND_SERR;
4602 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4603 }
4604
4605 return err;
4606 }
4607
4608 /**
4609 * e1000e_open - Called when a network interface is made active
4610 * @netdev: network interface device structure
4611 *
4612 * Returns 0 on success, negative value on failure
4613 *
4614 * The open entry point is called when a network interface is made
4615 * active by the system (IFF_UP). At this point all resources needed
4616 * for transmit and receive operations are allocated, the interrupt
4617 * handler is registered with the OS, the watchdog timer is started,
4618 * and the stack is notified that the interface is ready.
4619 **/
4620 int e1000e_open(struct net_device *netdev)
4621 {
4622 struct e1000_adapter *adapter = netdev_priv(netdev);
4623 struct e1000_hw *hw = &adapter->hw;
4624 struct pci_dev *pdev = adapter->pdev;
4625 int err;
4626
4627 /* disallow open during test */
4628 if (test_bit(__E1000_TESTING, &adapter->state))
4629 return -EBUSY;
4630
4631 pm_runtime_get_sync(&pdev->dev);
4632
4633 netif_carrier_off(netdev);
4634 netif_stop_queue(netdev);
4635
4636 /* allocate transmit descriptors */
4637 err = e1000e_setup_tx_resources(adapter->tx_ring);
4638 if (err)
4639 goto err_setup_tx;
4640
4641 /* allocate receive descriptors */
4642 err = e1000e_setup_rx_resources(adapter->rx_ring);
4643 if (err)
4644 goto err_setup_rx;
4645
4646 /* If AMT is enabled, let the firmware know that the network
4647 * interface is now open and reset the part to a known state.
4648 */
4649 if (adapter->flags & FLAG_HAS_AMT) {
4650 e1000e_get_hw_control(adapter);
4651 e1000e_reset(adapter);
4652 }
4653
4654 e1000e_power_up_phy(adapter);
4655
4656 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4657 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4658 e1000_update_mng_vlan(adapter);
4659
4660 /* DMA latency requirement to workaround jumbo issue */
4661 cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4662
4663 /* before we allocate an interrupt, we must be ready to handle it.
4664 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4665 * as soon as we call pci_request_irq, so we have to setup our
4666 * clean_rx handler before we do so.
4667 */
4668 e1000_configure(adapter);
4669
4670 err = e1000_request_irq(adapter);
4671 if (err)
4672 goto err_req_irq;
4673
4674 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4675 * ignore e1000e MSI messages, which means we need to test our MSI
4676 * interrupt now
4677 */
4678 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4679 err = e1000_test_msi(adapter);
4680 if (err) {
4681 e_err("Interrupt allocation failed\n");
4682 goto err_req_irq;
4683 }
4684 }
4685
4686 /* From here on the code is the same as e1000e_up() */
4687 clear_bit(__E1000_DOWN, &adapter->state);
4688
4689 napi_enable(&adapter->napi);
4690
4691 e1000_irq_enable(adapter);
4692
4693 adapter->tx_hang_recheck = false;
4694
4695 hw->mac.get_link_status = true;
4696 pm_runtime_put(&pdev->dev);
4697
4698 e1000e_trigger_lsc(adapter);
4699
4700 return 0;
4701
4702 err_req_irq:
4703 cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4704 e1000e_release_hw_control(adapter);
4705 e1000_power_down_phy(adapter);
4706 e1000e_free_rx_resources(adapter->rx_ring);
4707 err_setup_rx:
4708 e1000e_free_tx_resources(adapter->tx_ring);
4709 err_setup_tx:
4710 e1000e_reset(adapter);
4711 pm_runtime_put_sync(&pdev->dev);
4712
4713 return err;
4714 }
4715
4716 /**
4717 * e1000e_close - Disables a network interface
4718 * @netdev: network interface device structure
4719 *
4720 * Returns 0, this is not allowed to fail
4721 *
4722 * The close entry point is called when an interface is de-activated
4723 * by the OS. The hardware is still under the drivers control, but
4724 * needs to be disabled. A global MAC reset is issued to stop the
4725 * hardware, and all transmit and receive resources are freed.
4726 **/
4727 int e1000e_close(struct net_device *netdev)
4728 {
4729 struct e1000_adapter *adapter = netdev_priv(netdev);
4730 struct pci_dev *pdev = adapter->pdev;
4731 int count = E1000_CHECK_RESET_COUNT;
4732
4733 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4734 usleep_range(10000, 11000);
4735
4736 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4737
4738 pm_runtime_get_sync(&pdev->dev);
4739
4740 if (netif_device_present(netdev)) {
4741 e1000e_down(adapter, true);
4742 e1000_free_irq(adapter);
4743
4744 /* Link status message must follow this format */
4745 netdev_info(netdev, "NIC Link is Down\n");
4746 }
4747
4748 napi_disable(&adapter->napi);
4749
4750 e1000e_free_tx_resources(adapter->tx_ring);
4751 e1000e_free_rx_resources(adapter->rx_ring);
4752
4753 /* kill manageability vlan ID if supported, but not if a vlan with
4754 * the same ID is registered on the host OS (let 8021q kill it)
4755 */
4756 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4757 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4758 adapter->mng_vlan_id);
4759
4760 /* If AMT is enabled, let the firmware know that the network
4761 * interface is now closed
4762 */
4763 if ((adapter->flags & FLAG_HAS_AMT) &&
4764 !test_bit(__E1000_TESTING, &adapter->state))
4765 e1000e_release_hw_control(adapter);
4766
4767 cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4768
4769 pm_runtime_put_sync(&pdev->dev);
4770
4771 return 0;
4772 }
4773
4774 /**
4775 * e1000_set_mac - Change the Ethernet Address of the NIC
4776 * @netdev: network interface device structure
4777 * @p: pointer to an address structure
4778 *
4779 * Returns 0 on success, negative on failure
4780 **/
4781 static int e1000_set_mac(struct net_device *netdev, void *p)
4782 {
4783 struct e1000_adapter *adapter = netdev_priv(netdev);
4784 struct e1000_hw *hw = &adapter->hw;
4785 struct sockaddr *addr = p;
4786
4787 if (!is_valid_ether_addr(addr->sa_data))
4788 return -EADDRNOTAVAIL;
4789
4790 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4791 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4792
4793 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4794
4795 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4796 /* activate the work around */
4797 e1000e_set_laa_state_82571(&adapter->hw, 1);
4798
4799 /* Hold a copy of the LAA in RAR[14] This is done so that
4800 * between the time RAR[0] gets clobbered and the time it
4801 * gets fixed (in e1000_watchdog), the actual LAA is in one
4802 * of the RARs and no incoming packets directed to this port
4803 * are dropped. Eventually the LAA will be in RAR[0] and
4804 * RAR[14]
4805 */
4806 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4807 adapter->hw.mac.rar_entry_count - 1);
4808 }
4809
4810 return 0;
4811 }
4812
4813 /**
4814 * e1000e_update_phy_task - work thread to update phy
4815 * @work: pointer to our work struct
4816 *
4817 * this worker thread exists because we must acquire a
4818 * semaphore to read the phy, which we could msleep while
4819 * waiting for it, and we can't msleep in a timer.
4820 **/
4821 static void e1000e_update_phy_task(struct work_struct *work)
4822 {
4823 struct e1000_adapter *adapter = container_of(work,
4824 struct e1000_adapter,
4825 update_phy_task);
4826 struct e1000_hw *hw = &adapter->hw;
4827
4828 if (test_bit(__E1000_DOWN, &adapter->state))
4829 return;
4830
4831 e1000_get_phy_info(hw);
4832
4833 /* Enable EEE on 82579 after link up */
4834 if (hw->phy.type >= e1000_phy_82579)
4835 e1000_set_eee_pchlan(hw);
4836 }
4837
4838 /**
4839 * e1000_update_phy_info - timre call-back to update PHY info
4840 * @t: pointer to timer_list containing private info adapter
4841 *
4842 * Need to wait a few seconds after link up to get diagnostic information from
4843 * the phy
4844 **/
4845 static void e1000_update_phy_info(struct timer_list *t)
4846 {
4847 struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4848
4849 if (test_bit(__E1000_DOWN, &adapter->state))
4850 return;
4851
4852 schedule_work(&adapter->update_phy_task);
4853 }
4854
4855 /**
4856 * e1000e_update_phy_stats - Update the PHY statistics counters
4857 * @adapter: board private structure
4858 *
4859 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4860 **/
4861 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4862 {
4863 struct e1000_hw *hw = &adapter->hw;
4864 s32 ret_val;
4865 u16 phy_data;
4866
4867 ret_val = hw->phy.ops.acquire(hw);
4868 if (ret_val)
4869 return;
4870
4871 /* A page set is expensive so check if already on desired page.
4872 * If not, set to the page with the PHY status registers.
4873 */
4874 hw->phy.addr = 1;
4875 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4876 &phy_data);
4877 if (ret_val)
4878 goto release;
4879 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4880 ret_val = hw->phy.ops.set_page(hw,
4881 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4882 if (ret_val)
4883 goto release;
4884 }
4885
4886 /* Single Collision Count */
4887 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4888 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4889 if (!ret_val)
4890 adapter->stats.scc += phy_data;
4891
4892 /* Excessive Collision Count */
4893 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4894 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4895 if (!ret_val)
4896 adapter->stats.ecol += phy_data;
4897
4898 /* Multiple Collision Count */
4899 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4900 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4901 if (!ret_val)
4902 adapter->stats.mcc += phy_data;
4903
4904 /* Late Collision Count */
4905 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4906 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4907 if (!ret_val)
4908 adapter->stats.latecol += phy_data;
4909
4910 /* Collision Count - also used for adaptive IFS */
4911 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4912 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4913 if (!ret_val)
4914 hw->mac.collision_delta = phy_data;
4915
4916 /* Defer Count */
4917 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4918 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4919 if (!ret_val)
4920 adapter->stats.dc += phy_data;
4921
4922 /* Transmit with no CRS */
4923 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4924 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4925 if (!ret_val)
4926 adapter->stats.tncrs += phy_data;
4927
4928 release:
4929 hw->phy.ops.release(hw);
4930 }
4931
4932 /**
4933 * e1000e_update_stats - Update the board statistics counters
4934 * @adapter: board private structure
4935 **/
4936 static void e1000e_update_stats(struct e1000_adapter *adapter)
4937 {
4938 struct net_device *netdev = adapter->netdev;
4939 struct e1000_hw *hw = &adapter->hw;
4940 struct pci_dev *pdev = adapter->pdev;
4941
4942 /* Prevent stats update while adapter is being reset, or if the pci
4943 * connection is down.
