]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/wimax/i2400m/rx.c
wimax/i2400m: driver defaults to firmware v1.5 for i6x60 devices
[mirror_ubuntu-artful-kernel.git] / drivers / net / wimax / i2400m / rx.c
1 /*
2 * Intel Wireless WiMAX Connection 2400m
3 * Handle incoming traffic and deliver it to the control or data planes
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 *
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * - Initial implementation
38 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
39 * - Use skb_clone(), break up processing in chunks
40 * - Split transport/device specific
41 * - Make buffer size dynamic to exert less memory pressure
42 * - RX reorder support
43 *
44 * This handles the RX path.
45 *
46 * We receive an RX message from the bus-specific driver, which
47 * contains one or more payloads that have potentially different
48 * destinataries (data or control paths).
49 *
50 * So we just take that payload from the transport specific code in
51 * the form of an skb, break it up in chunks (a cloned skb each in the
52 * case of network packets) and pass it to netdev or to the
53 * command/ack handler (and from there to the WiMAX stack).
54 *
55 * PROTOCOL FORMAT
56 *
57 * The format of the buffer is:
58 *
59 * HEADER (struct i2400m_msg_hdr)
60 * PAYLOAD DESCRIPTOR 0 (struct i2400m_pld)
61 * PAYLOAD DESCRIPTOR 1
62 * ...
63 * PAYLOAD DESCRIPTOR N
64 * PAYLOAD 0 (raw bytes)
65 * PAYLOAD 1
66 * ...
67 * PAYLOAD N
68 *
69 * See tx.c for a deeper description on alignment requirements and
70 * other fun facts of it.
71 *
72 * DATA PACKETS
73 *
74 * In firmwares <= v1.3, data packets have no header for RX, but they
75 * do for TX (currently unused).
76 *
77 * In firmware >= 1.4, RX packets have an extended header (16
78 * bytes). This header conveys information for management of host
79 * reordering of packets (the device offloads storage of the packets
80 * for reordering to the host). Read below for more information.
81 *
82 * The header is used as dummy space to emulate an ethernet header and
83 * thus be able to act as an ethernet device without having to reallocate.
84 *
85 * DATA RX REORDERING
86 *
87 * Starting in firmware v1.4, the device can deliver packets for
88 * delivery with special reordering information; this allows it to
89 * more effectively do packet management when some frames were lost in
90 * the radio traffic.
91 *
92 * Thus, for RX packets that come out of order, the device gives the
93 * driver enough information to queue them properly and then at some
94 * point, the signal to deliver the whole (or part) of the queued
95 * packets to the networking stack. There are 16 such queues.
96 *
97 * This only happens when a packet comes in with the "need reorder"
98 * flag set in the RX header. When such bit is set, the following
99 * operations might be indicated:
100 *
101 * - reset queue: send all queued packets to the OS
102 *
103 * - queue: queue a packet
104 *
105 * - update ws: update the queue's window start and deliver queued
106 * packets that meet the criteria
107 *
108 * - queue & update ws: queue a packet, update the window start and
109 * deliver queued packets that meet the criteria
110 *
111 * (delivery criteria: the packet's [normalized] sequence number is
112 * lower than the new [normalized] window start).
113 *
114 * See the i2400m_roq_*() functions for details.
115 *
116 * ROADMAP
117 *
118 * i2400m_rx
119 * i2400m_rx_msg_hdr_check
120 * i2400m_rx_pl_descr_check
121 * i2400m_rx_payload
122 * i2400m_net_rx
123 * i2400m_rx_edata
124 * i2400m_net_erx
125 * i2400m_roq_reset
126 * i2400m_net_erx
127 * i2400m_roq_queue
128 * __i2400m_roq_queue
129 * i2400m_roq_update_ws
130 * __i2400m_roq_update_ws
131 * i2400m_net_erx
132 * i2400m_roq_queue_update_ws
133 * __i2400m_roq_queue
134 * __i2400m_roq_update_ws
135 * i2400m_net_erx
136 * i2400m_rx_ctl
137 * i2400m_msg_size_check
138 * i2400m_report_hook_work [in a workqueue]
139 * i2400m_report_hook
140 * wimax_msg_to_user
141 * i2400m_rx_ctl_ack
142 * wimax_msg_to_user_alloc
143 * i2400m_rx_trace
144 * i2400m_msg_size_check
145 * wimax_msg
146 */
147 #include <linux/slab.h>
148 #include <linux/kernel.h>
149 #include <linux/if_arp.h>
150 #include <linux/netdevice.h>
151 #include <linux/workqueue.h>
152 #include "i2400m.h"
153
154
155 #define D_SUBMODULE rx
156 #include "debug-levels.h"
157
158 static int i2400m_rx_reorder_disabled; /* 0 (rx reorder enabled) by default */
159 module_param_named(rx_reorder_disabled, i2400m_rx_reorder_disabled, int, 0644);
160 MODULE_PARM_DESC(rx_reorder_disabled,
161 "If true, RX reordering will be disabled.");
162
163 struct i2400m_report_hook_args {
164 struct sk_buff *skb_rx;
165 const struct i2400m_l3l4_hdr *l3l4_hdr;
166 size_t size;
167 struct list_head list_node;
168 };
169
170
171 /*
172 * Execute i2400m_report_hook in a workqueue
173 *
174 * Goes over the list of queued reports in i2400m->rx_reports and
175 * processes them.
176 *
177 * NOTE: refcounts on i2400m are not needed because we flush the
178 * workqueue this runs on (i2400m->work_queue) before destroying
179 * i2400m.
