]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/marvell/mvneta.c
net: ethernet: marvell: mvneta: fix fixed-link phydev leaks
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / marvell / mvneta.c
1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/platform_device.h>
32 #include <linux/skbuff.h>
33 #include <net/hwbm.h>
34 #include "mvneta_bm.h"
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/tso.h>
38
39 /* Registers */
40 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
41 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
42 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
43 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
44 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
45 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
46 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
47 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
48 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
49 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
50 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
51 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
52 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
53 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
54 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
55 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
56 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
57 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
59 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
60 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
61 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
62 #define MVNETA_PORT_RX_RESET 0x1cc0
63 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
64 #define MVNETA_PHY_ADDR 0x2000
65 #define MVNETA_PHY_ADDR_MASK 0x1f
66 #define MVNETA_MBUS_RETRY 0x2010
67 #define MVNETA_UNIT_INTR_CAUSE 0x2080
68 #define MVNETA_UNIT_CONTROL 0x20B0
69 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
70 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
71 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
72 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
73 #define MVNETA_BASE_ADDR_ENABLE 0x2290
74 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
75 #define MVNETA_PORT_CONFIG 0x2400
76 #define MVNETA_UNI_PROMISC_MODE BIT(0)
77 #define MVNETA_DEF_RXQ(q) ((q) << 1)
78 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
79 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
80 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
81 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
82 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
83 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
84 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
85 MVNETA_DEF_RXQ_ARP(q) | \
86 MVNETA_DEF_RXQ_TCP(q) | \
87 MVNETA_DEF_RXQ_UDP(q) | \
88 MVNETA_DEF_RXQ_BPDU(q) | \
89 MVNETA_TX_UNSET_ERR_SUM | \
90 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
91 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
92 #define MVNETA_MAC_ADDR_LOW 0x2414
93 #define MVNETA_MAC_ADDR_HIGH 0x2418
94 #define MVNETA_SDMA_CONFIG 0x241c
95 #define MVNETA_SDMA_BRST_SIZE_16 4
96 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
97 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
98 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
99 #define MVNETA_DESC_SWAP BIT(6)
100 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
101 #define MVNETA_PORT_STATUS 0x2444
102 #define MVNETA_TX_IN_PRGRS BIT(1)
103 #define MVNETA_TX_FIFO_EMPTY BIT(8)
104 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
105 #define MVNETA_SERDES_CFG 0x24A0
106 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
107 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
108 #define MVNETA_TYPE_PRIO 0x24bc
109 #define MVNETA_FORCE_UNI BIT(21)
110 #define MVNETA_TXQ_CMD_1 0x24e4
111 #define MVNETA_TXQ_CMD 0x2448
112 #define MVNETA_TXQ_DISABLE_SHIFT 8
113 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
114 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
115 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
116 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
117 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
118 #define MVNETA_ACC_MODE 0x2500
119 #define MVNETA_BM_ADDRESS 0x2504
120 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
121 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
122 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
123 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
124 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
125 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
126
127 /* Exception Interrupt Port/Queue Cause register
128 *
129 * Their behavior depend of the mapping done using the PCPX2Q
130 * registers. For a given CPU if the bit associated to a queue is not
131 * set, then for the register a read from this CPU will always return
132 * 0 and a write won't do anything
133 */
134
135 #define MVNETA_INTR_NEW_CAUSE 0x25a0
136 #define MVNETA_INTR_NEW_MASK 0x25a4
137
138 /* bits 0..7 = TXQ SENT, one bit per queue.
139 * bits 8..15 = RXQ OCCUP, one bit per queue.
140 * bits 16..23 = RXQ FREE, one bit per queue.
141 * bit 29 = OLD_REG_SUM, see old reg ?
142 * bit 30 = TX_ERR_SUM, one bit for 4 ports
143 * bit 31 = MISC_SUM, one bit for 4 ports
144 */
145 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
146 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
147 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
148 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
149 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
150
151 #define MVNETA_INTR_OLD_CAUSE 0x25a8
152 #define MVNETA_INTR_OLD_MASK 0x25ac
153
154 /* Data Path Port/Queue Cause Register */
155 #define MVNETA_INTR_MISC_CAUSE 0x25b0
156 #define MVNETA_INTR_MISC_MASK 0x25b4
157
158 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
159 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
160 #define MVNETA_CAUSE_PTP BIT(4)
161
162 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
163 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
164 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
165 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
166 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
167 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
168 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
169 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
170
171 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
174
175 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
176 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
177 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
178
179 #define MVNETA_INTR_ENABLE 0x25b8
180 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
181 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
182
183 #define MVNETA_RXQ_CMD 0x2680
184 #define MVNETA_RXQ_DISABLE_SHIFT 8
185 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
186 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
187 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
188 #define MVNETA_GMAC_CTRL_0 0x2c00
189 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
190 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
191 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
192 #define MVNETA_GMAC_CTRL_2 0x2c08
193 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
194 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
195 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
196 #define MVNETA_GMAC2_PORT_RESET BIT(6)
197 #define MVNETA_GMAC_STATUS 0x2c10
198 #define MVNETA_GMAC_LINK_UP BIT(0)
199 #define MVNETA_GMAC_SPEED_1000 BIT(1)
200 #define MVNETA_GMAC_SPEED_100 BIT(2)
201 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
202 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
203 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
204 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
205 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
206 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
207 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
208 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
209 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
210 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
211 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
212 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
213 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
214 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
215 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
216 #define MVNETA_MIB_COUNTERS_BASE 0x3000
217 #define MVNETA_MIB_LATE_COLLISION 0x7c
218 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
219 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
220 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
221 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
222 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
223 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
224 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
225 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
226 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
227 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
228 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
229 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
230 #define MVNETA_PORT_TX_RESET 0x3cf0
231 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
232 #define MVNETA_TX_MTU 0x3e0c
233 #define MVNETA_TX_TOKEN_SIZE 0x3e14
234 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
235 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
236 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
237
238 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
239
240 /* Descriptor ring Macros */
241 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
242 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
243
244 /* Various constants */
245
246 /* Coalescing */
247 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
248 #define MVNETA_RX_COAL_PKTS 32
249 #define MVNETA_RX_COAL_USEC 100
250
251 /* The two bytes Marvell header. Either contains a special value used
252 * by Marvell switches when a specific hardware mode is enabled (not
253 * supported by this driver) or is filled automatically by zeroes on
254 * the RX side. Those two bytes being at the front of the Ethernet
255 * header, they allow to have the IP header aligned on a 4 bytes
256 * boundary automatically: the hardware skips those two bytes on its
257 * own.
258 */
259 #define MVNETA_MH_SIZE 2
260
261 #define MVNETA_VLAN_TAG_LEN 4
262
263 #define MVNETA_TX_CSUM_DEF_SIZE 1600
264 #define MVNETA_TX_CSUM_MAX_SIZE 9800
265 #define MVNETA_ACC_MODE_EXT1 1
266 #define MVNETA_ACC_MODE_EXT2 2
267
268 #define MVNETA_MAX_DECODE_WIN 6
269
270 /* Timeout constants */
271 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
272 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
273 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
274
275 #define MVNETA_TX_MTU_MAX 0x3ffff
276
277 /* The RSS lookup table actually has 256 entries but we do not use
278 * them yet
279 */
280 #define MVNETA_RSS_LU_TABLE_SIZE 1
281
282 /* TSO header size */
283 #define TSO_HEADER_SIZE 128
284
285 /* Max number of Rx descriptors */
286 #define MVNETA_MAX_RXD 128
287
288 /* Max number of Tx descriptors */
289 #define MVNETA_MAX_TXD 532
290
291 /* Max number of allowed TCP segments for software TSO */
292 #define MVNETA_MAX_TSO_SEGS 100
293
294 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
295
296 /* descriptor aligned size */
297 #define MVNETA_DESC_ALIGNED_SIZE 32
298
299 #define MVNETA_RX_PKT_SIZE(mtu) \
300 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
301 ETH_HLEN + ETH_FCS_LEN, \
302 cache_line_size())
303
304 #define IS_TSO_HEADER(txq, addr) \
305 ((addr >= txq->tso_hdrs_phys) && \
306 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
307
308 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
309 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
310
311 struct mvneta_statistic {
312 unsigned short offset;
313 unsigned short type;
314 const char name[ETH_GSTRING_LEN];
315 };
316
317 #define T_REG_32 32
318 #define T_REG_64 64
319
320 static const struct mvneta_statistic mvneta_statistics[] = {
321 { 0x3000, T_REG_64, "good_octets_received", },
322 { 0x3010, T_REG_32, "good_frames_received", },
323 { 0x3008, T_REG_32, "bad_octets_received", },
324 { 0x3014, T_REG_32, "bad_frames_received", },
325 { 0x3018, T_REG_32, "broadcast_frames_received", },
326 { 0x301c, T_REG_32, "multicast_frames_received", },
327 { 0x3050, T_REG_32, "unrec_mac_control_received", },
328 { 0x3058, T_REG_32, "good_fc_received", },
329 { 0x305c, T_REG_32, "bad_fc_received", },
330 { 0x3060, T_REG_32, "undersize_received", },
331 { 0x3064, T_REG_32, "fragments_received", },
332 { 0x3068, T_REG_32, "oversize_received", },
333 { 0x306c, T_REG_32, "jabber_received", },
334 { 0x3070, T_REG_32, "mac_receive_error", },
335 { 0x3074, T_REG_32, "bad_crc_event", },
336 { 0x3078, T_REG_32, "collision", },
337 { 0x307c, T_REG_32, "late_collision", },
338 { 0x2484, T_REG_32, "rx_discard", },
339 { 0x2488, T_REG_32, "rx_overrun", },
340 { 0x3020, T_REG_32, "frames_64_octets", },
341 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
342 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
343 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
344 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
345 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
346 { 0x3038, T_REG_64, "good_octets_sent", },
347 { 0x3040, T_REG_32, "good_frames_sent", },
348 { 0x3044, T_REG_32, "excessive_collision", },
349 { 0x3048, T_REG_32, "multicast_frames_sent", },
350 { 0x304c, T_REG_32, "broadcast_frames_sent", },
351 { 0x3054, T_REG_32, "fc_sent", },
352 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
353 };
354
355 struct mvneta_pcpu_stats {
356 struct u64_stats_sync syncp;
357 u64 rx_packets;
358 u64 rx_bytes;
359 u64 tx_packets;
360 u64 tx_bytes;
361 };
362
363 struct mvneta_pcpu_port {
364 /* Pointer to the shared port */
365 struct mvneta_port *pp;
366
367 /* Pointer to the CPU-local NAPI struct */
368 struct napi_struct napi;
369
370 /* Cause of the previous interrupt */
371 u32 cause_rx_tx;
372 };
373
374 struct mvneta_port {
375 u8 id;
376 struct mvneta_pcpu_port __percpu *ports;
377 struct mvneta_pcpu_stats __percpu *stats;
378
379 int pkt_size;
380 unsigned int frag_size;
381 void __iomem *base;
382 struct mvneta_rx_queue *rxqs;
383 struct mvneta_tx_queue *txqs;
384 struct net_device *dev;
385 struct hlist_node node_online;
386 struct hlist_node node_dead;
387 int rxq_def;
388 /* Protect the access to the percpu interrupt registers,
389 * ensuring that the configuration remains coherent.
390 */
391 spinlock_t lock;
392 bool is_stopped;
393
394 /* Core clock */
395 struct clk *clk;
396 /* AXI clock */
397 struct clk *clk_bus;
398 u8 mcast_count[256];
399 u16 tx_ring_size;
400 u16 rx_ring_size;
401
402 struct mii_bus *mii_bus;
403 phy_interface_t phy_interface;
404 struct device_node *phy_node;
405 unsigned int link;
406 unsigned int duplex;
407 unsigned int speed;
408 unsigned int tx_csum_limit;
409 unsigned int use_inband_status:1;
410
411 struct mvneta_bm *bm_priv;
412 struct mvneta_bm_pool *pool_long;
413 struct mvneta_bm_pool *pool_short;
414 int bm_win_id;
415
416 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
417
418 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
419 };
420
421 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
422 * layout of the transmit and reception DMA descriptors, and their
423 * layout is therefore defined by the hardware design
424 */
425
426 #define MVNETA_TX_L3_OFF_SHIFT 0
427 #define MVNETA_TX_IP_HLEN_SHIFT 8
428 #define MVNETA_TX_L4_UDP BIT(16)
429 #define MVNETA_TX_L3_IP6 BIT(17)
430 #define MVNETA_TXD_IP_CSUM BIT(18)
431 #define MVNETA_TXD_Z_PAD BIT(19)
432 #define MVNETA_TXD_L_DESC BIT(20)
433 #define MVNETA_TXD_F_DESC BIT(21)
434 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
435 MVNETA_TXD_L_DESC | \
436 MVNETA_TXD_F_DESC)
437 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
438 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
439
440 #define MVNETA_RXD_ERR_CRC 0x0
441 #define MVNETA_RXD_BM_POOL_SHIFT 13
442 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
443 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
444 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
445 #define MVNETA_RXD_ERR_LEN BIT(18)
446 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
447 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
448 #define MVNETA_RXD_L3_IP4 BIT(25)
449 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
450 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
451
452 #if defined(__LITTLE_ENDIAN)
453 struct mvneta_tx_desc {
454 u32 command; /* Options used by HW for packet transmitting.*/
455 u16 reserverd1; /* csum_l4 (for future use) */
456 u16 data_size; /* Data size of transmitted packet in bytes */
457 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
458 u32 reserved2; /* hw_cmd - (for future use, PMT) */
459 u32 reserved3[4]; /* Reserved - (for future use) */
460 };
461
462 struct mvneta_rx_desc {
463 u32 status; /* Info about received packet */
464 u16 reserved1; /* pnc_info - (for future use, PnC) */
465 u16 data_size; /* Size of received packet in bytes */
466
467 u32 buf_phys_addr; /* Physical address of the buffer */
468 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
469
470 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
471 u16 reserved3; /* prefetch_cmd, for future use */
472 u16 reserved4; /* csum_l4 - (for future use, PnC) */
473
474 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
475 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
476 };
477 #else
478 struct mvneta_tx_desc {
479 u16 data_size; /* Data size of transmitted packet in bytes */
480 u16 reserverd1; /* csum_l4 (for future use) */
481 u32 command; /* Options used by HW for packet transmitting.*/
482 u32 reserved2; /* hw_cmd - (for future use, PMT) */
483 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
484 u32 reserved3[4]; /* Reserved - (for future use) */
485 };
486
487 struct mvneta_rx_desc {
488 u16 data_size; /* Size of received packet in bytes */
489 u16 reserved1; /* pnc_info - (for future use, PnC) */
490 u32 status; /* Info about received packet */
491
492 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
493 u32 buf_phys_addr; /* Physical address of the buffer */
494
495 u16 reserved4; /* csum_l4 - (for future use, PnC) */
496 u16 reserved3; /* prefetch_cmd, for future use */
497 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
498
499 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
500 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
501 };
502 #endif
503
504 struct mvneta_tx_queue {
505 /* Number of this TX queue, in the range 0-7 */
506 u8 id;
507
508 /* Number of TX DMA descriptors in the descriptor ring */
509 int size;
510
511 /* Number of currently used TX DMA descriptor in the
512 * descriptor ring
513 */
514 int count;
515 int tx_stop_threshold;
516 int tx_wake_threshold;
517
518 /* Array of transmitted skb */
519 struct sk_buff **tx_skb;
520
521 /* Index of last TX DMA descriptor that was inserted */
522 int txq_put_index;
523
524 /* Index of the TX DMA descriptor to be cleaned up */
525 int txq_get_index;
526
527 u32 done_pkts_coal;
528
529 /* Virtual address of the TX DMA descriptors array */
530 struct mvneta_tx_desc *descs;
531
532 /* DMA address of the TX DMA descriptors array */
533 dma_addr_t descs_phys;
534
535 /* Index of the last TX DMA descriptor */
536 int last_desc;
537
538 /* Index of the next TX DMA descriptor to process */
539 int next_desc_to_proc;
540
541 /* DMA buffers for TSO headers */
542 char *tso_hdrs;
543
544 /* DMA address of TSO headers */
545 dma_addr_t tso_hdrs_phys;
546
547 /* Affinity mask for CPUs*/
548 cpumask_t affinity_mask;
549 };
550
551 struct mvneta_rx_queue {
552 /* rx queue number, in the range 0-7 */
553 u8 id;
554
555 /* num of rx descriptors in the rx descriptor ring */
556 int size;
557
558 /* counter of times when mvneta_refill() failed */
559 int missed;
560
561 u32 pkts_coal;
562 u32 time_coal;
563
564 /* Virtual address of the RX DMA descriptors array */
565 struct mvneta_rx_desc *descs;
566
567 /* DMA address of the RX DMA descriptors array */
568 dma_addr_t descs_phys;
569
570 /* Index of the last RX DMA descriptor */
571 int last_desc;
572
573 /* Index of the next RX DMA descriptor to process */
574 int next_desc_to_proc;
575 };
576
577 static enum cpuhp_state online_hpstate;
578 /* The hardware supports eight (8) rx queues, but we are only allowing
579 * the first one to be used. Therefore, let's just allocate one queue.