4944 */
4945 if (adapter->link_speed == 0)
4946 return;
4947 if (pci_channel_offline(pdev))
4948 return;
4949
4950 adapter->stats.crcerrs += er32(CRCERRS);
4951 adapter->stats.gprc += er32(GPRC);
4952 adapter->stats.gorc += er32(GORCL);
4953 er32(GORCH); /* Clear gorc */
4954 adapter->stats.bprc += er32(BPRC);
4955 adapter->stats.mprc += er32(MPRC);
4956 adapter->stats.roc += er32(ROC);
4957
4958 adapter->stats.mpc += er32(MPC);
4959
4960 /* Half-duplex statistics */
4961 if (adapter->link_duplex == HALF_DUPLEX) {
4962 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4963 e1000e_update_phy_stats(adapter);
4964 } else {
4965 adapter->stats.scc += er32(SCC);
4966 adapter->stats.ecol += er32(ECOL);
4967 adapter->stats.mcc += er32(MCC);
4968 adapter->stats.latecol += er32(LATECOL);
4969 adapter->stats.dc += er32(DC);
4970
4971 hw->mac.collision_delta = er32(COLC);
4972
4973 if ((hw->mac.type != e1000_82574) &&
4974 (hw->mac.type != e1000_82583))
4975 adapter->stats.tncrs += er32(TNCRS);
4976 }
4977 adapter->stats.colc += hw->mac.collision_delta;
4978 }
4979
4980 adapter->stats.xonrxc += er32(XONRXC);
4981 adapter->stats.xontxc += er32(XONTXC);
4982 adapter->stats.xoffrxc += er32(XOFFRXC);
4983 adapter->stats.xofftxc += er32(XOFFTXC);
4984 adapter->stats.gptc += er32(GPTC);
4985 adapter->stats.gotc += er32(GOTCL);
4986 er32(GOTCH); /* Clear gotc */
4987 adapter->stats.rnbc += er32(RNBC);
4988 adapter->stats.ruc += er32(RUC);
4989
4990 adapter->stats.mptc += er32(MPTC);
4991 adapter->stats.bptc += er32(BPTC);
4992
4993 /* used for adaptive IFS */
4994
4995 hw->mac.tx_packet_delta = er32(TPT);
4996 adapter->stats.tpt += hw->mac.tx_packet_delta;
4997
4998 adapter->stats.algnerrc += er32(ALGNERRC);
4999 adapter->stats.rxerrc += er32(RXERRC);
5000 adapter->stats.cexterr += er32(CEXTERR);
5001 adapter->stats.tsctc += er32(TSCTC);
5002 adapter->stats.tsctfc += er32(TSCTFC);
5003
5004 /* Fill out the OS statistics structure */
5005 netdev->stats.multicast = adapter->stats.mprc;
5006 netdev->stats.collisions = adapter->stats.colc;
5007
5008 /* Rx Errors */
5009
5010 /* RLEC on some newer hardware can be incorrect so build
5011 * our own version based on RUC and ROC
5012 */
5013 netdev->stats.rx_errors = adapter->stats.rxerrc +
5014 adapter->stats.crcerrs + adapter->stats.algnerrc +
5015 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5016 netdev->stats.rx_length_errors = adapter->stats.ruc +
5017 adapter->stats.roc;
5018 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5019 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5020 netdev->stats.rx_missed_errors = adapter->stats.mpc;
5021
5022 /* Tx Errors */
5023 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5024 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5025 netdev->stats.tx_window_errors = adapter->stats.latecol;
5026 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5027
5028 /* Tx Dropped needs to be maintained elsewhere */
5029
5030 /* Management Stats */
5031 adapter->stats.mgptc += er32(MGTPTC);
5032 adapter->stats.mgprc += er32(MGTPRC);
5033 adapter->stats.mgpdc += er32(MGTPDC);
5034
5035 /* Correctable ECC Errors */
5036 if (hw->mac.type >= e1000_pch_lpt) {
5037 u32 pbeccsts = er32(PBECCSTS);
5038
5039 adapter->corr_errors +=
5040 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5041 adapter->uncorr_errors +=
5042 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5043 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5044 }
5045 }
5046
5047 /**
5048 * e1000_phy_read_status - Update the PHY register status snapshot
5049 * @adapter: board private structure
5050 **/
5051 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5052 {
5053 struct e1000_hw *hw = &adapter->hw;
5054 struct e1000_phy_regs *phy = &adapter->phy_regs;
5055
5056 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5057 (er32(STATUS) & E1000_STATUS_LU) &&
5058 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5059 int ret_val;
5060
5061 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5062 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5063 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5064 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5065 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5066 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5067 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5068 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5069 if (ret_val)
5070 e_warn("Error reading PHY register\n");
5071 } else {
5072 /* Do not read PHY registers if link is not up
5073 * Set values to typical power-on defaults
5074 */
5075 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5076 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5077 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5078 BMSR_ERCAP);
5079 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5080 ADVERTISE_ALL | ADVERTISE_CSMA);
5081 phy->lpa = 0;
5082 phy->expansion = EXPANSION_ENABLENPAGE;
5083 phy->ctrl1000 = ADVERTISE_1000FULL;
5084 phy->stat1000 = 0;
5085 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5086 }
5087 }
5088
5089 static void e1000_print_link_info(struct e1000_adapter *adapter)
5090 {
5091 struct e1000_hw *hw = &adapter->hw;
5092 u32 ctrl = er32(CTRL);
5093
5094 /* Link status message must follow this format for user tools */
5095 netdev_info(adapter->netdev,
5096 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5097 adapter->link_speed,
5098 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5099 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5100 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5101 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5102 }
5103
5104 static bool e1000e_has_link(struct e1000_adapter *adapter)
5105 {
5106 struct e1000_hw *hw = &adapter->hw;
5107 bool link_active = false;
5108 s32 ret_val = 0;
5109
5110 /* get_link_status is set on LSC (link status) interrupt or
5111 * Rx sequence error interrupt. get_link_status will stay
5112 * true until the check_for_link establishes link
5113 * for copper adapters ONLY
5114 */
5115 switch (hw->phy.media_type) {
5116 case e1000_media_type_copper:
5117 if (hw->mac.get_link_status) {
5118 ret_val = hw->mac.ops.check_for_link(hw);
5119 link_active = !hw->mac.get_link_status;
5120 } else {
5121 link_active = true;
5122 }
5123 break;
5124 case e1000_media_type_fiber:
5125 ret_val = hw->mac.ops.check_for_link(hw);
5126 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5127 break;
5128 case e1000_media_type_internal_serdes:
5129 ret_val = hw->mac.ops.check_for_link(hw);
5130 link_active = hw->mac.serdes_has_link;
5131 break;
5132 default:
5133 case e1000_media_type_unknown:
5134 break;
5135 }
5136
5137 if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5138 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5139 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5140 e_info("Gigabit has been disabled, downgrading speed\n");
5141 }
5142
5143 return link_active;
5144 }
5145
5146 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5147 {
5148 /* make sure the receive unit is started */
5149 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5150 (adapter->flags & FLAG_RESTART_NOW)) {
5151 struct e1000_hw *hw = &adapter->hw;
5152 u32 rctl = er32(RCTL);
5153
5154 ew32(RCTL, rctl | E1000_RCTL_EN);
5155 adapter->flags &= ~FLAG_RESTART_NOW;
5156 }
5157 }
5158
5159 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5160 {
5161 struct e1000_hw *hw = &adapter->hw;
5162
5163 /* With 82574 controllers, PHY needs to be checked periodically
5164 * for hung state and reset, if two calls return true
5165 */
5166 if (e1000_check_phy_82574(hw))
5167 adapter->phy_hang_count++;
5168 else
5169 adapter->phy_hang_count = 0;
5170
5171 if (adapter->phy_hang_count > 1) {
5172 adapter->phy_hang_count = 0;
5173 e_dbg("PHY appears hung - resetting\n");
5174 schedule_work(&adapter->reset_task);
5175 }
5176 }
5177
5178 /**
5179 * e1000_watchdog - Timer Call-back
5180 * @t: pointer to timer_list containing private info adapter
5181 **/
5182 static void e1000_watchdog(struct timer_list *t)
5183 {
5184 struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5185
5186 /* Do the rest outside of interrupt context */
5187 schedule_work(&adapter->watchdog_task);
5188
5189 /* TODO: make this use queue_delayed_work() */
5190 }
5191
5192 static void e1000_watchdog_task(struct work_struct *work)
5193 {
5194 struct e1000_adapter *adapter = container_of(work,
5195 struct e1000_adapter,
5196 watchdog_task);
5197 struct net_device *netdev = adapter->netdev;
5198 struct e1000_mac_info *mac = &adapter->hw.mac;
5199 struct e1000_phy_info *phy = &adapter->hw.phy;
5200 struct e1000_ring *tx_ring = adapter->tx_ring;
5201 u32 dmoff_exit_timeout = 100, tries = 0;
5202 struct e1000_hw *hw = &adapter->hw;
5203 u32 link, tctl, pcim_state;
5204
5205 if (test_bit(__E1000_DOWN, &adapter->state))
5206 return;
5207
5208 link = e1000e_has_link(adapter);
5209 if ((netif_carrier_ok(netdev)) && link) {
5210 /* Cancel scheduled suspend requests. */
5211 pm_runtime_resume(netdev->dev.parent);
5212
5213 e1000e_enable_receives(adapter);
5214 goto link_up;
5215 }
5216
5217 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5218 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5219 e1000_update_mng_vlan(adapter);
5220
5221 if (link) {
5222 if (!netif_carrier_ok(netdev)) {
5223 bool txb2b = true;
5224
5225 /* Cancel scheduled suspend requests. */
5226 pm_runtime_resume(netdev->dev.parent);
5227
5228 /* Checking if MAC is in DMoff state*/
5229 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5230 pcim_state = er32(STATUS);
5231 while (pcim_state & E1000_STATUS_PCIM_STATE) {
5232 if (tries++ == dmoff_exit_timeout) {
5233 e_dbg("Error in exiting dmoff\n");
5234 break;
5235 }
5236 usleep_range(10000, 20000);
5237 pcim_state = er32(STATUS);
5238
5239 /* Checking if MAC exited DMoff state */
5240 if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5241 e1000_phy_hw_reset(&adapter->hw);
5242 }
5243 }
5244
5245 /* update snapshot of PHY registers on LSC */
5246 e1000_phy_read_status(adapter);
5247 mac->ops.get_link_up_info(&adapter->hw,
5248 &adapter->link_speed,
5249 &adapter->link_duplex);
5250 e1000_print_link_info(adapter);
5251
5252 /* check if SmartSpeed worked */
5253 e1000e_check_downshift(hw);
5254 if (phy->speed_downgraded)
5255 netdev_warn(netdev,
5256 "Link Speed was downgraded by SmartSpeed\n");
5257
5258 /* On supported PHYs, check for duplex mismatch only
5259 * if link has autonegotiated at 10/100 half
5260 */
5261 if ((hw->phy.type == e1000_phy_igp_3 ||
5262 hw->phy.type == e1000_phy_bm) &&
5263 hw->mac.autoneg &&
5264 (adapter->link_speed == SPEED_10 ||
5265 adapter->link_speed == SPEED_100) &&
5266 (adapter->link_duplex == HALF_DUPLEX)) {
5267 u16 autoneg_exp;
5268
5269 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5270
5271 if (!(autoneg_exp & EXPANSION_NWAY))
5272 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5273 }
5274
5275 /* adjust timeout factor according to speed/duplex */
5276 adapter->tx_timeout_factor = 1;
5277 switch (adapter->link_speed) {
5278 case SPEED_10:
5279 txb2b = false;
5280 adapter->tx_timeout_factor = 16;
5281 break;
5282 case SPEED_100:
5283 txb2b = false;
5284 adapter->tx_timeout_factor = 10;
5285 break;
5286 }
5287
5288 /* workaround: re-program speed mode bit after
5289 * link-up event
5290 */
5291 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5292 !txb2b) {
5293 u32 tarc0;
5294
5295 tarc0 = er32(TARC(0));
5296 tarc0 &= ~SPEED_MODE_BIT;
5297 ew32(TARC(0), tarc0);
5298 }
5299
5300 /* disable TSO for pcie and 10/100 speeds, to avoid
5301 * some hardware issues
5302 */
5303 if (!(adapter->flags & FLAG_TSO_FORCE)) {
5304 switch (adapter->link_speed) {
5305 case SPEED_10:
5306 case SPEED_100:
5307 e_info("10/100 speed: disabling TSO\n");
5308 netdev->features &= ~NETIF_F_TSO;
5309 netdev->features &= ~NETIF_F_TSO6;
5310 break;
5311 case SPEED_1000:
5312 netdev->features |= NETIF_F_TSO;
5313 netdev->features |= NETIF_F_TSO6;
5314 break;
5315 default:
5316 /* oops */
5317 break;
5318 }
5319 if (hw->mac.type == e1000_pch_spt) {
5320 netdev->features &= ~NETIF_F_TSO;
5321 netdev->features &= ~NETIF_F_TSO6;
5322 }
5323 }
5324
5325 /* enable transmits in the hardware, need to do this
5326 * after setting TARC(0)
5327 */
5328 tctl = er32(TCTL);
5329 tctl |= E1000_TCTL_EN;
5330 ew32(TCTL, tctl);
5331
5332 /* Perform any post-link-up configuration before
5333 * reporting link up.
5334 */
5335 if (phy->ops.cfg_on_link_up)
5336 phy->ops.cfg_on_link_up(hw);
5337
5338 netif_wake_queue(netdev);
5339 netif_carrier_on(netdev);
5340
5341 if (!test_bit(__E1000_DOWN, &adapter->state))
5342 mod_timer(&adapter->phy_info_timer,
5343 round_jiffies(jiffies + 2 * HZ));
5344 }
5345 } else {
5346 if (netif_carrier_ok(netdev)) {
5347 adapter->link_speed = 0;
5348 adapter->link_duplex = 0;
5349 /* Link status message must follow this format */
5350 netdev_info(netdev, "NIC Link is Down\n");
5351 netif_carrier_off(netdev);
5352 netif_stop_queue(netdev);
5353 if (!test_bit(__E1000_DOWN, &adapter->state))
5354 mod_timer(&adapter->phy_info_timer,
5355 round_jiffies(jiffies + 2 * HZ));
5356
5357 /* 8000ES2LAN requires a Rx packet buffer work-around
5358 * on link down event; reset the controller to flush
5359 * the Rx packet buffer.
5360 */
5361 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5362 adapter->flags |= FLAG_RESTART_NOW;
5363 else
5364 pm_schedule_suspend(netdev->dev.parent,
5365 LINK_TIMEOUT);
5366 }
5367 }
5368
5369 link_up:
5370 spin_lock(&adapter->stats64_lock);
5371 e1000e_update_stats(adapter);
5372
5373 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5374 adapter->tpt_old = adapter->stats.tpt;
5375 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5376 adapter->colc_old = adapter->stats.colc;
5377
5378 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5379 adapter->gorc_old = adapter->stats.gorc;
5380 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5381 adapter->gotc_old = adapter->stats.gotc;
5382 spin_unlock(&adapter->stats64_lock);
5383
5384 /* If the link is lost the controller stops DMA, but
5385 * if there is queued Tx work it cannot be done. So
5386 * reset the controller to flush the Tx packet buffers.
5387 */
5388 if (!netif_carrier_ok(netdev) &&
5389 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5390 adapter->flags |= FLAG_RESTART_NOW;
5391
5392 /* If reset is necessary, do it outside of interrupt context. */
5393 if (adapter->flags & FLAG_RESTART_NOW) {
5394 schedule_work(&adapter->reset_task);
5395 /* return immediately since reset is imminent */
5396 return;
5397 }
5398
5399 e1000e_update_adaptive(&adapter->hw);
5400
5401 /* Simple mode for Interrupt Throttle Rate (ITR) */
5402 if (adapter->itr_setting == 4) {
5403 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5404 * Total asymmetrical Tx or Rx gets ITR=8000;
5405 * everyone else is between 2000-8000.
5406 */
5407 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5408 u32 dif = (adapter->gotc > adapter->gorc ?
