]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/sfc/efx.c
Merge branch 'master' of git://git.infradead.org/~dwmw2/solos-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / net / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
24 #include "ethtool.h"
25 #include "tx.h"
26 #include "rx.h"
27 #include "efx.h"
28 #include "mdio_10g.h"
29 #include "falcon.h"
30
31 #define EFX_MAX_MTU (9 * 1024)
32
33 /* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
37 */
38 static struct workqueue_struct *refill_workqueue;
39
40 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
43 */
44 static struct workqueue_struct *reset_workqueue;
45
46 /**************************************************************************
47 *
48 * Configurable values
49 *
50 *************************************************************************/
51
52 /*
53 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
54 *
55 * This sets the default for new devices. It can be controlled later
56 * using ethtool.
57 */
58 static int lro = true;
59 module_param(lro, int, 0644);
60 MODULE_PARM_DESC(lro, "Large receive offload acceleration");
61
62 /*
63 * Use separate channels for TX and RX events
64 *
65 * Set this to 1 to use separate channels for TX and RX. It allows us
66 * to control interrupt affinity separately for TX and RX.
67 *
68 * This is only used in MSI-X interrupt mode
69 */
70 static unsigned int separate_tx_channels;
71 module_param(separate_tx_channels, uint, 0644);
72 MODULE_PARM_DESC(separate_tx_channels,
73 "Use separate channels for TX and RX");
74
75 /* This is the weight assigned to each of the (per-channel) virtual
76 * NAPI devices.
77 */
78 static int napi_weight = 64;
79
80 /* This is the time (in jiffies) between invocations of the hardware
81 * monitor, which checks for known hardware bugs and resets the
82 * hardware and driver as necessary.
83 */
84 unsigned int efx_monitor_interval = 1 * HZ;
85
86 /* This controls whether or not the driver will initialise devices
87 * with invalid MAC addresses stored in the EEPROM or flash. If true,
88 * such devices will be initialised with a random locally-generated
89 * MAC address. This allows for loading the sfc_mtd driver to
90 * reprogram the flash, even if the flash contents (including the MAC
91 * address) have previously been erased.
92 */
93 static unsigned int allow_bad_hwaddr;
94
95 /* Initial interrupt moderation settings. They can be modified after
96 * module load with ethtool.
97 *
98 * The default for RX should strike a balance between increasing the
99 * round-trip latency and reducing overhead.
100 */
101 static unsigned int rx_irq_mod_usec = 60;
102
103 /* Initial interrupt moderation settings. They can be modified after
104 * module load with ethtool.
105 *
106 * This default is chosen to ensure that a 10G link does not go idle
107 * while a TX queue is stopped after it has become full. A queue is
108 * restarted when it drops below half full. The time this takes (assuming
109 * worst case 3 descriptors per packet and 1024 descriptors) is
110 * 512 / 3 * 1.2 = 205 usec.
111 */
112 static unsigned int tx_irq_mod_usec = 150;
113
114 /* This is the first interrupt mode to try out of:
115 * 0 => MSI-X
116 * 1 => MSI
117 * 2 => legacy
118 */
119 static unsigned int interrupt_mode;
120
121 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
122 * i.e. the number of CPUs among which we may distribute simultaneous
123 * interrupt handling.
124 *
125 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
126 * The default (0) means to assign an interrupt to each package (level II cache)
127 */
128 static unsigned int rss_cpus;
129 module_param(rss_cpus, uint, 0444);
130 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
131
132 static int phy_flash_cfg;
133 module_param(phy_flash_cfg, int, 0644);
134 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
135
136 /**************************************************************************
137 *
138 * Utility functions and prototypes
139 *
140 *************************************************************************/
141 static void efx_remove_channel(struct efx_channel *channel);
142 static void efx_remove_port(struct efx_nic *efx);
143 static void efx_fini_napi(struct efx_nic *efx);
144 static void efx_fini_channels(struct efx_nic *efx);
145
146 #define EFX_ASSERT_RESET_SERIALISED(efx) \
147 do { \
148 if (efx->state == STATE_RUNNING) \
149 ASSERT_RTNL(); \
150 } while (0)
151
152 /**************************************************************************
153 *
154 * Event queue processing
155 *
156 *************************************************************************/
157
158 /* Process channel's event queue
159 *
160 * This function is responsible for processing the event queue of a
161 * single channel. The caller must guarantee that this function will
162 * never be concurrently called more than once on the same channel,
163 * though different channels may be being processed concurrently.
164 */
165 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
166 {
167 struct efx_nic *efx = channel->efx;
168 int rx_packets;
169
170 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
171 !channel->enabled))
172 return 0;
173
174 rx_packets = falcon_process_eventq(channel, rx_quota);
175 if (rx_packets == 0)
176 return 0;
177
178 /* Deliver last RX packet. */
179 if (channel->rx_pkt) {
180 __efx_rx_packet(channel, channel->rx_pkt,
181 channel->rx_pkt_csummed);
182 channel->rx_pkt = NULL;
183 }
184
185 efx_rx_strategy(channel);
186
187 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
188
189 return rx_packets;
190 }
191
192 /* Mark channel as finished processing
193 *
194 * Note that since we will not receive further interrupts for this
195 * channel before we finish processing and call the eventq_read_ack()
196 * method, there is no need to use the interrupt hold-off timers.
197 */
198 static inline void efx_channel_processed(struct efx_channel *channel)
199 {
200 /* The interrupt handler for this channel may set work_pending
201 * as soon as we acknowledge the events we've seen. Make sure
202 * it's cleared before then. */
203 channel->work_pending = false;
204 smp_wmb();
205
206 falcon_eventq_read_ack(channel);
207 }
208
209 /* NAPI poll handler
210 *
211 * NAPI guarantees serialisation of polls of the same device, which
212 * provides the guarantee required by efx_process_channel().
213 */
214 static int efx_poll(struct napi_struct *napi, int budget)
215 {
216 struct efx_channel *channel =
217 container_of(napi, struct efx_channel, napi_str);
218 int rx_packets;
219
220 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
221 channel->channel, raw_smp_processor_id());
222
223 rx_packets = efx_process_channel(channel, budget);
224
225 if (rx_packets < budget) {
226 /* There is no race here; although napi_disable() will
227 * only wait for napi_complete(), this isn't a problem
228 * since efx_channel_processed() will have no effect if
229 * interrupts have already been disabled.
230 */
231 napi_complete(napi);
232 efx_channel_processed(channel);
233 }
234
235 return rx_packets;
236 }
237
238 /* Process the eventq of the specified channel immediately on this CPU
239 *
240 * Disable hardware generated interrupts, wait for any existing
241 * processing to finish, then directly poll (and ack ) the eventq.
242 * Finally reenable NAPI and interrupts.
243 *
244 * Since we are touching interrupts the caller should hold the suspend lock
245 */
246 void efx_process_channel_now(struct efx_channel *channel)
247 {
248 struct efx_nic *efx = channel->efx;
249
250 BUG_ON(!channel->used_flags);
251 BUG_ON(!channel->enabled);
252
253 /* Disable interrupts and wait for ISRs to complete */
254 falcon_disable_interrupts(efx);
255 if (efx->legacy_irq)
256 synchronize_irq(efx->legacy_irq);
257 if (channel->irq)
258 synchronize_irq(channel->irq);
259
260 /* Wait for any NAPI processing to complete */
261 napi_disable(&channel->napi_str);
262
263 /* Poll the channel */
264 efx_process_channel(channel, efx->type->evq_size);
265
266 /* Ack the eventq. This may cause an interrupt to be generated
267 * when they are reenabled */
268 efx_channel_processed(channel);
269
270 napi_enable(&channel->napi_str);
271 falcon_enable_interrupts(efx);
272 }
273
274 /* Create event queue
275 * Event queue memory allocations are done only once. If the channel
276 * is reset, the memory buffer will be reused; this guards against
277 * errors during channel reset and also simplifies interrupt handling.
