]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/hyperv/netvsc_drv.c
01de2dcef170625f6fe05edb487ceda8d4964e44
[mirror_ubuntu-artful-kernel.git] / drivers / net / hyperv / netvsc_drv.c
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * Authors:
17 * Haiyang Zhang <haiyangz@microsoft.com>
18 * Hank Janssen <hjanssen@microsoft.com>
19 */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <net/arp.h>
37 #include <net/route.h>
38 #include <net/sock.h>
39 #include <net/pkt_sched.h>
40
41 #include "hyperv_net.h"
42
43
44 #define RING_SIZE_MIN 64
45 #define LINKCHANGE_INT (2 * HZ)
46 #define NETVSC_HW_FEATURES (NETIF_F_RXCSUM | \
47 NETIF_F_SG | \
48 NETIF_F_TSO | \
49 NETIF_F_TSO6 | \
50 NETIF_F_HW_CSUM)
51 static int ring_size = 128;
52 module_param(ring_size, int, S_IRUGO);
53 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
54
55 static int max_num_vrss_chns = 8;
56
57 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
58 NETIF_MSG_LINK | NETIF_MSG_IFUP |
59 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR;
61
62 static int debug = -1;
63 module_param(debug, int, S_IRUGO);
64 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
65
66 static void do_set_multicast(struct work_struct *w)
67 {
68 struct net_device_context *ndevctx =
69 container_of(w, struct net_device_context, work);
70 struct netvsc_device *nvdev;
71 struct rndis_device *rdev;
72
73 nvdev = hv_get_drvdata(ndevctx->device_ctx);
74 if (nvdev == NULL || nvdev->ndev == NULL)
75 return;
76
77 rdev = nvdev->extension;
78 if (rdev == NULL)
79 return;
80
81 if (nvdev->ndev->flags & IFF_PROMISC)
82 rndis_filter_set_packet_filter(rdev,
83 NDIS_PACKET_TYPE_PROMISCUOUS);
84 else
85 rndis_filter_set_packet_filter(rdev,
86 NDIS_PACKET_TYPE_BROADCAST |
87 NDIS_PACKET_TYPE_ALL_MULTICAST |
88 NDIS_PACKET_TYPE_DIRECTED);
89 }
90
91 static void netvsc_set_multicast_list(struct net_device *net)
92 {
93 struct net_device_context *net_device_ctx = netdev_priv(net);
94
95 schedule_work(&net_device_ctx->work);
96 }
97
98 static int netvsc_open(struct net_device *net)
99 {
100 struct net_device_context *net_device_ctx = netdev_priv(net);
101 struct hv_device *device_obj = net_device_ctx->device_ctx;
102 struct netvsc_device *nvdev;
103 struct rndis_device *rdev;
104 int ret = 0;
105
106 netif_carrier_off(net);
107
108 /* Open up the device */
109 ret = rndis_filter_open(device_obj);
110 if (ret != 0) {
111 netdev_err(net, "unable to open device (ret %d).\n", ret);
112 return ret;
113 }
114
115 netif_tx_wake_all_queues(net);
116
117 nvdev = hv_get_drvdata(device_obj);
118 rdev = nvdev->extension;
119 if (!rdev->link_state)
120 netif_carrier_on(net);
121
122 return ret;
123 }
124
125 static int netvsc_close(struct net_device *net)
126 {
127 struct net_device_context *net_device_ctx = netdev_priv(net);
128 struct hv_device *device_obj = net_device_ctx->device_ctx;
129 struct netvsc_device *nvdev = hv_get_drvdata(device_obj);
130 int ret;
131 u32 aread, awrite, i, msec = 10, retry = 0, retry_max = 20;
132 struct vmbus_channel *chn;
133
134 netif_tx_disable(net);
135
136 /* Make sure netvsc_set_multicast_list doesn't re-enable filter! */
137 cancel_work_sync(&net_device_ctx->work);
138 ret = rndis_filter_close(device_obj);
139 if (ret != 0) {
140 netdev_err(net, "unable to close device (ret %d).\n", ret);
141 return ret;
142 }
143
144 /* Ensure pending bytes in ring are read */
145 while (true) {
146 aread = 0;
147 for (i = 0; i < nvdev->num_chn; i++) {
148 chn = nvdev->chn_table[i];
149 if (!chn)
150 continue;
151
152 hv_get_ringbuffer_availbytes(&chn->inbound, &aread,
153 &awrite);
154
155 if (aread)
156 break;
157
158 hv_get_ringbuffer_availbytes(&chn->outbound, &aread,
159 &awrite);
160
161 if (aread)
162 break;
163 }
164
165 retry++;
166 if (retry > retry_max || aread == 0)
167 break;
168
169 msleep(msec);
170
171 if (msec < 1000)
172 msec *= 2;
173 }
174
175 if (aread) {
176 netdev_err(net, "Ring buffer not empty after closing rndis\n");
177 ret = -ETIMEDOUT;
178 }
179
180 return ret;
181 }
182
183 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
184 int pkt_type)
185 {
186 struct rndis_packet *rndis_pkt;
187 struct rndis_per_packet_info *ppi;
188
189 rndis_pkt = &msg->msg.pkt;
190 rndis_pkt->data_offset += ppi_size;
191
192 ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
193 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
194
195 ppi->size = ppi_size;
196 ppi->type = pkt_type;
197 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
198
199 rndis_pkt->per_pkt_info_len += ppi_size;
200
201 return ppi;
202 }
203
204 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
205 void *accel_priv, select_queue_fallback_t fallback)
206 {
207 struct net_device_context *net_device_ctx = netdev_priv(ndev);
208 struct hv_device *hdev = net_device_ctx->device_ctx;
209 struct netvsc_device *nvsc_dev = hv_get_drvdata(hdev);
210 u32 hash;
211 u16 q_idx = 0;
212
213 if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1)
214 return 0;
215
216 hash = skb_get_hash(skb);
217 q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] %
218 ndev->real_num_tx_queues;
219
220 if (!nvsc_dev->chn_table[q_idx])
221 q_idx = 0;
222
223 return q_idx;
224 }
225
226 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
227 struct hv_page_buffer *pb)
228 {
229 int j = 0;
230
231 /* Deal with compund pages by ignoring unused part
232 * of the page.