180 */
181 void i2400m_report_hook_work(struct work_struct *ws)
182 {
183 struct i2400m *i2400m = container_of(ws, struct i2400m, rx_report_ws);
184 struct device *dev = i2400m_dev(i2400m);
185 struct i2400m_report_hook_args *args, *args_next;
186 LIST_HEAD(list);
187 unsigned long flags;
188
189 while (1) {
190 spin_lock_irqsave(&i2400m->rx_lock, flags);
191 list_splice_init(&i2400m->rx_reports, &list);
192 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
193 if (list_empty(&list))
194 break;
195 else
196 d_printf(1, dev, "processing queued reports\n");
197 list_for_each_entry_safe(args, args_next, &list, list_node) {
198 d_printf(2, dev, "processing queued report %p\n", args);
199 i2400m_report_hook(i2400m, args->l3l4_hdr, args->size);
200 kfree_skb(args->skb_rx);
201 list_del(&args->list_node);
202 kfree(args);
203 }
204 }
205 }
206
207
208 /*
209 * Flush the list of queued reports
210 */
211 static
212 void i2400m_report_hook_flush(struct i2400m *i2400m)
213 {
214 struct device *dev = i2400m_dev(i2400m);
215 struct i2400m_report_hook_args *args, *args_next;
216 LIST_HEAD(list);
217 unsigned long flags;
218
219 d_printf(1, dev, "flushing queued reports\n");
220 spin_lock_irqsave(&i2400m->rx_lock, flags);
221 list_splice_init(&i2400m->rx_reports, &list);
222 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
223 list_for_each_entry_safe(args, args_next, &list, list_node) {
224 d_printf(2, dev, "flushing queued report %p\n", args);
225 kfree_skb(args->skb_rx);
226 list_del(&args->list_node);
227 kfree(args);
228 }
229 }
230
231
232 /*
233 * Queue a report for later processing
234 *
235 * @i2400m: device descriptor
236 * @skb_rx: skb that contains the payload (for reference counting)
237 * @l3l4_hdr: pointer to the control
238 * @size: size of the message
239 */
240 static
241 void i2400m_report_hook_queue(struct i2400m *i2400m, struct sk_buff *skb_rx,
242 const void *l3l4_hdr, size_t size)
243 {
244 struct device *dev = i2400m_dev(i2400m);
245 unsigned long flags;
246 struct i2400m_report_hook_args *args;
247
248 args = kzalloc(sizeof(*args), GFP_NOIO);
249 if (args) {
250 args->skb_rx = skb_get(skb_rx);
251 args->l3l4_hdr = l3l4_hdr;
252 args->size = size;
253 spin_lock_irqsave(&i2400m->rx_lock, flags);
254 list_add_tail(&args->list_node, &i2400m->rx_reports);
255 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
256 d_printf(2, dev, "queued report %p\n", args);
257 rmb(); /* see i2400m->ready's documentation */
258 if (likely(i2400m->ready)) /* only send if up */
259 queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
260 } else {
261 if (printk_ratelimit())
262 dev_err(dev, "%s:%u: Can't allocate %zu B\n",
263 __func__, __LINE__, sizeof(*args));
264 }
265 }
266
267
268 /*
269 * Process an ack to a command
270 *
271 * @i2400m: device descriptor
272 * @payload: pointer to message
273 * @size: size of the message
274 *
275 * Pass the acknodledgment (in an skb) to the thread that is waiting
276 * for it in i2400m->msg_completion.
277 *
278 * We need to coordinate properly with the thread waiting for the
279 * ack. Check if it is waiting or if it is gone. We loose the spinlock
280 * to avoid allocating on atomic contexts (yeah, could use GFP_ATOMIC,
281 * but this is not so speed critical).
282 */
283 static
284 void i2400m_rx_ctl_ack(struct i2400m *i2400m,
285 const void *payload, size_t size)
286 {
287 struct device *dev = i2400m_dev(i2400m);
288 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
289 unsigned long flags;
290 struct sk_buff *ack_skb;
291
292 /* Anyone waiting for an answer? */
293 spin_lock_irqsave(&i2400m->rx_lock, flags);
294 if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
295 dev_err(dev, "Huh? reply to command with no waiters\n");
296 goto error_no_waiter;
297 }
298 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
299
300 ack_skb = wimax_msg_alloc(wimax_dev, NULL, payload, size, GFP_KERNEL);
301
302 /* Check waiter didn't time out waiting for the answer... */
303 spin_lock_irqsave(&i2400m->rx_lock, flags);
304 if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
305 d_printf(1, dev, "Huh? waiter for command reply cancelled\n");
306 goto error_waiter_cancelled;
307 }
308 if (IS_ERR(ack_skb))
309 dev_err(dev, "CMD/GET/SET ack: cannot allocate SKB\n");
310 i2400m->ack_skb = ack_skb;
311 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
312 complete(&i2400m->msg_completion);
313 return;
314
315 error_waiter_cancelled:
316 if (!IS_ERR(ack_skb))
317 kfree_skb(ack_skb);
318 error_no_waiter:
319 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
320 return;
321 }
322
323
324 /*
325 * Receive and process a control payload
326 *
327 * @i2400m: device descriptor
328 * @skb_rx: skb that contains the payload (for reference counting)
329 * @payload: pointer to message
330 * @size: size of the message
331 *
332 * There are two types of control RX messages: reports (asynchronous,
333 * like your every day interrupts) and 'acks' (reponses to a command,
334 * get or set request).
335 *
336 * If it is a report, we run hooks on it (to extract information for
337 * things we need to do in the driver) and then pass it over to the
338 * WiMAX stack to send it to user space.
339 *
340 * NOTE: report processing is done in a workqueue specific to the
341 * generic driver, to avoid deadlocks in the system.
342 *
343 * If it is not a report, it is an ack to a previously executed
344 * command, set or get, so wake up whoever is waiting for it from
345 * i2400m_msg_to_dev(). i2400m_rx_ctl_ack() takes care of that.
346 *
347 * Note that the sizes we pass to other functions from here are the
348 * sizes of the _l3l4_hdr + payload, not full buffer sizes, as we have
349 * verified in _msg_size_check() that they are congruent.
350 *
351 * For reports: We can't clone the original skb where the data is
352 * because we need to send this up via netlink; netlink has to add
353 * headers and we can't overwrite what's preceeding the payload...as
354 * it is another message. So we just dup them.
355 */
356 static
357 void i2400m_rx_ctl(struct i2400m *i2400m, struct sk_buff *skb_rx,
358 const void *payload, size_t size)
359 {
360 int result;
361 struct device *dev = i2400m_dev(i2400m);
362 const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
363 unsigned msg_type;
364
365 result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
366 if (result < 0) {
367 dev_err(dev, "HW BUG? device sent a bad message: %d\n",
368 result);
369 goto error_check;
370 }
371 msg_type = le16_to_cpu(l3l4_hdr->type);
372 d_printf(1, dev, "%s 0x%04x: %zu bytes\n",
373 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
374 msg_type, size);
375 d_dump(2, dev, l3l4_hdr, size);
376 if (msg_type & I2400M_MT_REPORT_MASK) {
377 /*
378 * Process each report
379 *
380 * - has to be ran serialized as well
381 *
382 * - the handling might force the execution of
383 * commands. That might cause reentrancy issues with
384 * bus-specific subdrivers and workqueues, so the we
385 * run it in a separate workqueue.
386 *
387 * - when the driver is not yet ready to handle them,
388 * they are queued and at some point the queue is
389 * restarted [NOTE: we can't queue SKBs directly, as
390 * this might be a piece of a SKB, not the whole
391 * thing, and this is cheaper than cloning the
392 * SKB].