5409 adapter->gotc - adapter->gorc :
5410 adapter->gorc - adapter->gotc) / 10000;
5411 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5412
5413 e1000e_write_itr(adapter, itr);
5414 }
5415
5416 /* Cause software interrupt to ensure Rx ring is cleaned */
5417 if (adapter->msix_entries)
5418 ew32(ICS, adapter->rx_ring->ims_val);
5419 else
5420 ew32(ICS, E1000_ICS_RXDMT0);
5421
5422 /* flush pending descriptors to memory before detecting Tx hang */
5423 e1000e_flush_descriptors(adapter);
5424
5425 /* Force detection of hung controller every watchdog period */
5426 adapter->detect_tx_hung = true;
5427
5428 /* With 82571 controllers, LAA may be overwritten due to controller
5429 * reset from the other port. Set the appropriate LAA in RAR[0]
5430 */
5431 if (e1000e_get_laa_state_82571(hw))
5432 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5433
5434 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5435 e1000e_check_82574_phy_workaround(adapter);
5436
5437 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5438 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5439 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5440 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5441 er32(RXSTMPH);
5442 adapter->rx_hwtstamp_cleared++;
5443 } else {
5444 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5445 }
5446 }
5447
5448 /* Reset the timer */
5449 if (!test_bit(__E1000_DOWN, &adapter->state))
5450 mod_timer(&adapter->watchdog_timer,
5451 round_jiffies(jiffies + 2 * HZ));
5452 }
5453
5454 #define E1000_TX_FLAGS_CSUM 0x00000001
5455 #define E1000_TX_FLAGS_VLAN 0x00000002
5456 #define E1000_TX_FLAGS_TSO 0x00000004
5457 #define E1000_TX_FLAGS_IPV4 0x00000008
5458 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5459 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5460 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5461 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5462
5463 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5464 __be16 protocol)
5465 {
5466 struct e1000_context_desc *context_desc;
5467 struct e1000_buffer *buffer_info;
5468 unsigned int i;
5469 u32 cmd_length = 0;
5470 u16 ipcse = 0, mss;
5471 u8 ipcss, ipcso, tucss, tucso, hdr_len;
5472 int err;
5473
5474 if (!skb_is_gso(skb))
5475 return 0;
5476
5477 err = skb_cow_head(skb, 0);
5478 if (err < 0)
5479 return err;
5480
5481 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5482 mss = skb_shinfo(skb)->gso_size;
5483 if (protocol == htons(ETH_P_IP)) {
5484 struct iphdr *iph = ip_hdr(skb);
5485 iph->tot_len = 0;
5486 iph->check = 0;
5487 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5488 0, IPPROTO_TCP, 0);
5489 cmd_length = E1000_TXD_CMD_IP;
5490 ipcse = skb_transport_offset(skb) - 1;
5491 } else if (skb_is_gso_v6(skb)) {
5492 tcp_v6_gso_csum_prep(skb);
5493 ipcse = 0;
5494 }
5495 ipcss = skb_network_offset(skb);
5496 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5497 tucss = skb_transport_offset(skb);
5498 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5499
5500 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5501 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5502
5503 i = tx_ring->next_to_use;
5504 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5505 buffer_info = &tx_ring->buffer_info[i];
5506
5507 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5508 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5509 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5510 context_desc->upper_setup.tcp_fields.tucss = tucss;
5511 context_desc->upper_setup.tcp_fields.tucso = tucso;
5512 context_desc->upper_setup.tcp_fields.tucse = 0;
5513 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5514 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5515 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5516
5517 buffer_info->time_stamp = jiffies;
5518 buffer_info->next_to_watch = i;
5519
5520 i++;
5521 if (i == tx_ring->count)
5522 i = 0;
5523 tx_ring->next_to_use = i;
5524
5525 return 1;
5526 }
5527
5528 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5529 __be16 protocol)
5530 {
5531 struct e1000_adapter *adapter = tx_ring->adapter;
5532 struct e1000_context_desc *context_desc;
5533 struct e1000_buffer *buffer_info;
5534 unsigned int i;
5535 u8 css;
5536 u32 cmd_len = E1000_TXD_CMD_DEXT;
5537
5538 if (skb->ip_summed != CHECKSUM_PARTIAL)
5539 return false;
5540
5541 switch (protocol) {
5542 case cpu_to_be16(ETH_P_IP):
5543 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5544 cmd_len |= E1000_TXD_CMD_TCP;
5545 break;
5546 case cpu_to_be16(ETH_P_IPV6):
5547 /* XXX not handling all IPV6 headers */
5548 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5549 cmd_len |= E1000_TXD_CMD_TCP;
5550 break;
5551 default:
5552 if (unlikely(net_ratelimit()))
5553 e_warn("checksum_partial proto=%x!\n",
5554 be16_to_cpu(protocol));
5555 break;
5556 }
5557
5558 css = skb_checksum_start_offset(skb);
5559
5560 i = tx_ring->next_to_use;
5561 buffer_info = &tx_ring->buffer_info[i];
5562 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5563
5564 context_desc->lower_setup.ip_config = 0;
5565 context_desc->upper_setup.tcp_fields.tucss = css;
5566 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5567 context_desc->upper_setup.tcp_fields.tucse = 0;
5568 context_desc->tcp_seg_setup.data = 0;
5569 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5570
5571 buffer_info->time_stamp = jiffies;
5572 buffer_info->next_to_watch = i;
5573
5574 i++;
5575 if (i == tx_ring->count)
5576 i = 0;
5577 tx_ring->next_to_use = i;
5578
5579 return true;
5580 }
5581
5582 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5583 unsigned int first, unsigned int max_per_txd,
5584 unsigned int nr_frags)
5585 {
5586 struct e1000_adapter *adapter = tx_ring->adapter;
5587 struct pci_dev *pdev = adapter->pdev;
5588 struct e1000_buffer *buffer_info;
5589 unsigned int len = skb_headlen(skb);
5590 unsigned int offset = 0, size, count = 0, i;
5591 unsigned int f, bytecount, segs;
5592
5593 i = tx_ring->next_to_use;
5594
5595 while (len) {
5596 buffer_info = &tx_ring->buffer_info[i];
5597 size = min(len, max_per_txd);
5598
5599 buffer_info->length = size;
5600 buffer_info->time_stamp = jiffies;
5601 buffer_info->next_to_watch = i;
5602 buffer_info->dma = dma_map_single(&pdev->dev,
5603 skb->data + offset,
5604 size, DMA_TO_DEVICE);
5605 buffer_info->mapped_as_page = false;
5606 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5607 goto dma_error;
5608
5609 len -= size;
5610 offset += size;
5611 count++;
5612
5613 if (len) {
5614 i++;
5615 if (i == tx_ring->count)
5616 i = 0;
5617 }
5618 }
5619
5620 for (f = 0; f < nr_frags; f++) {
5621 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5622
5623 len = skb_frag_size(frag);
5624 offset = 0;
5625
5626 while (len) {
5627 i++;
5628 if (i == tx_ring->count)
5629 i = 0;
5630
5631 buffer_info = &tx_ring->buffer_info[i];
5632 size = min(len, max_per_txd);
5633
5634 buffer_info->length = size;
5635 buffer_info->time_stamp = jiffies;
5636 buffer_info->next_to_watch = i;
5637 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5638 offset, size,
5639 DMA_TO_DEVICE);
5640 buffer_info->mapped_as_page = true;
5641 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5642 goto dma_error;
5643
5644 len -= size;
5645 offset += size;
5646 count++;
5647 }
5648 }
5649
5650 segs = skb_shinfo(skb)->gso_segs ? : 1;
5651 /* multiply data chunks by size of headers */
5652 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5653
5654 tx_ring->buffer_info[i].skb = skb;
5655 tx_ring->buffer_info[i].segs = segs;
5656 tx_ring->buffer_info[i].bytecount = bytecount;
5657 tx_ring->buffer_info[first].next_to_watch = i;
5658
5659 return count;
5660
5661 dma_error:
5662 dev_err(&pdev->dev, "Tx DMA map failed\n");
5663 buffer_info->dma = 0;
5664 if (count)
5665 count--;
5666
5667 while (count--) {
5668 if (i == 0)
5669 i += tx_ring->count;
5670 i--;
5671 buffer_info = &tx_ring->buffer_info[i];
5672 e1000_put_txbuf(tx_ring, buffer_info, true);
5673 }
5674
5675 return 0;
5676 }
5677
5678 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5679 {
5680 struct e1000_adapter *adapter = tx_ring->adapter;
5681 struct e1000_tx_desc *tx_desc = NULL;
5682 struct e1000_buffer *buffer_info;
5683 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5684 unsigned int i;
5685
5686 if (tx_flags & E1000_TX_FLAGS_TSO) {
5687 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5688 E1000_TXD_CMD_TSE;
5689 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5690
5691 if (tx_flags & E1000_TX_FLAGS_IPV4)
5692 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5693 }
5694
5695 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5696 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5697 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5698 }
5699
5700 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5701 txd_lower |= E1000_TXD_CMD_VLE;
5702 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5703 }
5704
5705 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5706 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5707
5708 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5709 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5710 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5711 }
5712
5713 i = tx_ring->next_to_use;
5714
5715 do {
5716 buffer_info = &tx_ring->buffer_info[i];
5717 tx_desc = E1000_TX_DESC(*tx_ring, i);
5718 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5719 tx_desc->lower.data = cpu_to_le32(txd_lower |
5720 buffer_info->length);
5721 tx_desc->upper.data = cpu_to_le32(txd_upper);
5722
5723 i++;
5724 if (i == tx_ring->count)
5725 i = 0;
5726 } while (--count > 0);
5727
5728 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5729
5730 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5731 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5732 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5733
5734 /* Force memory writes to complete before letting h/w
5735 * know there are new descriptors to fetch. (Only
5736 * applicable for weak-ordered memory model archs,
5737 * such as IA-64).
5738 */
5739 wmb();
5740
5741 tx_ring->next_to_use = i;
5742 }
5743
5744 #define MINIMUM_DHCP_PACKET_SIZE 282
5745 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5746 struct sk_buff *skb)
5747 {
5748 struct e1000_hw *hw = &adapter->hw;
5749 u16 length, offset;
5750
5751 if (skb_vlan_tag_present(skb) &&
5752 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5753 (adapter->hw.mng_cookie.status &
5754 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5755 return 0;
5756
5757 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5758 return 0;
5759
5760 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5761 return 0;
5762
5763 {
5764 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5765 struct udphdr *udp;
5766
5767 if (ip->protocol != IPPROTO_UDP)
5768 return 0;
5769
5770 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5771 if (ntohs(udp->dest) != 67)
5772 return 0;
5773
5774 offset = (u8 *)udp + 8 - skb->data;
5775 length = skb->len - offset;
5776 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5777 }
5778
5779 return 0;
5780 }
5781
5782 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5783 {
5784 struct e1000_adapter *adapter = tx_ring->adapter;
5785
5786 netif_stop_queue(adapter->netdev);
5787 /* Herbert's original patch had:
5788 * smp_mb__after_netif_stop_queue();
5789 * but since that doesn't exist yet, just open code it.
5790 */
5791 smp_mb();
5792
5793 /* We need to check again in a case another CPU has just
5794 * made room available.
5795 */
5796 if (e1000_desc_unused(tx_ring) < size)
5797 return -EBUSY;
5798
5799 /* A reprieve! */
5800 netif_start_queue(adapter->netdev);
5801 ++adapter->restart_queue;
5802 return 0;
5803 }
5804
5805 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5806 {
5807 BUG_ON(size > tx_ring->count);
5808
5809 if (e1000_desc_unused(tx_ring) >= size)
5810 return 0;
5811 return __e1000_maybe_stop_tx(tx_ring, size);
5812 }
5813
5814 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5815 struct net_device *netdev)
5816 {
5817 struct e1000_adapter *adapter = netdev_priv(netdev);
5818 struct e1000_ring *tx_ring = adapter->tx_ring;
5819 unsigned int first;
5820 unsigned int tx_flags = 0;
5821 unsigned int len = skb_headlen(skb);
5822 unsigned int nr_frags;
5823 unsigned int mss;
5824 int count = 0;
5825 int tso;
5826 unsigned int f;
5827 __be16 protocol = vlan_get_protocol(skb);
5828
5829 if (test_bit(__E1000_DOWN, &adapter->state)) {
5830 dev_kfree_skb_any(skb);
5831 return NETDEV_TX_OK;
5832 }
5833
5834 if (skb->len <= 0) {
5835 dev_kfree_skb_any(skb);
5836 return NETDEV_TX_OK;
5837 }
5838
5839 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5840 * pad skb in order to meet this minimum size requirement
5841 */
5842 if (skb_put_padto(skb, 17))
5843 return NETDEV_TX_OK;
5844
5845 mss = skb_shinfo(skb)->gso_size;
5846 if (mss) {
5847 u8 hdr_len;
5848
5849 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5850 * points to just header, pull a few bytes of payload from
5851 * frags into skb->data
5852 */
5853 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5854 /* we do this workaround for ES2LAN, but it is un-necessary,
5855 * avoiding it could save a lot of cycles
5856 */
5857 if (skb->data_len && (hdr_len == len)) {
5858 unsigned int pull_size;
5859
5860 pull_size = min_t(unsigned int, 4, skb->data_len);
5861 if (!__pskb_pull_tail(skb, pull_size)) {
5862 e_err("__pskb_pull_tail failed.\n");
5863 dev_kfree_skb_any(skb);
5864 return NETDEV_TX_OK;
5865 }
5866 len = skb_headlen(skb);
5867 }
5868 }
5869
5870 /* reserve a descriptor for the offload context */
5871 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5872 count++;
5873 count++;
5874
5875 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5876
5877 nr_frags = skb_shinfo(skb)->nr_frags;
5878 for (f = 0; f < nr_frags; f++)
5879 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5880 adapter->tx_fifo_limit);
5881
5882 if (adapter->hw.mac.tx_pkt_filtering)
5883 e1000_transfer_dhcp_info(adapter, skb);
5884
5885 /* need: count + 2 desc gap to keep tail from touching
5886 * head, otherwise try next time
5887 */
5888 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5889 return NETDEV_TX_BUSY;
5890
5891 if (skb_vlan_tag_present(skb)) {
5892 tx_flags |= E1000_TX_FLAGS_VLAN;
5893 tx_flags |= (skb_vlan_tag_get(skb) <<
5894 E1000_TX_FLAGS_VLAN_SHIFT);
5895 }
5896
5897 first = tx_ring->next_to_use;
5898
5899 tso = e1000_tso(tx_ring, skb, protocol);
5900 if (tso < 0) {
5901 dev_kfree_skb_any(skb);
5902 return NETDEV_TX_OK;
5903 }
5904
5905 if (tso)
5906 tx_flags |= E1000_TX_FLAGS_TSO;
5907 else if (e1000_tx_csum(tx_ring, skb, protocol))
5908 tx_flags |= E1000_TX_FLAGS_CSUM;
5909
5910 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5911 * 82571 hardware supports TSO capabilities for IPv6 as well...