233 */
234 page += (offset >> PAGE_SHIFT);
235 offset &= ~PAGE_MASK;
236
237 while (len > 0) {
238 unsigned long bytes;
239
240 bytes = PAGE_SIZE - offset;
241 if (bytes > len)
242 bytes = len;
243 pb[j].pfn = page_to_pfn(page);
244 pb[j].offset = offset;
245 pb[j].len = bytes;
246
247 offset += bytes;
248 len -= bytes;
249
250 if (offset == PAGE_SIZE && len) {
251 page++;
252 offset = 0;
253 j++;
254 }
255 }
256
257 return j + 1;
258 }
259
260 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
261 struct hv_netvsc_packet *packet,
262 struct hv_page_buffer **page_buf)
263 {
264 struct hv_page_buffer *pb = *page_buf;
265 u32 slots_used = 0;
266 char *data = skb->data;
267 int frags = skb_shinfo(skb)->nr_frags;
268 int i;
269
270 /* The packet is laid out thus:
271 * 1. hdr: RNDIS header and PPI
272 * 2. skb linear data
273 * 3. skb fragment data
274 */
275 if (hdr != NULL)
276 slots_used += fill_pg_buf(virt_to_page(hdr),
277 offset_in_page(hdr),
278 len, &pb[slots_used]);
279
280 packet->rmsg_size = len;
281 packet->rmsg_pgcnt = slots_used;
282
283 slots_used += fill_pg_buf(virt_to_page(data),
284 offset_in_page(data),
285 skb_headlen(skb), &pb[slots_used]);
286
287 for (i = 0; i < frags; i++) {
288 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
289
290 slots_used += fill_pg_buf(skb_frag_page(frag),
291 frag->page_offset,
292 skb_frag_size(frag), &pb[slots_used]);
293 }
294 return slots_used;
295 }
296
297 static int count_skb_frag_slots(struct sk_buff *skb)
298 {
299 int i, frags = skb_shinfo(skb)->nr_frags;
300 int pages = 0;
301
302 for (i = 0; i < frags; i++) {
303 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
304 unsigned long size = skb_frag_size(frag);
305 unsigned long offset = frag->page_offset;
306
307 /* Skip unused frames from start of page */
308 offset &= ~PAGE_MASK;
309 pages += PFN_UP(offset + size);
310 }
311 return pages;
312 }
313
314 static int netvsc_get_slots(struct sk_buff *skb)
315 {
316 char *data = skb->data;
317 unsigned int offset = offset_in_page(data);
318 unsigned int len = skb_headlen(skb);
319 int slots;
320 int frag_slots;
321
322 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
323 frag_slots = count_skb_frag_slots(skb);
324 return slots + frag_slots;
325 }
326
327 static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off)
328 {
329 u32 ret_val = TRANSPORT_INFO_NOT_IP;
330
331 if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) &&
332 (eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) {
333 goto not_ip;
334 }
335
336 *trans_off = skb_transport_offset(skb);
337
338 if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) {
339 struct iphdr *iphdr = ip_hdr(skb);
340
341 if (iphdr->protocol == IPPROTO_TCP)
342 ret_val = TRANSPORT_INFO_IPV4_TCP;
343 else if (iphdr->protocol == IPPROTO_UDP)
344 ret_val = TRANSPORT_INFO_IPV4_UDP;
345 } else {
346 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
347 ret_val = TRANSPORT_INFO_IPV6_TCP;
348 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
349 ret_val = TRANSPORT_INFO_IPV6_UDP;
350 }
351
352 not_ip:
353 return ret_val;
354 }
355
356 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
357 {
358 struct net_device_context *net_device_ctx = netdev_priv(net);
359 struct hv_netvsc_packet *packet = NULL;
360 int ret;
361 unsigned int num_data_pgs;
362 struct rndis_message *rndis_msg;
363 struct rndis_packet *rndis_pkt;
364 u32 rndis_msg_size;
365 bool isvlan;
366 bool linear = false;
367 struct rndis_per_packet_info *ppi;
368 struct ndis_tcp_ip_checksum_info *csum_info;
369 struct ndis_tcp_lso_info *lso_info;
370 int hdr_offset;
371 u32 net_trans_info;
372 u32 hash;
373 u32 skb_length;
374 struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
375 struct hv_page_buffer *pb = page_buf;
376 struct netvsc_stats *tx_stats = this_cpu_ptr(net_device_ctx->tx_stats);
377
378 /* We will atmost need two pages to describe the rndis
379 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
380 * of pages in a single packet. If skb is scattered around
381 * more pages we try linearizing it.
382 */
383
384 check_size:
385 skb_length = skb->len;
386 num_data_pgs = netvsc_get_slots(skb) + 2;
387 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT && linear) {
388 net_alert_ratelimited("packet too big: %u pages (%u bytes)\n",
389 num_data_pgs, skb->len);
390 ret = -EFAULT;
391 goto drop;
392 } else if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
393 if (skb_linearize(skb)) {
394 net_alert_ratelimited("failed to linearize skb\n");
395 ret = -ENOMEM;
396 goto drop;
397 }
398 linear = true;
399 goto check_size;
400 }
401
402 /*
403 * Place the rndis header in the skb head room and
404 * the skb->cb will be used for hv_netvsc_packet
405 * structure.
406 */
407 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
408 if (ret) {
409 netdev_err(net, "unable to alloc hv_netvsc_packet\n");
410 ret = -ENOMEM;
411 goto drop;
412 }
413 /* Use the skb control buffer for building up the packet */
414 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
415 FIELD_SIZEOF(struct sk_buff, cb));
416 packet = (struct hv_netvsc_packet *)skb->cb;
417
418
419 packet->q_idx = skb_get_queue_mapping(skb);
420
421 packet->total_data_buflen = skb->len;
422
423 rndis_msg = (struct rndis_message *)skb->head;
424
425 memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
426
427 isvlan = skb->vlan_tci & VLAN_TAG_PRESENT;
428
429 /* Add the rndis header */
430 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
431 rndis_msg->msg_len = packet->total_data_buflen;
432 rndis_pkt = &rndis_msg->msg.pkt;
433 rndis_pkt->data_offset = sizeof(struct rndis_packet);
434 rndis_pkt->data_len = packet->total_data_buflen;
435 rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
436
437 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
438
439 hash = skb_get_hash_raw(skb);
440 if (hash != 0 && net->real_num_tx_queues > 1) {
441 rndis_msg_size += NDIS_HASH_PPI_SIZE;
442 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
443 NBL_HASH_VALUE);
444 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
445 }
446
447 if (isvlan) {
448 struct ndis_pkt_8021q_info *vlan;
449
450 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
451 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
452 IEEE_8021Q_INFO);
453 vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
454 ppi->ppi_offset);
455 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
456 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
457 VLAN_PRIO_SHIFT;
458 }
459
460 net_trans_info = get_net_transport_info(skb, &hdr_offset);
461 if (net_trans_info == TRANSPORT_INFO_NOT_IP)
462 goto do_send;
463
464 /*
465 * Setup the sendside checksum offload only if this is not a
466 * GSO packet.