393 *
394 * Note we don't do refcounting for the device
395 * structure; this is because before destroying
396 * 'i2400m', we make sure to flush the
397 * i2400m->work_queue, so there are no issues.
398 */
399 i2400m_report_hook_queue(i2400m, skb_rx, l3l4_hdr, size);
400 if (unlikely(i2400m->trace_msg_from_user))
401 wimax_msg(&i2400m->wimax_dev, "echo",
402 l3l4_hdr, size, GFP_KERNEL);
403 result = wimax_msg(&i2400m->wimax_dev, NULL, l3l4_hdr, size,
404 GFP_KERNEL);
405 if (result < 0)
406 dev_err(dev, "error sending report to userspace: %d\n",
407 result);
408 } else /* an ack to a CMD, GET or SET */
409 i2400m_rx_ctl_ack(i2400m, payload, size);
410 error_check:
411 return;
412 }
413
414
415 /*
416 * Receive and send up a trace
417 *
418 * @i2400m: device descriptor
419 * @skb_rx: skb that contains the trace (for reference counting)
420 * @payload: pointer to trace message inside the skb
421 * @size: size of the message
422 *
423 * THe i2400m might produce trace information (diagnostics) and we
424 * send them through a different kernel-to-user pipe (to avoid
425 * clogging it).
426 *
427 * As in i2400m_rx_ctl(), we can't clone the original skb where the
428 * data is because we need to send this up via netlink; netlink has to
429 * add headers and we can't overwrite what's preceeding the
430 * payload...as it is another message. So we just dup them.
431 */
432 static
433 void i2400m_rx_trace(struct i2400m *i2400m,
434 const void *payload, size_t size)
435 {
436 int result;
437 struct device *dev = i2400m_dev(i2400m);
438 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
439 const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
440 unsigned msg_type;
441
442 result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
443 if (result < 0) {
444 dev_err(dev, "HW BUG? device sent a bad trace message: %d\n",
445 result);
446 goto error_check;
447 }
448 msg_type = le16_to_cpu(l3l4_hdr->type);
449 d_printf(1, dev, "Trace %s 0x%04x: %zu bytes\n",
450 msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
451 msg_type, size);
452 d_dump(2, dev, l3l4_hdr, size);
453 result = wimax_msg(wimax_dev, "trace", l3l4_hdr, size, GFP_KERNEL);
454 if (result < 0)
455 dev_err(dev, "error sending trace to userspace: %d\n",
456 result);
457 error_check:
458 return;
459 }
460
461
462 /*
463 * Reorder queue data stored on skb->cb while the skb is queued in the
464 * reorder queues.
465 */
466 struct i2400m_roq_data {
467 unsigned sn; /* Serial number for the skb */
468 enum i2400m_cs cs; /* packet type for the skb */
469 };
470
471
472 /*
473 * ReOrder Queue
474 *
475 * @ws: Window Start; sequence number where the current window start
476 * is for this queue
477 * @queue: the skb queue itself
478 * @log: circular ring buffer used to log information about the
479 * reorder process in this queue that can be displayed in case of
480 * error to help diagnose it.
481 *
482 * This is the head for a list of skbs. In the skb->cb member of the
483 * skb when queued here contains a 'struct i2400m_roq_data' were we
484 * store the sequence number (sn) and the cs (packet type) coming from
485 * the RX payload header from the device.
486 */
487 struct i2400m_roq
488 {
489 unsigned ws;
490 struct sk_buff_head queue;
491 struct i2400m_roq_log *log;
492 };
493
494
495 static
496 void __i2400m_roq_init(struct i2400m_roq *roq)
497 {
498 roq->ws = 0;
499 skb_queue_head_init(&roq->queue);
500 }
501
502
503 static
504 unsigned __i2400m_roq_index(struct i2400m *i2400m, struct i2400m_roq *roq)
505 {
506 return ((unsigned long) roq - (unsigned long) i2400m->rx_roq)
507 / sizeof(*roq);
508 }
509
510
511 /*
512 * Normalize a sequence number based on the queue's window start
513 *
514 * nsn = (sn - ws) % 2048
515 *
516 * Note that if @sn < @roq->ws, we still need a positive number; %'s
517 * sign is implementation specific, so we normalize it by adding 2048
518 * to bring it to be positive.
519 */
520 static
521 unsigned __i2400m_roq_nsn(struct i2400m_roq *roq, unsigned sn)
522 {
523 int r;
524 r = ((int) sn - (int) roq->ws) % 2048;
525 if (r < 0)
526 r += 2048;
527 return r;
528 }
529
530
531 /*
532 * Circular buffer to keep the last N reorder operations
533 *
534 * In case something fails, dumb then to try to come up with what
535 * happened.
536 */
537 enum {
538 I2400M_ROQ_LOG_LENGTH = 32,
539 };
540
541 struct i2400m_roq_log {
542 struct i2400m_roq_log_entry {
543 enum i2400m_ro_type type;
544 unsigned ws, count, sn, nsn, new_ws;
545 } entry[I2400M_ROQ_LOG_LENGTH];
546 unsigned in, out;
547 };
548
549
550 /* Print a log entry */
551 static
552 void i2400m_roq_log_entry_print(struct i2400m *i2400m, unsigned index,
553 unsigned e_index,
554 struct i2400m_roq_log_entry *e)
555 {
556 struct device *dev = i2400m_dev(i2400m);
557
558 switch(e->type) {
559 case I2400M_RO_TYPE_RESET:
560 dev_err(dev, "q#%d reset ws %u cnt %u sn %u/%u"
561 " - new nws %u\n",
562 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
563 break;
564 case I2400M_RO_TYPE_PACKET:
565 dev_err(dev, "q#%d queue ws %u cnt %u sn %u/%u\n",
566 index, e->ws, e->count, e->sn, e->nsn);
567 break;
568 case I2400M_RO_TYPE_WS:
569 dev_err(dev, "q#%d update_ws ws %u cnt %u sn %u/%u"
570 " - new nws %u\n",
571 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
572 break;
573 case I2400M_RO_TYPE_PACKET_WS:
574 dev_err(dev, "q#%d queue_update_ws ws %u cnt %u sn %u/%u"
575 " - new nws %u\n",
576 index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
577 break;
578 default:
579 dev_err(dev, "q#%d BUG? entry %u - unknown type %u\n",
580 index, e_index, e->type);
581 break;
582 }
583 }
584
585
586 static
587 void i2400m_roq_log_add(struct i2400m *i2400m,
588 struct i2400m_roq *roq, enum i2400m_ro_type type,
589 unsigned ws, unsigned count, unsigned sn,
590 unsigned nsn, unsigned new_ws)
591 {
592 struct i2400m_roq_log_entry *e;
593 unsigned cnt_idx;
594 int index = __i2400m_roq_index(i2400m, roq);
595
596 /* if we run out of space, we eat from the end */
597 if (roq->log->in - roq->log->out == I2400M_ROQ_LOG_LENGTH)
598 roq->log->out++;
599 cnt_idx = roq->log->in++ % I2400M_ROQ_LOG_LENGTH;
600 e = &roq->log->entry[cnt_idx];
601
602 e->type = type;
603 e->ws = ws;
604 e->count = count;
605 e->sn = sn;
606 e->nsn = nsn;
607 e->new_ws = new_ws;
608
609 if (d_test(1))
610 i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
611 }
612
613
614 /* Dump all the entries in the FIFO and reinitialize it */
615 static
616 void i2400m_roq_log_dump(struct i2400m *i2400m, struct i2400m_roq *roq)
617 {
618 unsigned cnt, cnt_idx;
619 struct i2400m_roq_log_entry *e;
620 int index = __i2400m_roq_index(i2400m, roq);
621
622 BUG_ON(roq->log->out > roq->log->in);
623 for (cnt = roq->log->out; cnt < roq->log->in; cnt++) {
624 cnt_idx = cnt % I2400M_ROQ_LOG_LENGTH;
625 e = &roq->log->entry[cnt_idx];
626 i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
627 memset(e, 0, sizeof(*e));
628 }
629 roq->log->in = roq->log->out = 0;
630 }
631
632
633 /*
634 * Backbone for the queuing of an skb (by normalized sequence number)
635 *
636 * @i2400m: device descriptor
637 * @roq: reorder queue where to add
638 * @skb: the skb to add
639 * @sn: the sequence number of the skb
640 * @nsn: the normalized sequence number of the skb (pre-computed by the
641 * caller from the @sn and @roq->ws).