5912 * no longer assume, we must.
5913 */
5914 if (protocol == htons(ETH_P_IP))
5915 tx_flags |= E1000_TX_FLAGS_IPV4;
5916
5917 if (unlikely(skb->no_fcs))
5918 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5919
5920 /* if count is 0 then mapping error has occurred */
5921 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5922 nr_frags);
5923 if (count) {
5924 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5925 (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5926 if (!adapter->tx_hwtstamp_skb) {
5927 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5928 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5929 adapter->tx_hwtstamp_skb = skb_get(skb);
5930 adapter->tx_hwtstamp_start = jiffies;
5931 schedule_work(&adapter->tx_hwtstamp_work);
5932 } else {
5933 adapter->tx_hwtstamp_skipped++;
5934 }
5935 }
5936
5937 skb_tx_timestamp(skb);
5938
5939 netdev_sent_queue(netdev, skb->len);
5940 e1000_tx_queue(tx_ring, tx_flags, count);
5941 /* Make sure there is space in the ring for the next send. */
5942 e1000_maybe_stop_tx(tx_ring,
5943 (MAX_SKB_FRAGS *
5944 DIV_ROUND_UP(PAGE_SIZE,
5945 adapter->tx_fifo_limit) + 2));
5946
5947 if (!netdev_xmit_more() ||
5948 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5949 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5950 e1000e_update_tdt_wa(tx_ring,
5951 tx_ring->next_to_use);
5952 else
5953 writel(tx_ring->next_to_use, tx_ring->tail);
5954 }
5955 } else {
5956 dev_kfree_skb_any(skb);
5957 tx_ring->buffer_info[first].time_stamp = 0;
5958 tx_ring->next_to_use = first;
5959 }
5960
5961 return NETDEV_TX_OK;
5962 }
5963
5964 /**
5965 * e1000_tx_timeout - Respond to a Tx Hang
5966 * @netdev: network interface device structure
5967 * @txqueue: index of the hung queue (unused)
5968 **/
5969 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5970 {
5971 struct e1000_adapter *adapter = netdev_priv(netdev);
5972
5973 /* Do the reset outside of interrupt context */
5974 adapter->tx_timeout_count++;
5975 schedule_work(&adapter->reset_task);
5976 }
5977
5978 static void e1000_reset_task(struct work_struct *work)
5979 {
5980 struct e1000_adapter *adapter;
5981 adapter = container_of(work, struct e1000_adapter, reset_task);
5982
5983 rtnl_lock();
5984 /* don't run the task if already down */
5985 if (test_bit(__E1000_DOWN, &adapter->state)) {
5986 rtnl_unlock();
5987 return;
5988 }
5989
5990 if (!(adapter->flags & FLAG_RESTART_NOW)) {
5991 e1000e_dump(adapter);
5992 e_err("Reset adapter unexpectedly\n");
5993 }
5994 e1000e_reinit_locked(adapter);
5995 rtnl_unlock();
5996 }
5997
5998 /**
5999 * e1000e_get_stats64 - Get System Network Statistics
6000 * @netdev: network interface device structure
6001 * @stats: rtnl_link_stats64 pointer
6002 *
6003 * Returns the address of the device statistics structure.
6004 **/
6005 void e1000e_get_stats64(struct net_device *netdev,
6006 struct rtnl_link_stats64 *stats)
6007 {
6008 struct e1000_adapter *adapter = netdev_priv(netdev);
6009
6010 spin_lock(&adapter->stats64_lock);
6011 e1000e_update_stats(adapter);
6012 /* Fill out the OS statistics structure */
6013 stats->rx_bytes = adapter->stats.gorc;
6014 stats->rx_packets = adapter->stats.gprc;
6015 stats->tx_bytes = adapter->stats.gotc;
6016 stats->tx_packets = adapter->stats.gptc;
6017 stats->multicast = adapter->stats.mprc;
6018 stats->collisions = adapter->stats.colc;
6019
6020 /* Rx Errors */
6021
6022 /* RLEC on some newer hardware can be incorrect so build
6023 * our own version based on RUC and ROC
6024 */
6025 stats->rx_errors = adapter->stats.rxerrc +
6026 adapter->stats.crcerrs + adapter->stats.algnerrc +
6027 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6028 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6029 stats->rx_crc_errors = adapter->stats.crcerrs;
6030 stats->rx_frame_errors = adapter->stats.algnerrc;
6031 stats->rx_missed_errors = adapter->stats.mpc;
6032
6033 /* Tx Errors */
6034 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6035 stats->tx_aborted_errors = adapter->stats.ecol;
6036 stats->tx_window_errors = adapter->stats.latecol;
6037 stats->tx_carrier_errors = adapter->stats.tncrs;
6038
6039 /* Tx Dropped needs to be maintained elsewhere */
6040
6041 spin_unlock(&adapter->stats64_lock);
6042 }
6043
6044 /**
6045 * e1000_change_mtu - Change the Maximum Transfer Unit
6046 * @netdev: network interface device structure
6047 * @new_mtu: new value for maximum frame size
6048 *
6049 * Returns 0 on success, negative on failure
6050 **/
6051 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6052 {
6053 struct e1000_adapter *adapter = netdev_priv(netdev);
6054 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6055
6056 /* Jumbo frame support */
6057 if ((new_mtu > ETH_DATA_LEN) &&
6058 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6059 e_err("Jumbo Frames not supported.\n");
6060 return -EINVAL;
6061 }
6062
6063 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6064 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6065 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6066 (new_mtu > ETH_DATA_LEN)) {
6067 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6068 return -EINVAL;
6069 }
6070
6071 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6072 usleep_range(1000, 1100);
6073 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6074 adapter->max_frame_size = max_frame;
6075 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6076 netdev->mtu, new_mtu);
6077 netdev->mtu = new_mtu;
6078
6079 pm_runtime_get_sync(netdev->dev.parent);
6080
6081 if (netif_running(netdev))
6082 e1000e_down(adapter, true);
6083
6084 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6085 * means we reserve 2 more, this pushes us to allocate from the next
6086 * larger slab size.
6087 * i.e. RXBUFFER_2048 --> size-4096 slab
6088 * However with the new *_jumbo_rx* routines, jumbo receives will use
6089 * fragmented skbs
6090 */
6091
6092 if (max_frame <= 2048)
6093 adapter->rx_buffer_len = 2048;
6094 else
6095 adapter->rx_buffer_len = 4096;
6096
6097 /* adjust allocation if LPE protects us, and we aren't using SBP */
6098 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6099 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6100
6101 if (netif_running(netdev))
6102 e1000e_up(adapter);
6103 else
6104 e1000e_reset(adapter);
6105
6106 pm_runtime_put_sync(netdev->dev.parent);
6107
6108 clear_bit(__E1000_RESETTING, &adapter->state);
6109
6110 return 0;
6111 }
6112
6113 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6114 int cmd)
6115 {
6116 struct e1000_adapter *adapter = netdev_priv(netdev);
6117 struct mii_ioctl_data *data = if_mii(ifr);
6118
6119 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6120 return -EOPNOTSUPP;
6121
6122 switch (cmd) {
6123 case SIOCGMIIPHY:
6124 data->phy_id = adapter->hw.phy.addr;
6125 break;
6126 case SIOCGMIIREG:
6127 e1000_phy_read_status(adapter);
6128
6129 switch (data->reg_num & 0x1F) {
6130 case MII_BMCR:
6131 data->val_out = adapter->phy_regs.bmcr;
6132 break;
6133 case MII_BMSR:
6134 data->val_out = adapter->phy_regs.bmsr;
6135 break;
6136 case MII_PHYSID1:
6137 data->val_out = (adapter->hw.phy.id >> 16);
6138 break;
6139 case MII_PHYSID2:
6140 data->val_out = (adapter->hw.phy.id & 0xFFFF);
6141 break;
6142 case MII_ADVERTISE:
6143 data->val_out = adapter->phy_regs.advertise;
6144 break;
6145 case MII_LPA:
6146 data->val_out = adapter->phy_regs.lpa;
6147 break;
6148 case MII_EXPANSION:
6149 data->val_out = adapter->phy_regs.expansion;
6150 break;
6151 case MII_CTRL1000:
6152 data->val_out = adapter->phy_regs.ctrl1000;
6153 break;
6154 case MII_STAT1000:
6155 data->val_out = adapter->phy_regs.stat1000;
6156 break;
6157 case MII_ESTATUS:
6158 data->val_out = adapter->phy_regs.estatus;
6159 break;
6160 default:
6161 return -EIO;
6162 }
6163 break;
6164 case SIOCSMIIREG:
6165 default:
6166 return -EOPNOTSUPP;
6167 }
6168 return 0;
6169 }
6170
6171 /**
6172 * e1000e_hwtstamp_set - control hardware time stamping
6173 * @netdev: network interface device structure
6174 * @ifr: interface request
6175 *
6176 * Outgoing time stamping can be enabled and disabled. Play nice and
6177 * disable it when requested, although it shouldn't cause any overhead
6178 * when no packet needs it. At most one packet in the queue may be
6179 * marked for time stamping, otherwise it would be impossible to tell
6180 * for sure to which packet the hardware time stamp belongs.
6181 *
6182 * Incoming time stamping has to be configured via the hardware filters.
6183 * Not all combinations are supported, in particular event type has to be
6184 * specified. Matching the kind of event packet is not supported, with the
6185 * exception of "all V2 events regardless of level 2 or 4".
6186 **/
6187 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6188 {
6189 struct e1000_adapter *adapter = netdev_priv(netdev);
6190 struct hwtstamp_config config;
6191 int ret_val;
6192
6193 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6194 return -EFAULT;
6195
6196 ret_val = e1000e_config_hwtstamp(adapter, &config);
6197 if (ret_val)
6198 return ret_val;
6199
6200 switch (config.rx_filter) {
6201 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6202 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6203 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6204 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6205 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6206 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6207 /* With V2 type filters which specify a Sync or Delay Request,
6208 * Path Delay Request/Response messages are also time stamped
6209 * by hardware so notify the caller the requested packets plus
6210 * some others are time stamped.