278 */
279 static int efx_probe_eventq(struct efx_channel *channel)
280 {
281 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
282
283 return falcon_probe_eventq(channel);
284 }
285
286 /* Prepare channel's event queue */
287 static void efx_init_eventq(struct efx_channel *channel)
288 {
289 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
290
291 channel->eventq_read_ptr = 0;
292
293 falcon_init_eventq(channel);
294 }
295
296 static void efx_fini_eventq(struct efx_channel *channel)
297 {
298 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
299
300 falcon_fini_eventq(channel);
301 }
302
303 static void efx_remove_eventq(struct efx_channel *channel)
304 {
305 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
306
307 falcon_remove_eventq(channel);
308 }
309
310 /**************************************************************************
311 *
312 * Channel handling
313 *
314 *************************************************************************/
315
316 static int efx_probe_channel(struct efx_channel *channel)
317 {
318 struct efx_tx_queue *tx_queue;
319 struct efx_rx_queue *rx_queue;
320 int rc;
321
322 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
323
324 rc = efx_probe_eventq(channel);
325 if (rc)
326 goto fail1;
327
328 efx_for_each_channel_tx_queue(tx_queue, channel) {
329 rc = efx_probe_tx_queue(tx_queue);
330 if (rc)
331 goto fail2;
332 }
333
334 efx_for_each_channel_rx_queue(rx_queue, channel) {
335 rc = efx_probe_rx_queue(rx_queue);
336 if (rc)
337 goto fail3;
338 }
339
340 channel->n_rx_frm_trunc = 0;
341
342 return 0;
343
344 fail3:
345 efx_for_each_channel_rx_queue(rx_queue, channel)
346 efx_remove_rx_queue(rx_queue);
347 fail2:
348 efx_for_each_channel_tx_queue(tx_queue, channel)
349 efx_remove_tx_queue(tx_queue);
350 fail1:
351 return rc;
352 }
353
354
355 static void efx_set_channel_names(struct efx_nic *efx)
356 {
357 struct efx_channel *channel;
358 const char *type = "";
359 int number;
360
361 efx_for_each_channel(channel, efx) {
362 number = channel->channel;
363 if (efx->n_channels > efx->n_rx_queues) {
364 if (channel->channel < efx->n_rx_queues) {
365 type = "-rx";
366 } else {
367 type = "-tx";
368 number -= efx->n_rx_queues;
369 }
370 }
371 snprintf(channel->name, sizeof(channel->name),
372 "%s%s-%d", efx->name, type, number);
373 }
374 }
375
376 /* Channels are shutdown and reinitialised whilst the NIC is running
377 * to propagate configuration changes (mtu, checksum offload), or
378 * to clear hardware error conditions
379 */
380 static void efx_init_channels(struct efx_nic *efx)
381 {
382 struct efx_tx_queue *tx_queue;
383 struct efx_rx_queue *rx_queue;
384 struct efx_channel *channel;
385
386 /* Calculate the rx buffer allocation parameters required to
387 * support the current MTU, including padding for header
388 * alignment and overruns.
389 */
390 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
391 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
392 efx->type->rx_buffer_padding);
393 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
394
395 /* Initialise the channels */
396 efx_for_each_channel(channel, efx) {
397 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
398
399 efx_init_eventq(channel);
400
401 efx_for_each_channel_tx_queue(tx_queue, channel)
402 efx_init_tx_queue(tx_queue);
403
404 /* The rx buffer allocation strategy is MTU dependent */
405 efx_rx_strategy(channel);
406
407 efx_for_each_channel_rx_queue(rx_queue, channel)
408 efx_init_rx_queue(rx_queue);
409
410 WARN_ON(channel->rx_pkt != NULL);
411 efx_rx_strategy(channel);
412 }
413 }
414
415 /* This enables event queue processing and packet transmission.
416 *
417 * Note that this function is not allowed to fail, since that would
418 * introduce too much complexity into the suspend/resume path.
419 */
420 static void efx_start_channel(struct efx_channel *channel)
421 {
422 struct efx_rx_queue *rx_queue;
423
424 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
425
426 if (!(channel->efx->net_dev->flags & IFF_UP))
427 netif_napi_add(channel->napi_dev, &channel->napi_str,
428 efx_poll, napi_weight);
429
430 /* The interrupt handler for this channel may set work_pending
431 * as soon as we enable it. Make sure it's cleared before
432 * then. Similarly, make sure it sees the enabled flag set. */
433 channel->work_pending = false;
434 channel->enabled = true;
435 smp_wmb();
436
437 napi_enable(&channel->napi_str);
438
439 /* Load up RX descriptors */
440 efx_for_each_channel_rx_queue(rx_queue, channel)
441 efx_fast_push_rx_descriptors(rx_queue);
442 }
443
444 /* This disables event queue processing and packet transmission.
445 * This function does not guarantee that all queue processing
446 * (e.g. RX refill) is complete.
447 */
448 static void efx_stop_channel(struct efx_channel *channel)
449 {
450 struct efx_rx_queue *rx_queue;
451
452 if (!channel->enabled)
453 return;
454
455 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
456
457 channel->enabled = false;
458 napi_disable(&channel->napi_str);
459
460 /* Ensure that any worker threads have exited or will be no-ops */
461 efx_for_each_channel_rx_queue(rx_queue, channel) {
462 spin_lock_bh(&rx_queue->add_lock);
463 spin_unlock_bh(&rx_queue->add_lock);
464 }
465 }
466
467 static void efx_fini_channels(struct efx_nic *efx)
468 {
469 struct efx_channel *channel;
470 struct efx_tx_queue *tx_queue;
471 struct efx_rx_queue *rx_queue;
472 int rc;
473
474 EFX_ASSERT_RESET_SERIALISED(efx);
475 BUG_ON(efx->port_enabled);
476
477 rc = falcon_flush_queues(efx);
478 if (rc)
479 EFX_ERR(efx, "failed to flush queues\n");
480 else
481 EFX_LOG(efx, "successfully flushed all queues\n");
482
483 efx_for_each_channel(channel, efx) {
484 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
485
486 efx_for_each_channel_rx_queue(rx_queue, channel)
487 efx_fini_rx_queue(rx_queue);
488 efx_for_each_channel_tx_queue(tx_queue, channel)
489 efx_fini_tx_queue(tx_queue);
490 efx_fini_eventq(channel);
491 }
492 }
493
494 static void efx_remove_channel(struct efx_channel *channel)
495 {
496 struct efx_tx_queue *tx_queue;
497 struct efx_rx_queue *rx_queue;
498
499 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
500
501 efx_for_each_channel_rx_queue(rx_queue, channel)
502 efx_remove_rx_queue(rx_queue);
503 efx_for_each_channel_tx_queue(tx_queue, channel)
504 efx_remove_tx_queue(tx_queue);
505 efx_remove_eventq(channel);
506
507 channel->used_flags = 0;
508 }
509
510 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
511 {
512 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
513 }
514
515 /**************************************************************************
516 *
517 * Port handling
518 *
519 **************************************************************************/
520
521 /* This ensures that the kernel is kept informed (via
522 * netif_carrier_on/off) of the link status, and also maintains the
523 * link status's stop on the port's TX queue.