642 *
643 * We try first a couple of quick cases:
644 *
645 * - the queue is empty
646 * - the skb would be appended to the queue
647 *
648 * These will be the most common operations.
649 *
650 * If these fail, then we have to do a sorted insertion in the queue,
651 * which is the slowest path.
652 *
653 * We don't have to acquire a reference count as we are going to own it.
654 */
655 static
656 void __i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
657 struct sk_buff *skb, unsigned sn, unsigned nsn)
658 {
659 struct device *dev = i2400m_dev(i2400m);
660 struct sk_buff *skb_itr;
661 struct i2400m_roq_data *roq_data_itr, *roq_data;
662 unsigned nsn_itr;
663
664 d_fnstart(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %u)\n",
665 i2400m, roq, skb, sn, nsn);
666
667 roq_data = (struct i2400m_roq_data *) &skb->cb;
668 BUILD_BUG_ON(sizeof(*roq_data) > sizeof(skb->cb));
669 roq_data->sn = sn;
670 d_printf(3, dev, "ERX: roq %p [ws %u] nsn %d sn %u\n",
671 roq, roq->ws, nsn, roq_data->sn);
672
673 /* Queues will be empty on not-so-bad environments, so try
674 * that first */
675 if (skb_queue_empty(&roq->queue)) {
676 d_printf(2, dev, "ERX: roq %p - first one\n", roq);
677 __skb_queue_head(&roq->queue, skb);
678 goto out;
679 }
680 /* Now try append, as most of the operations will be that */
681 skb_itr = skb_peek_tail(&roq->queue);
682 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
683 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
684 /* NSN bounds assumed correct (checked when it was queued) */
685 if (nsn >= nsn_itr) {
686 d_printf(2, dev, "ERX: roq %p - appended after %p (nsn %d sn %u)\n",
687 roq, skb_itr, nsn_itr, roq_data_itr->sn);
688 __skb_queue_tail(&roq->queue, skb);
689 goto out;
690 }
691 /* None of the fast paths option worked. Iterate to find the
692 * right spot where to insert the packet; we know the queue is
693 * not empty, so we are not the first ones; we also know we
694 * are not going to be the last ones. The list is sorted, so
695 * we have to insert before the the first guy with an nsn_itr
696 * greater that our nsn. */
697 skb_queue_walk(&roq->queue, skb_itr) {
698 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
699 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
700 /* NSN bounds assumed correct (checked when it was queued) */
701 if (nsn_itr > nsn) {
702 d_printf(2, dev, "ERX: roq %p - queued before %p "
703 "(nsn %d sn %u)\n", roq, skb_itr, nsn_itr,
704 roq_data_itr->sn);
705 __skb_queue_before(&roq->queue, skb_itr, skb);
706 goto out;
707 }
708 }
709 /* If we get here, that is VERY bad -- print info to help
710 * diagnose and crash it */
711 dev_err(dev, "SW BUG? failed to insert packet\n");
712 dev_err(dev, "ERX: roq %p [ws %u] skb %p nsn %d sn %u\n",
713 roq, roq->ws, skb, nsn, roq_data->sn);
714 skb_queue_walk(&roq->queue, skb_itr) {
715 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
716 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
717 /* NSN bounds assumed correct (checked when it was queued) */
718 dev_err(dev, "ERX: roq %p skb_itr %p nsn %d sn %u\n",
719 roq, skb_itr, nsn_itr, roq_data_itr->sn);
720 }
721 BUG();
722 out:
723 d_fnend(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %d) = void\n",
724 i2400m, roq, skb, sn, nsn);
725 return;
726 }
727
728
729 /*
730 * Backbone for the update window start operation
731 *
732 * @i2400m: device descriptor
733 * @roq: Reorder queue
734 * @sn: New sequence number
735 *
736 * Updates the window start of a queue; when doing so, it must deliver
737 * to the networking stack all the queued skb's whose normalized
738 * sequence number is lower than the new normalized window start.
739 */
740 static
741 unsigned __i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
742 unsigned sn)
743 {
744 struct device *dev = i2400m_dev(i2400m);
745 struct sk_buff *skb_itr, *tmp_itr;
746 struct i2400m_roq_data *roq_data_itr;
747 unsigned new_nws, nsn_itr;
748
749 new_nws = __i2400m_roq_nsn(roq, sn);
750 /*
751 * For type 2(update_window_start) rx messages, there is no
752 * need to check if the normalized sequence number is greater 1023.
753 * Simply insert and deliver all packets to the host up to the
754 * window start.
755 */
756 skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
757 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
758 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
759 /* NSN bounds assumed correct (checked when it was queued) */
760 if (nsn_itr < new_nws) {
761 d_printf(2, dev, "ERX: roq %p - release skb %p "
762 "(nsn %u/%u new nws %u)\n",
763 roq, skb_itr, nsn_itr, roq_data_itr->sn,
764 new_nws);
765 __skb_unlink(skb_itr, &roq->queue);
766 i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
767 }
768 else
769 break; /* rest of packets all nsn_itr > nws */
770 }
771 roq->ws = sn;
772 return new_nws;
773 }
774
775
776 /*
777 * Reset a queue
778 *
779 * @i2400m: device descriptor
780 * @cin: Queue Index
781 *
782 * Deliver all the packets and reset the window-start to zero. Name is
783 * kind of misleading.