6211 */
6212 config.rx_filter = HWTSTAMP_FILTER_SOME;
6213 break;
6214 default:
6215 break;
6216 }
6217
6218 return copy_to_user(ifr->ifr_data, &config,
6219 sizeof(config)) ? -EFAULT : 0;
6220 }
6221
6222 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6223 {
6224 struct e1000_adapter *adapter = netdev_priv(netdev);
6225
6226 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6227 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6228 }
6229
6230 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6231 {
6232 switch (cmd) {
6233 case SIOCGMIIPHY:
6234 case SIOCGMIIREG:
6235 case SIOCSMIIREG:
6236 return e1000_mii_ioctl(netdev, ifr, cmd);
6237 case SIOCSHWTSTAMP:
6238 return e1000e_hwtstamp_set(netdev, ifr);
6239 case SIOCGHWTSTAMP:
6240 return e1000e_hwtstamp_get(netdev, ifr);
6241 default:
6242 return -EOPNOTSUPP;
6243 }
6244 }
6245
6246 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6247 {
6248 struct e1000_hw *hw = &adapter->hw;
6249 u32 i, mac_reg, wuc;
6250 u16 phy_reg, wuc_enable;
6251 int retval;
6252
6253 /* copy MAC RARs to PHY RARs */
6254 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6255
6256 retval = hw->phy.ops.acquire(hw);
6257 if (retval) {
6258 e_err("Could not acquire PHY\n");
6259 return retval;
6260 }
6261
6262 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6263 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6264 if (retval)
6265 goto release;
6266
6267 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6268 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6269 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6270 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6271 (u16)(mac_reg & 0xFFFF));
6272 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6273 (u16)((mac_reg >> 16) & 0xFFFF));
6274 }
6275
6276 /* configure PHY Rx Control register */
6277 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6278 mac_reg = er32(RCTL);
6279 if (mac_reg & E1000_RCTL_UPE)
6280 phy_reg |= BM_RCTL_UPE;
6281 if (mac_reg & E1000_RCTL_MPE)
6282 phy_reg |= BM_RCTL_MPE;
6283 phy_reg &= ~(BM_RCTL_MO_MASK);
6284 if (mac_reg & E1000_RCTL_MO_3)
6285 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6286 << BM_RCTL_MO_SHIFT);
6287 if (mac_reg & E1000_RCTL_BAM)
6288 phy_reg |= BM_RCTL_BAM;
6289 if (mac_reg & E1000_RCTL_PMCF)
6290 phy_reg |= BM_RCTL_PMCF;
6291 mac_reg = er32(CTRL);
6292 if (mac_reg & E1000_CTRL_RFCE)
6293 phy_reg |= BM_RCTL_RFCE;
6294 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6295
6296 wuc = E1000_WUC_PME_EN;
6297 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6298 wuc |= E1000_WUC_APME;
6299
6300 /* enable PHY wakeup in MAC register */
6301 ew32(WUFC, wufc);
6302 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6303 E1000_WUC_PME_STATUS | wuc));
6304
6305 /* configure and enable PHY wakeup in PHY registers */
6306 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6307 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6308
6309 /* activate PHY wakeup */
6310 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6311 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6312 if (retval)
6313 e_err("Could not set PHY Host Wakeup bit\n");
6314 release:
6315 hw->phy.ops.release(hw);
6316
6317 return retval;
6318 }
6319
6320 static void e1000e_flush_lpic(struct pci_dev *pdev)
6321 {
6322 struct net_device *netdev = pci_get_drvdata(pdev);
6323 struct e1000_adapter *adapter = netdev_priv(netdev);
6324 struct e1000_hw *hw = &adapter->hw;
6325 u32 ret_val;
6326
6327 pm_runtime_get_sync(netdev->dev.parent);
6328
6329 ret_val = hw->phy.ops.acquire(hw);
6330 if (ret_val)
6331 goto fl_out;
6332
6333 pr_info("EEE TX LPI TIMER: %08X\n",
6334 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6335
6336 hw->phy.ops.release(hw);
6337
6338 fl_out:
6339 pm_runtime_put_sync(netdev->dev.parent);
6340 }
6341
6342 /* S0ix implementation */
6343 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6344 {
6345 struct e1000_hw *hw = &adapter->hw;
6346 u32 mac_data;
6347 u16 phy_data;
6348
6349 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
6350 /* Request ME configure the device for S0ix */
6351 mac_data = er32(H2ME);
6352 mac_data |= E1000_H2ME_START_DPG;
6353 mac_data &= ~E1000_H2ME_EXIT_DPG;
6354 ew32(H2ME, mac_data);
6355 } else {
6356 /* Request driver configure the device to S0ix */
6357 /* Disable the periodic inband message,
6358 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6359 */
6360 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6361 phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6362 phy_data |= BIT(10);
6363 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6364
6365 /* Make sure we don't exit K1 every time a new packet arrives
6366 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6367 */
6368 e1e_rphy(hw, I217_CGFREG, &phy_data);
6369 phy_data |= BIT(5);
6370 e1e_wphy(hw, I217_CGFREG, phy_data);
6371
6372 /* Change the MAC/PHY interface to SMBus
6373 * Force the SMBus in PHY page769_23[0] = 1
6374 * Force the SMBus in MAC CTRL_EXT[11] = 1
6375 */
6376 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6377 phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6378 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6379 mac_data = er32(CTRL_EXT);
6380 mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6381 ew32(CTRL_EXT, mac_data);
6382
6383 /* DFT control: PHY bit: page769_20[0] = 1
6384 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6385 */
6386 e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6387 phy_data |= BIT(0);
6388 e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6389
6390 mac_data = er32(EXTCNF_CTRL);
6391 mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6392 ew32(EXTCNF_CTRL, mac_data);
6393
6394 /* Enable the Dynamic Power Gating in the MAC */
6395 mac_data = er32(FEXTNVM7);
6396 mac_data |= BIT(22);
6397 ew32(FEXTNVM7, mac_data);
6398
6399 /* Disable disconnected cable conditioning for Power Gating */
6400 mac_data = er32(DPGFR);
6401 mac_data |= BIT(2);
6402 ew32(DPGFR, mac_data);
6403
6404 /* Don't wake from dynamic Power Gating with clock request */
6405 mac_data = er32(FEXTNVM12);
6406 mac_data |= BIT(12);
6407 ew32(FEXTNVM12, mac_data);
6408
6409 /* Ungate PGCB clock */
6410 mac_data = er32(FEXTNVM9);
6411 mac_data &= ~BIT(28);
6412 ew32(FEXTNVM9, mac_data);
6413
6414 /* Enable K1 off to enable mPHY Power Gating */
6415 mac_data = er32(FEXTNVM6);
6416 mac_data |= BIT(31);
6417 ew32(FEXTNVM6, mac_data);
6418
6419 /* Enable mPHY power gating for any link and speed */
6420 mac_data = er32(FEXTNVM8);
6421 mac_data |= BIT(9);
6422 ew32(FEXTNVM8, mac_data);
6423
6424 /* Enable the Dynamic Clock Gating in the DMA and MAC */
6425 mac_data = er32(CTRL_EXT);
6426 mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6427 ew32(CTRL_EXT, mac_data);
6428
6429 /* No MAC DPG gating SLP_S0 in modern standby
6430 * Switch the logic of the lanphypc to use PMC counter
6431 */
6432 mac_data = er32(FEXTNVM5);
6433 mac_data |= BIT(7);
6434 ew32(FEXTNVM5, mac_data);
6435 }
6436
6437 /* Disable the time synchronization clock */
6438 mac_data = er32(FEXTNVM7);
6439 mac_data |= BIT(31);
6440 mac_data &= ~BIT(0);
6441 ew32(FEXTNVM7, mac_data);
6442
6443 /* Dynamic Power Gating Enable */
6444 mac_data = er32(CTRL_EXT);
6445 mac_data |= BIT(3);
6446 ew32(CTRL_EXT, mac_data);
6447
6448 /* Check MAC Tx/Rx packet buffer pointers.
6449 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6450 * pending traffic indication that would prevent power gating.
6451 */
6452 mac_data = er32(TDFH);
6453 if (mac_data)
6454 ew32(TDFH, 0);
6455 mac_data = er32(TDFT);
6456 if (mac_data)
6457 ew32(TDFT, 0);
6458 mac_data = er32(TDFHS);
6459 if (mac_data)
6460 ew32(TDFHS, 0);
6461 mac_data = er32(TDFTS);
6462 if (mac_data)
6463 ew32(TDFTS, 0);
6464 mac_data = er32(TDFPC);
6465 if (mac_data)
6466 ew32(TDFPC, 0);
6467 mac_data = er32(RDFH);
6468 if (mac_data)
6469 ew32(RDFH, 0);
6470 mac_data = er32(RDFT);
6471 if (mac_data)
6472 ew32(RDFT, 0);
6473 mac_data = er32(RDFHS);
6474 if (mac_data)
6475 ew32(RDFHS, 0);
6476 mac_data = er32(RDFTS);
6477 if (mac_data)
6478 ew32(RDFTS, 0);
6479 mac_data = er32(RDFPC);
6480 if (mac_data)
6481 ew32(RDFPC, 0);
6482 }
6483
6484 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6485 {
6486 struct e1000_hw *hw = &adapter->hw;
6487 bool firmware_bug = false;
6488 u32 mac_data;
6489 u16 phy_data;
6490 u32 i = 0;
6491
6492 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
6493 /* Request ME unconfigure the device from S0ix */
6494 mac_data = er32(H2ME);
6495 mac_data &= ~E1000_H2ME_START_DPG;
6496 mac_data |= E1000_H2ME_EXIT_DPG;
6497 ew32(H2ME, mac_data);
6498
6499 /* Poll up to 2.5 seconds for ME to unconfigure DPG.
6500 * If this takes more than 1 second, show a warning indicating a
6501 * firmware bug
6502 */
6503 while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6504 if (i > 100 && !firmware_bug)
6505 firmware_bug = true;
6506
6507 if (i++ == 250) {
6508 e_dbg("Timeout (firmware bug): %d msec\n",
6509 i * 10);
6510 break;
6511 }
6512
6513 usleep_range(10000, 11000);
6514 }
6515 if (firmware_bug)
6516 e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6517 i * 10);
6518 else
6519 e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6520 } else {
6521 /* Request driver unconfigure the device from S0ix */
6522
6523 /* Disable the Dynamic Power Gating in the MAC */
6524 mac_data = er32(FEXTNVM7);
6525 mac_data &= 0xFFBFFFFF;
6526 ew32(FEXTNVM7, mac_data);
6527
6528 /* Disable mPHY power gating for any link and speed */
6529 mac_data = er32(FEXTNVM8);
6530 mac_data &= ~BIT(9);
6531 ew32(FEXTNVM8, mac_data);
6532
6533 /* Disable K1 off */
6534 mac_data = er32(FEXTNVM6);
6535 mac_data &= ~BIT(31);
6536 ew32(FEXTNVM6, mac_data);
6537
6538 /* Disable Ungate PGCB clock */
6539 mac_data = er32(FEXTNVM9);
6540 mac_data |= BIT(28);
6541 ew32(FEXTNVM9, mac_data);
6542
6543 /* Cancel not waking from dynamic
6544 * Power Gating with clock request
6545 */
6546 mac_data = er32(FEXTNVM12);
6547 mac_data &= ~BIT(12);
6548 ew32(FEXTNVM12, mac_data);
6549
6550 /* Cancel disable disconnected cable conditioning
6551 * for Power Gating
6552 */
6553 mac_data = er32(DPGFR);
6554 mac_data &= ~BIT(2);
6555 ew32(DPGFR, mac_data);
6556
6557 /* Disable the Dynamic Clock Gating in the DMA and MAC */
6558 mac_data = er32(CTRL_EXT);
6559 mac_data &= 0xFFF7FFFF;
6560 ew32(CTRL_EXT, mac_data);
6561
6562 /* Revert the lanphypc logic to use the internal Gbe counter
6563 * and not the PMC counter
6564 */
6565 mac_data = er32(FEXTNVM5);
6566 mac_data &= 0xFFFFFF7F;
6567 ew32(FEXTNVM5, mac_data);
6568
6569 /* Enable the periodic inband message,
6570 * Request PCIe clock in K1 page770_17[10:9] =01b
6571 */
6572 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6573 phy_data &= 0xFBFF;
6574 phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6575 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6576
6577 /* Return back configuration
6578 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6579 */
6580 e1e_rphy(hw, I217_CGFREG, &phy_data);
6581 phy_data &= 0xFFDF;
6582 e1e_wphy(hw, I217_CGFREG, phy_data);
6583
6584 /* Change the MAC/PHY interface to Kumeran
6585 * Unforce the SMBus in PHY page769_23[0] = 0
6586 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6587 */
6588 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6589 phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6590 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6591 mac_data = er32(CTRL_EXT);
6592 mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6593 ew32(CTRL_EXT, mac_data);
6594 }
6595
6596 /* Disable Dynamic Power Gating */
6597 mac_data = er32(CTRL_EXT);
6598 mac_data &= 0xFFFFFFF7;
6599 ew32(CTRL_EXT, mac_data);
6600
6601 /* Enable the time synchronization clock */
6602 mac_data = er32(FEXTNVM7);
6603 mac_data &= ~BIT(31);
6604 mac_data |= BIT(0);
6605 ew32(FEXTNVM7, mac_data);
6606 }
6607
6608 static int e1000e_pm_freeze(struct device *dev)
6609 {
6610 struct net_device *netdev = dev_get_drvdata(dev);
6611 struct e1000_adapter *adapter = netdev_priv(netdev);
6612 bool present;
6613
6614 rtnl_lock();
6615
6616 present = netif_device_present(netdev);
6617 netif_device_detach(netdev);
6618
6619 if (present && netif_running(netdev)) {
6620 int count = E1000_CHECK_RESET_COUNT;
6621
6622 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6623 usleep_range(10000, 11000);
6624
6625 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6626
6627 /* Quiesce the device without resetting the hardware */
6628 e1000e_down(adapter, false);
6629 e1000_free_irq(adapter);
6630 }
6631 rtnl_unlock();
6632
6633 e1000e_reset_interrupt_capability(adapter);
6634
6635 /* Allow time for pending master requests to run */
6636 e1000e_disable_pcie_master(&adapter->hw);
6637
6638 return 0;
6639 }
6640
6641 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6642 {
6643 struct net_device *netdev = pci_get_drvdata(pdev);
6644 struct e1000_adapter *adapter = netdev_priv(netdev);
6645 struct e1000_hw *hw = &adapter->hw;
6646 u32 ctrl, ctrl_ext, rctl, status, wufc;
6647 int retval = 0;
6648
6649 /* Runtime suspend should only enable wakeup for link changes */
6650 if (runtime)
6651 wufc = E1000_WUFC_LNKC;
6652 else if (device_may_wakeup(&pdev->dev))
6653 wufc = adapter->wol;
6654 else
6655 wufc = 0;
6656
6657 status = er32(STATUS);
6658 if (status & E1000_STATUS_LU)
6659 wufc &= ~E1000_WUFC_LNKC;
6660
6661 if (wufc) {
6662 e1000_setup_rctl(adapter);
6663 e1000e_set_rx_mode(netdev);
6664
6665 /* turn on all-multi mode if wake on multicast is enabled */
6666 if (wufc & E1000_WUFC_MC) {
6667 rctl = er32(RCTL);
6668 rctl |= E1000_RCTL_MPE;
6669 ew32(RCTL, rctl);
6670 }
6671
6672 ctrl = er32(CTRL);
6673 ctrl |= E1000_CTRL_ADVD3WUC;
6674 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6675 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6676 ew32(CTRL, ctrl);
6677
6678 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6679 adapter->hw.phy.media_type ==
6680 e1000_media_type_internal_serdes) {
6681 /* keep the laser running in D3 */
6682 ctrl_ext = er32(CTRL_EXT);
6683 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6684 ew32(CTRL_EXT, ctrl_ext);
6685 }
6686
6687 if (!runtime)
6688 e1000e_power_up_phy(adapter);
6689
6690 if (adapter->flags & FLAG_IS_ICH)
6691 e1000_suspend_workarounds_ich8lan(&adapter->hw);
6692
6693 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6694 /* enable wakeup by the PHY */
6695 retval = e1000_init_phy_wakeup(adapter, wufc);
6696 if (retval)
6697 return retval;
6698 } else {
6699 /* enable wakeup by the MAC */
6700 ew32(WUFC, wufc);
6701 ew32(WUC, E1000_WUC_PME_EN);
6702 }
6703 } else {
6704 ew32(WUC, 0);
6705 ew32(WUFC, 0);
6706
6707 e1000_power_down_phy(adapter);
6708 }
6709
6710 if (adapter->hw.phy.type == e1000_phy_igp_3) {
6711 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6712 } else if (hw->mac.type >= e1000_pch_lpt) {
6713 if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6714 /* ULP does not support wake from unicast, multicast
6715 * or broadcast.