524 */
525 static void efx_link_status_changed(struct efx_nic *efx)
526 {
527 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
528 * that no events are triggered between unregister_netdev() and the
529 * driver unloading. A more general condition is that NETDEV_CHANGE
530 * can only be generated between NETDEV_UP and NETDEV_DOWN */
531 if (!netif_running(efx->net_dev))
532 return;
533
534 if (efx->port_inhibited) {
535 netif_carrier_off(efx->net_dev);
536 return;
537 }
538
539 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
540 efx->n_link_state_changes++;
541
542 if (efx->link_up)
543 netif_carrier_on(efx->net_dev);
544 else
545 netif_carrier_off(efx->net_dev);
546 }
547
548 /* Status message for kernel log */
549 if (efx->link_up) {
550 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
551 efx->link_speed, efx->link_fd ? "full" : "half",
552 efx->net_dev->mtu,
553 (efx->promiscuous ? " [PROMISC]" : ""));
554 } else {
555 EFX_INFO(efx, "link down\n");
556 }
557
558 }
559
560 static void efx_fini_port(struct efx_nic *efx);
561
562 /* This call reinitialises the MAC to pick up new PHY settings. The
563 * caller must hold the mac_lock */
564 void __efx_reconfigure_port(struct efx_nic *efx)
565 {
566 WARN_ON(!mutex_is_locked(&efx->mac_lock));
567
568 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
569 raw_smp_processor_id());
570
571 /* Serialise the promiscuous flag with efx_set_multicast_list. */
572 if (efx_dev_registered(efx)) {
573 netif_addr_lock_bh(efx->net_dev);
574 netif_addr_unlock_bh(efx->net_dev);
575 }
576
577 falcon_deconfigure_mac_wrapper(efx);
578
579 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
580 if (LOOPBACK_INTERNAL(efx))
581 efx->phy_mode |= PHY_MODE_TX_DISABLED;
582 else
583 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
584 efx->phy_op->reconfigure(efx);
585
586 if (falcon_switch_mac(efx))
587 goto fail;
588
589 efx->mac_op->reconfigure(efx);
590
591 /* Inform kernel of loss/gain of carrier */
592 efx_link_status_changed(efx);
593 return;
594
595 fail:
596 EFX_ERR(efx, "failed to reconfigure MAC\n");
597 efx->port_enabled = false;
598 efx_fini_port(efx);
599 }
600
601 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
602 * disabled. */
603 void efx_reconfigure_port(struct efx_nic *efx)
604 {
605 EFX_ASSERT_RESET_SERIALISED(efx);
606
607 mutex_lock(&efx->mac_lock);
608 __efx_reconfigure_port(efx);
609 mutex_unlock(&efx->mac_lock);
610 }
611
612 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
613 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
614 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
615 static void efx_phy_work(struct work_struct *data)
616 {
617 struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
618
619 mutex_lock(&efx->mac_lock);
620 if (efx->port_enabled)
621 __efx_reconfigure_port(efx);
622 mutex_unlock(&efx->mac_lock);
623 }
624
625 static void efx_mac_work(struct work_struct *data)
626 {
627 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
628
629 mutex_lock(&efx->mac_lock);
630 if (efx->port_enabled)
631 efx->mac_op->irq(efx);
632 mutex_unlock(&efx->mac_lock);
633 }
634
635 static int efx_probe_port(struct efx_nic *efx)
636 {
637 int rc;
638
639 EFX_LOG(efx, "create port\n");
640
641 /* Connect up MAC/PHY operations table and read MAC address */
642 rc = falcon_probe_port(efx);
643 if (rc)
644 goto err;
645
646 if (phy_flash_cfg)
647 efx->phy_mode = PHY_MODE_SPECIAL;
648
649 /* Sanity check MAC address */
650 if (is_valid_ether_addr(efx->mac_address)) {
651 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
652 } else {
653 EFX_ERR(efx, "invalid MAC address %pM\n",
654 efx->mac_address);
655 if (!allow_bad_hwaddr) {
656 rc = -EINVAL;
657 goto err;
658 }
659 random_ether_addr(efx->net_dev->dev_addr);
660 EFX_INFO(efx, "using locally-generated MAC %pM\n",
661 efx->net_dev->dev_addr);
662 }
663
664 return 0;
665
666 err:
667 efx_remove_port(efx);
668 return rc;
669 }
670
671 static int efx_init_port(struct efx_nic *efx)
672 {
673 int rc;
674
675 EFX_LOG(efx, "init port\n");
676
677 rc = efx->phy_op->init(efx);
678 if (rc)
679 return rc;
680 mutex_lock(&efx->mac_lock);
681 efx->phy_op->reconfigure(efx);
682 rc = falcon_switch_mac(efx);
683 mutex_unlock(&efx->mac_lock);
684 if (rc)
685 goto fail;
686 efx->mac_op->reconfigure(efx);
687
688 efx->port_initialized = true;
689 efx_stats_enable(efx);
690 return 0;
691
692 fail:
693 efx->phy_op->fini(efx);
694 return rc;
695 }
696
697 /* Allow efx_reconfigure_port() to be scheduled, and close the window
698 * between efx_stop_port and efx_flush_all whereby a previously scheduled
699 * efx_phy_work()/efx_mac_work() may have been cancelled */
700 static void efx_start_port(struct efx_nic *efx)
701 {
702 EFX_LOG(efx, "start port\n");
703 BUG_ON(efx->port_enabled);
704
705 mutex_lock(&efx->mac_lock);
706 efx->port_enabled = true;
707 __efx_reconfigure_port(efx);
708 efx->mac_op->irq(efx);
709 mutex_unlock(&efx->mac_lock);
710 }
711
712 /* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
713 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
714 * and efx_mac_work may still be scheduled via NAPI processing until
715 * efx_flush_all() is called */
716 static void efx_stop_port(struct efx_nic *efx)
717 {
718 EFX_LOG(efx, "stop port\n");
719
720 mutex_lock(&efx->mac_lock);
721 efx->port_enabled = false;
722 mutex_unlock(&efx->mac_lock);
723
724 /* Serialise against efx_set_multicast_list() */
725 if (efx_dev_registered(efx)) {
726 netif_addr_lock_bh(efx->net_dev);
727 netif_addr_unlock_bh(efx->net_dev);
728 }
729 }
730
731 static void efx_fini_port(struct efx_nic *efx)
732 {
733 EFX_LOG(efx, "shut down port\n");
734
735 if (!efx->port_initialized)
736 return;
737
738 efx_stats_disable(efx);
739 efx->phy_op->fini(efx);
740 efx->port_initialized = false;
741
742 efx->link_up = false;
743 efx_link_status_changed(efx);
744 }
745
746 static void efx_remove_port(struct efx_nic *efx)
747 {
748 EFX_LOG(efx, "destroying port\n");
749
750 falcon_remove_port(efx);
751 }
752
753 /**************************************************************************
754 *
755 * NIC handling
756 *
757 **************************************************************************/
758
759 /* This configures the PCI device to enable I/O and DMA. */
760 static int efx_init_io(struct efx_nic *efx)
761 {
762 struct pci_dev *pci_dev = efx->pci_dev;
763 dma_addr_t dma_mask = efx->type->max_dma_mask;
764 int rc;
765
766 EFX_LOG(efx, "initialising I/O\n");
767
768 rc = pci_enable_device(pci_dev);
769 if (rc) {
770 EFX_ERR(efx, "failed to enable PCI device\n");
771 goto fail1;
772 }
773
774 pci_set_master(pci_dev);
775
776 /* Set the PCI DMA mask. Try all possibilities from our
777 * genuine mask down to 32 bits, because some architectures
778 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
779 * masks event though they reject 46 bit masks.
780 */
781 while (dma_mask > 0x7fffffffUL) {
782 if (pci_dma_supported(pci_dev, dma_mask) &&
783 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
784 break;
785 dma_mask >>= 1;
786 }
787 if (rc) {
788 EFX_ERR(efx, "could not find a suitable DMA mask\n");
789 goto fail2;
790 }
791 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
792 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
793 if (rc) {
794 /* pci_set_consistent_dma_mask() is not *allowed* to
795 * fail with a mask that pci_set_dma_mask() accepted,
796 * but just in case...
797 */
798 EFX_ERR(efx, "failed to set consistent DMA mask\n");
799 goto fail2;
800 }
801
802 efx->membase_phys = pci_resource_start(efx->pci_dev,
803 efx->type->mem_bar);
804 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
805 if (rc) {
806 EFX_ERR(efx, "request for memory BAR failed\n");
807 rc = -EIO;
808 goto fail3;
809 }
810 efx->membase = ioremap_nocache(efx->membase_phys,
811 efx->type->mem_map_size);
812 if (!efx->membase) {
813 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
814 efx->type->mem_bar,
815 (unsigned long long)efx->membase_phys,
816 efx->type->mem_map_size);
817 rc = -ENOMEM;
818 goto fail4;
819 }
820 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
821 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
822 efx->type->mem_map_size, efx->membase);
823
824 return 0;
825
826 fail4:
827 pci_release_region(efx->pci_dev, efx->type->mem_bar);
828 fail3:
829 efx->membase_phys = 0;
830 fail2:
831 pci_disable_device(efx->pci_dev);
832 fail1:
833 return rc;
834 }
835
836 static void efx_fini_io(struct efx_nic *efx)
837 {
838 EFX_LOG(efx, "shutting down I/O\n");
839
840 if (efx->membase) {
841 iounmap(efx->membase);
842 efx->membase = NULL;
843 }
844
845 if (efx->membase_phys) {
846 pci_release_region(efx->pci_dev, efx->type->mem_bar);
847 efx->membase_phys = 0;
848 }
849
850 pci_disable_device(efx->pci_dev);
851 }
852
853 /* Get number of RX queues wanted. Return number of online CPU
854 * packages in the expectation that an IRQ balancer will spread
855 * interrupts across them. */
856 static int efx_wanted_rx_queues(void)
857 {
858 cpumask_t core_mask;
859 int count;
860 int cpu;
861
862 cpus_clear(core_mask);
863 count = 0;
864 for_each_online_cpu(cpu) {
865 if (!cpu_isset(cpu, core_mask)) {
866 ++count;
867 cpus_or(core_mask, core_mask,
868 topology_core_siblings(cpu));
869 }
870 }
871
872 return count;
873 }
874
875 /* Probe the number and type of interrupts we are able to obtain, and
876 * the resulting numbers of channels and RX queues.
877 */
878 static void efx_probe_interrupts(struct efx_nic *efx)
879 {
880 int max_channels =
881 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
882 int rc, i;
883
884 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
885 struct msix_entry xentries[EFX_MAX_CHANNELS];
886 int wanted_ints;
887 int rx_queues;
888
889 /* We want one RX queue and interrupt per CPU package
890 * (or as specified by the rss_cpus module parameter).
891 * We will need one channel per interrupt.