784 */
785 static
786 void i2400m_roq_reset(struct i2400m *i2400m, struct i2400m_roq *roq)
787 {
788 struct device *dev = i2400m_dev(i2400m);
789 struct sk_buff *skb_itr, *tmp_itr;
790 struct i2400m_roq_data *roq_data_itr;
791
792 d_fnstart(2, dev, "(i2400m %p roq %p)\n", i2400m, roq);
793 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_RESET,
794 roq->ws, skb_queue_len(&roq->queue),
795 ~0, ~0, 0);
796 skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
797 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
798 d_printf(2, dev, "ERX: roq %p - release skb %p (sn %u)\n",
799 roq, skb_itr, roq_data_itr->sn);
800 __skb_unlink(skb_itr, &roq->queue);
801 i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
802 }
803 roq->ws = 0;
804 d_fnend(2, dev, "(i2400m %p roq %p) = void\n", i2400m, roq);
805 return;
806 }
807
808
809 /*
810 * Queue a packet
811 *
812 * @i2400m: device descriptor
813 * @cin: Queue Index
814 * @skb: containing the packet data
815 * @fbn: First block number of the packet in @skb
816 * @lbn: Last block number of the packet in @skb
817 *
818 * The hardware is asking the driver to queue a packet for later
819 * delivery to the networking stack.
820 */
821 static
822 void i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
823 struct sk_buff * skb, unsigned lbn)
824 {
825 struct device *dev = i2400m_dev(i2400m);
826 unsigned nsn, len;
827
828 d_fnstart(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
829 i2400m, roq, skb, lbn);
830 len = skb_queue_len(&roq->queue);
831 nsn = __i2400m_roq_nsn(roq, lbn);
832 if (unlikely(nsn >= 1024)) {
833 dev_err(dev, "SW BUG? queue nsn %d (lbn %u ws %u)\n",
834 nsn, lbn, roq->ws);
835 i2400m_roq_log_dump(i2400m, roq);
836 i2400m_reset(i2400m, I2400M_RT_WARM);
837 } else {
838 __i2400m_roq_queue(i2400m, roq, skb, lbn, nsn);
839 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET,
840 roq->ws, len, lbn, nsn, ~0);
841 }
842 d_fnend(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
843 i2400m, roq, skb, lbn);
844 return;
845 }
846
847
848 /*
849 * Update the window start in a reorder queue and deliver all skbs
850 * with a lower window start
851 *
852 * @i2400m: device descriptor
853 * @roq: Reorder queue
854 * @sn: New sequence number
855 */
856 static
857 void i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
858 unsigned sn)
859 {
860 struct device *dev = i2400m_dev(i2400m);
861 unsigned old_ws, nsn, len;
862
863 d_fnstart(2, dev, "(i2400m %p roq %p sn %u)\n", i2400m, roq, sn);
864 old_ws = roq->ws;
865 len = skb_queue_len(&roq->queue);
866 nsn = __i2400m_roq_update_ws(i2400m, roq, sn);
867 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_WS,
868 old_ws, len, sn, nsn, roq->ws);
869 d_fnstart(2, dev, "(i2400m %p roq %p sn %u) = void\n", i2400m, roq, sn);
870 return;
871 }
872
873
874 /*
875 * Queue a packet and update the window start
876 *
877 * @i2400m: device descriptor
878 * @cin: Queue Index
879 * @skb: containing the packet data
880 * @fbn: First block number of the packet in @skb
881 * @sn: Last block number of the packet in @skb
882 *
883 * Note that unlike i2400m_roq_update_ws(), which sets the new window
884 * start to @sn, in here we'll set it to @sn + 1.
885 */
886 static
887 void i2400m_roq_queue_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
888 struct sk_buff * skb, unsigned sn)
889 {
890 struct device *dev = i2400m_dev(i2400m);
891 unsigned nsn, old_ws, len;
892
893 d_fnstart(2, dev, "(i2400m %p roq %p skb %p sn %u)\n",
894 i2400m, roq, skb, sn);
895 len = skb_queue_len(&roq->queue);
896 nsn = __i2400m_roq_nsn(roq, sn);
897 /*
898 * For type 3(queue_update_window_start) rx messages, there is no
899 * need to check if the normalized sequence number is greater 1023.
900 * Simply insert and deliver all packets to the host up to the
901 * window start.
902 */
903 old_ws = roq->ws;
904 /* If the queue is empty, don't bother as we'd queue
905 * it and immediately unqueue it -- just deliver it.
906 */
907 if (len == 0) {
908 struct i2400m_roq_data *roq_data;
909 roq_data = (struct i2400m_roq_data *) &skb->cb;
910 i2400m_net_erx(i2400m, skb, roq_data->cs);
911 } else
912 __i2400m_roq_queue(i2400m, roq, skb, sn, nsn);
913
914 __i2400m_roq_update_ws(i2400m, roq, sn + 1);
915 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET_WS,
916 old_ws, len, sn, nsn, roq->ws);
917
918 d_fnend(2, dev, "(i2400m %p roq %p skb %p sn %u) = void\n",
919 i2400m, roq, skb, sn);
920 return;
921 }
922
923
924 /*
925 * This routine destroys the memory allocated for rx_roq, when no
926 * other thread is accessing it. Access to rx_roq is refcounted by
927 * rx_roq_refcount, hence memory allocated must be destroyed when
928 * rx_roq_refcount becomes zero. This routine gets executed when
929 * rx_roq_refcount becomes zero.
930 */
931 void i2400m_rx_roq_destroy(struct kref *ref)
932 {
933 unsigned itr;
934 struct i2400m *i2400m
935 = container_of(ref, struct i2400m, rx_roq_refcount);
936 for (itr = 0; itr < I2400M_RO_CIN + 1; itr++)
937 __skb_queue_purge(&i2400m->rx_roq[itr].queue);
938 kfree(i2400m->rx_roq[0].log);
939 kfree(i2400m->rx_roq);
940 i2400m->rx_roq = NULL;
941 }
942
943 /*
944 * Receive and send up an extended data packet
945 *
946 * @i2400m: device descriptor
947 * @skb_rx: skb that contains the extended data packet
948 * @single_last: 1 if the payload is the only one or the last one of
949 * the skb.