6716 */
6717 retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6718
6719 if (retval)
6720 return retval;
6721 }
6722
6723 /* Ensure that the appropriate bits are set in LPI_CTRL
6724 * for EEE in Sx
6725 */
6726 if ((hw->phy.type >= e1000_phy_i217) &&
6727 adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6728 u16 lpi_ctrl = 0;
6729
6730 retval = hw->phy.ops.acquire(hw);
6731 if (!retval) {
6732 retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6733 &lpi_ctrl);
6734 if (!retval) {
6735 if (adapter->eee_advert &
6736 hw->dev_spec.ich8lan.eee_lp_ability &
6737 I82579_EEE_100_SUPPORTED)
6738 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6739 if (adapter->eee_advert &
6740 hw->dev_spec.ich8lan.eee_lp_ability &
6741 I82579_EEE_1000_SUPPORTED)
6742 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6743
6744 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6745 lpi_ctrl);
6746 }
6747 }
6748 hw->phy.ops.release(hw);
6749 }
6750
6751 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6752 * would have already happened in close and is redundant.
6753 */
6754 e1000e_release_hw_control(adapter);
6755
6756 pci_clear_master(pdev);
6757
6758 /* The pci-e switch on some quad port adapters will report a
6759 * correctable error when the MAC transitions from D0 to D3. To
6760 * prevent this we need to mask off the correctable errors on the
6761 * downstream port of the pci-e switch.
6762 *
6763 * We don't have the associated upstream bridge while assigning
6764 * the PCI device into guest. For example, the KVM on power is
6765 * one of the cases.
6766 */
6767 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6768 struct pci_dev *us_dev = pdev->bus->self;
6769 u16 devctl;
6770
6771 if (!us_dev)
6772 return 0;
6773
6774 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6775 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6776 (devctl & ~PCI_EXP_DEVCTL_CERE));
6777
6778 pci_save_state(pdev);
6779 pci_prepare_to_sleep(pdev);
6780
6781 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6782 }
6783
6784 return 0;
6785 }
6786
6787 /**
6788 * __e1000e_disable_aspm - Disable ASPM states
6789 * @pdev: pointer to PCI device struct
6790 * @state: bit-mask of ASPM states to disable
6791 * @locked: indication if this context holds pci_bus_sem locked.
6792 *
6793 * Some devices *must* have certain ASPM states disabled per hardware errata.
6794 **/
6795 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6796 {
6797 struct pci_dev *parent = pdev->bus->self;
6798 u16 aspm_dis_mask = 0;
6799 u16 pdev_aspmc, parent_aspmc;
6800
6801 switch (state) {
6802 case PCIE_LINK_STATE_L0S:
6803 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6804 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6805 fallthrough; /* can't have L1 without L0s */
6806 case PCIE_LINK_STATE_L1:
6807 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6808 break;
6809 default:
6810 return;
6811 }
6812
6813 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6814 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6815
6816 if (parent) {
6817 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6818 &parent_aspmc);
6819 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6820 }
6821
6822 /* Nothing to do if the ASPM states to be disabled already are */
6823 if (!(pdev_aspmc & aspm_dis_mask) &&
6824 (!parent || !(parent_aspmc & aspm_dis_mask)))
6825 return;
6826
6827 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6828 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6829 "L0s" : "",
6830 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6831 "L1" : "");
6832
6833 #ifdef CONFIG_PCIEASPM
6834 if (locked)
6835 pci_disable_link_state_locked(pdev, state);
6836 else
6837 pci_disable_link_state(pdev, state);
6838
6839 /* Double-check ASPM control. If not disabled by the above, the
6840 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6841 * not enabled); override by writing PCI config space directly.
6842 */
6843 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6844 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6845
6846 if (!(aspm_dis_mask & pdev_aspmc))
6847 return;
6848 #endif
6849
6850 /* Both device and parent should have the same ASPM setting.
6851 * Disable ASPM in downstream component first and then upstream.
6852 */
6853 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6854
6855 if (parent)
6856 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6857 aspm_dis_mask);
6858 }
6859
6860 /**
6861 * e1000e_disable_aspm - Disable ASPM states.
6862 * @pdev: pointer to PCI device struct
6863 * @state: bit-mask of ASPM states to disable
6864 *
6865 * This function acquires the pci_bus_sem!
6866 * Some devices *must* have certain ASPM states disabled per hardware errata.
6867 **/
6868 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6869 {
6870 __e1000e_disable_aspm(pdev, state, 0);
6871 }
6872
6873 /**
6874 * e1000e_disable_aspm_locked - Disable ASPM states.
6875 * @pdev: pointer to PCI device struct
6876 * @state: bit-mask of ASPM states to disable
6877 *
6878 * This function must be called with pci_bus_sem acquired!
6879 * Some devices *must* have certain ASPM states disabled per hardware errata.
6880 **/
6881 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6882 {
6883 __e1000e_disable_aspm(pdev, state, 1);
6884 }
6885
6886 static int e1000e_pm_thaw(struct device *dev)
6887 {
6888 struct net_device *netdev = dev_get_drvdata(dev);
6889 struct e1000_adapter *adapter = netdev_priv(netdev);
6890 int rc = 0;
6891
6892 e1000e_set_interrupt_capability(adapter);
6893
6894 rtnl_lock();
6895 if (netif_running(netdev)) {
6896 rc = e1000_request_irq(adapter);
6897 if (rc)
6898 goto err_irq;
6899
6900 e1000e_up(adapter);
6901 }
6902
6903 netif_device_attach(netdev);
6904 err_irq:
6905 rtnl_unlock();
6906
6907 return rc;
6908 }
6909
6910 static int __e1000_resume(struct pci_dev *pdev)
6911 {
6912 struct net_device *netdev = pci_get_drvdata(pdev);
6913 struct e1000_adapter *adapter = netdev_priv(netdev);
6914 struct e1000_hw *hw = &adapter->hw;
6915 u16 aspm_disable_flag = 0;
6916
6917 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6918 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6919 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6920 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6921 if (aspm_disable_flag)
6922 e1000e_disable_aspm(pdev, aspm_disable_flag);
6923
6924 pci_set_master(pdev);
6925
6926 if (hw->mac.type >= e1000_pch2lan)
6927 e1000_resume_workarounds_pchlan(&adapter->hw);
6928
6929 e1000e_power_up_phy(adapter);
6930
6931 /* report the system wakeup cause from S3/S4 */
6932 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6933 u16 phy_data;
6934
6935 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6936 if (phy_data) {
6937 e_info("PHY Wakeup cause - %s\n",
6938 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6939 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6940 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6941 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6942 phy_data & E1000_WUS_LNKC ?
6943 "Link Status Change" : "other");
6944 }
6945 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6946 } else {
6947 u32 wus = er32(WUS);
6948
6949 if (wus) {
6950 e_info("MAC Wakeup cause - %s\n",
6951 wus & E1000_WUS_EX ? "Unicast Packet" :
6952 wus & E1000_WUS_MC ? "Multicast Packet" :
6953 wus & E1000_WUS_BC ? "Broadcast Packet" :
6954 wus & E1000_WUS_MAG ? "Magic Packet" :
6955 wus & E1000_WUS_LNKC ? "Link Status Change" :
6956 "other");
6957 }
6958 ew32(WUS, ~0);
6959 }
6960
6961 e1000e_reset(adapter);
6962
6963 e1000_init_manageability_pt(adapter);
6964
6965 /* If the controller has AMT, do not set DRV_LOAD until the interface
6966 * is up. For all other cases, let the f/w know that the h/w is now
6967 * under the control of the driver.
6968 */
6969 if (!(adapter->flags & FLAG_HAS_AMT))
6970 e1000e_get_hw_control(adapter);
6971
6972 return 0;
6973 }
6974
6975 static __maybe_unused int e1000e_pm_prepare(struct device *dev)
6976 {
6977 return pm_runtime_suspended(dev) &&
6978 pm_suspend_via_firmware();
6979 }
6980
6981 static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6982 {
6983 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6984 struct e1000_adapter *adapter = netdev_priv(netdev);
6985 struct pci_dev *pdev = to_pci_dev(dev);
6986 int rc;
6987
6988 e1000e_flush_lpic(pdev);
6989
6990 e1000e_pm_freeze(dev);
6991
6992 rc = __e1000_shutdown(pdev, false);
6993 if (rc) {
6994 e1000e_pm_thaw(dev);
6995 } else {
6996 /* Introduce S0ix implementation */
6997 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6998 e1000e_s0ix_entry_flow(adapter);
6999 }
7000
7001 return rc;
7002 }
7003
7004 static __maybe_unused int e1000e_pm_resume(struct device *dev)
7005 {
7006 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
7007 struct e1000_adapter *adapter = netdev_priv(netdev);
7008 struct pci_dev *pdev = to_pci_dev(dev);
7009 int rc;
7010
7011 /* Introduce S0ix implementation */
7012 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
7013 e1000e_s0ix_exit_flow(adapter);
7014
7015 rc = __e1000_resume(pdev);
7016 if (rc)
7017 return rc;
7018
7019 return e1000e_pm_thaw(dev);
7020 }
7021
7022 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7023 {
7024 struct net_device *netdev = dev_get_drvdata(dev);
7025 struct e1000_adapter *adapter = netdev_priv(netdev);
7026 u16 eee_lp;
7027
7028 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7029
7030 if (!e1000e_has_link(adapter)) {
7031 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7032 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7033 }
7034
7035 return -EBUSY;
7036 }
7037
7038 static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
7039 {
7040 struct pci_dev *pdev = to_pci_dev(dev);
7041 struct net_device *netdev = pci_get_drvdata(pdev);
7042 struct e1000_adapter *adapter = netdev_priv(netdev);
7043 int rc;
7044
7045 rc = __e1000_resume(pdev);
7046 if (rc)
7047 return rc;
7048
7049 if (netdev->flags & IFF_UP)
7050 e1000e_up(adapter);
7051
7052 return rc;
7053 }
7054
7055 static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7056 {
7057 struct pci_dev *pdev = to_pci_dev(dev);
7058 struct net_device *netdev = pci_get_drvdata(pdev);
7059 struct e1000_adapter *adapter = netdev_priv(netdev);
7060
7061 if (netdev->flags & IFF_UP) {
7062 int count = E1000_CHECK_RESET_COUNT;
7063
7064 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7065 usleep_range(10000, 11000);
7066
7067 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7068
7069 /* Down the device without resetting the hardware */
7070 e1000e_down(adapter, false);
7071 }
7072
7073 if (__e1000_shutdown(pdev, true)) {
7074 e1000e_pm_runtime_resume(dev);
7075 return -EBUSY;
7076 }
7077
7078 return 0;
7079 }
7080
7081 static void e1000_shutdown(struct pci_dev *pdev)
7082 {
7083 e1000e_flush_lpic(pdev);
7084
7085 e1000e_pm_freeze(&pdev->dev);
7086
7087 __e1000_shutdown(pdev, false);
7088 }
7089
7090 #ifdef CONFIG_NET_POLL_CONTROLLER
7091
7092 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7093 {
7094 struct net_device *netdev = data;
7095 struct e1000_adapter *adapter = netdev_priv(netdev);
7096
7097 if (adapter->msix_entries) {
7098 int vector, msix_irq;
7099
7100 vector = 0;
7101 msix_irq = adapter->msix_entries[vector].vector;
7102 if (disable_hardirq(msix_irq))
7103 e1000_intr_msix_rx(msix_irq, netdev);
7104 enable_irq(msix_irq);
7105
7106 vector++;
7107 msix_irq = adapter->msix_entries[vector].vector;
7108 if (disable_hardirq(msix_irq))
7109 e1000_intr_msix_tx(msix_irq, netdev);
7110 enable_irq(msix_irq);
7111
7112 vector++;
7113 msix_irq = adapter->msix_entries[vector].vector;
7114 if (disable_hardirq(msix_irq))
7115 e1000_msix_other(msix_irq, netdev);
7116 enable_irq(msix_irq);
7117 }
7118
7119 return IRQ_HANDLED;
7120 }
7121
7122 /**
7123 * e1000_netpoll
7124 * @netdev: network interface device structure
7125 *
7126 * Polling 'interrupt' - used by things like netconsole to send skbs
7127 * without having to re-enable interrupts. It's not called while
7128 * the interrupt routine is executing.