467 */
468 if (skb_is_gso(skb))
469 goto do_lso;
470
471 if ((skb->ip_summed == CHECKSUM_NONE) ||
472 (skb->ip_summed == CHECKSUM_UNNECESSARY))
473 goto do_send;
474
475 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
476 ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
477 TCPIP_CHKSUM_PKTINFO);
478
479 csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
480 ppi->ppi_offset);
481
482 if (net_trans_info & (INFO_IPV4 << 16))
483 csum_info->transmit.is_ipv4 = 1;
484 else
485 csum_info->transmit.is_ipv6 = 1;
486
487 if (net_trans_info & INFO_TCP) {
488 csum_info->transmit.tcp_checksum = 1;
489 csum_info->transmit.tcp_header_offset = hdr_offset;
490 } else if (net_trans_info & INFO_UDP) {
491 /* UDP checksum offload is not supported on ws2008r2.
492 * Furthermore, on ws2012 and ws2012r2, there are some
493 * issues with udp checksum offload from Linux guests.
494 * (these are host issues).
495 * For now compute the checksum here.
496 */
497 struct udphdr *uh;
498 u16 udp_len;
499
500 ret = skb_cow_head(skb, 0);
501 if (ret)
502 goto drop;
503
504 uh = udp_hdr(skb);
505 udp_len = ntohs(uh->len);
506 uh->check = 0;
507 uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
508 ip_hdr(skb)->daddr,
509 udp_len, IPPROTO_UDP,
510 csum_partial(uh, udp_len, 0));
511 if (uh->check == 0)
512 uh->check = CSUM_MANGLED_0;
513
514 csum_info->transmit.udp_checksum = 0;
515 }
516 goto do_send;
517
518 do_lso:
519 rndis_msg_size += NDIS_LSO_PPI_SIZE;
520 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
521 TCP_LARGESEND_PKTINFO);
522
523 lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
524 ppi->ppi_offset);
525
526 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
527 if (net_trans_info & (INFO_IPV4 << 16)) {
528 lso_info->lso_v2_transmit.ip_version =
529 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
530 ip_hdr(skb)->tot_len = 0;
531 ip_hdr(skb)->check = 0;
532 tcp_hdr(skb)->check =
533 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
534 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
535 } else {
536 lso_info->lso_v2_transmit.ip_version =
537 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
538 ipv6_hdr(skb)->payload_len = 0;
539 tcp_hdr(skb)->check =
540 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
541 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
542 }
543 lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset;
544 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
545
546 do_send:
547 /* Start filling in the page buffers with the rndis hdr */
548 rndis_msg->msg_len += rndis_msg_size;
549 packet->total_data_buflen = rndis_msg->msg_len;
550 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
551 skb, packet, &pb);
552
553 /* timestamp packet in software */
554 skb_tx_timestamp(skb);
555 ret = netvsc_send(net_device_ctx->device_ctx, packet,
556 rndis_msg, &pb, skb);
557
558 drop:
559 if (ret == 0) {
560 u64_stats_update_begin(&tx_stats->syncp);
561 tx_stats->packets++;
562 tx_stats->bytes += skb_length;
563 u64_stats_update_end(&tx_stats->syncp);
564 } else {
565 if (ret != -EAGAIN) {
566 dev_kfree_skb_any(skb);
567 net->stats.tx_dropped++;
568 }
569 }
570
571 return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
572 }
573
574 /*
575 * netvsc_linkstatus_callback - Link up/down notification
576 */
577 void netvsc_linkstatus_callback(struct hv_device *device_obj,
578 struct rndis_message *resp)
579 {
580 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
581 struct net_device *net;
582 struct net_device_context *ndev_ctx;
583 struct netvsc_device *net_device;
584 struct netvsc_reconfig *event;
585 unsigned long flags;
586
587 /* Handle link change statuses only */
588 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
589 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
590 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
591 return;
592
593 net_device = hv_get_drvdata(device_obj);
594 net = net_device->ndev;
595
596 if (!net || net->reg_state != NETREG_REGISTERED)
597 return;
598
599 ndev_ctx = netdev_priv(net);
600
601 event = kzalloc(sizeof(*event), GFP_ATOMIC);
602 if (!event)
603 return;
604 event->event = indicate->status;
605
606 spin_lock_irqsave(&ndev_ctx->lock, flags);
607 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
608 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
609
610 schedule_delayed_work(&ndev_ctx->dwork, 0);
611 }
612
613
614 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
615 struct hv_netvsc_packet *packet,
616 struct ndis_tcp_ip_checksum_info *csum_info,
617 void *data, u16 vlan_tci)
618 {
619 struct sk_buff *skb;
620
621 skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen);
622 if (!skb)
623 return skb;
624
625 /*
626 * Copy to skb. This copy is needed here since the memory pointed by
627 * hv_netvsc_packet cannot be deallocated
628 */
629 memcpy(skb_put(skb, packet->total_data_buflen), data,
630 packet->total_data_buflen);
631
632 skb->protocol = eth_type_trans(skb, net);
633 if (csum_info) {
634 /* We only look at the IP checksum here.
635 * Should we be dropping the packet if checksum
636 * failed? How do we deal with other checksums - TCP/UDP?