580 */
581 static int rxq_number = 8;
582 static int txq_number = 8;
583
584 static int rxq_def;
585
586 static int rx_copybreak __read_mostly = 256;
587
588 /* HW BM need that each port be identify by a unique ID */
589 static int global_port_id;
590
591 #define MVNETA_DRIVER_NAME "mvneta"
592 #define MVNETA_DRIVER_VERSION "1.0"
593
594 /* Utility/helper methods */
595
596 /* Write helper method */
597 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
598 {
599 writel(data, pp->base + offset);
600 }
601
602 /* Read helper method */
603 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
604 {
605 return readl(pp->base + offset);
606 }
607
608 /* Increment txq get counter */
609 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
610 {
611 txq->txq_get_index++;
612 if (txq->txq_get_index == txq->size)
613 txq->txq_get_index = 0;
614 }
615
616 /* Increment txq put counter */
617 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
618 {
619 txq->txq_put_index++;
620 if (txq->txq_put_index == txq->size)
621 txq->txq_put_index = 0;
622 }
623
624
625 /* Clear all MIB counters */
626 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
627 {
628 int i;
629 u32 dummy;
630
631 /* Perform dummy reads from MIB counters */
632 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
633 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
634 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
635 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
636 }
637
638 /* Get System Network Statistics */
639 static struct rtnl_link_stats64 *
640 mvneta_get_stats64(struct net_device *dev,
641 struct rtnl_link_stats64 *stats)
642 {
643 struct mvneta_port *pp = netdev_priv(dev);
644 unsigned int start;
645 int cpu;
646
647 for_each_possible_cpu(cpu) {
648 struct mvneta_pcpu_stats *cpu_stats;
649 u64 rx_packets;
650 u64 rx_bytes;
651 u64 tx_packets;
652 u64 tx_bytes;
653
654 cpu_stats = per_cpu_ptr(pp->stats, cpu);
655 do {
656 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
657 rx_packets = cpu_stats->rx_packets;
658 rx_bytes = cpu_stats->rx_bytes;
659 tx_packets = cpu_stats->tx_packets;
660 tx_bytes = cpu_stats->tx_bytes;
661 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
662
663 stats->rx_packets += rx_packets;
664 stats->rx_bytes += rx_bytes;
665 stats->tx_packets += tx_packets;
666 stats->tx_bytes += tx_bytes;
667 }
668
669 stats->rx_errors = dev->stats.rx_errors;
670 stats->rx_dropped = dev->stats.rx_dropped;
671
672 stats->tx_dropped = dev->stats.tx_dropped;
673
674 return stats;
675 }
676
677 /* Rx descriptors helper methods */
678
679 /* Checks whether the RX descriptor having this status is both the first
680 * and the last descriptor for the RX packet. Each RX packet is currently
681 * received through a single RX descriptor, so not having each RX
682 * descriptor with its first and last bits set is an error
683 */
684 static int mvneta_rxq_desc_is_first_last(u32 status)
685 {
686 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
687 MVNETA_RXD_FIRST_LAST_DESC;
688 }
689
690 /* Add number of descriptors ready to receive new packets */
691 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
692 struct mvneta_rx_queue *rxq,
693 int ndescs)
694 {
695 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
696 * be added at once
697 */
698 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
699 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
700 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
701 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
702 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
703 }
704
705 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
706 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
707 }
708
709 /* Get number of RX descriptors occupied by received packets */
710 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
711 struct mvneta_rx_queue *rxq)
712 {
713 u32 val;
714
715 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
716 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
717 }
718
719 /* Update num of rx desc called upon return from rx path or
720 * from mvneta_rxq_drop_pkts().
721 */
722 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
723 struct mvneta_rx_queue *rxq,
724 int rx_done, int rx_filled)
725 {
726 u32 val;
727
728 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
729 val = rx_done |
730 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
731 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
732 return;
733 }
734
735 /* Only 255 descriptors can be added at once */
736 while ((rx_done > 0) || (rx_filled > 0)) {
737 if (rx_done <= 0xff) {
738 val = rx_done;
739 rx_done = 0;
740 } else {
741 val = 0xff;
742 rx_done -= 0xff;
743 }
744 if (rx_filled <= 0xff) {
745 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
746 rx_filled = 0;
747 } else {
748 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
749 rx_filled -= 0xff;
750 }
751 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
752 }
753 }
754
755 /* Get pointer to next RX descriptor to be processed by SW */
756 static struct mvneta_rx_desc *
757 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
758 {
759 int rx_desc = rxq->next_desc_to_proc;
760
761 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
762 prefetch(rxq->descs + rxq->next_desc_to_proc);
763 return rxq->descs + rx_desc;
764 }
765
766 /* Change maximum receive size of the port. */
767 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
768 {
769 u32 val;
770
771 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
772 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
773 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
774 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
775 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
776 }
777
778
779 /* Set rx queue offset */
780 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
781 struct mvneta_rx_queue *rxq,
782 int offset)
783 {
784 u32 val;
785
786 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
787 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
788
789 /* Offset is in */
790 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
791 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
792 }
793
794
795 /* Tx descriptors helper methods */
796
797 /* Update HW with number of TX descriptors to be sent */
798 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
799 struct mvneta_tx_queue *txq,
800 int pend_desc)
801 {
802 u32 val;
803
804 /* Only 255 descriptors can be added at once ; Assume caller
805 * process TX desriptors in quanta less than 256
806 */
807 val = pend_desc;
808 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
809 }
810
811 /* Get pointer to next TX descriptor to be processed (send) by HW */
812 static struct mvneta_tx_desc *
813 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
814 {
815 int tx_desc = txq->next_desc_to_proc;
816
817 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
818 return txq->descs + tx_desc;
819 }
820
821 /* Release the last allocated TX descriptor. Useful to handle DMA
822 * mapping failures in the TX path.
823 */
824 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
825 {
826 if (txq->next_desc_to_proc == 0)
827 txq->next_desc_to_proc = txq->last_desc - 1;
828 else
829 txq->next_desc_to_proc--;
830 }
831
832 /* Set rxq buf size */
833 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
834 struct mvneta_rx_queue *rxq,
835 int buf_size)
836 {
837 u32 val;
838
839 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
840
841 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
842 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
843
844 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
845 }
846
847 /* Disable buffer management (BM) */
848 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
849 struct mvneta_rx_queue *rxq)
850 {
851 u32 val;
852
853 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
854 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
855 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
856 }
857
858 /* Enable buffer management (BM) */
859 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
860 struct mvneta_rx_queue *rxq)
861 {
862 u32 val;
863
864 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
865 val |= MVNETA_RXQ_HW_BUF_ALLOC;
866 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
867 }
868
869 /* Notify HW about port's assignment of pool for bigger packets */
870 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
871 struct mvneta_rx_queue *rxq)
872 {
873 u32 val;
874
875 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
876 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
877 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
878
879 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
880 }
881
882 /* Notify HW about port's assignment of pool for smaller packets */
883 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
884 struct mvneta_rx_queue *rxq)
885 {
886 u32 val;
887
888 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
889 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
890 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
891
892 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
893 }
894
895 /* Set port's receive buffer size for assigned BM pool */
896 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
897 int buf_size,
898 u8 pool_id)
899 {
900 u32 val;
901
902 if (!IS_ALIGNED(buf_size, 8)) {
903 dev_warn(pp->dev->dev.parent,
904 "illegal buf_size value %d, round to %d\n",
905 buf_size, ALIGN(buf_size, 8));
906 buf_size = ALIGN(buf_size, 8);
907 }
908
909 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
910 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
911 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
912 }
913
914 /* Configure MBUS window in order to enable access BM internal SRAM */
915 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
916 u8 target, u8 attr)
917 {
918 u32 win_enable, win_protect;
919 int i;
920
921 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
922
923 if (pp->bm_win_id < 0) {
924 /* Find first not occupied window */
925 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
926 if (win_enable & (1 << i)) {
927 pp->bm_win_id = i;
928 break;
929 }
930 }
931 if (i == MVNETA_MAX_DECODE_WIN)
932 return -ENOMEM;
933 } else {
934 i = pp->bm_win_id;
935 }
936
937 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
938 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
939
940 if (i < 4)
941 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
942
943 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
944 (attr << 8) | target);
945
946 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
947
948 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
949 win_protect |= 3 << (2 * i);
950 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
951
952 win_enable &= ~(1 << i);
953 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
954
955 return 0;
956 }
957
958 /* Assign and initialize pools for port. In case of fail
959 * buffer manager will remain disabled for current port.
960 */
961 static int mvneta_bm_port_init(struct platform_device *pdev,
962 struct mvneta_port *pp)
963 {
964 struct device_node *dn = pdev->dev.of_node;
965 u32 long_pool_id, short_pool_id, wsize;
966 u8 target, attr;
967 int err;
968
969 /* Get BM window information */
970 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
971 &target, &attr);
972 if (err < 0)
973 return err;
974
975 pp->bm_win_id = -1;
976
977 /* Open NETA -> BM window */
978 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
979 target, attr);
980 if (err < 0) {
981 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
982 return err;
983 }
984
985 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
986 netdev_info(pp->dev, "missing long pool id\n");
987 return -EINVAL;
988 }
989
990 /* Create port's long pool depending on mtu */
991 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
992 MVNETA_BM_LONG, pp->id,
993 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
994 if (!pp->pool_long) {
995 netdev_info(pp->dev, "fail to obtain long pool for port\n");
996 return -ENOMEM;
997 }
998
999 pp->pool_long->port_map |= 1 << pp->id;
1000
1001 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1002 pp->pool_long->id);
1003
1004 /* If short pool id is not defined, assume using single pool */
1005 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1006 short_pool_id = long_pool_id;
1007
1008 /* Create port's short pool */
1009 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1010 MVNETA_BM_SHORT, pp->id,
1011 MVNETA_BM_SHORT_PKT_SIZE);
1012 if (!pp->pool_short) {
1013 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1014 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1015 return -ENOMEM;
1016 }
1017
1018 if (short_pool_id != long_pool_id) {
1019 pp->pool_short->port_map |= 1 << pp->id;
1020 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1021 pp->pool_short->id);
1022 }
1023
1024 return 0;
1025 }
1026
1027 /* Update settings of a pool for bigger packets */
1028 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1029 {
1030 struct mvneta_bm_pool *bm_pool = pp->pool_long;
1031 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1032 int num;
1033
1034 /* Release all buffers from long pool */
1035 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1036 if (hwbm_pool->buf_num) {
1037 WARN(1, "cannot free all buffers in pool %d\n",
1038 bm_pool->id);
1039 goto bm_mtu_err;
1040 }
1041
1042 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1043 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1044 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1045 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1046
1047 /* Fill entire long pool */
1048 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1049 if (num != hwbm_pool->size) {
1050 WARN(1, "pool %d: %d of %d allocated\n",
1051 bm_pool->id, num, hwbm_pool->size);
1052 goto bm_mtu_err;
1053 }
1054 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1055
1056 return;
1057
1058 bm_mtu_err:
1059 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1060 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1061
1062 pp->bm_priv = NULL;
1063 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1064 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1065 }
1066
1067 /* Start the Ethernet port RX and TX activity */
1068 static void mvneta_port_up(struct mvneta_port *pp)
1069 {
1070 int queue;
1071 u32 q_map;
1072
1073 /* Enable all initialized TXs. */
1074 q_map = 0;
1075 for (queue = 0; queue < txq_number; queue++) {
1076 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1077 if (txq->descs != NULL)
1078 q_map |= (1 << queue);
1079 }
1080 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1081
1082 /* Enable all initialized RXQs. */
1083 for (queue = 0; queue < rxq_number; queue++) {
1084 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1085
1086 if (rxq->descs != NULL)
1087 q_map |= (1 << queue);
1088 }
1089 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1090 }
1091
1092 /* Stop the Ethernet port activity */
1093 static void mvneta_port_down(struct mvneta_port *pp)
1094 {
1095 u32 val;
1096 int count;
1097
1098 /* Stop Rx port activity. Check port Rx activity. */
1099 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1100
1101 /* Issue stop command for active channels only */
1102 if (val != 0)
1103 mvreg_write(pp, MVNETA_RXQ_CMD,
1104 val << MVNETA_RXQ_DISABLE_SHIFT);
1105
1106 /* Wait for all Rx activity to terminate. */
1107 count = 0;
1108 do {
1109 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1110 netdev_warn(pp->dev,
1111 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1112 val);
1113 break;
1114 }
1115 mdelay(1);
1116
1117 val = mvreg_read(pp, MVNETA_RXQ_CMD);
1118 } while (val & MVNETA_RXQ_ENABLE_MASK);
1119
1120 /* Stop Tx port activity. Check port Tx activity. Issue stop
1121 * command for active channels only
1122 */
1123 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1124
1125 if (val != 0)
1126 mvreg_write(pp, MVNETA_TXQ_CMD,
1127 (val << MVNETA_TXQ_DISABLE_SHIFT));
1128
1129 /* Wait for all Tx activity to terminate. */
1130 count = 0;
1131 do {
1132 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1133 netdev_warn(pp->dev,
1134 "TIMEOUT for TX stopped status=0x%08x\n",
1135 val);
1136 break;
1137 }
1138 mdelay(1);
1139
1140 /* Check TX Command reg that all Txqs are stopped */
1141 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1142
1143 } while (val & MVNETA_TXQ_ENABLE_MASK);
1144
1145 /* Double check to verify that TX FIFO is empty */
1146 count = 0;
1147 do {
1148 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1149 netdev_warn(pp->dev,
1150 "TX FIFO empty timeout status=0x%08x\n",
1151 val);
1152 break;
1153 }
1154 mdelay(1);
1155
1156 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1157 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1158 (val & MVNETA_TX_IN_PRGRS));
1159
1160 udelay(200);
1161 }
1162
1163 /* Enable the port by setting the port enable bit of the MAC control register */
1164 static void mvneta_port_enable(struct mvneta_port *pp)
1165 {
1166 u32 val;
1167
1168 /* Enable port */
1169 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1170 val |= MVNETA_GMAC0_PORT_ENABLE;
1171 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1172 }
1173
1174 /* Disable the port and wait for about 200 usec before retuning */
1175 static void mvneta_port_disable(struct mvneta_port *pp)
1176 {
1177 u32 val;
1178
1179 /* Reset the Enable bit in the Serial Control Register */
1180 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1181 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1182 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1183
1184 udelay(200);
1185 }
1186
1187 /* Multicast tables methods */
1188
1189 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1190 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1191 {
1192 int offset;
1193 u32 val;
1194
1195 if (queue == -1) {
1196 val = 0;
1197 } else {
1198 val = 0x1 | (queue << 1);
1199 val |= (val << 24) | (val << 16) | (val << 8);
1200 }
1201
1202 for (offset = 0; offset <= 0xc; offset += 4)
1203 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1204 }
1205
1206 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1207 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1208 {
1209 int offset;
1210 u32 val;
1211
1212 if (queue == -1) {
1213 val = 0;
1214 } else {
1215 val = 0x1 | (queue << 1);
1216 val |= (val << 24) | (val << 16) | (val << 8);
1217 }
1218
1219 for (offset = 0; offset <= 0xfc; offset += 4)
1220 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1221
1222 }
1223
1224 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1225 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1226 {
1227 int offset;
1228 u32 val;
1229
1230 if (queue == -1) {
1231 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1232 val = 0;
1233 } else {
1234 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1235 val = 0x1 | (queue << 1);
1236 val |= (val << 24) | (val << 16) | (val << 8);
1237 }
1238
1239 for (offset = 0; offset <= 0xfc; offset += 4)
1240 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1241 }
1242
1243 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1244 {
1245 u32 val;
1246
1247 if (enable) {
1248 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1249 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1250 MVNETA_GMAC_FORCE_LINK_DOWN |
1251 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1252 val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1253 MVNETA_GMAC_AN_SPEED_EN |
1254 MVNETA_GMAC_AN_DUPLEX_EN;
1255 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1256
1257 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1258 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1259 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1260
1261 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1262 val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1263 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1264 } else {
1265 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1266 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1267 MVNETA_GMAC_AN_SPEED_EN |
1268 MVNETA_GMAC_AN_DUPLEX_EN);
1269 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1270
1271 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1272 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1273 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1274
1275 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1276 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1277 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1278 }
1279 }
1280
1281 static void mvneta_percpu_unmask_interrupt(void *arg)
1282 {
1283 struct mvneta_port *pp = arg;
1284
1285 /* All the queue are unmasked, but actually only the ones
1286 * mapped to this CPU will be unmasked
1287 */
1288 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1289 MVNETA_RX_INTR_MASK_ALL |
1290 MVNETA_TX_INTR_MASK_ALL |
1291 MVNETA_MISCINTR_INTR_MASK);
1292 }
1293
1294 static void mvneta_percpu_mask_interrupt(void *arg)
1295 {
1296 struct mvneta_port *pp = arg;
1297
1298 /* All the queue are masked, but actually only the ones
1299 * mapped to this CPU will be masked
1300 */
1301 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1302 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1303 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1304 }
1305
1306 static void mvneta_percpu_clear_intr_cause(void *arg)
1307 {
1308 struct mvneta_port *pp = arg;
1309
1310 /* All the queue are cleared, but actually only the ones
1311 * mapped to this CPU will be cleared
1312 */
1313 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1314 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1315 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1316 }
1317
1318 /* This method sets defaults to the NETA port:
1319 * Clears interrupt Cause and Mask registers.