7129 */
7130 static void e1000_netpoll(struct net_device *netdev)
7131 {
7132 struct e1000_adapter *adapter = netdev_priv(netdev);
7133
7134 switch (adapter->int_mode) {
7135 case E1000E_INT_MODE_MSIX:
7136 e1000_intr_msix(adapter->pdev->irq, netdev);
7137 break;
7138 case E1000E_INT_MODE_MSI:
7139 if (disable_hardirq(adapter->pdev->irq))
7140 e1000_intr_msi(adapter->pdev->irq, netdev);
7141 enable_irq(adapter->pdev->irq);
7142 break;
7143 default: /* E1000E_INT_MODE_LEGACY */
7144 if (disable_hardirq(adapter->pdev->irq))
7145 e1000_intr(adapter->pdev->irq, netdev);
7146 enable_irq(adapter->pdev->irq);
7147 break;
7148 }
7149 }
7150 #endif
7151
7152 /**
7153 * e1000_io_error_detected - called when PCI error is detected
7154 * @pdev: Pointer to PCI device
7155 * @state: The current pci connection state
7156 *
7157 * This function is called after a PCI bus error affecting
7158 * this device has been detected.
7159 */
7160 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7161 pci_channel_state_t state)
7162 {
7163 e1000e_pm_freeze(&pdev->dev);
7164
7165 if (state == pci_channel_io_perm_failure)
7166 return PCI_ERS_RESULT_DISCONNECT;
7167
7168 pci_disable_device(pdev);
7169
7170 /* Request a slot reset. */
7171 return PCI_ERS_RESULT_NEED_RESET;
7172 }
7173
7174 /**
7175 * e1000_io_slot_reset - called after the pci bus has been reset.
7176 * @pdev: Pointer to PCI device
7177 *
7178 * Restart the card from scratch, as if from a cold-boot. Implementation
7179 * resembles the first-half of the e1000e_pm_resume routine.
7180 */
7181 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7182 {
7183 struct net_device *netdev = pci_get_drvdata(pdev);
7184 struct e1000_adapter *adapter = netdev_priv(netdev);
7185 struct e1000_hw *hw = &adapter->hw;
7186 u16 aspm_disable_flag = 0;
7187 int err;
7188 pci_ers_result_t result;
7189
7190 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7191 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7192 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7193 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7194 if (aspm_disable_flag)
7195 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7196
7197 err = pci_enable_device_mem(pdev);
7198 if (err) {
7199 dev_err(&pdev->dev,
7200 "Cannot re-enable PCI device after reset.\n");
7201 result = PCI_ERS_RESULT_DISCONNECT;
7202 } else {
7203 pdev->state_saved = true;
7204 pci_restore_state(pdev);
7205 pci_set_master(pdev);
7206
7207 pci_enable_wake(pdev, PCI_D3hot, 0);
7208 pci_enable_wake(pdev, PCI_D3cold, 0);
7209
7210 e1000e_reset(adapter);
7211 ew32(WUS, ~0);
7212 result = PCI_ERS_RESULT_RECOVERED;
7213 }
7214
7215 return result;
7216 }
7217
7218 /**
7219 * e1000_io_resume - called when traffic can start flowing again.
7220 * @pdev: Pointer to PCI device
7221 *
7222 * This callback is called when the error recovery driver tells us that
7223 * its OK to resume normal operation. Implementation resembles the
7224 * second-half of the e1000e_pm_resume routine.
7225 */
7226 static void e1000_io_resume(struct pci_dev *pdev)
7227 {
7228 struct net_device *netdev = pci_get_drvdata(pdev);
7229 struct e1000_adapter *adapter = netdev_priv(netdev);
7230
7231 e1000_init_manageability_pt(adapter);
7232
7233 e1000e_pm_thaw(&pdev->dev);
7234
7235 /* If the controller has AMT, do not set DRV_LOAD until the interface
7236 * is up. For all other cases, let the f/w know that the h/w is now
7237 * under the control of the driver.
7238 */
7239 if (!(adapter->flags & FLAG_HAS_AMT))
7240 e1000e_get_hw_control(adapter);
7241 }
7242
7243 static void e1000_print_device_info(struct e1000_adapter *adapter)
7244 {
7245 struct e1000_hw *hw = &adapter->hw;
7246 struct net_device *netdev = adapter->netdev;
7247 u32 ret_val;
7248 u8 pba_str[E1000_PBANUM_LENGTH];
7249
7250 /* print bus type/speed/width info */
7251 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7252 /* bus width */
7253 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7254 "Width x1"),
7255 /* MAC address */
7256 netdev->dev_addr);
7257 e_info("Intel(R) PRO/%s Network Connection\n",
7258 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7259 ret_val = e1000_read_pba_string_generic(hw, pba_str,
7260 E1000_PBANUM_LENGTH);
7261 if (ret_val)
7262 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
7263 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7264 hw->mac.type, hw->phy.type, pba_str);
7265 }
7266
7267 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7268 {
7269 struct e1000_hw *hw = &adapter->hw;
7270 int ret_val;
7271 u16 buf = 0;
7272
7273 if (hw->mac.type != e1000_82573)
7274 return;
7275
7276 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7277 le16_to_cpus(&buf);
7278 if (!ret_val && (!(buf & BIT(0)))) {
7279 /* Deep Smart Power Down (DSPD) */
7280 dev_warn(&adapter->pdev->dev,
7281 "Warning: detected DSPD enabled in EEPROM\n");
7282 }
7283 }
7284
7285 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7286 netdev_features_t features)
7287 {
7288 struct e1000_adapter *adapter = netdev_priv(netdev);
7289 struct e1000_hw *hw = &adapter->hw;
7290
7291 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7292 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7293 features &= ~NETIF_F_RXFCS;
7294
7295 /* Since there is no support for separate Rx/Tx vlan accel
7296 * enable/disable make sure Tx flag is always in same state as Rx.
7297 */
7298 if (features & NETIF_F_HW_VLAN_CTAG_RX)
7299 features |= NETIF_F_HW_VLAN_CTAG_TX;
7300 else
7301 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7302
7303 return features;
7304 }
7305
7306 static int e1000_set_features(struct net_device *netdev,
7307 netdev_features_t features)
7308 {
7309 struct e1000_adapter *adapter = netdev_priv(netdev);
7310 netdev_features_t changed = features ^ netdev->features;
7311
7312 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7313 adapter->flags |= FLAG_TSO_FORCE;
7314
7315 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7316 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7317 NETIF_F_RXALL)))
7318 return 0;
7319
7320 if (changed & NETIF_F_RXFCS) {
7321 if (features & NETIF_F_RXFCS) {
7322 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7323 } else {
7324 /* We need to take it back to defaults, which might mean
7325 * stripping is still disabled at the adapter level.
7326 */
7327 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7328 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7329 else
7330 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7331 }
7332 }
7333
7334 netdev->features = features;
7335
7336 if (netif_running(netdev))
7337 e1000e_reinit_locked(adapter);
7338 else
7339 e1000e_reset(adapter);
7340
7341 return 1;
7342 }
7343
7344 static const struct net_device_ops e1000e_netdev_ops = {
7345 .ndo_open = e1000e_open,
7346 .ndo_stop = e1000e_close,
7347 .ndo_start_xmit = e1000_xmit_frame,
7348 .ndo_get_stats64 = e1000e_get_stats64,
7349 .ndo_set_rx_mode = e1000e_set_rx_mode,
7350 .ndo_set_mac_address = e1000_set_mac,
7351 .ndo_change_mtu = e1000_change_mtu,
7352 .ndo_eth_ioctl = e1000_ioctl,
7353 .ndo_tx_timeout = e1000_tx_timeout,
7354 .ndo_validate_addr = eth_validate_addr,
7355
7356 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
7357 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
7358 #ifdef CONFIG_NET_POLL_CONTROLLER
7359 .ndo_poll_controller = e1000_netpoll,
7360 #endif
7361 .ndo_set_features = e1000_set_features,
7362 .ndo_fix_features = e1000_fix_features,
7363 .ndo_features_check = passthru_features_check,
7364 };
7365
7366 /**
7367 * e1000_probe - Device Initialization Routine
7368 * @pdev: PCI device information struct
7369 * @ent: entry in e1000_pci_tbl
7370 *
7371 * Returns 0 on success, negative on failure
7372 *
7373 * e1000_probe initializes an adapter identified by a pci_dev structure.
7374 * The OS initialization, configuring of the adapter private structure,
7375 * and a hardware reset occur.
7376 **/
7377 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7378 {
7379 struct net_device *netdev;
7380 struct e1000_adapter *adapter;
7381 struct e1000_hw *hw;
7382 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7383 resource_size_t mmio_start, mmio_len;
7384 resource_size_t flash_start, flash_len;
7385 static int cards_found;
7386 u16 aspm_disable_flag = 0;
7387 int bars, i, err, pci_using_dac;
7388 u16 eeprom_data = 0;
7389 u16 eeprom_apme_mask = E1000_EEPROM_APME;
7390 s32 ret_val = 0;
7391
7392 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7393 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7394 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7395 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7396 if (aspm_disable_flag)
7397 e1000e_disable_aspm(pdev, aspm_disable_flag);
7398
7399 err = pci_enable_device_mem(pdev);
7400 if (err)
7401 return err;
7402
7403 pci_using_dac = 0;
7404 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7405 if (!err) {
7406 pci_using_dac = 1;
7407 } else {
7408 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7409 if (err) {
7410 dev_err(&pdev->dev,
7411 "No usable DMA configuration, aborting\n");
7412 goto err_dma;
7413 }
7414 }
7415
7416 bars = pci_select_bars(pdev, IORESOURCE_MEM);
7417 err = pci_request_selected_regions_exclusive(pdev, bars,
7418 e1000e_driver_name);
7419 if (err)
7420 goto err_pci_reg;
7421
7422 /* AER (Advanced Error Reporting) hooks */
7423 pci_enable_pcie_error_reporting(pdev);
7424
7425 pci_set_master(pdev);
7426 /* PCI config space info */
7427 err = pci_save_state(pdev);
7428 if (err)
7429 goto err_alloc_etherdev;
7430
7431 err = -ENOMEM;
7432 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7433 if (!netdev)
7434 goto err_alloc_etherdev;
7435
7436 SET_NETDEV_DEV(netdev, &pdev->dev);
7437
7438 netdev->irq = pdev->irq;
7439
7440 pci_set_drvdata(pdev, netdev);
7441 adapter = netdev_priv(netdev);
7442 hw = &adapter->hw;
7443 adapter->netdev = netdev;
7444 adapter->pdev = pdev;
7445 adapter->ei = ei;
7446 adapter->pba = ei->pba;
7447 adapter->flags = ei->flags;
7448 adapter->flags2 = ei->flags2;
7449 adapter->hw.adapter = adapter;
7450 adapter->hw.mac.type = ei->mac;
7451 adapter->max_hw_frame_size = ei->max_hw_frame_size;
7452 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7453
7454 mmio_start = pci_resource_start(pdev, 0);
7455 mmio_len = pci_resource_len(pdev, 0);
7456
7457 err = -EIO;
7458 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7459 if (!adapter->hw.hw_addr)
7460 goto err_ioremap;
7461
7462 if ((adapter->flags & FLAG_HAS_FLASH) &&
7463 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7464 (hw->mac.type < e1000_pch_spt)) {
7465 flash_start = pci_resource_start(pdev, 1);
7466 flash_len = pci_resource_len(pdev, 1);
7467 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7468 if (!adapter->hw.flash_address)
7469 goto err_flashmap;
7470 }
7471
7472 /* Set default EEE advertisement */
7473 if (adapter->flags2 & FLAG2_HAS_EEE)
7474 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7475
7476 /* construct the net_device struct */
7477 netdev->netdev_ops = &e1000e_netdev_ops;
7478 e1000e_set_ethtool_ops(netdev);
7479 netdev->watchdog_timeo = 5 * HZ;
7480 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7481 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7482
7483 netdev->mem_start = mmio_start;
7484 netdev->mem_end = mmio_start + mmio_len;
7485
7486 adapter->bd_number = cards_found++;
7487
7488 e1000e_check_options(adapter);
7489
7490 /* setup adapter struct */
7491 err = e1000_sw_init(adapter);
7492 if (err)
7493 goto err_sw_init;
7494
7495 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7496 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7497 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7498
7499 err = ei->get_variants(adapter);
7500 if (err)
7501 goto err_hw_init;
7502
7503 if ((adapter->flags & FLAG_IS_ICH) &&
7504 (adapter->flags & FLAG_READ_ONLY_NVM) &&
7505 (hw->mac.type < e1000_pch_spt))
7506 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7507
7508 hw->mac.ops.get_bus_info(&adapter->hw);
7509
7510 adapter->hw.phy.autoneg_wait_to_complete = 0;
7511
7512 /* Copper options */
7513 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7514 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7515 adapter->hw.phy.disable_polarity_correction = 0;
7516 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7517 }
7518
7519 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7520 dev_info(&pdev->dev,
7521 "PHY reset is blocked due to SOL/IDER session.\n");
7522
7523 /* Set initial default active device features */
7524 netdev->features = (NETIF_F_SG |
7525 NETIF_F_HW_VLAN_CTAG_RX |
7526 NETIF_F_HW_VLAN_CTAG_TX |
7527 NETIF_F_TSO |
7528 NETIF_F_TSO6 |
7529 NETIF_F_RXHASH |
7530 NETIF_F_RXCSUM |
7531 NETIF_F_HW_CSUM);
7532
7533 /* Set user-changeable features (subset of all device features) */
7534 netdev->hw_features = netdev->features;
7535 netdev->hw_features |= NETIF_F_RXFCS;
7536 netdev->priv_flags |= IFF_SUPP_NOFCS;
7537 netdev->hw_features |= NETIF_F_RXALL;
7538
7539 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7540 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7541
7542 netdev->vlan_features |= (NETIF_F_SG |
7543 NETIF_F_TSO |
7544 NETIF_F_TSO6 |
7545 NETIF_F_HW_CSUM);
7546
7547 netdev->priv_flags |= IFF_UNICAST_FLT;
7548
7549 if (pci_using_dac) {
7550 netdev->features |= NETIF_F_HIGHDMA;
7551 netdev->vlan_features |= NETIF_F_HIGHDMA;
7552 }
7553
7554 /* MTU range: 68 - max_hw_frame_size */
7555 netdev->min_mtu = ETH_MIN_MTU;
7556 netdev->max_mtu = adapter->max_hw_frame_size -
7557 (VLAN_ETH_HLEN + ETH_FCS_LEN);
7558
7559 if (e1000e_enable_mng_pass_thru(&adapter->hw))
7560 adapter->flags |= FLAG_MNG_PT_ENABLED;
7561
7562 /* before reading the NVM, reset the controller to
7563 * put the device in a known good starting state
7564 */
7565 adapter->hw.mac.ops.reset_hw(&adapter->hw);
7566
7567 /* systems with ASPM and others may see the checksum fail on the first
7568 * attempt. Let's give it a few tries
7569 */
7570 for (i = 0;; i++) {
7571 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7572 break;
7573 if (i == 2) {
7574 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7575 err = -EIO;
7576 goto err_eeprom;
7577 }
7578 }
7579
7580 e1000_eeprom_checks(adapter);
7581
7582 /* copy the MAC address */
7583 if (e1000e_read_mac_addr(&adapter->hw))
7584 dev_err(&pdev->dev,
7585 "NVM Read Error while reading MAC address\n");
7586
7587 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7588
7589 if (!is_valid_ether_addr(netdev->dev_addr)) {
7590 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7591 netdev->dev_addr);
7592 err = -EIO;
7593 goto err_eeprom;
7594 }
7595
7596 timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7597 timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7598