637 */
638 if (csum_info->receive.ip_checksum_succeeded)
639 skb->ip_summed = CHECKSUM_UNNECESSARY;
640 else
641 skb->ip_summed = CHECKSUM_NONE;
642 }
643
644 if (vlan_tci & VLAN_TAG_PRESENT)
645 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
646 vlan_tci);
647
648 return skb;
649 }
650
651 /*
652 * netvsc_recv_callback - Callback when we receive a packet from the
653 * "wire" on the specified device.
654 */
655 int netvsc_recv_callback(struct hv_device *device_obj,
656 struct hv_netvsc_packet *packet,
657 void **data,
658 struct ndis_tcp_ip_checksum_info *csum_info,
659 struct vmbus_channel *channel,
660 u16 vlan_tci)
661 {
662 struct net_device *net;
663 struct net_device_context *net_device_ctx;
664 struct sk_buff *skb;
665 struct sk_buff *vf_skb;
666 struct netvsc_stats *rx_stats;
667 struct netvsc_device *netvsc_dev = hv_get_drvdata(device_obj);
668 u32 bytes_recvd = packet->total_data_buflen;
669 int ret = 0;
670
671 net = netvsc_dev->ndev;
672 if (!net || net->reg_state != NETREG_REGISTERED)
673 return NVSP_STAT_FAIL;
674
675 if (READ_ONCE(netvsc_dev->vf_inject)) {
676 atomic_inc(&netvsc_dev->vf_use_cnt);
677 if (!READ_ONCE(netvsc_dev->vf_inject)) {
678 /*
679 * We raced; just move on.
680 */
681 atomic_dec(&netvsc_dev->vf_use_cnt);
682 goto vf_injection_done;
683 }
684
685 /*
686 * Inject this packet into the VF inerface.
687 * On Hyper-V, multicast and brodcast packets
688 * are only delivered on the synthetic interface
689 * (after subjecting these to policy filters on
690 * the host). Deliver these via the VF interface
691 * in the guest.
692 */
693 vf_skb = netvsc_alloc_recv_skb(netvsc_dev->vf_netdev, packet,
694 csum_info, *data, vlan_tci);
695 if (vf_skb != NULL) {
696 ++netvsc_dev->vf_netdev->stats.rx_packets;
697 netvsc_dev->vf_netdev->stats.rx_bytes += bytes_recvd;
698 netif_receive_skb(vf_skb);
699 } else {
700 ++net->stats.rx_dropped;
701 ret = NVSP_STAT_FAIL;
702 }
703 atomic_dec(&netvsc_dev->vf_use_cnt);
704 return ret;
705 }
706
707 vf_injection_done:
708 net_device_ctx = netdev_priv(net);
709 rx_stats = this_cpu_ptr(net_device_ctx->rx_stats);
710
711 /* Allocate a skb - TODO direct I/O to pages? */
712 skb = netvsc_alloc_recv_skb(net, packet, csum_info, *data, vlan_tci);
713 if (unlikely(!skb)) {
714 ++net->stats.rx_dropped;
715 return NVSP_STAT_FAIL;
716 }
717 skb_record_rx_queue(skb, channel->
718 offermsg.offer.sub_channel_index);
719
720 u64_stats_update_begin(&rx_stats->syncp);
721 rx_stats->packets++;
722 rx_stats->bytes += packet->total_data_buflen;
723 u64_stats_update_end(&rx_stats->syncp);
724
725 /*
726 * Pass the skb back up. Network stack will deallocate the skb when it
727 * is done.
728 * TODO - use NAPI?
729 */
730 netif_rx(skb);
731
732 return 0;
733 }
734
735 static void netvsc_get_drvinfo(struct net_device *net,
736 struct ethtool_drvinfo *info)
737 {
738 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
739 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
740 }
741
742 static void netvsc_get_channels(struct net_device *net,
743 struct ethtool_channels *channel)
744 {
745 struct net_device_context *net_device_ctx = netdev_priv(net);
746 struct hv_device *dev = net_device_ctx->device_ctx;
747 struct netvsc_device *nvdev = hv_get_drvdata(dev);
748
749 if (nvdev) {
750 channel->max_combined = nvdev->max_chn;
751 channel->combined_count = nvdev->num_chn;
752 }
753 }
754
755 static int netvsc_set_channels(struct net_device *net,
756 struct ethtool_channels *channels)
757 {
758 struct net_device_context *net_device_ctx = netdev_priv(net);
759 struct hv_device *dev = net_device_ctx->device_ctx;
760 struct netvsc_device *nvdev = hv_get_drvdata(dev);
761 struct netvsc_device_info device_info;
762 u32 num_chn;
763 u32 max_chn;
764 int ret = 0;
765 bool recovering = false;
766
767 if (!nvdev || nvdev->destroy)
768 return -ENODEV;
769
770 num_chn = nvdev->num_chn;
771 max_chn = min_t(u32, nvdev->max_chn, num_online_cpus());
772
773 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) {
774 pr_info("vRSS unsupported before NVSP Version 5\n");
775 return -EINVAL;
776 }
777
778 /* We do not support rx, tx, or other */
779 if (!channels ||
780 channels->rx_count ||
781 channels->tx_count ||
782 channels->other_count ||
783 (channels->combined_count < 1))
784 return -EINVAL;
785
786 if (channels->combined_count > max_chn) {
787 pr_info("combined channels too high, using %d\n", max_chn);
788 channels->combined_count = max_chn;
789 }
790
791 ret = netvsc_close(net);
792 if (ret)
793 goto out;
794
795 do_set:
796 net_device_ctx->start_remove = true;
797 rndis_filter_device_remove(dev);
798
799 nvdev->num_chn = channels->combined_count;
800
801 net_device_ctx->device_ctx = dev;
802 hv_set_drvdata(dev, net);
803
804 memset(&device_info, 0, sizeof(device_info));
805 device_info.num_chn = nvdev->num_chn; /* passed to RNDIS */
806 device_info.ring_size = ring_size;
807 device_info.max_num_vrss_chns = max_num_vrss_chns;
808
809 ret = rndis_filter_device_add(dev, &device_info);
810 if (ret) {
811 if (recovering) {
812 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
813 return ret;
814 }
815 goto recover;
816 }
817
818 nvdev = hv_get_drvdata(dev);
819
820 ret = netif_set_real_num_tx_queues(net, nvdev->num_chn);
821 if (ret) {
822 if (recovering) {
823 netdev_err(net, "could not set tx queue count (ret %d)\n", ret);
824 return ret;
825 }
826 goto recover;
827 }
828
829 ret = netif_set_real_num_rx_queues(net, nvdev->num_chn);
830 if (ret) {
831 if (recovering) {
832 netdev_err(net, "could not set rx queue count (ret %d)\n", ret);
833 return ret;
834 }
835 goto recover;
836 }
837
838 out:
839 netvsc_open(net);
840 net_device_ctx->start_remove = false;
841 /* We may have missed link change notifications */
842 schedule_delayed_work(&net_device_ctx->dwork, 0);
843
844 return ret;
845
846 recover:
847 /* If the above failed, we attempt to recover through the same
848 * process but with the original number of channels.