950 * @payload: pointer to the packet's data inside the skb
951 * @size: size of the payload
952 *
953 * Starting in v1.4 of the i2400m's firmware, the device can send data
954 * packets to the host in an extended format that; this incudes a 16
955 * byte header (struct i2400m_pl_edata_hdr). Using this header's space
956 * we can fake ethernet headers for ethernet device emulation without
957 * having to copy packets around.
958 *
959 * This function handles said path.
960 *
961 *
962 * Receive and send up an extended data packet that requires no reordering
963 *
964 * @i2400m: device descriptor
965 * @skb_rx: skb that contains the extended data packet
966 * @single_last: 1 if the payload is the only one or the last one of
967 * the skb.
968 * @payload: pointer to the packet's data (past the actual extended
969 * data payload header).
970 * @size: size of the payload
971 *
972 * Pass over to the networking stack a data packet that might have
973 * reordering requirements.
974 *
975 * This needs to the decide if the skb in which the packet is
976 * contained can be reused or if it needs to be cloned. Then it has to
977 * be trimmed in the edges so that the beginning is the space for eth
978 * header and then pass it to i2400m_net_erx() for the stack
979 *
980 * Assumes the caller has verified the sanity of the payload (size,
981 * etc) already.
982 */
983 static
984 void i2400m_rx_edata(struct i2400m *i2400m, struct sk_buff *skb_rx,
985 unsigned single_last, const void *payload, size_t size)
986 {
987 struct device *dev = i2400m_dev(i2400m);
988 const struct i2400m_pl_edata_hdr *hdr = payload;
989 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
990 struct sk_buff *skb;
991 enum i2400m_cs cs;
992 u32 reorder;
993 unsigned ro_needed, ro_type, ro_cin, ro_sn;
994 struct i2400m_roq *roq;
995 struct i2400m_roq_data *roq_data;
996 unsigned long flags;
997
998 BUILD_BUG_ON(ETH_HLEN > sizeof(*hdr));
999
1000 d_fnstart(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
1001 "size %zu)\n", i2400m, skb_rx, single_last, payload, size);
1002 if (size < sizeof(*hdr)) {
1003 dev_err(dev, "ERX: HW BUG? message with short header (%zu "
1004 "vs %zu bytes expected)\n", size, sizeof(*hdr));
1005 goto error;
1006 }
1007
1008 if (single_last) {
1009 skb = skb_get(skb_rx);
1010 d_printf(3, dev, "ERX: skb %p reusing\n", skb);
1011 } else {
1012 skb = skb_clone(skb_rx, GFP_KERNEL);
1013 if (skb == NULL) {
1014 dev_err(dev, "ERX: no memory to clone skb\n");
1015 net_dev->stats.rx_dropped++;
1016 goto error_skb_clone;
1017 }
1018 d_printf(3, dev, "ERX: skb %p cloned from %p\n", skb, skb_rx);
1019 }
1020 /* now we have to pull and trim so that the skb points to the
1021 * beginning of the IP packet; the netdev part will add the
1022 * ethernet header as needed - we know there is enough space
1023 * because we checked in i2400m_rx_edata(). */
1024 skb_pull(skb, payload + sizeof(*hdr) - (void *) skb->data);
1025 skb_trim(skb, (void *) skb_end_pointer(skb) - payload - sizeof(*hdr));
1026
1027 reorder = le32_to_cpu(hdr->reorder);
1028 ro_needed = reorder & I2400M_RO_NEEDED;
1029 cs = hdr->cs;
1030 if (ro_needed) {
1031 ro_type = (reorder >> I2400M_RO_TYPE_SHIFT) & I2400M_RO_TYPE;
1032 ro_cin = (reorder >> I2400M_RO_CIN_SHIFT) & I2400M_RO_CIN;
1033 ro_sn = (reorder >> I2400M_RO_SN_SHIFT) & I2400M_RO_SN;
1034
1035 spin_lock_irqsave(&i2400m->rx_lock, flags);
1036 roq = &i2400m->rx_roq[ro_cin];
1037 if (roq == NULL) {
1038 kfree_skb(skb); /* rx_roq is already destroyed */
1039 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1040 goto error;
1041 }
1042 kref_get(&i2400m->rx_roq_refcount);
1043 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1044
1045 roq_data = (struct i2400m_roq_data *) &skb->cb;
1046 roq_data->sn = ro_sn;
1047 roq_data->cs = cs;
1048 d_printf(2, dev, "ERX: reorder needed: "
1049 "type %u cin %u [ws %u] sn %u/%u len %zuB\n",
1050 ro_type, ro_cin, roq->ws, ro_sn,
1051 __i2400m_roq_nsn(roq, ro_sn), size);
1052 d_dump(2, dev, payload, size);
1053 switch(ro_type) {
1054 case I2400M_RO_TYPE_RESET:
1055 i2400m_roq_reset(i2400m, roq);
1056 kfree_skb(skb); /* no data here */
1057 break;
1058 case I2400M_RO_TYPE_PACKET:
1059 i2400m_roq_queue(i2400m, roq, skb, ro_sn);
1060 break;
1061 case I2400M_RO_TYPE_WS:
1062 i2400m_roq_update_ws(i2400m, roq, ro_sn);
1063 kfree_skb(skb); /* no data here */
1064 break;
1065 case I2400M_RO_TYPE_PACKET_WS:
1066 i2400m_roq_queue_update_ws(i2400m, roq, skb, ro_sn);
1067 break;
1068 default:
1069 dev_err(dev, "HW BUG? unknown reorder type %u\n", ro_type);
1070 }
1071
1072 spin_lock_irqsave(&i2400m->rx_lock, flags);
1073 kref_put(&i2400m->rx_roq_refcount, i2400m_rx_roq_destroy);
1074 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1075 }
1076 else
1077 i2400m_net_erx(i2400m, skb, cs);
1078 error_skb_clone:
1079 error:
1080 d_fnend(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
1081 "size %zu) = void\n", i2400m, skb_rx, single_last, payload, size);
1082 return;
1083 }
1084
1085
1086 /*
1087 * Act on a received payload
1088 *
1089 * @i2400m: device instance
1090 * @skb_rx: skb where the transaction was received
1091 * @single_last: 1 this is the only payload or the last one (so the
1092 * skb can be reused instead of cloned).
1093 * @pld: payload descriptor
1094 * @payload: payload data
1095 *
1096 * Upon reception of a payload, look at its guts in the payload
1097 * descriptor and decide what to do with it. If it is a single payload
1098 * skb or if the last skb is a data packet, the skb will be referenced
1099 * and modified (so it doesn't have to be cloned).