892 */
893 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
894 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
895 wanted_ints = min(wanted_ints, max_channels);
896
897 for (i = 0; i < wanted_ints; i++)
898 xentries[i].entry = i;
899 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
900 if (rc > 0) {
901 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
902 " available (%d < %d).\n", rc, wanted_ints);
903 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
904 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
905 wanted_ints = rc;
906 rc = pci_enable_msix(efx->pci_dev, xentries,
907 wanted_ints);
908 }
909
910 if (rc == 0) {
911 efx->n_rx_queues = min(rx_queues, wanted_ints);
912 efx->n_channels = wanted_ints;
913 for (i = 0; i < wanted_ints; i++)
914 efx->channel[i].irq = xentries[i].vector;
915 } else {
916 /* Fall back to single channel MSI */
917 efx->interrupt_mode = EFX_INT_MODE_MSI;
918 EFX_ERR(efx, "could not enable MSI-X\n");
919 }
920 }
921
922 /* Try single interrupt MSI */
923 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
924 efx->n_rx_queues = 1;
925 efx->n_channels = 1;
926 rc = pci_enable_msi(efx->pci_dev);
927 if (rc == 0) {
928 efx->channel[0].irq = efx->pci_dev->irq;
929 } else {
930 EFX_ERR(efx, "could not enable MSI\n");
931 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
932 }
933 }
934
935 /* Assume legacy interrupts */
936 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
937 efx->n_rx_queues = 1;
938 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
939 efx->legacy_irq = efx->pci_dev->irq;
940 }
941 }
942
943 static void efx_remove_interrupts(struct efx_nic *efx)
944 {
945 struct efx_channel *channel;
946
947 /* Remove MSI/MSI-X interrupts */
948 efx_for_each_channel(channel, efx)
949 channel->irq = 0;
950 pci_disable_msi(efx->pci_dev);
951 pci_disable_msix(efx->pci_dev);
952
953 /* Remove legacy interrupt */
954 efx->legacy_irq = 0;
955 }
956
957 static void efx_set_channels(struct efx_nic *efx)
958 {
959 struct efx_tx_queue *tx_queue;
960 struct efx_rx_queue *rx_queue;
961
962 efx_for_each_tx_queue(tx_queue, efx) {
963 if (separate_tx_channels)
964 tx_queue->channel = &efx->channel[efx->n_channels-1];
965 else
966 tx_queue->channel = &efx->channel[0];
967 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
968 }
969
970 efx_for_each_rx_queue(rx_queue, efx) {
971 rx_queue->channel = &efx->channel[rx_queue->queue];
972 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
973 }
974 }
975
976 static int efx_probe_nic(struct efx_nic *efx)
977 {
978 int rc;
979
980 EFX_LOG(efx, "creating NIC\n");
981
982 /* Carry out hardware-type specific initialisation */
983 rc = falcon_probe_nic(efx);
984 if (rc)
985 return rc;
986
987 /* Determine the number of channels and RX queues by trying to hook
988 * in MSI-X interrupts. */
989 efx_probe_interrupts(efx);
990
991 efx_set_channels(efx);
992
993 /* Initialise the interrupt moderation settings */
994 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
995
996 return 0;
997 }
998
999 static void efx_remove_nic(struct efx_nic *efx)
1000 {
1001 EFX_LOG(efx, "destroying NIC\n");
1002
1003 efx_remove_interrupts(efx);
1004 falcon_remove_nic(efx);
1005 }
1006
1007 /**************************************************************************
1008 *
1009 * NIC startup/shutdown
1010 *
1011 *************************************************************************/
1012
1013 static int efx_probe_all(struct efx_nic *efx)
1014 {
1015 struct efx_channel *channel;
1016 int rc;
1017
1018 /* Create NIC */
1019 rc = efx_probe_nic(efx);
1020 if (rc) {
1021 EFX_ERR(efx, "failed to create NIC\n");
1022 goto fail1;
1023 }
1024
1025 /* Create port */
1026 rc = efx_probe_port(efx);
1027 if (rc) {
1028 EFX_ERR(efx, "failed to create port\n");
1029 goto fail2;
1030 }
1031
1032 /* Create channels */
1033 efx_for_each_channel(channel, efx) {
1034 rc = efx_probe_channel(channel);
1035 if (rc) {
1036 EFX_ERR(efx, "failed to create channel %d\n",
1037 channel->channel);
1038 goto fail3;
1039 }
1040 }
1041 efx_set_channel_names(efx);
1042
1043 return 0;
1044
1045 fail3:
1046 efx_for_each_channel(channel, efx)
1047 efx_remove_channel(channel);
1048 efx_remove_port(efx);
1049 fail2:
1050 efx_remove_nic(efx);
1051 fail1:
1052 return rc;
1053 }
1054
1055 /* Called after previous invocation(s) of efx_stop_all, restarts the
1056 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1057 * and ensures that the port is scheduled to be reconfigured.
1058 * This function is safe to call multiple times when the NIC is in any
1059 * state. */
1060 static void efx_start_all(struct efx_nic *efx)
1061 {
1062 struct efx_channel *channel;
1063
1064 EFX_ASSERT_RESET_SERIALISED(efx);
1065
1066 /* Check that it is appropriate to restart the interface. All
1067 * of these flags are safe to read under just the rtnl lock */
1068 if (efx->port_enabled)
1069 return;
1070 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1071 return;
1072 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1073 return;
1074
1075 /* Mark the port as enabled so port reconfigurations can start, then
1076 * restart the transmit interface early so the watchdog timer stops */
1077 efx_start_port(efx);
1078 if (efx_dev_registered(efx))
1079 efx_wake_queue(efx);
1080
1081 efx_for_each_channel(channel, efx)
1082 efx_start_channel(channel);
1083
1084 falcon_enable_interrupts(efx);
1085
1086 /* Start hardware monitor if we're in RUNNING */
1087 if (efx->state == STATE_RUNNING)
1088 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1089 efx_monitor_interval);
1090 }
1091
1092 /* Flush all delayed work. Should only be called when no more delayed work
1093 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1094 * since we're holding the rtnl_lock at this point. */
1095 static void efx_flush_all(struct efx_nic *efx)
1096 {
1097 struct efx_rx_queue *rx_queue;
1098
1099 /* Make sure the hardware monitor is stopped */
1100 cancel_delayed_work_sync(&efx->monitor_work);
1101
1102 /* Ensure that all RX slow refills are complete. */
1103 efx_for_each_rx_queue(rx_queue, efx)
1104 cancel_delayed_work_sync(&rx_queue->work);
1105
1106 /* Stop scheduled port reconfigurations */
1107 cancel_work_sync(&efx->mac_work);
1108 cancel_work_sync(&efx->phy_work);
1109
1110 }
1111
1112 /* Quiesce hardware and software without bringing the link down.