849 */
850 netdev_err(net, "could not set channels, recovering\n");
851 recovering = true;
852 channels->combined_count = num_chn;
853 goto do_set;
854 }
855
856 static bool netvsc_validate_ethtool_ss_cmd(const struct ethtool_cmd *cmd)
857 {
858 struct ethtool_cmd diff1 = *cmd;
859 struct ethtool_cmd diff2 = {};
860
861 ethtool_cmd_speed_set(&diff1, 0);
862 diff1.duplex = 0;
863 /* advertising and cmd are usually set */
864 diff1.advertising = 0;
865 diff1.cmd = 0;
866 /* We set port to PORT_OTHER */
867 diff2.port = PORT_OTHER;
868
869 return !memcmp(&diff1, &diff2, sizeof(diff1));
870 }
871
872 static void netvsc_init_settings(struct net_device *dev)
873 {
874 struct net_device_context *ndc = netdev_priv(dev);
875
876 ndc->speed = SPEED_UNKNOWN;
877 ndc->duplex = DUPLEX_UNKNOWN;
878 }
879
880 static int netvsc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
881 {
882 struct net_device_context *ndc = netdev_priv(dev);
883
884 ethtool_cmd_speed_set(cmd, ndc->speed);
885 cmd->duplex = ndc->duplex;
886 cmd->port = PORT_OTHER;
887
888 return 0;
889 }
890
891 static int netvsc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
892 {
893 struct net_device_context *ndc = netdev_priv(dev);
894 u32 speed;
895
896 speed = ethtool_cmd_speed(cmd);
897 if (!ethtool_validate_speed(speed) ||
898 !ethtool_validate_duplex(cmd->duplex) ||
899 !netvsc_validate_ethtool_ss_cmd(cmd))
900 return -EINVAL;
901
902 ndc->speed = speed;
903 ndc->duplex = cmd->duplex;
904
905 return 0;
906 }
907
908 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
909 {
910 struct net_device_context *ndevctx = netdev_priv(ndev);
911 struct hv_device *hdev = ndevctx->device_ctx;
912 struct netvsc_device *nvdev = hv_get_drvdata(hdev);
913 struct netvsc_device_info device_info;
914 int limit = ETH_DATA_LEN;
915 u32 num_chn;
916 int ret = 0;
917
918 if (nvdev == NULL || nvdev->destroy)
919 return -ENODEV;
920
921 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
922 limit = NETVSC_MTU - ETH_HLEN;
923
924 if (mtu < NETVSC_MTU_MIN || mtu > limit)
925 return -EINVAL;
926
927 ret = netvsc_close(ndev);
928 if (ret)
929 goto out;
930
931 num_chn = nvdev->num_chn;
932
933 ndevctx->start_remove = true;
934 rndis_filter_device_remove(hdev);
935
936 ndev->mtu = mtu;
937
938 ndevctx->device_ctx = hdev;
939 hv_set_drvdata(hdev, ndev);
940
941 memset(&device_info, 0, sizeof(device_info));
942 device_info.ring_size = ring_size;
943 device_info.num_chn = num_chn;
944 device_info.max_num_vrss_chns = max_num_vrss_chns;
945 rndis_filter_device_add(hdev, &device_info);
946
947 out:
948 netvsc_open(ndev);
949 ndevctx->start_remove = false;
950
951 /* We may have missed link change notifications */
952 schedule_delayed_work(&ndevctx->dwork, 0);
953
954 return ret;
955 }
956
957 static struct rtnl_link_stats64 *netvsc_get_stats64(struct net_device *net,
958 struct rtnl_link_stats64 *t)
959 {
960 struct net_device_context *ndev_ctx = netdev_priv(net);
961 int cpu;
962
963 for_each_possible_cpu(cpu) {
964 struct netvsc_stats *tx_stats = per_cpu_ptr(ndev_ctx->tx_stats,
965 cpu);
966 struct netvsc_stats *rx_stats = per_cpu_ptr(ndev_ctx->rx_stats,
967 cpu);
968 u64 tx_packets, tx_bytes, rx_packets, rx_bytes;
969 unsigned int start;
970
971 do {
972 start = u64_stats_fetch_begin_irq(&tx_stats->syncp);
973 tx_packets = tx_stats->packets;
974 tx_bytes = tx_stats->bytes;
975 } while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start));
976
977 do {
978 start = u64_stats_fetch_begin_irq(&rx_stats->syncp);
979 rx_packets = rx_stats->packets;
980 rx_bytes = rx_stats->bytes;
981 } while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start));
982
983 t->tx_bytes += tx_bytes;
984 t->tx_packets += tx_packets;
985 t->rx_bytes += rx_bytes;
986 t->rx_packets += rx_packets;
987 }
988
989 t->tx_dropped = net->stats.tx_dropped;
990 t->tx_errors = net->stats.tx_dropped;
991
992 t->rx_dropped = net->stats.rx_dropped;
993 t->rx_errors = net->stats.rx_errors;
994
995 return t;
996 }
997
998 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
999 {
1000 struct net_device_context *ndevctx = netdev_priv(ndev);
1001 struct hv_device *hdev = ndevctx->device_ctx;
1002 struct sockaddr *addr = p;
1003 char save_adr[ETH_ALEN];
1004 unsigned char save_aatype;
1005 int err;
1006
1007 memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
1008 save_aatype = ndev->addr_assign_type;
1009
1010 err = eth_mac_addr(ndev, p);
1011 if (err != 0)
1012 return err;
1013
1014 err = rndis_filter_set_device_mac(hdev, addr->sa_data);
1015 if (err != 0) {
1016 /* roll back to saved MAC */
1017 memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
1018 ndev->addr_assign_type = save_aatype;
1019 }
1020
1021 return err;
1022 }
1023
1024 #ifdef CONFIG_NET_POLL_CONTROLLER
1025 static void netvsc_poll_controller(struct net_device *net)
1026 {
1027 /* As netvsc_start_xmit() works synchronous we don't have to
1028 * trigger anything here.