1320 * Clears all MAC tables.
1321 * Sets defaults to all registers.
1322 * Resets RX and TX descriptor rings.
1323 * Resets PHY.
1324 * This method can be called after mvneta_port_down() to return the port
1325 * settings to defaults.
1326 */
1327 static void mvneta_defaults_set(struct mvneta_port *pp)
1328 {
1329 int cpu;
1330 int queue;
1331 u32 val;
1332 int max_cpu = num_present_cpus();
1333
1334 /* Clear all Cause registers */
1335 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1336
1337 /* Mask all interrupts */
1338 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1339 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1340
1341 /* Enable MBUS Retry bit16 */
1342 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1343
1344 /* Set CPU queue access map. CPUs are assigned to the RX and
1345 * TX queues modulo their number. If there is only one TX
1346 * queue then it is assigned to the CPU associated to the
1347 * default RX queue.
1348 */
1349 for_each_present_cpu(cpu) {
1350 int rxq_map = 0, txq_map = 0;
1351 int rxq, txq;
1352
1353 for (rxq = 0; rxq < rxq_number; rxq++)
1354 if ((rxq % max_cpu) == cpu)
1355 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1356
1357 for (txq = 0; txq < txq_number; txq++)
1358 if ((txq % max_cpu) == cpu)
1359 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1360
1361 /* With only one TX queue we configure a special case
1362 * which will allow to get all the irq on a single
1363 * CPU
1364 */
1365 if (txq_number == 1)
1366 txq_map = (cpu == pp->rxq_def) ?
1367 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1368
1369 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1370 }
1371
1372 /* Reset RX and TX DMAs */
1373 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1374 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1375
1376 /* Disable Legacy WRR, Disable EJP, Release from reset */
1377 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1378 for (queue = 0; queue < txq_number; queue++) {
1379 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1380 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1381 }
1382
1383 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1384 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1385
1386 /* Set Port Acceleration Mode */
1387 if (pp->bm_priv)
1388 /* HW buffer management + legacy parser */
1389 val = MVNETA_ACC_MODE_EXT2;
1390 else
1391 /* SW buffer management + legacy parser */
1392 val = MVNETA_ACC_MODE_EXT1;
1393 mvreg_write(pp, MVNETA_ACC_MODE, val);
1394
1395 if (pp->bm_priv)
1396 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1397
1398 /* Update val of portCfg register accordingly with all RxQueue types */
1399 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1400 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1401
1402 val = 0;
1403 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1404 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1405
1406 /* Build PORT_SDMA_CONFIG_REG */
1407 val = 0;
1408
1409 /* Default burst size */
1410 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1411 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1412 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1413
1414 #if defined(__BIG_ENDIAN)
1415 val |= MVNETA_DESC_SWAP;
1416 #endif
1417
1418 /* Assign port SDMA configuration */
1419 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1420
1421 /* Disable PHY polling in hardware, since we're using the
1422 * kernel phylib to do this.
1423 */
1424 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1425 val &= ~MVNETA_PHY_POLLING_ENABLE;
1426 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1427
1428 mvneta_set_autoneg(pp, pp->use_inband_status);
1429 mvneta_set_ucast_table(pp, -1);
1430 mvneta_set_special_mcast_table(pp, -1);
1431 mvneta_set_other_mcast_table(pp, -1);
1432
1433 /* Set port interrupt enable register - default enable all */
1434 mvreg_write(pp, MVNETA_INTR_ENABLE,
1435 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1436 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1437
1438 mvneta_mib_counters_clear(pp);
1439 }
1440
1441 /* Set max sizes for tx queues */
1442 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1443
1444 {
1445 u32 val, size, mtu;
1446 int queue;
1447
1448 mtu = max_tx_size * 8;
1449 if (mtu > MVNETA_TX_MTU_MAX)
1450 mtu = MVNETA_TX_MTU_MAX;
1451
1452 /* Set MTU */
1453 val = mvreg_read(pp, MVNETA_TX_MTU);
1454 val &= ~MVNETA_TX_MTU_MAX;
1455 val |= mtu;
1456 mvreg_write(pp, MVNETA_TX_MTU, val);
1457
1458 /* TX token size and all TXQs token size must be larger that MTU */
1459 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1460
1461 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1462 if (size < mtu) {
1463 size = mtu;
1464 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1465 val |= size;
1466 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1467 }
1468 for (queue = 0; queue < txq_number; queue++) {
1469 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1470
1471 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1472 if (size < mtu) {
1473 size = mtu;
1474 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1475 val |= size;
1476 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1477 }
1478 }
1479 }
1480
1481 /* Set unicast address */
1482 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1483 int queue)
1484 {
1485 unsigned int unicast_reg;
1486 unsigned int tbl_offset;
1487 unsigned int reg_offset;
1488
1489 /* Locate the Unicast table entry */
1490 last_nibble = (0xf & last_nibble);
1491
1492 /* offset from unicast tbl base */
1493 tbl_offset = (last_nibble / 4) * 4;
1494
1495 /* offset within the above reg */
1496 reg_offset = last_nibble % 4;
1497
1498 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1499
1500 if (queue == -1) {
1501 /* Clear accepts frame bit at specified unicast DA tbl entry */
1502 unicast_reg &= ~(0xff << (8 * reg_offset));
1503 } else {
1504 unicast_reg &= ~(0xff << (8 * reg_offset));
1505 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1506 }
1507
1508 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1509 }
1510
1511 /* Set mac address */
1512 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1513 int queue)
1514 {
1515 unsigned int mac_h;
1516 unsigned int mac_l;
1517
1518 if (queue != -1) {
1519 mac_l = (addr[4] << 8) | (addr[5]);
1520 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1521 (addr[2] << 8) | (addr[3] << 0);
1522
1523 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1524 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1525 }
1526
1527 /* Accept frames of this address */
1528 mvneta_set_ucast_addr(pp, addr[5], queue);
1529 }
1530
1531 /* Set the number of packets that will be received before RX interrupt
1532 * will be generated by HW.
1533 */
1534 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1535 struct mvneta_rx_queue *rxq, u32 value)
1536 {
1537 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1538 value | MVNETA_RXQ_NON_OCCUPIED(0));
1539 rxq->pkts_coal = value;
1540 }
1541
1542 /* Set the time delay in usec before RX interrupt will be generated by
1543 * HW.
1544 */
1545 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1546 struct mvneta_rx_queue *rxq, u32 value)
1547 {
1548 u32 val;
1549 unsigned long clk_rate;
1550
1551 clk_rate = clk_get_rate(pp->clk);
1552 val = (clk_rate / 1000000) * value;
1553
1554 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1555 rxq->time_coal = value;
1556 }
1557
1558 /* Set threshold for TX_DONE pkts coalescing */
1559 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1560 struct mvneta_tx_queue *txq, u32 value)
1561 {
1562 u32 val;
1563
1564 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1565
1566 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1567 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1568
1569 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1570
1571 txq->done_pkts_coal = value;
1572 }
1573
1574 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1575 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1576 u32 phys_addr, u32 cookie)
1577 {
1578 rx_desc->buf_cookie = cookie;
1579 rx_desc->buf_phys_addr = phys_addr;
1580 }
1581
1582 /* Decrement sent descriptors counter */
1583 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1584 struct mvneta_tx_queue *txq,
1585 int sent_desc)
1586 {
1587 u32 val;
1588
1589 /* Only 255 TX descriptors can be updated at once */
1590 while (sent_desc > 0xff) {
1591 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1592 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1593 sent_desc = sent_desc - 0xff;
1594 }
1595
1596 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1597 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1598 }
1599
1600 /* Get number of TX descriptors already sent by HW */
1601 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1602 struct mvneta_tx_queue *txq)
1603 {
1604 u32 val;
1605 int sent_desc;
1606
1607 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1608 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1609 MVNETA_TXQ_SENT_DESC_SHIFT;
1610
1611 return sent_desc;
1612 }
1613
1614 /* Get number of sent descriptors and decrement counter.
1615 * The number of sent descriptors is returned.
1616 */
1617 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1618 struct mvneta_tx_queue *txq)
1619 {
1620 int sent_desc;
1621
1622 /* Get number of sent descriptors */
1623 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1624
1625 /* Decrement sent descriptors counter */
1626 if (sent_desc)
1627 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1628
1629 return sent_desc;
1630 }
1631
1632 /* Set TXQ descriptors fields relevant for CSUM calculation */
1633 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1634 int ip_hdr_len, int l4_proto)
1635 {
1636 u32 command;
1637
1638 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1639 * G_L4_chk, L4_type; required only for checksum
1640 * calculation
1641 */
1642 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1643 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1644
1645 if (l3_proto == htons(ETH_P_IP))
1646 command |= MVNETA_TXD_IP_CSUM;
1647 else
1648 command |= MVNETA_TX_L3_IP6;
1649
1650 if (l4_proto == IPPROTO_TCP)
1651 command |= MVNETA_TX_L4_CSUM_FULL;
1652 else if (l4_proto == IPPROTO_UDP)
1653 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1654 else
1655 command |= MVNETA_TX_L4_CSUM_NOT;
1656
1657 return command;
1658 }
1659
1660
1661 /* Display more error info */
1662 static void mvneta_rx_error(struct mvneta_port *pp,
1663 struct mvneta_rx_desc *rx_desc)
1664 {
1665 u32 status = rx_desc->status;
1666
1667 if (!mvneta_rxq_desc_is_first_last(status)) {
1668 netdev_err(pp->dev,
1669 "bad rx status %08x (buffer oversize), size=%d\n",
1670 status, rx_desc->data_size);
1671 return;
1672 }
1673
1674 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1675 case MVNETA_RXD_ERR_CRC:
1676 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1677 status, rx_desc->data_size);
1678 break;
1679 case MVNETA_RXD_ERR_OVERRUN:
1680 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1681 status, rx_desc->data_size);
1682 break;
1683 case MVNETA_RXD_ERR_LEN:
1684 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1685 status, rx_desc->data_size);
1686 break;
1687 case MVNETA_RXD_ERR_RESOURCE:
1688 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1689 status, rx_desc->data_size);
1690 break;
1691 }
1692 }
1693
1694 /* Handle RX checksum offload based on the descriptor's status */
1695 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1696 struct sk_buff *skb)
1697 {
1698 if ((status & MVNETA_RXD_L3_IP4) &&
1699 (status & MVNETA_RXD_L4_CSUM_OK)) {
1700 skb->csum = 0;
1701 skb->ip_summed = CHECKSUM_UNNECESSARY;
1702 return;
1703 }
1704
1705 skb->ip_summed = CHECKSUM_NONE;
1706 }
1707
1708 /* Return tx queue pointer (find last set bit) according to <cause> returned
1709 * form tx_done reg. <cause> must not be null. The return value is always a
1710 * valid queue for matching the first one found in <cause>.