1113 * Safe to call multiple times, when the nic and interface is in any
1114 * state. The caller is guaranteed to subsequently be in a position
1115 * to modify any hardware and software state they see fit without
1116 * taking locks. */
1117 static void efx_stop_all(struct efx_nic *efx)
1118 {
1119 struct efx_channel *channel;
1120
1121 EFX_ASSERT_RESET_SERIALISED(efx);
1122
1123 /* port_enabled can be read safely under the rtnl lock */
1124 if (!efx->port_enabled)
1125 return;
1126
1127 /* Disable interrupts and wait for ISR to complete */
1128 falcon_disable_interrupts(efx);
1129 if (efx->legacy_irq)
1130 synchronize_irq(efx->legacy_irq);
1131 efx_for_each_channel(channel, efx) {
1132 if (channel->irq)
1133 synchronize_irq(channel->irq);
1134 }
1135
1136 /* Stop all NAPI processing and synchronous rx refills */
1137 efx_for_each_channel(channel, efx)
1138 efx_stop_channel(channel);
1139
1140 /* Stop all asynchronous port reconfigurations. Since all
1141 * event processing has already been stopped, there is no
1142 * window to loose phy events */
1143 efx_stop_port(efx);
1144
1145 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
1146 efx_flush_all(efx);
1147
1148 /* Isolate the MAC from the TX and RX engines, so that queue
1149 * flushes will complete in a timely fashion. */
1150 falcon_drain_tx_fifo(efx);
1151
1152 /* Stop the kernel transmit interface late, so the watchdog
1153 * timer isn't ticking over the flush */
1154 if (efx_dev_registered(efx)) {
1155 efx_stop_queue(efx);
1156 netif_tx_lock_bh(efx->net_dev);
1157 netif_tx_unlock_bh(efx->net_dev);
1158 }
1159 }
1160
1161 static void efx_remove_all(struct efx_nic *efx)
1162 {
1163 struct efx_channel *channel;
1164
1165 efx_for_each_channel(channel, efx)
1166 efx_remove_channel(channel);
1167 efx_remove_port(efx);
1168 efx_remove_nic(efx);
1169 }
1170
1171 /* A convinience function to safely flush all the queues */
1172 void efx_flush_queues(struct efx_nic *efx)
1173 {
1174 EFX_ASSERT_RESET_SERIALISED(efx);
1175
1176 efx_stop_all(efx);
1177
1178 efx_fini_channels(efx);
1179 efx_init_channels(efx);
1180
1181 efx_start_all(efx);
1182 }
1183
1184 /**************************************************************************
1185 *
1186 * Interrupt moderation
1187 *
1188 **************************************************************************/
1189
1190 /* Set interrupt moderation parameters */
1191 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1192 {
1193 struct efx_tx_queue *tx_queue;
1194 struct efx_rx_queue *rx_queue;
1195
1196 EFX_ASSERT_RESET_SERIALISED(efx);
1197
1198 efx_for_each_tx_queue(tx_queue, efx)
1199 tx_queue->channel->irq_moderation = tx_usecs;
1200
1201 efx_for_each_rx_queue(rx_queue, efx)
1202 rx_queue->channel->irq_moderation = rx_usecs;
1203 }
1204
1205 /**************************************************************************
1206 *
1207 * Hardware monitor
1208 *
1209 **************************************************************************/
1210
1211 /* Run periodically off the general workqueue. Serialised against
1212 * efx_reconfigure_port via the mac_lock */
1213 static void efx_monitor(struct work_struct *data)
1214 {
1215 struct efx_nic *efx = container_of(data, struct efx_nic,
1216 monitor_work.work);
1217 int rc;
1218
1219 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1220 raw_smp_processor_id());
1221
1222 /* If the mac_lock is already held then it is likely a port
1223 * reconfiguration is already in place, which will likely do
1224 * most of the work of check_hw() anyway. */
1225 if (!mutex_trylock(&efx->mac_lock))
1226 goto out_requeue;
1227 if (!efx->port_enabled)
1228 goto out_unlock;
1229 rc = efx->board_info.monitor(efx);
1230 if (rc) {
1231 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1232 (rc == -ERANGE) ? "reported fault" : "failed");
1233 efx->phy_mode |= PHY_MODE_LOW_POWER;
1234 falcon_sim_phy_event(efx);
1235 }
1236 efx->phy_op->poll(efx);
1237 efx->mac_op->poll(efx);
1238
1239 out_unlock:
1240 mutex_unlock(&efx->mac_lock);
1241 out_requeue:
1242 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1243 efx_monitor_interval);
1244 }
1245
1246 /**************************************************************************
1247 *
1248 * ioctls
1249 *
1250 *************************************************************************/
1251
1252 /* Net device ioctl
1253 * Context: process, rtnl_lock() held.
1254 */
1255 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1256 {
1257 struct efx_nic *efx = netdev_priv(net_dev);
1258
1259 EFX_ASSERT_RESET_SERIALISED(efx);
1260
1261 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1262 }
1263
1264 /**************************************************************************
1265 *
1266 * NAPI interface
1267 *
1268 **************************************************************************/
1269
1270 static int efx_init_napi(struct efx_nic *efx)
1271 {
1272 struct efx_channel *channel;
1273
1274 efx_for_each_channel(channel, efx) {
1275 channel->napi_dev = efx->net_dev;
1276 }
1277 return 0;
1278 }
1279
1280 static void efx_fini_napi(struct efx_nic *efx)
1281 {
1282 struct efx_channel *channel;
1283
1284 efx_for_each_channel(channel, efx) {
1285 channel->napi_dev = NULL;
1286 }
1287 }
1288
1289 /**************************************************************************
1290 *
1291 * Kernel netpoll interface
1292 *
1293 *************************************************************************/
1294
1295 #ifdef CONFIG_NET_POLL_CONTROLLER
1296
1297 /* Although in the common case interrupts will be disabled, this is not
1298 * guaranteed. However, all our work happens inside the NAPI callback,
1299 * so no locking is required.
1300 */
1301 static void efx_netpoll(struct net_device *net_dev)
1302 {
1303 struct efx_nic *efx = netdev_priv(net_dev);
1304 struct efx_channel *channel;
1305
1306 efx_for_each_channel(channel, efx)
1307 efx_schedule_channel(channel);
1308 }
1309
1310 #endif
1311
1312 /**************************************************************************
1313 *
1314 * Kernel net device interface
1315 *
1316 *************************************************************************/
1317
1318 /* Context: process, rtnl_lock() held. */
1319 static int efx_net_open(struct net_device *net_dev)
1320 {
1321 struct efx_nic *efx = netdev_priv(net_dev);
1322 EFX_ASSERT_RESET_SERIALISED(efx);
1323
1324 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1325 raw_smp_processor_id());
1326
1327 if (efx->state == STATE_DISABLED)
1328 return -EIO;
1329 if (efx->phy_mode & PHY_MODE_SPECIAL)
1330 return -EBUSY;
1331
1332 efx_start_all(efx);
1333 return 0;
1334 }
1335
1336 /* Context: process, rtnl_lock() held.
1337 * Note that the kernel will ignore our return code; this method
1338 * should really be a void.
1339 */
1340 static int efx_net_stop(struct net_device *net_dev)
1341 {
1342 struct efx_nic *efx = netdev_priv(net_dev);
1343
1344 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1345 raw_smp_processor_id());
1346
1347 if (efx->state != STATE_DISABLED) {
1348 /* Stop the device and flush all the channels */
1349 efx_stop_all(efx);
1350 efx_fini_channels(efx);
1351 efx_init_channels(efx);
1352 }
1353
1354 return 0;
1355 }
1356
1357 void efx_stats_disable(struct efx_nic *efx)
1358 {
1359 spin_lock(&efx->stats_lock);
1360 ++efx->stats_disable_count;
1361 spin_unlock(&efx->stats_lock);
1362 }
1363
1364 void efx_stats_enable(struct efx_nic *efx)
1365 {
1366 spin_lock(&efx->stats_lock);
1367 --efx->stats_disable_count;
1368 spin_unlock(&efx->stats_lock);
1369 }
1370
1371 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1372 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1373 {
1374 struct efx_nic *efx = netdev_priv(net_dev);
1375 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1376 struct net_device_stats *stats = &net_dev->stats;
1377
1378 /* Update stats if possible, but do not wait if another thread
1379 * is updating them or if MAC stats fetches are temporarily
1380 * disabled; slightly stale stats are acceptable.