1029 */
1030 }
1031 #endif
1032
1033 static const struct ethtool_ops ethtool_ops = {
1034 .get_drvinfo = netvsc_get_drvinfo,
1035 .get_link = ethtool_op_get_link,
1036 .get_channels = netvsc_get_channels,
1037 .set_channels = netvsc_set_channels,
1038 .get_ts_info = ethtool_op_get_ts_info,
1039 .get_settings = netvsc_get_settings,
1040 .set_settings = netvsc_set_settings,
1041 };
1042
1043 static const struct net_device_ops device_ops = {
1044 .ndo_open = netvsc_open,
1045 .ndo_stop = netvsc_close,
1046 .ndo_start_xmit = netvsc_start_xmit,
1047 .ndo_set_rx_mode = netvsc_set_multicast_list,
1048 .ndo_change_mtu = netvsc_change_mtu,
1049 .ndo_validate_addr = eth_validate_addr,
1050 .ndo_set_mac_address = netvsc_set_mac_addr,
1051 .ndo_select_queue = netvsc_select_queue,
1052 .ndo_get_stats64 = netvsc_get_stats64,
1053 #ifdef CONFIG_NET_POLL_CONTROLLER
1054 .ndo_poll_controller = netvsc_poll_controller,
1055 #endif
1056 };
1057
1058 /*
1059 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1060 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1061 * present send GARP packet to network peers with netif_notify_peers().
1062 */
1063 static void netvsc_link_change(struct work_struct *w)
1064 {
1065 struct net_device_context *ndev_ctx;
1066 struct net_device *net;
1067 struct netvsc_device *net_device;
1068 struct rndis_device *rdev;
1069 struct netvsc_reconfig *event = NULL;
1070 bool notify = false, reschedule = false;
1071 unsigned long flags, next_reconfig, delay;
1072
1073 ndev_ctx = container_of(w, struct net_device_context, dwork.work);
1074
1075 rtnl_lock();
1076 if (ndev_ctx->start_remove)
1077 goto out_unlock;
1078
1079 net_device = hv_get_drvdata(ndev_ctx->device_ctx);
1080 rdev = net_device->extension;
1081 net = net_device->ndev;
1082
1083 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1084 if (time_is_after_jiffies(next_reconfig)) {
1085 /* link_watch only sends one notification with current state
1086 * per second, avoid doing reconfig more frequently. Handle
1087 * wrap around.
1088 */
1089 delay = next_reconfig - jiffies;
1090 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1091 schedule_delayed_work(&ndev_ctx->dwork, delay);
1092 goto out_unlock;
1093 }
1094 ndev_ctx->last_reconfig = jiffies;
1095
1096 spin_lock_irqsave(&ndev_ctx->lock, flags);
1097 if (!list_empty(&ndev_ctx->reconfig_events)) {
1098 event = list_first_entry(&ndev_ctx->reconfig_events,
1099 struct netvsc_reconfig, list);
1100 list_del(&event->list);
1101 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1102 }
1103 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1104
1105 if (!event)
1106 goto out_unlock;
1107
1108 switch (event->event) {
1109 /* Only the following events are possible due to the check in
1110 * netvsc_linkstatus_callback()
1111 */
1112 case RNDIS_STATUS_MEDIA_CONNECT:
1113 if (rdev->link_state) {
1114 rdev->link_state = false;
1115 netif_carrier_on(net);
1116 netif_tx_wake_all_queues(net);
1117 } else {
1118 notify = true;
1119 }
1120 kfree(event);
1121 break;
1122 case RNDIS_STATUS_MEDIA_DISCONNECT:
1123 if (!rdev->link_state) {
1124 rdev->link_state = true;
1125 netif_carrier_off(net);
1126 netif_tx_stop_all_queues(net);
1127 }
1128 kfree(event);
1129 break;
1130 case RNDIS_STATUS_NETWORK_CHANGE:
1131 /* Only makes sense if carrier is present */
1132 if (!rdev->link_state) {
1133 rdev->link_state = true;
1134 netif_carrier_off(net);
1135 netif_tx_stop_all_queues(net);
1136 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1137 spin_lock_irqsave(&ndev_ctx->lock, flags);
1138 list_add(&event->list, &ndev_ctx->reconfig_events);
1139 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1140 reschedule = true;
1141 }
1142 break;
1143 }
1144
1145 rtnl_unlock();
1146
1147 if (notify)
1148 netdev_notify_peers(net);
1149
1150 /* link_watch only sends one notification with current state per
1151 * second, handle next reconfig event in 2 seconds.
1152 */
1153 if (reschedule)
1154 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1155
1156 return;
1157
1158 out_unlock:
1159 rtnl_unlock();
1160 }
1161
1162 static void netvsc_free_netdev(struct net_device *netdev)
1163 {
1164 struct net_device_context *net_device_ctx = netdev_priv(netdev);
1165
1166 free_percpu(net_device_ctx->tx_stats);
1167 free_percpu(net_device_ctx->rx_stats);
1168 free_netdev(netdev);
1169 }
1170
1171 static void netvsc_notify_peers(struct work_struct *wrk)
1172 {
1173 struct garp_wrk *gwrk;
1174
1175 gwrk = container_of(wrk, struct garp_wrk, dwrk);
1176
1177 netdev_notify_peers(gwrk->netdev);
1178
1179 atomic_dec(&gwrk->netvsc_dev->vf_use_cnt);
1180 }
1181
1182 static struct netvsc_device *get_netvsc_device(char *mac)
1183 {
1184 struct net_device *dev;
1185 struct net_device_context *netvsc_ctx = NULL;
1186 int rtnl_locked;
1187
1188 rtnl_locked = rtnl_trylock();
1189
1190 for_each_netdev(&init_net, dev) {
1191 if (memcmp(dev->dev_addr, mac, ETH_ALEN) == 0) {
1192 if (dev->netdev_ops != &device_ops)
1193 continue;
1194 netvsc_ctx = netdev_priv(dev);
1195 break;
1196 }
1197 }
1198 if (rtnl_locked)
1199 rtnl_unlock();
1200
1201 if (netvsc_ctx == NULL)
1202 return NULL;
1203
1204 return hv_get_drvdata(netvsc_ctx->device_ctx);
1205 }
1206
1207 static int netvsc_register_vf(struct net_device *vf_netdev)
1208 {
1209 struct netvsc_device *netvsc_dev;
1210 const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1211
1212 if (eth_ops == NULL || eth_ops == &ethtool_ops)
1213 return NOTIFY_DONE;
1214
1215 /*
1216 * We will use the MAC address to locate the synthetic interface to
1217 * associate with the VF interface. If we don't find a matching
1218 * synthetic interface, move on.