1711 */
1712 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1713 u32 cause)
1714 {
1715 int queue = fls(cause) - 1;
1716
1717 return &pp->txqs[queue];
1718 }
1719
1720 /* Free tx queue skbuffs */
1721 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1722 struct mvneta_tx_queue *txq, int num)
1723 {
1724 int i;
1725
1726 for (i = 0; i < num; i++) {
1727 struct mvneta_tx_desc *tx_desc = txq->descs +
1728 txq->txq_get_index;
1729 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1730
1731 mvneta_txq_inc_get(txq);
1732
1733 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1734 dma_unmap_single(pp->dev->dev.parent,
1735 tx_desc->buf_phys_addr,
1736 tx_desc->data_size, DMA_TO_DEVICE);
1737 if (!skb)
1738 continue;
1739 dev_kfree_skb_any(skb);
1740 }
1741 }
1742
1743 /* Handle end of transmission */
1744 static void mvneta_txq_done(struct mvneta_port *pp,
1745 struct mvneta_tx_queue *txq)
1746 {
1747 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1748 int tx_done;
1749
1750 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1751 if (!tx_done)
1752 return;
1753
1754 mvneta_txq_bufs_free(pp, txq, tx_done);
1755
1756 txq->count -= tx_done;
1757
1758 if (netif_tx_queue_stopped(nq)) {
1759 if (txq->count <= txq->tx_wake_threshold)
1760 netif_tx_wake_queue(nq);
1761 }
1762 }
1763
1764 void *mvneta_frag_alloc(unsigned int frag_size)
1765 {
1766 if (likely(frag_size <= PAGE_SIZE))
1767 return netdev_alloc_frag(frag_size);
1768 else
1769 return kmalloc(frag_size, GFP_ATOMIC);
1770 }
1771 EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1772
1773 void mvneta_frag_free(unsigned int frag_size, void *data)
1774 {
1775 if (likely(frag_size <= PAGE_SIZE))
1776 skb_free_frag(data);
1777 else
1778 kfree(data);
1779 }
1780 EXPORT_SYMBOL_GPL(mvneta_frag_free);
1781
1782 /* Refill processing for SW buffer management */
1783 static int mvneta_rx_refill(struct mvneta_port *pp,
1784 struct mvneta_rx_desc *rx_desc)
1785
1786 {
1787 dma_addr_t phys_addr;
1788 void *data;
1789
1790 data = mvneta_frag_alloc(pp->frag_size);
1791 if (!data)
1792 return -ENOMEM;
1793
1794 phys_addr = dma_map_single(pp->dev->dev.parent, data,
1795 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1796 DMA_FROM_DEVICE);
1797 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1798 mvneta_frag_free(pp->frag_size, data);
1799 return -ENOMEM;
1800 }
1801
1802 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1803 return 0;
1804 }
1805
1806 /* Handle tx checksum */
1807 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1808 {
1809 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1810 int ip_hdr_len = 0;
1811 __be16 l3_proto = vlan_get_protocol(skb);
1812 u8 l4_proto;
1813
1814 if (l3_proto == htons(ETH_P_IP)) {
1815 struct iphdr *ip4h = ip_hdr(skb);
1816
1817 /* Calculate IPv4 checksum and L4 checksum */
1818 ip_hdr_len = ip4h->ihl;
1819 l4_proto = ip4h->protocol;
1820 } else if (l3_proto == htons(ETH_P_IPV6)) {
1821 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1822
1823 /* Read l4_protocol from one of IPv6 extra headers */
1824 if (skb_network_header_len(skb) > 0)
1825 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1826 l4_proto = ip6h->nexthdr;
1827 } else
1828 return MVNETA_TX_L4_CSUM_NOT;
1829
1830 return mvneta_txq_desc_csum(skb_network_offset(skb),
1831 l3_proto, ip_hdr_len, l4_proto);
1832 }
1833
1834 return MVNETA_TX_L4_CSUM_NOT;
1835 }
1836
1837 /* Drop packets received by the RXQ and free buffers */
1838 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1839 struct mvneta_rx_queue *rxq)
1840 {
1841 int rx_done, i;
1842
1843 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1844 if (rx_done)
1845 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1846
1847 if (pp->bm_priv) {
1848 for (i = 0; i < rx_done; i++) {
1849 struct mvneta_rx_desc *rx_desc =
1850 mvneta_rxq_next_desc_get(rxq);
1851 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1852 struct mvneta_bm_pool *bm_pool;
1853
1854 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1855 /* Return dropped buffer to the pool */
1856 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1857 rx_desc->buf_phys_addr);
1858 }
1859 return;
1860 }
1861
1862 for (i = 0; i < rxq->size; i++) {
1863 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1864 void *data = (void *)rx_desc->buf_cookie;
1865
1866 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1867 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1868 mvneta_frag_free(pp->frag_size, data);
1869 }
1870 }
1871
1872 /* Main rx processing when using software buffer management */
1873 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1874 struct mvneta_rx_queue *rxq)
1875 {
1876 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1877 struct net_device *dev = pp->dev;
1878 int rx_done;
1879 u32 rcvd_pkts = 0;
1880 u32 rcvd_bytes = 0;
1881
1882 /* Get number of received packets */
1883 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1884
1885 if (rx_todo > rx_done)
1886 rx_todo = rx_done;
1887
1888 rx_done = 0;
1889
1890 /* Fairness NAPI loop */
1891 while (rx_done < rx_todo) {
1892 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1893 struct sk_buff *skb;
1894 unsigned char *data;
1895 dma_addr_t phys_addr;
1896 u32 rx_status, frag_size;
1897 int rx_bytes, err;
1898
1899 rx_done++;
1900 rx_status = rx_desc->status;
1901 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1902 data = (unsigned char *)rx_desc->buf_cookie;
1903 phys_addr = rx_desc->buf_phys_addr;
1904
1905 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1906 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1907 err_drop_frame:
1908 dev->stats.rx_errors++;
1909 mvneta_rx_error(pp, rx_desc);
1910 /* leave the descriptor untouched */
1911 continue;
1912 }
1913
1914 if (rx_bytes <= rx_copybreak) {
1915 /* better copy a small frame and not unmap the DMA region */
1916 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1917 if (unlikely(!skb))
1918 goto err_drop_frame;
1919
1920 dma_sync_single_range_for_cpu(dev->dev.parent,
1921 rx_desc->buf_phys_addr,
1922 MVNETA_MH_SIZE + NET_SKB_PAD,
1923 rx_bytes,
1924 DMA_FROM_DEVICE);
1925 memcpy(skb_put(skb, rx_bytes),
1926 data + MVNETA_MH_SIZE + NET_SKB_PAD,
1927 rx_bytes);
1928
1929 skb->protocol = eth_type_trans(skb, dev);
1930 mvneta_rx_csum(pp, rx_status, skb);
1931 napi_gro_receive(&port->napi, skb);
1932
1933 rcvd_pkts++;
1934 rcvd_bytes += rx_bytes;
1935
1936 /* leave the descriptor and buffer untouched */
1937 continue;
1938 }
1939
1940 /* Refill processing */
1941 err = mvneta_rx_refill(pp, rx_desc);
1942 if (err) {
1943 netdev_err(dev, "Linux processing - Can't refill\n");
1944 rxq->missed++;
1945 goto err_drop_frame;
1946 }
1947
1948 frag_size = pp->frag_size;
1949
1950 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
1951
1952 /* After refill old buffer has to be unmapped regardless
1953 * the skb is successfully built or not.
1954 */
1955 dma_unmap_single(dev->dev.parent, phys_addr,
1956 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1957 DMA_FROM_DEVICE);
1958
1959 if (!skb)
1960 goto err_drop_frame;
1961
1962 rcvd_pkts++;
1963 rcvd_bytes += rx_bytes;
1964
1965 /* Linux processing */
1966 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1967 skb_put(skb, rx_bytes);
1968
1969 skb->protocol = eth_type_trans(skb, dev);
1970
1971 mvneta_rx_csum(pp, rx_status, skb);
1972
1973 napi_gro_receive(&port->napi, skb);
1974 }
1975
1976 if (rcvd_pkts) {
1977 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1978
1979 u64_stats_update_begin(&stats->syncp);
1980 stats->rx_packets += rcvd_pkts;
1981 stats->rx_bytes += rcvd_bytes;
1982 u64_stats_update_end(&stats->syncp);
1983 }
1984
1985 /* Update rxq management counters */
1986 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1987
1988 return rx_done;
1989 }
1990
1991 /* Main rx processing when using hardware buffer management */
1992 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
1993 struct mvneta_rx_queue *rxq)
1994 {
1995 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1996 struct net_device *dev = pp->dev;
1997 int rx_done;
1998 u32 rcvd_pkts = 0;
1999 u32 rcvd_bytes = 0;
2000
2001 /* Get number of received packets */
2002 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2003
2004 if (rx_todo > rx_done)
2005 rx_todo = rx_done;
2006
2007 rx_done = 0;
2008
2009 /* Fairness NAPI loop */
2010 while (rx_done < rx_todo) {
2011 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2012 struct mvneta_bm_pool *bm_pool = NULL;
2013 struct sk_buff *skb;
2014 unsigned char *data;
2015 dma_addr_t phys_addr;
2016 u32 rx_status, frag_size;
2017 int rx_bytes, err;
2018 u8 pool_id;
2019
2020 rx_done++;
2021 rx_status = rx_desc->status;
2022 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2023 data = (unsigned char *)rx_desc->buf_cookie;
2024 phys_addr = rx_desc->buf_phys_addr;
2025 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2026 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2027
2028 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2029 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2030 err_drop_frame_ret_pool:
2031 /* Return the buffer to the pool */
2032 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2033 rx_desc->buf_phys_addr);
2034 err_drop_frame:
2035 dev->stats.rx_errors++;
2036 mvneta_rx_error(pp, rx_desc);
2037 /* leave the descriptor untouched */
2038 continue;
2039 }
2040
2041 if (rx_bytes <= rx_copybreak) {
2042 /* better copy a small frame and not unmap the DMA region */
2043 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2044 if (unlikely(!skb))
2045 goto err_drop_frame_ret_pool;
2046
2047 dma_sync_single_range_for_cpu(dev->dev.parent,
2048 rx_desc->buf_phys_addr,
2049 MVNETA_MH_SIZE + NET_SKB_PAD,
2050 rx_bytes,
2051 DMA_FROM_DEVICE);
2052 memcpy(skb_put(skb, rx_bytes),
2053 data + MVNETA_MH_SIZE + NET_SKB_PAD,
2054 rx_bytes);
2055
2056 skb->protocol = eth_type_trans(skb, dev);
2057 mvneta_rx_csum(pp, rx_status, skb);
2058 napi_gro_receive(&port->napi, skb);
2059
2060 rcvd_pkts++;
2061 rcvd_bytes += rx_bytes;
2062
2063 /* Return the buffer to the pool */
2064 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2065 rx_desc->buf_phys_addr);
2066
2067 /* leave the descriptor and buffer untouched */
2068 continue;
2069 }
2070
2071 /* Refill processing */
2072 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2073 if (err) {
2074 netdev_err(dev, "Linux processing - Can't refill\n");
2075 rxq->missed++;
2076 goto err_drop_frame_ret_pool;
2077 }
2078
2079 frag_size = bm_pool->hwbm_pool.frag_size;
2080
2081 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2082
2083 /* After refill old buffer has to be unmapped regardless
2084 * the skb is successfully built or not.
2085 */
2086 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2087 bm_pool->buf_size, DMA_FROM_DEVICE);
2088 if (!skb)
2089 goto err_drop_frame;
2090
2091 rcvd_pkts++;
2092 rcvd_bytes += rx_bytes;
2093
2094 /* Linux processing */
2095 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2096 skb_put(skb, rx_bytes);
2097
2098 skb->protocol = eth_type_trans(skb, dev);
2099
2100 mvneta_rx_csum(pp, rx_status, skb);
2101
2102 napi_gro_receive(&port->napi, skb);
2103 }
2104
2105 if (rcvd_pkts) {
2106 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2107
2108 u64_stats_update_begin(&stats->syncp);
2109 stats->rx_packets += rcvd_pkts;
2110 stats->rx_bytes += rcvd_bytes;
2111 u64_stats_update_end(&stats->syncp);
2112 }
2113
2114 /* Update rxq management counters */
2115 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2116
2117 return rx_done;
2118 }
2119
2120 static inline void
2121 mvneta_tso_put_hdr(struct sk_buff *skb,
2122 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2123 {
2124 struct mvneta_tx_desc *tx_desc;
2125 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2126
2127 txq->tx_skb[txq->txq_put_index] = NULL;
2128 tx_desc = mvneta_txq_next_desc_get(txq);
2129 tx_desc->data_size = hdr_len;
2130 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2131 tx_desc->command |= MVNETA_TXD_F_DESC;
2132 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2133 txq->txq_put_index * TSO_HEADER_SIZE;
2134 mvneta_txq_inc_put(txq);
2135 }
2136
2137 static inline int
2138 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2139 struct sk_buff *skb, char *data, int size,
2140 bool last_tcp, bool is_last)
2141 {
2142 struct mvneta_tx_desc *tx_desc;
2143
2144 tx_desc = mvneta_txq_next_desc_get(txq);
2145 tx_desc->data_size = size;
2146 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2147 size, DMA_TO_DEVICE);
2148 if (unlikely(dma_mapping_error(dev->dev.parent,
2149 tx_desc->buf_phys_addr))) {
2150 mvneta_txq_desc_put(txq);
2151 return -ENOMEM;
2152 }
2153
2154 tx_desc->command = 0;
2155 txq->tx_skb[txq->txq_put_index] = NULL;
2156
2157 if (last_tcp) {
2158 /* last descriptor in the TCP packet */
2159 tx_desc->command = MVNETA_TXD_L_DESC;
2160
2161 /* last descriptor in SKB */
2162 if (is_last)
2163 txq->tx_skb[txq->txq_put_index] = skb;
2164 }
2165 mvneta_txq_inc_put(txq);
2166 return 0;
2167 }
2168
2169 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2170 struct mvneta_tx_queue *txq)
2171 {
2172 int total_len, data_left;
2173 int desc_count = 0;
2174 struct mvneta_port *pp = netdev_priv(dev);
2175 struct tso_t tso;
2176 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2177 int i;
2178
2179 /* Count needed descriptors */
2180 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2181 return 0;
2182
2183 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2184 pr_info("*** Is this even possible???!?!?\n");
2185 return 0;
2186 }
2187
2188 /* Initialize the TSO handler, and prepare the first payload */
2189 tso_start(skb, &tso);
2190
2191 total_len = skb->len - hdr_len;
2192 while (total_len > 0) {
2193 char *hdr;
2194
2195 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2196 total_len -= data_left;
2197 desc_count++;
2198
2199 /* prepare packet headers: MAC + IP + TCP */
2200 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2201 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2202
2203 mvneta_tso_put_hdr(skb, pp, txq);
2204
2205 while (data_left > 0) {
2206 int size;
2207 desc_count++;
2208
2209 size = min_t(int, tso.size, data_left);
2210
2211 if (mvneta_tso_put_data(dev, txq, skb,
2212 tso.data, size,
2213 size == data_left,
2214 total_len == 0))
2215 goto err_release;
2216 data_left -= size;
2217
2218 tso_build_data(skb, &tso, size);
2219 }
2220 }
2221
2222 return desc_count;
2223
2224 err_release:
2225 /* Release all used data descriptors; header descriptors must not
2226 * be DMA-unmapped.