1381 */
1382 if (!spin_trylock(&efx->stats_lock))
1383 return stats;
1384 if (!efx->stats_disable_count) {
1385 efx->mac_op->update_stats(efx);
1386 falcon_update_nic_stats(efx);
1387 }
1388 spin_unlock(&efx->stats_lock);
1389
1390 stats->rx_packets = mac_stats->rx_packets;
1391 stats->tx_packets = mac_stats->tx_packets;
1392 stats->rx_bytes = mac_stats->rx_bytes;
1393 stats->tx_bytes = mac_stats->tx_bytes;
1394 stats->multicast = mac_stats->rx_multicast;
1395 stats->collisions = mac_stats->tx_collision;
1396 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1397 mac_stats->rx_length_error);
1398 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1399 stats->rx_crc_errors = mac_stats->rx_bad;
1400 stats->rx_frame_errors = mac_stats->rx_align_error;
1401 stats->rx_fifo_errors = mac_stats->rx_overflow;
1402 stats->rx_missed_errors = mac_stats->rx_missed;
1403 stats->tx_window_errors = mac_stats->tx_late_collision;
1404
1405 stats->rx_errors = (stats->rx_length_errors +
1406 stats->rx_over_errors +
1407 stats->rx_crc_errors +
1408 stats->rx_frame_errors +
1409 stats->rx_fifo_errors +
1410 stats->rx_missed_errors +
1411 mac_stats->rx_symbol_error);
1412 stats->tx_errors = (stats->tx_window_errors +
1413 mac_stats->tx_bad);
1414
1415 return stats;
1416 }
1417
1418 /* Context: netif_tx_lock held, BHs disabled. */
1419 static void efx_watchdog(struct net_device *net_dev)
1420 {
1421 struct efx_nic *efx = netdev_priv(net_dev);
1422
1423 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1424 " resetting channels\n",
1425 atomic_read(&efx->netif_stop_count), efx->port_enabled);
1426
1427 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1428 }
1429
1430
1431 /* Context: process, rtnl_lock() held. */
1432 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1433 {
1434 struct efx_nic *efx = netdev_priv(net_dev);
1435 int rc = 0;
1436
1437 EFX_ASSERT_RESET_SERIALISED(efx);
1438
1439 if (new_mtu > EFX_MAX_MTU)
1440 return -EINVAL;
1441
1442 efx_stop_all(efx);
1443
1444 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1445
1446 efx_fini_channels(efx);
1447 net_dev->mtu = new_mtu;
1448 efx_init_channels(efx);
1449
1450 efx_start_all(efx);
1451 return rc;
1452 }
1453
1454 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1455 {
1456 struct efx_nic *efx = netdev_priv(net_dev);
1457 struct sockaddr *addr = data;
1458 char *new_addr = addr->sa_data;
1459
1460 EFX_ASSERT_RESET_SERIALISED(efx);
1461
1462 if (!is_valid_ether_addr(new_addr)) {
1463 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1464 new_addr);
1465 return -EINVAL;
1466 }
1467
1468 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1469
1470 /* Reconfigure the MAC */
1471 efx_reconfigure_port(efx);
1472
1473 return 0;
1474 }
1475
1476 /* Context: netif_addr_lock held, BHs disabled. */
1477 static void efx_set_multicast_list(struct net_device *net_dev)
1478 {
1479 struct efx_nic *efx = netdev_priv(net_dev);
1480 struct dev_mc_list *mc_list = net_dev->mc_list;
1481 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1482 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1483 bool changed = (efx->promiscuous != promiscuous);
1484 u32 crc;
1485 int bit;
1486 int i;
1487
1488 efx->promiscuous = promiscuous;
1489
1490 /* Build multicast hash table */
1491 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1492 memset(mc_hash, 0xff, sizeof(*mc_hash));
1493 } else {
1494 memset(mc_hash, 0x00, sizeof(*mc_hash));
1495 for (i = 0; i < net_dev->mc_count; i++) {
1496 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1497 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1498 set_bit_le(bit, mc_hash->byte);
1499 mc_list = mc_list->next;
1500 }
1501 }
1502
1503 if (!efx->port_enabled)
1504 /* Delay pushing settings until efx_start_port() */
1505 return;
1506
1507 if (changed)
1508 queue_work(efx->workqueue, &efx->phy_work);
1509
1510 /* Create and activate new global multicast hash table */
1511 falcon_set_multicast_hash(efx);
1512 }
1513
1514 static const struct net_device_ops efx_netdev_ops = {
1515 .ndo_open = efx_net_open,
1516 .ndo_stop = efx_net_stop,
1517 .ndo_get_stats = efx_net_stats,
1518 .ndo_tx_timeout = efx_watchdog,
1519 .ndo_start_xmit = efx_hard_start_xmit,
1520 .ndo_validate_addr = eth_validate_addr,
1521 .ndo_do_ioctl = efx_ioctl,
1522 .ndo_change_mtu = efx_change_mtu,
1523 .ndo_set_mac_address = efx_set_mac_address,
1524 .ndo_set_multicast_list = efx_set_multicast_list,
1525 #ifdef CONFIG_NET_POLL_CONTROLLER
1526 .ndo_poll_controller = efx_netpoll,
1527 #endif
1528 };
1529
1530 static void efx_update_name(struct efx_nic *efx)
1531 {
1532 strcpy(efx->name, efx->net_dev->name);
1533 efx_mtd_rename(efx);
1534 efx_set_channel_names(efx);
1535 }
1536
1537 static int efx_netdev_event(struct notifier_block *this,
1538 unsigned long event, void *ptr)
1539 {
1540 struct net_device *net_dev = ptr;
1541
1542 if (net_dev->netdev_ops == &efx_netdev_ops &&
1543 event == NETDEV_CHANGENAME)
1544 efx_update_name(netdev_priv(net_dev));
1545
1546 return NOTIFY_DONE;
1547 }
1548
1549 static struct notifier_block efx_netdev_notifier = {
1550 .notifier_call = efx_netdev_event,
1551 };
1552
1553 static ssize_t
1554 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1555 {
1556 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1557 return sprintf(buf, "%d\n", efx->phy_type);
1558 }
1559 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1560
1561 static int efx_register_netdev(struct efx_nic *efx)
1562 {
1563 struct net_device *net_dev = efx->net_dev;
1564 int rc;
1565
1566 net_dev->watchdog_timeo = 5 * HZ;
1567 net_dev->irq = efx->pci_dev->irq;
1568 net_dev->netdev_ops = &efx_netdev_ops;
1569 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1570 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1571
1572 /* Always start with carrier off; PHY events will detect the link */
1573 netif_carrier_off(efx->net_dev);
1574
1575 /* Clear MAC statistics */
1576 efx->mac_op->update_stats(efx);
1577 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1578
1579 rc = register_netdev(net_dev);
1580 if (rc) {
1581 EFX_ERR(efx, "could not register net dev\n");
1582 return rc;
1583 }
1584
1585 rtnl_lock();
1586 efx_update_name(efx);
1587 rtnl_unlock();
1588
1589 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1590 if (rc) {
1591 EFX_ERR(efx, "failed to init net dev attributes\n");
1592 goto fail_registered;
1593 }
1594
1595 return 0;
1596
1597 fail_registered:
1598 unregister_netdev(net_dev);
1599 return rc;
1600 }
1601
1602 static void efx_unregister_netdev(struct efx_nic *efx)
1603 {
1604 struct efx_tx_queue *tx_queue;
1605
1606 if (!efx->net_dev)
1607 return;
1608
1609 BUG_ON(netdev_priv(efx->net_dev) != efx);
1610
1611 /* Free up any skbs still remaining. This has to happen before
1612 * we try to unregister the netdev as running their destructors
1613 * may be needed to get the device ref. count to 0. */
1614 efx_for_each_tx_queue(tx_queue, efx)
1615 efx_release_tx_buffers(tx_queue);
1616
1617 if (efx_dev_registered(efx)) {
1618 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1619 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1620 unregister_netdev(efx->net_dev);
1621 }
1622 }
1623
1624 /**************************************************************************
1625 *
1626 * Device reset and suspend
1627 *
1628 **************************************************************************/
1629
1630 /* Tears down the entire software state and most of the hardware state
1631 * before reset. */
1632 void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1633 struct ethtool_cmd *ecmd)
1634 {
1635 EFX_ASSERT_RESET_SERIALISED(efx);
1636
1637 efx_stats_disable(efx);
1638 efx_stop_all(efx);
1639 mutex_lock(&efx->mac_lock);
1640 mutex_lock(&efx->spi_lock);
1641
1642 efx->phy_op->get_settings(efx, ecmd);
1643
1644 efx_fini_channels(efx);
1645 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1646 efx->phy_op->fini(efx);
1647 }
1648
1649 /* This function will always ensure that the locks acquired in
1650 * efx_reset_down() are released. A failure return code indicates
1651 * that we were unable to reinitialise the hardware, and the
1652 * driver should be disabled. If ok is false, then the rx and tx
1653 * engines are not restarted, pending a RESET_DISABLE. */
1654 int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1655 struct ethtool_cmd *ecmd, bool ok)
1656 {
1657 int rc;
1658
1659 EFX_ASSERT_RESET_SERIALISED(efx);
1660
1661 rc = falcon_init_nic(efx);
1662 if (rc) {
1663 EFX_ERR(efx, "failed to initialise NIC\n");
1664 ok = false;
1665 }
1666
1667 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1668 if (ok) {
1669 rc = efx->phy_op->init(efx);
1670 if (rc)
1671 ok = false;
1672 }
1673 if (!ok)
1674 efx->port_initialized = false;
1675 }
1676
1677 if (ok) {
1678 efx_init_channels(efx);
1679
1680 if (efx->phy_op->set_settings(efx, ecmd))
1681 EFX_ERR(efx, "could not restore PHY settings\n");
1682 }
1683
1684 mutex_unlock(&efx->spi_lock);
1685 mutex_unlock(&efx->mac_lock);
1686
1687 if (ok) {
1688 efx_start_all(efx);
1689 efx_stats_enable(efx);
1690 }
1691 return rc;
1692 }
1693
1694 /* Reset the NIC as transparently as possible. Do not reset the PHY
1695 * Note that the reset may fail, in which case the card will be left
1696 * in a most-probably-unusable state.
1697 *
1698 * This function will sleep. You cannot reset from within an atomic
1699 * state; use efx_schedule_reset() instead.
1700 *
1701 * Grabs the rtnl_lock.