1219 */
1220 netvsc_dev = get_netvsc_device(vf_netdev->dev_addr);
1221 if (netvsc_dev == NULL)
1222 return NOTIFY_DONE;
1223
1224 netdev_info(netvsc_dev->ndev, "VF registering: %s\n", vf_netdev->name);
1225 /*
1226 * Take a reference on the module.
1227 */
1228 try_module_get(THIS_MODULE);
1229 netvsc_dev->vf_netdev = vf_netdev;
1230 return NOTIFY_OK;
1231 }
1232
1233
1234 static int netvsc_vf_up(struct net_device *vf_netdev)
1235 {
1236 struct netvsc_device *netvsc_dev;
1237 const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1238 struct net_device_context *net_device_ctx;
1239
1240 if (eth_ops == &ethtool_ops)
1241 return NOTIFY_DONE;
1242
1243 netvsc_dev = get_netvsc_device(vf_netdev->dev_addr);
1244
1245 if ((netvsc_dev == NULL) || (netvsc_dev->vf_netdev == NULL))
1246 return NOTIFY_DONE;
1247
1248 netdev_info(netvsc_dev->ndev, "VF up: %s\n", vf_netdev->name);
1249 net_device_ctx = netdev_priv(netvsc_dev->ndev);
1250 netvsc_dev->vf_inject = true;
1251
1252 /*
1253 * Open the device before switching data path.
1254 */
1255 rndis_filter_open(net_device_ctx->device_ctx);
1256
1257 /*
1258 * notify the host to switch the data path.
1259 */
1260 netvsc_switch_datapath(netvsc_dev, true);
1261 netdev_info(netvsc_dev->ndev, "Data path switched to VF: %s\n",
1262 vf_netdev->name);
1263
1264 netif_carrier_off(netvsc_dev->ndev);
1265
1266 /*
1267 * Now notify peers. We are scheduling work to
1268 * notify peers; take a reference to prevent
1269 * the VF interface from vanishing.
1270 */
1271 atomic_inc(&netvsc_dev->vf_use_cnt);
1272 net_device_ctx->gwrk.netdev = vf_netdev;
1273 net_device_ctx->gwrk.netvsc_dev = netvsc_dev;
1274 schedule_work(&net_device_ctx->gwrk.dwrk);
1275
1276 return NOTIFY_OK;
1277 }
1278
1279
1280 static int netvsc_vf_down(struct net_device *vf_netdev)
1281 {
1282 struct netvsc_device *netvsc_dev;
1283 struct net_device_context *net_device_ctx;
1284 const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1285
1286 if (eth_ops == &ethtool_ops)
1287 return NOTIFY_DONE;
1288
1289 netvsc_dev = get_netvsc_device(vf_netdev->dev_addr);
1290
1291 if ((netvsc_dev == NULL) || (netvsc_dev->vf_netdev == NULL))
1292 return NOTIFY_DONE;
1293
1294 netdev_info(netvsc_dev->ndev, "VF down: %s\n", vf_netdev->name);
1295 net_device_ctx = netdev_priv(netvsc_dev->ndev);
1296 netvsc_dev->vf_inject = false;
1297 /*
1298 * Wait for currently active users to
1299 * drain out.
1300 */
1301
1302 while (atomic_read(&netvsc_dev->vf_use_cnt) != 0)
1303 udelay(50);
1304 netvsc_switch_datapath(netvsc_dev, false);
1305 netdev_info(netvsc_dev->ndev, "Data path switched from VF: %s\n",
1306 vf_netdev->name);
1307 rndis_filter_close(net_device_ctx->device_ctx);
1308 netif_carrier_on(netvsc_dev->ndev);
1309 /*
1310 * Notify peers.