2227 */
2228 for (i = desc_count - 1; i >= 0; i--) {
2229 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2230 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2231 dma_unmap_single(pp->dev->dev.parent,
2232 tx_desc->buf_phys_addr,
2233 tx_desc->data_size,
2234 DMA_TO_DEVICE);
2235 mvneta_txq_desc_put(txq);
2236 }
2237 return 0;
2238 }
2239
2240 /* Handle tx fragmentation processing */
2241 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2242 struct mvneta_tx_queue *txq)
2243 {
2244 struct mvneta_tx_desc *tx_desc;
2245 int i, nr_frags = skb_shinfo(skb)->nr_frags;
2246
2247 for (i = 0; i < nr_frags; i++) {
2248 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2249 void *addr = page_address(frag->page.p) + frag->page_offset;
2250
2251 tx_desc = mvneta_txq_next_desc_get(txq);
2252 tx_desc->data_size = frag->size;
2253
2254 tx_desc->buf_phys_addr =
2255 dma_map_single(pp->dev->dev.parent, addr,
2256 tx_desc->data_size, DMA_TO_DEVICE);
2257
2258 if (dma_mapping_error(pp->dev->dev.parent,
2259 tx_desc->buf_phys_addr)) {
2260 mvneta_txq_desc_put(txq);
2261 goto error;
2262 }
2263
2264 if (i == nr_frags - 1) {
2265 /* Last descriptor */
2266 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2267 txq->tx_skb[txq->txq_put_index] = skb;
2268 } else {
2269 /* Descriptor in the middle: Not First, Not Last */
2270 tx_desc->command = 0;
2271 txq->tx_skb[txq->txq_put_index] = NULL;
2272 }
2273 mvneta_txq_inc_put(txq);
2274 }
2275
2276 return 0;
2277
2278 error:
2279 /* Release all descriptors that were used to map fragments of
2280 * this packet, as well as the corresponding DMA mappings
2281 */
2282 for (i = i - 1; i >= 0; i--) {
2283 tx_desc = txq->descs + i;
2284 dma_unmap_single(pp->dev->dev.parent,
2285 tx_desc->buf_phys_addr,
2286 tx_desc->data_size,
2287 DMA_TO_DEVICE);
2288 mvneta_txq_desc_put(txq);
2289 }
2290
2291 return -ENOMEM;
2292 }
2293
2294 /* Main tx processing */
2295 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2296 {
2297 struct mvneta_port *pp = netdev_priv(dev);
2298 u16 txq_id = skb_get_queue_mapping(skb);
2299 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2300 struct mvneta_tx_desc *tx_desc;
2301 int len = skb->len;
2302 int frags = 0;
2303 u32 tx_cmd;
2304
2305 if (!netif_running(dev))
2306 goto out;
2307
2308 if (skb_is_gso(skb)) {
2309 frags = mvneta_tx_tso(skb, dev, txq);
2310 goto out;
2311 }
2312
2313 frags = skb_shinfo(skb)->nr_frags + 1;
2314
2315 /* Get a descriptor for the first part of the packet */
2316 tx_desc = mvneta_txq_next_desc_get(txq);
2317
2318 tx_cmd = mvneta_skb_tx_csum(pp, skb);
2319
2320 tx_desc->data_size = skb_headlen(skb);
2321
2322 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2323 tx_desc->data_size,
2324 DMA_TO_DEVICE);
2325 if (unlikely(dma_mapping_error(dev->dev.parent,
2326 tx_desc->buf_phys_addr))) {
2327 mvneta_txq_desc_put(txq);
2328 frags = 0;
2329 goto out;
2330 }
2331
2332 if (frags == 1) {
2333 /* First and Last descriptor */
2334 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2335 tx_desc->command = tx_cmd;
2336 txq->tx_skb[txq->txq_put_index] = skb;
2337 mvneta_txq_inc_put(txq);
2338 } else {
2339 /* First but not Last */
2340 tx_cmd |= MVNETA_TXD_F_DESC;
2341 txq->tx_skb[txq->txq_put_index] = NULL;
2342 mvneta_txq_inc_put(txq);
2343 tx_desc->command = tx_cmd;
2344 /* Continue with other skb fragments */
2345 if (mvneta_tx_frag_process(pp, skb, txq)) {
2346 dma_unmap_single(dev->dev.parent,
2347 tx_desc->buf_phys_addr,
2348 tx_desc->data_size,
2349 DMA_TO_DEVICE);
2350 mvneta_txq_desc_put(txq);
2351 frags = 0;
2352 goto out;
2353 }
2354 }
2355
2356 out:
2357 if (frags > 0) {
2358 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2359 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2360
2361 txq->count += frags;
2362 mvneta_txq_pend_desc_add(pp, txq, frags);
2363
2364 if (txq->count >= txq->tx_stop_threshold)
2365 netif_tx_stop_queue(nq);
2366
2367 u64_stats_update_begin(&stats->syncp);
2368 stats->tx_packets++;
2369 stats->tx_bytes += len;
2370 u64_stats_update_end(&stats->syncp);
2371 } else {
2372 dev->stats.tx_dropped++;
2373 dev_kfree_skb_any(skb);
2374 }
2375
2376 return NETDEV_TX_OK;
2377 }
2378
2379
2380 /* Free tx resources, when resetting a port */
2381 static void mvneta_txq_done_force(struct mvneta_port *pp,
2382 struct mvneta_tx_queue *txq)
2383
2384 {
2385 int tx_done = txq->count;
2386
2387 mvneta_txq_bufs_free(pp, txq, tx_done);
2388
2389 /* reset txq */
2390 txq->count = 0;
2391 txq->txq_put_index = 0;
2392 txq->txq_get_index = 0;
2393 }
2394
2395 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2396 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2397 */
2398 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2399 {
2400 struct mvneta_tx_queue *txq;
2401 struct netdev_queue *nq;
2402
2403 while (cause_tx_done) {
2404 txq = mvneta_tx_done_policy(pp, cause_tx_done);
2405
2406 nq = netdev_get_tx_queue(pp->dev, txq->id);
2407 __netif_tx_lock(nq, smp_processor_id());
2408
2409 if (txq->count)
2410 mvneta_txq_done(pp, txq);
2411
2412 __netif_tx_unlock(nq);
2413 cause_tx_done &= ~((1 << txq->id));
2414 }
2415 }
2416
2417 /* Compute crc8 of the specified address, using a unique algorithm ,
2418 * according to hw spec, different than generic crc8 algorithm
2419 */
2420 static int mvneta_addr_crc(unsigned char *addr)
2421 {
2422 int crc = 0;
2423 int i;
2424
2425 for (i = 0; i < ETH_ALEN; i++) {
2426 int j;
2427
2428 crc = (crc ^ addr[i]) << 8;
2429 for (j = 7; j >= 0; j--) {
2430 if (crc & (0x100 << j))
2431 crc ^= 0x107 << j;
2432 }
2433 }
2434
2435 return crc;
2436 }
2437
2438 /* This method controls the net device special MAC multicast support.
2439 * The Special Multicast Table for MAC addresses supports MAC of the form
2440 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2441 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2442 * Table entries in the DA-Filter table. This method set the Special
2443 * Multicast Table appropriate entry.
2444 */
2445 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2446 unsigned char last_byte,
2447 int queue)
2448 {
2449 unsigned int smc_table_reg;
2450 unsigned int tbl_offset;
2451 unsigned int reg_offset;
2452
2453 /* Register offset from SMC table base */
2454 tbl_offset = (last_byte / 4);
2455 /* Entry offset within the above reg */
2456 reg_offset = last_byte % 4;
2457
2458 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2459 + tbl_offset * 4));
2460
2461 if (queue == -1)
2462 smc_table_reg &= ~(0xff << (8 * reg_offset));
2463 else {
2464 smc_table_reg &= ~(0xff << (8 * reg_offset));
2465 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2466 }
2467
2468 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2469 smc_table_reg);
2470 }
2471
2472 /* This method controls the network device Other MAC multicast support.
2473 * The Other Multicast Table is used for multicast of another type.
2474 * A CRC-8 is used as an index to the Other Multicast Table entries
2475 * in the DA-Filter table.
2476 * The method gets the CRC-8 value from the calling routine and
2477 * sets the Other Multicast Table appropriate entry according to the
2478 * specified CRC-8 .
2479 */
2480 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2481 unsigned char crc8,
2482 int queue)
2483 {
2484 unsigned int omc_table_reg;
2485 unsigned int tbl_offset;
2486 unsigned int reg_offset;
2487
2488 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2489 reg_offset = crc8 % 4; /* Entry offset within the above reg */
2490
2491 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2492
2493 if (queue == -1) {
2494 /* Clear accepts frame bit at specified Other DA table entry */
2495 omc_table_reg &= ~(0xff << (8 * reg_offset));
2496 } else {
2497 omc_table_reg &= ~(0xff << (8 * reg_offset));
2498 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2499 }
2500
2501 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2502 }
2503
2504 /* The network device supports multicast using two tables:
2505 * 1) Special Multicast Table for MAC addresses of the form
2506 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2507 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2508 * Table entries in the DA-Filter table.
2509 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2510 * is used as an index to the Other Multicast Table entries in the
2511 * DA-Filter table.
2512 */
2513 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2514 int queue)
2515 {
2516 unsigned char crc_result = 0;
2517
2518 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2519 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2520 return 0;
2521 }
2522
2523 crc_result = mvneta_addr_crc(p_addr);
2524 if (queue == -1) {
2525 if (pp->mcast_count[crc_result] == 0) {
2526 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2527 crc_result);
2528 return -EINVAL;
2529 }
2530
2531 pp->mcast_count[crc_result]--;
2532 if (pp->mcast_count[crc_result] != 0) {
2533 netdev_info(pp->dev,
2534 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2535 pp->mcast_count[crc_result], crc_result);
2536 return -EINVAL;
2537 }
2538 } else
2539 pp->mcast_count[crc_result]++;
2540
2541 mvneta_set_other_mcast_addr(pp, crc_result, queue);
2542
2543 return 0;
2544 }
2545
2546 /* Configure Fitering mode of Ethernet port */
2547 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2548 int is_promisc)
2549 {
2550 u32 port_cfg_reg, val;
2551
2552 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2553
2554 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2555
2556 /* Set / Clear UPM bit in port configuration register */
2557 if (is_promisc) {
2558 /* Accept all Unicast addresses */
2559 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2560 val |= MVNETA_FORCE_UNI;
2561 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2562 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2563 } else {
2564 /* Reject all Unicast addresses */
2565 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2566 val &= ~MVNETA_FORCE_UNI;
2567 }
2568
2569 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2570 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2571 }
2572
2573 /* register unicast and multicast addresses */
2574 static void mvneta_set_rx_mode(struct net_device *dev)
2575 {
2576 struct mvneta_port *pp = netdev_priv(dev);
2577 struct netdev_hw_addr *ha;
2578
2579 if (dev->flags & IFF_PROMISC) {
2580 /* Accept all: Multicast + Unicast */
2581 mvneta_rx_unicast_promisc_set(pp, 1);
2582 mvneta_set_ucast_table(pp, pp->rxq_def);
2583 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2584 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2585 } else {
2586 /* Accept single Unicast */
2587 mvneta_rx_unicast_promisc_set(pp, 0);
2588 mvneta_set_ucast_table(pp, -1);
2589 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2590
2591 if (dev->flags & IFF_ALLMULTI) {
2592 /* Accept all multicast */
2593 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2594 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2595 } else {
2596 /* Accept only initialized multicast */
2597 mvneta_set_special_mcast_table(pp, -1);
2598 mvneta_set_other_mcast_table(pp, -1);
2599
2600 if (!netdev_mc_empty(dev)) {
2601 netdev_for_each_mc_addr(ha, dev) {
2602 mvneta_mcast_addr_set(pp, ha->addr,
2603 pp->rxq_def);
2604 }
2605 }
2606 }
2607 }
2608 }
2609
2610 /* Interrupt handling - the callback for request_irq() */
2611 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2612 {
2613 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2614
2615 disable_percpu_irq(port->pp->dev->irq);
2616 napi_schedule(&port->napi);
2617
2618 return IRQ_HANDLED;
2619 }
2620
2621 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2622 struct phy_device *phy)
2623 {
2624 struct fixed_phy_status status;
2625 struct fixed_phy_status changed = {};
2626 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2627
2628 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2629 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2630 status.speed = SPEED_1000;
2631 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2632 status.speed = SPEED_100;
2633 else
2634 status.speed = SPEED_10;
2635 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2636 changed.link = 1;
2637 changed.speed = 1;
2638 changed.duplex = 1;
2639 fixed_phy_update_state(phy, &status, &changed);
2640 return 0;
2641 }
2642
2643 /* NAPI handler
2644 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2645 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2646 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2647 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2648 * Each CPU has its own causeRxTx register
2649 */
2650 static int mvneta_poll(struct napi_struct *napi, int budget)
2651 {
2652 int rx_done = 0;
2653 u32 cause_rx_tx;
2654 int rx_queue;
2655 struct mvneta_port *pp = netdev_priv(napi->dev);
2656 struct net_device *ndev = pp->dev;
2657 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2658
2659 if (!netif_running(pp->dev)) {
2660 napi_complete(&port->napi);
2661 return rx_done;
2662 }
2663
2664 /* Read cause register */
2665 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2666 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2667 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2668
2669 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2670 if (pp->use_inband_status && (cause_misc &
2671 (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2672 MVNETA_CAUSE_LINK_CHANGE |
2673 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2674 mvneta_fixed_link_update(pp, ndev->phydev);
2675 }
2676 }
2677
2678 /* Release Tx descriptors */
2679 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2680 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2681 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2682 }
2683
2684 /* For the case where the last mvneta_poll did not process all
2685 * RX packets
2686 */
2687 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2688
2689 cause_rx_tx |= port->cause_rx_tx;
2690
2691 if (rx_queue) {
2692 rx_queue = rx_queue - 1;
2693 if (pp->bm_priv)
2694 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2695 else
2696 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2697 }
2698
2699 budget -= rx_done;
2700
2701 if (budget > 0) {
2702 cause_rx_tx = 0;
2703 napi_complete(&port->napi);
2704 enable_percpu_irq(pp->dev->irq, 0);
2705 }
2706
2707 port->cause_rx_tx = cause_rx_tx;
2708 return rx_done;
2709 }
2710
2711 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2712 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2713 int num)
2714 {
2715 int i;
2716
2717 for (i = 0; i < num; i++) {
2718 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2719 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2720 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
2721 __func__, rxq->id, i, num);
2722 break;
2723 }
2724 }
2725
2726 /* Add this number of RX descriptors as non occupied (ready to
2727 * get packets)
2728 */
2729 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2730
2731 return i;
2732 }
2733
2734 /* Free all packets pending transmit from all TXQs and reset TX port */
2735 static void mvneta_tx_reset(struct mvneta_port *pp)
2736 {
2737 int queue;
2738
2739 /* free the skb's in the tx ring */
2740 for (queue = 0; queue < txq_number; queue++)
2741 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2742
2743 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2744 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2745 }
2746
2747 static void mvneta_rx_reset(struct mvneta_port *pp)
2748 {
2749 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2750 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2751 }
2752
2753 /* Rx/Tx queue initialization/cleanup methods */
2754
2755 /* Create a specified RX queue */
2756 static int mvneta_rxq_init(struct mvneta_port *pp,
2757 struct mvneta_rx_queue *rxq)
2758
2759 {
2760 rxq->size = pp->rx_ring_size;
2761
2762 /* Allocate memory for RX descriptors */
2763 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2764 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2765 &rxq->descs_phys, GFP_KERNEL);
2766 if (rxq->descs == NULL)
2767 return -ENOMEM;
2768
2769 rxq->last_desc = rxq->size - 1;
2770
2771 /* Set Rx descriptors queue starting address */
2772 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2773 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2774
2775 /* Set Offset */
2776 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2777
2778 /* Set coalescing pkts and time */
2779 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2780 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2781
2782 if (!pp->bm_priv) {
2783 /* Fill RXQ with buffers from RX pool */
2784 mvneta_rxq_buf_size_set(pp, rxq,
2785 MVNETA_RX_BUF_SIZE(pp->pkt_size));
2786 mvneta_rxq_bm_disable(pp, rxq);
2787 } else {
2788 mvneta_rxq_bm_enable(pp, rxq);
2789 mvneta_rxq_long_pool_set(pp, rxq);
2790 mvneta_rxq_short_pool_set(pp, rxq);
2791 }
2792
2793 mvneta_rxq_fill(pp, rxq, rxq->size);
2794
2795 return 0;
2796 }
2797
2798 /* Cleanup Rx queue */
2799 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2800 struct mvneta_rx_queue *rxq)
2801 {
2802 mvneta_rxq_drop_pkts(pp, rxq);
2803
2804 if (rxq->descs)
2805 dma_free_coherent(pp->dev->dev.parent,
2806 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2807 rxq->descs,
2808 rxq->descs_phys);
2809
2810 rxq->descs = NULL;
2811 rxq->last_desc = 0;
2812 rxq->next_desc_to_proc = 0;
2813 rxq->descs_phys = 0;
2814 }
2815
2816 /* Create and initialize a tx queue */
2817 static int mvneta_txq_init(struct mvneta_port *pp,
2818 struct mvneta_tx_queue *txq)
2819 {
2820 int cpu;
2821
2822 txq->size = pp->tx_ring_size;
2823
2824 /* A queue must always have room for at least one skb.