7599 INIT_WORK(&adapter->reset_task, e1000_reset_task);
7600 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7601 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7602 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7603 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7604
7605 /* Initialize link parameters. User can change them with ethtool */
7606 adapter->hw.mac.autoneg = 1;
7607 adapter->fc_autoneg = true;
7608 adapter->hw.fc.requested_mode = e1000_fc_default;
7609 adapter->hw.fc.current_mode = e1000_fc_default;
7610 adapter->hw.phy.autoneg_advertised = 0x2f;
7611
7612 /* Initial Wake on LAN setting - If APM wake is enabled in
7613 * the EEPROM, enable the ACPI Magic Packet filter
7614 */
7615 if (adapter->flags & FLAG_APME_IN_WUC) {
7616 /* APME bit in EEPROM is mapped to WUC.APME */
7617 eeprom_data = er32(WUC);
7618 eeprom_apme_mask = E1000_WUC_APME;
7619 if ((hw->mac.type > e1000_ich10lan) &&
7620 (eeprom_data & E1000_WUC_PHY_WAKE))
7621 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7622 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7623 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7624 (adapter->hw.bus.func == 1))
7625 ret_val = e1000_read_nvm(&adapter->hw,
7626 NVM_INIT_CONTROL3_PORT_B,
7627 1, &eeprom_data);
7628 else
7629 ret_val = e1000_read_nvm(&adapter->hw,
7630 NVM_INIT_CONTROL3_PORT_A,
7631 1, &eeprom_data);
7632 }
7633
7634 /* fetch WoL from EEPROM */
7635 if (ret_val)
7636 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7637 else if (eeprom_data & eeprom_apme_mask)
7638 adapter->eeprom_wol |= E1000_WUFC_MAG;
7639
7640 /* now that we have the eeprom settings, apply the special cases
7641 * where the eeprom may be wrong or the board simply won't support
7642 * wake on lan on a particular port
7643 */
7644 if (!(adapter->flags & FLAG_HAS_WOL))
7645 adapter->eeprom_wol = 0;
7646
7647 /* initialize the wol settings based on the eeprom settings */
7648 adapter->wol = adapter->eeprom_wol;
7649
7650 /* make sure adapter isn't asleep if manageability is enabled */
7651 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7652 (hw->mac.ops.check_mng_mode(hw)))
7653 device_wakeup_enable(&pdev->dev);
7654
7655 /* save off EEPROM version number */
7656 ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7657
7658 if (ret_val) {
7659 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7660 adapter->eeprom_vers = 0;
7661 }
7662
7663 /* init PTP hardware clock */
7664 e1000e_ptp_init(adapter);
7665
7666 /* reset the hardware with the new settings */
7667 e1000e_reset(adapter);
7668
7669 /* If the controller has AMT, do not set DRV_LOAD until the interface
7670 * is up. For all other cases, let the f/w know that the h/w is now
7671 * under the control of the driver.
7672 */
7673 if (!(adapter->flags & FLAG_HAS_AMT))
7674 e1000e_get_hw_control(adapter);
7675
7676 if (hw->mac.type >= e1000_pch_cnp)
7677 adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7678
7679 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7680 err = register_netdev(netdev);
7681 if (err)
7682 goto err_register;
7683
7684 /* carrier off reporting is important to ethtool even BEFORE open */
7685 netif_carrier_off(netdev);
7686
7687 e1000_print_device_info(adapter);
7688
7689 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7690
7691 if (pci_dev_run_wake(pdev) && hw->mac.type != e1000_pch_cnp)
7692 pm_runtime_put_noidle(&pdev->dev);
7693
7694 return 0;
7695
7696 err_register:
7697 if (!(adapter->flags & FLAG_HAS_AMT))
7698 e1000e_release_hw_control(adapter);
7699 err_eeprom:
7700 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7701 e1000_phy_hw_reset(&adapter->hw);
7702 err_hw_init:
7703 kfree(adapter->tx_ring);
7704 kfree(adapter->rx_ring);
7705 err_sw_init:
7706 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7707 iounmap(adapter->hw.flash_address);
7708 e1000e_reset_interrupt_capability(adapter);
7709 err_flashmap:
7710 iounmap(adapter->hw.hw_addr);
7711 err_ioremap:
7712 free_netdev(netdev);
7713 err_alloc_etherdev:
7714 pci_disable_pcie_error_reporting(pdev);
7715 pci_release_mem_regions(pdev);
7716 err_pci_reg:
7717 err_dma:
7718 pci_disable_device(pdev);
7719 return err;
7720 }
7721
7722 /**
7723 * e1000_remove - Device Removal Routine
7724 * @pdev: PCI device information struct
7725 *
7726 * e1000_remove is called by the PCI subsystem to alert the driver
7727 * that it should release a PCI device. This could be caused by a
7728 * Hot-Plug event, or because the driver is going to be removed from
7729 * memory.
7730 **/
7731 static void e1000_remove(struct pci_dev *pdev)
7732 {
7733 struct net_device *netdev = pci_get_drvdata(pdev);
7734 struct e1000_adapter *adapter = netdev_priv(netdev);
7735
7736 e1000e_ptp_remove(adapter);
7737
7738 /* The timers may be rescheduled, so explicitly disable them
7739 * from being rescheduled.
7740 */
7741 set_bit(__E1000_DOWN, &adapter->state);
7742 del_timer_sync(&adapter->watchdog_timer);
7743 del_timer_sync(&adapter->phy_info_timer);
7744
7745 cancel_work_sync(&adapter->reset_task);
7746 cancel_work_sync(&adapter->watchdog_task);
7747 cancel_work_sync(&adapter->downshift_task);
7748 cancel_work_sync(&adapter->update_phy_task);
7749 cancel_work_sync(&adapter->print_hang_task);
7750
7751 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7752 cancel_work_sync(&adapter->tx_hwtstamp_work);
7753 if (adapter->tx_hwtstamp_skb) {
7754 dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7755 adapter->tx_hwtstamp_skb = NULL;
7756 }
7757 }
7758
7759 unregister_netdev(netdev);
7760
7761 if (pci_dev_run_wake(pdev))
7762 pm_runtime_get_noresume(&pdev->dev);
7763
7764 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7765 * would have already happened in close and is redundant.
7766 */
7767 e1000e_release_hw_control(adapter);
7768
7769 e1000e_reset_interrupt_capability(adapter);
7770 kfree(adapter->tx_ring);
7771 kfree(adapter->rx_ring);
7772
7773 iounmap(adapter->hw.hw_addr);
7774 if ((adapter->hw.flash_address) &&
7775 (adapter->hw.mac.type < e1000_pch_spt))
7776 iounmap(adapter->hw.flash_address);
7777 pci_release_mem_regions(pdev);
7778
7779 free_netdev(netdev);
7780
7781 /* AER disable */
7782 pci_disable_pcie_error_reporting(pdev);
7783
7784 pci_disable_device(pdev);
7785 }
7786
7787 /* PCI Error Recovery (ERS) */
7788 static const struct pci_error_handlers e1000_err_handler = {
7789 .error_detected = e1000_io_error_detected,
7790 .slot_reset = e1000_io_slot_reset,
7791 .resume = e1000_io_resume,
7792 };
7793
7794 static const struct pci_device_id e1000_pci_tbl[] = {
7795 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7796 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7797 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7798 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7799 board_82571 },
7800 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7801 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7802 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7803 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7804 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7805
7806 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7807 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7808 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7809 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7810
7811 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7812 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7813 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7814
7815 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7816 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7817 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7818
7819 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7820 board_80003es2lan },
7821 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7822 board_80003es2lan },
7823 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7824 board_80003es2lan },
7825 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7826 board_80003es2lan },
7827
7828 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7829 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7830 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7831 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7832 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7833 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7834 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7835 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7836
7837 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7838 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7839 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7840 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7841 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7842 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7843 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7844 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7845 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7846
7847 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7848 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7849 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7850
7851 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7852 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7853 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7854
7855 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7856 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7857 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7858 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7859
7860 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7861 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7862
7863 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7864 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7865 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7866 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7867 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7868 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7869 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7870 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7871 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7872 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7873 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7874 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7875 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7876 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7877 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7878 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7879 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7880 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7881 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7882 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7883 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7884 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7885 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7886 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7887 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7888 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7889 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7890 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7891 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7892 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7893 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7894 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7895 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7896 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7897 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7898 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7899 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7900 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_tgp },
7901 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_tgp },
7902 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_tgp },
7903 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_tgp },
7904 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_tgp },
7905 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_tgp },
7906 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_tgp },
7907 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_tgp },
7908 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_tgp },
7909 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_tgp },
7910 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_tgp },
7911 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_tgp },
7912 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_tgp },
7913 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_tgp },
7914 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_tgp },
7915 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_tgp },
7916
7917 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7918 };
7919 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7920
7921 static const struct dev_pm_ops e1000_pm_ops = {
7922 #ifdef CONFIG_PM_SLEEP
7923 .prepare = e1000e_pm_prepare,
7924 .suspend = e1000e_pm_suspend,
7925 .resume = e1000e_pm_resume,
7926 .freeze = e1000e_pm_freeze,
7927 .thaw = e1000e_pm_thaw,
7928 .poweroff = e1000e_pm_suspend,
7929 .restore = e1000e_pm_resume,
7930 #endif
7931 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7932 e1000e_pm_runtime_idle)
7933 };
7934
7935 /* PCI Device API Driver */
7936 static struct pci_driver e1000_driver = {
7937 .name = e1000e_driver_name,
7938 .id_table = e1000_pci_tbl,
7939 .probe = e1000_probe,
7940 .remove = e1000_remove,
7941 .driver = {
7942 .pm = &e1000_pm_ops,
7943 },
7944 .shutdown = e1000_shutdown,
7945 .err_handler = &e1000_err_handler
7946 };
7947
7948 /**
7949 * e1000_init_module - Driver Registration Routine
7950 *
7951 * e1000_init_module is the first routine called when the driver is
7952 * loaded. All it does is register with the PCI subsystem.
7953 **/
7954 static int __init e1000_init_module(void)
7955 {
7956 pr_info("Intel(R) PRO/1000 Network Driver\n");
7957 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7958
7959 return pci_register_driver(&e1000_driver);
7960 }
7961 module_init(e1000_init_module);
7962
7963 /**
7964 * e1000_exit_module - Driver Exit Cleanup Routine
7965 *
7966 * e1000_exit_module is called just before the driver is removed
7967 * from memory.
7968 **/
7969 static void __exit e1000_exit_module(void)
7970 {
7971 pci_unregister_driver(&e1000_driver);
7972 }
7973 module_exit(e1000_exit_module);
7974
7975 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7976 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7977 MODULE_LICENSE("GPL v2");
7978
7979 /* netdev.c */