1100 */
1101 static
1102 void i2400m_rx_payload(struct i2400m *i2400m, struct sk_buff *skb_rx,
1103 unsigned single_last, const struct i2400m_pld *pld,
1104 const void *payload)
1105 {
1106 struct device *dev = i2400m_dev(i2400m);
1107 size_t pl_size = i2400m_pld_size(pld);
1108 enum i2400m_pt pl_type = i2400m_pld_type(pld);
1109
1110 d_printf(7, dev, "RX: received payload type %u, %zu bytes\n",
1111 pl_type, pl_size);
1112 d_dump(8, dev, payload, pl_size);
1113
1114 switch (pl_type) {
1115 case I2400M_PT_DATA:
1116 d_printf(3, dev, "RX: data payload %zu bytes\n", pl_size);
1117 i2400m_net_rx(i2400m, skb_rx, single_last, payload, pl_size);
1118 break;
1119 case I2400M_PT_CTRL:
1120 i2400m_rx_ctl(i2400m, skb_rx, payload, pl_size);
1121 break;
1122 case I2400M_PT_TRACE:
1123 i2400m_rx_trace(i2400m, payload, pl_size);
1124 break;
1125 case I2400M_PT_EDATA:
1126 d_printf(3, dev, "ERX: data payload %zu bytes\n", pl_size);
1127 i2400m_rx_edata(i2400m, skb_rx, single_last, payload, pl_size);
1128 break;
1129 default: /* Anything else shouldn't come to the host */
1130 if (printk_ratelimit())
1131 dev_err(dev, "RX: HW BUG? unexpected payload type %u\n",
1132 pl_type);
1133 }
1134 }
1135
1136
1137 /*
1138 * Check a received transaction's message header
1139 *
1140 * @i2400m: device descriptor
1141 * @msg_hdr: message header
1142 * @buf_size: size of the received buffer
1143 *
1144 * Check that the declarations done by a RX buffer message header are
1145 * sane and consistent with the amount of data that was received.
1146 */
1147 static
1148 int i2400m_rx_msg_hdr_check(struct i2400m *i2400m,
1149 const struct i2400m_msg_hdr *msg_hdr,
1150 size_t buf_size)
1151 {
1152 int result = -EIO;
1153 struct device *dev = i2400m_dev(i2400m);
1154 if (buf_size < sizeof(*msg_hdr)) {
1155 dev_err(dev, "RX: HW BUG? message with short header (%zu "
1156 "vs %zu bytes expected)\n", buf_size, sizeof(*msg_hdr));
1157 goto error;
1158 }
1159 if (msg_hdr->barker != cpu_to_le32(I2400M_D2H_MSG_BARKER)) {
1160 dev_err(dev, "RX: HW BUG? message received with unknown "
1161 "barker 0x%08x (buf_size %zu bytes)\n",
1162 le32_to_cpu(msg_hdr->barker), buf_size);
1163 goto error;
1164 }
1165 if (msg_hdr->num_pls == 0) {
1166 dev_err(dev, "RX: HW BUG? zero payload packets in message\n");
1167 goto error;
1168 }
1169 if (le16_to_cpu(msg_hdr->num_pls) > I2400M_MAX_PLS_IN_MSG) {
1170 dev_err(dev, "RX: HW BUG? message contains more payload "
1171 "than maximum; ignoring.\n");
1172 goto error;
1173 }
1174 result = 0;
1175 error:
1176 return result;
1177 }
1178
1179
1180 /*
1181 * Check a payload descriptor against the received data
1182 *
1183 * @i2400m: device descriptor
1184 * @pld: payload descriptor
1185 * @pl_itr: offset (in bytes) in the received buffer the payload is
1186 * located
1187 * @buf_size: size of the received buffer
1188 *
1189 * Given a payload descriptor (part of a RX buffer), check it is sane
1190 * and that the data it declares fits in the buffer.
1191 */
1192 static
1193 int i2400m_rx_pl_descr_check(struct i2400m *i2400m,
1194 const struct i2400m_pld *pld,
1195 size_t pl_itr, size_t buf_size)
1196 {
1197 int result = -EIO;
1198 struct device *dev = i2400m_dev(i2400m);
1199 size_t pl_size = i2400m_pld_size(pld);
1200 enum i2400m_pt pl_type = i2400m_pld_type(pld);
1201
1202 if (pl_size > i2400m->bus_pl_size_max) {
1203 dev_err(dev, "RX: HW BUG? payload @%zu: size %zu is "
1204 "bigger than maximum %zu; ignoring message\n",
1205 pl_itr, pl_size, i2400m->bus_pl_size_max);
1206 goto error;
1207 }
1208 if (pl_itr + pl_size > buf_size) { /* enough? */
1209 dev_err(dev, "RX: HW BUG? payload @%zu: size %zu "
1210 "goes beyond the received buffer "
1211 "size (%zu bytes); ignoring message\n",
1212 pl_itr, pl_size, buf_size);
1213 goto error;
1214 }
1215 if (pl_type >= I2400M_PT_ILLEGAL) {
1216 dev_err(dev, "RX: HW BUG? illegal payload type %u; "
1217 "ignoring message\n", pl_type);
1218 goto error;
1219 }
1220 result = 0;
1221 error:
1222 return result;
1223 }
1224
1225
1226 /**
1227 * i2400m_rx - Receive a buffer of data from the device
1228 *
1229 * @i2400m: device descriptor
1230 * @skb: skbuff where the data has been received
1231 *
1232 * Parse in a buffer of data that contains an RX message sent from the
1233 * device. See the file header for the format. Run all checks on the
1234 * buffer header, then run over each payload's descriptors, verify
1235 * their consistency and act on each payload's contents. If
1236 * everything is successful, update the device's statistics.
1237 *
1238 * Note: You need to set the skb to contain only the length of the
1239 * received buffer; for that, use skb_trim(skb, RECEIVED_SIZE).
1240 *
1241 * Returns:
1242 *
1243 * 0 if ok, < 0 errno on error
1244 *
1245 * If ok, this function owns now the skb and the caller DOESN'T have
1246 * to run kfree_skb() on it. However, on error, the caller still owns
1247 * the skb and it is responsible for releasing it.