2825 * Therefore, stop the queue when the free entries reaches
2826 * the maximum number of descriptors per skb.
2827 */
2828 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2829 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2830
2831
2832 /* Allocate memory for TX descriptors */
2833 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2834 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2835 &txq->descs_phys, GFP_KERNEL);
2836 if (txq->descs == NULL)
2837 return -ENOMEM;
2838
2839 txq->last_desc = txq->size - 1;
2840
2841 /* Set maximum bandwidth for enabled TXQs */
2842 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2843 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2844
2845 /* Set Tx descriptors queue starting address */
2846 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2847 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2848
2849 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2850 if (txq->tx_skb == NULL) {
2851 dma_free_coherent(pp->dev->dev.parent,
2852 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2853 txq->descs, txq->descs_phys);
2854 return -ENOMEM;
2855 }
2856
2857 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2858 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2859 txq->size * TSO_HEADER_SIZE,
2860 &txq->tso_hdrs_phys, GFP_KERNEL);
2861 if (txq->tso_hdrs == NULL) {
2862 kfree(txq->tx_skb);
2863 dma_free_coherent(pp->dev->dev.parent,
2864 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2865 txq->descs, txq->descs_phys);
2866 return -ENOMEM;
2867 }
2868 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2869
2870 /* Setup XPS mapping */
2871 if (txq_number > 1)
2872 cpu = txq->id % num_present_cpus();
2873 else
2874 cpu = pp->rxq_def % num_present_cpus();
2875 cpumask_set_cpu(cpu, &txq->affinity_mask);
2876 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2877
2878 return 0;
2879 }
2880
2881 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2882 static void mvneta_txq_deinit(struct mvneta_port *pp,
2883 struct mvneta_tx_queue *txq)
2884 {
2885 kfree(txq->tx_skb);
2886
2887 if (txq->tso_hdrs)
2888 dma_free_coherent(pp->dev->dev.parent,
2889 txq->size * TSO_HEADER_SIZE,
2890 txq->tso_hdrs, txq->tso_hdrs_phys);
2891 if (txq->descs)
2892 dma_free_coherent(pp->dev->dev.parent,
2893 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2894 txq->descs, txq->descs_phys);
2895
2896 txq->descs = NULL;
2897 txq->last_desc = 0;
2898 txq->next_desc_to_proc = 0;
2899 txq->descs_phys = 0;
2900
2901 /* Set minimum bandwidth for disabled TXQs */
2902 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2903 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2904
2905 /* Set Tx descriptors queue starting address and size */
2906 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2907 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2908 }
2909
2910 /* Cleanup all Tx queues */
2911 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2912 {
2913 int queue;
2914
2915 for (queue = 0; queue < txq_number; queue++)
2916 mvneta_txq_deinit(pp, &pp->txqs[queue]);
2917 }
2918
2919 /* Cleanup all Rx queues */
2920 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2921 {
2922 int queue;
2923
2924 for (queue = 0; queue < txq_number; queue++)
2925 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2926 }
2927
2928
2929 /* Init all Rx queues */
2930 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2931 {
2932 int queue;
2933
2934 for (queue = 0; queue < rxq_number; queue++) {
2935 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2936
2937 if (err) {
2938 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2939 __func__, queue);
2940 mvneta_cleanup_rxqs(pp);
2941 return err;
2942 }
2943 }
2944
2945 return 0;
2946 }
2947
2948 /* Init all tx queues */
2949 static int mvneta_setup_txqs(struct mvneta_port *pp)
2950 {
2951 int queue;
2952
2953 for (queue = 0; queue < txq_number; queue++) {
2954 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2955 if (err) {
2956 netdev_err(pp->dev, "%s: can't create txq=%d\n",
2957 __func__, queue);
2958 mvneta_cleanup_txqs(pp);
2959 return err;
2960 }
2961 }
2962
2963 return 0;
2964 }
2965
2966 static void mvneta_start_dev(struct mvneta_port *pp)
2967 {
2968 int cpu;
2969 struct net_device *ndev = pp->dev;
2970
2971 mvneta_max_rx_size_set(pp, pp->pkt_size);
2972 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2973
2974 /* start the Rx/Tx activity */
2975 mvneta_port_enable(pp);
2976
2977 /* Enable polling on the port */
2978 for_each_online_cpu(cpu) {
2979 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2980
2981 napi_enable(&port->napi);
2982 }
2983
2984 /* Unmask interrupts. It has to be done from each CPU */
2985 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
2986
2987 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2988 MVNETA_CAUSE_PHY_STATUS_CHANGE |
2989 MVNETA_CAUSE_LINK_CHANGE |
2990 MVNETA_CAUSE_PSC_SYNC_CHANGE);
2991
2992 phy_start(ndev->phydev);
2993 netif_tx_start_all_queues(pp->dev);
2994 }
2995
2996 static void mvneta_stop_dev(struct mvneta_port *pp)
2997 {
2998 unsigned int cpu;
2999 struct net_device *ndev = pp->dev;
3000
3001 phy_stop(ndev->phydev);
3002
3003 for_each_online_cpu(cpu) {
3004 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3005
3006 napi_disable(&port->napi);
3007 }
3008
3009 netif_carrier_off(pp->dev);
3010
3011 mvneta_port_down(pp);
3012 netif_tx_stop_all_queues(pp->dev);
3013
3014 /* Stop the port activity */
3015 mvneta_port_disable(pp);
3016
3017 /* Clear all ethernet port interrupts */
3018 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3019
3020 /* Mask all ethernet port interrupts */
3021 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3022
3023 mvneta_tx_reset(pp);
3024 mvneta_rx_reset(pp);
3025 }
3026
3027 /* Return positive if MTU is valid */
3028 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
3029 {
3030 if (mtu < 68) {
3031 netdev_err(dev, "cannot change mtu to less than 68\n");
3032 return -EINVAL;
3033 }
3034
3035 /* 9676 == 9700 - 20 and rounding to 8 */
3036 if (mtu > 9676) {
3037 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
3038 mtu = 9676;
3039 }
3040
3041 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3042 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3043 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3044 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3045 }
3046
3047 return mtu;
3048 }
3049
3050 static void mvneta_percpu_enable(void *arg)
3051 {
3052 struct mvneta_port *pp = arg;
3053
3054 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3055 }
3056
3057 static void mvneta_percpu_disable(void *arg)
3058 {
3059 struct mvneta_port *pp = arg;
3060
3061 disable_percpu_irq(pp->dev->irq);
3062 }
3063
3064 /* Change the device mtu */
3065 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3066 {
3067 struct mvneta_port *pp = netdev_priv(dev);
3068 int ret;
3069
3070 mtu = mvneta_check_mtu_valid(dev, mtu);
3071 if (mtu < 0)
3072 return -EINVAL;
3073
3074 dev->mtu = mtu;
3075
3076 if (!netif_running(dev)) {
3077 if (pp->bm_priv)
3078 mvneta_bm_update_mtu(pp, mtu);
3079
3080 netdev_update_features(dev);
3081 return 0;
3082 }
3083
3084 /* The interface is running, so we have to force a
3085 * reallocation of the queues
3086 */
3087 mvneta_stop_dev(pp);
3088 on_each_cpu(mvneta_percpu_disable, pp, true);
3089
3090 mvneta_cleanup_txqs(pp);
3091 mvneta_cleanup_rxqs(pp);
3092
3093 if (pp->bm_priv)
3094 mvneta_bm_update_mtu(pp, mtu);
3095
3096 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3097 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3098 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3099
3100 ret = mvneta_setup_rxqs(pp);
3101 if (ret) {
3102 netdev_err(dev, "unable to setup rxqs after MTU change\n");
3103 return ret;
3104 }
3105
3106 ret = mvneta_setup_txqs(pp);
3107 if (ret) {
3108 netdev_err(dev, "unable to setup txqs after MTU change\n");
3109 return ret;
3110 }
3111
3112 on_each_cpu(mvneta_percpu_enable, pp, true);
3113 mvneta_start_dev(pp);
3114 mvneta_port_up(pp);
3115
3116 netdev_update_features(dev);
3117
3118 return 0;
3119 }
3120
3121 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3122 netdev_features_t features)
3123 {
3124 struct mvneta_port *pp = netdev_priv(dev);
3125
3126 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3127 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3128 netdev_info(dev,
3129 "Disable IP checksum for MTU greater than %dB\n",
3130 pp->tx_csum_limit);
3131 }
3132
3133 return features;
3134 }
3135
3136 /* Get mac address */
3137 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3138 {
3139 u32 mac_addr_l, mac_addr_h;
3140
3141 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3142 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3143 addr[0] = (mac_addr_h >> 24) & 0xFF;
3144 addr[1] = (mac_addr_h >> 16) & 0xFF;
3145 addr[2] = (mac_addr_h >> 8) & 0xFF;
3146 addr[3] = mac_addr_h & 0xFF;
3147 addr[4] = (mac_addr_l >> 8) & 0xFF;
3148 addr[5] = mac_addr_l & 0xFF;
3149 }
3150
3151 /* Handle setting mac address */
3152 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3153 {
3154 struct mvneta_port *pp = netdev_priv(dev);
3155 struct sockaddr *sockaddr = addr;
3156 int ret;
3157
3158 ret = eth_prepare_mac_addr_change(dev, addr);
3159 if (ret < 0)
3160 return ret;
3161 /* Remove previous address table entry */
3162 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3163
3164 /* Set new addr in hw */
3165 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3166
3167 eth_commit_mac_addr_change(dev, addr);
3168 return 0;
3169 }
3170
3171 static void mvneta_adjust_link(struct net_device *ndev)
3172 {
3173 struct mvneta_port *pp = netdev_priv(ndev);
3174 struct phy_device *phydev = ndev->phydev;
3175 int status_change = 0;
3176
3177 if (phydev->link) {
3178 if ((pp->speed != phydev->speed) ||
3179 (pp->duplex != phydev->duplex)) {
3180 u32 val;
3181
3182 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3183 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3184 MVNETA_GMAC_CONFIG_GMII_SPEED |
3185 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3186
3187 if (phydev->duplex)
3188 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3189
3190 if (phydev->speed == SPEED_1000)
3191 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3192 else if (phydev->speed == SPEED_100)
3193 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3194
3195 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3196
3197 pp->duplex = phydev->duplex;
3198 pp->speed = phydev->speed;
3199 }
3200 }
3201
3202 if (phydev->link != pp->link) {
3203 if (!phydev->link) {
3204 pp->duplex = -1;
3205 pp->speed = 0;
3206 }
3207
3208 pp->link = phydev->link;
3209 status_change = 1;
3210 }
3211
3212 if (status_change) {
3213 if (phydev->link) {
3214 if (!pp->use_inband_status) {
3215 u32 val = mvreg_read(pp,
3216 MVNETA_GMAC_AUTONEG_CONFIG);
3217 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3218 val |= MVNETA_GMAC_FORCE_LINK_PASS;
3219 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3220 val);
3221 }
3222 mvneta_port_up(pp);
3223 } else {
3224 if (!pp->use_inband_status) {
3225 u32 val = mvreg_read(pp,
3226 MVNETA_GMAC_AUTONEG_CONFIG);
3227 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3228 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3229 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3230 val);
3231 }
3232 mvneta_port_down(pp);
3233 }
3234 phy_print_status(phydev);
3235 }
3236 }
3237
3238 static int mvneta_mdio_probe(struct mvneta_port *pp)
3239 {
3240 struct phy_device *phy_dev;
3241
3242 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
3243 pp->phy_interface);
3244 if (!phy_dev) {
3245 netdev_err(pp->dev, "could not find the PHY\n");
3246 return -ENODEV;
3247 }
3248
3249 phy_dev->supported &= PHY_GBIT_FEATURES;
3250 phy_dev->advertising = phy_dev->supported;
3251
3252 pp->link = 0;
3253 pp->duplex = 0;
3254 pp->speed = 0;
3255
3256 return 0;
3257 }
3258
3259 static void mvneta_mdio_remove(struct mvneta_port *pp)
3260 {
3261 struct net_device *ndev = pp->dev;
3262
3263 phy_disconnect(ndev->phydev);
3264 }
3265
3266 /* Electing a CPU must be done in an atomic way: it should be done
3267 * after or before the removal/insertion of a CPU and this function is
3268 * not reentrant.