1702 */
1703 static int efx_reset(struct efx_nic *efx)
1704 {
1705 struct ethtool_cmd ecmd;
1706 enum reset_type method = efx->reset_pending;
1707 int rc = 0;
1708
1709 /* Serialise with kernel interfaces */
1710 rtnl_lock();
1711
1712 /* If we're not RUNNING then don't reset. Leave the reset_pending
1713 * flag set so that efx_pci_probe_main will be retried */
1714 if (efx->state != STATE_RUNNING) {
1715 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1716 goto out_unlock;
1717 }
1718
1719 EFX_INFO(efx, "resetting (%d)\n", method);
1720
1721 efx_reset_down(efx, method, &ecmd);
1722
1723 rc = falcon_reset_hw(efx, method);
1724 if (rc) {
1725 EFX_ERR(efx, "failed to reset hardware\n");
1726 goto out_disable;
1727 }
1728
1729 /* Allow resets to be rescheduled. */
1730 efx->reset_pending = RESET_TYPE_NONE;
1731
1732 /* Reinitialise bus-mastering, which may have been turned off before
1733 * the reset was scheduled. This is still appropriate, even in the
1734 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1735 * can respond to requests. */
1736 pci_set_master(efx->pci_dev);
1737
1738 /* Leave device stopped if necessary */
1739 if (method == RESET_TYPE_DISABLE) {
1740 efx_reset_up(efx, method, &ecmd, false);
1741 rc = -EIO;
1742 } else {
1743 rc = efx_reset_up(efx, method, &ecmd, true);
1744 }
1745
1746 out_disable:
1747 if (rc) {
1748 EFX_ERR(efx, "has been disabled\n");
1749 efx->state = STATE_DISABLED;
1750 dev_close(efx->net_dev);
1751 } else {
1752 EFX_LOG(efx, "reset complete\n");
1753 }
1754
1755 out_unlock:
1756 rtnl_unlock();
1757 return rc;
1758 }
1759
1760 /* The worker thread exists so that code that cannot sleep can
1761 * schedule a reset for later.
1762 */
1763 static void efx_reset_work(struct work_struct *data)
1764 {
1765 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1766
1767 efx_reset(nic);
1768 }
1769
1770 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1771 {
1772 enum reset_type method;
1773
1774 if (efx->reset_pending != RESET_TYPE_NONE) {
1775 EFX_INFO(efx, "quenching already scheduled reset\n");
1776 return;
1777 }
1778
1779 switch (type) {
1780 case RESET_TYPE_INVISIBLE:
1781 case RESET_TYPE_ALL:
1782 case RESET_TYPE_WORLD:
1783 case RESET_TYPE_DISABLE:
1784 method = type;
1785 break;
1786 case RESET_TYPE_RX_RECOVERY:
1787 case RESET_TYPE_RX_DESC_FETCH:
1788 case RESET_TYPE_TX_DESC_FETCH:
1789 case RESET_TYPE_TX_SKIP:
1790 method = RESET_TYPE_INVISIBLE;
1791 break;
1792 default:
1793 method = RESET_TYPE_ALL;
1794 break;
1795 }
1796
1797 if (method != type)
1798 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1799 else
1800 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1801
1802 efx->reset_pending = method;
1803
1804 queue_work(reset_workqueue, &efx->reset_work);
1805 }
1806
1807 /**************************************************************************
1808 *
1809 * List of NICs we support
1810 *
1811 **************************************************************************/
1812
1813 /* PCI device ID table */
1814 static struct pci_device_id efx_pci_table[] __devinitdata = {
1815 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1816 .driver_data = (unsigned long) &falcon_a_nic_type},
1817 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1818 .driver_data = (unsigned long) &falcon_b_nic_type},
1819 {0} /* end of list */
1820 };
1821
1822 /**************************************************************************
1823 *
1824 * Dummy PHY/MAC/Board operations
1825 *
1826 * Can be used for some unimplemented operations
1827 * Needed so all function pointers are valid and do not have to be tested
1828 * before use
1829 *
1830 **************************************************************************/
1831 int efx_port_dummy_op_int(struct efx_nic *efx)
1832 {
1833 return 0;
1834 }
1835 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1836 void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
1837
1838 static struct efx_mac_operations efx_dummy_mac_operations = {
1839 .reconfigure = efx_port_dummy_op_void,
1840 .poll = efx_port_dummy_op_void,
1841 .irq = efx_port_dummy_op_void,
1842 };
1843
1844 static struct efx_phy_operations efx_dummy_phy_operations = {
1845 .init = efx_port_dummy_op_int,
1846 .reconfigure = efx_port_dummy_op_void,
1847 .poll = efx_port_dummy_op_void,
1848 .fini = efx_port_dummy_op_void,
1849 .clear_interrupt = efx_port_dummy_op_void,
1850 };
1851
1852 static struct efx_board efx_dummy_board_info = {
1853 .init = efx_port_dummy_op_int,
1854 .init_leds = efx_port_dummy_op_void,
1855 .set_id_led = efx_port_dummy_op_blink,
1856 .monitor = efx_port_dummy_op_int,
1857 .blink = efx_port_dummy_op_blink,
1858 .fini = efx_port_dummy_op_void,
1859 };
1860
1861 /**************************************************************************
1862 *
1863 * Data housekeeping
1864 *
1865 **************************************************************************/
1866
1867 /* This zeroes out and then fills in the invariants in a struct
1868 * efx_nic (including all sub-structures).
1869 */
1870 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1871 struct pci_dev *pci_dev, struct net_device *net_dev)
1872 {
1873 struct efx_channel *channel;
1874 struct efx_tx_queue *tx_queue;
1875 struct efx_rx_queue *rx_queue;
1876 int i;
1877
1878 /* Initialise common structures */
1879 memset(efx, 0, sizeof(*efx));
1880 spin_lock_init(&efx->biu_lock);
1881 spin_lock_init(&efx->phy_lock);
1882 mutex_init(&efx->spi_lock);
1883 INIT_WORK(&efx->reset_work, efx_reset_work);
1884 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1885 efx->pci_dev = pci_dev;
1886 efx->state = STATE_INIT;
1887 efx->reset_pending = RESET_TYPE_NONE;
1888 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1889 efx->board_info = efx_dummy_board_info;
1890
1891 efx->net_dev = net_dev;
1892 efx->rx_checksum_enabled = true;
1893 spin_lock_init(&efx->netif_stop_lock);
1894 spin_lock_init(&efx->stats_lock);
1895 efx->stats_disable_count = 1;
1896 mutex_init(&efx->mac_lock);
1897 efx->mac_op = &efx_dummy_mac_operations;
1898 efx->phy_op = &efx_dummy_phy_operations;
1899 efx->mii.dev = net_dev;
1900 INIT_WORK(&efx->phy_work, efx_phy_work);
1901 INIT_WORK(&efx->mac_work, efx_mac_work);
1902 atomic_set(&efx->netif_stop_count, 1);
1903
1904 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1905 channel = &efx->channel[i];
1906 channel->efx = efx;
1907 channel->channel = i;
1908 channel->work_pending = false;
1909 }
1910 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1911 tx_queue = &efx->tx_queue[i];
1912 tx_queue->efx = efx;
1913 tx_queue->queue = i;
1914 tx_queue->buffer = NULL;
1915 tx_queue->channel = &efx->channel[0]; /* for safety */
1916 tx_queue->tso_headers_free = NULL;
1917 }
1918 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1919 rx_queue = &efx->rx_queue[i];
1920 rx_queue->efx = efx;
1921 rx_queue->queue = i;
1922 rx_queue->channel = &efx->channel[0]; /* for safety */
1923 rx_queue->buffer = NULL;
1924 spin_lock_init(&rx_queue->add_lock);
1925 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1926 }
1927
1928 efx->type = type;
1929
1930 /* Sanity-check NIC type */
1931 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1932 (efx->type->txd_ring_mask + 1));
1933 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1934 (efx->type->rxd_ring_mask + 1));
1935 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1936 (efx->type->evq_size - 1));
1937 /* As close as we can get to guaranteeing that we don't overflow */
1938 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1939 (efx->type->txd_ring_mask + 1 +
1940 efx->type->rxd_ring_mask + 1));
1941 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1942
1943 /* Higher numbered interrupt modes are less capable! */
1944 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1945 interrupt_mode);
1946
1947 /* Would be good to use the net_dev name, but we're too early */
1948 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1949 pci_name(pci_dev));
1950 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1951 if (!efx->workqueue)
1952 return -ENOMEM;
1953
1954 return 0;
1955 }
1956
1957 static void efx_fini_struct(struct efx_nic *efx)
1958 {
1959 if (efx->workqueue) {
1960 destroy_workqueue(efx->workqueue);
1961 efx->workqueue = NULL;
1962 }
1963 }
1964
1965 /**************************************************************************
1966 *
1967 * PCI interface
1968 *
1969 **************************************************************************/
1970
1971 /* Main body of final NIC shutdown code
1972 * This is called only at module unload (or hotplug removal).
1973 */
1974 static void efx_pci_remove_main(struct efx_nic *efx)
1975 {
1976 EFX_ASSERT_RESET_SERIALISED(efx);
1977
1978 /* Skip everything if we never obtained a valid membase */
1979 if (!efx->membase)
1980 return;
1981
1982 efx_fini_channels(efx);
1983 efx_fini_port(efx);
1984
1985 /* Shutdown the board, then the NIC and board state */
1986 efx->board_info.fini(efx);
1987 falcon_fini_interrupt(efx);
1988
1989 efx_fini_napi(efx);
1990 efx_remove_all(efx);
1991 }
1992
1993 /* Final NIC shutdown
1994 * This is called only at module unload (or hotplug removal).