1311 */
1312 atomic_inc(&netvsc_dev->vf_use_cnt);
1313 net_device_ctx->gwrk.netdev = netvsc_dev->ndev;
1314 net_device_ctx->gwrk.netvsc_dev = netvsc_dev;
1315 schedule_work(&net_device_ctx->gwrk.dwrk);
1316
1317 return NOTIFY_OK;
1318 }
1319
1320
1321 static int netvsc_unregister_vf(struct net_device *vf_netdev)
1322 {
1323 struct netvsc_device *netvsc_dev;
1324 const struct ethtool_ops *eth_ops = vf_netdev->ethtool_ops;
1325
1326 if (eth_ops == &ethtool_ops)
1327 return NOTIFY_DONE;
1328
1329 netvsc_dev = get_netvsc_device(vf_netdev->dev_addr);
1330 if (netvsc_dev == NULL)
1331 return NOTIFY_DONE;
1332 netdev_info(netvsc_dev->ndev, "VF unregistering: %s\n",
1333 vf_netdev->name);
1334
1335 netvsc_dev->vf_netdev = NULL;
1336 module_put(THIS_MODULE);
1337 return NOTIFY_OK;
1338 }
1339
1340 static int netvsc_probe(struct hv_device *dev,
1341 const struct hv_vmbus_device_id *dev_id)
1342 {
1343 struct net_device *net = NULL;
1344 struct net_device_context *net_device_ctx;
1345 struct netvsc_device_info device_info;
1346 struct netvsc_device *nvdev;
1347 int ret;
1348
1349 net = alloc_etherdev_mq(sizeof(struct net_device_context),
1350 num_online_cpus());
1351 if (!net)
1352 return -ENOMEM;
1353
1354 netif_carrier_off(net);
1355
1356 net_device_ctx = netdev_priv(net);
1357 net_device_ctx->device_ctx = dev;
1358 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1359 if (netif_msg_probe(net_device_ctx))
1360 netdev_dbg(net, "netvsc msg_enable: %d\n",
1361 net_device_ctx->msg_enable);
1362
1363 net_device_ctx->tx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
1364 if (!net_device_ctx->tx_stats) {
1365 free_netdev(net);
1366 return -ENOMEM;
1367 }
1368 net_device_ctx->rx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
1369 if (!net_device_ctx->rx_stats) {
1370 free_percpu(net_device_ctx->tx_stats);
1371 free_netdev(net);
1372 return -ENOMEM;
1373 }
1374
1375 hv_set_drvdata(dev, net);
1376
1377 net_device_ctx->start_remove = false;
1378
1379 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1380 INIT_WORK(&net_device_ctx->work, do_set_multicast);
1381 INIT_WORK(&net_device_ctx->gwrk.dwrk, netvsc_notify_peers);
1382
1383 spin_lock_init(&net_device_ctx->lock);
1384 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1385
1386 net->netdev_ops = &device_ops;
1387
1388 net->hw_features = NETVSC_HW_FEATURES;
1389 net->features = NETVSC_HW_FEATURES | NETIF_F_HW_VLAN_CTAG_TX;
1390
1391 net->ethtool_ops = &ethtool_ops;
1392 SET_NETDEV_DEV(net, &dev->device);
1393
1394 /* We always need headroom for rndis header */
1395 net->needed_headroom = RNDIS_AND_PPI_SIZE;
1396
1397 /* Notify the netvsc driver of the new device */
1398 memset(&device_info, 0, sizeof(device_info));
1399 device_info.ring_size = ring_size;
1400 device_info.max_num_vrss_chns = max_num_vrss_chns;
1401 ret = rndis_filter_device_add(dev, &device_info);
1402 if (ret != 0) {
1403 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1404 netvsc_free_netdev(net);
1405 hv_set_drvdata(dev, NULL);
1406 return ret;
1407 }
1408 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
1409
1410 nvdev = hv_get_drvdata(dev);
1411 netif_set_real_num_tx_queues(net, nvdev->num_chn);
1412 netif_set_real_num_rx_queues(net, nvdev->num_chn);
1413
1414 netvsc_init_settings(net);
1415
1416 ret = register_netdev(net);
1417 if (ret != 0) {
1418 pr_err("Unable to register netdev.\n");
1419 rndis_filter_device_remove(dev);
1420 netvsc_free_netdev(net);
1421 }
1422
1423 return ret;
1424 }
1425
1426 static int netvsc_remove(struct hv_device *dev)
1427 {
1428 struct net_device *net;
1429 struct net_device_context *ndev_ctx;
1430 struct netvsc_device *net_device;
1431
1432 net_device = hv_get_drvdata(dev);
1433 net = net_device->ndev;
1434
1435 if (net == NULL) {
1436 dev_err(&dev->device, "No net device to remove\n");
1437 return 0;
1438 }
1439
1440
1441 ndev_ctx = netdev_priv(net);
1442 ndev_ctx->start_remove = true;
1443
1444 cancel_delayed_work_sync(&ndev_ctx->dwork);
1445 cancel_work_sync(&ndev_ctx->work);
1446
1447 /* Stop outbound asap */
1448 netif_tx_disable(net);
1449
1450 unregister_netdev(net);
1451
1452 /*
1453 * Call to the vsc driver to let it know that the device is being
1454 * removed
1455 */
1456 rndis_filter_device_remove(dev);
1457
1458 netvsc_free_netdev(net);
1459 return 0;
1460 }
1461
1462 static const struct hv_vmbus_device_id id_table[] = {
1463 /* Network guid */
1464 { HV_NIC_GUID, },
1465 { },
1466 };
1467
1468 MODULE_DEVICE_TABLE(vmbus, id_table);
1469
1470 /* The one and only one */
1471 static struct hv_driver netvsc_drv = {
1472 .name = KBUILD_MODNAME,
1473 .id_table = id_table,
1474 .probe = netvsc_probe,
1475 .remove = netvsc_remove,
1476 };
1477
1478
1479 /*
1480 * On Hyper-V, every VF interface is matched with a corresponding
1481 * synthetic interface. The synthetic interface is presented first
1482 * to the guest. When the corresponding VF instance is registered,
1483 * we will take care of switching the data path.
1484 */
1485 static int netvsc_netdev_event(struct notifier_block *this,
1486 unsigned long event, void *ptr)
1487 {
1488 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
1489
1490 switch (event) {
1491 case NETDEV_REGISTER:
1492 return netvsc_register_vf(event_dev);
1493 case NETDEV_UNREGISTER:
1494 return netvsc_unregister_vf(event_dev);
1495 case NETDEV_UP:
1496 return netvsc_vf_up(event_dev);
1497 case NETDEV_DOWN:
1498 return netvsc_vf_down(event_dev);
1499 default:
1500 return NOTIFY_DONE;
1501 }
1502 }
1503
1504 static struct notifier_block netvsc_netdev_notifier = {
1505 .notifier_call = netvsc_netdev_event,
1506 };
1507
1508 static void __exit netvsc_drv_exit(void)
1509 {
1510 unregister_netdevice_notifier(&netvsc_netdev_notifier);
1511 vmbus_driver_unregister(&netvsc_drv);
1512 }
1513
1514 static int __init netvsc_drv_init(void)
1515 {
1516 int ret;
1517
1518 if (ring_size < RING_SIZE_MIN) {
1519 ring_size = RING_SIZE_MIN;
1520 pr_info("Increased ring_size to %d (min allowed)\n",
1521 ring_size);
1522 }
1523 ret = vmbus_driver_register(&netvsc_drv);
1524
1525 if (ret)
1526 return ret;
1527
1528 register_netdevice_notifier(&netvsc_netdev_notifier);
1529 return 0;
1530 }
1531
1532 MODULE_LICENSE("GPL");
1533 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1534
1535 module_init(netvsc_drv_init);
1536 module_exit(netvsc_drv_exit);