3269 */
3270 static void mvneta_percpu_elect(struct mvneta_port *pp)
3271 {
3272 int elected_cpu = 0, max_cpu, cpu, i = 0;
3273
3274 /* Use the cpu associated to the rxq when it is online, in all
3275 * the other cases, use the cpu 0 which can't be offline.
3276 */
3277 if (cpu_online(pp->rxq_def))
3278 elected_cpu = pp->rxq_def;
3279
3280 max_cpu = num_present_cpus();
3281
3282 for_each_online_cpu(cpu) {
3283 int rxq_map = 0, txq_map = 0;
3284 int rxq;
3285
3286 for (rxq = 0; rxq < rxq_number; rxq++)
3287 if ((rxq % max_cpu) == cpu)
3288 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3289
3290 if (cpu == elected_cpu)
3291 /* Map the default receive queue queue to the
3292 * elected CPU
3293 */
3294 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3295
3296 /* We update the TX queue map only if we have one
3297 * queue. In this case we associate the TX queue to
3298 * the CPU bound to the default RX queue
3299 */
3300 if (txq_number == 1)
3301 txq_map = (cpu == elected_cpu) ?
3302 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3303 else
3304 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3305 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3306
3307 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3308
3309 /* Update the interrupt mask on each CPU according the
3310 * new mapping
3311 */
3312 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3313 pp, true);
3314 i++;
3315
3316 }
3317 };
3318
3319 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3320 {
3321 int other_cpu;
3322 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3323 node_online);
3324 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3325
3326
3327 spin_lock(&pp->lock);
3328 /*
3329 * Configuring the driver for a new CPU while the driver is
3330 * stopping is racy, so just avoid it.
3331 */
3332 if (pp->is_stopped) {
3333 spin_unlock(&pp->lock);
3334 return 0;
3335 }
3336 netif_tx_stop_all_queues(pp->dev);
3337
3338 /*
3339 * We have to synchronise on tha napi of each CPU except the one
3340 * just being woken up
3341 */
3342 for_each_online_cpu(other_cpu) {
3343 if (other_cpu != cpu) {
3344 struct mvneta_pcpu_port *other_port =
3345 per_cpu_ptr(pp->ports, other_cpu);
3346
3347 napi_synchronize(&other_port->napi);
3348 }
3349 }
3350
3351 /* Mask all ethernet port interrupts */
3352 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3353 napi_enable(&port->napi);
3354
3355 /*
3356 * Enable per-CPU interrupts on the CPU that is
3357 * brought up.
3358 */
3359 mvneta_percpu_enable(pp);
3360
3361 /*
3362 * Enable per-CPU interrupt on the one CPU we care
3363 * about.
3364 */
3365 mvneta_percpu_elect(pp);
3366
3367 /* Unmask all ethernet port interrupts */
3368 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3369 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3370 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3371 MVNETA_CAUSE_LINK_CHANGE |
3372 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3373 netif_tx_start_all_queues(pp->dev);
3374 spin_unlock(&pp->lock);
3375 return 0;
3376 }
3377
3378 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3379 {
3380 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3381 node_online);
3382 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3383
3384 /*
3385 * Thanks to this lock we are sure that any pending cpu election is
3386 * done.
3387 */
3388 spin_lock(&pp->lock);
3389 /* Mask all ethernet port interrupts */
3390 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3391 spin_unlock(&pp->lock);
3392
3393 napi_synchronize(&port->napi);
3394 napi_disable(&port->napi);
3395 /* Disable per-CPU interrupts on the CPU that is brought down. */
3396 mvneta_percpu_disable(pp);
3397 return 0;
3398 }
3399
3400 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3401 {
3402 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3403 node_dead);
3404
3405 /* Check if a new CPU must be elected now this on is down */
3406 spin_lock(&pp->lock);
3407 mvneta_percpu_elect(pp);
3408 spin_unlock(&pp->lock);
3409 /* Unmask all ethernet port interrupts */
3410 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3411 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3412 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3413 MVNETA_CAUSE_LINK_CHANGE |
3414 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3415 netif_tx_start_all_queues(pp->dev);
3416 return 0;
3417 }
3418
3419 static int mvneta_open(struct net_device *dev)
3420 {
3421 struct mvneta_port *pp = netdev_priv(dev);
3422 int ret;
3423
3424 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3425 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3426 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3427
3428 ret = mvneta_setup_rxqs(pp);
3429 if (ret)
3430 return ret;
3431
3432 ret = mvneta_setup_txqs(pp);
3433 if (ret)
3434 goto err_cleanup_rxqs;
3435
3436 /* Connect to port interrupt line */
3437 ret = request_percpu_irq(pp->dev->irq, mvneta_isr,
3438 MVNETA_DRIVER_NAME, pp->ports);
3439 if (ret) {
3440 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3441 goto err_cleanup_txqs;
3442 }
3443
3444 /* Enable per-CPU interrupt on all the CPU to handle our RX
3445 * queue interrupts
3446 */
3447 on_each_cpu(mvneta_percpu_enable, pp, true);
3448
3449 pp->is_stopped = false;
3450 /* Register a CPU notifier to handle the case where our CPU
3451 * might be taken offline.
3452 */
3453 ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3454 &pp->node_online);
3455 if (ret)
3456 goto err_free_irq;
3457
3458 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3459 &pp->node_dead);
3460 if (ret)
3461 goto err_free_online_hp;
3462
3463 /* In default link is down */
3464 netif_carrier_off(pp->dev);
3465
3466 ret = mvneta_mdio_probe(pp);
3467 if (ret < 0) {
3468 netdev_err(dev, "cannot probe MDIO bus\n");
3469 goto err_free_dead_hp;
3470 }
3471
3472 mvneta_start_dev(pp);
3473
3474 return 0;
3475
3476 err_free_dead_hp:
3477 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3478 &pp->node_dead);
3479 err_free_online_hp:
3480 cpuhp_state_remove_instance_nocalls(online_hpstate, &pp->node_online);
3481 err_free_irq:
3482 on_each_cpu(mvneta_percpu_disable, pp, true);
3483 free_percpu_irq(pp->dev->irq, pp->ports);
3484 err_cleanup_txqs:
3485 mvneta_cleanup_txqs(pp);
3486 err_cleanup_rxqs:
3487 mvneta_cleanup_rxqs(pp);
3488 return ret;
3489 }
3490
3491 /* Stop the port, free port interrupt line */
3492 static int mvneta_stop(struct net_device *dev)
3493 {
3494 struct mvneta_port *pp = netdev_priv(dev);
3495
3496 /* Inform that we are stopping so we don't want to setup the
3497 * driver for new CPUs in the notifiers. The code of the
3498 * notifier for CPU online is protected by the same spinlock,
3499 * so when we get the lock, the notifer work is done.
3500 */
3501 spin_lock(&pp->lock);
3502 pp->is_stopped = true;
3503 spin_unlock(&pp->lock);
3504
3505 mvneta_stop_dev(pp);
3506 mvneta_mdio_remove(pp);
3507
3508 cpuhp_state_remove_instance_nocalls(online_hpstate, &pp->node_online);
3509 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3510 &pp->node_dead);
3511 on_each_cpu(mvneta_percpu_disable, pp, true);
3512 free_percpu_irq(dev->irq, pp->ports);
3513 mvneta_cleanup_rxqs(pp);
3514 mvneta_cleanup_txqs(pp);
3515
3516 return 0;
3517 }
3518
3519 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3520 {
3521 if (!dev->phydev)
3522 return -ENOTSUPP;
3523
3524 return phy_mii_ioctl(dev->phydev, ifr, cmd);
3525 }
3526
3527 /* Ethtool methods */
3528
3529 /* Set link ksettings (phy address, speed) for ethtools */
3530 static int
3531 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3532 const struct ethtool_link_ksettings *cmd)
3533 {
3534 struct mvneta_port *pp = netdev_priv(ndev);
3535 struct phy_device *phydev = ndev->phydev;
3536
3537 if (!phydev)
3538 return -ENODEV;
3539
3540 if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3541 u32 val;
3542
3543 mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE);
3544
3545 if (cmd->base.autoneg == AUTONEG_DISABLE) {
3546 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3547 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3548 MVNETA_GMAC_CONFIG_GMII_SPEED |
3549 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3550
3551 if (phydev->duplex)
3552 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3553
3554 if (phydev->speed == SPEED_1000)
3555 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3556 else if (phydev->speed == SPEED_100)
3557 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3558
3559 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3560 }
3561
3562 pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE);
3563 netdev_info(pp->dev, "autoneg status set to %i\n",
3564 pp->use_inband_status);
3565
3566 if (netif_running(ndev)) {
3567 mvneta_port_down(pp);
3568 mvneta_port_up(pp);
3569 }
3570 }
3571
3572 return phy_ethtool_ksettings_set(ndev->phydev, cmd);
3573 }
3574
3575 /* Set interrupt coalescing for ethtools */
3576 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3577 struct ethtool_coalesce *c)
3578 {
3579 struct mvneta_port *pp = netdev_priv(dev);
3580 int queue;
3581
3582 for (queue = 0; queue < rxq_number; queue++) {
3583 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3584 rxq->time_coal = c->rx_coalesce_usecs;
3585 rxq->pkts_coal = c->rx_max_coalesced_frames;
3586 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3587 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3588 }
3589
3590 for (queue = 0; queue < txq_number; queue++) {
3591 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3592 txq->done_pkts_coal = c->tx_max_coalesced_frames;
3593 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3594 }
3595
3596 return 0;
3597 }
3598
3599 /* get coalescing for ethtools */
3600 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3601 struct ethtool_coalesce *c)
3602 {
3603 struct mvneta_port *pp = netdev_priv(dev);
3604
3605 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
3606 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
3607
3608 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
3609 return 0;
3610 }
3611
3612
3613 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3614 struct ethtool_drvinfo *drvinfo)
3615 {
3616 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3617 sizeof(drvinfo->driver));
3618 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3619 sizeof(drvinfo->version));
3620 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3621 sizeof(drvinfo->bus_info));
3622 }
3623
3624
3625 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3626 struct ethtool_ringparam *ring)
3627 {
3628 struct mvneta_port *pp = netdev_priv(netdev);
3629
3630 ring->rx_max_pending = MVNETA_MAX_RXD;
3631 ring->tx_max_pending = MVNETA_MAX_TXD;
3632 ring->rx_pending = pp->rx_ring_size;
3633 ring->tx_pending = pp->tx_ring_size;
3634 }
3635
3636 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3637 struct ethtool_ringparam *ring)
3638 {
3639 struct mvneta_port *pp = netdev_priv(dev);
3640
3641 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3642 return -EINVAL;
3643 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3644 ring->rx_pending : MVNETA_MAX_RXD;
3645
3646 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3647 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3648 if (pp->tx_ring_size != ring->tx_pending)
3649 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3650 pp->tx_ring_size, ring->tx_pending);
3651
3652 if (netif_running(dev)) {
3653 mvneta_stop(dev);
3654 if (mvneta_open(dev)) {
3655 netdev_err(dev,
3656 "error on opening device after ring param change\n");
3657 return -ENOMEM;
3658 }
3659 }
3660
3661 return 0;
3662 }
3663
3664 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3665 u8 *data)
3666 {
3667 if (sset == ETH_SS_STATS) {
3668 int i;
3669
3670 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3671 memcpy(data + i * ETH_GSTRING_LEN,
3672 mvneta_statistics[i].name, ETH_GSTRING_LEN);
3673 }
3674 }
3675
3676 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3677 {
3678 const struct mvneta_statistic *s;
3679 void __iomem *base = pp->base;
3680 u32 high, low, val;
3681 u64 val64;
3682 int i;
3683
3684 for (i = 0, s = mvneta_statistics;
3685 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3686 s++, i++) {
3687 switch (s->type) {
3688 case T_REG_32:
3689 val = readl_relaxed(base + s->offset);
3690 pp->ethtool_stats[i] += val;
3691 break;
3692 case T_REG_64:
3693 /* Docs say to read low 32-bit then high */
3694 low = readl_relaxed(base + s->offset);
3695 high = readl_relaxed(base + s->offset + 4);
3696 val64 = (u64)high << 32 | low;
3697 pp->ethtool_stats[i] += val64;
3698 break;
3699 }
3700 }
3701 }
3702
3703 static void mvneta_ethtool_get_stats(struct net_device *dev,
3704 struct ethtool_stats *stats, u64 *data)
3705 {
3706 struct mvneta_port *pp = netdev_priv(dev);
3707 int i;
3708
3709 mvneta_ethtool_update_stats(pp);
3710
3711 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3712 *data++ = pp->ethtool_stats[i];
3713 }
3714
3715 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3716 {
3717 if (sset == ETH_SS_STATS)
3718 return ARRAY_SIZE(mvneta_statistics);
3719 return -EOPNOTSUPP;
3720 }
3721
3722 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3723 {
3724 return MVNETA_RSS_LU_TABLE_SIZE;
3725 }
3726
3727 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3728 struct ethtool_rxnfc *info,
3729 u32 *rules __always_unused)
3730 {
3731 switch (info->cmd) {
3732 case ETHTOOL_GRXRINGS:
3733 info->data = rxq_number;
3734 return 0;
3735 case ETHTOOL_GRXFH:
3736 return -EOPNOTSUPP;
3737 default:
3738 return -EOPNOTSUPP;
3739 }
3740 }
3741
3742 static int mvneta_config_rss(struct mvneta_port *pp)
3743 {
3744 int cpu;
3745 u32 val;
3746
3747 netif_tx_stop_all_queues(pp->dev);
3748
3749 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3750
3751 /* We have to synchronise on the napi of each CPU */
3752 for_each_online_cpu(cpu) {
3753 struct mvneta_pcpu_port *pcpu_port =
3754 per_cpu_ptr(pp->ports, cpu);
3755
3756 napi_synchronize(&pcpu_port->napi);
3757 napi_disable(&pcpu_port->napi);
3758 }
3759
3760 pp->rxq_def = pp->indir[0];
3761
3762 /* Update unicast mapping */
3763 mvneta_set_rx_mode(pp->dev);
3764
3765 /* Update val of portCfg register accordingly with all RxQueue types */
3766 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3767 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3768
3769 /* Update the elected CPU matching the new rxq_def */
3770 spin_lock(&pp->lock);
3771 mvneta_percpu_elect(pp);
3772 spin_unlock(&pp->lock);
3773
3774 /* We have to synchronise on the napi of each CPU */