1995 */
1996 static void efx_pci_remove(struct pci_dev *pci_dev)
1997 {
1998 struct efx_nic *efx;
1999
2000 efx = pci_get_drvdata(pci_dev);
2001 if (!efx)
2002 return;
2003
2004 /* Mark the NIC as fini, then stop the interface */
2005 rtnl_lock();
2006 efx->state = STATE_FINI;
2007 dev_close(efx->net_dev);
2008
2009 /* Allow any queued efx_resets() to complete */
2010 rtnl_unlock();
2011
2012 if (efx->membase == NULL)
2013 goto out;
2014
2015 efx_unregister_netdev(efx);
2016
2017 efx_mtd_remove(efx);
2018
2019 /* Wait for any scheduled resets to complete. No more will be
2020 * scheduled from this point because efx_stop_all() has been
2021 * called, we are no longer registered with driverlink, and
2022 * the net_device's have been removed. */
2023 cancel_work_sync(&efx->reset_work);
2024
2025 efx_pci_remove_main(efx);
2026
2027 out:
2028 efx_fini_io(efx);
2029 EFX_LOG(efx, "shutdown successful\n");
2030
2031 pci_set_drvdata(pci_dev, NULL);
2032 efx_fini_struct(efx);
2033 free_netdev(efx->net_dev);
2034 };
2035
2036 /* Main body of NIC initialisation
2037 * This is called at module load (or hotplug insertion, theoretically).
2038 */
2039 static int efx_pci_probe_main(struct efx_nic *efx)
2040 {
2041 int rc;
2042
2043 /* Do start-of-day initialisation */
2044 rc = efx_probe_all(efx);
2045 if (rc)
2046 goto fail1;
2047
2048 rc = efx_init_napi(efx);
2049 if (rc)
2050 goto fail2;
2051
2052 /* Initialise the board */
2053 rc = efx->board_info.init(efx);
2054 if (rc) {
2055 EFX_ERR(efx, "failed to initialise board\n");
2056 goto fail3;
2057 }
2058
2059 rc = falcon_init_nic(efx);
2060 if (rc) {
2061 EFX_ERR(efx, "failed to initialise NIC\n");
2062 goto fail4;
2063 }
2064
2065 rc = efx_init_port(efx);
2066 if (rc) {
2067 EFX_ERR(efx, "failed to initialise port\n");
2068 goto fail5;
2069 }
2070
2071 efx_init_channels(efx);
2072
2073 rc = falcon_init_interrupt(efx);
2074 if (rc)
2075 goto fail6;
2076
2077 return 0;
2078
2079 fail6:
2080 efx_fini_channels(efx);
2081 efx_fini_port(efx);
2082 fail5:
2083 fail4:
2084 efx->board_info.fini(efx);
2085 fail3:
2086 efx_fini_napi(efx);
2087 fail2:
2088 efx_remove_all(efx);
2089 fail1:
2090 return rc;
2091 }
2092
2093 /* NIC initialisation
2094 *
2095 * This is called at module load (or hotplug insertion,
2096 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2097 * sets up and registers the network devices with the kernel and hooks
2098 * the interrupt service routine. It does not prepare the device for
2099 * transmission; this is left to the first time one of the network
2100 * interfaces is brought up (i.e. efx_net_open).
2101 */
2102 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2103 const struct pci_device_id *entry)
2104 {
2105 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2106 struct net_device *net_dev;
2107 struct efx_nic *efx;
2108 int i, rc;
2109
2110 /* Allocate and initialise a struct net_device and struct efx_nic */
2111 net_dev = alloc_etherdev(sizeof(*efx));
2112 if (!net_dev)
2113 return -ENOMEM;
2114 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2115 NETIF_F_HIGHDMA | NETIF_F_TSO);
2116 if (lro)
2117 net_dev->features |= NETIF_F_GRO;
2118 /* Mask for features that also apply to VLAN devices */
2119 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2120 NETIF_F_HIGHDMA | NETIF_F_TSO);
2121 efx = netdev_priv(net_dev);
2122 pci_set_drvdata(pci_dev, efx);
2123 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2124 if (rc)
2125 goto fail1;
2126
2127 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2128
2129 /* Set up basic I/O (BAR mappings etc) */
2130 rc = efx_init_io(efx);
2131 if (rc)
2132 goto fail2;
2133
2134 /* No serialisation is required with the reset path because
2135 * we're in STATE_INIT. */
2136 for (i = 0; i < 5; i++) {
2137 rc = efx_pci_probe_main(efx);
2138
2139 /* Serialise against efx_reset(). No more resets will be
2140 * scheduled since efx_stop_all() has been called, and we
2141 * have not and never have been registered with either
2142 * the rtnetlink or driverlink layers. */
2143 cancel_work_sync(&efx->reset_work);
2144
2145 if (rc == 0) {
2146 if (efx->reset_pending != RESET_TYPE_NONE) {
2147 /* If there was a scheduled reset during
2148 * probe, the NIC is probably hosed anyway */
2149 efx_pci_remove_main(efx);
2150 rc = -EIO;
2151 } else {
2152 break;
2153 }
2154 }
2155
2156 /* Retry if a recoverably reset event has been scheduled */
2157 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2158 (efx->reset_pending != RESET_TYPE_ALL))
2159 goto fail3;
2160
2161 efx->reset_pending = RESET_TYPE_NONE;
2162 }
2163
2164 if (rc) {
2165 EFX_ERR(efx, "Could not reset NIC\n");
2166 goto fail4;
2167 }
2168
2169 /* Switch to the running state before we expose the device to
2170 * the OS. This is to ensure that the initial gathering of
2171 * MAC stats succeeds. */
2172 efx->state = STATE_RUNNING;
2173
2174 efx_mtd_probe(efx); /* allowed to fail */
2175
2176 rc = efx_register_netdev(efx);
2177 if (rc)
2178 goto fail5;
2179
2180 EFX_LOG(efx, "initialisation successful\n");
2181 return 0;
2182
2183 fail5:
2184 efx_pci_remove_main(efx);
2185 fail4:
2186 fail3:
2187 efx_fini_io(efx);
2188 fail2:
2189 efx_fini_struct(efx);
2190 fail1:
2191 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2192 free_netdev(net_dev);
2193 return rc;
2194 }
2195
2196 static struct pci_driver efx_pci_driver = {
2197 .name = EFX_DRIVER_NAME,
2198 .id_table = efx_pci_table,
2199 .probe = efx_pci_probe,
2200 .remove = efx_pci_remove,
2201 };
2202
2203 /**************************************************************************
2204 *
2205 * Kernel module interface
2206 *
2207 *************************************************************************/
2208
2209 module_param(interrupt_mode, uint, 0444);
2210 MODULE_PARM_DESC(interrupt_mode,
2211 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2212
2213 static int __init efx_init_module(void)
2214 {
2215 int rc;
2216
2217 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2218
2219 rc = register_netdevice_notifier(&efx_netdev_notifier);
2220 if (rc)
2221 goto err_notifier;
2222
2223 refill_workqueue = create_workqueue("sfc_refill");
2224 if (!refill_workqueue) {
2225 rc = -ENOMEM;
2226 goto err_refill;
2227 }
2228 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2229 if (!reset_workqueue) {
2230 rc = -ENOMEM;
2231 goto err_reset;
2232 }
2233
2234 rc = pci_register_driver(&efx_pci_driver);
2235 if (rc < 0)
2236 goto err_pci;
2237
2238 return 0;
2239
2240 err_pci:
2241 destroy_workqueue(reset_workqueue);
2242 err_reset:
2243 destroy_workqueue(refill_workqueue);
2244 err_refill:
2245 unregister_netdevice_notifier(&efx_netdev_notifier);
2246 err_notifier:
2247 return rc;
2248 }
2249
2250 static void __exit efx_exit_module(void)
2251 {
2252 printk(KERN_INFO "Solarflare NET driver unloading\n");
2253
2254 pci_unregister_driver(&efx_pci_driver);
2255 destroy_workqueue(reset_workqueue);
2256 destroy_workqueue(refill_workqueue);
2257 unregister_netdevice_notifier(&efx_netdev_notifier);
2258
2259 }
2260
2261 module_init(efx_init_module);
2262 module_exit(efx_exit_module);
2263
2264 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2265 "Solarflare Communications");
2266 MODULE_DESCRIPTION("Solarflare Communications network driver");
2267 MODULE_LICENSE("GPL");
2268 MODULE_DEVICE_TABLE(pci, efx_pci_table);