1248 */
1249 int i2400m_rx(struct i2400m *i2400m, struct sk_buff *skb)
1250 {
1251 int i, result;
1252 struct device *dev = i2400m_dev(i2400m);
1253 const struct i2400m_msg_hdr *msg_hdr;
1254 size_t pl_itr, pl_size, skb_len;
1255 unsigned long flags;
1256 unsigned num_pls, single_last;
1257
1258 skb_len = skb->len;
1259 d_fnstart(4, dev, "(i2400m %p skb %p [size %zu])\n",
1260 i2400m, skb, skb_len);
1261 result = -EIO;
1262 msg_hdr = (void *) skb->data;
1263 result = i2400m_rx_msg_hdr_check(i2400m, msg_hdr, skb->len);
1264 if (result < 0)
1265 goto error_msg_hdr_check;
1266 result = -EIO;
1267 num_pls = le16_to_cpu(msg_hdr->num_pls);
1268 pl_itr = sizeof(*msg_hdr) + /* Check payload descriptor(s) */
1269 num_pls * sizeof(msg_hdr->pld[0]);
1270 pl_itr = ALIGN(pl_itr, I2400M_PL_ALIGN);
1271 if (pl_itr > skb->len) { /* got all the payload descriptors? */
1272 dev_err(dev, "RX: HW BUG? message too short (%u bytes) for "
1273 "%u payload descriptors (%zu each, total %zu)\n",
1274 skb->len, num_pls, sizeof(msg_hdr->pld[0]), pl_itr);
1275 goto error_pl_descr_short;
1276 }
1277 /* Walk each payload payload--check we really got it */
1278 for (i = 0; i < num_pls; i++) {
1279 /* work around old gcc warnings */
1280 pl_size = i2400m_pld_size(&msg_hdr->pld[i]);
1281 result = i2400m_rx_pl_descr_check(i2400m, &msg_hdr->pld[i],
1282 pl_itr, skb->len);
1283 if (result < 0)
1284 goto error_pl_descr_check;
1285 single_last = num_pls == 1 || i == num_pls - 1;
1286 i2400m_rx_payload(i2400m, skb, single_last, &msg_hdr->pld[i],
1287 skb->data + pl_itr);
1288 pl_itr += ALIGN(pl_size, I2400M_PL_ALIGN);
1289 cond_resched(); /* Don't monopolize */
1290 }
1291 kfree_skb(skb);
1292 /* Update device statistics */
1293 spin_lock_irqsave(&i2400m->rx_lock, flags);
1294 i2400m->rx_pl_num += i;
1295 if (i > i2400m->rx_pl_max)
1296 i2400m->rx_pl_max = i;
1297 if (i < i2400m->rx_pl_min)
1298 i2400m->rx_pl_min = i;
1299 i2400m->rx_num++;
1300 i2400m->rx_size_acc += skb->len;
1301 if (skb->len < i2400m->rx_size_min)
1302 i2400m->rx_size_min = skb->len;
1303 if (skb->len > i2400m->rx_size_max)
1304 i2400m->rx_size_max = skb->len;
1305 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1306 error_pl_descr_check:
1307 error_pl_descr_short:
1308 error_msg_hdr_check:
1309 d_fnend(4, dev, "(i2400m %p skb %p [size %zu]) = %d\n",
1310 i2400m, skb, skb_len, result);
1311 return result;
1312 }
1313 EXPORT_SYMBOL_GPL(i2400m_rx);
1314
1315
1316 void i2400m_unknown_barker(struct i2400m *i2400m,
1317 const void *buf, size_t size)
1318 {
1319 struct device *dev = i2400m_dev(i2400m);
1320 char prefix[64];
1321 const __le32 *barker = buf;
1322 dev_err(dev, "RX: HW BUG? unknown barker %08x, "
1323 "dropping %zu bytes\n", le32_to_cpu(*barker), size);
1324 snprintf(prefix, sizeof(prefix), "%s %s: ",
1325 dev_driver_string(dev), dev_name(dev));
1326 if (size > 64) {
1327 print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1328 8, 4, buf, 64, 0);
1329 printk(KERN_ERR "%s... (only first 64 bytes "
1330 "dumped)\n", prefix);
1331 } else
1332 print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1333 8, 4, buf, size, 0);
1334 }
1335 EXPORT_SYMBOL(i2400m_unknown_barker);
1336
1337
1338 /*
1339 * Initialize the RX queue and infrastructure
1340 *
1341 * This sets up all the RX reordering infrastructures, which will not
1342 * be used if reordering is not enabled or if the firmware does not
1343 * support it. The device is told to do reordering in
1344 * i2400m_dev_initialize(), where it also looks at the value of the
1345 * i2400m->rx_reorder switch before taking a decission.
1346 *
1347 * Note we allocate the roq queues in one chunk and the actual logging
1348 * support for it (logging) in another one and then we setup the
1349 * pointers from the first to the last.
1350 */
1351 int i2400m_rx_setup(struct i2400m *i2400m)
1352 {
1353 int result = 0;
1354 struct device *dev = i2400m_dev(i2400m);
1355
1356 i2400m->rx_reorder = i2400m_rx_reorder_disabled? 0 : 1;
1357 if (i2400m->rx_reorder) {
1358 unsigned itr;
1359 size_t size;
1360 struct i2400m_roq_log *rd;
1361
1362 result = -ENOMEM;
1363
1364 size = sizeof(i2400m->rx_roq[0]) * (I2400M_RO_CIN + 1);
1365 i2400m->rx_roq = kzalloc(size, GFP_KERNEL);
1366 if (i2400m->rx_roq == NULL) {
1367 dev_err(dev, "RX: cannot allocate %zu bytes for "
1368 "reorder queues\n", size);
1369 goto error_roq_alloc;
1370 }
1371
1372 size = sizeof(*i2400m->rx_roq[0].log) * (I2400M_RO_CIN + 1);
1373 rd = kzalloc(size, GFP_KERNEL);
1374 if (rd == NULL) {
1375 dev_err(dev, "RX: cannot allocate %zu bytes for "
1376 "reorder queues log areas\n", size);
1377 result = -ENOMEM;
1378 goto error_roq_log_alloc;
1379 }
1380
1381 for(itr = 0; itr < I2400M_RO_CIN + 1; itr++) {
1382 __i2400m_roq_init(&i2400m->rx_roq[itr]);
1383 i2400m->rx_roq[itr].log = &rd[itr];
1384 }
1385 kref_init(&i2400m->rx_roq_refcount);
1386 }
1387 return 0;
1388
1389 error_roq_log_alloc:
1390 kfree(i2400m->rx_roq);
1391 error_roq_alloc:
1392 return result;
1393 }
1394
1395
1396 /* Tear down the RX queue and infrastructure */
1397 void i2400m_rx_release(struct i2400m *i2400m)
1398 {
1399 unsigned long flags;
1400
1401 if (i2400m->rx_reorder) {
1402 spin_lock_irqsave(&i2400m->rx_lock, flags);
1403 kref_put(&i2400m->rx_roq_refcount, i2400m_rx_roq_destroy);
1404 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1405 }
1406 /* at this point, nothing can be received... */
1407 i2400m_report_hook_flush(i2400m);
1408 }