3775 for_each_online_cpu(cpu) {
3776 struct mvneta_pcpu_port *pcpu_port =
3777 per_cpu_ptr(pp->ports, cpu);
3778
3779 napi_enable(&pcpu_port->napi);
3780 }
3781
3782 netif_tx_start_all_queues(pp->dev);
3783
3784 return 0;
3785 }
3786
3787 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3788 const u8 *key, const u8 hfunc)
3789 {
3790 struct mvneta_port *pp = netdev_priv(dev);
3791 /* We require at least one supported parameter to be changed
3792 * and no change in any of the unsupported parameters
3793 */
3794 if (key ||
3795 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3796 return -EOPNOTSUPP;
3797
3798 if (!indir)
3799 return 0;
3800
3801 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3802
3803 return mvneta_config_rss(pp);
3804 }
3805
3806 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3807 u8 *hfunc)
3808 {
3809 struct mvneta_port *pp = netdev_priv(dev);
3810
3811 if (hfunc)
3812 *hfunc = ETH_RSS_HASH_TOP;
3813
3814 if (!indir)
3815 return 0;
3816
3817 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3818
3819 return 0;
3820 }
3821
3822 static const struct net_device_ops mvneta_netdev_ops = {
3823 .ndo_open = mvneta_open,
3824 .ndo_stop = mvneta_stop,
3825 .ndo_start_xmit = mvneta_tx,
3826 .ndo_set_rx_mode = mvneta_set_rx_mode,
3827 .ndo_set_mac_address = mvneta_set_mac_addr,
3828 .ndo_change_mtu = mvneta_change_mtu,
3829 .ndo_fix_features = mvneta_fix_features,
3830 .ndo_get_stats64 = mvneta_get_stats64,
3831 .ndo_do_ioctl = mvneta_ioctl,
3832 };
3833
3834 const struct ethtool_ops mvneta_eth_tool_ops = {
3835 .get_link = ethtool_op_get_link,
3836 .set_coalesce = mvneta_ethtool_set_coalesce,
3837 .get_coalesce = mvneta_ethtool_get_coalesce,
3838 .get_drvinfo = mvneta_ethtool_get_drvinfo,
3839 .get_ringparam = mvneta_ethtool_get_ringparam,
3840 .set_ringparam = mvneta_ethtool_set_ringparam,
3841 .get_strings = mvneta_ethtool_get_strings,
3842 .get_ethtool_stats = mvneta_ethtool_get_stats,
3843 .get_sset_count = mvneta_ethtool_get_sset_count,
3844 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3845 .get_rxnfc = mvneta_ethtool_get_rxnfc,
3846 .get_rxfh = mvneta_ethtool_get_rxfh,
3847 .set_rxfh = mvneta_ethtool_set_rxfh,
3848 .get_link_ksettings = phy_ethtool_get_link_ksettings,
3849 .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
3850 };
3851
3852 /* Initialize hw */
3853 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3854 {
3855 int queue;
3856
3857 /* Disable port */
3858 mvneta_port_disable(pp);
3859
3860 /* Set port default values */
3861 mvneta_defaults_set(pp);
3862
3863 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3864 GFP_KERNEL);
3865 if (!pp->txqs)
3866 return -ENOMEM;
3867
3868 /* Initialize TX descriptor rings */
3869 for (queue = 0; queue < txq_number; queue++) {
3870 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3871 txq->id = queue;
3872 txq->size = pp->tx_ring_size;
3873 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3874 }
3875
3876 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3877 GFP_KERNEL);
3878 if (!pp->rxqs)
3879 return -ENOMEM;
3880
3881 /* Create Rx descriptor rings */
3882 for (queue = 0; queue < rxq_number; queue++) {
3883 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3884 rxq->id = queue;
3885 rxq->size = pp->rx_ring_size;
3886 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3887 rxq->time_coal = MVNETA_RX_COAL_USEC;
3888 }
3889
3890 return 0;
3891 }
3892
3893 /* platform glue : initialize decoding windows */
3894 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3895 const struct mbus_dram_target_info *dram)
3896 {
3897 u32 win_enable;
3898 u32 win_protect;
3899 int i;
3900
3901 for (i = 0; i < 6; i++) {
3902 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3903 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
3904
3905 if (i < 4)
3906 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
3907 }
3908
3909 win_enable = 0x3f;
3910 win_protect = 0;
3911
3912 for (i = 0; i < dram->num_cs; i++) {
3913 const struct mbus_dram_window *cs = dram->cs + i;
3914 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
3915 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
3916
3917 mvreg_write(pp, MVNETA_WIN_SIZE(i),
3918 (cs->size - 1) & 0xffff0000);
3919
3920 win_enable &= ~(1 << i);
3921 win_protect |= 3 << (2 * i);
3922 }
3923
3924 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
3925 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
3926 }
3927
3928 /* Power up the port */
3929 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
3930 {
3931 u32 ctrl;
3932
3933 /* MAC Cause register should be cleared */
3934 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
3935
3936 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3937
3938 /* Even though it might look weird, when we're configured in
3939 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3940 */
3941 switch(phy_mode) {
3942 case PHY_INTERFACE_MODE_QSGMII:
3943 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
3944 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3945 break;
3946 case PHY_INTERFACE_MODE_SGMII:
3947 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
3948 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3949 break;
3950 case PHY_INTERFACE_MODE_RGMII:
3951 case PHY_INTERFACE_MODE_RGMII_ID:
3952 ctrl |= MVNETA_GMAC2_PORT_RGMII;
3953 break;
3954 default:
3955 return -EINVAL;
3956 }
3957
3958 /* Cancel Port Reset */
3959 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3960 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3961
3962 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3963 MVNETA_GMAC2_PORT_RESET) != 0)
3964 continue;
3965
3966 return 0;
3967 }
3968
3969 /* Device initialization routine */
3970 static int mvneta_probe(struct platform_device *pdev)
3971 {
3972 const struct mbus_dram_target_info *dram_target_info;
3973 struct resource *res;
3974 struct device_node *dn = pdev->dev.of_node;
3975 struct device_node *phy_node;
3976 struct device_node *bm_node;
3977 struct mvneta_port *pp;
3978 struct net_device *dev;
3979 const char *dt_mac_addr;
3980 char hw_mac_addr[ETH_ALEN];
3981 const char *mac_from;
3982 const char *managed;
3983 int tx_csum_limit;
3984 int phy_mode;
3985 int err;
3986 int cpu;
3987
3988 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3989 if (!dev)
3990 return -ENOMEM;
3991
3992 dev->irq = irq_of_parse_and_map(dn, 0);
3993 if (dev->irq == 0) {
3994 err = -EINVAL;
3995 goto err_free_netdev;
3996 }
3997
3998 phy_node = of_parse_phandle(dn, "phy", 0);
3999 if (!phy_node) {
4000 if (!of_phy_is_fixed_link(dn)) {
4001 dev_err(&pdev->dev, "no PHY specified\n");
4002 err = -ENODEV;
4003 goto err_free_irq;
4004 }
4005
4006 err = of_phy_register_fixed_link(dn);
4007 if (err < 0) {
4008 dev_err(&pdev->dev, "cannot register fixed PHY\n");
4009 goto err_free_irq;
4010 }
4011
4012 /* In the case of a fixed PHY, the DT node associated
4013 * to the PHY is the Ethernet MAC DT node.
4014 */
4015 phy_node = of_node_get(dn);
4016 }
4017
4018 phy_mode = of_get_phy_mode(dn);
4019 if (phy_mode < 0) {
4020 dev_err(&pdev->dev, "incorrect phy-mode\n");
4021 err = -EINVAL;
4022 goto err_put_phy_node;
4023 }
4024
4025 dev->tx_queue_len = MVNETA_MAX_TXD;
4026 dev->watchdog_timeo = 5 * HZ;
4027 dev->netdev_ops = &mvneta_netdev_ops;
4028
4029 dev->ethtool_ops = &mvneta_eth_tool_ops;
4030
4031 pp = netdev_priv(dev);
4032 spin_lock_init(&pp->lock);
4033 pp->phy_node = phy_node;
4034 pp->phy_interface = phy_mode;
4035
4036 err = of_property_read_string(dn, "managed", &managed);
4037 pp->use_inband_status = (err == 0 &&
4038 strcmp(managed, "in-band-status") == 0);
4039
4040 pp->rxq_def = rxq_def;
4041
4042 pp->indir[0] = rxq_def;
4043
4044 pp->clk = devm_clk_get(&pdev->dev, "core");
4045 if (IS_ERR(pp->clk))
4046 pp->clk = devm_clk_get(&pdev->dev, NULL);
4047 if (IS_ERR(pp->clk)) {
4048 err = PTR_ERR(pp->clk);
4049 goto err_put_phy_node;
4050 }
4051
4052 clk_prepare_enable(pp->clk);
4053
4054 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4055 if (!IS_ERR(pp->clk_bus))
4056 clk_prepare_enable(pp->clk_bus);
4057
4058 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4059 pp->base = devm_ioremap_resource(&pdev->dev, res);
4060 if (IS_ERR(pp->base)) {
4061 err = PTR_ERR(pp->base);
4062 goto err_clk;
4063 }
4064
4065 /* Alloc per-cpu port structure */
4066 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4067 if (!pp->ports) {
4068 err = -ENOMEM;
4069 goto err_clk;
4070 }
4071
4072 /* Alloc per-cpu stats */
4073 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4074 if (!pp->stats) {
4075 err = -ENOMEM;
4076 goto err_free_ports;
4077 }
4078
4079 dt_mac_addr = of_get_mac_address(dn);
4080 if (dt_mac_addr) {
4081 mac_from = "device tree";
4082 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4083 } else {
4084 mvneta_get_mac_addr(pp, hw_mac_addr);
4085 if (is_valid_ether_addr(hw_mac_addr)) {
4086 mac_from = "hardware";
4087 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4088 } else {
4089 mac_from = "random";
4090 eth_hw_addr_random(dev);
4091 }
4092 }
4093
4094 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4095 if (tx_csum_limit < 0 ||
4096 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4097 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4098 dev_info(&pdev->dev,
4099 "Wrong TX csum limit in DT, set to %dB\n",
4100 MVNETA_TX_CSUM_DEF_SIZE);
4101 }
4102 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4103 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4104 } else {
4105 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4106 }
4107
4108 pp->tx_csum_limit = tx_csum_limit;
4109
4110 dram_target_info = mv_mbus_dram_info();
4111 if (dram_target_info)
4112 mvneta_conf_mbus_windows(pp, dram_target_info);
4113
4114 pp->tx_ring_size = MVNETA_MAX_TXD;
4115 pp->rx_ring_size = MVNETA_MAX_RXD;
4116
4117 pp->dev = dev;
4118 SET_NETDEV_DEV(dev, &pdev->dev);
4119
4120 pp->id = global_port_id++;
4121
4122 /* Obtain access to BM resources if enabled and already initialized */
4123 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4124 if (bm_node && bm_node->data) {
4125 pp->bm_priv = bm_node->data;
4126 err = mvneta_bm_port_init(pdev, pp);
4127 if (err < 0) {
4128 dev_info(&pdev->dev, "use SW buffer management\n");
4129 pp->bm_priv = NULL;
4130 }
4131 }
4132 of_node_put(bm_node);
4133
4134 err = mvneta_init(&pdev->dev, pp);
4135 if (err < 0)
4136 goto err_netdev;
4137
4138 err = mvneta_port_power_up(pp, phy_mode);
4139 if (err < 0) {
4140 dev_err(&pdev->dev, "can't power up port\n");
4141 goto err_netdev;
4142 }
4143
4144 for_each_present_cpu(cpu) {
4145 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4146
4147 netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4148 port->pp = pp;
4149 }
4150
4151 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
4152 dev->hw_features |= dev->features;
4153 dev->vlan_features |= dev->features;
4154 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4155 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4156
4157 err = register_netdev(dev);
4158 if (err < 0) {
4159 dev_err(&pdev->dev, "failed to register\n");
4160 goto err_free_stats;
4161 }
4162
4163 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4164 dev->dev_addr);
4165
4166 platform_set_drvdata(pdev, pp->dev);
4167
4168 if (pp->use_inband_status) {
4169 struct phy_device *phy = of_phy_find_device(dn);
4170
4171 mvneta_fixed_link_update(pp, phy);
4172
4173 put_device(&phy->mdio.dev);
4174 }
4175
4176 return 0;
4177
4178 err_netdev:
4179 unregister_netdev(dev);
4180 if (pp->bm_priv) {
4181 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4182 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4183 1 << pp->id);
4184 }
4185 err_free_stats:
4186 free_percpu(pp->stats);
4187 err_free_ports:
4188 free_percpu(pp->ports);
4189 err_clk:
4190 clk_disable_unprepare(pp->clk_bus);
4191 clk_disable_unprepare(pp->clk);
4192 err_put_phy_node:
4193 of_node_put(phy_node);
4194 if (of_phy_is_fixed_link(dn))
4195 of_phy_deregister_fixed_link(dn);
4196 err_free_irq:
4197 irq_dispose_mapping(dev->irq);
4198 err_free_netdev:
4199 free_netdev(dev);
4200 return err;
4201 }
4202
4203 /* Device removal routine */
4204 static int mvneta_remove(struct platform_device *pdev)
4205 {
4206 struct net_device *dev = platform_get_drvdata(pdev);
4207 struct device_node *dn = pdev->dev.of_node;
4208 struct mvneta_port *pp = netdev_priv(dev);
4209
4210 unregister_netdev(dev);
4211 clk_disable_unprepare(pp->clk_bus);
4212 clk_disable_unprepare(pp->clk);
4213 free_percpu(pp->ports);
4214 free_percpu(pp->stats);
4215 if (of_phy_is_fixed_link(dn))
4216 of_phy_deregister_fixed_link(dn);
4217 irq_dispose_mapping(dev->irq);
4218 of_node_put(pp->phy_node);
4219 free_netdev(dev);
4220
4221 if (pp->bm_priv) {
4222 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4223 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4224 1 << pp->id);
4225 }
4226
4227 return 0;
4228 }
4229
4230 static const struct of_device_id mvneta_match[] = {
4231 { .compatible = "marvell,armada-370-neta" },
4232 { .compatible = "marvell,armada-xp-neta" },
4233 { }
4234 };
4235 MODULE_DEVICE_TABLE(of, mvneta_match);
4236
4237 static struct platform_driver mvneta_driver = {
4238 .probe = mvneta_probe,
4239 .remove = mvneta_remove,
4240 .driver = {
4241 .name = MVNETA_DRIVER_NAME,
4242 .of_match_table = mvneta_match,
4243 },
4244 };
4245
4246 static int __init mvneta_driver_init(void)
4247 {
4248 int ret;
4249
4250 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4251 mvneta_cpu_online,
4252 mvneta_cpu_down_prepare);
4253 if (ret < 0)
4254 goto out;
4255 online_hpstate = ret;
4256 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4257 NULL, mvneta_cpu_dead);
4258 if (ret)
4259 goto err_dead;
4260
4261 ret = platform_driver_register(&mvneta_driver);
4262 if (ret)
4263 goto err;
4264 return 0;
4265
4266 err:
4267 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4268 err_dead:
4269 cpuhp_remove_multi_state(online_hpstate);
4270 out:
4271 return ret;
4272 }
4273 module_init(mvneta_driver_init);
4274
4275 static void __exit mvneta_driver_exit(void)
4276 {
4277 platform_driver_unregister(&mvneta_driver);
4278 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4279 cpuhp_remove_multi_state(online_hpstate);
4280 }
4281 module_exit(mvneta_driver_exit);
4282
4283 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4284 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4285 MODULE_LICENSE("GPL");
4286
4287 module_param(rxq_number, int, S_IRUGO);
4288 module_param(txq_number, int, S_IRUGO);
4289
4290 module_param(rxq_def, int, S_IRUGO);
4291 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);